xref: /freebsd/sys/netinet/in_pcb.c (revision cacdd70cc751fb68dec4b86c5e5b8c969b6e26ef)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993, 1995
3  *	The Regents of the University of California.
4  * Copyright (c) 2007 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_ddb.h"
38 #include "opt_ipsec.h"
39 #include "opt_inet6.h"
40 #include "opt_mac.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/domain.h>
47 #include <sys/protosw.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/priv.h>
51 #include <sys/proc.h>
52 #include <sys/jail.h>
53 #include <sys/kernel.h>
54 #include <sys/sysctl.h>
55 
56 #ifdef DDB
57 #include <ddb/ddb.h>
58 #endif
59 
60 #include <vm/uma.h>
61 
62 #include <net/if.h>
63 #include <net/if_types.h>
64 #include <net/route.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_pcb.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip_var.h>
70 #include <netinet/tcp_var.h>
71 #include <netinet/udp.h>
72 #include <netinet/udp_var.h>
73 #ifdef INET6
74 #include <netinet/ip6.h>
75 #include <netinet6/ip6_var.h>
76 #endif /* INET6 */
77 
78 
79 #ifdef IPSEC
80 #include <netipsec/ipsec.h>
81 #include <netipsec/key.h>
82 #endif /* IPSEC */
83 
84 #include <security/mac/mac_framework.h>
85 
86 /*
87  * These configure the range of local port addresses assigned to
88  * "unspecified" outgoing connections/packets/whatever.
89  */
90 int	ipport_lowfirstauto  = IPPORT_RESERVED - 1;	/* 1023 */
91 int	ipport_lowlastauto = IPPORT_RESERVEDSTART;	/* 600 */
92 int	ipport_firstauto = IPPORT_EPHEMERALFIRST;	/* 10000 */
93 int	ipport_lastauto  = IPPORT_EPHEMERALLAST;	/* 65535 */
94 int	ipport_hifirstauto = IPPORT_HIFIRSTAUTO;	/* 49152 */
95 int	ipport_hilastauto  = IPPORT_HILASTAUTO;		/* 65535 */
96 
97 /*
98  * Reserved ports accessible only to root. There are significant
99  * security considerations that must be accounted for when changing these,
100  * but the security benefits can be great. Please be careful.
101  */
102 int	ipport_reservedhigh = IPPORT_RESERVED - 1;	/* 1023 */
103 int	ipport_reservedlow = 0;
104 
105 /* Variables dealing with random ephemeral port allocation. */
106 int	ipport_randomized = 1;	/* user controlled via sysctl */
107 int	ipport_randomcps = 10;	/* user controlled via sysctl */
108 int	ipport_randomtime = 45;	/* user controlled via sysctl */
109 int	ipport_stoprandom = 0;	/* toggled by ipport_tick */
110 int	ipport_tcpallocs;
111 int	ipport_tcplastcount;
112 
113 #define RANGECHK(var, min, max) \
114 	if ((var) < (min)) { (var) = (min); } \
115 	else if ((var) > (max)) { (var) = (max); }
116 
117 static int
118 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
119 {
120 	int error;
121 
122 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
123 	if (error == 0) {
124 		RANGECHK(ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
125 		RANGECHK(ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
126 		RANGECHK(ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
127 		RANGECHK(ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
128 		RANGECHK(ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
129 		RANGECHK(ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
130 	}
131 	return (error);
132 }
133 
134 #undef RANGECHK
135 
136 SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports");
137 
138 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLTYPE_INT|CTLFLAG_RW,
139 	   &ipport_lowfirstauto, 0, &sysctl_net_ipport_check, "I", "");
140 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLTYPE_INT|CTLFLAG_RW,
141 	   &ipport_lowlastauto, 0, &sysctl_net_ipport_check, "I", "");
142 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLTYPE_INT|CTLFLAG_RW,
143 	   &ipport_firstauto, 0, &sysctl_net_ipport_check, "I", "");
144 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLTYPE_INT|CTLFLAG_RW,
145 	   &ipport_lastauto, 0, &sysctl_net_ipport_check, "I", "");
146 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLTYPE_INT|CTLFLAG_RW,
147 	   &ipport_hifirstauto, 0, &sysctl_net_ipport_check, "I", "");
148 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLTYPE_INT|CTLFLAG_RW,
149 	   &ipport_hilastauto, 0, &sysctl_net_ipport_check, "I", "");
150 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
151 	   CTLFLAG_RW|CTLFLAG_SECURE, &ipport_reservedhigh, 0, "");
152 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
153 	   CTLFLAG_RW|CTLFLAG_SECURE, &ipport_reservedlow, 0, "");
154 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW,
155 	   &ipport_randomized, 0, "Enable random port allocation");
156 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW,
157 	   &ipport_randomcps, 0, "Maximum number of random port "
158 	   "allocations before switching to a sequental one");
159 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW,
160 	   &ipport_randomtime, 0, "Minimum time to keep sequental port "
161 	   "allocation before switching to a random one");
162 
163 /*
164  * in_pcb.c: manage the Protocol Control Blocks.
165  *
166  * NOTE: It is assumed that most of these functions will be called with
167  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
168  * functions often modify hash chains or addresses in pcbs.
169  */
170 
171 /*
172  * Allocate a PCB and associate it with the socket.
173  * On success return with the PCB locked.
174  */
175 int
176 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
177 {
178 	struct inpcb *inp;
179 	int error;
180 
181 	INP_INFO_WLOCK_ASSERT(pcbinfo);
182 	error = 0;
183 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
184 	if (inp == NULL)
185 		return (ENOBUFS);
186 	bzero(inp, inp_zero_size);
187 	inp->inp_pcbinfo = pcbinfo;
188 	inp->inp_socket = so;
189 	inp->inp_inc.inc_fibnum = so->so_fibnum;
190 #ifdef MAC
191 	error = mac_inpcb_init(inp, M_NOWAIT);
192 	if (error != 0)
193 		goto out;
194 	SOCK_LOCK(so);
195 	mac_inpcb_create(so, inp);
196 	SOCK_UNLOCK(so);
197 #endif
198 
199 #ifdef IPSEC
200 	error = ipsec_init_policy(so, &inp->inp_sp);
201 	if (error != 0) {
202 #ifdef MAC
203 		mac_inpcb_destroy(inp);
204 #endif
205 		goto out;
206 	}
207 #endif /*IPSEC*/
208 #ifdef INET6
209 	if (INP_SOCKAF(so) == AF_INET6) {
210 		inp->inp_vflag |= INP_IPV6PROTO;
211 		if (ip6_v6only)
212 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
213 	}
214 #endif
215 	LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
216 	pcbinfo->ipi_count++;
217 	so->so_pcb = (caddr_t)inp;
218 #ifdef INET6
219 	if (ip6_auto_flowlabel)
220 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
221 #endif
222 	INP_WLOCK(inp);
223 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
224 
225 #if defined(IPSEC) || defined(MAC)
226 out:
227 	if (error != 0)
228 		uma_zfree(pcbinfo->ipi_zone, inp);
229 #endif
230 	return (error);
231 }
232 
233 int
234 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
235 {
236 	int anonport, error;
237 
238 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
239 	INP_WLOCK_ASSERT(inp);
240 
241 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
242 		return (EINVAL);
243 	anonport = inp->inp_lport == 0 && (nam == NULL ||
244 	    ((struct sockaddr_in *)nam)->sin_port == 0);
245 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
246 	    &inp->inp_lport, cred);
247 	if (error)
248 		return (error);
249 	if (in_pcbinshash(inp) != 0) {
250 		inp->inp_laddr.s_addr = INADDR_ANY;
251 		inp->inp_lport = 0;
252 		return (EAGAIN);
253 	}
254 	if (anonport)
255 		inp->inp_flags |= INP_ANONPORT;
256 	return (0);
257 }
258 
259 /*
260  * Set up a bind operation on a PCB, performing port allocation
261  * as required, but do not actually modify the PCB. Callers can
262  * either complete the bind by setting inp_laddr/inp_lport and
263  * calling in_pcbinshash(), or they can just use the resulting
264  * port and address to authorise the sending of a once-off packet.
265  *
266  * On error, the values of *laddrp and *lportp are not changed.
267  */
268 int
269 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
270     u_short *lportp, struct ucred *cred)
271 {
272 	struct socket *so = inp->inp_socket;
273 	unsigned short *lastport;
274 	struct sockaddr_in *sin;
275 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
276 	struct in_addr laddr;
277 	u_short lport = 0;
278 	int wild = 0, reuseport = (so->so_options & SO_REUSEPORT);
279 	int error, prison = 0;
280 	int dorandom;
281 
282 	/*
283 	 * Because no actual state changes occur here, a global write lock on
284 	 * the pcbinfo isn't required.
285 	 */
286 	INP_INFO_LOCK_ASSERT(pcbinfo);
287 	INP_LOCK_ASSERT(inp);
288 
289 	if (TAILQ_EMPTY(&in_ifaddrhead)) /* XXX broken! */
290 		return (EADDRNOTAVAIL);
291 	laddr.s_addr = *laddrp;
292 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
293 		return (EINVAL);
294 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
295 		wild = INPLOOKUP_WILDCARD;
296 	if (nam) {
297 		sin = (struct sockaddr_in *)nam;
298 		if (nam->sa_len != sizeof (*sin))
299 			return (EINVAL);
300 #ifdef notdef
301 		/*
302 		 * We should check the family, but old programs
303 		 * incorrectly fail to initialize it.
304 		 */
305 		if (sin->sin_family != AF_INET)
306 			return (EAFNOSUPPORT);
307 #endif
308 		if (sin->sin_addr.s_addr != INADDR_ANY)
309 			if (prison_ip(cred, 0, &sin->sin_addr.s_addr))
310 				return(EINVAL);
311 		if (sin->sin_port != *lportp) {
312 			/* Don't allow the port to change. */
313 			if (*lportp != 0)
314 				return (EINVAL);
315 			lport = sin->sin_port;
316 		}
317 		/* NB: lport is left as 0 if the port isn't being changed. */
318 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
319 			/*
320 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
321 			 * allow complete duplication of binding if
322 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
323 			 * and a multicast address is bound on both
324 			 * new and duplicated sockets.
325 			 */
326 			if (so->so_options & SO_REUSEADDR)
327 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
328 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
329 			sin->sin_port = 0;		/* yech... */
330 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
331 			if (ifa_ifwithaddr((struct sockaddr *)sin) == 0)
332 				return (EADDRNOTAVAIL);
333 		}
334 		laddr = sin->sin_addr;
335 		if (lport) {
336 			struct inpcb *t;
337 			struct tcptw *tw;
338 
339 			/* GROSS */
340 			if (ntohs(lport) <= ipport_reservedhigh &&
341 			    ntohs(lport) >= ipport_reservedlow &&
342 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
343 			    0))
344 				return (EACCES);
345 			if (jailed(cred))
346 				prison = 1;
347 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
348 			    priv_check_cred(so->so_cred,
349 			    PRIV_NETINET_REUSEPORT, 0) != 0) {
350 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
351 				    lport, prison ? 0 : INPLOOKUP_WILDCARD,
352 				    cred);
353 	/*
354 	 * XXX
355 	 * This entire block sorely needs a rewrite.
356 	 */
357 				if (t &&
358 				    ((t->inp_vflag & INP_TIMEWAIT) == 0) &&
359 				    (so->so_type != SOCK_STREAM ||
360 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
361 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
362 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
363 				     (t->inp_socket->so_options &
364 					 SO_REUSEPORT) == 0) &&
365 				    (so->so_cred->cr_uid !=
366 				     t->inp_socket->so_cred->cr_uid))
367 					return (EADDRINUSE);
368 			}
369 			if (prison && prison_ip(cred, 0, &sin->sin_addr.s_addr))
370 				return (EADDRNOTAVAIL);
371 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
372 			    lport, prison ? 0 : wild, cred);
373 			if (t && (t->inp_vflag & INP_TIMEWAIT)) {
374 				/*
375 				 * XXXRW: If an incpb has had its timewait
376 				 * state recycled, we treat the address as
377 				 * being in use (for now).  This is better
378 				 * than a panic, but not desirable.
379 				 */
380 				tw = intotw(inp);
381 				if (tw == NULL ||
382 				    (reuseport & tw->tw_so_options) == 0)
383 					return (EADDRINUSE);
384 			} else if (t &&
385 			    (reuseport & t->inp_socket->so_options) == 0) {
386 #ifdef INET6
387 				if (ntohl(sin->sin_addr.s_addr) !=
388 				    INADDR_ANY ||
389 				    ntohl(t->inp_laddr.s_addr) !=
390 				    INADDR_ANY ||
391 				    INP_SOCKAF(so) ==
392 				    INP_SOCKAF(t->inp_socket))
393 #endif
394 				return (EADDRINUSE);
395 			}
396 		}
397 	}
398 	if (*lportp != 0)
399 		lport = *lportp;
400 	if (lport == 0) {
401 		u_short first, last, aux;
402 		int count;
403 
404 		if (laddr.s_addr != INADDR_ANY)
405 			if (prison_ip(cred, 0, &laddr.s_addr))
406 				return (EINVAL);
407 
408 		if (inp->inp_flags & INP_HIGHPORT) {
409 			first = ipport_hifirstauto;	/* sysctl */
410 			last  = ipport_hilastauto;
411 			lastport = &pcbinfo->ipi_lasthi;
412 		} else if (inp->inp_flags & INP_LOWPORT) {
413 			error = priv_check_cred(cred,
414 			    PRIV_NETINET_RESERVEDPORT, 0);
415 			if (error)
416 				return error;
417 			first = ipport_lowfirstauto;	/* 1023 */
418 			last  = ipport_lowlastauto;	/* 600 */
419 			lastport = &pcbinfo->ipi_lastlow;
420 		} else {
421 			first = ipport_firstauto;	/* sysctl */
422 			last  = ipport_lastauto;
423 			lastport = &pcbinfo->ipi_lastport;
424 		}
425 		/*
426 		 * For UDP, use random port allocation as long as the user
427 		 * allows it.  For TCP (and as of yet unknown) connections,
428 		 * use random port allocation only if the user allows it AND
429 		 * ipport_tick() allows it.
430 		 */
431 		if (ipport_randomized &&
432 			(!ipport_stoprandom || pcbinfo == &udbinfo))
433 			dorandom = 1;
434 		else
435 			dorandom = 0;
436 		/*
437 		 * It makes no sense to do random port allocation if
438 		 * we have the only port available.
439 		 */
440 		if (first == last)
441 			dorandom = 0;
442 		/* Make sure to not include UDP packets in the count. */
443 		if (pcbinfo != &udbinfo)
444 			ipport_tcpallocs++;
445 		/*
446 		 * Simple check to ensure all ports are not used up causing
447 		 * a deadlock here.
448 		 */
449 		if (first > last) {
450 			aux = first;
451 			first = last;
452 			last = aux;
453 		}
454 
455 		if (dorandom)
456 			*lastport = first +
457 				    (arc4random() % (last - first));
458 
459 		count = last - first;
460 
461 		do {
462 			if (count-- < 0)	/* completely used? */
463 				return (EADDRNOTAVAIL);
464 			++*lastport;
465 			if (*lastport < first || *lastport > last)
466 				*lastport = first;
467 			lport = htons(*lastport);
468 		} while (in_pcblookup_local(pcbinfo, laddr,
469 		    lport, wild, cred));
470 	}
471 	if (prison_ip(cred, 0, &laddr.s_addr))
472 		return (EINVAL);
473 	*laddrp = laddr.s_addr;
474 	*lportp = lport;
475 	return (0);
476 }
477 
478 /*
479  * Connect from a socket to a specified address.
480  * Both address and port must be specified in argument sin.
481  * If don't have a local address for this socket yet,
482  * then pick one.
483  */
484 int
485 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
486 {
487 	u_short lport, fport;
488 	in_addr_t laddr, faddr;
489 	int anonport, error;
490 
491 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
492 	INP_WLOCK_ASSERT(inp);
493 
494 	lport = inp->inp_lport;
495 	laddr = inp->inp_laddr.s_addr;
496 	anonport = (lport == 0);
497 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
498 	    NULL, cred);
499 	if (error)
500 		return (error);
501 
502 	/* Do the initial binding of the local address if required. */
503 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
504 		inp->inp_lport = lport;
505 		inp->inp_laddr.s_addr = laddr;
506 		if (in_pcbinshash(inp) != 0) {
507 			inp->inp_laddr.s_addr = INADDR_ANY;
508 			inp->inp_lport = 0;
509 			return (EAGAIN);
510 		}
511 	}
512 
513 	/* Commit the remaining changes. */
514 	inp->inp_lport = lport;
515 	inp->inp_laddr.s_addr = laddr;
516 	inp->inp_faddr.s_addr = faddr;
517 	inp->inp_fport = fport;
518 	in_pcbrehash(inp);
519 
520 	if (anonport)
521 		inp->inp_flags |= INP_ANONPORT;
522 	return (0);
523 }
524 
525 /*
526  * Set up for a connect from a socket to the specified address.
527  * On entry, *laddrp and *lportp should contain the current local
528  * address and port for the PCB; these are updated to the values
529  * that should be placed in inp_laddr and inp_lport to complete
530  * the connect.
531  *
532  * On success, *faddrp and *fportp will be set to the remote address
533  * and port. These are not updated in the error case.
534  *
535  * If the operation fails because the connection already exists,
536  * *oinpp will be set to the PCB of that connection so that the
537  * caller can decide to override it. In all other cases, *oinpp
538  * is set to NULL.
539  */
540 int
541 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
542     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
543     struct inpcb **oinpp, struct ucred *cred)
544 {
545 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
546 	struct in_ifaddr *ia;
547 	struct sockaddr_in sa;
548 	struct ucred *socred;
549 	struct inpcb *oinp;
550 	struct in_addr laddr, faddr;
551 	u_short lport, fport;
552 	int error;
553 
554 	/*
555 	 * Because a global state change doesn't actually occur here, a read
556 	 * lock is sufficient.
557 	 */
558 	INP_INFO_LOCK_ASSERT(inp->inp_pcbinfo);
559 	INP_LOCK_ASSERT(inp);
560 
561 	if (oinpp != NULL)
562 		*oinpp = NULL;
563 	if (nam->sa_len != sizeof (*sin))
564 		return (EINVAL);
565 	if (sin->sin_family != AF_INET)
566 		return (EAFNOSUPPORT);
567 	if (sin->sin_port == 0)
568 		return (EADDRNOTAVAIL);
569 	laddr.s_addr = *laddrp;
570 	lport = *lportp;
571 	faddr = sin->sin_addr;
572 	fport = sin->sin_port;
573 	socred = inp->inp_socket->so_cred;
574 	if (laddr.s_addr == INADDR_ANY && jailed(socred)) {
575 		bzero(&sa, sizeof(sa));
576 		sa.sin_addr.s_addr = htonl(prison_getip(socred));
577 		sa.sin_len = sizeof(sa);
578 		sa.sin_family = AF_INET;
579 		error = in_pcbbind_setup(inp, (struct sockaddr *)&sa,
580 		    &laddr.s_addr, &lport, cred);
581 		if (error)
582 			return (error);
583 	}
584 	if (!TAILQ_EMPTY(&in_ifaddrhead)) {
585 		/*
586 		 * If the destination address is INADDR_ANY,
587 		 * use the primary local address.
588 		 * If the supplied address is INADDR_BROADCAST,
589 		 * and the primary interface supports broadcast,
590 		 * choose the broadcast address for that interface.
591 		 */
592 		if (faddr.s_addr == INADDR_ANY)
593 			faddr = IA_SIN(TAILQ_FIRST(&in_ifaddrhead))->sin_addr;
594 		else if (faddr.s_addr == (u_long)INADDR_BROADCAST &&
595 		    (TAILQ_FIRST(&in_ifaddrhead)->ia_ifp->if_flags &
596 		    IFF_BROADCAST))
597 			faddr = satosin(&TAILQ_FIRST(
598 			    &in_ifaddrhead)->ia_broadaddr)->sin_addr;
599 	}
600 	if (laddr.s_addr == INADDR_ANY) {
601 		ia = NULL;
602 		/*
603 		 * If route is known our src addr is taken from the i/f,
604 		 * else punt.
605 		 *
606 		 * Find out route to destination
607 		 */
608 		if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
609 			ia = ip_rtaddr(faddr, inp->inp_inc.inc_fibnum);
610 		/*
611 		 * If we found a route, use the address corresponding to
612 		 * the outgoing interface.
613 		 *
614 		 * Otherwise assume faddr is reachable on a directly connected
615 		 * network and try to find a corresponding interface to take
616 		 * the source address from.
617 		 */
618 		if (ia == NULL) {
619 			bzero(&sa, sizeof(sa));
620 			sa.sin_addr = faddr;
621 			sa.sin_len = sizeof(sa);
622 			sa.sin_family = AF_INET;
623 
624 			ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sa)));
625 			if (ia == NULL)
626 				ia = ifatoia(ifa_ifwithnet(sintosa(&sa)));
627 			if (ia == NULL)
628 				return (ENETUNREACH);
629 		}
630 		/*
631 		 * If the destination address is multicast and an outgoing
632 		 * interface has been set as a multicast option, use the
633 		 * address of that interface as our source address.
634 		 */
635 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
636 		    inp->inp_moptions != NULL) {
637 			struct ip_moptions *imo;
638 			struct ifnet *ifp;
639 
640 			imo = inp->inp_moptions;
641 			if (imo->imo_multicast_ifp != NULL) {
642 				ifp = imo->imo_multicast_ifp;
643 				TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link)
644 					if (ia->ia_ifp == ifp)
645 						break;
646 				if (ia == NULL)
647 					return (EADDRNOTAVAIL);
648 			}
649 		}
650 		laddr = ia->ia_addr.sin_addr;
651 	}
652 
653 	oinp = in_pcblookup_hash(inp->inp_pcbinfo, faddr, fport, laddr, lport,
654 	    0, NULL);
655 	if (oinp != NULL) {
656 		if (oinpp != NULL)
657 			*oinpp = oinp;
658 		return (EADDRINUSE);
659 	}
660 	if (lport == 0) {
661 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
662 		    cred);
663 		if (error)
664 			return (error);
665 	}
666 	*laddrp = laddr.s_addr;
667 	*lportp = lport;
668 	*faddrp = faddr.s_addr;
669 	*fportp = fport;
670 	return (0);
671 }
672 
673 void
674 in_pcbdisconnect(struct inpcb *inp)
675 {
676 
677 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
678 	INP_WLOCK_ASSERT(inp);
679 
680 	inp->inp_faddr.s_addr = INADDR_ANY;
681 	inp->inp_fport = 0;
682 	in_pcbrehash(inp);
683 }
684 
685 /*
686  * In the old world order, in_pcbdetach() served two functions: to detach the
687  * pcb from the socket/potentially free the socket, and to free the pcb
688  * itself.  In the new world order, the protocol code is responsible for
689  * managing the relationship with the socket, and this code simply frees the
690  * pcb.
691  */
692 void
693 in_pcbdetach(struct inpcb *inp)
694 {
695 
696 	KASSERT(inp->inp_socket != NULL, ("in_pcbdetach: inp_socket == NULL"));
697 	inp->inp_socket->so_pcb = NULL;
698 	inp->inp_socket = NULL;
699 }
700 
701 void
702 in_pcbfree(struct inpcb *inp)
703 {
704 	struct inpcbinfo *ipi = inp->inp_pcbinfo;
705 
706 	KASSERT(inp->inp_socket == NULL, ("in_pcbfree: inp_socket != NULL"));
707 
708 	INP_INFO_WLOCK_ASSERT(ipi);
709 	INP_WLOCK_ASSERT(inp);
710 
711 #ifdef IPSEC
712 	ipsec4_delete_pcbpolicy(inp);
713 #endif /*IPSEC*/
714 	inp->inp_gencnt = ++ipi->ipi_gencnt;
715 	in_pcbremlists(inp);
716 	if (inp->inp_options)
717 		(void)m_free(inp->inp_options);
718 	if (inp->inp_moptions != NULL)
719 		inp_freemoptions(inp->inp_moptions);
720 	inp->inp_vflag = 0;
721 
722 #ifdef MAC
723 	mac_inpcb_destroy(inp);
724 #endif
725 	INP_WUNLOCK(inp);
726 	uma_zfree(ipi->ipi_zone, inp);
727 }
728 
729 /*
730  * TCP needs to maintain its inpcb structure after the TCP connection has
731  * been torn down.  However, it must be disconnected from the inpcb hashes as
732  * it must not prevent binding of future connections to the same port/ip
733  * combination by other inpcbs.
734  */
735 void
736 in_pcbdrop(struct inpcb *inp)
737 {
738 
739 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
740 	INP_WLOCK_ASSERT(inp);
741 
742 	inp->inp_vflag |= INP_DROPPED;
743 	if (inp->inp_lport) {
744 		struct inpcbport *phd = inp->inp_phd;
745 
746 		LIST_REMOVE(inp, inp_hash);
747 		LIST_REMOVE(inp, inp_portlist);
748 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
749 			LIST_REMOVE(phd, phd_hash);
750 			free(phd, M_PCB);
751 		}
752 		inp->inp_lport = 0;
753 	}
754 }
755 
756 /*
757  * Common routines to return the socket addresses associated with inpcbs.
758  */
759 struct sockaddr *
760 in_sockaddr(in_port_t port, struct in_addr *addr_p)
761 {
762 	struct sockaddr_in *sin;
763 
764 	MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME,
765 		M_WAITOK | M_ZERO);
766 	sin->sin_family = AF_INET;
767 	sin->sin_len = sizeof(*sin);
768 	sin->sin_addr = *addr_p;
769 	sin->sin_port = port;
770 
771 	return (struct sockaddr *)sin;
772 }
773 
774 int
775 in_getsockaddr(struct socket *so, struct sockaddr **nam)
776 {
777 	struct inpcb *inp;
778 	struct in_addr addr;
779 	in_port_t port;
780 
781 	inp = sotoinpcb(so);
782 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
783 
784 	INP_RLOCK(inp);
785 	port = inp->inp_lport;
786 	addr = inp->inp_laddr;
787 	INP_RUNLOCK(inp);
788 
789 	*nam = in_sockaddr(port, &addr);
790 	return 0;
791 }
792 
793 int
794 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
795 {
796 	struct inpcb *inp;
797 	struct in_addr addr;
798 	in_port_t port;
799 
800 	inp = sotoinpcb(so);
801 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
802 
803 	INP_RLOCK(inp);
804 	port = inp->inp_fport;
805 	addr = inp->inp_faddr;
806 	INP_RUNLOCK(inp);
807 
808 	*nam = in_sockaddr(port, &addr);
809 	return 0;
810 }
811 
812 void
813 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
814     struct inpcb *(*notify)(struct inpcb *, int))
815 {
816 	struct inpcb *inp, *inp_temp;
817 
818 	INP_INFO_WLOCK(pcbinfo);
819 	LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
820 		INP_WLOCK(inp);
821 #ifdef INET6
822 		if ((inp->inp_vflag & INP_IPV4) == 0) {
823 			INP_WUNLOCK(inp);
824 			continue;
825 		}
826 #endif
827 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
828 		    inp->inp_socket == NULL) {
829 			INP_WUNLOCK(inp);
830 			continue;
831 		}
832 		if ((*notify)(inp, errno))
833 			INP_WUNLOCK(inp);
834 	}
835 	INP_INFO_WUNLOCK(pcbinfo);
836 }
837 
838 void
839 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
840 {
841 	struct inpcb *inp;
842 	struct ip_moptions *imo;
843 	int i, gap;
844 
845 	INP_INFO_RLOCK(pcbinfo);
846 	LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
847 		INP_WLOCK(inp);
848 		imo = inp->inp_moptions;
849 		if ((inp->inp_vflag & INP_IPV4) &&
850 		    imo != NULL) {
851 			/*
852 			 * Unselect the outgoing interface if it is being
853 			 * detached.
854 			 */
855 			if (imo->imo_multicast_ifp == ifp)
856 				imo->imo_multicast_ifp = NULL;
857 
858 			/*
859 			 * Drop multicast group membership if we joined
860 			 * through the interface being detached.
861 			 */
862 			for (i = 0, gap = 0; i < imo->imo_num_memberships;
863 			    i++) {
864 				if (imo->imo_membership[i]->inm_ifp == ifp) {
865 					in_delmulti(imo->imo_membership[i]);
866 					gap++;
867 				} else if (gap != 0)
868 					imo->imo_membership[i - gap] =
869 					    imo->imo_membership[i];
870 			}
871 			imo->imo_num_memberships -= gap;
872 		}
873 		INP_WUNLOCK(inp);
874 	}
875 	INP_INFO_RUNLOCK(pcbinfo);
876 }
877 
878 /*
879  * Lookup a PCB based on the local address and port.
880  */
881 #define INP_LOOKUP_MAPPED_PCB_COST	3
882 struct inpcb *
883 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
884     u_short lport, int wild_okay, struct ucred *cred)
885 {
886 	struct inpcb *inp;
887 #ifdef INET6
888 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
889 #else
890 	int matchwild = 3;
891 #endif
892 	int wildcard;
893 
894 	INP_INFO_LOCK_ASSERT(pcbinfo);
895 
896 	if (!wild_okay) {
897 		struct inpcbhead *head;
898 		/*
899 		 * Look for an unconnected (wildcard foreign addr) PCB that
900 		 * matches the local address and port we're looking for.
901 		 */
902 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
903 		    0, pcbinfo->ipi_hashmask)];
904 		LIST_FOREACH(inp, head, inp_hash) {
905 #ifdef INET6
906 			if ((inp->inp_vflag & INP_IPV4) == 0)
907 				continue;
908 #endif
909 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
910 			    inp->inp_laddr.s_addr == laddr.s_addr &&
911 			    inp->inp_lport == lport) {
912 				/*
913 				 * Found.
914 				 */
915 				return (inp);
916 			}
917 		}
918 		/*
919 		 * Not found.
920 		 */
921 		return (NULL);
922 	} else {
923 		struct inpcbporthead *porthash;
924 		struct inpcbport *phd;
925 		struct inpcb *match = NULL;
926 		/*
927 		 * Best fit PCB lookup.
928 		 *
929 		 * First see if this local port is in use by looking on the
930 		 * port hash list.
931 		 */
932 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
933 		    pcbinfo->ipi_porthashmask)];
934 		LIST_FOREACH(phd, porthash, phd_hash) {
935 			if (phd->phd_port == lport)
936 				break;
937 		}
938 		if (phd != NULL) {
939 			/*
940 			 * Port is in use by one or more PCBs. Look for best
941 			 * fit.
942 			 */
943 			LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
944 				wildcard = 0;
945 #ifdef INET6
946 				if ((inp->inp_vflag & INP_IPV4) == 0)
947 					continue;
948 				/*
949 				 * We never select the PCB that has
950 				 * INP_IPV6 flag and is bound to :: if
951 				 * we have another PCB which is bound
952 				 * to 0.0.0.0.  If a PCB has the
953 				 * INP_IPV6 flag, then we set its cost
954 				 * higher than IPv4 only PCBs.
955 				 *
956 				 * Note that the case only happens
957 				 * when a socket is bound to ::, under
958 				 * the condition that the use of the
959 				 * mapped address is allowed.
960 				 */
961 				if ((inp->inp_vflag & INP_IPV6) != 0)
962 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
963 #endif
964 				if (inp->inp_faddr.s_addr != INADDR_ANY)
965 					wildcard++;
966 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
967 					if (laddr.s_addr == INADDR_ANY)
968 						wildcard++;
969 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
970 						continue;
971 				} else {
972 					if (laddr.s_addr != INADDR_ANY)
973 						wildcard++;
974 				}
975 				if (wildcard < matchwild) {
976 					match = inp;
977 					matchwild = wildcard;
978 					if (matchwild == 0) {
979 						break;
980 					}
981 				}
982 			}
983 		}
984 		return (match);
985 	}
986 }
987 #undef INP_LOOKUP_MAPPED_PCB_COST
988 
989 /*
990  * Lookup PCB in hash list.
991  */
992 struct inpcb *
993 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
994     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard,
995     struct ifnet *ifp)
996 {
997 	struct inpcbhead *head;
998 	struct inpcb *inp;
999 	u_short fport = fport_arg, lport = lport_arg;
1000 
1001 	INP_INFO_LOCK_ASSERT(pcbinfo);
1002 
1003 	/*
1004 	 * First look for an exact match.
1005 	 */
1006 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1007 	    pcbinfo->ipi_hashmask)];
1008 	LIST_FOREACH(inp, head, inp_hash) {
1009 #ifdef INET6
1010 		if ((inp->inp_vflag & INP_IPV4) == 0)
1011 			continue;
1012 #endif
1013 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1014 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1015 		    inp->inp_fport == fport &&
1016 		    inp->inp_lport == lport)
1017 			return (inp);
1018 	}
1019 
1020 	/*
1021 	 * Then look for a wildcard match, if requested.
1022 	 */
1023 	if (wildcard) {
1024 		struct inpcb *local_wild = NULL;
1025 #ifdef INET6
1026 		struct inpcb *local_wild_mapped = NULL;
1027 #endif
1028 
1029 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1030 		    0, pcbinfo->ipi_hashmask)];
1031 		LIST_FOREACH(inp, head, inp_hash) {
1032 #ifdef INET6
1033 			if ((inp->inp_vflag & INP_IPV4) == 0)
1034 				continue;
1035 #endif
1036 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1037 			    inp->inp_lport == lport) {
1038 				if (ifp && ifp->if_type == IFT_FAITH &&
1039 				    (inp->inp_flags & INP_FAITH) == 0)
1040 					continue;
1041 				if (inp->inp_laddr.s_addr == laddr.s_addr)
1042 					return (inp);
1043 				else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1044 #ifdef INET6
1045 					if (INP_CHECK_SOCKAF(inp->inp_socket,
1046 							     AF_INET6))
1047 						local_wild_mapped = inp;
1048 					else
1049 #endif
1050 						local_wild = inp;
1051 				}
1052 			}
1053 		}
1054 #ifdef INET6
1055 		if (local_wild == NULL)
1056 			return (local_wild_mapped);
1057 #endif
1058 		return (local_wild);
1059 	}
1060 	return (NULL);
1061 }
1062 
1063 /*
1064  * Insert PCB onto various hash lists.
1065  */
1066 int
1067 in_pcbinshash(struct inpcb *inp)
1068 {
1069 	struct inpcbhead *pcbhash;
1070 	struct inpcbporthead *pcbporthash;
1071 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1072 	struct inpcbport *phd;
1073 	u_int32_t hashkey_faddr;
1074 
1075 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1076 	INP_WLOCK_ASSERT(inp);
1077 
1078 #ifdef INET6
1079 	if (inp->inp_vflag & INP_IPV6)
1080 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1081 	else
1082 #endif /* INET6 */
1083 	hashkey_faddr = inp->inp_faddr.s_addr;
1084 
1085 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
1086 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
1087 
1088 	pcbporthash = &pcbinfo->ipi_porthashbase[
1089 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
1090 
1091 	/*
1092 	 * Go through port list and look for a head for this lport.
1093 	 */
1094 	LIST_FOREACH(phd, pcbporthash, phd_hash) {
1095 		if (phd->phd_port == inp->inp_lport)
1096 			break;
1097 	}
1098 	/*
1099 	 * If none exists, malloc one and tack it on.
1100 	 */
1101 	if (phd == NULL) {
1102 		MALLOC(phd, struct inpcbport *, sizeof(struct inpcbport), M_PCB, M_NOWAIT);
1103 		if (phd == NULL) {
1104 			return (ENOBUFS); /* XXX */
1105 		}
1106 		phd->phd_port = inp->inp_lport;
1107 		LIST_INIT(&phd->phd_pcblist);
1108 		LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
1109 	}
1110 	inp->inp_phd = phd;
1111 	LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
1112 	LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
1113 	return (0);
1114 }
1115 
1116 /*
1117  * Move PCB to the proper hash bucket when { faddr, fport } have  been
1118  * changed. NOTE: This does not handle the case of the lport changing (the
1119  * hashed port list would have to be updated as well), so the lport must
1120  * not change after in_pcbinshash() has been called.
1121  */
1122 void
1123 in_pcbrehash(struct inpcb *inp)
1124 {
1125 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1126 	struct inpcbhead *head;
1127 	u_int32_t hashkey_faddr;
1128 
1129 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1130 	INP_WLOCK_ASSERT(inp);
1131 
1132 #ifdef INET6
1133 	if (inp->inp_vflag & INP_IPV6)
1134 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1135 	else
1136 #endif /* INET6 */
1137 	hashkey_faddr = inp->inp_faddr.s_addr;
1138 
1139 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
1140 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
1141 
1142 	LIST_REMOVE(inp, inp_hash);
1143 	LIST_INSERT_HEAD(head, inp, inp_hash);
1144 }
1145 
1146 /*
1147  * Remove PCB from various lists.
1148  */
1149 void
1150 in_pcbremlists(struct inpcb *inp)
1151 {
1152 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1153 
1154 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1155 	INP_WLOCK_ASSERT(inp);
1156 
1157 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1158 	if (inp->inp_lport) {
1159 		struct inpcbport *phd = inp->inp_phd;
1160 
1161 		LIST_REMOVE(inp, inp_hash);
1162 		LIST_REMOVE(inp, inp_portlist);
1163 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1164 			LIST_REMOVE(phd, phd_hash);
1165 			free(phd, M_PCB);
1166 		}
1167 	}
1168 	LIST_REMOVE(inp, inp_list);
1169 	pcbinfo->ipi_count--;
1170 }
1171 
1172 /*
1173  * A set label operation has occurred at the socket layer, propagate the
1174  * label change into the in_pcb for the socket.
1175  */
1176 void
1177 in_pcbsosetlabel(struct socket *so)
1178 {
1179 #ifdef MAC
1180 	struct inpcb *inp;
1181 
1182 	inp = sotoinpcb(so);
1183 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
1184 
1185 	INP_WLOCK(inp);
1186 	SOCK_LOCK(so);
1187 	mac_inpcb_sosetlabel(so, inp);
1188 	SOCK_UNLOCK(so);
1189 	INP_WUNLOCK(inp);
1190 #endif
1191 }
1192 
1193 /*
1194  * ipport_tick runs once per second, determining if random port allocation
1195  * should be continued.  If more than ipport_randomcps ports have been
1196  * allocated in the last second, then we return to sequential port
1197  * allocation. We return to random allocation only once we drop below
1198  * ipport_randomcps for at least ipport_randomtime seconds.
1199  */
1200 void
1201 ipport_tick(void *xtp)
1202 {
1203 
1204 	if (ipport_tcpallocs <= ipport_tcplastcount + ipport_randomcps) {
1205 		if (ipport_stoprandom > 0)
1206 			ipport_stoprandom--;
1207 	} else
1208 		ipport_stoprandom = ipport_randomtime;
1209 	ipport_tcplastcount = ipport_tcpallocs;
1210 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
1211 }
1212 
1213 void
1214 inp_wlock(struct inpcb *inp)
1215 {
1216 
1217 	INP_WLOCK(inp);
1218 }
1219 
1220 void
1221 inp_wunlock(struct inpcb *inp)
1222 {
1223 
1224 	INP_WUNLOCK(inp);
1225 }
1226 
1227 void
1228 inp_rlock(struct inpcb *inp)
1229 {
1230 
1231 	INP_RLOCK(inp);
1232 }
1233 
1234 void
1235 inp_runlock(struct inpcb *inp)
1236 {
1237 
1238 	INP_RUNLOCK(inp);
1239 }
1240 
1241 #ifdef INVARIANTS
1242 void
1243 inp_lock_assert(struct inpcb *inp)
1244 {
1245 
1246 	INP_WLOCK_ASSERT(inp);
1247 }
1248 
1249 void
1250 inp_unlock_assert(struct inpcb *inp)
1251 {
1252 
1253 	INP_UNLOCK_ASSERT(inp);
1254 }
1255 #endif
1256 
1257 void
1258 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
1259 {
1260 	struct inpcb *inp;
1261 
1262 	INP_INFO_RLOCK(&tcbinfo);
1263 	LIST_FOREACH(inp, tcbinfo.ipi_listhead, inp_list) {
1264 		INP_WLOCK(inp);
1265 		func(inp, arg);
1266 		INP_WUNLOCK(inp);
1267 	}
1268 	INP_INFO_RUNLOCK(&tcbinfo);
1269 }
1270 
1271 struct socket *
1272 inp_inpcbtosocket(struct inpcb *inp)
1273 {
1274 
1275 	INP_WLOCK_ASSERT(inp);
1276 	return (inp->inp_socket);
1277 }
1278 
1279 struct tcpcb *
1280 inp_inpcbtotcpcb(struct inpcb *inp)
1281 {
1282 
1283 	INP_WLOCK_ASSERT(inp);
1284 	return ((struct tcpcb *)inp->inp_ppcb);
1285 }
1286 
1287 int
1288 inp_ip_tos_get(const struct inpcb *inp)
1289 {
1290 
1291 	return (inp->inp_ip_tos);
1292 }
1293 
1294 void
1295 inp_ip_tos_set(struct inpcb *inp, int val)
1296 {
1297 
1298 	inp->inp_ip_tos = val;
1299 }
1300 
1301 void
1302 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
1303     uint32_t *faddr, uint16_t *fp)
1304 {
1305 
1306 	INP_LOCK_ASSERT(inp);
1307 	*laddr = inp->inp_laddr.s_addr;
1308 	*faddr = inp->inp_faddr.s_addr;
1309 	*lp = inp->inp_lport;
1310 	*fp = inp->inp_fport;
1311 }
1312 
1313 struct inpcb *
1314 so_sotoinpcb(struct socket *so)
1315 {
1316 
1317 	return (sotoinpcb(so));
1318 }
1319 
1320 struct tcpcb *
1321 so_sototcpcb(struct socket *so)
1322 {
1323 
1324 	return (sototcpcb(so));
1325 }
1326 
1327 #ifdef DDB
1328 static void
1329 db_print_indent(int indent)
1330 {
1331 	int i;
1332 
1333 	for (i = 0; i < indent; i++)
1334 		db_printf(" ");
1335 }
1336 
1337 static void
1338 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
1339 {
1340 	char faddr_str[48], laddr_str[48];
1341 
1342 	db_print_indent(indent);
1343 	db_printf("%s at %p\n", name, inc);
1344 
1345 	indent += 2;
1346 
1347 #ifdef INET6
1348 	if (inc->inc_flags == 1) {
1349 		/* IPv6. */
1350 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
1351 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
1352 	} else {
1353 #endif
1354 		/* IPv4. */
1355 		inet_ntoa_r(inc->inc_laddr, laddr_str);
1356 		inet_ntoa_r(inc->inc_faddr, faddr_str);
1357 #ifdef INET6
1358 	}
1359 #endif
1360 	db_print_indent(indent);
1361 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
1362 	    ntohs(inc->inc_lport));
1363 	db_print_indent(indent);
1364 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
1365 	    ntohs(inc->inc_fport));
1366 }
1367 
1368 static void
1369 db_print_inpflags(int inp_flags)
1370 {
1371 	int comma;
1372 
1373 	comma = 0;
1374 	if (inp_flags & INP_RECVOPTS) {
1375 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
1376 		comma = 1;
1377 	}
1378 	if (inp_flags & INP_RECVRETOPTS) {
1379 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
1380 		comma = 1;
1381 	}
1382 	if (inp_flags & INP_RECVDSTADDR) {
1383 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
1384 		comma = 1;
1385 	}
1386 	if (inp_flags & INP_HDRINCL) {
1387 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
1388 		comma = 1;
1389 	}
1390 	if (inp_flags & INP_HIGHPORT) {
1391 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
1392 		comma = 1;
1393 	}
1394 	if (inp_flags & INP_LOWPORT) {
1395 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
1396 		comma = 1;
1397 	}
1398 	if (inp_flags & INP_ANONPORT) {
1399 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
1400 		comma = 1;
1401 	}
1402 	if (inp_flags & INP_RECVIF) {
1403 		db_printf("%sINP_RECVIF", comma ? ", " : "");
1404 		comma = 1;
1405 	}
1406 	if (inp_flags & INP_MTUDISC) {
1407 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
1408 		comma = 1;
1409 	}
1410 	if (inp_flags & INP_FAITH) {
1411 		db_printf("%sINP_FAITH", comma ? ", " : "");
1412 		comma = 1;
1413 	}
1414 	if (inp_flags & INP_RECVTTL) {
1415 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
1416 		comma = 1;
1417 	}
1418 	if (inp_flags & INP_DONTFRAG) {
1419 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
1420 		comma = 1;
1421 	}
1422 	if (inp_flags & IN6P_IPV6_V6ONLY) {
1423 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
1424 		comma = 1;
1425 	}
1426 	if (inp_flags & IN6P_PKTINFO) {
1427 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
1428 		comma = 1;
1429 	}
1430 	if (inp_flags & IN6P_HOPLIMIT) {
1431 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
1432 		comma = 1;
1433 	}
1434 	if (inp_flags & IN6P_HOPOPTS) {
1435 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
1436 		comma = 1;
1437 	}
1438 	if (inp_flags & IN6P_DSTOPTS) {
1439 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
1440 		comma = 1;
1441 	}
1442 	if (inp_flags & IN6P_RTHDR) {
1443 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
1444 		comma = 1;
1445 	}
1446 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
1447 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
1448 		comma = 1;
1449 	}
1450 	if (inp_flags & IN6P_TCLASS) {
1451 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
1452 		comma = 1;
1453 	}
1454 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
1455 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
1456 		comma = 1;
1457 	}
1458 	if (inp_flags & IN6P_RFC2292) {
1459 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
1460 		comma = 1;
1461 	}
1462 	if (inp_flags & IN6P_MTU) {
1463 		db_printf("IN6P_MTU%s", comma ? ", " : "");
1464 		comma = 1;
1465 	}
1466 }
1467 
1468 static void
1469 db_print_inpvflag(u_char inp_vflag)
1470 {
1471 	int comma;
1472 
1473 	comma = 0;
1474 	if (inp_vflag & INP_IPV4) {
1475 		db_printf("%sINP_IPV4", comma ? ", " : "");
1476 		comma  = 1;
1477 	}
1478 	if (inp_vflag & INP_IPV6) {
1479 		db_printf("%sINP_IPV6", comma ? ", " : "");
1480 		comma  = 1;
1481 	}
1482 	if (inp_vflag & INP_IPV6PROTO) {
1483 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
1484 		comma  = 1;
1485 	}
1486 	if (inp_vflag & INP_TIMEWAIT) {
1487 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
1488 		comma  = 1;
1489 	}
1490 	if (inp_vflag & INP_ONESBCAST) {
1491 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
1492 		comma  = 1;
1493 	}
1494 	if (inp_vflag & INP_DROPPED) {
1495 		db_printf("%sINP_DROPPED", comma ? ", " : "");
1496 		comma  = 1;
1497 	}
1498 	if (inp_vflag & INP_SOCKREF) {
1499 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
1500 		comma  = 1;
1501 	}
1502 }
1503 
1504 void
1505 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
1506 {
1507 
1508 	db_print_indent(indent);
1509 	db_printf("%s at %p\n", name, inp);
1510 
1511 	indent += 2;
1512 
1513 	db_print_indent(indent);
1514 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
1515 
1516 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
1517 
1518 	db_print_indent(indent);
1519 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
1520 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
1521 
1522 	db_print_indent(indent);
1523 	db_printf("inp_label: %p   inp_flags: 0x%x (",
1524 	   inp->inp_label, inp->inp_flags);
1525 	db_print_inpflags(inp->inp_flags);
1526 	db_printf(")\n");
1527 
1528 	db_print_indent(indent);
1529 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
1530 	    inp->inp_vflag);
1531 	db_print_inpvflag(inp->inp_vflag);
1532 	db_printf(")\n");
1533 
1534 	db_print_indent(indent);
1535 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
1536 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
1537 
1538 	db_print_indent(indent);
1539 #ifdef INET6
1540 	if (inp->inp_vflag & INP_IPV6) {
1541 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
1542 		    "in6p_moptions: %p\n", inp->in6p_options,
1543 		    inp->in6p_outputopts, inp->in6p_moptions);
1544 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
1545 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
1546 		    inp->in6p_hops);
1547 	} else
1548 #endif
1549 	{
1550 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
1551 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
1552 		    inp->inp_options, inp->inp_moptions);
1553 	}
1554 
1555 	db_print_indent(indent);
1556 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
1557 	    (uintmax_t)inp->inp_gencnt);
1558 }
1559 
1560 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
1561 {
1562 	struct inpcb *inp;
1563 
1564 	if (!have_addr) {
1565 		db_printf("usage: show inpcb <addr>\n");
1566 		return;
1567 	}
1568 	inp = (struct inpcb *)addr;
1569 
1570 	db_print_inpcb(inp, "inpcb", 0);
1571 }
1572 #endif
1573