1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993, 1995 3 * The Regents of the University of California. 4 * Copyright (c) 2007 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 4. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 32 * $FreeBSD$ 33 */ 34 35 #include "opt_ddb.h" 36 #include "opt_ipsec.h" 37 #include "opt_inet6.h" 38 #include "opt_mac.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/malloc.h> 43 #include <sys/mbuf.h> 44 #include <sys/domain.h> 45 #include <sys/protosw.h> 46 #include <sys/socket.h> 47 #include <sys/socketvar.h> 48 #include <sys/priv.h> 49 #include <sys/proc.h> 50 #include <sys/jail.h> 51 #include <sys/kernel.h> 52 #include <sys/sysctl.h> 53 54 #ifdef DDB 55 #include <ddb/ddb.h> 56 #endif 57 58 #include <vm/uma.h> 59 60 #include <net/if.h> 61 #include <net/if_types.h> 62 #include <net/route.h> 63 64 #include <netinet/in.h> 65 #include <netinet/in_pcb.h> 66 #include <netinet/in_var.h> 67 #include <netinet/ip_var.h> 68 #include <netinet/tcp_var.h> 69 #include <netinet/udp.h> 70 #include <netinet/udp_var.h> 71 #ifdef INET6 72 #include <netinet/ip6.h> 73 #include <netinet6/ip6_var.h> 74 #endif /* INET6 */ 75 76 #ifdef IPSEC 77 #include <netinet6/ipsec.h> 78 #include <netkey/key.h> 79 #endif /* IPSEC */ 80 81 #ifdef FAST_IPSEC 82 #if defined(IPSEC) || defined(IPSEC_ESP) 83 #error "Bad idea: don't compile with both IPSEC and FAST_IPSEC!" 84 #endif 85 86 #include <netipsec/ipsec.h> 87 #include <netipsec/key.h> 88 #endif /* FAST_IPSEC */ 89 90 #include <security/mac/mac_framework.h> 91 92 /* 93 * These configure the range of local port addresses assigned to 94 * "unspecified" outgoing connections/packets/whatever. 95 */ 96 int ipport_lowfirstauto = IPPORT_RESERVED - 1; /* 1023 */ 97 int ipport_lowlastauto = IPPORT_RESERVEDSTART; /* 600 */ 98 int ipport_firstauto = IPPORT_HIFIRSTAUTO; /* 49152 */ 99 int ipport_lastauto = IPPORT_HILASTAUTO; /* 65535 */ 100 int ipport_hifirstauto = IPPORT_HIFIRSTAUTO; /* 49152 */ 101 int ipport_hilastauto = IPPORT_HILASTAUTO; /* 65535 */ 102 103 /* 104 * Reserved ports accessible only to root. There are significant 105 * security considerations that must be accounted for when changing these, 106 * but the security benefits can be great. Please be careful. 107 */ 108 int ipport_reservedhigh = IPPORT_RESERVED - 1; /* 1023 */ 109 int ipport_reservedlow = 0; 110 111 /* Variables dealing with random ephemeral port allocation. */ 112 int ipport_randomized = 1; /* user controlled via sysctl */ 113 int ipport_randomcps = 10; /* user controlled via sysctl */ 114 int ipport_randomtime = 45; /* user controlled via sysctl */ 115 int ipport_stoprandom = 0; /* toggled by ipport_tick */ 116 int ipport_tcpallocs; 117 int ipport_tcplastcount; 118 119 #define RANGECHK(var, min, max) \ 120 if ((var) < (min)) { (var) = (min); } \ 121 else if ((var) > (max)) { (var) = (max); } 122 123 static int 124 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 125 { 126 int error; 127 128 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req); 129 if (error == 0) { 130 RANGECHK(ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 131 RANGECHK(ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 132 RANGECHK(ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 133 RANGECHK(ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 134 RANGECHK(ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 135 RANGECHK(ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 136 } 137 return (error); 138 } 139 140 #undef RANGECHK 141 142 SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports"); 143 144 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLTYPE_INT|CTLFLAG_RW, 145 &ipport_lowfirstauto, 0, &sysctl_net_ipport_check, "I", ""); 146 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLTYPE_INT|CTLFLAG_RW, 147 &ipport_lowlastauto, 0, &sysctl_net_ipport_check, "I", ""); 148 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLTYPE_INT|CTLFLAG_RW, 149 &ipport_firstauto, 0, &sysctl_net_ipport_check, "I", ""); 150 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLTYPE_INT|CTLFLAG_RW, 151 &ipport_lastauto, 0, &sysctl_net_ipport_check, "I", ""); 152 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLTYPE_INT|CTLFLAG_RW, 153 &ipport_hifirstauto, 0, &sysctl_net_ipport_check, "I", ""); 154 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLTYPE_INT|CTLFLAG_RW, 155 &ipport_hilastauto, 0, &sysctl_net_ipport_check, "I", ""); 156 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 157 CTLFLAG_RW|CTLFLAG_SECURE, &ipport_reservedhigh, 0, ""); 158 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 159 CTLFLAG_RW|CTLFLAG_SECURE, &ipport_reservedlow, 0, ""); 160 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW, 161 &ipport_randomized, 0, "Enable random port allocation"); 162 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW, 163 &ipport_randomcps, 0, "Maximum number of random port " 164 "allocations before switching to a sequental one"); 165 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW, 166 &ipport_randomtime, 0, "Minimum time to keep sequental port " 167 "allocation before switching to a random one"); 168 169 /* 170 * in_pcb.c: manage the Protocol Control Blocks. 171 * 172 * NOTE: It is assumed that most of these functions will be called with 173 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 174 * functions often modify hash chains or addresses in pcbs. 175 */ 176 177 /* 178 * Allocate a PCB and associate it with the socket. 179 * On success return with the PCB locked. 180 */ 181 int 182 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 183 { 184 struct inpcb *inp; 185 int error; 186 187 INP_INFO_WLOCK_ASSERT(pcbinfo); 188 error = 0; 189 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 190 if (inp == NULL) 191 return (ENOBUFS); 192 bzero(inp, inp_zero_size); 193 inp->inp_pcbinfo = pcbinfo; 194 inp->inp_socket = so; 195 #ifdef MAC 196 error = mac_init_inpcb(inp, M_NOWAIT); 197 if (error != 0) 198 goto out; 199 SOCK_LOCK(so); 200 mac_create_inpcb_from_socket(so, inp); 201 SOCK_UNLOCK(so); 202 #endif 203 #if defined(IPSEC) || defined(FAST_IPSEC) 204 #ifdef FAST_IPSEC 205 error = ipsec_init_policy(so, &inp->inp_sp); 206 #else 207 error = ipsec_init_pcbpolicy(so, &inp->inp_sp); 208 #endif 209 if (error != 0) 210 goto out; 211 #endif /*IPSEC*/ 212 #ifdef INET6 213 if (INP_SOCKAF(so) == AF_INET6) { 214 inp->inp_vflag |= INP_IPV6PROTO; 215 if (ip6_v6only) 216 inp->inp_flags |= IN6P_IPV6_V6ONLY; 217 } 218 #endif 219 LIST_INSERT_HEAD(pcbinfo->listhead, inp, inp_list); 220 pcbinfo->ipi_count++; 221 so->so_pcb = (caddr_t)inp; 222 #ifdef INET6 223 if (ip6_auto_flowlabel) 224 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 225 #endif 226 INP_LOCK(inp); 227 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 228 229 #if defined(IPSEC) || defined(FAST_IPSEC) || defined(MAC) 230 out: 231 if (error != 0) 232 uma_zfree(pcbinfo->ipi_zone, inp); 233 #endif 234 return (error); 235 } 236 237 int 238 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 239 { 240 int anonport, error; 241 242 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 243 INP_LOCK_ASSERT(inp); 244 245 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 246 return (EINVAL); 247 anonport = inp->inp_lport == 0 && (nam == NULL || 248 ((struct sockaddr_in *)nam)->sin_port == 0); 249 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 250 &inp->inp_lport, cred); 251 if (error) 252 return (error); 253 if (in_pcbinshash(inp) != 0) { 254 inp->inp_laddr.s_addr = INADDR_ANY; 255 inp->inp_lport = 0; 256 return (EAGAIN); 257 } 258 if (anonport) 259 inp->inp_flags |= INP_ANONPORT; 260 return (0); 261 } 262 263 /* 264 * Set up a bind operation on a PCB, performing port allocation 265 * as required, but do not actually modify the PCB. Callers can 266 * either complete the bind by setting inp_laddr/inp_lport and 267 * calling in_pcbinshash(), or they can just use the resulting 268 * port and address to authorise the sending of a once-off packet. 269 * 270 * On error, the values of *laddrp and *lportp are not changed. 271 */ 272 int 273 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 274 u_short *lportp, struct ucred *cred) 275 { 276 struct socket *so = inp->inp_socket; 277 unsigned short *lastport; 278 struct sockaddr_in *sin; 279 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 280 struct in_addr laddr; 281 u_short lport = 0; 282 int wild = 0, reuseport = (so->so_options & SO_REUSEPORT); 283 int error, prison = 0; 284 int dorandom; 285 286 INP_INFO_WLOCK_ASSERT(pcbinfo); 287 INP_LOCK_ASSERT(inp); 288 289 if (TAILQ_EMPTY(&in_ifaddrhead)) /* XXX broken! */ 290 return (EADDRNOTAVAIL); 291 laddr.s_addr = *laddrp; 292 if (nam != NULL && laddr.s_addr != INADDR_ANY) 293 return (EINVAL); 294 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) 295 wild = INPLOOKUP_WILDCARD; 296 if (nam) { 297 sin = (struct sockaddr_in *)nam; 298 if (nam->sa_len != sizeof (*sin)) 299 return (EINVAL); 300 #ifdef notdef 301 /* 302 * We should check the family, but old programs 303 * incorrectly fail to initialize it. 304 */ 305 if (sin->sin_family != AF_INET) 306 return (EAFNOSUPPORT); 307 #endif 308 if (sin->sin_addr.s_addr != INADDR_ANY) 309 if (prison_ip(cred, 0, &sin->sin_addr.s_addr)) 310 return(EINVAL); 311 if (sin->sin_port != *lportp) { 312 /* Don't allow the port to change. */ 313 if (*lportp != 0) 314 return (EINVAL); 315 lport = sin->sin_port; 316 } 317 /* NB: lport is left as 0 if the port isn't being changed. */ 318 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 319 /* 320 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 321 * allow complete duplication of binding if 322 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 323 * and a multicast address is bound on both 324 * new and duplicated sockets. 325 */ 326 if (so->so_options & SO_REUSEADDR) 327 reuseport = SO_REUSEADDR|SO_REUSEPORT; 328 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 329 sin->sin_port = 0; /* yech... */ 330 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 331 if (ifa_ifwithaddr((struct sockaddr *)sin) == 0) 332 return (EADDRNOTAVAIL); 333 } 334 laddr = sin->sin_addr; 335 if (lport) { 336 struct inpcb *t; 337 struct tcptw *tw; 338 339 /* GROSS */ 340 if (ntohs(lport) <= ipport_reservedhigh && 341 ntohs(lport) >= ipport_reservedlow && 342 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 343 SUSER_ALLOWJAIL)) 344 return (EACCES); 345 if (jailed(cred)) 346 prison = 1; 347 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 348 suser_cred(so->so_cred, SUSER_ALLOWJAIL) != 0) { 349 t = in_pcblookup_local(inp->inp_pcbinfo, 350 sin->sin_addr, lport, 351 prison ? 0 : INPLOOKUP_WILDCARD); 352 /* 353 * XXX 354 * This entire block sorely needs a rewrite. 355 */ 356 if (t && 357 ((t->inp_vflag & INP_TIMEWAIT) == 0) && 358 (so->so_type != SOCK_STREAM || 359 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 360 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 361 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 362 (t->inp_socket->so_options & 363 SO_REUSEPORT) == 0) && 364 (so->so_cred->cr_uid != 365 t->inp_socket->so_cred->cr_uid)) 366 return (EADDRINUSE); 367 } 368 if (prison && prison_ip(cred, 0, &sin->sin_addr.s_addr)) 369 return (EADDRNOTAVAIL); 370 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 371 lport, prison ? 0 : wild); 372 if (t && (t->inp_vflag & INP_TIMEWAIT)) { 373 /* 374 * XXXRW: If an incpb has had its timewait 375 * state recycled, we treat the address as 376 * being in use (for now). This is better 377 * than a panic, but not desirable. 378 */ 379 tw = intotw(inp); 380 if (tw == NULL || 381 (reuseport & tw->tw_so_options) == 0) 382 return (EADDRINUSE); 383 } else if (t && 384 (reuseport & t->inp_socket->so_options) == 0) { 385 #ifdef INET6 386 if (ntohl(sin->sin_addr.s_addr) != 387 INADDR_ANY || 388 ntohl(t->inp_laddr.s_addr) != 389 INADDR_ANY || 390 INP_SOCKAF(so) == 391 INP_SOCKAF(t->inp_socket)) 392 #endif 393 return (EADDRINUSE); 394 } 395 } 396 } 397 if (*lportp != 0) 398 lport = *lportp; 399 if (lport == 0) { 400 u_short first, last; 401 int count; 402 403 if (laddr.s_addr != INADDR_ANY) 404 if (prison_ip(cred, 0, &laddr.s_addr)) 405 return (EINVAL); 406 407 if (inp->inp_flags & INP_HIGHPORT) { 408 first = ipport_hifirstauto; /* sysctl */ 409 last = ipport_hilastauto; 410 lastport = &pcbinfo->lasthi; 411 } else if (inp->inp_flags & INP_LOWPORT) { 412 error = priv_check_cred(cred, 413 PRIV_NETINET_RESERVEDPORT, SUSER_ALLOWJAIL); 414 if (error) 415 return error; 416 first = ipport_lowfirstauto; /* 1023 */ 417 last = ipport_lowlastauto; /* 600 */ 418 lastport = &pcbinfo->lastlow; 419 } else { 420 first = ipport_firstauto; /* sysctl */ 421 last = ipport_lastauto; 422 lastport = &pcbinfo->lastport; 423 } 424 /* 425 * For UDP, use random port allocation as long as the user 426 * allows it. For TCP (and as of yet unknown) connections, 427 * use random port allocation only if the user allows it AND 428 * ipport_tick() allows it. 429 */ 430 if (ipport_randomized && 431 (!ipport_stoprandom || pcbinfo == &udbinfo)) 432 dorandom = 1; 433 else 434 dorandom = 0; 435 /* 436 * It makes no sense to do random port allocation if 437 * we have the only port available. 438 */ 439 if (first == last) 440 dorandom = 0; 441 /* Make sure to not include UDP packets in the count. */ 442 if (pcbinfo != &udbinfo) 443 ipport_tcpallocs++; 444 /* 445 * Simple check to ensure all ports are not used up causing 446 * a deadlock here. 447 * 448 * We split the two cases (up and down) so that the direction 449 * is not being tested on each round of the loop. 450 */ 451 if (first > last) { 452 /* 453 * counting down 454 */ 455 if (dorandom) 456 *lastport = first - 457 (arc4random() % (first - last)); 458 count = first - last; 459 460 do { 461 if (count-- < 0) /* completely used? */ 462 return (EADDRNOTAVAIL); 463 --*lastport; 464 if (*lastport > first || *lastport < last) 465 *lastport = first; 466 lport = htons(*lastport); 467 } while (in_pcblookup_local(pcbinfo, laddr, lport, 468 wild)); 469 } else { 470 /* 471 * counting up 472 */ 473 if (dorandom) 474 *lastport = first + 475 (arc4random() % (last - first)); 476 count = last - first; 477 478 do { 479 if (count-- < 0) /* completely used? */ 480 return (EADDRNOTAVAIL); 481 ++*lastport; 482 if (*lastport < first || *lastport > last) 483 *lastport = first; 484 lport = htons(*lastport); 485 } while (in_pcblookup_local(pcbinfo, laddr, lport, 486 wild)); 487 } 488 } 489 if (prison_ip(cred, 0, &laddr.s_addr)) 490 return (EINVAL); 491 *laddrp = laddr.s_addr; 492 *lportp = lport; 493 return (0); 494 } 495 496 /* 497 * Connect from a socket to a specified address. 498 * Both address and port must be specified in argument sin. 499 * If don't have a local address for this socket yet, 500 * then pick one. 501 */ 502 int 503 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 504 { 505 u_short lport, fport; 506 in_addr_t laddr, faddr; 507 int anonport, error; 508 509 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 510 INP_LOCK_ASSERT(inp); 511 512 lport = inp->inp_lport; 513 laddr = inp->inp_laddr.s_addr; 514 anonport = (lport == 0); 515 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 516 NULL, cred); 517 if (error) 518 return (error); 519 520 /* Do the initial binding of the local address if required. */ 521 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 522 inp->inp_lport = lport; 523 inp->inp_laddr.s_addr = laddr; 524 if (in_pcbinshash(inp) != 0) { 525 inp->inp_laddr.s_addr = INADDR_ANY; 526 inp->inp_lport = 0; 527 return (EAGAIN); 528 } 529 } 530 531 /* Commit the remaining changes. */ 532 inp->inp_lport = lport; 533 inp->inp_laddr.s_addr = laddr; 534 inp->inp_faddr.s_addr = faddr; 535 inp->inp_fport = fport; 536 in_pcbrehash(inp); 537 #ifdef IPSEC 538 if (inp->inp_socket->so_type == SOCK_STREAM) 539 ipsec_pcbconn(inp->inp_sp); 540 #endif 541 if (anonport) 542 inp->inp_flags |= INP_ANONPORT; 543 return (0); 544 } 545 546 /* 547 * Set up for a connect from a socket to the specified address. 548 * On entry, *laddrp and *lportp should contain the current local 549 * address and port for the PCB; these are updated to the values 550 * that should be placed in inp_laddr and inp_lport to complete 551 * the connect. 552 * 553 * On success, *faddrp and *fportp will be set to the remote address 554 * and port. These are not updated in the error case. 555 * 556 * If the operation fails because the connection already exists, 557 * *oinpp will be set to the PCB of that connection so that the 558 * caller can decide to override it. In all other cases, *oinpp 559 * is set to NULL. 560 */ 561 int 562 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 563 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 564 struct inpcb **oinpp, struct ucred *cred) 565 { 566 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 567 struct in_ifaddr *ia; 568 struct sockaddr_in sa; 569 struct ucred *socred; 570 struct inpcb *oinp; 571 struct in_addr laddr, faddr; 572 u_short lport, fport; 573 int error; 574 575 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 576 INP_LOCK_ASSERT(inp); 577 578 if (oinpp != NULL) 579 *oinpp = NULL; 580 if (nam->sa_len != sizeof (*sin)) 581 return (EINVAL); 582 if (sin->sin_family != AF_INET) 583 return (EAFNOSUPPORT); 584 if (sin->sin_port == 0) 585 return (EADDRNOTAVAIL); 586 laddr.s_addr = *laddrp; 587 lport = *lportp; 588 faddr = sin->sin_addr; 589 fport = sin->sin_port; 590 socred = inp->inp_socket->so_cred; 591 if (laddr.s_addr == INADDR_ANY && jailed(socred)) { 592 bzero(&sa, sizeof(sa)); 593 sa.sin_addr.s_addr = htonl(prison_getip(socred)); 594 sa.sin_len = sizeof(sa); 595 sa.sin_family = AF_INET; 596 error = in_pcbbind_setup(inp, (struct sockaddr *)&sa, 597 &laddr.s_addr, &lport, cred); 598 if (error) 599 return (error); 600 } 601 if (!TAILQ_EMPTY(&in_ifaddrhead)) { 602 /* 603 * If the destination address is INADDR_ANY, 604 * use the primary local address. 605 * If the supplied address is INADDR_BROADCAST, 606 * and the primary interface supports broadcast, 607 * choose the broadcast address for that interface. 608 */ 609 if (faddr.s_addr == INADDR_ANY) 610 faddr = IA_SIN(TAILQ_FIRST(&in_ifaddrhead))->sin_addr; 611 else if (faddr.s_addr == (u_long)INADDR_BROADCAST && 612 (TAILQ_FIRST(&in_ifaddrhead)->ia_ifp->if_flags & 613 IFF_BROADCAST)) 614 faddr = satosin(&TAILQ_FIRST( 615 &in_ifaddrhead)->ia_broadaddr)->sin_addr; 616 } 617 if (laddr.s_addr == INADDR_ANY) { 618 ia = (struct in_ifaddr *)0; 619 /* 620 * If route is known our src addr is taken from the i/f, 621 * else punt. 622 * 623 * Find out route to destination 624 */ 625 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 626 ia = ip_rtaddr(faddr); 627 /* 628 * If we found a route, use the address corresponding to 629 * the outgoing interface. 630 * 631 * Otherwise assume faddr is reachable on a directly connected 632 * network and try to find a corresponding interface to take 633 * the source address from. 634 */ 635 if (ia == 0) { 636 bzero(&sa, sizeof(sa)); 637 sa.sin_addr = faddr; 638 sa.sin_len = sizeof(sa); 639 sa.sin_family = AF_INET; 640 641 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sa))); 642 if (ia == 0) 643 ia = ifatoia(ifa_ifwithnet(sintosa(&sa))); 644 if (ia == 0) 645 return (ENETUNREACH); 646 } 647 /* 648 * If the destination address is multicast and an outgoing 649 * interface has been set as a multicast option, use the 650 * address of that interface as our source address. 651 */ 652 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 653 inp->inp_moptions != NULL) { 654 struct ip_moptions *imo; 655 struct ifnet *ifp; 656 657 imo = inp->inp_moptions; 658 if (imo->imo_multicast_ifp != NULL) { 659 ifp = imo->imo_multicast_ifp; 660 TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) 661 if (ia->ia_ifp == ifp) 662 break; 663 if (ia == 0) 664 return (EADDRNOTAVAIL); 665 } 666 } 667 laddr = ia->ia_addr.sin_addr; 668 } 669 670 oinp = in_pcblookup_hash(inp->inp_pcbinfo, faddr, fport, laddr, lport, 671 0, NULL); 672 if (oinp != NULL) { 673 if (oinpp != NULL) 674 *oinpp = oinp; 675 return (EADDRINUSE); 676 } 677 if (lport == 0) { 678 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 679 cred); 680 if (error) 681 return (error); 682 } 683 *laddrp = laddr.s_addr; 684 *lportp = lport; 685 *faddrp = faddr.s_addr; 686 *fportp = fport; 687 return (0); 688 } 689 690 void 691 in_pcbdisconnect(struct inpcb *inp) 692 { 693 694 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 695 INP_LOCK_ASSERT(inp); 696 697 inp->inp_faddr.s_addr = INADDR_ANY; 698 inp->inp_fport = 0; 699 in_pcbrehash(inp); 700 #ifdef IPSEC 701 ipsec_pcbdisconn(inp->inp_sp); 702 #endif 703 } 704 705 /* 706 * In the old world order, in_pcbdetach() served two functions: to detach the 707 * pcb from the socket/potentially free the socket, and to free the pcb 708 * itself. In the new world order, the protocol code is responsible for 709 * managing the relationship with the socket, and this code simply frees the 710 * pcb. 711 */ 712 void 713 in_pcbdetach(struct inpcb *inp) 714 { 715 716 KASSERT(inp->inp_socket != NULL, ("in_pcbdetach: inp_socket == NULL")); 717 inp->inp_socket->so_pcb = NULL; 718 inp->inp_socket = NULL; 719 } 720 721 void 722 in_pcbfree(struct inpcb *inp) 723 { 724 struct inpcbinfo *ipi = inp->inp_pcbinfo; 725 726 KASSERT(inp->inp_socket == NULL, ("in_pcbfree: inp_socket != NULL")); 727 INP_INFO_WLOCK_ASSERT(ipi); 728 INP_LOCK_ASSERT(inp); 729 730 #if defined(IPSEC) || defined(FAST_IPSEC) 731 ipsec4_delete_pcbpolicy(inp); 732 #endif /*IPSEC*/ 733 inp->inp_gencnt = ++ipi->ipi_gencnt; 734 in_pcbremlists(inp); 735 if (inp->inp_options) 736 (void)m_free(inp->inp_options); 737 ip_freemoptions(inp->inp_moptions); 738 inp->inp_vflag = 0; 739 740 #ifdef MAC 741 mac_destroy_inpcb(inp); 742 #endif 743 INP_UNLOCK(inp); 744 uma_zfree(ipi->ipi_zone, inp); 745 } 746 747 /* 748 * TCP needs to maintain its inpcb structure after the TCP connection has 749 * been torn down. However, it must be disconnected from the inpcb hashes as 750 * it must not prevent binding of future connections to the same port/ip 751 * combination by other inpcbs. 752 */ 753 void 754 in_pcbdrop(struct inpcb *inp) 755 { 756 757 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 758 INP_LOCK_ASSERT(inp); 759 760 inp->inp_vflag |= INP_DROPPED; 761 if (inp->inp_lport) { 762 struct inpcbport *phd = inp->inp_phd; 763 764 LIST_REMOVE(inp, inp_hash); 765 LIST_REMOVE(inp, inp_portlist); 766 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 767 LIST_REMOVE(phd, phd_hash); 768 free(phd, M_PCB); 769 } 770 inp->inp_lport = 0; 771 } 772 } 773 774 struct sockaddr * 775 in_sockaddr(in_port_t port, struct in_addr *addr_p) 776 { 777 struct sockaddr_in *sin; 778 779 MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME, 780 M_WAITOK | M_ZERO); 781 sin->sin_family = AF_INET; 782 sin->sin_len = sizeof(*sin); 783 sin->sin_addr = *addr_p; 784 sin->sin_port = port; 785 786 return (struct sockaddr *)sin; 787 } 788 789 /* 790 * The wrapper function will pass down the pcbinfo for this function to lock. 791 * The socket must have a valid 792 * (i.e., non-nil) PCB, but it should be impossible to get an invalid one 793 * except through a kernel programming error, so it is acceptable to panic 794 * (or in this case trap) if the PCB is invalid. (Actually, we don't trap 795 * because there actually /is/ a programming error somewhere... XXX) 796 */ 797 int 798 in_setsockaddr(struct socket *so, struct sockaddr **nam, 799 struct inpcbinfo *pcbinfo) 800 { 801 struct inpcb *inp; 802 struct in_addr addr; 803 in_port_t port; 804 805 inp = sotoinpcb(so); 806 KASSERT(inp != NULL, ("in_setsockaddr: inp == NULL")); 807 808 INP_LOCK(inp); 809 port = inp->inp_lport; 810 addr = inp->inp_laddr; 811 INP_UNLOCK(inp); 812 813 *nam = in_sockaddr(port, &addr); 814 return 0; 815 } 816 817 /* 818 * The wrapper function will pass down the pcbinfo for this function to lock. 819 */ 820 int 821 in_setpeeraddr(struct socket *so, struct sockaddr **nam, 822 struct inpcbinfo *pcbinfo) 823 { 824 struct inpcb *inp; 825 struct in_addr addr; 826 in_port_t port; 827 828 inp = sotoinpcb(so); 829 KASSERT(inp != NULL, ("in_setpeeraddr: inp == NULL")); 830 831 INP_LOCK(inp); 832 port = inp->inp_fport; 833 addr = inp->inp_faddr; 834 INP_UNLOCK(inp); 835 836 *nam = in_sockaddr(port, &addr); 837 return 0; 838 } 839 840 void 841 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 842 struct inpcb *(*notify)(struct inpcb *, int)) 843 { 844 struct inpcb *inp, *ninp; 845 struct inpcbhead *head; 846 847 INP_INFO_WLOCK(pcbinfo); 848 head = pcbinfo->listhead; 849 for (inp = LIST_FIRST(head); inp != NULL; inp = ninp) { 850 INP_LOCK(inp); 851 ninp = LIST_NEXT(inp, inp_list); 852 #ifdef INET6 853 if ((inp->inp_vflag & INP_IPV4) == 0) { 854 INP_UNLOCK(inp); 855 continue; 856 } 857 #endif 858 if (inp->inp_faddr.s_addr != faddr.s_addr || 859 inp->inp_socket == NULL) { 860 INP_UNLOCK(inp); 861 continue; 862 } 863 if ((*notify)(inp, errno)) 864 INP_UNLOCK(inp); 865 } 866 INP_INFO_WUNLOCK(pcbinfo); 867 } 868 869 void 870 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 871 { 872 struct inpcb *inp; 873 struct ip_moptions *imo; 874 int i, gap; 875 876 INP_INFO_RLOCK(pcbinfo); 877 LIST_FOREACH(inp, pcbinfo->listhead, inp_list) { 878 INP_LOCK(inp); 879 imo = inp->inp_moptions; 880 if ((inp->inp_vflag & INP_IPV4) && 881 imo != NULL) { 882 /* 883 * Unselect the outgoing interface if it is being 884 * detached. 885 */ 886 if (imo->imo_multicast_ifp == ifp) 887 imo->imo_multicast_ifp = NULL; 888 889 /* 890 * Drop multicast group membership if we joined 891 * through the interface being detached. 892 */ 893 for (i = 0, gap = 0; i < imo->imo_num_memberships; 894 i++) { 895 if (imo->imo_membership[i]->inm_ifp == ifp) { 896 in_delmulti(imo->imo_membership[i]); 897 gap++; 898 } else if (gap != 0) 899 imo->imo_membership[i - gap] = 900 imo->imo_membership[i]; 901 } 902 imo->imo_num_memberships -= gap; 903 } 904 INP_UNLOCK(inp); 905 } 906 INP_INFO_RUNLOCK(pcbinfo); 907 } 908 909 /* 910 * Lookup a PCB based on the local address and port. 911 */ 912 #define INP_LOOKUP_MAPPED_PCB_COST 3 913 struct inpcb * 914 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 915 u_int lport_arg, int wild_okay) 916 { 917 struct inpcb *inp; 918 #ifdef INET6 919 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 920 #else 921 int matchwild = 3; 922 #endif 923 int wildcard; 924 u_short lport = lport_arg; 925 926 INP_INFO_WLOCK_ASSERT(pcbinfo); 927 928 if (!wild_okay) { 929 struct inpcbhead *head; 930 /* 931 * Look for an unconnected (wildcard foreign addr) PCB that 932 * matches the local address and port we're looking for. 933 */ 934 head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->hashmask)]; 935 LIST_FOREACH(inp, head, inp_hash) { 936 #ifdef INET6 937 if ((inp->inp_vflag & INP_IPV4) == 0) 938 continue; 939 #endif 940 if (inp->inp_faddr.s_addr == INADDR_ANY && 941 inp->inp_laddr.s_addr == laddr.s_addr && 942 inp->inp_lport == lport) { 943 /* 944 * Found. 945 */ 946 return (inp); 947 } 948 } 949 /* 950 * Not found. 951 */ 952 return (NULL); 953 } else { 954 struct inpcbporthead *porthash; 955 struct inpcbport *phd; 956 struct inpcb *match = NULL; 957 /* 958 * Best fit PCB lookup. 959 * 960 * First see if this local port is in use by looking on the 961 * port hash list. 962 */ 963 porthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(lport, 964 pcbinfo->porthashmask)]; 965 LIST_FOREACH(phd, porthash, phd_hash) { 966 if (phd->phd_port == lport) 967 break; 968 } 969 if (phd != NULL) { 970 /* 971 * Port is in use by one or more PCBs. Look for best 972 * fit. 973 */ 974 LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 975 wildcard = 0; 976 #ifdef INET6 977 if ((inp->inp_vflag & INP_IPV4) == 0) 978 continue; 979 /* 980 * We never select the PCB that has 981 * INP_IPV6 flag and is bound to :: if 982 * we have another PCB which is bound 983 * to 0.0.0.0. If a PCB has the 984 * INP_IPV6 flag, then we set its cost 985 * higher than IPv4 only PCBs. 986 * 987 * Note that the case only happens 988 * when a socket is bound to ::, under 989 * the condition that the use of the 990 * mapped address is allowed. 991 */ 992 if ((inp->inp_vflag & INP_IPV6) != 0) 993 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 994 #endif 995 if (inp->inp_faddr.s_addr != INADDR_ANY) 996 wildcard++; 997 if (inp->inp_laddr.s_addr != INADDR_ANY) { 998 if (laddr.s_addr == INADDR_ANY) 999 wildcard++; 1000 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1001 continue; 1002 } else { 1003 if (laddr.s_addr != INADDR_ANY) 1004 wildcard++; 1005 } 1006 if (wildcard < matchwild) { 1007 match = inp; 1008 matchwild = wildcard; 1009 if (matchwild == 0) { 1010 break; 1011 } 1012 } 1013 } 1014 } 1015 return (match); 1016 } 1017 } 1018 #undef INP_LOOKUP_MAPPED_PCB_COST 1019 1020 /* 1021 * Lookup PCB in hash list. 1022 */ 1023 struct inpcb * 1024 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1025 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard, 1026 struct ifnet *ifp) 1027 { 1028 struct inpcbhead *head; 1029 struct inpcb *inp; 1030 u_short fport = fport_arg, lport = lport_arg; 1031 1032 INP_INFO_RLOCK_ASSERT(pcbinfo); 1033 1034 /* 1035 * First look for an exact match. 1036 */ 1037 head = &pcbinfo->hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1038 pcbinfo->hashmask)]; 1039 LIST_FOREACH(inp, head, inp_hash) { 1040 #ifdef INET6 1041 if ((inp->inp_vflag & INP_IPV4) == 0) 1042 continue; 1043 #endif 1044 if (inp->inp_faddr.s_addr == faddr.s_addr && 1045 inp->inp_laddr.s_addr == laddr.s_addr && 1046 inp->inp_fport == fport && 1047 inp->inp_lport == lport) 1048 return (inp); 1049 } 1050 1051 /* 1052 * Then look for a wildcard match, if requested. 1053 */ 1054 if (wildcard) { 1055 struct inpcb *local_wild = NULL; 1056 #ifdef INET6 1057 struct inpcb *local_wild_mapped = NULL; 1058 #endif 1059 1060 head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, 1061 pcbinfo->hashmask)]; 1062 LIST_FOREACH(inp, head, inp_hash) { 1063 #ifdef INET6 1064 if ((inp->inp_vflag & INP_IPV4) == 0) 1065 continue; 1066 #endif 1067 if (inp->inp_faddr.s_addr == INADDR_ANY && 1068 inp->inp_lport == lport) { 1069 if (ifp && ifp->if_type == IFT_FAITH && 1070 (inp->inp_flags & INP_FAITH) == 0) 1071 continue; 1072 if (inp->inp_laddr.s_addr == laddr.s_addr) 1073 return (inp); 1074 else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1075 #ifdef INET6 1076 if (INP_CHECK_SOCKAF(inp->inp_socket, 1077 AF_INET6)) 1078 local_wild_mapped = inp; 1079 else 1080 #endif 1081 local_wild = inp; 1082 } 1083 } 1084 } 1085 #ifdef INET6 1086 if (local_wild == NULL) 1087 return (local_wild_mapped); 1088 #endif 1089 return (local_wild); 1090 } 1091 return (NULL); 1092 } 1093 1094 /* 1095 * Insert PCB onto various hash lists. 1096 */ 1097 int 1098 in_pcbinshash(struct inpcb *inp) 1099 { 1100 struct inpcbhead *pcbhash; 1101 struct inpcbporthead *pcbporthash; 1102 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1103 struct inpcbport *phd; 1104 u_int32_t hashkey_faddr; 1105 1106 INP_INFO_WLOCK_ASSERT(pcbinfo); 1107 INP_LOCK_ASSERT(inp); 1108 1109 #ifdef INET6 1110 if (inp->inp_vflag & INP_IPV6) 1111 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; 1112 else 1113 #endif /* INET6 */ 1114 hashkey_faddr = inp->inp_faddr.s_addr; 1115 1116 pcbhash = &pcbinfo->hashbase[INP_PCBHASH(hashkey_faddr, 1117 inp->inp_lport, inp->inp_fport, pcbinfo->hashmask)]; 1118 1119 pcbporthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(inp->inp_lport, 1120 pcbinfo->porthashmask)]; 1121 1122 /* 1123 * Go through port list and look for a head for this lport. 1124 */ 1125 LIST_FOREACH(phd, pcbporthash, phd_hash) { 1126 if (phd->phd_port == inp->inp_lport) 1127 break; 1128 } 1129 /* 1130 * If none exists, malloc one and tack it on. 1131 */ 1132 if (phd == NULL) { 1133 MALLOC(phd, struct inpcbport *, sizeof(struct inpcbport), M_PCB, M_NOWAIT); 1134 if (phd == NULL) { 1135 return (ENOBUFS); /* XXX */ 1136 } 1137 phd->phd_port = inp->inp_lport; 1138 LIST_INIT(&phd->phd_pcblist); 1139 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 1140 } 1141 inp->inp_phd = phd; 1142 LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 1143 LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 1144 return (0); 1145 } 1146 1147 /* 1148 * Move PCB to the proper hash bucket when { faddr, fport } have been 1149 * changed. NOTE: This does not handle the case of the lport changing (the 1150 * hashed port list would have to be updated as well), so the lport must 1151 * not change after in_pcbinshash() has been called. 1152 */ 1153 void 1154 in_pcbrehash(struct inpcb *inp) 1155 { 1156 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1157 struct inpcbhead *head; 1158 u_int32_t hashkey_faddr; 1159 1160 INP_INFO_WLOCK_ASSERT(pcbinfo); 1161 INP_LOCK_ASSERT(inp); 1162 1163 #ifdef INET6 1164 if (inp->inp_vflag & INP_IPV6) 1165 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; 1166 else 1167 #endif /* INET6 */ 1168 hashkey_faddr = inp->inp_faddr.s_addr; 1169 1170 head = &pcbinfo->hashbase[INP_PCBHASH(hashkey_faddr, 1171 inp->inp_lport, inp->inp_fport, pcbinfo->hashmask)]; 1172 1173 LIST_REMOVE(inp, inp_hash); 1174 LIST_INSERT_HEAD(head, inp, inp_hash); 1175 } 1176 1177 /* 1178 * Remove PCB from various lists. 1179 */ 1180 void 1181 in_pcbremlists(struct inpcb *inp) 1182 { 1183 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1184 1185 INP_INFO_WLOCK_ASSERT(pcbinfo); 1186 INP_LOCK_ASSERT(inp); 1187 1188 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1189 if (inp->inp_lport) { 1190 struct inpcbport *phd = inp->inp_phd; 1191 1192 LIST_REMOVE(inp, inp_hash); 1193 LIST_REMOVE(inp, inp_portlist); 1194 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 1195 LIST_REMOVE(phd, phd_hash); 1196 free(phd, M_PCB); 1197 } 1198 } 1199 LIST_REMOVE(inp, inp_list); 1200 pcbinfo->ipi_count--; 1201 } 1202 1203 /* 1204 * A set label operation has occurred at the socket layer, propagate the 1205 * label change into the in_pcb for the socket. 1206 */ 1207 void 1208 in_pcbsosetlabel(struct socket *so) 1209 { 1210 #ifdef MAC 1211 struct inpcb *inp; 1212 1213 inp = sotoinpcb(so); 1214 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 1215 1216 INP_LOCK(inp); 1217 SOCK_LOCK(so); 1218 mac_inpcb_sosetlabel(so, inp); 1219 SOCK_UNLOCK(so); 1220 INP_UNLOCK(inp); 1221 #endif 1222 } 1223 1224 /* 1225 * ipport_tick runs once per second, determining if random port allocation 1226 * should be continued. If more than ipport_randomcps ports have been 1227 * allocated in the last second, then we return to sequential port 1228 * allocation. We return to random allocation only once we drop below 1229 * ipport_randomcps for at least ipport_randomtime seconds. 1230 */ 1231 void 1232 ipport_tick(void *xtp) 1233 { 1234 1235 if (ipport_tcpallocs <= ipport_tcplastcount + ipport_randomcps) { 1236 if (ipport_stoprandom > 0) 1237 ipport_stoprandom--; 1238 } else 1239 ipport_stoprandom = ipport_randomtime; 1240 ipport_tcplastcount = ipport_tcpallocs; 1241 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 1242 } 1243 1244 #ifdef DDB 1245 static void 1246 db_print_indent(int indent) 1247 { 1248 int i; 1249 1250 for (i = 0; i < indent; i++) 1251 db_printf(" "); 1252 } 1253 1254 static void 1255 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 1256 { 1257 char faddr_str[48], laddr_str[48]; 1258 1259 db_print_indent(indent); 1260 db_printf("%s at %p\n", name, inc); 1261 1262 indent += 2; 1263 1264 #ifdef INET6 1265 if (inc->inc_flags == 1) { 1266 /* IPv6. */ 1267 ip6_sprintf(laddr_str, &inc->inc6_laddr); 1268 ip6_sprintf(faddr_str, &inc->inc6_faddr); 1269 } else { 1270 #endif 1271 /* IPv4. */ 1272 inet_ntoa_r(inc->inc_laddr, laddr_str); 1273 inet_ntoa_r(inc->inc_faddr, faddr_str); 1274 #ifdef INET6 1275 } 1276 #endif 1277 db_print_indent(indent); 1278 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 1279 ntohs(inc->inc_lport)); 1280 db_print_indent(indent); 1281 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 1282 ntohs(inc->inc_fport)); 1283 } 1284 1285 static void 1286 db_print_inpflags(int inp_flags) 1287 { 1288 int comma; 1289 1290 comma = 0; 1291 if (inp_flags & INP_RECVOPTS) { 1292 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 1293 comma = 1; 1294 } 1295 if (inp_flags & INP_RECVRETOPTS) { 1296 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 1297 comma = 1; 1298 } 1299 if (inp_flags & INP_RECVDSTADDR) { 1300 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 1301 comma = 1; 1302 } 1303 if (inp_flags & INP_HDRINCL) { 1304 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 1305 comma = 1; 1306 } 1307 if (inp_flags & INP_HIGHPORT) { 1308 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 1309 comma = 1; 1310 } 1311 if (inp_flags & INP_LOWPORT) { 1312 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 1313 comma = 1; 1314 } 1315 if (inp_flags & INP_ANONPORT) { 1316 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 1317 comma = 1; 1318 } 1319 if (inp_flags & INP_RECVIF) { 1320 db_printf("%sINP_RECVIF", comma ? ", " : ""); 1321 comma = 1; 1322 } 1323 if (inp_flags & INP_MTUDISC) { 1324 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 1325 comma = 1; 1326 } 1327 if (inp_flags & INP_FAITH) { 1328 db_printf("%sINP_FAITH", comma ? ", " : ""); 1329 comma = 1; 1330 } 1331 if (inp_flags & INP_RECVTTL) { 1332 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 1333 comma = 1; 1334 } 1335 if (inp_flags & INP_DONTFRAG) { 1336 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 1337 comma = 1; 1338 } 1339 if (inp_flags & IN6P_IPV6_V6ONLY) { 1340 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 1341 comma = 1; 1342 } 1343 if (inp_flags & IN6P_PKTINFO) { 1344 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 1345 comma = 1; 1346 } 1347 if (inp_flags & IN6P_HOPLIMIT) { 1348 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 1349 comma = 1; 1350 } 1351 if (inp_flags & IN6P_HOPOPTS) { 1352 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 1353 comma = 1; 1354 } 1355 if (inp_flags & IN6P_DSTOPTS) { 1356 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 1357 comma = 1; 1358 } 1359 if (inp_flags & IN6P_RTHDR) { 1360 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 1361 comma = 1; 1362 } 1363 if (inp_flags & IN6P_RTHDRDSTOPTS) { 1364 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 1365 comma = 1; 1366 } 1367 if (inp_flags & IN6P_TCLASS) { 1368 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 1369 comma = 1; 1370 } 1371 if (inp_flags & IN6P_AUTOFLOWLABEL) { 1372 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 1373 comma = 1; 1374 } 1375 if (inp_flags & IN6P_RFC2292) { 1376 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 1377 comma = 1; 1378 } 1379 if (inp_flags & IN6P_MTU) { 1380 db_printf("IN6P_MTU%s", comma ? ", " : ""); 1381 comma = 1; 1382 } 1383 } 1384 1385 static void 1386 db_print_inpvflag(u_char inp_vflag) 1387 { 1388 int comma; 1389 1390 comma = 0; 1391 if (inp_vflag & INP_IPV4) { 1392 db_printf("%sINP_IPV4", comma ? ", " : ""); 1393 comma = 1; 1394 } 1395 if (inp_vflag & INP_IPV6) { 1396 db_printf("%sINP_IPV6", comma ? ", " : ""); 1397 comma = 1; 1398 } 1399 if (inp_vflag & INP_IPV6PROTO) { 1400 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 1401 comma = 1; 1402 } 1403 if (inp_vflag & INP_TIMEWAIT) { 1404 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 1405 comma = 1; 1406 } 1407 if (inp_vflag & INP_ONESBCAST) { 1408 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 1409 comma = 1; 1410 } 1411 if (inp_vflag & INP_DROPPED) { 1412 db_printf("%sINP_DROPPED", comma ? ", " : ""); 1413 comma = 1; 1414 } 1415 if (inp_vflag & INP_SOCKREF) { 1416 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 1417 comma = 1; 1418 } 1419 } 1420 1421 void 1422 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 1423 { 1424 1425 db_print_indent(indent); 1426 db_printf("%s at %p\n", name, inp); 1427 1428 indent += 2; 1429 1430 db_print_indent(indent); 1431 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 1432 1433 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 1434 1435 db_print_indent(indent); 1436 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 1437 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 1438 1439 db_print_indent(indent); 1440 db_printf("inp_label: %p inp_flags: 0x%x (", 1441 inp->inp_label, inp->inp_flags); 1442 db_print_inpflags(inp->inp_flags); 1443 db_printf(")\n"); 1444 1445 db_print_indent(indent); 1446 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 1447 inp->inp_vflag); 1448 db_print_inpvflag(inp->inp_vflag); 1449 db_printf(")\n"); 1450 1451 db_print_indent(indent); 1452 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 1453 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 1454 1455 db_print_indent(indent); 1456 #ifdef INET6 1457 if (inp->inp_vflag & INP_IPV6) { 1458 db_printf("in6p_options: %p in6p_outputopts: %p " 1459 "in6p_moptions: %p\n", inp->in6p_options, 1460 inp->in6p_outputopts, inp->in6p_moptions); 1461 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 1462 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 1463 inp->in6p_hops); 1464 } else 1465 #endif 1466 { 1467 db_printf("inp_ip_tos: %d inp_ip_options: %p " 1468 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 1469 inp->inp_options, inp->inp_moptions); 1470 } 1471 1472 db_print_indent(indent); 1473 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 1474 (uintmax_t)inp->inp_gencnt); 1475 } 1476 1477 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 1478 { 1479 struct inpcb *inp; 1480 1481 if (!have_addr) { 1482 db_printf("usage: show inpcb <addr>\n"); 1483 return; 1484 } 1485 inp = (struct inpcb *)addr; 1486 1487 db_print_inpcb(inp, "inpcb", 0); 1488 } 1489 #endif 1490