1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Robert N. M. Watson under 11 * contract to Juniper Networks, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_ddb.h" 44 #include "opt_ipsec.h" 45 #include "opt_inet.h" 46 #include "opt_inet6.h" 47 #include "opt_ratelimit.h" 48 #include "opt_pcbgroup.h" 49 #include "opt_rss.h" 50 51 #include <sys/param.h> 52 #include <sys/systm.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/mbuf.h> 56 #include <sys/callout.h> 57 #include <sys/eventhandler.h> 58 #include <sys/domain.h> 59 #include <sys/protosw.h> 60 #include <sys/rmlock.h> 61 #include <sys/smp.h> 62 #include <sys/socket.h> 63 #include <sys/socketvar.h> 64 #include <sys/sockio.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/refcount.h> 68 #include <sys/jail.h> 69 #include <sys/kernel.h> 70 #include <sys/sysctl.h> 71 72 #ifdef DDB 73 #include <ddb/ddb.h> 74 #endif 75 76 #include <vm/uma.h> 77 78 #include <net/if.h> 79 #include <net/if_var.h> 80 #include <net/if_types.h> 81 #include <net/if_llatbl.h> 82 #include <net/route.h> 83 #include <net/rss_config.h> 84 #include <net/vnet.h> 85 86 #if defined(INET) || defined(INET6) 87 #include <netinet/in.h> 88 #include <netinet/in_pcb.h> 89 #include <netinet/ip_var.h> 90 #include <netinet/tcp_var.h> 91 #ifdef TCPHPTS 92 #include <netinet/tcp_hpts.h> 93 #endif 94 #include <netinet/udp.h> 95 #include <netinet/udp_var.h> 96 #endif 97 #ifdef INET 98 #include <netinet/in_var.h> 99 #endif 100 #ifdef INET6 101 #include <netinet/ip6.h> 102 #include <netinet6/in6_pcb.h> 103 #include <netinet6/in6_var.h> 104 #include <netinet6/ip6_var.h> 105 #endif /* INET6 */ 106 107 #include <netipsec/ipsec_support.h> 108 109 #include <security/mac/mac_framework.h> 110 111 static struct callout ipport_tick_callout; 112 113 /* 114 * These configure the range of local port addresses assigned to 115 * "unspecified" outgoing connections/packets/whatever. 116 */ 117 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 118 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 119 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 120 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 121 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 122 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 123 124 /* 125 * Reserved ports accessible only to root. There are significant 126 * security considerations that must be accounted for when changing these, 127 * but the security benefits can be great. Please be careful. 128 */ 129 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 130 VNET_DEFINE(int, ipport_reservedlow); 131 132 /* Variables dealing with random ephemeral port allocation. */ 133 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 134 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 135 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 136 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 137 VNET_DEFINE(int, ipport_tcpallocs); 138 static VNET_DEFINE(int, ipport_tcplastcount); 139 140 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 141 142 static void in_pcbremlists(struct inpcb *inp); 143 #ifdef INET 144 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 145 struct in_addr faddr, u_int fport_arg, 146 struct in_addr laddr, u_int lport_arg, 147 int lookupflags, struct ifnet *ifp); 148 149 #define RANGECHK(var, min, max) \ 150 if ((var) < (min)) { (var) = (min); } \ 151 else if ((var) > (max)) { (var) = (max); } 152 153 static int 154 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 155 { 156 int error; 157 158 error = sysctl_handle_int(oidp, arg1, arg2, req); 159 if (error == 0) { 160 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 161 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 162 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 163 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 164 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 165 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 166 } 167 return (error); 168 } 169 170 #undef RANGECHK 171 172 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, 173 "IP Ports"); 174 175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 176 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 177 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", ""); 178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 179 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 180 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", ""); 181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 182 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 183 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", ""); 184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 185 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 186 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", ""); 187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 188 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 189 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", ""); 190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 191 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 192 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", ""); 193 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 194 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 195 &VNET_NAME(ipport_reservedhigh), 0, ""); 196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 197 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 198 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 199 CTLFLAG_VNET | CTLFLAG_RW, 200 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 202 CTLFLAG_VNET | CTLFLAG_RW, 203 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 204 "allocations before switching to a sequental one"); 205 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 206 CTLFLAG_VNET | CTLFLAG_RW, 207 &VNET_NAME(ipport_randomtime), 0, 208 "Minimum time to keep sequental port " 209 "allocation before switching to a random one"); 210 #endif /* INET */ 211 212 /* 213 * in_pcb.c: manage the Protocol Control Blocks. 214 * 215 * NOTE: It is assumed that most of these functions will be called with 216 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 217 * functions often modify hash chains or addresses in pcbs. 218 */ 219 220 /* 221 * Different protocols initialize their inpcbs differently - giving 222 * different name to the lock. But they all are disposed the same. 223 */ 224 static void 225 inpcb_fini(void *mem, int size) 226 { 227 struct inpcb *inp = mem; 228 229 INP_LOCK_DESTROY(inp); 230 } 231 232 /* 233 * Initialize an inpcbinfo -- we should be able to reduce the number of 234 * arguments in time. 235 */ 236 void 237 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 238 struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, 239 char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields) 240 { 241 242 INP_INFO_LOCK_INIT(pcbinfo, name); 243 INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ 244 INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist"); 245 #ifdef VIMAGE 246 pcbinfo->ipi_vnet = curvnet; 247 #endif 248 pcbinfo->ipi_listhead = listhead; 249 LIST_INIT(pcbinfo->ipi_listhead); 250 pcbinfo->ipi_count = 0; 251 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 252 &pcbinfo->ipi_hashmask); 253 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 254 &pcbinfo->ipi_porthashmask); 255 #ifdef PCBGROUP 256 in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); 257 #endif 258 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 259 NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0); 260 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 261 uma_zone_set_warning(pcbinfo->ipi_zone, 262 "kern.ipc.maxsockets limit reached"); 263 } 264 265 /* 266 * Destroy an inpcbinfo. 267 */ 268 void 269 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 270 { 271 272 KASSERT(pcbinfo->ipi_count == 0, 273 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 274 275 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 276 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 277 pcbinfo->ipi_porthashmask); 278 #ifdef PCBGROUP 279 in_pcbgroup_destroy(pcbinfo); 280 #endif 281 uma_zdestroy(pcbinfo->ipi_zone); 282 INP_LIST_LOCK_DESTROY(pcbinfo); 283 INP_HASH_LOCK_DESTROY(pcbinfo); 284 INP_INFO_LOCK_DESTROY(pcbinfo); 285 } 286 287 /* 288 * Allocate a PCB and associate it with the socket. 289 * On success return with the PCB locked. 290 */ 291 int 292 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 293 { 294 struct inpcb *inp; 295 int error; 296 297 #ifdef INVARIANTS 298 if (pcbinfo == &V_tcbinfo) { 299 INP_INFO_RLOCK_ASSERT(pcbinfo); 300 } else { 301 INP_INFO_WLOCK_ASSERT(pcbinfo); 302 } 303 #endif 304 305 error = 0; 306 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 307 if (inp == NULL) 308 return (ENOBUFS); 309 bzero(&inp->inp_start_zero, inp_zero_size); 310 inp->inp_pcbinfo = pcbinfo; 311 inp->inp_socket = so; 312 inp->inp_cred = crhold(so->so_cred); 313 inp->inp_inc.inc_fibnum = so->so_fibnum; 314 #ifdef MAC 315 error = mac_inpcb_init(inp, M_NOWAIT); 316 if (error != 0) 317 goto out; 318 mac_inpcb_create(so, inp); 319 #endif 320 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 321 error = ipsec_init_pcbpolicy(inp); 322 if (error != 0) { 323 #ifdef MAC 324 mac_inpcb_destroy(inp); 325 #endif 326 goto out; 327 } 328 #endif /*IPSEC*/ 329 #ifdef INET6 330 if (INP_SOCKAF(so) == AF_INET6) { 331 inp->inp_vflag |= INP_IPV6PROTO; 332 if (V_ip6_v6only) 333 inp->inp_flags |= IN6P_IPV6_V6ONLY; 334 } 335 #endif 336 INP_WLOCK(inp); 337 INP_LIST_WLOCK(pcbinfo); 338 LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 339 pcbinfo->ipi_count++; 340 so->so_pcb = (caddr_t)inp; 341 #ifdef INET6 342 if (V_ip6_auto_flowlabel) 343 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 344 #endif 345 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 346 refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ 347 348 /* 349 * Routes in inpcb's can cache L2 as well; they are guaranteed 350 * to be cleaned up. 351 */ 352 inp->inp_route.ro_flags = RT_LLE_CACHE; 353 INP_LIST_WUNLOCK(pcbinfo); 354 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 355 out: 356 if (error != 0) { 357 crfree(inp->inp_cred); 358 uma_zfree(pcbinfo->ipi_zone, inp); 359 } 360 #endif 361 return (error); 362 } 363 364 #ifdef INET 365 int 366 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 367 { 368 int anonport, error; 369 370 INP_WLOCK_ASSERT(inp); 371 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 372 373 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 374 return (EINVAL); 375 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 376 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 377 &inp->inp_lport, cred); 378 if (error) 379 return (error); 380 if (in_pcbinshash(inp) != 0) { 381 inp->inp_laddr.s_addr = INADDR_ANY; 382 inp->inp_lport = 0; 383 return (EAGAIN); 384 } 385 if (anonport) 386 inp->inp_flags |= INP_ANONPORT; 387 return (0); 388 } 389 #endif 390 391 /* 392 * Select a local port (number) to use. 393 */ 394 #if defined(INET) || defined(INET6) 395 int 396 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 397 struct ucred *cred, int lookupflags) 398 { 399 struct inpcbinfo *pcbinfo; 400 struct inpcb *tmpinp; 401 unsigned short *lastport; 402 int count, dorandom, error; 403 u_short aux, first, last, lport; 404 #ifdef INET 405 struct in_addr laddr; 406 #endif 407 408 pcbinfo = inp->inp_pcbinfo; 409 410 /* 411 * Because no actual state changes occur here, a global write lock on 412 * the pcbinfo isn't required. 413 */ 414 INP_LOCK_ASSERT(inp); 415 INP_HASH_LOCK_ASSERT(pcbinfo); 416 417 if (inp->inp_flags & INP_HIGHPORT) { 418 first = V_ipport_hifirstauto; /* sysctl */ 419 last = V_ipport_hilastauto; 420 lastport = &pcbinfo->ipi_lasthi; 421 } else if (inp->inp_flags & INP_LOWPORT) { 422 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0); 423 if (error) 424 return (error); 425 first = V_ipport_lowfirstauto; /* 1023 */ 426 last = V_ipport_lowlastauto; /* 600 */ 427 lastport = &pcbinfo->ipi_lastlow; 428 } else { 429 first = V_ipport_firstauto; /* sysctl */ 430 last = V_ipport_lastauto; 431 lastport = &pcbinfo->ipi_lastport; 432 } 433 /* 434 * For UDP(-Lite), use random port allocation as long as the user 435 * allows it. For TCP (and as of yet unknown) connections, 436 * use random port allocation only if the user allows it AND 437 * ipport_tick() allows it. 438 */ 439 if (V_ipport_randomized && 440 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 441 pcbinfo == &V_ulitecbinfo)) 442 dorandom = 1; 443 else 444 dorandom = 0; 445 /* 446 * It makes no sense to do random port allocation if 447 * we have the only port available. 448 */ 449 if (first == last) 450 dorandom = 0; 451 /* Make sure to not include UDP(-Lite) packets in the count. */ 452 if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) 453 V_ipport_tcpallocs++; 454 /* 455 * Instead of having two loops further down counting up or down 456 * make sure that first is always <= last and go with only one 457 * code path implementing all logic. 458 */ 459 if (first > last) { 460 aux = first; 461 first = last; 462 last = aux; 463 } 464 465 #ifdef INET 466 /* Make the compiler happy. */ 467 laddr.s_addr = 0; 468 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 469 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p", 470 __func__, inp)); 471 laddr = *laddrp; 472 } 473 #endif 474 tmpinp = NULL; /* Make compiler happy. */ 475 lport = *lportp; 476 477 if (dorandom) 478 *lastport = first + (arc4random() % (last - first)); 479 480 count = last - first; 481 482 do { 483 if (count-- < 0) /* completely used? */ 484 return (EADDRNOTAVAIL); 485 ++*lastport; 486 if (*lastport < first || *lastport > last) 487 *lastport = first; 488 lport = htons(*lastport); 489 490 #ifdef INET6 491 if ((inp->inp_vflag & INP_IPV6) != 0) 492 tmpinp = in6_pcblookup_local(pcbinfo, 493 &inp->in6p_laddr, lport, lookupflags, cred); 494 #endif 495 #if defined(INET) && defined(INET6) 496 else 497 #endif 498 #ifdef INET 499 tmpinp = in_pcblookup_local(pcbinfo, laddr, 500 lport, lookupflags, cred); 501 #endif 502 } while (tmpinp != NULL); 503 504 #ifdef INET 505 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) 506 laddrp->s_addr = laddr.s_addr; 507 #endif 508 *lportp = lport; 509 510 return (0); 511 } 512 513 /* 514 * Return cached socket options. 515 */ 516 short 517 inp_so_options(const struct inpcb *inp) 518 { 519 short so_options; 520 521 so_options = 0; 522 523 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 524 so_options |= SO_REUSEPORT; 525 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 526 so_options |= SO_REUSEADDR; 527 return (so_options); 528 } 529 #endif /* INET || INET6 */ 530 531 /* 532 * Check if a new BINDMULTI socket is allowed to be created. 533 * 534 * ni points to the new inp. 535 * oi points to the exisitng inp. 536 * 537 * This checks whether the existing inp also has BINDMULTI and 538 * whether the credentials match. 539 */ 540 int 541 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 542 { 543 /* Check permissions match */ 544 if ((ni->inp_flags2 & INP_BINDMULTI) && 545 (ni->inp_cred->cr_uid != 546 oi->inp_cred->cr_uid)) 547 return (0); 548 549 /* Check the existing inp has BINDMULTI set */ 550 if ((ni->inp_flags2 & INP_BINDMULTI) && 551 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 552 return (0); 553 554 /* 555 * We're okay - either INP_BINDMULTI isn't set on ni, or 556 * it is and it matches the checks. 557 */ 558 return (1); 559 } 560 561 #ifdef INET 562 /* 563 * Set up a bind operation on a PCB, performing port allocation 564 * as required, but do not actually modify the PCB. Callers can 565 * either complete the bind by setting inp_laddr/inp_lport and 566 * calling in_pcbinshash(), or they can just use the resulting 567 * port and address to authorise the sending of a once-off packet. 568 * 569 * On error, the values of *laddrp and *lportp are not changed. 570 */ 571 int 572 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 573 u_short *lportp, struct ucred *cred) 574 { 575 struct socket *so = inp->inp_socket; 576 struct sockaddr_in *sin; 577 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 578 struct in_addr laddr; 579 u_short lport = 0; 580 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 581 int error; 582 583 /* 584 * No state changes, so read locks are sufficient here. 585 */ 586 INP_LOCK_ASSERT(inp); 587 INP_HASH_LOCK_ASSERT(pcbinfo); 588 589 if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 590 return (EADDRNOTAVAIL); 591 laddr.s_addr = *laddrp; 592 if (nam != NULL && laddr.s_addr != INADDR_ANY) 593 return (EINVAL); 594 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) 595 lookupflags = INPLOOKUP_WILDCARD; 596 if (nam == NULL) { 597 if ((error = prison_local_ip4(cred, &laddr)) != 0) 598 return (error); 599 } else { 600 sin = (struct sockaddr_in *)nam; 601 if (nam->sa_len != sizeof (*sin)) 602 return (EINVAL); 603 #ifdef notdef 604 /* 605 * We should check the family, but old programs 606 * incorrectly fail to initialize it. 607 */ 608 if (sin->sin_family != AF_INET) 609 return (EAFNOSUPPORT); 610 #endif 611 error = prison_local_ip4(cred, &sin->sin_addr); 612 if (error) 613 return (error); 614 if (sin->sin_port != *lportp) { 615 /* Don't allow the port to change. */ 616 if (*lportp != 0) 617 return (EINVAL); 618 lport = sin->sin_port; 619 } 620 /* NB: lport is left as 0 if the port isn't being changed. */ 621 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 622 /* 623 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 624 * allow complete duplication of binding if 625 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 626 * and a multicast address is bound on both 627 * new and duplicated sockets. 628 */ 629 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 630 reuseport = SO_REUSEADDR|SO_REUSEPORT; 631 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 632 sin->sin_port = 0; /* yech... */ 633 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 634 /* 635 * Is the address a local IP address? 636 * If INP_BINDANY is set, then the socket may be bound 637 * to any endpoint address, local or not. 638 */ 639 if ((inp->inp_flags & INP_BINDANY) == 0 && 640 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 641 return (EADDRNOTAVAIL); 642 } 643 laddr = sin->sin_addr; 644 if (lport) { 645 struct inpcb *t; 646 struct tcptw *tw; 647 648 /* GROSS */ 649 if (ntohs(lport) <= V_ipport_reservedhigh && 650 ntohs(lport) >= V_ipport_reservedlow && 651 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 652 0)) 653 return (EACCES); 654 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 655 priv_check_cred(inp->inp_cred, 656 PRIV_NETINET_REUSEPORT, 0) != 0) { 657 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 658 lport, INPLOOKUP_WILDCARD, cred); 659 /* 660 * XXX 661 * This entire block sorely needs a rewrite. 662 */ 663 if (t && 664 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 665 ((t->inp_flags & INP_TIMEWAIT) == 0) && 666 (so->so_type != SOCK_STREAM || 667 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 668 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 669 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 670 (t->inp_flags2 & INP_REUSEPORT) == 0) && 671 (inp->inp_cred->cr_uid != 672 t->inp_cred->cr_uid)) 673 return (EADDRINUSE); 674 675 /* 676 * If the socket is a BINDMULTI socket, then 677 * the credentials need to match and the 678 * original socket also has to have been bound 679 * with BINDMULTI. 680 */ 681 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 682 return (EADDRINUSE); 683 } 684 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 685 lport, lookupflags, cred); 686 if (t && (t->inp_flags & INP_TIMEWAIT)) { 687 /* 688 * XXXRW: If an incpb has had its timewait 689 * state recycled, we treat the address as 690 * being in use (for now). This is better 691 * than a panic, but not desirable. 692 */ 693 tw = intotw(t); 694 if (tw == NULL || 695 (reuseport & tw->tw_so_options) == 0) 696 return (EADDRINUSE); 697 } else if (t && 698 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 699 (reuseport & inp_so_options(t)) == 0) { 700 #ifdef INET6 701 if (ntohl(sin->sin_addr.s_addr) != 702 INADDR_ANY || 703 ntohl(t->inp_laddr.s_addr) != 704 INADDR_ANY || 705 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 706 (t->inp_vflag & INP_IPV6PROTO) == 0) 707 #endif 708 return (EADDRINUSE); 709 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 710 return (EADDRINUSE); 711 } 712 } 713 } 714 if (*lportp != 0) 715 lport = *lportp; 716 if (lport == 0) { 717 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 718 if (error != 0) 719 return (error); 720 721 } 722 *laddrp = laddr.s_addr; 723 *lportp = lport; 724 return (0); 725 } 726 727 /* 728 * Connect from a socket to a specified address. 729 * Both address and port must be specified in argument sin. 730 * If don't have a local address for this socket yet, 731 * then pick one. 732 */ 733 int 734 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, 735 struct ucred *cred, struct mbuf *m) 736 { 737 u_short lport, fport; 738 in_addr_t laddr, faddr; 739 int anonport, error; 740 741 INP_WLOCK_ASSERT(inp); 742 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 743 744 lport = inp->inp_lport; 745 laddr = inp->inp_laddr.s_addr; 746 anonport = (lport == 0); 747 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 748 NULL, cred); 749 if (error) 750 return (error); 751 752 /* Do the initial binding of the local address if required. */ 753 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 754 inp->inp_lport = lport; 755 inp->inp_laddr.s_addr = laddr; 756 if (in_pcbinshash(inp) != 0) { 757 inp->inp_laddr.s_addr = INADDR_ANY; 758 inp->inp_lport = 0; 759 return (EAGAIN); 760 } 761 } 762 763 /* Commit the remaining changes. */ 764 inp->inp_lport = lport; 765 inp->inp_laddr.s_addr = laddr; 766 inp->inp_faddr.s_addr = faddr; 767 inp->inp_fport = fport; 768 in_pcbrehash_mbuf(inp, m); 769 770 if (anonport) 771 inp->inp_flags |= INP_ANONPORT; 772 return (0); 773 } 774 775 int 776 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 777 { 778 779 return (in_pcbconnect_mbuf(inp, nam, cred, NULL)); 780 } 781 782 /* 783 * Do proper source address selection on an unbound socket in case 784 * of connect. Take jails into account as well. 785 */ 786 int 787 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 788 struct ucred *cred) 789 { 790 struct ifaddr *ifa; 791 struct sockaddr *sa; 792 struct sockaddr_in *sin; 793 struct route sro; 794 int error; 795 796 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 797 798 /* 799 * Bypass source address selection and use the primary jail IP 800 * if requested. 801 */ 802 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 803 return (0); 804 805 error = 0; 806 bzero(&sro, sizeof(sro)); 807 808 sin = (struct sockaddr_in *)&sro.ro_dst; 809 sin->sin_family = AF_INET; 810 sin->sin_len = sizeof(struct sockaddr_in); 811 sin->sin_addr.s_addr = faddr->s_addr; 812 813 /* 814 * If route is known our src addr is taken from the i/f, 815 * else punt. 816 * 817 * Find out route to destination. 818 */ 819 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 820 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); 821 822 /* 823 * If we found a route, use the address corresponding to 824 * the outgoing interface. 825 * 826 * Otherwise assume faddr is reachable on a directly connected 827 * network and try to find a corresponding interface to take 828 * the source address from. 829 */ 830 if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { 831 struct in_ifaddr *ia; 832 struct ifnet *ifp; 833 834 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 835 inp->inp_socket->so_fibnum)); 836 if (ia == NULL) 837 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 838 inp->inp_socket->so_fibnum)); 839 if (ia == NULL) { 840 error = ENETUNREACH; 841 goto done; 842 } 843 844 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 845 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 846 ifa_free(&ia->ia_ifa); 847 goto done; 848 } 849 850 ifp = ia->ia_ifp; 851 ifa_free(&ia->ia_ifa); 852 ia = NULL; 853 IF_ADDR_RLOCK(ifp); 854 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 855 856 sa = ifa->ifa_addr; 857 if (sa->sa_family != AF_INET) 858 continue; 859 sin = (struct sockaddr_in *)sa; 860 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 861 ia = (struct in_ifaddr *)ifa; 862 break; 863 } 864 } 865 if (ia != NULL) { 866 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 867 IF_ADDR_RUNLOCK(ifp); 868 goto done; 869 } 870 IF_ADDR_RUNLOCK(ifp); 871 872 /* 3. As a last resort return the 'default' jail address. */ 873 error = prison_get_ip4(cred, laddr); 874 goto done; 875 } 876 877 /* 878 * If the outgoing interface on the route found is not 879 * a loopback interface, use the address from that interface. 880 * In case of jails do those three steps: 881 * 1. check if the interface address belongs to the jail. If so use it. 882 * 2. check if we have any address on the outgoing interface 883 * belonging to this jail. If so use it. 884 * 3. as a last resort return the 'default' jail address. 885 */ 886 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { 887 struct in_ifaddr *ia; 888 struct ifnet *ifp; 889 890 /* If not jailed, use the default returned. */ 891 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 892 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 893 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 894 goto done; 895 } 896 897 /* Jailed. */ 898 /* 1. Check if the iface address belongs to the jail. */ 899 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; 900 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 901 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 902 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 903 goto done; 904 } 905 906 /* 907 * 2. Check if we have any address on the outgoing interface 908 * belonging to this jail. 909 */ 910 ia = NULL; 911 ifp = sro.ro_rt->rt_ifp; 912 IF_ADDR_RLOCK(ifp); 913 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 914 sa = ifa->ifa_addr; 915 if (sa->sa_family != AF_INET) 916 continue; 917 sin = (struct sockaddr_in *)sa; 918 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 919 ia = (struct in_ifaddr *)ifa; 920 break; 921 } 922 } 923 if (ia != NULL) { 924 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 925 IF_ADDR_RUNLOCK(ifp); 926 goto done; 927 } 928 IF_ADDR_RUNLOCK(ifp); 929 930 /* 3. As a last resort return the 'default' jail address. */ 931 error = prison_get_ip4(cred, laddr); 932 goto done; 933 } 934 935 /* 936 * The outgoing interface is marked with 'loopback net', so a route 937 * to ourselves is here. 938 * Try to find the interface of the destination address and then 939 * take the address from there. That interface is not necessarily 940 * a loopback interface. 941 * In case of jails, check that it is an address of the jail 942 * and if we cannot find, fall back to the 'default' jail address. 943 */ 944 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 945 struct sockaddr_in sain; 946 struct in_ifaddr *ia; 947 948 bzero(&sain, sizeof(struct sockaddr_in)); 949 sain.sin_family = AF_INET; 950 sain.sin_len = sizeof(struct sockaddr_in); 951 sain.sin_addr.s_addr = faddr->s_addr; 952 953 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain), 954 inp->inp_socket->so_fibnum)); 955 if (ia == NULL) 956 ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0, 957 inp->inp_socket->so_fibnum)); 958 if (ia == NULL) 959 ia = ifatoia(ifa_ifwithaddr(sintosa(&sain))); 960 961 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 962 if (ia == NULL) { 963 error = ENETUNREACH; 964 goto done; 965 } 966 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 967 ifa_free(&ia->ia_ifa); 968 goto done; 969 } 970 971 /* Jailed. */ 972 if (ia != NULL) { 973 struct ifnet *ifp; 974 975 ifp = ia->ia_ifp; 976 ifa_free(&ia->ia_ifa); 977 ia = NULL; 978 IF_ADDR_RLOCK(ifp); 979 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 980 981 sa = ifa->ifa_addr; 982 if (sa->sa_family != AF_INET) 983 continue; 984 sin = (struct sockaddr_in *)sa; 985 if (prison_check_ip4(cred, 986 &sin->sin_addr) == 0) { 987 ia = (struct in_ifaddr *)ifa; 988 break; 989 } 990 } 991 if (ia != NULL) { 992 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 993 IF_ADDR_RUNLOCK(ifp); 994 goto done; 995 } 996 IF_ADDR_RUNLOCK(ifp); 997 } 998 999 /* 3. As a last resort return the 'default' jail address. */ 1000 error = prison_get_ip4(cred, laddr); 1001 goto done; 1002 } 1003 1004 done: 1005 if (sro.ro_rt != NULL) 1006 RTFREE(sro.ro_rt); 1007 return (error); 1008 } 1009 1010 /* 1011 * Set up for a connect from a socket to the specified address. 1012 * On entry, *laddrp and *lportp should contain the current local 1013 * address and port for the PCB; these are updated to the values 1014 * that should be placed in inp_laddr and inp_lport to complete 1015 * the connect. 1016 * 1017 * On success, *faddrp and *fportp will be set to the remote address 1018 * and port. These are not updated in the error case. 1019 * 1020 * If the operation fails because the connection already exists, 1021 * *oinpp will be set to the PCB of that connection so that the 1022 * caller can decide to override it. In all other cases, *oinpp 1023 * is set to NULL. 1024 */ 1025 int 1026 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1027 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1028 struct inpcb **oinpp, struct ucred *cred) 1029 { 1030 struct rm_priotracker in_ifa_tracker; 1031 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1032 struct in_ifaddr *ia; 1033 struct inpcb *oinp; 1034 struct in_addr laddr, faddr; 1035 u_short lport, fport; 1036 int error; 1037 1038 /* 1039 * Because a global state change doesn't actually occur here, a read 1040 * lock is sufficient. 1041 */ 1042 INP_LOCK_ASSERT(inp); 1043 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1044 1045 if (oinpp != NULL) 1046 *oinpp = NULL; 1047 if (nam->sa_len != sizeof (*sin)) 1048 return (EINVAL); 1049 if (sin->sin_family != AF_INET) 1050 return (EAFNOSUPPORT); 1051 if (sin->sin_port == 0) 1052 return (EADDRNOTAVAIL); 1053 laddr.s_addr = *laddrp; 1054 lport = *lportp; 1055 faddr = sin->sin_addr; 1056 fport = sin->sin_port; 1057 1058 if (!TAILQ_EMPTY(&V_in_ifaddrhead)) { 1059 /* 1060 * If the destination address is INADDR_ANY, 1061 * use the primary local address. 1062 * If the supplied address is INADDR_BROADCAST, 1063 * and the primary interface supports broadcast, 1064 * choose the broadcast address for that interface. 1065 */ 1066 if (faddr.s_addr == INADDR_ANY) { 1067 IN_IFADDR_RLOCK(&in_ifa_tracker); 1068 faddr = 1069 IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1070 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1071 if (cred != NULL && 1072 (error = prison_get_ip4(cred, &faddr)) != 0) 1073 return (error); 1074 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1075 IN_IFADDR_RLOCK(&in_ifa_tracker); 1076 if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1077 IFF_BROADCAST) 1078 faddr = satosin(&TAILQ_FIRST( 1079 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1080 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1081 } 1082 } 1083 if (laddr.s_addr == INADDR_ANY) { 1084 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1085 /* 1086 * If the destination address is multicast and an outgoing 1087 * interface has been set as a multicast option, prefer the 1088 * address of that interface as our source address. 1089 */ 1090 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1091 inp->inp_moptions != NULL) { 1092 struct ip_moptions *imo; 1093 struct ifnet *ifp; 1094 1095 imo = inp->inp_moptions; 1096 if (imo->imo_multicast_ifp != NULL) { 1097 ifp = imo->imo_multicast_ifp; 1098 IN_IFADDR_RLOCK(&in_ifa_tracker); 1099 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1100 if ((ia->ia_ifp == ifp) && 1101 (cred == NULL || 1102 prison_check_ip4(cred, 1103 &ia->ia_addr.sin_addr) == 0)) 1104 break; 1105 } 1106 if (ia == NULL) 1107 error = EADDRNOTAVAIL; 1108 else { 1109 laddr = ia->ia_addr.sin_addr; 1110 error = 0; 1111 } 1112 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1113 } 1114 } 1115 if (error) 1116 return (error); 1117 } 1118 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport, 1119 laddr, lport, 0, NULL); 1120 if (oinp != NULL) { 1121 if (oinpp != NULL) 1122 *oinpp = oinp; 1123 return (EADDRINUSE); 1124 } 1125 if (lport == 0) { 1126 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 1127 cred); 1128 if (error) 1129 return (error); 1130 } 1131 *laddrp = laddr.s_addr; 1132 *lportp = lport; 1133 *faddrp = faddr.s_addr; 1134 *fportp = fport; 1135 return (0); 1136 } 1137 1138 void 1139 in_pcbdisconnect(struct inpcb *inp) 1140 { 1141 1142 INP_WLOCK_ASSERT(inp); 1143 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1144 1145 inp->inp_faddr.s_addr = INADDR_ANY; 1146 inp->inp_fport = 0; 1147 in_pcbrehash(inp); 1148 } 1149 #endif /* INET */ 1150 1151 /* 1152 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1153 * For most protocols, this will be invoked immediately prior to calling 1154 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1155 * socket, in which case in_pcbfree() is deferred. 1156 */ 1157 void 1158 in_pcbdetach(struct inpcb *inp) 1159 { 1160 1161 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1162 1163 #ifdef RATELIMIT 1164 if (inp->inp_snd_tag != NULL) 1165 in_pcbdetach_txrtlmt(inp); 1166 #endif 1167 inp->inp_socket->so_pcb = NULL; 1168 inp->inp_socket = NULL; 1169 } 1170 1171 /* 1172 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1173 * stability of an inpcb pointer despite the inpcb lock being released. This 1174 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 1175 * but where the inpcb lock may already held, or when acquiring a reference 1176 * via a pcbgroup. 1177 * 1178 * in_pcbref() should be used only to provide brief memory stability, and 1179 * must always be followed by a call to INP_WLOCK() and in_pcbrele() to 1180 * garbage collect the inpcb if it has been in_pcbfree()'d from another 1181 * context. Until in_pcbrele() has returned that the inpcb is still valid, 1182 * lock and rele are the *only* safe operations that may be performed on the 1183 * inpcb. 1184 * 1185 * While the inpcb will not be freed, releasing the inpcb lock means that the 1186 * connection's state may change, so the caller should be careful to 1187 * revalidate any cached state on reacquiring the lock. Drop the reference 1188 * using in_pcbrele(). 1189 */ 1190 void 1191 in_pcbref(struct inpcb *inp) 1192 { 1193 1194 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1195 1196 refcount_acquire(&inp->inp_refcount); 1197 } 1198 1199 /* 1200 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 1201 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 1202 * return a flag indicating whether or not the inpcb remains valid. If it is 1203 * valid, we return with the inpcb lock held. 1204 * 1205 * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a 1206 * reference on an inpcb. Historically more work was done here (actually, in 1207 * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the 1208 * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely 1209 * about memory stability (and continued use of the write lock). 1210 */ 1211 int 1212 in_pcbrele_rlocked(struct inpcb *inp) 1213 { 1214 struct inpcbinfo *pcbinfo; 1215 1216 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1217 1218 INP_RLOCK_ASSERT(inp); 1219 1220 if (refcount_release(&inp->inp_refcount) == 0) { 1221 /* 1222 * If the inpcb has been freed, let the caller know, even if 1223 * this isn't the last reference. 1224 */ 1225 if (inp->inp_flags2 & INP_FREED) { 1226 INP_RUNLOCK(inp); 1227 return (1); 1228 } 1229 return (0); 1230 } 1231 1232 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1233 #ifdef TCPHPTS 1234 if (inp->inp_in_hpts || inp->inp_in_input) { 1235 struct tcp_hpts_entry *hpts; 1236 /* 1237 * We should not be on the hpts at 1238 * this point in any form. we must 1239 * get the lock to be sure. 1240 */ 1241 hpts = tcp_hpts_lock(inp); 1242 if (inp->inp_in_hpts) 1243 panic("Hpts:%p inp:%p at free still on hpts", 1244 hpts, inp); 1245 mtx_unlock(&hpts->p_mtx); 1246 hpts = tcp_input_lock(inp); 1247 if (inp->inp_in_input) 1248 panic("Hpts:%p inp:%p at free still on input hpts", 1249 hpts, inp); 1250 mtx_unlock(&hpts->p_mtx); 1251 } 1252 #endif 1253 INP_RUNLOCK(inp); 1254 pcbinfo = inp->inp_pcbinfo; 1255 uma_zfree(pcbinfo->ipi_zone, inp); 1256 return (1); 1257 } 1258 1259 int 1260 in_pcbrele_wlocked(struct inpcb *inp) 1261 { 1262 struct inpcbinfo *pcbinfo; 1263 1264 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1265 1266 INP_WLOCK_ASSERT(inp); 1267 1268 if (refcount_release(&inp->inp_refcount) == 0) { 1269 /* 1270 * If the inpcb has been freed, let the caller know, even if 1271 * this isn't the last reference. 1272 */ 1273 if (inp->inp_flags2 & INP_FREED) { 1274 INP_WUNLOCK(inp); 1275 return (1); 1276 } 1277 return (0); 1278 } 1279 1280 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1281 #ifdef TCPHPTS 1282 if (inp->inp_in_hpts || inp->inp_in_input) { 1283 struct tcp_hpts_entry *hpts; 1284 /* 1285 * We should not be on the hpts at 1286 * this point in any form. we must 1287 * get the lock to be sure. 1288 */ 1289 hpts = tcp_hpts_lock(inp); 1290 if (inp->inp_in_hpts) 1291 panic("Hpts:%p inp:%p at free still on hpts", 1292 hpts, inp); 1293 mtx_unlock(&hpts->p_mtx); 1294 hpts = tcp_input_lock(inp); 1295 if (inp->inp_in_input) 1296 panic("Hpts:%p inp:%p at free still on input hpts", 1297 hpts, inp); 1298 mtx_unlock(&hpts->p_mtx); 1299 } 1300 #endif 1301 INP_WUNLOCK(inp); 1302 pcbinfo = inp->inp_pcbinfo; 1303 uma_zfree(pcbinfo->ipi_zone, inp); 1304 return (1); 1305 } 1306 1307 /* 1308 * Temporary wrapper. 1309 */ 1310 int 1311 in_pcbrele(struct inpcb *inp) 1312 { 1313 1314 return (in_pcbrele_wlocked(inp)); 1315 } 1316 1317 /* 1318 * Unconditionally schedule an inpcb to be freed by decrementing its 1319 * reference count, which should occur only after the inpcb has been detached 1320 * from its socket. If another thread holds a temporary reference (acquired 1321 * using in_pcbref()) then the free is deferred until that reference is 1322 * released using in_pcbrele(), but the inpcb is still unlocked. Almost all 1323 * work, including removal from global lists, is done in this context, where 1324 * the pcbinfo lock is held. 1325 */ 1326 void 1327 in_pcbfree(struct inpcb *inp) 1328 { 1329 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1330 1331 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1332 1333 KASSERT((inp->inp_flags2 & INP_FREED) == 0, 1334 ("%s: called twice for pcb %p", __func__, inp)); 1335 if (inp->inp_flags2 & INP_FREED) { 1336 INP_WUNLOCK(inp); 1337 return; 1338 } 1339 1340 #ifdef INVARIANTS 1341 if (pcbinfo == &V_tcbinfo) { 1342 INP_INFO_LOCK_ASSERT(pcbinfo); 1343 } else { 1344 INP_INFO_WLOCK_ASSERT(pcbinfo); 1345 } 1346 #endif 1347 INP_WLOCK_ASSERT(inp); 1348 1349 /* XXXRW: Do as much as possible here. */ 1350 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1351 if (inp->inp_sp != NULL) 1352 ipsec_delete_pcbpolicy(inp); 1353 #endif 1354 INP_LIST_WLOCK(pcbinfo); 1355 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1356 in_pcbremlists(inp); 1357 INP_LIST_WUNLOCK(pcbinfo); 1358 #ifdef INET6 1359 if (inp->inp_vflag & INP_IPV6PROTO) { 1360 ip6_freepcbopts(inp->in6p_outputopts); 1361 if (inp->in6p_moptions != NULL) 1362 ip6_freemoptions(inp->in6p_moptions); 1363 } 1364 #endif 1365 if (inp->inp_options) 1366 (void)m_free(inp->inp_options); 1367 #ifdef INET 1368 if (inp->inp_moptions != NULL) 1369 inp_freemoptions(inp->inp_moptions); 1370 #endif 1371 RO_INVALIDATE_CACHE(&inp->inp_route); 1372 1373 inp->inp_vflag = 0; 1374 inp->inp_flags2 |= INP_FREED; 1375 crfree(inp->inp_cred); 1376 #ifdef MAC 1377 mac_inpcb_destroy(inp); 1378 #endif 1379 if (!in_pcbrele_wlocked(inp)) 1380 INP_WUNLOCK(inp); 1381 } 1382 1383 /* 1384 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1385 * port reservation, and preventing it from being returned by inpcb lookups. 1386 * 1387 * It is used by TCP to mark an inpcb as unused and avoid future packet 1388 * delivery or event notification when a socket remains open but TCP has 1389 * closed. This might occur as a result of a shutdown()-initiated TCP close 1390 * or a RST on the wire, and allows the port binding to be reused while still 1391 * maintaining the invariant that so_pcb always points to a valid inpcb until 1392 * in_pcbdetach(). 1393 * 1394 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1395 * in_pcbnotifyall() and in_pcbpurgeif0()? 1396 */ 1397 void 1398 in_pcbdrop(struct inpcb *inp) 1399 { 1400 1401 INP_WLOCK_ASSERT(inp); 1402 1403 /* 1404 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1405 * the hash lock...? 1406 */ 1407 inp->inp_flags |= INP_DROPPED; 1408 if (inp->inp_flags & INP_INHASHLIST) { 1409 struct inpcbport *phd = inp->inp_phd; 1410 1411 INP_HASH_WLOCK(inp->inp_pcbinfo); 1412 LIST_REMOVE(inp, inp_hash); 1413 LIST_REMOVE(inp, inp_portlist); 1414 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 1415 LIST_REMOVE(phd, phd_hash); 1416 free(phd, M_PCB); 1417 } 1418 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1419 inp->inp_flags &= ~INP_INHASHLIST; 1420 #ifdef PCBGROUP 1421 in_pcbgroup_remove(inp); 1422 #endif 1423 } 1424 } 1425 1426 #ifdef INET 1427 /* 1428 * Common routines to return the socket addresses associated with inpcbs. 1429 */ 1430 struct sockaddr * 1431 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1432 { 1433 struct sockaddr_in *sin; 1434 1435 sin = malloc(sizeof *sin, M_SONAME, 1436 M_WAITOK | M_ZERO); 1437 sin->sin_family = AF_INET; 1438 sin->sin_len = sizeof(*sin); 1439 sin->sin_addr = *addr_p; 1440 sin->sin_port = port; 1441 1442 return (struct sockaddr *)sin; 1443 } 1444 1445 int 1446 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1447 { 1448 struct inpcb *inp; 1449 struct in_addr addr; 1450 in_port_t port; 1451 1452 inp = sotoinpcb(so); 1453 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1454 1455 INP_RLOCK(inp); 1456 port = inp->inp_lport; 1457 addr = inp->inp_laddr; 1458 INP_RUNLOCK(inp); 1459 1460 *nam = in_sockaddr(port, &addr); 1461 return 0; 1462 } 1463 1464 int 1465 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1466 { 1467 struct inpcb *inp; 1468 struct in_addr addr; 1469 in_port_t port; 1470 1471 inp = sotoinpcb(so); 1472 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1473 1474 INP_RLOCK(inp); 1475 port = inp->inp_fport; 1476 addr = inp->inp_faddr; 1477 INP_RUNLOCK(inp); 1478 1479 *nam = in_sockaddr(port, &addr); 1480 return 0; 1481 } 1482 1483 void 1484 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1485 struct inpcb *(*notify)(struct inpcb *, int)) 1486 { 1487 struct inpcb *inp, *inp_temp; 1488 1489 INP_INFO_WLOCK(pcbinfo); 1490 LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1491 INP_WLOCK(inp); 1492 #ifdef INET6 1493 if ((inp->inp_vflag & INP_IPV4) == 0) { 1494 INP_WUNLOCK(inp); 1495 continue; 1496 } 1497 #endif 1498 if (inp->inp_faddr.s_addr != faddr.s_addr || 1499 inp->inp_socket == NULL) { 1500 INP_WUNLOCK(inp); 1501 continue; 1502 } 1503 if ((*notify)(inp, errno)) 1504 INP_WUNLOCK(inp); 1505 } 1506 INP_INFO_WUNLOCK(pcbinfo); 1507 } 1508 1509 void 1510 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1511 { 1512 struct inpcb *inp; 1513 struct ip_moptions *imo; 1514 int i, gap; 1515 1516 INP_INFO_WLOCK(pcbinfo); 1517 LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1518 INP_WLOCK(inp); 1519 imo = inp->inp_moptions; 1520 if ((inp->inp_vflag & INP_IPV4) && 1521 imo != NULL) { 1522 /* 1523 * Unselect the outgoing interface if it is being 1524 * detached. 1525 */ 1526 if (imo->imo_multicast_ifp == ifp) 1527 imo->imo_multicast_ifp = NULL; 1528 1529 /* 1530 * Drop multicast group membership if we joined 1531 * through the interface being detached. 1532 */ 1533 for (i = 0, gap = 0; i < imo->imo_num_memberships; 1534 i++) { 1535 if (imo->imo_membership[i]->inm_ifp == ifp) { 1536 in_delmulti(imo->imo_membership[i]); 1537 gap++; 1538 } else if (gap != 0) 1539 imo->imo_membership[i - gap] = 1540 imo->imo_membership[i]; 1541 } 1542 imo->imo_num_memberships -= gap; 1543 } 1544 INP_WUNLOCK(inp); 1545 } 1546 INP_INFO_WUNLOCK(pcbinfo); 1547 } 1548 1549 /* 1550 * Lookup a PCB based on the local address and port. Caller must hold the 1551 * hash lock. No inpcb locks or references are acquired. 1552 */ 1553 #define INP_LOOKUP_MAPPED_PCB_COST 3 1554 struct inpcb * 1555 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1556 u_short lport, int lookupflags, struct ucred *cred) 1557 { 1558 struct inpcb *inp; 1559 #ifdef INET6 1560 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1561 #else 1562 int matchwild = 3; 1563 #endif 1564 int wildcard; 1565 1566 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1567 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1568 1569 INP_HASH_LOCK_ASSERT(pcbinfo); 1570 1571 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1572 struct inpcbhead *head; 1573 /* 1574 * Look for an unconnected (wildcard foreign addr) PCB that 1575 * matches the local address and port we're looking for. 1576 */ 1577 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1578 0, pcbinfo->ipi_hashmask)]; 1579 LIST_FOREACH(inp, head, inp_hash) { 1580 #ifdef INET6 1581 /* XXX inp locking */ 1582 if ((inp->inp_vflag & INP_IPV4) == 0) 1583 continue; 1584 #endif 1585 if (inp->inp_faddr.s_addr == INADDR_ANY && 1586 inp->inp_laddr.s_addr == laddr.s_addr && 1587 inp->inp_lport == lport) { 1588 /* 1589 * Found? 1590 */ 1591 if (cred == NULL || 1592 prison_equal_ip4(cred->cr_prison, 1593 inp->inp_cred->cr_prison)) 1594 return (inp); 1595 } 1596 } 1597 /* 1598 * Not found. 1599 */ 1600 return (NULL); 1601 } else { 1602 struct inpcbporthead *porthash; 1603 struct inpcbport *phd; 1604 struct inpcb *match = NULL; 1605 /* 1606 * Best fit PCB lookup. 1607 * 1608 * First see if this local port is in use by looking on the 1609 * port hash list. 1610 */ 1611 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1612 pcbinfo->ipi_porthashmask)]; 1613 LIST_FOREACH(phd, porthash, phd_hash) { 1614 if (phd->phd_port == lport) 1615 break; 1616 } 1617 if (phd != NULL) { 1618 /* 1619 * Port is in use by one or more PCBs. Look for best 1620 * fit. 1621 */ 1622 LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1623 wildcard = 0; 1624 if (cred != NULL && 1625 !prison_equal_ip4(inp->inp_cred->cr_prison, 1626 cred->cr_prison)) 1627 continue; 1628 #ifdef INET6 1629 /* XXX inp locking */ 1630 if ((inp->inp_vflag & INP_IPV4) == 0) 1631 continue; 1632 /* 1633 * We never select the PCB that has 1634 * INP_IPV6 flag and is bound to :: if 1635 * we have another PCB which is bound 1636 * to 0.0.0.0. If a PCB has the 1637 * INP_IPV6 flag, then we set its cost 1638 * higher than IPv4 only PCBs. 1639 * 1640 * Note that the case only happens 1641 * when a socket is bound to ::, under 1642 * the condition that the use of the 1643 * mapped address is allowed. 1644 */ 1645 if ((inp->inp_vflag & INP_IPV6) != 0) 1646 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1647 #endif 1648 if (inp->inp_faddr.s_addr != INADDR_ANY) 1649 wildcard++; 1650 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1651 if (laddr.s_addr == INADDR_ANY) 1652 wildcard++; 1653 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1654 continue; 1655 } else { 1656 if (laddr.s_addr != INADDR_ANY) 1657 wildcard++; 1658 } 1659 if (wildcard < matchwild) { 1660 match = inp; 1661 matchwild = wildcard; 1662 if (matchwild == 0) 1663 break; 1664 } 1665 } 1666 } 1667 return (match); 1668 } 1669 } 1670 #undef INP_LOOKUP_MAPPED_PCB_COST 1671 1672 #ifdef PCBGROUP 1673 /* 1674 * Lookup PCB in hash list, using pcbgroup tables. 1675 */ 1676 static struct inpcb * 1677 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, 1678 struct in_addr faddr, u_int fport_arg, struct in_addr laddr, 1679 u_int lport_arg, int lookupflags, struct ifnet *ifp) 1680 { 1681 struct inpcbhead *head; 1682 struct inpcb *inp, *tmpinp; 1683 u_short fport = fport_arg, lport = lport_arg; 1684 bool locked; 1685 1686 /* 1687 * First look for an exact match. 1688 */ 1689 tmpinp = NULL; 1690 INP_GROUP_LOCK(pcbgroup); 1691 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1692 pcbgroup->ipg_hashmask)]; 1693 LIST_FOREACH(inp, head, inp_pcbgrouphash) { 1694 #ifdef INET6 1695 /* XXX inp locking */ 1696 if ((inp->inp_vflag & INP_IPV4) == 0) 1697 continue; 1698 #endif 1699 if (inp->inp_faddr.s_addr == faddr.s_addr && 1700 inp->inp_laddr.s_addr == laddr.s_addr && 1701 inp->inp_fport == fport && 1702 inp->inp_lport == lport) { 1703 /* 1704 * XXX We should be able to directly return 1705 * the inp here, without any checks. 1706 * Well unless both bound with SO_REUSEPORT? 1707 */ 1708 if (prison_flag(inp->inp_cred, PR_IP4)) 1709 goto found; 1710 if (tmpinp == NULL) 1711 tmpinp = inp; 1712 } 1713 } 1714 if (tmpinp != NULL) { 1715 inp = tmpinp; 1716 goto found; 1717 } 1718 1719 #ifdef RSS 1720 /* 1721 * For incoming connections, we may wish to do a wildcard 1722 * match for an RSS-local socket. 1723 */ 1724 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1725 struct inpcb *local_wild = NULL, *local_exact = NULL; 1726 #ifdef INET6 1727 struct inpcb *local_wild_mapped = NULL; 1728 #endif 1729 struct inpcb *jail_wild = NULL; 1730 struct inpcbhead *head; 1731 int injail; 1732 1733 /* 1734 * Order of socket selection - we always prefer jails. 1735 * 1. jailed, non-wild. 1736 * 2. jailed, wild. 1737 * 3. non-jailed, non-wild. 1738 * 4. non-jailed, wild. 1739 */ 1740 1741 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, 1742 lport, 0, pcbgroup->ipg_hashmask)]; 1743 LIST_FOREACH(inp, head, inp_pcbgrouphash) { 1744 #ifdef INET6 1745 /* XXX inp locking */ 1746 if ((inp->inp_vflag & INP_IPV4) == 0) 1747 continue; 1748 #endif 1749 if (inp->inp_faddr.s_addr != INADDR_ANY || 1750 inp->inp_lport != lport) 1751 continue; 1752 1753 injail = prison_flag(inp->inp_cred, PR_IP4); 1754 if (injail) { 1755 if (prison_check_ip4(inp->inp_cred, 1756 &laddr) != 0) 1757 continue; 1758 } else { 1759 if (local_exact != NULL) 1760 continue; 1761 } 1762 1763 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1764 if (injail) 1765 goto found; 1766 else 1767 local_exact = inp; 1768 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1769 #ifdef INET6 1770 /* XXX inp locking, NULL check */ 1771 if (inp->inp_vflag & INP_IPV6PROTO) 1772 local_wild_mapped = inp; 1773 else 1774 #endif 1775 if (injail) 1776 jail_wild = inp; 1777 else 1778 local_wild = inp; 1779 } 1780 } /* LIST_FOREACH */ 1781 1782 inp = jail_wild; 1783 if (inp == NULL) 1784 inp = local_exact; 1785 if (inp == NULL) 1786 inp = local_wild; 1787 #ifdef INET6 1788 if (inp == NULL) 1789 inp = local_wild_mapped; 1790 #endif 1791 if (inp != NULL) 1792 goto found; 1793 } 1794 #endif 1795 1796 /* 1797 * Then look for a wildcard match, if requested. 1798 */ 1799 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1800 struct inpcb *local_wild = NULL, *local_exact = NULL; 1801 #ifdef INET6 1802 struct inpcb *local_wild_mapped = NULL; 1803 #endif 1804 struct inpcb *jail_wild = NULL; 1805 struct inpcbhead *head; 1806 int injail; 1807 1808 /* 1809 * Order of socket selection - we always prefer jails. 1810 * 1. jailed, non-wild. 1811 * 2. jailed, wild. 1812 * 3. non-jailed, non-wild. 1813 * 4. non-jailed, wild. 1814 */ 1815 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 1816 0, pcbinfo->ipi_wildmask)]; 1817 LIST_FOREACH(inp, head, inp_pcbgroup_wild) { 1818 #ifdef INET6 1819 /* XXX inp locking */ 1820 if ((inp->inp_vflag & INP_IPV4) == 0) 1821 continue; 1822 #endif 1823 if (inp->inp_faddr.s_addr != INADDR_ANY || 1824 inp->inp_lport != lport) 1825 continue; 1826 1827 injail = prison_flag(inp->inp_cred, PR_IP4); 1828 if (injail) { 1829 if (prison_check_ip4(inp->inp_cred, 1830 &laddr) != 0) 1831 continue; 1832 } else { 1833 if (local_exact != NULL) 1834 continue; 1835 } 1836 1837 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1838 if (injail) 1839 goto found; 1840 else 1841 local_exact = inp; 1842 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1843 #ifdef INET6 1844 /* XXX inp locking, NULL check */ 1845 if (inp->inp_vflag & INP_IPV6PROTO) 1846 local_wild_mapped = inp; 1847 else 1848 #endif 1849 if (injail) 1850 jail_wild = inp; 1851 else 1852 local_wild = inp; 1853 } 1854 } /* LIST_FOREACH */ 1855 inp = jail_wild; 1856 if (inp == NULL) 1857 inp = local_exact; 1858 if (inp == NULL) 1859 inp = local_wild; 1860 #ifdef INET6 1861 if (inp == NULL) 1862 inp = local_wild_mapped; 1863 #endif 1864 if (inp != NULL) 1865 goto found; 1866 } /* if (lookupflags & INPLOOKUP_WILDCARD) */ 1867 INP_GROUP_UNLOCK(pcbgroup); 1868 return (NULL); 1869 1870 found: 1871 if (lookupflags & INPLOOKUP_WLOCKPCB) 1872 locked = INP_TRY_WLOCK(inp); 1873 else if (lookupflags & INPLOOKUP_RLOCKPCB) 1874 locked = INP_TRY_RLOCK(inp); 1875 else 1876 panic("%s: locking bug", __func__); 1877 if (!locked) 1878 in_pcbref(inp); 1879 INP_GROUP_UNLOCK(pcbgroup); 1880 if (!locked) { 1881 if (lookupflags & INPLOOKUP_WLOCKPCB) { 1882 INP_WLOCK(inp); 1883 if (in_pcbrele_wlocked(inp)) 1884 return (NULL); 1885 } else { 1886 INP_RLOCK(inp); 1887 if (in_pcbrele_rlocked(inp)) 1888 return (NULL); 1889 } 1890 } 1891 #ifdef INVARIANTS 1892 if (lookupflags & INPLOOKUP_WLOCKPCB) 1893 INP_WLOCK_ASSERT(inp); 1894 else 1895 INP_RLOCK_ASSERT(inp); 1896 #endif 1897 return (inp); 1898 } 1899 #endif /* PCBGROUP */ 1900 1901 /* 1902 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 1903 * that the caller has locked the hash list, and will not perform any further 1904 * locking or reference operations on either the hash list or the connection. 1905 */ 1906 static struct inpcb * 1907 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1908 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 1909 struct ifnet *ifp) 1910 { 1911 struct inpcbhead *head; 1912 struct inpcb *inp, *tmpinp; 1913 u_short fport = fport_arg, lport = lport_arg; 1914 1915 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1916 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1917 1918 INP_HASH_LOCK_ASSERT(pcbinfo); 1919 1920 /* 1921 * First look for an exact match. 1922 */ 1923 tmpinp = NULL; 1924 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1925 pcbinfo->ipi_hashmask)]; 1926 LIST_FOREACH(inp, head, inp_hash) { 1927 #ifdef INET6 1928 /* XXX inp locking */ 1929 if ((inp->inp_vflag & INP_IPV4) == 0) 1930 continue; 1931 #endif 1932 if (inp->inp_faddr.s_addr == faddr.s_addr && 1933 inp->inp_laddr.s_addr == laddr.s_addr && 1934 inp->inp_fport == fport && 1935 inp->inp_lport == lport) { 1936 /* 1937 * XXX We should be able to directly return 1938 * the inp here, without any checks. 1939 * Well unless both bound with SO_REUSEPORT? 1940 */ 1941 if (prison_flag(inp->inp_cred, PR_IP4)) 1942 return (inp); 1943 if (tmpinp == NULL) 1944 tmpinp = inp; 1945 } 1946 } 1947 if (tmpinp != NULL) 1948 return (tmpinp); 1949 1950 /* 1951 * Then look for a wildcard match, if requested. 1952 */ 1953 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1954 struct inpcb *local_wild = NULL, *local_exact = NULL; 1955 #ifdef INET6 1956 struct inpcb *local_wild_mapped = NULL; 1957 #endif 1958 struct inpcb *jail_wild = NULL; 1959 int injail; 1960 1961 /* 1962 * Order of socket selection - we always prefer jails. 1963 * 1. jailed, non-wild. 1964 * 2. jailed, wild. 1965 * 3. non-jailed, non-wild. 1966 * 4. non-jailed, wild. 1967 */ 1968 1969 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1970 0, pcbinfo->ipi_hashmask)]; 1971 LIST_FOREACH(inp, head, inp_hash) { 1972 #ifdef INET6 1973 /* XXX inp locking */ 1974 if ((inp->inp_vflag & INP_IPV4) == 0) 1975 continue; 1976 #endif 1977 if (inp->inp_faddr.s_addr != INADDR_ANY || 1978 inp->inp_lport != lport) 1979 continue; 1980 1981 injail = prison_flag(inp->inp_cred, PR_IP4); 1982 if (injail) { 1983 if (prison_check_ip4(inp->inp_cred, 1984 &laddr) != 0) 1985 continue; 1986 } else { 1987 if (local_exact != NULL) 1988 continue; 1989 } 1990 1991 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1992 if (injail) 1993 return (inp); 1994 else 1995 local_exact = inp; 1996 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1997 #ifdef INET6 1998 /* XXX inp locking, NULL check */ 1999 if (inp->inp_vflag & INP_IPV6PROTO) 2000 local_wild_mapped = inp; 2001 else 2002 #endif 2003 if (injail) 2004 jail_wild = inp; 2005 else 2006 local_wild = inp; 2007 } 2008 } /* LIST_FOREACH */ 2009 if (jail_wild != NULL) 2010 return (jail_wild); 2011 if (local_exact != NULL) 2012 return (local_exact); 2013 if (local_wild != NULL) 2014 return (local_wild); 2015 #ifdef INET6 2016 if (local_wild_mapped != NULL) 2017 return (local_wild_mapped); 2018 #endif 2019 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 2020 2021 return (NULL); 2022 } 2023 2024 /* 2025 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 2026 * hash list lock, and will return the inpcb locked (i.e., requires 2027 * INPLOOKUP_LOCKPCB). 2028 */ 2029 static struct inpcb * 2030 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2031 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2032 struct ifnet *ifp) 2033 { 2034 struct inpcb *inp; 2035 bool locked; 2036 2037 INP_HASH_RLOCK(pcbinfo); 2038 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2039 (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp); 2040 if (inp != NULL) { 2041 if (lookupflags & INPLOOKUP_WLOCKPCB) 2042 locked = INP_TRY_WLOCK(inp); 2043 else if (lookupflags & INPLOOKUP_RLOCKPCB) 2044 locked = INP_TRY_RLOCK(inp); 2045 else 2046 panic("%s: locking bug", __func__); 2047 if (!locked) 2048 in_pcbref(inp); 2049 INP_HASH_RUNLOCK(pcbinfo); 2050 if (!locked) { 2051 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2052 INP_WLOCK(inp); 2053 if (in_pcbrele_wlocked(inp)) 2054 return (NULL); 2055 } else { 2056 INP_RLOCK(inp); 2057 if (in_pcbrele_rlocked(inp)) 2058 return (NULL); 2059 } 2060 } 2061 #ifdef INVARIANTS 2062 if (lookupflags & INPLOOKUP_WLOCKPCB) 2063 INP_WLOCK_ASSERT(inp); 2064 else 2065 INP_RLOCK_ASSERT(inp); 2066 #endif 2067 } else 2068 INP_HASH_RUNLOCK(pcbinfo); 2069 return (inp); 2070 } 2071 2072 /* 2073 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2074 * from which a pre-calculated hash value may be extracted. 2075 * 2076 * Possibly more of this logic should be in in_pcbgroup.c. 2077 */ 2078 struct inpcb * 2079 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2080 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 2081 { 2082 #if defined(PCBGROUP) && !defined(RSS) 2083 struct inpcbgroup *pcbgroup; 2084 #endif 2085 2086 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2087 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2088 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2089 ("%s: LOCKPCB not set", __func__)); 2090 2091 /* 2092 * When not using RSS, use connection groups in preference to the 2093 * reservation table when looking up 4-tuples. When using RSS, just 2094 * use the reservation table, due to the cost of the Toeplitz hash 2095 * in software. 2096 * 2097 * XXXRW: This policy belongs in the pcbgroup code, as in principle 2098 * we could be doing RSS with a non-Toeplitz hash that is affordable 2099 * in software. 2100 */ 2101 #if defined(PCBGROUP) && !defined(RSS) 2102 if (in_pcbgroup_enabled(pcbinfo)) { 2103 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2104 fport); 2105 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2106 laddr, lport, lookupflags, ifp)); 2107 } 2108 #endif 2109 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2110 lookupflags, ifp)); 2111 } 2112 2113 struct inpcb * 2114 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2115 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2116 struct ifnet *ifp, struct mbuf *m) 2117 { 2118 #ifdef PCBGROUP 2119 struct inpcbgroup *pcbgroup; 2120 #endif 2121 2122 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2123 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2124 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2125 ("%s: LOCKPCB not set", __func__)); 2126 2127 #ifdef PCBGROUP 2128 /* 2129 * If we can use a hardware-generated hash to look up the connection 2130 * group, use that connection group to find the inpcb. Otherwise 2131 * fall back on a software hash -- or the reservation table if we're 2132 * using RSS. 2133 * 2134 * XXXRW: As above, that policy belongs in the pcbgroup code. 2135 */ 2136 if (in_pcbgroup_enabled(pcbinfo) && 2137 !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { 2138 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), 2139 m->m_pkthdr.flowid); 2140 if (pcbgroup != NULL) 2141 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, 2142 fport, laddr, lport, lookupflags, ifp)); 2143 #ifndef RSS 2144 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2145 fport); 2146 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2147 laddr, lport, lookupflags, ifp)); 2148 #endif 2149 } 2150 #endif 2151 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2152 lookupflags, ifp)); 2153 } 2154 #endif /* INET */ 2155 2156 /* 2157 * Insert PCB onto various hash lists. 2158 */ 2159 static int 2160 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update) 2161 { 2162 struct inpcbhead *pcbhash; 2163 struct inpcbporthead *pcbporthash; 2164 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2165 struct inpcbport *phd; 2166 u_int32_t hashkey_faddr; 2167 2168 INP_WLOCK_ASSERT(inp); 2169 INP_HASH_WLOCK_ASSERT(pcbinfo); 2170 2171 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2172 ("in_pcbinshash: INP_INHASHLIST")); 2173 2174 #ifdef INET6 2175 if (inp->inp_vflag & INP_IPV6) 2176 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2177 else 2178 #endif 2179 hashkey_faddr = inp->inp_faddr.s_addr; 2180 2181 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2182 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2183 2184 pcbporthash = &pcbinfo->ipi_porthashbase[ 2185 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2186 2187 /* 2188 * Go through port list and look for a head for this lport. 2189 */ 2190 LIST_FOREACH(phd, pcbporthash, phd_hash) { 2191 if (phd->phd_port == inp->inp_lport) 2192 break; 2193 } 2194 /* 2195 * If none exists, malloc one and tack it on. 2196 */ 2197 if (phd == NULL) { 2198 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 2199 if (phd == NULL) { 2200 return (ENOBUFS); /* XXX */ 2201 } 2202 phd->phd_port = inp->inp_lport; 2203 LIST_INIT(&phd->phd_pcblist); 2204 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2205 } 2206 inp->inp_phd = phd; 2207 LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2208 LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2209 inp->inp_flags |= INP_INHASHLIST; 2210 #ifdef PCBGROUP 2211 if (do_pcbgroup_update) 2212 in_pcbgroup_update(inp); 2213 #endif 2214 return (0); 2215 } 2216 2217 /* 2218 * For now, there are two public interfaces to insert an inpcb into the hash 2219 * lists -- one that does update pcbgroups, and one that doesn't. The latter 2220 * is used only in the TCP syncache, where in_pcbinshash is called before the 2221 * full 4-tuple is set for the inpcb, and we don't want to install in the 2222 * pcbgroup until later. 2223 * 2224 * XXXRW: This seems like a misfeature. in_pcbinshash should always update 2225 * connection groups, and partially initialised inpcbs should not be exposed 2226 * to either reservation hash tables or pcbgroups. 2227 */ 2228 int 2229 in_pcbinshash(struct inpcb *inp) 2230 { 2231 2232 return (in_pcbinshash_internal(inp, 1)); 2233 } 2234 2235 int 2236 in_pcbinshash_nopcbgroup(struct inpcb *inp) 2237 { 2238 2239 return (in_pcbinshash_internal(inp, 0)); 2240 } 2241 2242 /* 2243 * Move PCB to the proper hash bucket when { faddr, fport } have been 2244 * changed. NOTE: This does not handle the case of the lport changing (the 2245 * hashed port list would have to be updated as well), so the lport must 2246 * not change after in_pcbinshash() has been called. 2247 */ 2248 void 2249 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) 2250 { 2251 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2252 struct inpcbhead *head; 2253 u_int32_t hashkey_faddr; 2254 2255 INP_WLOCK_ASSERT(inp); 2256 INP_HASH_WLOCK_ASSERT(pcbinfo); 2257 2258 KASSERT(inp->inp_flags & INP_INHASHLIST, 2259 ("in_pcbrehash: !INP_INHASHLIST")); 2260 2261 #ifdef INET6 2262 if (inp->inp_vflag & INP_IPV6) 2263 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2264 else 2265 #endif 2266 hashkey_faddr = inp->inp_faddr.s_addr; 2267 2268 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2269 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2270 2271 LIST_REMOVE(inp, inp_hash); 2272 LIST_INSERT_HEAD(head, inp, inp_hash); 2273 2274 #ifdef PCBGROUP 2275 if (m != NULL) 2276 in_pcbgroup_update_mbuf(inp, m); 2277 else 2278 in_pcbgroup_update(inp); 2279 #endif 2280 } 2281 2282 void 2283 in_pcbrehash(struct inpcb *inp) 2284 { 2285 2286 in_pcbrehash_mbuf(inp, NULL); 2287 } 2288 2289 /* 2290 * Remove PCB from various lists. 2291 */ 2292 static void 2293 in_pcbremlists(struct inpcb *inp) 2294 { 2295 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2296 2297 #ifdef INVARIANTS 2298 if (pcbinfo == &V_tcbinfo) { 2299 INP_INFO_RLOCK_ASSERT(pcbinfo); 2300 } else { 2301 INP_INFO_WLOCK_ASSERT(pcbinfo); 2302 } 2303 #endif 2304 2305 INP_WLOCK_ASSERT(inp); 2306 INP_LIST_WLOCK_ASSERT(pcbinfo); 2307 2308 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 2309 if (inp->inp_flags & INP_INHASHLIST) { 2310 struct inpcbport *phd = inp->inp_phd; 2311 2312 INP_HASH_WLOCK(pcbinfo); 2313 LIST_REMOVE(inp, inp_hash); 2314 LIST_REMOVE(inp, inp_portlist); 2315 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 2316 LIST_REMOVE(phd, phd_hash); 2317 free(phd, M_PCB); 2318 } 2319 INP_HASH_WUNLOCK(pcbinfo); 2320 inp->inp_flags &= ~INP_INHASHLIST; 2321 } 2322 LIST_REMOVE(inp, inp_list); 2323 pcbinfo->ipi_count--; 2324 #ifdef PCBGROUP 2325 in_pcbgroup_remove(inp); 2326 #endif 2327 } 2328 2329 /* 2330 * Check for alternatives when higher level complains 2331 * about service problems. For now, invalidate cached 2332 * routing information. If the route was created dynamically 2333 * (by a redirect), time to try a default gateway again. 2334 */ 2335 void 2336 in_losing(struct inpcb *inp) 2337 { 2338 2339 RO_INVALIDATE_CACHE(&inp->inp_route); 2340 return; 2341 } 2342 2343 /* 2344 * A set label operation has occurred at the socket layer, propagate the 2345 * label change into the in_pcb for the socket. 2346 */ 2347 void 2348 in_pcbsosetlabel(struct socket *so) 2349 { 2350 #ifdef MAC 2351 struct inpcb *inp; 2352 2353 inp = sotoinpcb(so); 2354 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2355 2356 INP_WLOCK(inp); 2357 SOCK_LOCK(so); 2358 mac_inpcb_sosetlabel(so, inp); 2359 SOCK_UNLOCK(so); 2360 INP_WUNLOCK(inp); 2361 #endif 2362 } 2363 2364 /* 2365 * ipport_tick runs once per second, determining if random port allocation 2366 * should be continued. If more than ipport_randomcps ports have been 2367 * allocated in the last second, then we return to sequential port 2368 * allocation. We return to random allocation only once we drop below 2369 * ipport_randomcps for at least ipport_randomtime seconds. 2370 */ 2371 static void 2372 ipport_tick(void *xtp) 2373 { 2374 VNET_ITERATOR_DECL(vnet_iter); 2375 2376 VNET_LIST_RLOCK_NOSLEEP(); 2377 VNET_FOREACH(vnet_iter) { 2378 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2379 if (V_ipport_tcpallocs <= 2380 V_ipport_tcplastcount + V_ipport_randomcps) { 2381 if (V_ipport_stoprandom > 0) 2382 V_ipport_stoprandom--; 2383 } else 2384 V_ipport_stoprandom = V_ipport_randomtime; 2385 V_ipport_tcplastcount = V_ipport_tcpallocs; 2386 CURVNET_RESTORE(); 2387 } 2388 VNET_LIST_RUNLOCK_NOSLEEP(); 2389 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2390 } 2391 2392 static void 2393 ip_fini(void *xtp) 2394 { 2395 2396 callout_stop(&ipport_tick_callout); 2397 } 2398 2399 /* 2400 * The ipport_callout should start running at about the time we attach the 2401 * inet or inet6 domains. 2402 */ 2403 static void 2404 ipport_tick_init(const void *unused __unused) 2405 { 2406 2407 /* Start ipport_tick. */ 2408 callout_init(&ipport_tick_callout, 1); 2409 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2410 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2411 SHUTDOWN_PRI_DEFAULT); 2412 } 2413 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2414 ipport_tick_init, NULL); 2415 2416 void 2417 inp_wlock(struct inpcb *inp) 2418 { 2419 2420 INP_WLOCK(inp); 2421 } 2422 2423 void 2424 inp_wunlock(struct inpcb *inp) 2425 { 2426 2427 INP_WUNLOCK(inp); 2428 } 2429 2430 void 2431 inp_rlock(struct inpcb *inp) 2432 { 2433 2434 INP_RLOCK(inp); 2435 } 2436 2437 void 2438 inp_runlock(struct inpcb *inp) 2439 { 2440 2441 INP_RUNLOCK(inp); 2442 } 2443 2444 #ifdef INVARIANT_SUPPORT 2445 void 2446 inp_lock_assert(struct inpcb *inp) 2447 { 2448 2449 INP_WLOCK_ASSERT(inp); 2450 } 2451 2452 void 2453 inp_unlock_assert(struct inpcb *inp) 2454 { 2455 2456 INP_UNLOCK_ASSERT(inp); 2457 } 2458 #endif 2459 2460 void 2461 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2462 { 2463 struct inpcb *inp; 2464 2465 INP_INFO_WLOCK(&V_tcbinfo); 2466 LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 2467 INP_WLOCK(inp); 2468 func(inp, arg); 2469 INP_WUNLOCK(inp); 2470 } 2471 INP_INFO_WUNLOCK(&V_tcbinfo); 2472 } 2473 2474 struct socket * 2475 inp_inpcbtosocket(struct inpcb *inp) 2476 { 2477 2478 INP_WLOCK_ASSERT(inp); 2479 return (inp->inp_socket); 2480 } 2481 2482 struct tcpcb * 2483 inp_inpcbtotcpcb(struct inpcb *inp) 2484 { 2485 2486 INP_WLOCK_ASSERT(inp); 2487 return ((struct tcpcb *)inp->inp_ppcb); 2488 } 2489 2490 int 2491 inp_ip_tos_get(const struct inpcb *inp) 2492 { 2493 2494 return (inp->inp_ip_tos); 2495 } 2496 2497 void 2498 inp_ip_tos_set(struct inpcb *inp, int val) 2499 { 2500 2501 inp->inp_ip_tos = val; 2502 } 2503 2504 void 2505 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2506 uint32_t *faddr, uint16_t *fp) 2507 { 2508 2509 INP_LOCK_ASSERT(inp); 2510 *laddr = inp->inp_laddr.s_addr; 2511 *faddr = inp->inp_faddr.s_addr; 2512 *lp = inp->inp_lport; 2513 *fp = inp->inp_fport; 2514 } 2515 2516 struct inpcb * 2517 so_sotoinpcb(struct socket *so) 2518 { 2519 2520 return (sotoinpcb(so)); 2521 } 2522 2523 struct tcpcb * 2524 so_sototcpcb(struct socket *so) 2525 { 2526 2527 return (sototcpcb(so)); 2528 } 2529 2530 /* 2531 * Create an external-format (``xinpcb'') structure using the information in 2532 * the kernel-format in_pcb structure pointed to by inp. This is done to 2533 * reduce the spew of irrelevant information over this interface, to isolate 2534 * user code from changes in the kernel structure, and potentially to provide 2535 * information-hiding if we decide that some of this information should be 2536 * hidden from users. 2537 */ 2538 void 2539 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2540 { 2541 2542 xi->xi_len = sizeof(struct xinpcb); 2543 if (inp->inp_socket) 2544 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2545 else 2546 bzero(&xi->xi_socket, sizeof(struct xsocket)); 2547 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2548 xi->inp_gencnt = inp->inp_gencnt; 2549 xi->inp_ppcb = inp->inp_ppcb; 2550 xi->inp_flow = inp->inp_flow; 2551 xi->inp_flowid = inp->inp_flowid; 2552 xi->inp_flowtype = inp->inp_flowtype; 2553 xi->inp_flags = inp->inp_flags; 2554 xi->inp_flags2 = inp->inp_flags2; 2555 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2556 xi->in6p_cksum = inp->in6p_cksum; 2557 xi->in6p_hops = inp->in6p_hops; 2558 xi->inp_ip_tos = inp->inp_ip_tos; 2559 xi->inp_vflag = inp->inp_vflag; 2560 xi->inp_ip_ttl = inp->inp_ip_ttl; 2561 xi->inp_ip_p = inp->inp_ip_p; 2562 xi->inp_ip_minttl = inp->inp_ip_minttl; 2563 } 2564 2565 #ifdef DDB 2566 static void 2567 db_print_indent(int indent) 2568 { 2569 int i; 2570 2571 for (i = 0; i < indent; i++) 2572 db_printf(" "); 2573 } 2574 2575 static void 2576 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2577 { 2578 char faddr_str[48], laddr_str[48]; 2579 2580 db_print_indent(indent); 2581 db_printf("%s at %p\n", name, inc); 2582 2583 indent += 2; 2584 2585 #ifdef INET6 2586 if (inc->inc_flags & INC_ISIPV6) { 2587 /* IPv6. */ 2588 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2589 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2590 } else 2591 #endif 2592 { 2593 /* IPv4. */ 2594 inet_ntoa_r(inc->inc_laddr, laddr_str); 2595 inet_ntoa_r(inc->inc_faddr, faddr_str); 2596 } 2597 db_print_indent(indent); 2598 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2599 ntohs(inc->inc_lport)); 2600 db_print_indent(indent); 2601 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2602 ntohs(inc->inc_fport)); 2603 } 2604 2605 static void 2606 db_print_inpflags(int inp_flags) 2607 { 2608 int comma; 2609 2610 comma = 0; 2611 if (inp_flags & INP_RECVOPTS) { 2612 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2613 comma = 1; 2614 } 2615 if (inp_flags & INP_RECVRETOPTS) { 2616 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2617 comma = 1; 2618 } 2619 if (inp_flags & INP_RECVDSTADDR) { 2620 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2621 comma = 1; 2622 } 2623 if (inp_flags & INP_ORIGDSTADDR) { 2624 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 2625 comma = 1; 2626 } 2627 if (inp_flags & INP_HDRINCL) { 2628 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2629 comma = 1; 2630 } 2631 if (inp_flags & INP_HIGHPORT) { 2632 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2633 comma = 1; 2634 } 2635 if (inp_flags & INP_LOWPORT) { 2636 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2637 comma = 1; 2638 } 2639 if (inp_flags & INP_ANONPORT) { 2640 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2641 comma = 1; 2642 } 2643 if (inp_flags & INP_RECVIF) { 2644 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2645 comma = 1; 2646 } 2647 if (inp_flags & INP_MTUDISC) { 2648 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2649 comma = 1; 2650 } 2651 if (inp_flags & INP_RECVTTL) { 2652 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 2653 comma = 1; 2654 } 2655 if (inp_flags & INP_DONTFRAG) { 2656 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 2657 comma = 1; 2658 } 2659 if (inp_flags & INP_RECVTOS) { 2660 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 2661 comma = 1; 2662 } 2663 if (inp_flags & IN6P_IPV6_V6ONLY) { 2664 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 2665 comma = 1; 2666 } 2667 if (inp_flags & IN6P_PKTINFO) { 2668 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 2669 comma = 1; 2670 } 2671 if (inp_flags & IN6P_HOPLIMIT) { 2672 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 2673 comma = 1; 2674 } 2675 if (inp_flags & IN6P_HOPOPTS) { 2676 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 2677 comma = 1; 2678 } 2679 if (inp_flags & IN6P_DSTOPTS) { 2680 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 2681 comma = 1; 2682 } 2683 if (inp_flags & IN6P_RTHDR) { 2684 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 2685 comma = 1; 2686 } 2687 if (inp_flags & IN6P_RTHDRDSTOPTS) { 2688 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 2689 comma = 1; 2690 } 2691 if (inp_flags & IN6P_TCLASS) { 2692 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 2693 comma = 1; 2694 } 2695 if (inp_flags & IN6P_AUTOFLOWLABEL) { 2696 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 2697 comma = 1; 2698 } 2699 if (inp_flags & INP_TIMEWAIT) { 2700 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 2701 comma = 1; 2702 } 2703 if (inp_flags & INP_ONESBCAST) { 2704 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 2705 comma = 1; 2706 } 2707 if (inp_flags & INP_DROPPED) { 2708 db_printf("%sINP_DROPPED", comma ? ", " : ""); 2709 comma = 1; 2710 } 2711 if (inp_flags & INP_SOCKREF) { 2712 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 2713 comma = 1; 2714 } 2715 if (inp_flags & IN6P_RFC2292) { 2716 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 2717 comma = 1; 2718 } 2719 if (inp_flags & IN6P_MTU) { 2720 db_printf("IN6P_MTU%s", comma ? ", " : ""); 2721 comma = 1; 2722 } 2723 } 2724 2725 static void 2726 db_print_inpvflag(u_char inp_vflag) 2727 { 2728 int comma; 2729 2730 comma = 0; 2731 if (inp_vflag & INP_IPV4) { 2732 db_printf("%sINP_IPV4", comma ? ", " : ""); 2733 comma = 1; 2734 } 2735 if (inp_vflag & INP_IPV6) { 2736 db_printf("%sINP_IPV6", comma ? ", " : ""); 2737 comma = 1; 2738 } 2739 if (inp_vflag & INP_IPV6PROTO) { 2740 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 2741 comma = 1; 2742 } 2743 } 2744 2745 static void 2746 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 2747 { 2748 2749 db_print_indent(indent); 2750 db_printf("%s at %p\n", name, inp); 2751 2752 indent += 2; 2753 2754 db_print_indent(indent); 2755 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 2756 2757 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 2758 2759 db_print_indent(indent); 2760 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 2761 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 2762 2763 db_print_indent(indent); 2764 db_printf("inp_label: %p inp_flags: 0x%x (", 2765 inp->inp_label, inp->inp_flags); 2766 db_print_inpflags(inp->inp_flags); 2767 db_printf(")\n"); 2768 2769 db_print_indent(indent); 2770 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 2771 inp->inp_vflag); 2772 db_print_inpvflag(inp->inp_vflag); 2773 db_printf(")\n"); 2774 2775 db_print_indent(indent); 2776 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 2777 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 2778 2779 db_print_indent(indent); 2780 #ifdef INET6 2781 if (inp->inp_vflag & INP_IPV6) { 2782 db_printf("in6p_options: %p in6p_outputopts: %p " 2783 "in6p_moptions: %p\n", inp->in6p_options, 2784 inp->in6p_outputopts, inp->in6p_moptions); 2785 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 2786 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 2787 inp->in6p_hops); 2788 } else 2789 #endif 2790 { 2791 db_printf("inp_ip_tos: %d inp_ip_options: %p " 2792 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 2793 inp->inp_options, inp->inp_moptions); 2794 } 2795 2796 db_print_indent(indent); 2797 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 2798 (uintmax_t)inp->inp_gencnt); 2799 } 2800 2801 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 2802 { 2803 struct inpcb *inp; 2804 2805 if (!have_addr) { 2806 db_printf("usage: show inpcb <addr>\n"); 2807 return; 2808 } 2809 inp = (struct inpcb *)addr; 2810 2811 db_print_inpcb(inp, "inpcb", 0); 2812 } 2813 #endif /* DDB */ 2814 2815 #ifdef RATELIMIT 2816 /* 2817 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 2818 * if any. 2819 */ 2820 int 2821 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 2822 { 2823 union if_snd_tag_modify_params params = { 2824 .rate_limit.max_rate = max_pacing_rate, 2825 }; 2826 struct m_snd_tag *mst; 2827 struct ifnet *ifp; 2828 int error; 2829 2830 mst = inp->inp_snd_tag; 2831 if (mst == NULL) 2832 return (EINVAL); 2833 2834 ifp = mst->ifp; 2835 if (ifp == NULL) 2836 return (EINVAL); 2837 2838 if (ifp->if_snd_tag_modify == NULL) { 2839 error = EOPNOTSUPP; 2840 } else { 2841 error = ifp->if_snd_tag_modify(mst, ¶ms); 2842 } 2843 return (error); 2844 } 2845 2846 /* 2847 * Query existing TX rate limit based on the existing 2848 * "inp->inp_snd_tag", if any. 2849 */ 2850 int 2851 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 2852 { 2853 union if_snd_tag_query_params params = { }; 2854 struct m_snd_tag *mst; 2855 struct ifnet *ifp; 2856 int error; 2857 2858 mst = inp->inp_snd_tag; 2859 if (mst == NULL) 2860 return (EINVAL); 2861 2862 ifp = mst->ifp; 2863 if (ifp == NULL) 2864 return (EINVAL); 2865 2866 if (ifp->if_snd_tag_query == NULL) { 2867 error = EOPNOTSUPP; 2868 } else { 2869 error = ifp->if_snd_tag_query(mst, ¶ms); 2870 if (error == 0 && p_max_pacing_rate != NULL) 2871 *p_max_pacing_rate = params.rate_limit.max_rate; 2872 } 2873 return (error); 2874 } 2875 2876 /* 2877 * Query existing TX queue level based on the existing 2878 * "inp->inp_snd_tag", if any. 2879 */ 2880 int 2881 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 2882 { 2883 union if_snd_tag_query_params params = { }; 2884 struct m_snd_tag *mst; 2885 struct ifnet *ifp; 2886 int error; 2887 2888 mst = inp->inp_snd_tag; 2889 if (mst == NULL) 2890 return (EINVAL); 2891 2892 ifp = mst->ifp; 2893 if (ifp == NULL) 2894 return (EINVAL); 2895 2896 if (ifp->if_snd_tag_query == NULL) 2897 return (EOPNOTSUPP); 2898 2899 error = ifp->if_snd_tag_query(mst, ¶ms); 2900 if (error == 0 && p_txqueue_level != NULL) 2901 *p_txqueue_level = params.rate_limit.queue_level; 2902 return (error); 2903 } 2904 2905 /* 2906 * Allocate a new TX rate limit send tag from the network interface 2907 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 2908 */ 2909 int 2910 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 2911 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate) 2912 { 2913 union if_snd_tag_alloc_params params = { 2914 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 2915 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 2916 .rate_limit.hdr.flowid = flowid, 2917 .rate_limit.hdr.flowtype = flowtype, 2918 .rate_limit.max_rate = max_pacing_rate, 2919 }; 2920 int error; 2921 2922 INP_WLOCK_ASSERT(inp); 2923 2924 if (inp->inp_snd_tag != NULL) 2925 return (EINVAL); 2926 2927 if (ifp->if_snd_tag_alloc == NULL) { 2928 error = EOPNOTSUPP; 2929 } else { 2930 error = ifp->if_snd_tag_alloc(ifp, ¶ms, &inp->inp_snd_tag); 2931 2932 /* 2933 * At success increment the refcount on 2934 * the send tag's network interface: 2935 */ 2936 if (error == 0) 2937 if_ref(inp->inp_snd_tag->ifp); 2938 } 2939 return (error); 2940 } 2941 2942 /* 2943 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 2944 * if any: 2945 */ 2946 void 2947 in_pcbdetach_txrtlmt(struct inpcb *inp) 2948 { 2949 struct m_snd_tag *mst; 2950 struct ifnet *ifp; 2951 2952 INP_WLOCK_ASSERT(inp); 2953 2954 mst = inp->inp_snd_tag; 2955 inp->inp_snd_tag = NULL; 2956 2957 if (mst == NULL) 2958 return; 2959 2960 ifp = mst->ifp; 2961 if (ifp == NULL) 2962 return; 2963 2964 /* 2965 * If the device was detached while we still had reference(s) 2966 * on the ifp, we assume if_snd_tag_free() was replaced with 2967 * stubs. 2968 */ 2969 ifp->if_snd_tag_free(mst); 2970 2971 /* release reference count on network interface */ 2972 if_rele(ifp); 2973 } 2974 2975 /* 2976 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 2977 * is set in the fast path and will attach/detach/modify the TX rate 2978 * limit send tag based on the socket's so_max_pacing_rate value. 2979 */ 2980 void 2981 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 2982 { 2983 struct socket *socket; 2984 uint32_t max_pacing_rate; 2985 bool did_upgrade; 2986 int error; 2987 2988 if (inp == NULL) 2989 return; 2990 2991 socket = inp->inp_socket; 2992 if (socket == NULL) 2993 return; 2994 2995 if (!INP_WLOCKED(inp)) { 2996 /* 2997 * NOTE: If the write locking fails, we need to bail 2998 * out and use the non-ratelimited ring for the 2999 * transmit until there is a new chance to get the 3000 * write lock. 3001 */ 3002 if (!INP_TRY_UPGRADE(inp)) 3003 return; 3004 did_upgrade = 1; 3005 } else { 3006 did_upgrade = 0; 3007 } 3008 3009 /* 3010 * NOTE: The so_max_pacing_rate value is read unlocked, 3011 * because atomic updates are not required since the variable 3012 * is checked at every mbuf we send. It is assumed that the 3013 * variable read itself will be atomic. 3014 */ 3015 max_pacing_rate = socket->so_max_pacing_rate; 3016 3017 /* 3018 * NOTE: When attaching to a network interface a reference is 3019 * made to ensure the network interface doesn't go away until 3020 * all ratelimit connections are gone. The network interface 3021 * pointers compared below represent valid network interfaces, 3022 * except when comparing towards NULL. 3023 */ 3024 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3025 error = 0; 3026 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3027 if (inp->inp_snd_tag != NULL) 3028 in_pcbdetach_txrtlmt(inp); 3029 error = 0; 3030 } else if (inp->inp_snd_tag == NULL) { 3031 /* 3032 * In order to utilize packet pacing with RSS, we need 3033 * to wait until there is a valid RSS hash before we 3034 * can proceed: 3035 */ 3036 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3037 error = EAGAIN; 3038 } else { 3039 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3040 mb->m_pkthdr.flowid, max_pacing_rate); 3041 } 3042 } else { 3043 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3044 } 3045 if (error == 0 || error == EOPNOTSUPP) 3046 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3047 if (did_upgrade) 3048 INP_DOWNGRADE(inp); 3049 } 3050 3051 /* 3052 * Track route changes for TX rate limiting. 3053 */ 3054 void 3055 in_pcboutput_eagain(struct inpcb *inp) 3056 { 3057 struct socket *socket; 3058 bool did_upgrade; 3059 3060 if (inp == NULL) 3061 return; 3062 3063 socket = inp->inp_socket; 3064 if (socket == NULL) 3065 return; 3066 3067 if (inp->inp_snd_tag == NULL) 3068 return; 3069 3070 if (!INP_WLOCKED(inp)) { 3071 /* 3072 * NOTE: If the write locking fails, we need to bail 3073 * out and use the non-ratelimited ring for the 3074 * transmit until there is a new chance to get the 3075 * write lock. 3076 */ 3077 if (!INP_TRY_UPGRADE(inp)) 3078 return; 3079 did_upgrade = 1; 3080 } else { 3081 did_upgrade = 0; 3082 } 3083 3084 /* detach rate limiting */ 3085 in_pcbdetach_txrtlmt(inp); 3086 3087 /* make sure new mbuf send tag allocation is made */ 3088 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3089 3090 if (did_upgrade) 3091 INP_DOWNGRADE(inp); 3092 } 3093 #endif /* RATELIMIT */ 3094