1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Robert N. M. Watson under 11 * contract to Juniper Networks, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_ddb.h" 44 #include "opt_ipsec.h" 45 #include "opt_inet.h" 46 #include "opt_inet6.h" 47 #include "opt_ratelimit.h" 48 #include "opt_route.h" 49 #include "opt_rss.h" 50 51 #include <sys/param.h> 52 #include <sys/hash.h> 53 #include <sys/systm.h> 54 #include <sys/libkern.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/mbuf.h> 58 #include <sys/eventhandler.h> 59 #include <sys/domain.h> 60 #include <sys/protosw.h> 61 #include <sys/smp.h> 62 #include <sys/socket.h> 63 #include <sys/socketvar.h> 64 #include <sys/sockio.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/refcount.h> 68 #include <sys/jail.h> 69 #include <sys/kernel.h> 70 #include <sys/sysctl.h> 71 72 #ifdef DDB 73 #include <ddb/ddb.h> 74 #endif 75 76 #include <vm/uma.h> 77 #include <vm/vm.h> 78 79 #include <net/if.h> 80 #include <net/if_var.h> 81 #include <net/if_private.h> 82 #include <net/if_types.h> 83 #include <net/if_llatbl.h> 84 #include <net/route.h> 85 #include <net/rss_config.h> 86 #include <net/vnet.h> 87 88 #if defined(INET) || defined(INET6) 89 #include <netinet/in.h> 90 #include <netinet/in_pcb.h> 91 #include <netinet/in_pcb_var.h> 92 #include <netinet/tcp.h> 93 #ifdef INET 94 #include <netinet/in_var.h> 95 #include <netinet/in_fib.h> 96 #endif 97 #include <netinet/ip_var.h> 98 #ifdef INET6 99 #include <netinet/ip6.h> 100 #include <netinet6/in6_pcb.h> 101 #include <netinet6/in6_var.h> 102 #include <netinet6/ip6_var.h> 103 #endif /* INET6 */ 104 #include <net/route/nhop.h> 105 #endif 106 107 #include <netipsec/ipsec_support.h> 108 109 #include <security/mac/mac_framework.h> 110 111 #define INPCBLBGROUP_SIZMIN 8 112 #define INPCBLBGROUP_SIZMAX 256 113 #define INP_FREED 0x00000200 /* See in_pcb.h. */ 114 115 /* 116 * These configure the range of local port addresses assigned to 117 * "unspecified" outgoing connections/packets/whatever. 118 */ 119 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 120 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 121 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 122 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 123 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 124 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 125 126 /* 127 * Reserved ports accessible only to root. There are significant 128 * security considerations that must be accounted for when changing these, 129 * but the security benefits can be great. Please be careful. 130 */ 131 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 132 VNET_DEFINE(int, ipport_reservedlow); 133 134 /* Enable random ephemeral port allocation by default. */ 135 VNET_DEFINE(int, ipport_randomized) = 1; 136 137 #ifdef INET 138 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 139 struct in_addr faddr, u_int fport_arg, 140 struct in_addr laddr, u_int lport_arg, 141 int lookupflags, struct ifnet *ifp, 142 uint8_t numa_domain); 143 144 #define RANGECHK(var, min, max) \ 145 if ((var) < (min)) { (var) = (min); } \ 146 else if ((var) > (max)) { (var) = (max); } 147 148 static int 149 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 150 { 151 int error; 152 153 error = sysctl_handle_int(oidp, arg1, arg2, req); 154 if (error == 0) { 155 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 156 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 157 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 158 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 159 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 160 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 161 } 162 return (error); 163 } 164 165 #undef RANGECHK 166 167 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, 168 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 169 "IP Ports"); 170 171 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 172 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 173 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", 174 ""); 175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 176 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 177 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", 178 ""); 179 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 180 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 181 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", 182 ""); 183 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 184 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 185 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", 186 ""); 187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 188 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 189 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", 190 ""); 191 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 192 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 193 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", 194 ""); 195 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 196 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 197 &VNET_NAME(ipport_reservedhigh), 0, ""); 198 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 199 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 200 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 201 CTLFLAG_VNET | CTLFLAG_RW, 202 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 203 204 #ifdef RATELIMIT 205 counter_u64_t rate_limit_new; 206 counter_u64_t rate_limit_chg; 207 counter_u64_t rate_limit_active; 208 counter_u64_t rate_limit_alloc_fail; 209 counter_u64_t rate_limit_set_ok; 210 211 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 212 "IP Rate Limiting"); 213 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD, 214 &rate_limit_active, "Active rate limited connections"); 215 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD, 216 &rate_limit_alloc_fail, "Rate limited connection failures"); 217 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD, 218 &rate_limit_set_ok, "Rate limited setting succeeded"); 219 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD, 220 &rate_limit_new, "Total Rate limit new attempts"); 221 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD, 222 &rate_limit_chg, "Total Rate limited change attempts"); 223 224 #endif /* RATELIMIT */ 225 226 #endif /* INET */ 227 228 VNET_DEFINE(uint32_t, in_pcbhashseed); 229 static void 230 in_pcbhashseed_init(void) 231 { 232 233 V_in_pcbhashseed = arc4random(); 234 } 235 VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, 236 in_pcbhashseed_init, 0); 237 238 static void in_pcbremhash(struct inpcb *); 239 240 /* 241 * in_pcb.c: manage the Protocol Control Blocks. 242 * 243 * NOTE: It is assumed that most of these functions will be called with 244 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 245 * functions often modify hash chains or addresses in pcbs. 246 */ 247 248 static struct inpcblbgroup * 249 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, struct ucred *cred, 250 u_char vflag, uint16_t port, const union in_dependaddr *addr, int size, 251 uint8_t numa_domain) 252 { 253 struct inpcblbgroup *grp; 254 size_t bytes; 255 256 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 257 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 258 if (grp == NULL) 259 return (NULL); 260 grp->il_cred = crhold(cred); 261 grp->il_vflag = vflag; 262 grp->il_lport = port; 263 grp->il_numa_domain = numa_domain; 264 grp->il_dependladdr = *addr; 265 grp->il_inpsiz = size; 266 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 267 return (grp); 268 } 269 270 static void 271 in_pcblbgroup_free_deferred(epoch_context_t ctx) 272 { 273 struct inpcblbgroup *grp; 274 275 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); 276 crfree(grp->il_cred); 277 free(grp, M_PCB); 278 } 279 280 static void 281 in_pcblbgroup_free(struct inpcblbgroup *grp) 282 { 283 284 CK_LIST_REMOVE(grp, il_list); 285 NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx); 286 } 287 288 static struct inpcblbgroup * 289 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 290 struct inpcblbgroup *old_grp, int size) 291 { 292 struct inpcblbgroup *grp; 293 int i; 294 295 grp = in_pcblbgroup_alloc(hdr, old_grp->il_cred, old_grp->il_vflag, 296 old_grp->il_lport, &old_grp->il_dependladdr, size, 297 old_grp->il_numa_domain); 298 if (grp == NULL) 299 return (NULL); 300 301 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 302 ("invalid new local group size %d and old local group count %d", 303 grp->il_inpsiz, old_grp->il_inpcnt)); 304 305 for (i = 0; i < old_grp->il_inpcnt; ++i) 306 grp->il_inp[i] = old_grp->il_inp[i]; 307 grp->il_inpcnt = old_grp->il_inpcnt; 308 in_pcblbgroup_free(old_grp); 309 return (grp); 310 } 311 312 /* 313 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] 314 * and shrink group if possible. 315 */ 316 static void 317 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, 318 int i) 319 { 320 struct inpcblbgroup *grp, *new_grp; 321 322 grp = *grpp; 323 for (; i + 1 < grp->il_inpcnt; ++i) 324 grp->il_inp[i] = grp->il_inp[i + 1]; 325 grp->il_inpcnt--; 326 327 if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && 328 grp->il_inpcnt <= grp->il_inpsiz / 4) { 329 /* Shrink this group. */ 330 new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); 331 if (new_grp != NULL) 332 *grpp = new_grp; 333 } 334 } 335 336 /* 337 * Add PCB to load balance group for SO_REUSEPORT_LB option. 338 */ 339 static int 340 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain) 341 { 342 const static struct timeval interval = { 60, 0 }; 343 static struct timeval lastprint; 344 struct inpcbinfo *pcbinfo; 345 struct inpcblbgrouphead *hdr; 346 struct inpcblbgroup *grp; 347 uint32_t idx; 348 349 pcbinfo = inp->inp_pcbinfo; 350 351 INP_WLOCK_ASSERT(inp); 352 INP_HASH_WLOCK_ASSERT(pcbinfo); 353 354 #ifdef INET6 355 /* 356 * Don't allow IPv4 mapped INET6 wild socket. 357 */ 358 if ((inp->inp_vflag & INP_IPV4) && 359 inp->inp_laddr.s_addr == INADDR_ANY && 360 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 361 return (0); 362 } 363 #endif 364 365 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); 366 hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; 367 CK_LIST_FOREACH(grp, hdr, il_list) { 368 if (grp->il_cred->cr_prison == inp->inp_cred->cr_prison && 369 grp->il_vflag == inp->inp_vflag && 370 grp->il_lport == inp->inp_lport && 371 grp->il_numa_domain == numa_domain && 372 memcmp(&grp->il_dependladdr, 373 &inp->inp_inc.inc_ie.ie_dependladdr, 374 sizeof(grp->il_dependladdr)) == 0) { 375 break; 376 } 377 } 378 if (grp == NULL) { 379 /* Create new load balance group. */ 380 grp = in_pcblbgroup_alloc(hdr, inp->inp_cred, inp->inp_vflag, 381 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 382 INPCBLBGROUP_SIZMIN, numa_domain); 383 if (grp == NULL) 384 return (ENOBUFS); 385 } else if (grp->il_inpcnt == grp->il_inpsiz) { 386 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 387 if (ratecheck(&lastprint, &interval)) 388 printf("lb group port %d, limit reached\n", 389 ntohs(grp->il_lport)); 390 return (0); 391 } 392 393 /* Expand this local group. */ 394 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 395 if (grp == NULL) 396 return (ENOBUFS); 397 } 398 399 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 400 ("invalid local group size %d and count %d", grp->il_inpsiz, 401 grp->il_inpcnt)); 402 403 grp->il_inp[grp->il_inpcnt] = inp; 404 grp->il_inpcnt++; 405 return (0); 406 } 407 408 /* 409 * Remove PCB from load balance group. 410 */ 411 static void 412 in_pcbremlbgrouphash(struct inpcb *inp) 413 { 414 struct inpcbinfo *pcbinfo; 415 struct inpcblbgrouphead *hdr; 416 struct inpcblbgroup *grp; 417 int i; 418 419 pcbinfo = inp->inp_pcbinfo; 420 421 INP_WLOCK_ASSERT(inp); 422 INP_HASH_WLOCK_ASSERT(pcbinfo); 423 424 hdr = &pcbinfo->ipi_lbgrouphashbase[ 425 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 426 CK_LIST_FOREACH(grp, hdr, il_list) { 427 for (i = 0; i < grp->il_inpcnt; ++i) { 428 if (grp->il_inp[i] != inp) 429 continue; 430 431 if (grp->il_inpcnt == 1) { 432 /* We are the last, free this local group. */ 433 in_pcblbgroup_free(grp); 434 } else { 435 /* Pull up inpcbs, shrink group if possible. */ 436 in_pcblbgroup_reorder(hdr, &grp, i); 437 } 438 return; 439 } 440 } 441 } 442 443 int 444 in_pcblbgroup_numa(struct inpcb *inp, int arg) 445 { 446 struct inpcbinfo *pcbinfo; 447 struct inpcblbgrouphead *hdr; 448 struct inpcblbgroup *grp; 449 int err, i; 450 uint8_t numa_domain; 451 452 switch (arg) { 453 case TCP_REUSPORT_LB_NUMA_NODOM: 454 numa_domain = M_NODOM; 455 break; 456 case TCP_REUSPORT_LB_NUMA_CURDOM: 457 numa_domain = PCPU_GET(domain); 458 break; 459 default: 460 if (arg < 0 || arg >= vm_ndomains) 461 return (EINVAL); 462 numa_domain = arg; 463 } 464 465 err = 0; 466 pcbinfo = inp->inp_pcbinfo; 467 INP_WLOCK_ASSERT(inp); 468 INP_HASH_WLOCK(pcbinfo); 469 hdr = &pcbinfo->ipi_lbgrouphashbase[ 470 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 471 CK_LIST_FOREACH(grp, hdr, il_list) { 472 for (i = 0; i < grp->il_inpcnt; ++i) { 473 if (grp->il_inp[i] != inp) 474 continue; 475 476 if (grp->il_numa_domain == numa_domain) { 477 goto abort_with_hash_wlock; 478 } 479 480 /* Remove it from the old group. */ 481 in_pcbremlbgrouphash(inp); 482 483 /* Add it to the new group based on numa domain. */ 484 in_pcbinslbgrouphash(inp, numa_domain); 485 goto abort_with_hash_wlock; 486 } 487 } 488 err = ENOENT; 489 abort_with_hash_wlock: 490 INP_HASH_WUNLOCK(pcbinfo); 491 return (err); 492 } 493 494 /* Make sure it is safe to use hashinit(9) on CK_LIST. */ 495 CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb))); 496 497 /* 498 * Initialize an inpcbinfo - a per-VNET instance of connections db. 499 */ 500 void 501 in_pcbinfo_init(struct inpcbinfo *pcbinfo, struct inpcbstorage *pcbstor, 502 u_int hash_nelements, u_int porthash_nelements) 503 { 504 505 mtx_init(&pcbinfo->ipi_lock, pcbstor->ips_infolock_name, NULL, MTX_DEF); 506 mtx_init(&pcbinfo->ipi_hash_lock, pcbstor->ips_hashlock_name, 507 NULL, MTX_DEF); 508 #ifdef VIMAGE 509 pcbinfo->ipi_vnet = curvnet; 510 #endif 511 CK_LIST_INIT(&pcbinfo->ipi_listhead); 512 pcbinfo->ipi_count = 0; 513 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 514 &pcbinfo->ipi_hashmask); 515 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); 516 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 517 &pcbinfo->ipi_porthashmask); 518 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, 519 &pcbinfo->ipi_lbgrouphashmask); 520 pcbinfo->ipi_zone = pcbstor->ips_zone; 521 pcbinfo->ipi_portzone = pcbstor->ips_portzone; 522 pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone); 523 } 524 525 /* 526 * Destroy an inpcbinfo. 527 */ 528 void 529 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 530 { 531 532 KASSERT(pcbinfo->ipi_count == 0, 533 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 534 535 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 536 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 537 pcbinfo->ipi_porthashmask); 538 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 539 pcbinfo->ipi_lbgrouphashmask); 540 mtx_destroy(&pcbinfo->ipi_hash_lock); 541 mtx_destroy(&pcbinfo->ipi_lock); 542 } 543 544 /* 545 * Initialize a pcbstorage - per protocol zones to allocate inpcbs. 546 */ 547 static void inpcb_dtor(void *, int, void *); 548 static void inpcb_fini(void *, int); 549 void 550 in_pcbstorage_init(void *arg) 551 { 552 struct inpcbstorage *pcbstor = arg; 553 554 pcbstor->ips_zone = uma_zcreate(pcbstor->ips_zone_name, 555 pcbstor->ips_size, NULL, inpcb_dtor, pcbstor->ips_pcbinit, 556 inpcb_fini, UMA_ALIGN_CACHE, UMA_ZONE_SMR); 557 pcbstor->ips_portzone = uma_zcreate(pcbstor->ips_portzone_name, 558 sizeof(struct inpcbport), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 559 uma_zone_set_smr(pcbstor->ips_portzone, 560 uma_zone_get_smr(pcbstor->ips_zone)); 561 } 562 563 /* 564 * Destroy a pcbstorage - used by unloadable protocols. 565 */ 566 void 567 in_pcbstorage_destroy(void *arg) 568 { 569 struct inpcbstorage *pcbstor = arg; 570 571 uma_zdestroy(pcbstor->ips_zone); 572 uma_zdestroy(pcbstor->ips_portzone); 573 } 574 575 /* 576 * Allocate a PCB and associate it with the socket. 577 * On success return with the PCB locked. 578 */ 579 int 580 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 581 { 582 struct inpcb *inp; 583 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 584 int error; 585 #endif 586 587 inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT); 588 if (inp == NULL) 589 return (ENOBUFS); 590 bzero(&inp->inp_start_zero, inp_zero_size); 591 #ifdef NUMA 592 inp->inp_numa_domain = M_NODOM; 593 #endif 594 inp->inp_pcbinfo = pcbinfo; 595 inp->inp_socket = so; 596 inp->inp_cred = crhold(so->so_cred); 597 inp->inp_inc.inc_fibnum = so->so_fibnum; 598 #ifdef MAC 599 error = mac_inpcb_init(inp, M_NOWAIT); 600 if (error != 0) 601 goto out; 602 mac_inpcb_create(so, inp); 603 #endif 604 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 605 error = ipsec_init_pcbpolicy(inp); 606 if (error != 0) { 607 #ifdef MAC 608 mac_inpcb_destroy(inp); 609 #endif 610 goto out; 611 } 612 #endif /*IPSEC*/ 613 #ifdef INET6 614 if (INP_SOCKAF(so) == AF_INET6) { 615 inp->inp_vflag |= INP_IPV6PROTO | INP_IPV6; 616 if (V_ip6_v6only) 617 inp->inp_flags |= IN6P_IPV6_V6ONLY; 618 #ifdef INET 619 else 620 inp->inp_vflag |= INP_IPV4; 621 #endif 622 if (V_ip6_auto_flowlabel) 623 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 624 inp->in6p_hops = -1; /* use kernel default */ 625 } 626 #endif 627 #if defined(INET) && defined(INET6) 628 else 629 #endif 630 #ifdef INET 631 inp->inp_vflag |= INP_IPV4; 632 #endif 633 /* 634 * Routes in inpcb's can cache L2 as well; they are guaranteed 635 * to be cleaned up. 636 */ 637 inp->inp_route.ro_flags = RT_LLE_CACHE; 638 refcount_init(&inp->inp_refcount, 1); /* Reference from socket. */ 639 INP_WLOCK(inp); 640 INP_INFO_WLOCK(pcbinfo); 641 pcbinfo->ipi_count++; 642 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 643 CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list); 644 INP_INFO_WUNLOCK(pcbinfo); 645 so->so_pcb = inp; 646 647 return (0); 648 649 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 650 out: 651 uma_zfree_smr(pcbinfo->ipi_zone, inp); 652 return (error); 653 #endif 654 } 655 656 #ifdef INET 657 int 658 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 659 { 660 int anonport, error; 661 662 KASSERT(nam == NULL || nam->sa_family == AF_INET, 663 ("%s: invalid address family for %p", __func__, nam)); 664 KASSERT(nam == NULL || nam->sa_len == sizeof(struct sockaddr_in), 665 ("%s: invalid address length for %p", __func__, nam)); 666 INP_WLOCK_ASSERT(inp); 667 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 668 669 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 670 return (EINVAL); 671 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 672 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 673 &inp->inp_lport, cred); 674 if (error) 675 return (error); 676 if (in_pcbinshash(inp) != 0) { 677 inp->inp_laddr.s_addr = INADDR_ANY; 678 inp->inp_lport = 0; 679 return (EAGAIN); 680 } 681 if (anonport) 682 inp->inp_flags |= INP_ANONPORT; 683 return (0); 684 } 685 #endif 686 687 #if defined(INET) || defined(INET6) 688 /* 689 * Assign a local port like in_pcb_lport(), but also used with connect() 690 * and a foreign address and port. If fsa is non-NULL, choose a local port 691 * that is unused with those, otherwise one that is completely unused. 692 * lsa can be NULL for IPv6. 693 */ 694 int 695 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp, 696 struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags) 697 { 698 struct inpcbinfo *pcbinfo; 699 struct inpcb *tmpinp; 700 unsigned short *lastport; 701 int count, error; 702 u_short aux, first, last, lport; 703 #ifdef INET 704 struct in_addr laddr, faddr; 705 #endif 706 #ifdef INET6 707 struct in6_addr *laddr6, *faddr6; 708 #endif 709 710 pcbinfo = inp->inp_pcbinfo; 711 712 /* 713 * Because no actual state changes occur here, a global write lock on 714 * the pcbinfo isn't required. 715 */ 716 INP_LOCK_ASSERT(inp); 717 INP_HASH_LOCK_ASSERT(pcbinfo); 718 719 if (inp->inp_flags & INP_HIGHPORT) { 720 first = V_ipport_hifirstauto; /* sysctl */ 721 last = V_ipport_hilastauto; 722 lastport = &pcbinfo->ipi_lasthi; 723 } else if (inp->inp_flags & INP_LOWPORT) { 724 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); 725 if (error) 726 return (error); 727 first = V_ipport_lowfirstauto; /* 1023 */ 728 last = V_ipport_lowlastauto; /* 600 */ 729 lastport = &pcbinfo->ipi_lastlow; 730 } else { 731 first = V_ipport_firstauto; /* sysctl */ 732 last = V_ipport_lastauto; 733 lastport = &pcbinfo->ipi_lastport; 734 } 735 736 /* 737 * Instead of having two loops further down counting up or down 738 * make sure that first is always <= last and go with only one 739 * code path implementing all logic. 740 */ 741 if (first > last) { 742 aux = first; 743 first = last; 744 last = aux; 745 } 746 747 #ifdef INET 748 laddr.s_addr = INADDR_ANY; /* used by INET6+INET below too */ 749 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 750 if (lsa != NULL) 751 laddr = ((struct sockaddr_in *)lsa)->sin_addr; 752 if (fsa != NULL) 753 faddr = ((struct sockaddr_in *)fsa)->sin_addr; 754 } 755 #endif 756 #ifdef INET6 757 laddr6 = NULL; 758 if ((inp->inp_vflag & INP_IPV6) != 0) { 759 if (lsa != NULL) 760 laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr; 761 if (fsa != NULL) 762 faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr; 763 } 764 #endif 765 766 tmpinp = NULL; 767 lport = *lportp; 768 769 if (V_ipport_randomized) 770 *lastport = first + (arc4random() % (last - first)); 771 772 count = last - first; 773 774 do { 775 if (count-- < 0) /* completely used? */ 776 return (EADDRNOTAVAIL); 777 ++*lastport; 778 if (*lastport < first || *lastport > last) 779 *lastport = first; 780 lport = htons(*lastport); 781 782 if (fsa != NULL) { 783 #ifdef INET 784 if (lsa->sa_family == AF_INET) { 785 tmpinp = in_pcblookup_hash_locked(pcbinfo, 786 faddr, fport, laddr, lport, lookupflags, 787 NULL, M_NODOM); 788 } 789 #endif 790 #ifdef INET6 791 if (lsa->sa_family == AF_INET6) { 792 tmpinp = in6_pcblookup_hash_locked(pcbinfo, 793 faddr6, fport, laddr6, lport, lookupflags, 794 NULL, M_NODOM); 795 } 796 #endif 797 } else { 798 #ifdef INET6 799 if ((inp->inp_vflag & INP_IPV6) != 0) { 800 tmpinp = in6_pcblookup_local(pcbinfo, 801 &inp->in6p_laddr, lport, lookupflags, cred); 802 #ifdef INET 803 if (tmpinp == NULL && 804 (inp->inp_vflag & INP_IPV4)) 805 tmpinp = in_pcblookup_local(pcbinfo, 806 laddr, lport, lookupflags, cred); 807 #endif 808 } 809 #endif 810 #if defined(INET) && defined(INET6) 811 else 812 #endif 813 #ifdef INET 814 tmpinp = in_pcblookup_local(pcbinfo, laddr, 815 lport, lookupflags, cred); 816 #endif 817 } 818 } while (tmpinp != NULL); 819 820 *lportp = lport; 821 822 return (0); 823 } 824 825 /* 826 * Select a local port (number) to use. 827 */ 828 int 829 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 830 struct ucred *cred, int lookupflags) 831 { 832 struct sockaddr_in laddr; 833 834 if (laddrp) { 835 bzero(&laddr, sizeof(laddr)); 836 laddr.sin_family = AF_INET; 837 laddr.sin_addr = *laddrp; 838 } 839 return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr : 840 NULL, lportp, NULL, 0, cred, lookupflags)); 841 } 842 843 /* 844 * Return cached socket options. 845 */ 846 int 847 inp_so_options(const struct inpcb *inp) 848 { 849 int so_options; 850 851 so_options = 0; 852 853 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 854 so_options |= SO_REUSEPORT_LB; 855 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 856 so_options |= SO_REUSEPORT; 857 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 858 so_options |= SO_REUSEADDR; 859 return (so_options); 860 } 861 #endif /* INET || INET6 */ 862 863 /* 864 * Check if a new BINDMULTI socket is allowed to be created. 865 * 866 * ni points to the new inp. 867 * oi points to the existing inp. 868 * 869 * This checks whether the existing inp also has BINDMULTI and 870 * whether the credentials match. 871 */ 872 int 873 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 874 { 875 /* Check permissions match */ 876 if ((ni->inp_flags2 & INP_BINDMULTI) && 877 (ni->inp_cred->cr_uid != 878 oi->inp_cred->cr_uid)) 879 return (0); 880 881 /* Check the existing inp has BINDMULTI set */ 882 if ((ni->inp_flags2 & INP_BINDMULTI) && 883 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 884 return (0); 885 886 /* 887 * We're okay - either INP_BINDMULTI isn't set on ni, or 888 * it is and it matches the checks. 889 */ 890 return (1); 891 } 892 893 #ifdef INET 894 /* 895 * Set up a bind operation on a PCB, performing port allocation 896 * as required, but do not actually modify the PCB. Callers can 897 * either complete the bind by setting inp_laddr/inp_lport and 898 * calling in_pcbinshash(), or they can just use the resulting 899 * port and address to authorise the sending of a once-off packet. 900 * 901 * On error, the values of *laddrp and *lportp are not changed. 902 */ 903 int 904 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 905 u_short *lportp, struct ucred *cred) 906 { 907 struct socket *so = inp->inp_socket; 908 struct sockaddr_in *sin; 909 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 910 struct in_addr laddr; 911 u_short lport = 0; 912 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 913 int error; 914 915 /* 916 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here 917 * so that we don't have to add to the (already messy) code below. 918 */ 919 int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); 920 921 /* 922 * No state changes, so read locks are sufficient here. 923 */ 924 INP_LOCK_ASSERT(inp); 925 INP_HASH_LOCK_ASSERT(pcbinfo); 926 927 laddr.s_addr = *laddrp; 928 if (nam != NULL && laddr.s_addr != INADDR_ANY) 929 return (EINVAL); 930 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) 931 lookupflags = INPLOOKUP_WILDCARD; 932 if (nam == NULL) { 933 if ((error = prison_local_ip4(cred, &laddr)) != 0) 934 return (error); 935 } else { 936 sin = (struct sockaddr_in *)nam; 937 KASSERT(sin->sin_family == AF_INET, 938 ("%s: invalid family for address %p", __func__, sin)); 939 KASSERT(sin->sin_len == sizeof(*sin), 940 ("%s: invalid length for address %p", __func__, sin)); 941 942 error = prison_local_ip4(cred, &sin->sin_addr); 943 if (error) 944 return (error); 945 if (sin->sin_port != *lportp) { 946 /* Don't allow the port to change. */ 947 if (*lportp != 0) 948 return (EINVAL); 949 lport = sin->sin_port; 950 } 951 /* NB: lport is left as 0 if the port isn't being changed. */ 952 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 953 /* 954 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 955 * allow complete duplication of binding if 956 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 957 * and a multicast address is bound on both 958 * new and duplicated sockets. 959 */ 960 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 961 reuseport = SO_REUSEADDR|SO_REUSEPORT; 962 /* 963 * XXX: How to deal with SO_REUSEPORT_LB here? 964 * Treat same as SO_REUSEPORT for now. 965 */ 966 if ((so->so_options & 967 (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) 968 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; 969 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 970 sin->sin_port = 0; /* yech... */ 971 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 972 /* 973 * Is the address a local IP address? 974 * If INP_BINDANY is set, then the socket may be bound 975 * to any endpoint address, local or not. 976 */ 977 if ((inp->inp_flags & INP_BINDANY) == 0 && 978 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 979 return (EADDRNOTAVAIL); 980 } 981 laddr = sin->sin_addr; 982 if (lport) { 983 struct inpcb *t; 984 985 /* GROSS */ 986 if (ntohs(lport) <= V_ipport_reservedhigh && 987 ntohs(lport) >= V_ipport_reservedlow && 988 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) 989 return (EACCES); 990 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 991 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { 992 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 993 lport, INPLOOKUP_WILDCARD, cred); 994 /* 995 * XXX 996 * This entire block sorely needs a rewrite. 997 */ 998 if (t && 999 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 1000 (so->so_type != SOCK_STREAM || 1001 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 1002 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 1003 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 1004 (t->inp_flags2 & INP_REUSEPORT) || 1005 (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && 1006 (inp->inp_cred->cr_uid != 1007 t->inp_cred->cr_uid)) 1008 return (EADDRINUSE); 1009 1010 /* 1011 * If the socket is a BINDMULTI socket, then 1012 * the credentials need to match and the 1013 * original socket also has to have been bound 1014 * with BINDMULTI. 1015 */ 1016 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 1017 return (EADDRINUSE); 1018 } 1019 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 1020 lport, lookupflags, cred); 1021 if (t && ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 1022 (reuseport & inp_so_options(t)) == 0 && 1023 (reuseport_lb & inp_so_options(t)) == 0) { 1024 #ifdef INET6 1025 if (ntohl(sin->sin_addr.s_addr) != 1026 INADDR_ANY || 1027 ntohl(t->inp_laddr.s_addr) != 1028 INADDR_ANY || 1029 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 1030 (t->inp_vflag & INP_IPV6PROTO) == 0) 1031 #endif 1032 return (EADDRINUSE); 1033 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 1034 return (EADDRINUSE); 1035 } 1036 } 1037 } 1038 if (*lportp != 0) 1039 lport = *lportp; 1040 if (lport == 0) { 1041 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 1042 if (error != 0) 1043 return (error); 1044 } 1045 *laddrp = laddr.s_addr; 1046 *lportp = lport; 1047 return (0); 1048 } 1049 1050 /* 1051 * Connect from a socket to a specified address. 1052 * Both address and port must be specified in argument sin. 1053 * If don't have a local address for this socket yet, 1054 * then pick one. 1055 */ 1056 int 1057 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred, 1058 bool rehash) 1059 { 1060 u_short lport, fport; 1061 in_addr_t laddr, faddr; 1062 int anonport, error; 1063 1064 INP_WLOCK_ASSERT(inp); 1065 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1066 1067 lport = inp->inp_lport; 1068 laddr = inp->inp_laddr.s_addr; 1069 anonport = (lport == 0); 1070 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 1071 NULL, cred); 1072 if (error) 1073 return (error); 1074 1075 /* Do the initial binding of the local address if required. */ 1076 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 1077 KASSERT(rehash == true, 1078 ("Rehashing required for unbound inps")); 1079 inp->inp_lport = lport; 1080 inp->inp_laddr.s_addr = laddr; 1081 if (in_pcbinshash(inp) != 0) { 1082 inp->inp_laddr.s_addr = INADDR_ANY; 1083 inp->inp_lport = 0; 1084 return (EAGAIN); 1085 } 1086 } 1087 1088 /* Commit the remaining changes. */ 1089 inp->inp_lport = lport; 1090 inp->inp_laddr.s_addr = laddr; 1091 inp->inp_faddr.s_addr = faddr; 1092 inp->inp_fport = fport; 1093 if (rehash) { 1094 in_pcbrehash(inp); 1095 } else { 1096 in_pcbinshash(inp); 1097 } 1098 1099 if (anonport) 1100 inp->inp_flags |= INP_ANONPORT; 1101 return (0); 1102 } 1103 1104 /* 1105 * Do proper source address selection on an unbound socket in case 1106 * of connect. Take jails into account as well. 1107 */ 1108 int 1109 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 1110 struct ucred *cred) 1111 { 1112 struct ifaddr *ifa; 1113 struct sockaddr *sa; 1114 struct sockaddr_in *sin, dst; 1115 struct nhop_object *nh; 1116 int error; 1117 1118 NET_EPOCH_ASSERT(); 1119 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1120 1121 /* 1122 * Bypass source address selection and use the primary jail IP 1123 * if requested. 1124 */ 1125 if (!prison_saddrsel_ip4(cred, laddr)) 1126 return (0); 1127 1128 error = 0; 1129 1130 nh = NULL; 1131 bzero(&dst, sizeof(dst)); 1132 sin = &dst; 1133 sin->sin_family = AF_INET; 1134 sin->sin_len = sizeof(struct sockaddr_in); 1135 sin->sin_addr.s_addr = faddr->s_addr; 1136 1137 /* 1138 * If route is known our src addr is taken from the i/f, 1139 * else punt. 1140 * 1141 * Find out route to destination. 1142 */ 1143 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1144 nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr, 1145 0, NHR_NONE, 0); 1146 1147 /* 1148 * If we found a route, use the address corresponding to 1149 * the outgoing interface. 1150 * 1151 * Otherwise assume faddr is reachable on a directly connected 1152 * network and try to find a corresponding interface to take 1153 * the source address from. 1154 */ 1155 if (nh == NULL || nh->nh_ifp == NULL) { 1156 struct in_ifaddr *ia; 1157 struct ifnet *ifp; 1158 1159 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1160 inp->inp_socket->so_fibnum)); 1161 if (ia == NULL) { 1162 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1163 inp->inp_socket->so_fibnum)); 1164 } 1165 if (ia == NULL) { 1166 error = ENETUNREACH; 1167 goto done; 1168 } 1169 1170 if (!prison_flag(cred, PR_IP4)) { 1171 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1172 goto done; 1173 } 1174 1175 ifp = ia->ia_ifp; 1176 ia = NULL; 1177 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1178 sa = ifa->ifa_addr; 1179 if (sa->sa_family != AF_INET) 1180 continue; 1181 sin = (struct sockaddr_in *)sa; 1182 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1183 ia = (struct in_ifaddr *)ifa; 1184 break; 1185 } 1186 } 1187 if (ia != NULL) { 1188 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1189 goto done; 1190 } 1191 1192 /* 3. As a last resort return the 'default' jail address. */ 1193 error = prison_get_ip4(cred, laddr); 1194 goto done; 1195 } 1196 1197 /* 1198 * If the outgoing interface on the route found is not 1199 * a loopback interface, use the address from that interface. 1200 * In case of jails do those three steps: 1201 * 1. check if the interface address belongs to the jail. If so use it. 1202 * 2. check if we have any address on the outgoing interface 1203 * belonging to this jail. If so use it. 1204 * 3. as a last resort return the 'default' jail address. 1205 */ 1206 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) { 1207 struct in_ifaddr *ia; 1208 struct ifnet *ifp; 1209 1210 /* If not jailed, use the default returned. */ 1211 if (!prison_flag(cred, PR_IP4)) { 1212 ia = (struct in_ifaddr *)nh->nh_ifa; 1213 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1214 goto done; 1215 } 1216 1217 /* Jailed. */ 1218 /* 1. Check if the iface address belongs to the jail. */ 1219 sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr; 1220 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1221 ia = (struct in_ifaddr *)nh->nh_ifa; 1222 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1223 goto done; 1224 } 1225 1226 /* 1227 * 2. Check if we have any address on the outgoing interface 1228 * belonging to this jail. 1229 */ 1230 ia = NULL; 1231 ifp = nh->nh_ifp; 1232 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1233 sa = ifa->ifa_addr; 1234 if (sa->sa_family != AF_INET) 1235 continue; 1236 sin = (struct sockaddr_in *)sa; 1237 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1238 ia = (struct in_ifaddr *)ifa; 1239 break; 1240 } 1241 } 1242 if (ia != NULL) { 1243 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1244 goto done; 1245 } 1246 1247 /* 3. As a last resort return the 'default' jail address. */ 1248 error = prison_get_ip4(cred, laddr); 1249 goto done; 1250 } 1251 1252 /* 1253 * The outgoing interface is marked with 'loopback net', so a route 1254 * to ourselves is here. 1255 * Try to find the interface of the destination address and then 1256 * take the address from there. That interface is not necessarily 1257 * a loopback interface. 1258 * In case of jails, check that it is an address of the jail 1259 * and if we cannot find, fall back to the 'default' jail address. 1260 */ 1261 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) { 1262 struct in_ifaddr *ia; 1263 1264 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst), 1265 inp->inp_socket->so_fibnum)); 1266 if (ia == NULL) 1267 ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0, 1268 inp->inp_socket->so_fibnum)); 1269 if (ia == NULL) 1270 ia = ifatoia(ifa_ifwithaddr(sintosa(&dst))); 1271 1272 if (!prison_flag(cred, PR_IP4)) { 1273 if (ia == NULL) { 1274 error = ENETUNREACH; 1275 goto done; 1276 } 1277 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1278 goto done; 1279 } 1280 1281 /* Jailed. */ 1282 if (ia != NULL) { 1283 struct ifnet *ifp; 1284 1285 ifp = ia->ia_ifp; 1286 ia = NULL; 1287 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1288 sa = ifa->ifa_addr; 1289 if (sa->sa_family != AF_INET) 1290 continue; 1291 sin = (struct sockaddr_in *)sa; 1292 if (prison_check_ip4(cred, 1293 &sin->sin_addr) == 0) { 1294 ia = (struct in_ifaddr *)ifa; 1295 break; 1296 } 1297 } 1298 if (ia != NULL) { 1299 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1300 goto done; 1301 } 1302 } 1303 1304 /* 3. As a last resort return the 'default' jail address. */ 1305 error = prison_get_ip4(cred, laddr); 1306 goto done; 1307 } 1308 1309 done: 1310 return (error); 1311 } 1312 1313 /* 1314 * Set up for a connect from a socket to the specified address. 1315 * On entry, *laddrp and *lportp should contain the current local 1316 * address and port for the PCB; these are updated to the values 1317 * that should be placed in inp_laddr and inp_lport to complete 1318 * the connect. 1319 * 1320 * On success, *faddrp and *fportp will be set to the remote address 1321 * and port. These are not updated in the error case. 1322 * 1323 * If the operation fails because the connection already exists, 1324 * *oinpp will be set to the PCB of that connection so that the 1325 * caller can decide to override it. In all other cases, *oinpp 1326 * is set to NULL. 1327 */ 1328 int 1329 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1330 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1331 struct inpcb **oinpp, struct ucred *cred) 1332 { 1333 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1334 struct in_ifaddr *ia; 1335 struct inpcb *oinp; 1336 struct in_addr laddr, faddr; 1337 u_short lport, fport; 1338 int error; 1339 1340 KASSERT(sin->sin_family == AF_INET, 1341 ("%s: invalid address family for %p", __func__, sin)); 1342 KASSERT(sin->sin_len == sizeof(*sin), 1343 ("%s: invalid address length for %p", __func__, sin)); 1344 1345 /* 1346 * Because a global state change doesn't actually occur here, a read 1347 * lock is sufficient. 1348 */ 1349 NET_EPOCH_ASSERT(); 1350 INP_LOCK_ASSERT(inp); 1351 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1352 1353 if (oinpp != NULL) 1354 *oinpp = NULL; 1355 if (sin->sin_port == 0) 1356 return (EADDRNOTAVAIL); 1357 laddr.s_addr = *laddrp; 1358 lport = *lportp; 1359 faddr = sin->sin_addr; 1360 fport = sin->sin_port; 1361 #ifdef ROUTE_MPATH 1362 if (CALC_FLOWID_OUTBOUND) { 1363 uint32_t hash_val, hash_type; 1364 1365 hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport, 1366 inp->inp_socket->so_proto->pr_protocol, &hash_type); 1367 1368 inp->inp_flowid = hash_val; 1369 inp->inp_flowtype = hash_type; 1370 } 1371 #endif 1372 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1373 /* 1374 * If the destination address is INADDR_ANY, 1375 * use the primary local address. 1376 * If the supplied address is INADDR_BROADCAST, 1377 * and the primary interface supports broadcast, 1378 * choose the broadcast address for that interface. 1379 */ 1380 if (faddr.s_addr == INADDR_ANY) { 1381 faddr = 1382 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1383 if ((error = prison_get_ip4(cred, &faddr)) != 0) 1384 return (error); 1385 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1386 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1387 IFF_BROADCAST) 1388 faddr = satosin(&CK_STAILQ_FIRST( 1389 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1390 } 1391 } 1392 if (laddr.s_addr == INADDR_ANY) { 1393 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1394 /* 1395 * If the destination address is multicast and an outgoing 1396 * interface has been set as a multicast option, prefer the 1397 * address of that interface as our source address. 1398 */ 1399 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1400 inp->inp_moptions != NULL) { 1401 struct ip_moptions *imo; 1402 struct ifnet *ifp; 1403 1404 imo = inp->inp_moptions; 1405 if (imo->imo_multicast_ifp != NULL) { 1406 ifp = imo->imo_multicast_ifp; 1407 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1408 if (ia->ia_ifp == ifp && 1409 prison_check_ip4(cred, 1410 &ia->ia_addr.sin_addr) == 0) 1411 break; 1412 } 1413 if (ia == NULL) 1414 error = EADDRNOTAVAIL; 1415 else { 1416 laddr = ia->ia_addr.sin_addr; 1417 error = 0; 1418 } 1419 } 1420 } 1421 if (error) 1422 return (error); 1423 } 1424 1425 if (lport != 0) { 1426 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, 1427 fport, laddr, lport, 0, NULL, M_NODOM); 1428 if (oinp != NULL) { 1429 if (oinpp != NULL) 1430 *oinpp = oinp; 1431 return (EADDRINUSE); 1432 } 1433 } else { 1434 struct sockaddr_in lsin, fsin; 1435 1436 bzero(&lsin, sizeof(lsin)); 1437 bzero(&fsin, sizeof(fsin)); 1438 lsin.sin_family = AF_INET; 1439 lsin.sin_addr = laddr; 1440 fsin.sin_family = AF_INET; 1441 fsin.sin_addr = faddr; 1442 error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin, 1443 &lport, (struct sockaddr *)& fsin, fport, cred, 1444 INPLOOKUP_WILDCARD); 1445 if (error) 1446 return (error); 1447 } 1448 *laddrp = laddr.s_addr; 1449 *lportp = lport; 1450 *faddrp = faddr.s_addr; 1451 *fportp = fport; 1452 return (0); 1453 } 1454 1455 void 1456 in_pcbdisconnect(struct inpcb *inp) 1457 { 1458 1459 INP_WLOCK_ASSERT(inp); 1460 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1461 1462 inp->inp_faddr.s_addr = INADDR_ANY; 1463 inp->inp_fport = 0; 1464 in_pcbrehash(inp); 1465 } 1466 #endif /* INET */ 1467 1468 /* 1469 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1470 * For most protocols, this will be invoked immediately prior to calling 1471 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1472 * socket, in which case in_pcbfree() is deferred. 1473 */ 1474 void 1475 in_pcbdetach(struct inpcb *inp) 1476 { 1477 1478 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1479 1480 #ifdef RATELIMIT 1481 if (inp->inp_snd_tag != NULL) 1482 in_pcbdetach_txrtlmt(inp); 1483 #endif 1484 inp->inp_socket->so_pcb = NULL; 1485 inp->inp_socket = NULL; 1486 } 1487 1488 /* 1489 * inpcb hash lookups are protected by SMR section. 1490 * 1491 * Once desired pcb has been found, switching from SMR section to a pcb 1492 * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK 1493 * here because SMR is a critical section. 1494 * In 99%+ cases inp_smr_lock() would obtain the lock immediately. 1495 */ 1496 static inline void 1497 inp_lock(struct inpcb *inp, const inp_lookup_t lock) 1498 { 1499 1500 lock == INPLOOKUP_RLOCKPCB ? 1501 rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock); 1502 } 1503 1504 static inline void 1505 inp_unlock(struct inpcb *inp, const inp_lookup_t lock) 1506 { 1507 1508 lock == INPLOOKUP_RLOCKPCB ? 1509 rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock); 1510 } 1511 1512 static inline int 1513 inp_trylock(struct inpcb *inp, const inp_lookup_t lock) 1514 { 1515 1516 return (lock == INPLOOKUP_RLOCKPCB ? 1517 rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock)); 1518 } 1519 1520 static inline bool 1521 in_pcbrele(struct inpcb *inp, const inp_lookup_t lock) 1522 { 1523 1524 return (lock == INPLOOKUP_RLOCKPCB ? 1525 in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp)); 1526 } 1527 1528 static inline bool 1529 _inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock, const int ignflags) 1530 { 1531 1532 MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB); 1533 SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr); 1534 1535 if (__predict_true(inp_trylock(inp, lock))) { 1536 if (__predict_false(inp->inp_flags & ignflags)) { 1537 smr_exit(inp->inp_pcbinfo->ipi_smr); 1538 inp_unlock(inp, lock); 1539 return (false); 1540 } 1541 smr_exit(inp->inp_pcbinfo->ipi_smr); 1542 return (true); 1543 } 1544 1545 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1546 smr_exit(inp->inp_pcbinfo->ipi_smr); 1547 inp_lock(inp, lock); 1548 if (__predict_false(in_pcbrele(inp, lock))) 1549 return (false); 1550 /* 1551 * inp acquired through refcount & lock for sure didn't went 1552 * through uma_zfree(). However, it may have already went 1553 * through in_pcbfree() and has another reference, that 1554 * prevented its release by our in_pcbrele(). 1555 */ 1556 if (__predict_false(inp->inp_flags & ignflags)) { 1557 inp_unlock(inp, lock); 1558 return (false); 1559 } 1560 return (true); 1561 } else { 1562 smr_exit(inp->inp_pcbinfo->ipi_smr); 1563 return (false); 1564 } 1565 } 1566 1567 bool 1568 inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock) 1569 { 1570 1571 /* 1572 * in_pcblookup() family of functions ignore not only freed entries, 1573 * that may be found due to lockless access to the hash, but dropped 1574 * entries, too. 1575 */ 1576 return (_inp_smr_lock(inp, lock, INP_FREED | INP_DROPPED)); 1577 } 1578 1579 /* 1580 * inp_next() - inpcb hash/list traversal iterator 1581 * 1582 * Requires initialized struct inpcb_iterator for context. 1583 * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR(). 1584 * 1585 * - Iterator can have either write-lock or read-lock semantics, that can not 1586 * be changed later. 1587 * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through 1588 * a single hash slot. Note: only rip_input() does the latter. 1589 * - Iterator may have optional bool matching function. The matching function 1590 * will be executed for each inpcb in the SMR context, so it can not acquire 1591 * locks and can safely access only immutable fields of inpcb. 1592 * 1593 * A fresh initialized iterator has NULL inpcb in its context and that 1594 * means that inp_next() call would return the very first inpcb on the list 1595 * locked with desired semantic. In all following calls the context pointer 1596 * shall hold the current inpcb pointer. The KPI user is not supposed to 1597 * unlock the current inpcb! Upon end of traversal inp_next() will return NULL 1598 * and write NULL to its context. After end of traversal an iterator can be 1599 * reused. 1600 * 1601 * List traversals have the following features/constraints: 1602 * - New entries won't be seen, as they are always added to the head of a list. 1603 * - Removed entries won't stop traversal as long as they are not added to 1604 * a different list. This is violated by in_pcbrehash(). 1605 */ 1606 #define II_LIST_FIRST(ipi, hash) \ 1607 (((hash) == INP_ALL_LIST) ? \ 1608 CK_LIST_FIRST(&(ipi)->ipi_listhead) : \ 1609 CK_LIST_FIRST(&(ipi)->ipi_hashbase[(hash)])) 1610 #define II_LIST_NEXT(inp, hash) \ 1611 (((hash) == INP_ALL_LIST) ? \ 1612 CK_LIST_NEXT((inp), inp_list) : \ 1613 CK_LIST_NEXT((inp), inp_hash)) 1614 #define II_LOCK_ASSERT(inp, lock) \ 1615 rw_assert(&(inp)->inp_lock, \ 1616 (lock) == INPLOOKUP_RLOCKPCB ? RA_RLOCKED : RA_WLOCKED ) 1617 struct inpcb * 1618 inp_next(struct inpcb_iterator *ii) 1619 { 1620 const struct inpcbinfo *ipi = ii->ipi; 1621 inp_match_t *match = ii->match; 1622 void *ctx = ii->ctx; 1623 inp_lookup_t lock = ii->lock; 1624 int hash = ii->hash; 1625 struct inpcb *inp; 1626 1627 if (ii->inp == NULL) { /* First call. */ 1628 smr_enter(ipi->ipi_smr); 1629 /* This is unrolled CK_LIST_FOREACH(). */ 1630 for (inp = II_LIST_FIRST(ipi, hash); 1631 inp != NULL; 1632 inp = II_LIST_NEXT(inp, hash)) { 1633 if (match != NULL && (match)(inp, ctx) == false) 1634 continue; 1635 if (__predict_true(_inp_smr_lock(inp, lock, INP_FREED))) 1636 break; 1637 else { 1638 smr_enter(ipi->ipi_smr); 1639 MPASS(inp != II_LIST_FIRST(ipi, hash)); 1640 inp = II_LIST_FIRST(ipi, hash); 1641 if (inp == NULL) 1642 break; 1643 } 1644 } 1645 1646 if (inp == NULL) 1647 smr_exit(ipi->ipi_smr); 1648 else 1649 ii->inp = inp; 1650 1651 return (inp); 1652 } 1653 1654 /* Not a first call. */ 1655 smr_enter(ipi->ipi_smr); 1656 restart: 1657 inp = ii->inp; 1658 II_LOCK_ASSERT(inp, lock); 1659 next: 1660 inp = II_LIST_NEXT(inp, hash); 1661 if (inp == NULL) { 1662 smr_exit(ipi->ipi_smr); 1663 goto found; 1664 } 1665 1666 if (match != NULL && (match)(inp, ctx) == false) 1667 goto next; 1668 1669 if (__predict_true(inp_trylock(inp, lock))) { 1670 if (__predict_false(inp->inp_flags & INP_FREED)) { 1671 /* 1672 * Entries are never inserted in middle of a list, thus 1673 * as long as we are in SMR, we can continue traversal. 1674 * Jump to 'restart' should yield in the same result, 1675 * but could produce unnecessary looping. Could this 1676 * looping be unbound? 1677 */ 1678 inp_unlock(inp, lock); 1679 goto next; 1680 } else { 1681 smr_exit(ipi->ipi_smr); 1682 goto found; 1683 } 1684 } 1685 1686 /* 1687 * Can't obtain lock immediately, thus going hard. Once we exit the 1688 * SMR section we can no longer jump to 'next', and our only stable 1689 * anchoring point is ii->inp, which we keep locked for this case, so 1690 * we jump to 'restart'. 1691 */ 1692 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1693 smr_exit(ipi->ipi_smr); 1694 inp_lock(inp, lock); 1695 if (__predict_false(in_pcbrele(inp, lock))) { 1696 smr_enter(ipi->ipi_smr); 1697 goto restart; 1698 } 1699 /* 1700 * See comment in inp_smr_lock(). 1701 */ 1702 if (__predict_false(inp->inp_flags & INP_FREED)) { 1703 inp_unlock(inp, lock); 1704 smr_enter(ipi->ipi_smr); 1705 goto restart; 1706 } 1707 } else 1708 goto next; 1709 1710 found: 1711 inp_unlock(ii->inp, lock); 1712 ii->inp = inp; 1713 1714 return (ii->inp); 1715 } 1716 1717 /* 1718 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1719 * stability of an inpcb pointer despite the inpcb lock being released or 1720 * SMR section exited. 1721 * 1722 * To free a reference later in_pcbrele_(r|w)locked() must be performed. 1723 */ 1724 void 1725 in_pcbref(struct inpcb *inp) 1726 { 1727 u_int old __diagused; 1728 1729 old = refcount_acquire(&inp->inp_refcount); 1730 KASSERT(old > 0, ("%s: refcount 0", __func__)); 1731 } 1732 1733 /* 1734 * Drop a refcount on an inpcb elevated using in_pcbref(), potentially 1735 * freeing the pcb, if the reference was very last. 1736 */ 1737 bool 1738 in_pcbrele_rlocked(struct inpcb *inp) 1739 { 1740 1741 INP_RLOCK_ASSERT(inp); 1742 1743 if (refcount_release(&inp->inp_refcount) == 0) 1744 return (false); 1745 1746 MPASS(inp->inp_flags & INP_FREED); 1747 MPASS(inp->inp_socket == NULL); 1748 MPASS(inp->inp_in_hpts == 0); 1749 INP_RUNLOCK(inp); 1750 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1751 return (true); 1752 } 1753 1754 bool 1755 in_pcbrele_wlocked(struct inpcb *inp) 1756 { 1757 1758 INP_WLOCK_ASSERT(inp); 1759 1760 if (refcount_release(&inp->inp_refcount) == 0) 1761 return (false); 1762 1763 MPASS(inp->inp_flags & INP_FREED); 1764 MPASS(inp->inp_socket == NULL); 1765 MPASS(inp->inp_in_hpts == 0); 1766 INP_WUNLOCK(inp); 1767 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1768 return (true); 1769 } 1770 1771 /* 1772 * Unconditionally schedule an inpcb to be freed by decrementing its 1773 * reference count, which should occur only after the inpcb has been detached 1774 * from its socket. If another thread holds a temporary reference (acquired 1775 * using in_pcbref()) then the free is deferred until that reference is 1776 * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked. 1777 * Almost all work, including removal from global lists, is done in this 1778 * context, where the pcbinfo lock is held. 1779 */ 1780 void 1781 in_pcbfree(struct inpcb *inp) 1782 { 1783 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1784 #ifdef INET 1785 struct ip_moptions *imo; 1786 #endif 1787 #ifdef INET6 1788 struct ip6_moptions *im6o; 1789 #endif 1790 1791 INP_WLOCK_ASSERT(inp); 1792 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1793 KASSERT((inp->inp_flags & INP_FREED) == 0, 1794 ("%s: called twice for pcb %p", __func__, inp)); 1795 1796 inp->inp_flags |= INP_FREED; 1797 INP_INFO_WLOCK(pcbinfo); 1798 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1799 pcbinfo->ipi_count--; 1800 CK_LIST_REMOVE(inp, inp_list); 1801 INP_INFO_WUNLOCK(pcbinfo); 1802 1803 if (inp->inp_flags & INP_INHASHLIST) 1804 in_pcbremhash(inp); 1805 1806 RO_INVALIDATE_CACHE(&inp->inp_route); 1807 #ifdef MAC 1808 mac_inpcb_destroy(inp); 1809 #endif 1810 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1811 if (inp->inp_sp != NULL) 1812 ipsec_delete_pcbpolicy(inp); 1813 #endif 1814 #ifdef INET 1815 if (inp->inp_options) 1816 (void)m_free(inp->inp_options); 1817 imo = inp->inp_moptions; 1818 #endif 1819 #ifdef INET6 1820 if (inp->inp_vflag & INP_IPV6PROTO) { 1821 ip6_freepcbopts(inp->in6p_outputopts); 1822 im6o = inp->in6p_moptions; 1823 } else 1824 im6o = NULL; 1825 #endif 1826 1827 if (__predict_false(in_pcbrele_wlocked(inp) == false)) { 1828 INP_WUNLOCK(inp); 1829 } 1830 #ifdef INET6 1831 ip6_freemoptions(im6o); 1832 #endif 1833 #ifdef INET 1834 inp_freemoptions(imo); 1835 #endif 1836 /* Destruction is finalized in inpcb_dtor(). */ 1837 } 1838 1839 static void 1840 inpcb_dtor(void *mem, int size, void *arg) 1841 { 1842 struct inpcb *inp = mem; 1843 1844 crfree(inp->inp_cred); 1845 #ifdef INVARIANTS 1846 inp->inp_cred = NULL; 1847 #endif 1848 } 1849 1850 /* 1851 * Different protocols initialize their inpcbs differently - giving 1852 * different name to the lock. But they all are disposed the same. 1853 */ 1854 static void 1855 inpcb_fini(void *mem, int size) 1856 { 1857 struct inpcb *inp = mem; 1858 1859 INP_LOCK_DESTROY(inp); 1860 } 1861 1862 /* 1863 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1864 * port reservation, and preventing it from being returned by inpcb lookups. 1865 * 1866 * It is used by TCP to mark an inpcb as unused and avoid future packet 1867 * delivery or event notification when a socket remains open but TCP has 1868 * closed. This might occur as a result of a shutdown()-initiated TCP close 1869 * or a RST on the wire, and allows the port binding to be reused while still 1870 * maintaining the invariant that so_pcb always points to a valid inpcb until 1871 * in_pcbdetach(). 1872 * 1873 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1874 * in_pcbnotifyall() and in_pcbpurgeif0()? 1875 */ 1876 void 1877 in_pcbdrop(struct inpcb *inp) 1878 { 1879 1880 INP_WLOCK_ASSERT(inp); 1881 #ifdef INVARIANTS 1882 if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) 1883 MPASS(inp->inp_refcount > 1); 1884 #endif 1885 1886 inp->inp_flags |= INP_DROPPED; 1887 if (inp->inp_flags & INP_INHASHLIST) 1888 in_pcbremhash(inp); 1889 } 1890 1891 #ifdef INET 1892 /* 1893 * Common routines to return the socket addresses associated with inpcbs. 1894 */ 1895 struct sockaddr * 1896 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1897 { 1898 struct sockaddr_in *sin; 1899 1900 sin = malloc(sizeof *sin, M_SONAME, 1901 M_WAITOK | M_ZERO); 1902 sin->sin_family = AF_INET; 1903 sin->sin_len = sizeof(*sin); 1904 sin->sin_addr = *addr_p; 1905 sin->sin_port = port; 1906 1907 return (struct sockaddr *)sin; 1908 } 1909 1910 int 1911 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1912 { 1913 struct inpcb *inp; 1914 struct in_addr addr; 1915 in_port_t port; 1916 1917 inp = sotoinpcb(so); 1918 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1919 1920 INP_RLOCK(inp); 1921 port = inp->inp_lport; 1922 addr = inp->inp_laddr; 1923 INP_RUNLOCK(inp); 1924 1925 *nam = in_sockaddr(port, &addr); 1926 return 0; 1927 } 1928 1929 int 1930 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1931 { 1932 struct inpcb *inp; 1933 struct in_addr addr; 1934 in_port_t port; 1935 1936 inp = sotoinpcb(so); 1937 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1938 1939 INP_RLOCK(inp); 1940 port = inp->inp_fport; 1941 addr = inp->inp_faddr; 1942 INP_RUNLOCK(inp); 1943 1944 *nam = in_sockaddr(port, &addr); 1945 return 0; 1946 } 1947 1948 void 1949 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1950 struct inpcb *(*notify)(struct inpcb *, int)) 1951 { 1952 struct inpcb *inp, *inp_temp; 1953 1954 INP_INFO_WLOCK(pcbinfo); 1955 CK_LIST_FOREACH_SAFE(inp, &pcbinfo->ipi_listhead, inp_list, inp_temp) { 1956 INP_WLOCK(inp); 1957 #ifdef INET6 1958 if ((inp->inp_vflag & INP_IPV4) == 0) { 1959 INP_WUNLOCK(inp); 1960 continue; 1961 } 1962 #endif 1963 if (inp->inp_faddr.s_addr != faddr.s_addr || 1964 inp->inp_socket == NULL) { 1965 INP_WUNLOCK(inp); 1966 continue; 1967 } 1968 if ((*notify)(inp, errno)) 1969 INP_WUNLOCK(inp); 1970 } 1971 INP_INFO_WUNLOCK(pcbinfo); 1972 } 1973 1974 static bool 1975 inp_v4_multi_match(const struct inpcb *inp, void *v __unused) 1976 { 1977 1978 if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL) 1979 return (true); 1980 else 1981 return (false); 1982 } 1983 1984 void 1985 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1986 { 1987 struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB, 1988 inp_v4_multi_match, NULL); 1989 struct inpcb *inp; 1990 struct in_multi *inm; 1991 struct in_mfilter *imf; 1992 struct ip_moptions *imo; 1993 1994 IN_MULTI_LOCK_ASSERT(); 1995 1996 while ((inp = inp_next(&inpi)) != NULL) { 1997 INP_WLOCK_ASSERT(inp); 1998 1999 imo = inp->inp_moptions; 2000 /* 2001 * Unselect the outgoing interface if it is being 2002 * detached. 2003 */ 2004 if (imo->imo_multicast_ifp == ifp) 2005 imo->imo_multicast_ifp = NULL; 2006 2007 /* 2008 * Drop multicast group membership if we joined 2009 * through the interface being detached. 2010 * 2011 * XXX This can all be deferred to an epoch_call 2012 */ 2013 restart: 2014 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 2015 if ((inm = imf->imf_inm) == NULL) 2016 continue; 2017 if (inm->inm_ifp != ifp) 2018 continue; 2019 ip_mfilter_remove(&imo->imo_head, imf); 2020 in_leavegroup_locked(inm, NULL); 2021 ip_mfilter_free(imf); 2022 goto restart; 2023 } 2024 } 2025 } 2026 2027 /* 2028 * Lookup a PCB based on the local address and port. Caller must hold the 2029 * hash lock. No inpcb locks or references are acquired. 2030 */ 2031 #define INP_LOOKUP_MAPPED_PCB_COST 3 2032 struct inpcb * 2033 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 2034 u_short lport, int lookupflags, struct ucred *cred) 2035 { 2036 struct inpcb *inp; 2037 #ifdef INET6 2038 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 2039 #else 2040 int matchwild = 3; 2041 #endif 2042 int wildcard; 2043 2044 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2045 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2046 INP_HASH_LOCK_ASSERT(pcbinfo); 2047 2048 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 2049 struct inpcbhead *head; 2050 /* 2051 * Look for an unconnected (wildcard foreign addr) PCB that 2052 * matches the local address and port we're looking for. 2053 */ 2054 head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport, 2055 pcbinfo->ipi_hashmask)]; 2056 CK_LIST_FOREACH(inp, head, inp_hash) { 2057 #ifdef INET6 2058 /* XXX inp locking */ 2059 if ((inp->inp_vflag & INP_IPV4) == 0) 2060 continue; 2061 #endif 2062 if (inp->inp_faddr.s_addr == INADDR_ANY && 2063 inp->inp_laddr.s_addr == laddr.s_addr && 2064 inp->inp_lport == lport) { 2065 /* 2066 * Found? 2067 */ 2068 if (prison_equal_ip4(cred->cr_prison, 2069 inp->inp_cred->cr_prison)) 2070 return (inp); 2071 } 2072 } 2073 /* 2074 * Not found. 2075 */ 2076 return (NULL); 2077 } else { 2078 struct inpcbporthead *porthash; 2079 struct inpcbport *phd; 2080 struct inpcb *match = NULL; 2081 /* 2082 * Best fit PCB lookup. 2083 * 2084 * First see if this local port is in use by looking on the 2085 * port hash list. 2086 */ 2087 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 2088 pcbinfo->ipi_porthashmask)]; 2089 CK_LIST_FOREACH(phd, porthash, phd_hash) { 2090 if (phd->phd_port == lport) 2091 break; 2092 } 2093 if (phd != NULL) { 2094 /* 2095 * Port is in use by one or more PCBs. Look for best 2096 * fit. 2097 */ 2098 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 2099 wildcard = 0; 2100 if (!prison_equal_ip4(inp->inp_cred->cr_prison, 2101 cred->cr_prison)) 2102 continue; 2103 #ifdef INET6 2104 /* XXX inp locking */ 2105 if ((inp->inp_vflag & INP_IPV4) == 0) 2106 continue; 2107 /* 2108 * We never select the PCB that has 2109 * INP_IPV6 flag and is bound to :: if 2110 * we have another PCB which is bound 2111 * to 0.0.0.0. If a PCB has the 2112 * INP_IPV6 flag, then we set its cost 2113 * higher than IPv4 only PCBs. 2114 * 2115 * Note that the case only happens 2116 * when a socket is bound to ::, under 2117 * the condition that the use of the 2118 * mapped address is allowed. 2119 */ 2120 if ((inp->inp_vflag & INP_IPV6) != 0) 2121 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 2122 #endif 2123 if (inp->inp_faddr.s_addr != INADDR_ANY) 2124 wildcard++; 2125 if (inp->inp_laddr.s_addr != INADDR_ANY) { 2126 if (laddr.s_addr == INADDR_ANY) 2127 wildcard++; 2128 else if (inp->inp_laddr.s_addr != laddr.s_addr) 2129 continue; 2130 } else { 2131 if (laddr.s_addr != INADDR_ANY) 2132 wildcard++; 2133 } 2134 if (wildcard < matchwild) { 2135 match = inp; 2136 matchwild = wildcard; 2137 if (matchwild == 0) 2138 break; 2139 } 2140 } 2141 } 2142 return (match); 2143 } 2144 } 2145 #undef INP_LOOKUP_MAPPED_PCB_COST 2146 2147 static bool 2148 in_pcblookup_lb_numa_match(const struct inpcblbgroup *grp, int domain) 2149 { 2150 return (domain == M_NODOM || domain == grp->il_numa_domain); 2151 } 2152 2153 static struct inpcb * 2154 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 2155 const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr, 2156 uint16_t fport, int lookupflags, int domain) 2157 { 2158 const struct inpcblbgrouphead *hdr; 2159 struct inpcblbgroup *grp; 2160 struct inpcblbgroup *jail_exact, *jail_wild, *local_exact, *local_wild; 2161 2162 INP_HASH_LOCK_ASSERT(pcbinfo); 2163 2164 hdr = &pcbinfo->ipi_lbgrouphashbase[ 2165 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; 2166 2167 /* 2168 * Search for an LB group match based on the following criteria: 2169 * - prefer jailed groups to non-jailed groups 2170 * - prefer exact source address matches to wildcard matches 2171 * - prefer groups bound to the specified NUMA domain 2172 */ 2173 jail_exact = jail_wild = local_exact = local_wild = NULL; 2174 CK_LIST_FOREACH(grp, hdr, il_list) { 2175 bool injail; 2176 2177 #ifdef INET6 2178 if (!(grp->il_vflag & INP_IPV4)) 2179 continue; 2180 #endif 2181 if (grp->il_lport != lport) 2182 continue; 2183 2184 injail = prison_flag(grp->il_cred, PR_IP4) != 0; 2185 if (injail && prison_check_ip4_locked(grp->il_cred->cr_prison, 2186 laddr) != 0) 2187 continue; 2188 2189 if (grp->il_laddr.s_addr == laddr->s_addr) { 2190 if (injail) { 2191 jail_exact = grp; 2192 if (in_pcblookup_lb_numa_match(grp, domain)) 2193 /* This is a perfect match. */ 2194 goto out; 2195 } else if (local_exact == NULL || 2196 in_pcblookup_lb_numa_match(grp, domain)) { 2197 local_exact = grp; 2198 } 2199 } else if (grp->il_laddr.s_addr == INADDR_ANY && 2200 (lookupflags & INPLOOKUP_WILDCARD) != 0) { 2201 if (injail) { 2202 if (jail_wild == NULL || 2203 in_pcblookup_lb_numa_match(grp, domain)) 2204 jail_wild = grp; 2205 } else if (local_wild == NULL || 2206 in_pcblookup_lb_numa_match(grp, domain)) { 2207 local_wild = grp; 2208 } 2209 } 2210 } 2211 2212 if (jail_exact != NULL) 2213 grp = jail_exact; 2214 else if (jail_wild != NULL) 2215 grp = jail_wild; 2216 else if (local_exact != NULL) 2217 grp = local_exact; 2218 else 2219 grp = local_wild; 2220 if (grp == NULL) 2221 return (NULL); 2222 out: 2223 return (grp->il_inp[INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) % 2224 grp->il_inpcnt]); 2225 } 2226 2227 /* 2228 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2229 * that the caller has either locked the hash list, which usually happens 2230 * for bind(2) operations, or is in SMR section, which happens when sorting 2231 * out incoming packets. 2232 */ 2233 static struct inpcb * 2234 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2235 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2236 struct ifnet *ifp, uint8_t numa_domain) 2237 { 2238 struct inpcbhead *head; 2239 struct inpcb *inp, *tmpinp; 2240 u_short fport = fport_arg, lport = lport_arg; 2241 2242 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2243 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2244 INP_HASH_LOCK_ASSERT(pcbinfo); 2245 2246 /* 2247 * First look for an exact match. 2248 */ 2249 tmpinp = NULL; 2250 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&faddr, lport, fport, 2251 pcbinfo->ipi_hashmask)]; 2252 CK_LIST_FOREACH(inp, head, inp_hash) { 2253 #ifdef INET6 2254 /* XXX inp locking */ 2255 if ((inp->inp_vflag & INP_IPV4) == 0) 2256 continue; 2257 #endif 2258 if (inp->inp_faddr.s_addr == faddr.s_addr && 2259 inp->inp_laddr.s_addr == laddr.s_addr && 2260 inp->inp_fport == fport && 2261 inp->inp_lport == lport) { 2262 /* 2263 * XXX We should be able to directly return 2264 * the inp here, without any checks. 2265 * Well unless both bound with SO_REUSEPORT? 2266 */ 2267 if (prison_flag(inp->inp_cred, PR_IP4)) 2268 return (inp); 2269 if (tmpinp == NULL) 2270 tmpinp = inp; 2271 } 2272 } 2273 if (tmpinp != NULL) 2274 return (tmpinp); 2275 2276 /* 2277 * Then look for a wildcard match, if requested. 2278 */ 2279 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2280 struct inpcb *local_wild = NULL, *local_exact = NULL; 2281 #ifdef INET6 2282 struct inpcb *local_wild_mapped = NULL; 2283 #endif 2284 struct inpcb *jail_wild = NULL; 2285 int injail; 2286 2287 /* 2288 * First see if an LB group matches the request before scanning 2289 * all sockets on this port. 2290 */ 2291 inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr, 2292 fport, lookupflags, numa_domain); 2293 if (inp != NULL) 2294 return (inp); 2295 2296 /* 2297 * Order of socket selection - we always prefer jails. 2298 * 1. jailed, non-wild. 2299 * 2. jailed, wild. 2300 * 3. non-jailed, non-wild. 2301 * 4. non-jailed, wild. 2302 */ 2303 2304 head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport, 2305 pcbinfo->ipi_hashmask)]; 2306 CK_LIST_FOREACH(inp, head, inp_hash) { 2307 #ifdef INET6 2308 /* XXX inp locking */ 2309 if ((inp->inp_vflag & INP_IPV4) == 0) 2310 continue; 2311 #endif 2312 if (inp->inp_faddr.s_addr != INADDR_ANY || 2313 inp->inp_lport != lport) 2314 continue; 2315 2316 injail = prison_flag(inp->inp_cred, PR_IP4); 2317 if (injail) { 2318 if (prison_check_ip4_locked( 2319 inp->inp_cred->cr_prison, &laddr) != 0) 2320 continue; 2321 } else { 2322 if (local_exact != NULL) 2323 continue; 2324 } 2325 2326 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2327 if (injail) 2328 return (inp); 2329 else 2330 local_exact = inp; 2331 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2332 #ifdef INET6 2333 /* XXX inp locking, NULL check */ 2334 if (inp->inp_vflag & INP_IPV6PROTO) 2335 local_wild_mapped = inp; 2336 else 2337 #endif 2338 if (injail) 2339 jail_wild = inp; 2340 else 2341 local_wild = inp; 2342 } 2343 } /* LIST_FOREACH */ 2344 if (jail_wild != NULL) 2345 return (jail_wild); 2346 if (local_exact != NULL) 2347 return (local_exact); 2348 if (local_wild != NULL) 2349 return (local_wild); 2350 #ifdef INET6 2351 if (local_wild_mapped != NULL) 2352 return (local_wild_mapped); 2353 #endif 2354 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 2355 2356 return (NULL); 2357 } 2358 2359 /* 2360 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 2361 * hash list lock, and will return the inpcb locked (i.e., requires 2362 * INPLOOKUP_LOCKPCB). 2363 */ 2364 static struct inpcb * 2365 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2366 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2367 struct ifnet *ifp, uint8_t numa_domain) 2368 { 2369 struct inpcb *inp; 2370 2371 smr_enter(pcbinfo->ipi_smr); 2372 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2373 lookupflags & INPLOOKUP_WILDCARD, ifp, numa_domain); 2374 if (inp != NULL) { 2375 if (__predict_false(inp_smr_lock(inp, 2376 (lookupflags & INPLOOKUP_LOCKMASK)) == false)) 2377 inp = NULL; 2378 } else 2379 smr_exit(pcbinfo->ipi_smr); 2380 2381 return (inp); 2382 } 2383 2384 /* 2385 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2386 * from which a pre-calculated hash value may be extracted. 2387 */ 2388 struct inpcb * 2389 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2390 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 2391 { 2392 2393 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2394 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2395 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2396 ("%s: LOCKPCB not set", __func__)); 2397 2398 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2399 lookupflags, ifp, M_NODOM)); 2400 } 2401 2402 struct inpcb * 2403 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2404 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2405 struct ifnet *ifp, struct mbuf *m) 2406 { 2407 2408 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2409 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2410 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2411 ("%s: LOCKPCB not set", __func__)); 2412 2413 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2414 lookupflags, ifp, m->m_pkthdr.numa_domain)); 2415 } 2416 #endif /* INET */ 2417 2418 /* 2419 * Insert PCB onto various hash lists. 2420 */ 2421 int 2422 in_pcbinshash(struct inpcb *inp) 2423 { 2424 struct inpcbhead *pcbhash; 2425 struct inpcbporthead *pcbporthash; 2426 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2427 struct inpcbport *phd; 2428 2429 INP_WLOCK_ASSERT(inp); 2430 INP_HASH_WLOCK_ASSERT(pcbinfo); 2431 2432 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2433 ("in_pcbinshash: INP_INHASHLIST")); 2434 2435 #ifdef INET6 2436 if (inp->inp_vflag & INP_IPV6) 2437 pcbhash = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr, 2438 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2439 else 2440 #endif 2441 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr, 2442 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2443 2444 pcbporthash = &pcbinfo->ipi_porthashbase[ 2445 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2446 2447 /* 2448 * Add entry to load balance group. 2449 * Only do this if SO_REUSEPORT_LB is set. 2450 */ 2451 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) { 2452 int error = in_pcbinslbgrouphash(inp, M_NODOM); 2453 if (error != 0) 2454 return (error); 2455 } 2456 2457 /* 2458 * Go through port list and look for a head for this lport. 2459 */ 2460 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2461 if (phd->phd_port == inp->inp_lport) 2462 break; 2463 } 2464 2465 /* 2466 * If none exists, malloc one and tack it on. 2467 */ 2468 if (phd == NULL) { 2469 phd = uma_zalloc_smr(pcbinfo->ipi_portzone, M_NOWAIT); 2470 if (phd == NULL) { 2471 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 2472 in_pcbremlbgrouphash(inp); 2473 return (ENOMEM); 2474 } 2475 phd->phd_port = inp->inp_lport; 2476 CK_LIST_INIT(&phd->phd_pcblist); 2477 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2478 } 2479 inp->inp_phd = phd; 2480 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2481 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2482 inp->inp_flags |= INP_INHASHLIST; 2483 2484 return (0); 2485 } 2486 2487 static void 2488 in_pcbremhash(struct inpcb *inp) 2489 { 2490 struct inpcbport *phd = inp->inp_phd; 2491 2492 INP_WLOCK_ASSERT(inp); 2493 MPASS(inp->inp_flags & INP_INHASHLIST); 2494 2495 INP_HASH_WLOCK(inp->inp_pcbinfo); 2496 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 2497 in_pcbremlbgrouphash(inp); 2498 CK_LIST_REMOVE(inp, inp_hash); 2499 CK_LIST_REMOVE(inp, inp_portlist); 2500 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 2501 CK_LIST_REMOVE(phd, phd_hash); 2502 uma_zfree_smr(inp->inp_pcbinfo->ipi_portzone, phd); 2503 } 2504 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 2505 inp->inp_flags &= ~INP_INHASHLIST; 2506 } 2507 2508 /* 2509 * Move PCB to the proper hash bucket when { faddr, fport } have been 2510 * changed. NOTE: This does not handle the case of the lport changing (the 2511 * hashed port list would have to be updated as well), so the lport must 2512 * not change after in_pcbinshash() has been called. 2513 * 2514 * XXXGL: a race between this function and SMR-protected hash iterator 2515 * will lead to iterator traversing a possibly wrong hash list. However, 2516 * this race should have been here since change from rwlock to epoch. 2517 */ 2518 void 2519 in_pcbrehash(struct inpcb *inp) 2520 { 2521 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2522 struct inpcbhead *head; 2523 2524 INP_WLOCK_ASSERT(inp); 2525 INP_HASH_WLOCK_ASSERT(pcbinfo); 2526 2527 KASSERT(inp->inp_flags & INP_INHASHLIST, 2528 ("in_pcbrehash: !INP_INHASHLIST")); 2529 2530 #ifdef INET6 2531 if (inp->inp_vflag & INP_IPV6) 2532 head = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr, 2533 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2534 else 2535 #endif 2536 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr, 2537 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2538 2539 CK_LIST_REMOVE(inp, inp_hash); 2540 CK_LIST_INSERT_HEAD(head, inp, inp_hash); 2541 } 2542 2543 /* 2544 * Check for alternatives when higher level complains 2545 * about service problems. For now, invalidate cached 2546 * routing information. If the route was created dynamically 2547 * (by a redirect), time to try a default gateway again. 2548 */ 2549 void 2550 in_losing(struct inpcb *inp) 2551 { 2552 2553 RO_INVALIDATE_CACHE(&inp->inp_route); 2554 return; 2555 } 2556 2557 /* 2558 * A set label operation has occurred at the socket layer, propagate the 2559 * label change into the in_pcb for the socket. 2560 */ 2561 void 2562 in_pcbsosetlabel(struct socket *so) 2563 { 2564 #ifdef MAC 2565 struct inpcb *inp; 2566 2567 inp = sotoinpcb(so); 2568 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2569 2570 INP_WLOCK(inp); 2571 SOCK_LOCK(so); 2572 mac_inpcb_sosetlabel(so, inp); 2573 SOCK_UNLOCK(so); 2574 INP_WUNLOCK(inp); 2575 #endif 2576 } 2577 2578 void 2579 inp_wlock(struct inpcb *inp) 2580 { 2581 2582 INP_WLOCK(inp); 2583 } 2584 2585 void 2586 inp_wunlock(struct inpcb *inp) 2587 { 2588 2589 INP_WUNLOCK(inp); 2590 } 2591 2592 void 2593 inp_rlock(struct inpcb *inp) 2594 { 2595 2596 INP_RLOCK(inp); 2597 } 2598 2599 void 2600 inp_runlock(struct inpcb *inp) 2601 { 2602 2603 INP_RUNLOCK(inp); 2604 } 2605 2606 #ifdef INVARIANT_SUPPORT 2607 void 2608 inp_lock_assert(struct inpcb *inp) 2609 { 2610 2611 INP_WLOCK_ASSERT(inp); 2612 } 2613 2614 void 2615 inp_unlock_assert(struct inpcb *inp) 2616 { 2617 2618 INP_UNLOCK_ASSERT(inp); 2619 } 2620 #endif 2621 2622 void 2623 inp_apply_all(struct inpcbinfo *pcbinfo, 2624 void (*func)(struct inpcb *, void *), void *arg) 2625 { 2626 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, 2627 INPLOOKUP_WLOCKPCB); 2628 struct inpcb *inp; 2629 2630 while ((inp = inp_next(&inpi)) != NULL) 2631 func(inp, arg); 2632 } 2633 2634 struct socket * 2635 inp_inpcbtosocket(struct inpcb *inp) 2636 { 2637 2638 INP_WLOCK_ASSERT(inp); 2639 return (inp->inp_socket); 2640 } 2641 2642 struct tcpcb * 2643 inp_inpcbtotcpcb(struct inpcb *inp) 2644 { 2645 2646 INP_WLOCK_ASSERT(inp); 2647 return ((struct tcpcb *)inp->inp_ppcb); 2648 } 2649 2650 int 2651 inp_ip_tos_get(const struct inpcb *inp) 2652 { 2653 2654 return (inp->inp_ip_tos); 2655 } 2656 2657 void 2658 inp_ip_tos_set(struct inpcb *inp, int val) 2659 { 2660 2661 inp->inp_ip_tos = val; 2662 } 2663 2664 void 2665 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2666 uint32_t *faddr, uint16_t *fp) 2667 { 2668 2669 INP_LOCK_ASSERT(inp); 2670 *laddr = inp->inp_laddr.s_addr; 2671 *faddr = inp->inp_faddr.s_addr; 2672 *lp = inp->inp_lport; 2673 *fp = inp->inp_fport; 2674 } 2675 2676 struct inpcb * 2677 so_sotoinpcb(struct socket *so) 2678 { 2679 2680 return (sotoinpcb(so)); 2681 } 2682 2683 /* 2684 * Create an external-format (``xinpcb'') structure using the information in 2685 * the kernel-format in_pcb structure pointed to by inp. This is done to 2686 * reduce the spew of irrelevant information over this interface, to isolate 2687 * user code from changes in the kernel structure, and potentially to provide 2688 * information-hiding if we decide that some of this information should be 2689 * hidden from users. 2690 */ 2691 void 2692 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2693 { 2694 2695 bzero(xi, sizeof(*xi)); 2696 xi->xi_len = sizeof(struct xinpcb); 2697 if (inp->inp_socket) 2698 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2699 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2700 xi->inp_gencnt = inp->inp_gencnt; 2701 xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; 2702 xi->inp_flow = inp->inp_flow; 2703 xi->inp_flowid = inp->inp_flowid; 2704 xi->inp_flowtype = inp->inp_flowtype; 2705 xi->inp_flags = inp->inp_flags; 2706 xi->inp_flags2 = inp->inp_flags2; 2707 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2708 xi->in6p_cksum = inp->in6p_cksum; 2709 xi->in6p_hops = inp->in6p_hops; 2710 xi->inp_ip_tos = inp->inp_ip_tos; 2711 xi->inp_vflag = inp->inp_vflag; 2712 xi->inp_ip_ttl = inp->inp_ip_ttl; 2713 xi->inp_ip_p = inp->inp_ip_p; 2714 xi->inp_ip_minttl = inp->inp_ip_minttl; 2715 } 2716 2717 int 2718 sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo, 2719 int (*ctloutput_set)(struct inpcb *, struct sockopt *)) 2720 { 2721 struct sockopt sopt; 2722 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, 2723 INPLOOKUP_WLOCKPCB); 2724 struct inpcb *inp; 2725 struct sockopt_parameters *params; 2726 struct socket *so; 2727 int error; 2728 char buf[1024]; 2729 2730 if (req->oldptr != NULL || req->oldlen != 0) 2731 return (EINVAL); 2732 if (req->newptr == NULL) 2733 return (EPERM); 2734 if (req->newlen > sizeof(buf)) 2735 return (ENOMEM); 2736 error = SYSCTL_IN(req, buf, req->newlen); 2737 if (error != 0) 2738 return (error); 2739 if (req->newlen < sizeof(struct sockopt_parameters)) 2740 return (EINVAL); 2741 params = (struct sockopt_parameters *)buf; 2742 sopt.sopt_level = params->sop_level; 2743 sopt.sopt_name = params->sop_optname; 2744 sopt.sopt_dir = SOPT_SET; 2745 sopt.sopt_val = params->sop_optval; 2746 sopt.sopt_valsize = req->newlen - sizeof(struct sockopt_parameters); 2747 sopt.sopt_td = NULL; 2748 #ifdef INET6 2749 if (params->sop_inc.inc_flags & INC_ISIPV6) { 2750 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_laddr)) 2751 params->sop_inc.inc6_laddr.s6_addr16[1] = 2752 htons(params->sop_inc.inc6_zoneid & 0xffff); 2753 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_faddr)) 2754 params->sop_inc.inc6_faddr.s6_addr16[1] = 2755 htons(params->sop_inc.inc6_zoneid & 0xffff); 2756 } 2757 #endif 2758 if (params->sop_inc.inc_lport != htons(0)) { 2759 if (params->sop_inc.inc_fport == htons(0)) 2760 inpi.hash = INP_PCBHASH_WILD(params->sop_inc.inc_lport, 2761 pcbinfo->ipi_hashmask); 2762 else 2763 #ifdef INET6 2764 if (params->sop_inc.inc_flags & INC_ISIPV6) 2765 inpi.hash = INP6_PCBHASH( 2766 ¶ms->sop_inc.inc6_faddr, 2767 params->sop_inc.inc_lport, 2768 params->sop_inc.inc_fport, 2769 pcbinfo->ipi_hashmask); 2770 else 2771 #endif 2772 inpi.hash = INP_PCBHASH( 2773 ¶ms->sop_inc.inc_faddr, 2774 params->sop_inc.inc_lport, 2775 params->sop_inc.inc_fport, 2776 pcbinfo->ipi_hashmask); 2777 } 2778 while ((inp = inp_next(&inpi)) != NULL) 2779 if (inp->inp_gencnt == params->sop_id) { 2780 if (inp->inp_flags & INP_DROPPED) { 2781 INP_WUNLOCK(inp); 2782 return (ECONNRESET); 2783 } 2784 so = inp->inp_socket; 2785 KASSERT(so != NULL, ("inp_socket == NULL")); 2786 soref(so); 2787 error = (*ctloutput_set)(inp, &sopt); 2788 sorele(so); 2789 break; 2790 } 2791 if (inp == NULL) 2792 error = ESRCH; 2793 return (error); 2794 } 2795 2796 #ifdef DDB 2797 static void 2798 db_print_indent(int indent) 2799 { 2800 int i; 2801 2802 for (i = 0; i < indent; i++) 2803 db_printf(" "); 2804 } 2805 2806 static void 2807 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2808 { 2809 char faddr_str[48], laddr_str[48]; 2810 2811 db_print_indent(indent); 2812 db_printf("%s at %p\n", name, inc); 2813 2814 indent += 2; 2815 2816 #ifdef INET6 2817 if (inc->inc_flags & INC_ISIPV6) { 2818 /* IPv6. */ 2819 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2820 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2821 } else 2822 #endif 2823 { 2824 /* IPv4. */ 2825 inet_ntoa_r(inc->inc_laddr, laddr_str); 2826 inet_ntoa_r(inc->inc_faddr, faddr_str); 2827 } 2828 db_print_indent(indent); 2829 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2830 ntohs(inc->inc_lport)); 2831 db_print_indent(indent); 2832 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2833 ntohs(inc->inc_fport)); 2834 } 2835 2836 static void 2837 db_print_inpflags(int inp_flags) 2838 { 2839 int comma; 2840 2841 comma = 0; 2842 if (inp_flags & INP_RECVOPTS) { 2843 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2844 comma = 1; 2845 } 2846 if (inp_flags & INP_RECVRETOPTS) { 2847 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2848 comma = 1; 2849 } 2850 if (inp_flags & INP_RECVDSTADDR) { 2851 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2852 comma = 1; 2853 } 2854 if (inp_flags & INP_ORIGDSTADDR) { 2855 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 2856 comma = 1; 2857 } 2858 if (inp_flags & INP_HDRINCL) { 2859 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2860 comma = 1; 2861 } 2862 if (inp_flags & INP_HIGHPORT) { 2863 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2864 comma = 1; 2865 } 2866 if (inp_flags & INP_LOWPORT) { 2867 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2868 comma = 1; 2869 } 2870 if (inp_flags & INP_ANONPORT) { 2871 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2872 comma = 1; 2873 } 2874 if (inp_flags & INP_RECVIF) { 2875 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2876 comma = 1; 2877 } 2878 if (inp_flags & INP_MTUDISC) { 2879 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2880 comma = 1; 2881 } 2882 if (inp_flags & INP_RECVTTL) { 2883 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 2884 comma = 1; 2885 } 2886 if (inp_flags & INP_DONTFRAG) { 2887 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 2888 comma = 1; 2889 } 2890 if (inp_flags & INP_RECVTOS) { 2891 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 2892 comma = 1; 2893 } 2894 if (inp_flags & IN6P_IPV6_V6ONLY) { 2895 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 2896 comma = 1; 2897 } 2898 if (inp_flags & IN6P_PKTINFO) { 2899 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 2900 comma = 1; 2901 } 2902 if (inp_flags & IN6P_HOPLIMIT) { 2903 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 2904 comma = 1; 2905 } 2906 if (inp_flags & IN6P_HOPOPTS) { 2907 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 2908 comma = 1; 2909 } 2910 if (inp_flags & IN6P_DSTOPTS) { 2911 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 2912 comma = 1; 2913 } 2914 if (inp_flags & IN6P_RTHDR) { 2915 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 2916 comma = 1; 2917 } 2918 if (inp_flags & IN6P_RTHDRDSTOPTS) { 2919 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 2920 comma = 1; 2921 } 2922 if (inp_flags & IN6P_TCLASS) { 2923 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 2924 comma = 1; 2925 } 2926 if (inp_flags & IN6P_AUTOFLOWLABEL) { 2927 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 2928 comma = 1; 2929 } 2930 if (inp_flags & INP_ONESBCAST) { 2931 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 2932 comma = 1; 2933 } 2934 if (inp_flags & INP_DROPPED) { 2935 db_printf("%sINP_DROPPED", comma ? ", " : ""); 2936 comma = 1; 2937 } 2938 if (inp_flags & INP_SOCKREF) { 2939 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 2940 comma = 1; 2941 } 2942 if (inp_flags & IN6P_RFC2292) { 2943 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 2944 comma = 1; 2945 } 2946 if (inp_flags & IN6P_MTU) { 2947 db_printf("IN6P_MTU%s", comma ? ", " : ""); 2948 comma = 1; 2949 } 2950 } 2951 2952 static void 2953 db_print_inpvflag(u_char inp_vflag) 2954 { 2955 int comma; 2956 2957 comma = 0; 2958 if (inp_vflag & INP_IPV4) { 2959 db_printf("%sINP_IPV4", comma ? ", " : ""); 2960 comma = 1; 2961 } 2962 if (inp_vflag & INP_IPV6) { 2963 db_printf("%sINP_IPV6", comma ? ", " : ""); 2964 comma = 1; 2965 } 2966 if (inp_vflag & INP_IPV6PROTO) { 2967 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 2968 comma = 1; 2969 } 2970 } 2971 2972 static void 2973 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 2974 { 2975 2976 db_print_indent(indent); 2977 db_printf("%s at %p\n", name, inp); 2978 2979 indent += 2; 2980 2981 db_print_indent(indent); 2982 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 2983 2984 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 2985 2986 db_print_indent(indent); 2987 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 2988 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 2989 2990 db_print_indent(indent); 2991 db_printf("inp_label: %p inp_flags: 0x%x (", 2992 inp->inp_label, inp->inp_flags); 2993 db_print_inpflags(inp->inp_flags); 2994 db_printf(")\n"); 2995 2996 db_print_indent(indent); 2997 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 2998 inp->inp_vflag); 2999 db_print_inpvflag(inp->inp_vflag); 3000 db_printf(")\n"); 3001 3002 db_print_indent(indent); 3003 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 3004 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 3005 3006 db_print_indent(indent); 3007 #ifdef INET6 3008 if (inp->inp_vflag & INP_IPV6) { 3009 db_printf("in6p_options: %p in6p_outputopts: %p " 3010 "in6p_moptions: %p\n", inp->in6p_options, 3011 inp->in6p_outputopts, inp->in6p_moptions); 3012 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 3013 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 3014 inp->in6p_hops); 3015 } else 3016 #endif 3017 { 3018 db_printf("inp_ip_tos: %d inp_ip_options: %p " 3019 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 3020 inp->inp_options, inp->inp_moptions); 3021 } 3022 3023 db_print_indent(indent); 3024 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 3025 (uintmax_t)inp->inp_gencnt); 3026 } 3027 3028 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 3029 { 3030 struct inpcb *inp; 3031 3032 if (!have_addr) { 3033 db_printf("usage: show inpcb <addr>\n"); 3034 return; 3035 } 3036 inp = (struct inpcb *)addr; 3037 3038 db_print_inpcb(inp, "inpcb", 0); 3039 } 3040 #endif /* DDB */ 3041 3042 #ifdef RATELIMIT 3043 /* 3044 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 3045 * if any. 3046 */ 3047 int 3048 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 3049 { 3050 union if_snd_tag_modify_params params = { 3051 .rate_limit.max_rate = max_pacing_rate, 3052 .rate_limit.flags = M_NOWAIT, 3053 }; 3054 struct m_snd_tag *mst; 3055 int error; 3056 3057 mst = inp->inp_snd_tag; 3058 if (mst == NULL) 3059 return (EINVAL); 3060 3061 if (mst->sw->snd_tag_modify == NULL) { 3062 error = EOPNOTSUPP; 3063 } else { 3064 error = mst->sw->snd_tag_modify(mst, ¶ms); 3065 } 3066 return (error); 3067 } 3068 3069 /* 3070 * Query existing TX rate limit based on the existing 3071 * "inp->inp_snd_tag", if any. 3072 */ 3073 int 3074 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3075 { 3076 union if_snd_tag_query_params params = { }; 3077 struct m_snd_tag *mst; 3078 int error; 3079 3080 mst = inp->inp_snd_tag; 3081 if (mst == NULL) 3082 return (EINVAL); 3083 3084 if (mst->sw->snd_tag_query == NULL) { 3085 error = EOPNOTSUPP; 3086 } else { 3087 error = mst->sw->snd_tag_query(mst, ¶ms); 3088 if (error == 0 && p_max_pacing_rate != NULL) 3089 *p_max_pacing_rate = params.rate_limit.max_rate; 3090 } 3091 return (error); 3092 } 3093 3094 /* 3095 * Query existing TX queue level based on the existing 3096 * "inp->inp_snd_tag", if any. 3097 */ 3098 int 3099 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3100 { 3101 union if_snd_tag_query_params params = { }; 3102 struct m_snd_tag *mst; 3103 int error; 3104 3105 mst = inp->inp_snd_tag; 3106 if (mst == NULL) 3107 return (EINVAL); 3108 3109 if (mst->sw->snd_tag_query == NULL) 3110 return (EOPNOTSUPP); 3111 3112 error = mst->sw->snd_tag_query(mst, ¶ms); 3113 if (error == 0 && p_txqueue_level != NULL) 3114 *p_txqueue_level = params.rate_limit.queue_level; 3115 return (error); 3116 } 3117 3118 /* 3119 * Allocate a new TX rate limit send tag from the network interface 3120 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3121 */ 3122 int 3123 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3124 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st) 3125 3126 { 3127 union if_snd_tag_alloc_params params = { 3128 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3129 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3130 .rate_limit.hdr.flowid = flowid, 3131 .rate_limit.hdr.flowtype = flowtype, 3132 .rate_limit.hdr.numa_domain = inp->inp_numa_domain, 3133 .rate_limit.max_rate = max_pacing_rate, 3134 .rate_limit.flags = M_NOWAIT, 3135 }; 3136 int error; 3137 3138 INP_WLOCK_ASSERT(inp); 3139 3140 /* 3141 * If there is already a send tag, or the INP is being torn 3142 * down, allocating a new send tag is not allowed. Else send 3143 * tags may leak. 3144 */ 3145 if (*st != NULL || (inp->inp_flags & INP_DROPPED) != 0) 3146 return (EINVAL); 3147 3148 error = m_snd_tag_alloc(ifp, ¶ms, st); 3149 #ifdef INET 3150 if (error == 0) { 3151 counter_u64_add(rate_limit_set_ok, 1); 3152 counter_u64_add(rate_limit_active, 1); 3153 } else if (error != EOPNOTSUPP) 3154 counter_u64_add(rate_limit_alloc_fail, 1); 3155 #endif 3156 return (error); 3157 } 3158 3159 void 3160 in_pcbdetach_tag(struct m_snd_tag *mst) 3161 { 3162 3163 m_snd_tag_rele(mst); 3164 #ifdef INET 3165 counter_u64_add(rate_limit_active, -1); 3166 #endif 3167 } 3168 3169 /* 3170 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3171 * if any: 3172 */ 3173 void 3174 in_pcbdetach_txrtlmt(struct inpcb *inp) 3175 { 3176 struct m_snd_tag *mst; 3177 3178 INP_WLOCK_ASSERT(inp); 3179 3180 mst = inp->inp_snd_tag; 3181 inp->inp_snd_tag = NULL; 3182 3183 if (mst == NULL) 3184 return; 3185 3186 m_snd_tag_rele(mst); 3187 #ifdef INET 3188 counter_u64_add(rate_limit_active, -1); 3189 #endif 3190 } 3191 3192 int 3193 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate) 3194 { 3195 int error; 3196 3197 /* 3198 * If the existing send tag is for the wrong interface due to 3199 * a route change, first drop the existing tag. Set the 3200 * CHANGED flag so that we will keep trying to allocate a new 3201 * tag if we fail to allocate one this time. 3202 */ 3203 if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) { 3204 in_pcbdetach_txrtlmt(inp); 3205 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3206 } 3207 3208 /* 3209 * NOTE: When attaching to a network interface a reference is 3210 * made to ensure the network interface doesn't go away until 3211 * all ratelimit connections are gone. The network interface 3212 * pointers compared below represent valid network interfaces, 3213 * except when comparing towards NULL. 3214 */ 3215 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3216 error = 0; 3217 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3218 if (inp->inp_snd_tag != NULL) 3219 in_pcbdetach_txrtlmt(inp); 3220 error = 0; 3221 } else if (inp->inp_snd_tag == NULL) { 3222 /* 3223 * In order to utilize packet pacing with RSS, we need 3224 * to wait until there is a valid RSS hash before we 3225 * can proceed: 3226 */ 3227 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3228 error = EAGAIN; 3229 } else { 3230 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3231 mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag); 3232 } 3233 } else { 3234 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3235 } 3236 if (error == 0 || error == EOPNOTSUPP) 3237 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3238 3239 return (error); 3240 } 3241 3242 /* 3243 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3244 * is set in the fast path and will attach/detach/modify the TX rate 3245 * limit send tag based on the socket's so_max_pacing_rate value. 3246 */ 3247 void 3248 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3249 { 3250 struct socket *socket; 3251 uint32_t max_pacing_rate; 3252 bool did_upgrade; 3253 3254 if (inp == NULL) 3255 return; 3256 3257 socket = inp->inp_socket; 3258 if (socket == NULL) 3259 return; 3260 3261 if (!INP_WLOCKED(inp)) { 3262 /* 3263 * NOTE: If the write locking fails, we need to bail 3264 * out and use the non-ratelimited ring for the 3265 * transmit until there is a new chance to get the 3266 * write lock. 3267 */ 3268 if (!INP_TRY_UPGRADE(inp)) 3269 return; 3270 did_upgrade = 1; 3271 } else { 3272 did_upgrade = 0; 3273 } 3274 3275 /* 3276 * NOTE: The so_max_pacing_rate value is read unlocked, 3277 * because atomic updates are not required since the variable 3278 * is checked at every mbuf we send. It is assumed that the 3279 * variable read itself will be atomic. 3280 */ 3281 max_pacing_rate = socket->so_max_pacing_rate; 3282 3283 in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate); 3284 3285 if (did_upgrade) 3286 INP_DOWNGRADE(inp); 3287 } 3288 3289 /* 3290 * Track route changes for TX rate limiting. 3291 */ 3292 void 3293 in_pcboutput_eagain(struct inpcb *inp) 3294 { 3295 bool did_upgrade; 3296 3297 if (inp == NULL) 3298 return; 3299 3300 if (inp->inp_snd_tag == NULL) 3301 return; 3302 3303 if (!INP_WLOCKED(inp)) { 3304 /* 3305 * NOTE: If the write locking fails, we need to bail 3306 * out and use the non-ratelimited ring for the 3307 * transmit until there is a new chance to get the 3308 * write lock. 3309 */ 3310 if (!INP_TRY_UPGRADE(inp)) 3311 return; 3312 did_upgrade = 1; 3313 } else { 3314 did_upgrade = 0; 3315 } 3316 3317 /* detach rate limiting */ 3318 in_pcbdetach_txrtlmt(inp); 3319 3320 /* make sure new mbuf send tag allocation is made */ 3321 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3322 3323 if (did_upgrade) 3324 INP_DOWNGRADE(inp); 3325 } 3326 3327 #ifdef INET 3328 static void 3329 rl_init(void *st) 3330 { 3331 rate_limit_new = counter_u64_alloc(M_WAITOK); 3332 rate_limit_chg = counter_u64_alloc(M_WAITOK); 3333 rate_limit_active = counter_u64_alloc(M_WAITOK); 3334 rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK); 3335 rate_limit_set_ok = counter_u64_alloc(M_WAITOK); 3336 } 3337 3338 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL); 3339 #endif 3340 #endif /* RATELIMIT */ 3341