xref: /freebsd/sys/netinet/in_pcb.c (revision bcce9a2b33a8e9187a63f435726a7a801e89f326)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2007-2009 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * All rights reserved.
9  *
10  * Portions of this software were developed by Robert N. M. Watson under
11  * contract to Juniper Networks, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include "opt_ddb.h"
44 #include "opt_ipsec.h"
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 #include "opt_ratelimit.h"
48 #include "opt_pcbgroup.h"
49 #include "opt_rss.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/callout.h>
57 #include <sys/eventhandler.h>
58 #include <sys/domain.h>
59 #include <sys/protosw.h>
60 #include <sys/rmlock.h>
61 #include <sys/smp.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/sockio.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/refcount.h>
68 #include <sys/jail.h>
69 #include <sys/kernel.h>
70 #include <sys/sysctl.h>
71 
72 #ifdef DDB
73 #include <ddb/ddb.h>
74 #endif
75 
76 #include <vm/uma.h>
77 
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/if_types.h>
81 #include <net/if_llatbl.h>
82 #include <net/route.h>
83 #include <net/rss_config.h>
84 #include <net/vnet.h>
85 
86 #if defined(INET) || defined(INET6)
87 #include <netinet/in.h>
88 #include <netinet/in_pcb.h>
89 #include <netinet/ip_var.h>
90 #include <netinet/tcp_var.h>
91 #ifdef TCPHPTS
92 #include <netinet/tcp_hpts.h>
93 #endif
94 #include <netinet/udp.h>
95 #include <netinet/udp_var.h>
96 #endif
97 #ifdef INET
98 #include <netinet/in_var.h>
99 #endif
100 #ifdef INET6
101 #include <netinet/ip6.h>
102 #include <netinet6/in6_pcb.h>
103 #include <netinet6/in6_var.h>
104 #include <netinet6/ip6_var.h>
105 #endif /* INET6 */
106 
107 #include <netipsec/ipsec_support.h>
108 
109 #include <security/mac/mac_framework.h>
110 
111 static struct callout	ipport_tick_callout;
112 
113 /*
114  * These configure the range of local port addresses assigned to
115  * "unspecified" outgoing connections/packets/whatever.
116  */
117 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
118 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
119 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
120 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
121 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
122 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
123 
124 /*
125  * Reserved ports accessible only to root. There are significant
126  * security considerations that must be accounted for when changing these,
127  * but the security benefits can be great. Please be careful.
128  */
129 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
130 VNET_DEFINE(int, ipport_reservedlow);
131 
132 /* Variables dealing with random ephemeral port allocation. */
133 VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
134 VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
135 VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
136 VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
137 VNET_DEFINE(int, ipport_tcpallocs);
138 static VNET_DEFINE(int, ipport_tcplastcount);
139 
140 #define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
141 
142 static void	in_pcbremlists(struct inpcb *inp);
143 #ifdef INET
144 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
145 			    struct in_addr faddr, u_int fport_arg,
146 			    struct in_addr laddr, u_int lport_arg,
147 			    int lookupflags, struct ifnet *ifp);
148 
149 #define RANGECHK(var, min, max) \
150 	if ((var) < (min)) { (var) = (min); } \
151 	else if ((var) > (max)) { (var) = (max); }
152 
153 static int
154 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
155 {
156 	int error;
157 
158 	error = sysctl_handle_int(oidp, arg1, arg2, req);
159 	if (error == 0) {
160 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
161 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
162 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
163 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
164 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
165 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
166 	}
167 	return (error);
168 }
169 
170 #undef RANGECHK
171 
172 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
173     "IP Ports");
174 
175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
176 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
177 	&VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", "");
178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
179 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
180 	&VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", "");
181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
182 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
183 	&VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", "");
184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
185 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
186 	&VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", "");
187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
188 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
189 	&VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", "");
190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
191 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
192 	&VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", "");
193 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
194 	CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
195 	&VNET_NAME(ipport_reservedhigh), 0, "");
196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
197 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
198 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
199 	CTLFLAG_VNET | CTLFLAG_RW,
200 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
202 	CTLFLAG_VNET | CTLFLAG_RW,
203 	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
204 	"allocations before switching to a sequental one");
205 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
206 	CTLFLAG_VNET | CTLFLAG_RW,
207 	&VNET_NAME(ipport_randomtime), 0,
208 	"Minimum time to keep sequental port "
209 	"allocation before switching to a random one");
210 #endif /* INET */
211 
212 /*
213  * in_pcb.c: manage the Protocol Control Blocks.
214  *
215  * NOTE: It is assumed that most of these functions will be called with
216  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
217  * functions often modify hash chains or addresses in pcbs.
218  */
219 
220 /*
221  * Different protocols initialize their inpcbs differently - giving
222  * different name to the lock.  But they all are disposed the same.
223  */
224 static void
225 inpcb_fini(void *mem, int size)
226 {
227 	struct inpcb *inp = mem;
228 
229 	INP_LOCK_DESTROY(inp);
230 }
231 
232 /*
233  * Initialize an inpcbinfo -- we should be able to reduce the number of
234  * arguments in time.
235  */
236 void
237 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
238     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
239     char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields)
240 {
241 
242 	INP_INFO_LOCK_INIT(pcbinfo, name);
243 	INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");	/* XXXRW: argument? */
244 	INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist");
245 #ifdef VIMAGE
246 	pcbinfo->ipi_vnet = curvnet;
247 #endif
248 	pcbinfo->ipi_listhead = listhead;
249 	LIST_INIT(pcbinfo->ipi_listhead);
250 	pcbinfo->ipi_count = 0;
251 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
252 	    &pcbinfo->ipi_hashmask);
253 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
254 	    &pcbinfo->ipi_porthashmask);
255 #ifdef PCBGROUP
256 	in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
257 #endif
258 	pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
259 	    NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0);
260 	uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
261 	uma_zone_set_warning(pcbinfo->ipi_zone,
262 	    "kern.ipc.maxsockets limit reached");
263 }
264 
265 /*
266  * Destroy an inpcbinfo.
267  */
268 void
269 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
270 {
271 
272 	KASSERT(pcbinfo->ipi_count == 0,
273 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
274 
275 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
276 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
277 	    pcbinfo->ipi_porthashmask);
278 #ifdef PCBGROUP
279 	in_pcbgroup_destroy(pcbinfo);
280 #endif
281 	uma_zdestroy(pcbinfo->ipi_zone);
282 	INP_LIST_LOCK_DESTROY(pcbinfo);
283 	INP_HASH_LOCK_DESTROY(pcbinfo);
284 	INP_INFO_LOCK_DESTROY(pcbinfo);
285 }
286 
287 /*
288  * Allocate a PCB and associate it with the socket.
289  * On success return with the PCB locked.
290  */
291 int
292 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
293 {
294 	struct inpcb *inp;
295 	int error;
296 
297 #ifdef INVARIANTS
298 	if (pcbinfo == &V_tcbinfo) {
299 		INP_INFO_RLOCK_ASSERT(pcbinfo);
300 	} else {
301 		INP_INFO_WLOCK_ASSERT(pcbinfo);
302 	}
303 #endif
304 
305 	error = 0;
306 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
307 	if (inp == NULL)
308 		return (ENOBUFS);
309 	bzero(&inp->inp_start_zero, inp_zero_size);
310 	inp->inp_pcbinfo = pcbinfo;
311 	inp->inp_socket = so;
312 	inp->inp_cred = crhold(so->so_cred);
313 	inp->inp_inc.inc_fibnum = so->so_fibnum;
314 #ifdef MAC
315 	error = mac_inpcb_init(inp, M_NOWAIT);
316 	if (error != 0)
317 		goto out;
318 	mac_inpcb_create(so, inp);
319 #endif
320 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
321 	error = ipsec_init_pcbpolicy(inp);
322 	if (error != 0) {
323 #ifdef MAC
324 		mac_inpcb_destroy(inp);
325 #endif
326 		goto out;
327 	}
328 #endif /*IPSEC*/
329 #ifdef INET6
330 	if (INP_SOCKAF(so) == AF_INET6) {
331 		inp->inp_vflag |= INP_IPV6PROTO;
332 		if (V_ip6_v6only)
333 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
334 	}
335 #endif
336 	INP_WLOCK(inp);
337 	INP_LIST_WLOCK(pcbinfo);
338 	LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
339 	pcbinfo->ipi_count++;
340 	so->so_pcb = (caddr_t)inp;
341 #ifdef INET6
342 	if (V_ip6_auto_flowlabel)
343 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
344 #endif
345 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
346 	refcount_init(&inp->inp_refcount, 1);	/* Reference from inpcbinfo */
347 
348 	/*
349 	 * Routes in inpcb's can cache L2 as well; they are guaranteed
350 	 * to be cleaned up.
351 	 */
352 	inp->inp_route.ro_flags = RT_LLE_CACHE;
353 	INP_LIST_WUNLOCK(pcbinfo);
354 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
355 out:
356 	if (error != 0) {
357 		crfree(inp->inp_cred);
358 		uma_zfree(pcbinfo->ipi_zone, inp);
359 	}
360 #endif
361 	return (error);
362 }
363 
364 #ifdef INET
365 int
366 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
367 {
368 	int anonport, error;
369 
370 	INP_WLOCK_ASSERT(inp);
371 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
372 
373 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
374 		return (EINVAL);
375 	anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
376 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
377 	    &inp->inp_lport, cred);
378 	if (error)
379 		return (error);
380 	if (in_pcbinshash(inp) != 0) {
381 		inp->inp_laddr.s_addr = INADDR_ANY;
382 		inp->inp_lport = 0;
383 		return (EAGAIN);
384 	}
385 	if (anonport)
386 		inp->inp_flags |= INP_ANONPORT;
387 	return (0);
388 }
389 #endif
390 
391 /*
392  * Select a local port (number) to use.
393  */
394 #if defined(INET) || defined(INET6)
395 int
396 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
397     struct ucred *cred, int lookupflags)
398 {
399 	struct inpcbinfo *pcbinfo;
400 	struct inpcb *tmpinp;
401 	unsigned short *lastport;
402 	int count, dorandom, error;
403 	u_short aux, first, last, lport;
404 #ifdef INET
405 	struct in_addr laddr;
406 #endif
407 
408 	pcbinfo = inp->inp_pcbinfo;
409 
410 	/*
411 	 * Because no actual state changes occur here, a global write lock on
412 	 * the pcbinfo isn't required.
413 	 */
414 	INP_LOCK_ASSERT(inp);
415 	INP_HASH_LOCK_ASSERT(pcbinfo);
416 
417 	if (inp->inp_flags & INP_HIGHPORT) {
418 		first = V_ipport_hifirstauto;	/* sysctl */
419 		last  = V_ipport_hilastauto;
420 		lastport = &pcbinfo->ipi_lasthi;
421 	} else if (inp->inp_flags & INP_LOWPORT) {
422 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
423 		if (error)
424 			return (error);
425 		first = V_ipport_lowfirstauto;	/* 1023 */
426 		last  = V_ipport_lowlastauto;	/* 600 */
427 		lastport = &pcbinfo->ipi_lastlow;
428 	} else {
429 		first = V_ipport_firstauto;	/* sysctl */
430 		last  = V_ipport_lastauto;
431 		lastport = &pcbinfo->ipi_lastport;
432 	}
433 	/*
434 	 * For UDP(-Lite), use random port allocation as long as the user
435 	 * allows it.  For TCP (and as of yet unknown) connections,
436 	 * use random port allocation only if the user allows it AND
437 	 * ipport_tick() allows it.
438 	 */
439 	if (V_ipport_randomized &&
440 		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
441 		pcbinfo == &V_ulitecbinfo))
442 		dorandom = 1;
443 	else
444 		dorandom = 0;
445 	/*
446 	 * It makes no sense to do random port allocation if
447 	 * we have the only port available.
448 	 */
449 	if (first == last)
450 		dorandom = 0;
451 	/* Make sure to not include UDP(-Lite) packets in the count. */
452 	if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
453 		V_ipport_tcpallocs++;
454 	/*
455 	 * Instead of having two loops further down counting up or down
456 	 * make sure that first is always <= last and go with only one
457 	 * code path implementing all logic.
458 	 */
459 	if (first > last) {
460 		aux = first;
461 		first = last;
462 		last = aux;
463 	}
464 
465 #ifdef INET
466 	/* Make the compiler happy. */
467 	laddr.s_addr = 0;
468 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
469 		KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
470 		    __func__, inp));
471 		laddr = *laddrp;
472 	}
473 #endif
474 	tmpinp = NULL;	/* Make compiler happy. */
475 	lport = *lportp;
476 
477 	if (dorandom)
478 		*lastport = first + (arc4random() % (last - first));
479 
480 	count = last - first;
481 
482 	do {
483 		if (count-- < 0)	/* completely used? */
484 			return (EADDRNOTAVAIL);
485 		++*lastport;
486 		if (*lastport < first || *lastport > last)
487 			*lastport = first;
488 		lport = htons(*lastport);
489 
490 #ifdef INET6
491 		if ((inp->inp_vflag & INP_IPV6) != 0)
492 			tmpinp = in6_pcblookup_local(pcbinfo,
493 			    &inp->in6p_laddr, lport, lookupflags, cred);
494 #endif
495 #if defined(INET) && defined(INET6)
496 		else
497 #endif
498 #ifdef INET
499 			tmpinp = in_pcblookup_local(pcbinfo, laddr,
500 			    lport, lookupflags, cred);
501 #endif
502 	} while (tmpinp != NULL);
503 
504 #ifdef INET
505 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
506 		laddrp->s_addr = laddr.s_addr;
507 #endif
508 	*lportp = lport;
509 
510 	return (0);
511 }
512 
513 /*
514  * Return cached socket options.
515  */
516 short
517 inp_so_options(const struct inpcb *inp)
518 {
519    short so_options;
520 
521    so_options = 0;
522 
523    if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
524 	   so_options |= SO_REUSEPORT;
525    if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
526 	   so_options |= SO_REUSEADDR;
527    return (so_options);
528 }
529 #endif /* INET || INET6 */
530 
531 /*
532  * Check if a new BINDMULTI socket is allowed to be created.
533  *
534  * ni points to the new inp.
535  * oi points to the exisitng inp.
536  *
537  * This checks whether the existing inp also has BINDMULTI and
538  * whether the credentials match.
539  */
540 int
541 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
542 {
543 	/* Check permissions match */
544 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
545 	    (ni->inp_cred->cr_uid !=
546 	    oi->inp_cred->cr_uid))
547 		return (0);
548 
549 	/* Check the existing inp has BINDMULTI set */
550 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
551 	    ((oi->inp_flags2 & INP_BINDMULTI) == 0))
552 		return (0);
553 
554 	/*
555 	 * We're okay - either INP_BINDMULTI isn't set on ni, or
556 	 * it is and it matches the checks.
557 	 */
558 	return (1);
559 }
560 
561 #ifdef INET
562 /*
563  * Set up a bind operation on a PCB, performing port allocation
564  * as required, but do not actually modify the PCB. Callers can
565  * either complete the bind by setting inp_laddr/inp_lport and
566  * calling in_pcbinshash(), or they can just use the resulting
567  * port and address to authorise the sending of a once-off packet.
568  *
569  * On error, the values of *laddrp and *lportp are not changed.
570  */
571 int
572 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
573     u_short *lportp, struct ucred *cred)
574 {
575 	struct socket *so = inp->inp_socket;
576 	struct sockaddr_in *sin;
577 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
578 	struct in_addr laddr;
579 	u_short lport = 0;
580 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
581 	int error;
582 
583 	/*
584 	 * No state changes, so read locks are sufficient here.
585 	 */
586 	INP_LOCK_ASSERT(inp);
587 	INP_HASH_LOCK_ASSERT(pcbinfo);
588 
589 	if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
590 		return (EADDRNOTAVAIL);
591 	laddr.s_addr = *laddrp;
592 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
593 		return (EINVAL);
594 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
595 		lookupflags = INPLOOKUP_WILDCARD;
596 	if (nam == NULL) {
597 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
598 			return (error);
599 	} else {
600 		sin = (struct sockaddr_in *)nam;
601 		if (nam->sa_len != sizeof (*sin))
602 			return (EINVAL);
603 #ifdef notdef
604 		/*
605 		 * We should check the family, but old programs
606 		 * incorrectly fail to initialize it.
607 		 */
608 		if (sin->sin_family != AF_INET)
609 			return (EAFNOSUPPORT);
610 #endif
611 		error = prison_local_ip4(cred, &sin->sin_addr);
612 		if (error)
613 			return (error);
614 		if (sin->sin_port != *lportp) {
615 			/* Don't allow the port to change. */
616 			if (*lportp != 0)
617 				return (EINVAL);
618 			lport = sin->sin_port;
619 		}
620 		/* NB: lport is left as 0 if the port isn't being changed. */
621 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
622 			/*
623 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
624 			 * allow complete duplication of binding if
625 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
626 			 * and a multicast address is bound on both
627 			 * new and duplicated sockets.
628 			 */
629 			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
630 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
631 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
632 			sin->sin_port = 0;		/* yech... */
633 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
634 			/*
635 			 * Is the address a local IP address?
636 			 * If INP_BINDANY is set, then the socket may be bound
637 			 * to any endpoint address, local or not.
638 			 */
639 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
640 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
641 				return (EADDRNOTAVAIL);
642 		}
643 		laddr = sin->sin_addr;
644 		if (lport) {
645 			struct inpcb *t;
646 			struct tcptw *tw;
647 
648 			/* GROSS */
649 			if (ntohs(lport) <= V_ipport_reservedhigh &&
650 			    ntohs(lport) >= V_ipport_reservedlow &&
651 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
652 			    0))
653 				return (EACCES);
654 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
655 			    priv_check_cred(inp->inp_cred,
656 			    PRIV_NETINET_REUSEPORT, 0) != 0) {
657 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
658 				    lport, INPLOOKUP_WILDCARD, cred);
659 	/*
660 	 * XXX
661 	 * This entire block sorely needs a rewrite.
662 	 */
663 				if (t &&
664 				    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
665 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
666 				    (so->so_type != SOCK_STREAM ||
667 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
668 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
669 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
670 				     (t->inp_flags2 & INP_REUSEPORT) == 0) &&
671 				    (inp->inp_cred->cr_uid !=
672 				     t->inp_cred->cr_uid))
673 					return (EADDRINUSE);
674 
675 				/*
676 				 * If the socket is a BINDMULTI socket, then
677 				 * the credentials need to match and the
678 				 * original socket also has to have been bound
679 				 * with BINDMULTI.
680 				 */
681 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
682 					return (EADDRINUSE);
683 			}
684 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
685 			    lport, lookupflags, cred);
686 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
687 				/*
688 				 * XXXRW: If an incpb has had its timewait
689 				 * state recycled, we treat the address as
690 				 * being in use (for now).  This is better
691 				 * than a panic, but not desirable.
692 				 */
693 				tw = intotw(t);
694 				if (tw == NULL ||
695 				    (reuseport & tw->tw_so_options) == 0)
696 					return (EADDRINUSE);
697 			} else if (t &&
698 			    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
699 			    (reuseport & inp_so_options(t)) == 0) {
700 #ifdef INET6
701 				if (ntohl(sin->sin_addr.s_addr) !=
702 				    INADDR_ANY ||
703 				    ntohl(t->inp_laddr.s_addr) !=
704 				    INADDR_ANY ||
705 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
706 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
707 #endif
708 				return (EADDRINUSE);
709 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
710 					return (EADDRINUSE);
711 			}
712 		}
713 	}
714 	if (*lportp != 0)
715 		lport = *lportp;
716 	if (lport == 0) {
717 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
718 		if (error != 0)
719 			return (error);
720 
721 	}
722 	*laddrp = laddr.s_addr;
723 	*lportp = lport;
724 	return (0);
725 }
726 
727 /*
728  * Connect from a socket to a specified address.
729  * Both address and port must be specified in argument sin.
730  * If don't have a local address for this socket yet,
731  * then pick one.
732  */
733 int
734 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
735     struct ucred *cred, struct mbuf *m)
736 {
737 	u_short lport, fport;
738 	in_addr_t laddr, faddr;
739 	int anonport, error;
740 
741 	INP_WLOCK_ASSERT(inp);
742 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
743 
744 	lport = inp->inp_lport;
745 	laddr = inp->inp_laddr.s_addr;
746 	anonport = (lport == 0);
747 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
748 	    NULL, cred);
749 	if (error)
750 		return (error);
751 
752 	/* Do the initial binding of the local address if required. */
753 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
754 		inp->inp_lport = lport;
755 		inp->inp_laddr.s_addr = laddr;
756 		if (in_pcbinshash(inp) != 0) {
757 			inp->inp_laddr.s_addr = INADDR_ANY;
758 			inp->inp_lport = 0;
759 			return (EAGAIN);
760 		}
761 	}
762 
763 	/* Commit the remaining changes. */
764 	inp->inp_lport = lport;
765 	inp->inp_laddr.s_addr = laddr;
766 	inp->inp_faddr.s_addr = faddr;
767 	inp->inp_fport = fport;
768 	in_pcbrehash_mbuf(inp, m);
769 
770 	if (anonport)
771 		inp->inp_flags |= INP_ANONPORT;
772 	return (0);
773 }
774 
775 int
776 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
777 {
778 
779 	return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
780 }
781 
782 /*
783  * Do proper source address selection on an unbound socket in case
784  * of connect. Take jails into account as well.
785  */
786 int
787 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
788     struct ucred *cred)
789 {
790 	struct ifaddr *ifa;
791 	struct sockaddr *sa;
792 	struct sockaddr_in *sin;
793 	struct route sro;
794 	int error;
795 
796 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
797 
798 	/*
799 	 * Bypass source address selection and use the primary jail IP
800 	 * if requested.
801 	 */
802 	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
803 		return (0);
804 
805 	error = 0;
806 	bzero(&sro, sizeof(sro));
807 
808 	sin = (struct sockaddr_in *)&sro.ro_dst;
809 	sin->sin_family = AF_INET;
810 	sin->sin_len = sizeof(struct sockaddr_in);
811 	sin->sin_addr.s_addr = faddr->s_addr;
812 
813 	/*
814 	 * If route is known our src addr is taken from the i/f,
815 	 * else punt.
816 	 *
817 	 * Find out route to destination.
818 	 */
819 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
820 		in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
821 
822 	/*
823 	 * If we found a route, use the address corresponding to
824 	 * the outgoing interface.
825 	 *
826 	 * Otherwise assume faddr is reachable on a directly connected
827 	 * network and try to find a corresponding interface to take
828 	 * the source address from.
829 	 */
830 	if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
831 		struct in_ifaddr *ia;
832 		struct ifnet *ifp;
833 
834 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
835 					inp->inp_socket->so_fibnum));
836 		if (ia == NULL)
837 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
838 						inp->inp_socket->so_fibnum));
839 		if (ia == NULL) {
840 			error = ENETUNREACH;
841 			goto done;
842 		}
843 
844 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
845 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
846 			ifa_free(&ia->ia_ifa);
847 			goto done;
848 		}
849 
850 		ifp = ia->ia_ifp;
851 		ifa_free(&ia->ia_ifa);
852 		ia = NULL;
853 		IF_ADDR_RLOCK(ifp);
854 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
855 
856 			sa = ifa->ifa_addr;
857 			if (sa->sa_family != AF_INET)
858 				continue;
859 			sin = (struct sockaddr_in *)sa;
860 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
861 				ia = (struct in_ifaddr *)ifa;
862 				break;
863 			}
864 		}
865 		if (ia != NULL) {
866 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
867 			IF_ADDR_RUNLOCK(ifp);
868 			goto done;
869 		}
870 		IF_ADDR_RUNLOCK(ifp);
871 
872 		/* 3. As a last resort return the 'default' jail address. */
873 		error = prison_get_ip4(cred, laddr);
874 		goto done;
875 	}
876 
877 	/*
878 	 * If the outgoing interface on the route found is not
879 	 * a loopback interface, use the address from that interface.
880 	 * In case of jails do those three steps:
881 	 * 1. check if the interface address belongs to the jail. If so use it.
882 	 * 2. check if we have any address on the outgoing interface
883 	 *    belonging to this jail. If so use it.
884 	 * 3. as a last resort return the 'default' jail address.
885 	 */
886 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
887 		struct in_ifaddr *ia;
888 		struct ifnet *ifp;
889 
890 		/* If not jailed, use the default returned. */
891 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
892 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
893 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
894 			goto done;
895 		}
896 
897 		/* Jailed. */
898 		/* 1. Check if the iface address belongs to the jail. */
899 		sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
900 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
901 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
902 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
903 			goto done;
904 		}
905 
906 		/*
907 		 * 2. Check if we have any address on the outgoing interface
908 		 *    belonging to this jail.
909 		 */
910 		ia = NULL;
911 		ifp = sro.ro_rt->rt_ifp;
912 		IF_ADDR_RLOCK(ifp);
913 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
914 			sa = ifa->ifa_addr;
915 			if (sa->sa_family != AF_INET)
916 				continue;
917 			sin = (struct sockaddr_in *)sa;
918 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
919 				ia = (struct in_ifaddr *)ifa;
920 				break;
921 			}
922 		}
923 		if (ia != NULL) {
924 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
925 			IF_ADDR_RUNLOCK(ifp);
926 			goto done;
927 		}
928 		IF_ADDR_RUNLOCK(ifp);
929 
930 		/* 3. As a last resort return the 'default' jail address. */
931 		error = prison_get_ip4(cred, laddr);
932 		goto done;
933 	}
934 
935 	/*
936 	 * The outgoing interface is marked with 'loopback net', so a route
937 	 * to ourselves is here.
938 	 * Try to find the interface of the destination address and then
939 	 * take the address from there. That interface is not necessarily
940 	 * a loopback interface.
941 	 * In case of jails, check that it is an address of the jail
942 	 * and if we cannot find, fall back to the 'default' jail address.
943 	 */
944 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
945 		struct sockaddr_in sain;
946 		struct in_ifaddr *ia;
947 
948 		bzero(&sain, sizeof(struct sockaddr_in));
949 		sain.sin_family = AF_INET;
950 		sain.sin_len = sizeof(struct sockaddr_in);
951 		sain.sin_addr.s_addr = faddr->s_addr;
952 
953 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain),
954 					inp->inp_socket->so_fibnum));
955 		if (ia == NULL)
956 			ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0,
957 						inp->inp_socket->so_fibnum));
958 		if (ia == NULL)
959 			ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
960 
961 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
962 			if (ia == NULL) {
963 				error = ENETUNREACH;
964 				goto done;
965 			}
966 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
967 			ifa_free(&ia->ia_ifa);
968 			goto done;
969 		}
970 
971 		/* Jailed. */
972 		if (ia != NULL) {
973 			struct ifnet *ifp;
974 
975 			ifp = ia->ia_ifp;
976 			ifa_free(&ia->ia_ifa);
977 			ia = NULL;
978 			IF_ADDR_RLOCK(ifp);
979 			TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
980 
981 				sa = ifa->ifa_addr;
982 				if (sa->sa_family != AF_INET)
983 					continue;
984 				sin = (struct sockaddr_in *)sa;
985 				if (prison_check_ip4(cred,
986 				    &sin->sin_addr) == 0) {
987 					ia = (struct in_ifaddr *)ifa;
988 					break;
989 				}
990 			}
991 			if (ia != NULL) {
992 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
993 				IF_ADDR_RUNLOCK(ifp);
994 				goto done;
995 			}
996 			IF_ADDR_RUNLOCK(ifp);
997 		}
998 
999 		/* 3. As a last resort return the 'default' jail address. */
1000 		error = prison_get_ip4(cred, laddr);
1001 		goto done;
1002 	}
1003 
1004 done:
1005 	if (sro.ro_rt != NULL)
1006 		RTFREE(sro.ro_rt);
1007 	return (error);
1008 }
1009 
1010 /*
1011  * Set up for a connect from a socket to the specified address.
1012  * On entry, *laddrp and *lportp should contain the current local
1013  * address and port for the PCB; these are updated to the values
1014  * that should be placed in inp_laddr and inp_lport to complete
1015  * the connect.
1016  *
1017  * On success, *faddrp and *fportp will be set to the remote address
1018  * and port. These are not updated in the error case.
1019  *
1020  * If the operation fails because the connection already exists,
1021  * *oinpp will be set to the PCB of that connection so that the
1022  * caller can decide to override it. In all other cases, *oinpp
1023  * is set to NULL.
1024  */
1025 int
1026 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
1027     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1028     struct inpcb **oinpp, struct ucred *cred)
1029 {
1030 	struct rm_priotracker in_ifa_tracker;
1031 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1032 	struct in_ifaddr *ia;
1033 	struct inpcb *oinp;
1034 	struct in_addr laddr, faddr;
1035 	u_short lport, fport;
1036 	int error;
1037 
1038 	/*
1039 	 * Because a global state change doesn't actually occur here, a read
1040 	 * lock is sufficient.
1041 	 */
1042 	INP_LOCK_ASSERT(inp);
1043 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1044 
1045 	if (oinpp != NULL)
1046 		*oinpp = NULL;
1047 	if (nam->sa_len != sizeof (*sin))
1048 		return (EINVAL);
1049 	if (sin->sin_family != AF_INET)
1050 		return (EAFNOSUPPORT);
1051 	if (sin->sin_port == 0)
1052 		return (EADDRNOTAVAIL);
1053 	laddr.s_addr = *laddrp;
1054 	lport = *lportp;
1055 	faddr = sin->sin_addr;
1056 	fport = sin->sin_port;
1057 
1058 	if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
1059 		/*
1060 		 * If the destination address is INADDR_ANY,
1061 		 * use the primary local address.
1062 		 * If the supplied address is INADDR_BROADCAST,
1063 		 * and the primary interface supports broadcast,
1064 		 * choose the broadcast address for that interface.
1065 		 */
1066 		if (faddr.s_addr == INADDR_ANY) {
1067 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1068 			faddr =
1069 			    IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1070 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1071 			if (cred != NULL &&
1072 			    (error = prison_get_ip4(cred, &faddr)) != 0)
1073 				return (error);
1074 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1075 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1076 			if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1077 			    IFF_BROADCAST)
1078 				faddr = satosin(&TAILQ_FIRST(
1079 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1080 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1081 		}
1082 	}
1083 	if (laddr.s_addr == INADDR_ANY) {
1084 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
1085 		/*
1086 		 * If the destination address is multicast and an outgoing
1087 		 * interface has been set as a multicast option, prefer the
1088 		 * address of that interface as our source address.
1089 		 */
1090 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1091 		    inp->inp_moptions != NULL) {
1092 			struct ip_moptions *imo;
1093 			struct ifnet *ifp;
1094 
1095 			imo = inp->inp_moptions;
1096 			if (imo->imo_multicast_ifp != NULL) {
1097 				ifp = imo->imo_multicast_ifp;
1098 				IN_IFADDR_RLOCK(&in_ifa_tracker);
1099 				TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1100 					if ((ia->ia_ifp == ifp) &&
1101 					    (cred == NULL ||
1102 					    prison_check_ip4(cred,
1103 					    &ia->ia_addr.sin_addr) == 0))
1104 						break;
1105 				}
1106 				if (ia == NULL)
1107 					error = EADDRNOTAVAIL;
1108 				else {
1109 					laddr = ia->ia_addr.sin_addr;
1110 					error = 0;
1111 				}
1112 				IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1113 			}
1114 		}
1115 		if (error)
1116 			return (error);
1117 	}
1118 	oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1119 	    laddr, lport, 0, NULL);
1120 	if (oinp != NULL) {
1121 		if (oinpp != NULL)
1122 			*oinpp = oinp;
1123 		return (EADDRINUSE);
1124 	}
1125 	if (lport == 0) {
1126 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1127 		    cred);
1128 		if (error)
1129 			return (error);
1130 	}
1131 	*laddrp = laddr.s_addr;
1132 	*lportp = lport;
1133 	*faddrp = faddr.s_addr;
1134 	*fportp = fport;
1135 	return (0);
1136 }
1137 
1138 void
1139 in_pcbdisconnect(struct inpcb *inp)
1140 {
1141 
1142 	INP_WLOCK_ASSERT(inp);
1143 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1144 
1145 	inp->inp_faddr.s_addr = INADDR_ANY;
1146 	inp->inp_fport = 0;
1147 	in_pcbrehash(inp);
1148 }
1149 #endif /* INET */
1150 
1151 /*
1152  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1153  * For most protocols, this will be invoked immediately prior to calling
1154  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1155  * socket, in which case in_pcbfree() is deferred.
1156  */
1157 void
1158 in_pcbdetach(struct inpcb *inp)
1159 {
1160 
1161 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1162 
1163 #ifdef RATELIMIT
1164 	if (inp->inp_snd_tag != NULL)
1165 		in_pcbdetach_txrtlmt(inp);
1166 #endif
1167 	inp->inp_socket->so_pcb = NULL;
1168 	inp->inp_socket = NULL;
1169 }
1170 
1171 /*
1172  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1173  * stability of an inpcb pointer despite the inpcb lock being released.  This
1174  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1175  * but where the inpcb lock may already held, or when acquiring a reference
1176  * via a pcbgroup.
1177  *
1178  * in_pcbref() should be used only to provide brief memory stability, and
1179  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1180  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1181  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1182  * lock and rele are the *only* safe operations that may be performed on the
1183  * inpcb.
1184  *
1185  * While the inpcb will not be freed, releasing the inpcb lock means that the
1186  * connection's state may change, so the caller should be careful to
1187  * revalidate any cached state on reacquiring the lock.  Drop the reference
1188  * using in_pcbrele().
1189  */
1190 void
1191 in_pcbref(struct inpcb *inp)
1192 {
1193 
1194 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1195 
1196 	refcount_acquire(&inp->inp_refcount);
1197 }
1198 
1199 /*
1200  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1201  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1202  * return a flag indicating whether or not the inpcb remains valid.  If it is
1203  * valid, we return with the inpcb lock held.
1204  *
1205  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1206  * reference on an inpcb.  Historically more work was done here (actually, in
1207  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1208  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1209  * about memory stability (and continued use of the write lock).
1210  */
1211 int
1212 in_pcbrele_rlocked(struct inpcb *inp)
1213 {
1214 	struct inpcbinfo *pcbinfo;
1215 
1216 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1217 
1218 	INP_RLOCK_ASSERT(inp);
1219 
1220 	if (refcount_release(&inp->inp_refcount) == 0) {
1221 		/*
1222 		 * If the inpcb has been freed, let the caller know, even if
1223 		 * this isn't the last reference.
1224 		 */
1225 		if (inp->inp_flags2 & INP_FREED) {
1226 			INP_RUNLOCK(inp);
1227 			return (1);
1228 		}
1229 		return (0);
1230 	}
1231 
1232 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1233 #ifdef TCPHPTS
1234 	if (inp->inp_in_hpts || inp->inp_in_input) {
1235 		struct tcp_hpts_entry *hpts;
1236 		/*
1237 		 * We should not be on the hpts at
1238 		 * this point in any form. we must
1239 		 * get the lock to be sure.
1240 		 */
1241 		hpts = tcp_hpts_lock(inp);
1242 		if (inp->inp_in_hpts)
1243 			panic("Hpts:%p inp:%p at free still on hpts",
1244 			      hpts, inp);
1245 		mtx_unlock(&hpts->p_mtx);
1246 		hpts = tcp_input_lock(inp);
1247 		if (inp->inp_in_input)
1248 			panic("Hpts:%p inp:%p at free still on input hpts",
1249 			      hpts, inp);
1250 		mtx_unlock(&hpts->p_mtx);
1251 	}
1252 #endif
1253 	INP_RUNLOCK(inp);
1254 	pcbinfo = inp->inp_pcbinfo;
1255 	uma_zfree(pcbinfo->ipi_zone, inp);
1256 	return (1);
1257 }
1258 
1259 int
1260 in_pcbrele_wlocked(struct inpcb *inp)
1261 {
1262 	struct inpcbinfo *pcbinfo;
1263 
1264 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1265 
1266 	INP_WLOCK_ASSERT(inp);
1267 
1268 	if (refcount_release(&inp->inp_refcount) == 0) {
1269 		/*
1270 		 * If the inpcb has been freed, let the caller know, even if
1271 		 * this isn't the last reference.
1272 		 */
1273 		if (inp->inp_flags2 & INP_FREED) {
1274 			INP_WUNLOCK(inp);
1275 			return (1);
1276 		}
1277 		return (0);
1278 	}
1279 
1280 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1281 #ifdef TCPHPTS
1282 	if (inp->inp_in_hpts || inp->inp_in_input) {
1283 		struct tcp_hpts_entry *hpts;
1284 		/*
1285 		 * We should not be on the hpts at
1286 		 * this point in any form. we must
1287 		 * get the lock to be sure.
1288 		 */
1289 		hpts = tcp_hpts_lock(inp);
1290 		if (inp->inp_in_hpts)
1291 			panic("Hpts:%p inp:%p at free still on hpts",
1292 			      hpts, inp);
1293 		mtx_unlock(&hpts->p_mtx);
1294 		hpts = tcp_input_lock(inp);
1295 		if (inp->inp_in_input)
1296 			panic("Hpts:%p inp:%p at free still on input hpts",
1297 			      hpts, inp);
1298 		mtx_unlock(&hpts->p_mtx);
1299 	}
1300 #endif
1301 	INP_WUNLOCK(inp);
1302 	pcbinfo = inp->inp_pcbinfo;
1303 	uma_zfree(pcbinfo->ipi_zone, inp);
1304 	return (1);
1305 }
1306 
1307 /*
1308  * Temporary wrapper.
1309  */
1310 int
1311 in_pcbrele(struct inpcb *inp)
1312 {
1313 
1314 	return (in_pcbrele_wlocked(inp));
1315 }
1316 
1317 /*
1318  * Unconditionally schedule an inpcb to be freed by decrementing its
1319  * reference count, which should occur only after the inpcb has been detached
1320  * from its socket.  If another thread holds a temporary reference (acquired
1321  * using in_pcbref()) then the free is deferred until that reference is
1322  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1323  * work, including removal from global lists, is done in this context, where
1324  * the pcbinfo lock is held.
1325  */
1326 void
1327 in_pcbfree(struct inpcb *inp)
1328 {
1329 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1330 
1331 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1332 
1333 	KASSERT((inp->inp_flags2 & INP_FREED) == 0,
1334 	    ("%s: called twice for pcb %p", __func__, inp));
1335 	if (inp->inp_flags2 & INP_FREED) {
1336 		INP_WUNLOCK(inp);
1337 		return;
1338 	}
1339 
1340 #ifdef INVARIANTS
1341 	if (pcbinfo == &V_tcbinfo) {
1342 		INP_INFO_LOCK_ASSERT(pcbinfo);
1343 	} else {
1344 		INP_INFO_WLOCK_ASSERT(pcbinfo);
1345 	}
1346 #endif
1347 	INP_WLOCK_ASSERT(inp);
1348 
1349 	/* XXXRW: Do as much as possible here. */
1350 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1351 	if (inp->inp_sp != NULL)
1352 		ipsec_delete_pcbpolicy(inp);
1353 #endif
1354 	INP_LIST_WLOCK(pcbinfo);
1355 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1356 	in_pcbremlists(inp);
1357 	INP_LIST_WUNLOCK(pcbinfo);
1358 #ifdef INET6
1359 	if (inp->inp_vflag & INP_IPV6PROTO) {
1360 		ip6_freepcbopts(inp->in6p_outputopts);
1361 		if (inp->in6p_moptions != NULL)
1362 			ip6_freemoptions(inp->in6p_moptions);
1363 	}
1364 #endif
1365 	if (inp->inp_options)
1366 		(void)m_free(inp->inp_options);
1367 #ifdef INET
1368 	if (inp->inp_moptions != NULL)
1369 		inp_freemoptions(inp->inp_moptions);
1370 #endif
1371 	RO_INVALIDATE_CACHE(&inp->inp_route);
1372 
1373 	inp->inp_vflag = 0;
1374 	inp->inp_flags2 |= INP_FREED;
1375 	crfree(inp->inp_cred);
1376 #ifdef MAC
1377 	mac_inpcb_destroy(inp);
1378 #endif
1379 	if (!in_pcbrele_wlocked(inp))
1380 		INP_WUNLOCK(inp);
1381 }
1382 
1383 /*
1384  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1385  * port reservation, and preventing it from being returned by inpcb lookups.
1386  *
1387  * It is used by TCP to mark an inpcb as unused and avoid future packet
1388  * delivery or event notification when a socket remains open but TCP has
1389  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1390  * or a RST on the wire, and allows the port binding to be reused while still
1391  * maintaining the invariant that so_pcb always points to a valid inpcb until
1392  * in_pcbdetach().
1393  *
1394  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1395  * in_pcbnotifyall() and in_pcbpurgeif0()?
1396  */
1397 void
1398 in_pcbdrop(struct inpcb *inp)
1399 {
1400 
1401 	INP_WLOCK_ASSERT(inp);
1402 
1403 	/*
1404 	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1405 	 * the hash lock...?
1406 	 */
1407 	inp->inp_flags |= INP_DROPPED;
1408 	if (inp->inp_flags & INP_INHASHLIST) {
1409 		struct inpcbport *phd = inp->inp_phd;
1410 
1411 		INP_HASH_WLOCK(inp->inp_pcbinfo);
1412 		LIST_REMOVE(inp, inp_hash);
1413 		LIST_REMOVE(inp, inp_portlist);
1414 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1415 			LIST_REMOVE(phd, phd_hash);
1416 			free(phd, M_PCB);
1417 		}
1418 		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1419 		inp->inp_flags &= ~INP_INHASHLIST;
1420 #ifdef PCBGROUP
1421 		in_pcbgroup_remove(inp);
1422 #endif
1423 	}
1424 }
1425 
1426 #ifdef INET
1427 /*
1428  * Common routines to return the socket addresses associated with inpcbs.
1429  */
1430 struct sockaddr *
1431 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1432 {
1433 	struct sockaddr_in *sin;
1434 
1435 	sin = malloc(sizeof *sin, M_SONAME,
1436 		M_WAITOK | M_ZERO);
1437 	sin->sin_family = AF_INET;
1438 	sin->sin_len = sizeof(*sin);
1439 	sin->sin_addr = *addr_p;
1440 	sin->sin_port = port;
1441 
1442 	return (struct sockaddr *)sin;
1443 }
1444 
1445 int
1446 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1447 {
1448 	struct inpcb *inp;
1449 	struct in_addr addr;
1450 	in_port_t port;
1451 
1452 	inp = sotoinpcb(so);
1453 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1454 
1455 	INP_RLOCK(inp);
1456 	port = inp->inp_lport;
1457 	addr = inp->inp_laddr;
1458 	INP_RUNLOCK(inp);
1459 
1460 	*nam = in_sockaddr(port, &addr);
1461 	return 0;
1462 }
1463 
1464 int
1465 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1466 {
1467 	struct inpcb *inp;
1468 	struct in_addr addr;
1469 	in_port_t port;
1470 
1471 	inp = sotoinpcb(so);
1472 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1473 
1474 	INP_RLOCK(inp);
1475 	port = inp->inp_fport;
1476 	addr = inp->inp_faddr;
1477 	INP_RUNLOCK(inp);
1478 
1479 	*nam = in_sockaddr(port, &addr);
1480 	return 0;
1481 }
1482 
1483 void
1484 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1485     struct inpcb *(*notify)(struct inpcb *, int))
1486 {
1487 	struct inpcb *inp, *inp_temp;
1488 
1489 	INP_INFO_WLOCK(pcbinfo);
1490 	LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1491 		INP_WLOCK(inp);
1492 #ifdef INET6
1493 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1494 			INP_WUNLOCK(inp);
1495 			continue;
1496 		}
1497 #endif
1498 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1499 		    inp->inp_socket == NULL) {
1500 			INP_WUNLOCK(inp);
1501 			continue;
1502 		}
1503 		if ((*notify)(inp, errno))
1504 			INP_WUNLOCK(inp);
1505 	}
1506 	INP_INFO_WUNLOCK(pcbinfo);
1507 }
1508 
1509 void
1510 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1511 {
1512 	struct inpcb *inp;
1513 	struct ip_moptions *imo;
1514 	int i, gap;
1515 
1516 	INP_INFO_WLOCK(pcbinfo);
1517 	LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1518 		INP_WLOCK(inp);
1519 		imo = inp->inp_moptions;
1520 		if ((inp->inp_vflag & INP_IPV4) &&
1521 		    imo != NULL) {
1522 			/*
1523 			 * Unselect the outgoing interface if it is being
1524 			 * detached.
1525 			 */
1526 			if (imo->imo_multicast_ifp == ifp)
1527 				imo->imo_multicast_ifp = NULL;
1528 
1529 			/*
1530 			 * Drop multicast group membership if we joined
1531 			 * through the interface being detached.
1532 			 */
1533 			for (i = 0, gap = 0; i < imo->imo_num_memberships;
1534 			    i++) {
1535 				if (imo->imo_membership[i]->inm_ifp == ifp) {
1536 					in_delmulti(imo->imo_membership[i]);
1537 					gap++;
1538 				} else if (gap != 0)
1539 					imo->imo_membership[i - gap] =
1540 					    imo->imo_membership[i];
1541 			}
1542 			imo->imo_num_memberships -= gap;
1543 		}
1544 		INP_WUNLOCK(inp);
1545 	}
1546 	INP_INFO_WUNLOCK(pcbinfo);
1547 }
1548 
1549 /*
1550  * Lookup a PCB based on the local address and port.  Caller must hold the
1551  * hash lock.  No inpcb locks or references are acquired.
1552  */
1553 #define INP_LOOKUP_MAPPED_PCB_COST	3
1554 struct inpcb *
1555 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1556     u_short lport, int lookupflags, struct ucred *cred)
1557 {
1558 	struct inpcb *inp;
1559 #ifdef INET6
1560 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1561 #else
1562 	int matchwild = 3;
1563 #endif
1564 	int wildcard;
1565 
1566 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1567 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1568 
1569 	INP_HASH_LOCK_ASSERT(pcbinfo);
1570 
1571 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1572 		struct inpcbhead *head;
1573 		/*
1574 		 * Look for an unconnected (wildcard foreign addr) PCB that
1575 		 * matches the local address and port we're looking for.
1576 		 */
1577 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1578 		    0, pcbinfo->ipi_hashmask)];
1579 		LIST_FOREACH(inp, head, inp_hash) {
1580 #ifdef INET6
1581 			/* XXX inp locking */
1582 			if ((inp->inp_vflag & INP_IPV4) == 0)
1583 				continue;
1584 #endif
1585 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1586 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1587 			    inp->inp_lport == lport) {
1588 				/*
1589 				 * Found?
1590 				 */
1591 				if (cred == NULL ||
1592 				    prison_equal_ip4(cred->cr_prison,
1593 					inp->inp_cred->cr_prison))
1594 					return (inp);
1595 			}
1596 		}
1597 		/*
1598 		 * Not found.
1599 		 */
1600 		return (NULL);
1601 	} else {
1602 		struct inpcbporthead *porthash;
1603 		struct inpcbport *phd;
1604 		struct inpcb *match = NULL;
1605 		/*
1606 		 * Best fit PCB lookup.
1607 		 *
1608 		 * First see if this local port is in use by looking on the
1609 		 * port hash list.
1610 		 */
1611 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1612 		    pcbinfo->ipi_porthashmask)];
1613 		LIST_FOREACH(phd, porthash, phd_hash) {
1614 			if (phd->phd_port == lport)
1615 				break;
1616 		}
1617 		if (phd != NULL) {
1618 			/*
1619 			 * Port is in use by one or more PCBs. Look for best
1620 			 * fit.
1621 			 */
1622 			LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1623 				wildcard = 0;
1624 				if (cred != NULL &&
1625 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
1626 					cred->cr_prison))
1627 					continue;
1628 #ifdef INET6
1629 				/* XXX inp locking */
1630 				if ((inp->inp_vflag & INP_IPV4) == 0)
1631 					continue;
1632 				/*
1633 				 * We never select the PCB that has
1634 				 * INP_IPV6 flag and is bound to :: if
1635 				 * we have another PCB which is bound
1636 				 * to 0.0.0.0.  If a PCB has the
1637 				 * INP_IPV6 flag, then we set its cost
1638 				 * higher than IPv4 only PCBs.
1639 				 *
1640 				 * Note that the case only happens
1641 				 * when a socket is bound to ::, under
1642 				 * the condition that the use of the
1643 				 * mapped address is allowed.
1644 				 */
1645 				if ((inp->inp_vflag & INP_IPV6) != 0)
1646 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1647 #endif
1648 				if (inp->inp_faddr.s_addr != INADDR_ANY)
1649 					wildcard++;
1650 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
1651 					if (laddr.s_addr == INADDR_ANY)
1652 						wildcard++;
1653 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
1654 						continue;
1655 				} else {
1656 					if (laddr.s_addr != INADDR_ANY)
1657 						wildcard++;
1658 				}
1659 				if (wildcard < matchwild) {
1660 					match = inp;
1661 					matchwild = wildcard;
1662 					if (matchwild == 0)
1663 						break;
1664 				}
1665 			}
1666 		}
1667 		return (match);
1668 	}
1669 }
1670 #undef INP_LOOKUP_MAPPED_PCB_COST
1671 
1672 #ifdef PCBGROUP
1673 /*
1674  * Lookup PCB in hash list, using pcbgroup tables.
1675  */
1676 static struct inpcb *
1677 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
1678     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
1679     u_int lport_arg, int lookupflags, struct ifnet *ifp)
1680 {
1681 	struct inpcbhead *head;
1682 	struct inpcb *inp, *tmpinp;
1683 	u_short fport = fport_arg, lport = lport_arg;
1684 	bool locked;
1685 
1686 	/*
1687 	 * First look for an exact match.
1688 	 */
1689 	tmpinp = NULL;
1690 	INP_GROUP_LOCK(pcbgroup);
1691 	head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1692 	    pcbgroup->ipg_hashmask)];
1693 	LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1694 #ifdef INET6
1695 		/* XXX inp locking */
1696 		if ((inp->inp_vflag & INP_IPV4) == 0)
1697 			continue;
1698 #endif
1699 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1700 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1701 		    inp->inp_fport == fport &&
1702 		    inp->inp_lport == lport) {
1703 			/*
1704 			 * XXX We should be able to directly return
1705 			 * the inp here, without any checks.
1706 			 * Well unless both bound with SO_REUSEPORT?
1707 			 */
1708 			if (prison_flag(inp->inp_cred, PR_IP4))
1709 				goto found;
1710 			if (tmpinp == NULL)
1711 				tmpinp = inp;
1712 		}
1713 	}
1714 	if (tmpinp != NULL) {
1715 		inp = tmpinp;
1716 		goto found;
1717 	}
1718 
1719 #ifdef	RSS
1720 	/*
1721 	 * For incoming connections, we may wish to do a wildcard
1722 	 * match for an RSS-local socket.
1723 	 */
1724 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1725 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1726 #ifdef INET6
1727 		struct inpcb *local_wild_mapped = NULL;
1728 #endif
1729 		struct inpcb *jail_wild = NULL;
1730 		struct inpcbhead *head;
1731 		int injail;
1732 
1733 		/*
1734 		 * Order of socket selection - we always prefer jails.
1735 		 *      1. jailed, non-wild.
1736 		 *      2. jailed, wild.
1737 		 *      3. non-jailed, non-wild.
1738 		 *      4. non-jailed, wild.
1739 		 */
1740 
1741 		head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
1742 		    lport, 0, pcbgroup->ipg_hashmask)];
1743 		LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1744 #ifdef INET6
1745 			/* XXX inp locking */
1746 			if ((inp->inp_vflag & INP_IPV4) == 0)
1747 				continue;
1748 #endif
1749 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1750 			    inp->inp_lport != lport)
1751 				continue;
1752 
1753 			injail = prison_flag(inp->inp_cred, PR_IP4);
1754 			if (injail) {
1755 				if (prison_check_ip4(inp->inp_cred,
1756 				    &laddr) != 0)
1757 					continue;
1758 			} else {
1759 				if (local_exact != NULL)
1760 					continue;
1761 			}
1762 
1763 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1764 				if (injail)
1765 					goto found;
1766 				else
1767 					local_exact = inp;
1768 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1769 #ifdef INET6
1770 				/* XXX inp locking, NULL check */
1771 				if (inp->inp_vflag & INP_IPV6PROTO)
1772 					local_wild_mapped = inp;
1773 				else
1774 #endif
1775 					if (injail)
1776 						jail_wild = inp;
1777 					else
1778 						local_wild = inp;
1779 			}
1780 		} /* LIST_FOREACH */
1781 
1782 		inp = jail_wild;
1783 		if (inp == NULL)
1784 			inp = local_exact;
1785 		if (inp == NULL)
1786 			inp = local_wild;
1787 #ifdef INET6
1788 		if (inp == NULL)
1789 			inp = local_wild_mapped;
1790 #endif
1791 		if (inp != NULL)
1792 			goto found;
1793 	}
1794 #endif
1795 
1796 	/*
1797 	 * Then look for a wildcard match, if requested.
1798 	 */
1799 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1800 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1801 #ifdef INET6
1802 		struct inpcb *local_wild_mapped = NULL;
1803 #endif
1804 		struct inpcb *jail_wild = NULL;
1805 		struct inpcbhead *head;
1806 		int injail;
1807 
1808 		/*
1809 		 * Order of socket selection - we always prefer jails.
1810 		 *      1. jailed, non-wild.
1811 		 *      2. jailed, wild.
1812 		 *      3. non-jailed, non-wild.
1813 		 *      4. non-jailed, wild.
1814 		 */
1815 		head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
1816 		    0, pcbinfo->ipi_wildmask)];
1817 		LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
1818 #ifdef INET6
1819 			/* XXX inp locking */
1820 			if ((inp->inp_vflag & INP_IPV4) == 0)
1821 				continue;
1822 #endif
1823 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1824 			    inp->inp_lport != lport)
1825 				continue;
1826 
1827 			injail = prison_flag(inp->inp_cred, PR_IP4);
1828 			if (injail) {
1829 				if (prison_check_ip4(inp->inp_cred,
1830 				    &laddr) != 0)
1831 					continue;
1832 			} else {
1833 				if (local_exact != NULL)
1834 					continue;
1835 			}
1836 
1837 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1838 				if (injail)
1839 					goto found;
1840 				else
1841 					local_exact = inp;
1842 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1843 #ifdef INET6
1844 				/* XXX inp locking, NULL check */
1845 				if (inp->inp_vflag & INP_IPV6PROTO)
1846 					local_wild_mapped = inp;
1847 				else
1848 #endif
1849 					if (injail)
1850 						jail_wild = inp;
1851 					else
1852 						local_wild = inp;
1853 			}
1854 		} /* LIST_FOREACH */
1855 		inp = jail_wild;
1856 		if (inp == NULL)
1857 			inp = local_exact;
1858 		if (inp == NULL)
1859 			inp = local_wild;
1860 #ifdef INET6
1861 		if (inp == NULL)
1862 			inp = local_wild_mapped;
1863 #endif
1864 		if (inp != NULL)
1865 			goto found;
1866 	} /* if (lookupflags & INPLOOKUP_WILDCARD) */
1867 	INP_GROUP_UNLOCK(pcbgroup);
1868 	return (NULL);
1869 
1870 found:
1871 	if (lookupflags & INPLOOKUP_WLOCKPCB)
1872 		locked = INP_TRY_WLOCK(inp);
1873 	else if (lookupflags & INPLOOKUP_RLOCKPCB)
1874 		locked = INP_TRY_RLOCK(inp);
1875 	else
1876 		panic("%s: locking bug", __func__);
1877 	if (!locked)
1878 		in_pcbref(inp);
1879 	INP_GROUP_UNLOCK(pcbgroup);
1880 	if (!locked) {
1881 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
1882 			INP_WLOCK(inp);
1883 			if (in_pcbrele_wlocked(inp))
1884 				return (NULL);
1885 		} else {
1886 			INP_RLOCK(inp);
1887 			if (in_pcbrele_rlocked(inp))
1888 				return (NULL);
1889 		}
1890 	}
1891 #ifdef INVARIANTS
1892 	if (lookupflags & INPLOOKUP_WLOCKPCB)
1893 		INP_WLOCK_ASSERT(inp);
1894 	else
1895 		INP_RLOCK_ASSERT(inp);
1896 #endif
1897 	return (inp);
1898 }
1899 #endif /* PCBGROUP */
1900 
1901 /*
1902  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
1903  * that the caller has locked the hash list, and will not perform any further
1904  * locking or reference operations on either the hash list or the connection.
1905  */
1906 static struct inpcb *
1907 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1908     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
1909     struct ifnet *ifp)
1910 {
1911 	struct inpcbhead *head;
1912 	struct inpcb *inp, *tmpinp;
1913 	u_short fport = fport_arg, lport = lport_arg;
1914 
1915 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1916 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1917 
1918 	INP_HASH_LOCK_ASSERT(pcbinfo);
1919 
1920 	/*
1921 	 * First look for an exact match.
1922 	 */
1923 	tmpinp = NULL;
1924 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1925 	    pcbinfo->ipi_hashmask)];
1926 	LIST_FOREACH(inp, head, inp_hash) {
1927 #ifdef INET6
1928 		/* XXX inp locking */
1929 		if ((inp->inp_vflag & INP_IPV4) == 0)
1930 			continue;
1931 #endif
1932 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1933 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1934 		    inp->inp_fport == fport &&
1935 		    inp->inp_lport == lport) {
1936 			/*
1937 			 * XXX We should be able to directly return
1938 			 * the inp here, without any checks.
1939 			 * Well unless both bound with SO_REUSEPORT?
1940 			 */
1941 			if (prison_flag(inp->inp_cred, PR_IP4))
1942 				return (inp);
1943 			if (tmpinp == NULL)
1944 				tmpinp = inp;
1945 		}
1946 	}
1947 	if (tmpinp != NULL)
1948 		return (tmpinp);
1949 
1950 	/*
1951 	 * Then look for a wildcard match, if requested.
1952 	 */
1953 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1954 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1955 #ifdef INET6
1956 		struct inpcb *local_wild_mapped = NULL;
1957 #endif
1958 		struct inpcb *jail_wild = NULL;
1959 		int injail;
1960 
1961 		/*
1962 		 * Order of socket selection - we always prefer jails.
1963 		 *      1. jailed, non-wild.
1964 		 *      2. jailed, wild.
1965 		 *      3. non-jailed, non-wild.
1966 		 *      4. non-jailed, wild.
1967 		 */
1968 
1969 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1970 		    0, pcbinfo->ipi_hashmask)];
1971 		LIST_FOREACH(inp, head, inp_hash) {
1972 #ifdef INET6
1973 			/* XXX inp locking */
1974 			if ((inp->inp_vflag & INP_IPV4) == 0)
1975 				continue;
1976 #endif
1977 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1978 			    inp->inp_lport != lport)
1979 				continue;
1980 
1981 			injail = prison_flag(inp->inp_cred, PR_IP4);
1982 			if (injail) {
1983 				if (prison_check_ip4(inp->inp_cred,
1984 				    &laddr) != 0)
1985 					continue;
1986 			} else {
1987 				if (local_exact != NULL)
1988 					continue;
1989 			}
1990 
1991 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1992 				if (injail)
1993 					return (inp);
1994 				else
1995 					local_exact = inp;
1996 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1997 #ifdef INET6
1998 				/* XXX inp locking, NULL check */
1999 				if (inp->inp_vflag & INP_IPV6PROTO)
2000 					local_wild_mapped = inp;
2001 				else
2002 #endif
2003 					if (injail)
2004 						jail_wild = inp;
2005 					else
2006 						local_wild = inp;
2007 			}
2008 		} /* LIST_FOREACH */
2009 		if (jail_wild != NULL)
2010 			return (jail_wild);
2011 		if (local_exact != NULL)
2012 			return (local_exact);
2013 		if (local_wild != NULL)
2014 			return (local_wild);
2015 #ifdef INET6
2016 		if (local_wild_mapped != NULL)
2017 			return (local_wild_mapped);
2018 #endif
2019 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
2020 
2021 	return (NULL);
2022 }
2023 
2024 /*
2025  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
2026  * hash list lock, and will return the inpcb locked (i.e., requires
2027  * INPLOOKUP_LOCKPCB).
2028  */
2029 static struct inpcb *
2030 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2031     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2032     struct ifnet *ifp)
2033 {
2034 	struct inpcb *inp;
2035 	bool locked;
2036 
2037 	INP_HASH_RLOCK(pcbinfo);
2038 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2039 	    (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
2040 	if (inp != NULL) {
2041 		if (lookupflags & INPLOOKUP_WLOCKPCB)
2042 			locked = INP_TRY_WLOCK(inp);
2043 		else if (lookupflags & INPLOOKUP_RLOCKPCB)
2044 			locked = INP_TRY_RLOCK(inp);
2045 		else
2046 			panic("%s: locking bug", __func__);
2047 		if (!locked)
2048 			in_pcbref(inp);
2049 		INP_HASH_RUNLOCK(pcbinfo);
2050 		if (!locked) {
2051 			if (lookupflags & INPLOOKUP_WLOCKPCB) {
2052 				INP_WLOCK(inp);
2053 				if (in_pcbrele_wlocked(inp))
2054 					return (NULL);
2055 			} else {
2056 				INP_RLOCK(inp);
2057 				if (in_pcbrele_rlocked(inp))
2058 					return (NULL);
2059 			}
2060 		}
2061 #ifdef INVARIANTS
2062 		if (lookupflags & INPLOOKUP_WLOCKPCB)
2063 			INP_WLOCK_ASSERT(inp);
2064 		else
2065 			INP_RLOCK_ASSERT(inp);
2066 #endif
2067 	} else
2068 		INP_HASH_RUNLOCK(pcbinfo);
2069 	return (inp);
2070 }
2071 
2072 /*
2073  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2074  * from which a pre-calculated hash value may be extracted.
2075  *
2076  * Possibly more of this logic should be in in_pcbgroup.c.
2077  */
2078 struct inpcb *
2079 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2080     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
2081 {
2082 #if defined(PCBGROUP) && !defined(RSS)
2083 	struct inpcbgroup *pcbgroup;
2084 #endif
2085 
2086 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2087 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2088 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2089 	    ("%s: LOCKPCB not set", __func__));
2090 
2091 	/*
2092 	 * When not using RSS, use connection groups in preference to the
2093 	 * reservation table when looking up 4-tuples.  When using RSS, just
2094 	 * use the reservation table, due to the cost of the Toeplitz hash
2095 	 * in software.
2096 	 *
2097 	 * XXXRW: This policy belongs in the pcbgroup code, as in principle
2098 	 * we could be doing RSS with a non-Toeplitz hash that is affordable
2099 	 * in software.
2100 	 */
2101 #if defined(PCBGROUP) && !defined(RSS)
2102 	if (in_pcbgroup_enabled(pcbinfo)) {
2103 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2104 		    fport);
2105 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2106 		    laddr, lport, lookupflags, ifp));
2107 	}
2108 #endif
2109 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2110 	    lookupflags, ifp));
2111 }
2112 
2113 struct inpcb *
2114 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2115     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2116     struct ifnet *ifp, struct mbuf *m)
2117 {
2118 #ifdef PCBGROUP
2119 	struct inpcbgroup *pcbgroup;
2120 #endif
2121 
2122 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2123 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2124 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2125 	    ("%s: LOCKPCB not set", __func__));
2126 
2127 #ifdef PCBGROUP
2128 	/*
2129 	 * If we can use a hardware-generated hash to look up the connection
2130 	 * group, use that connection group to find the inpcb.  Otherwise
2131 	 * fall back on a software hash -- or the reservation table if we're
2132 	 * using RSS.
2133 	 *
2134 	 * XXXRW: As above, that policy belongs in the pcbgroup code.
2135 	 */
2136 	if (in_pcbgroup_enabled(pcbinfo) &&
2137 	    !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
2138 		pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
2139 		    m->m_pkthdr.flowid);
2140 		if (pcbgroup != NULL)
2141 			return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
2142 			    fport, laddr, lport, lookupflags, ifp));
2143 #ifndef RSS
2144 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2145 		    fport);
2146 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2147 		    laddr, lport, lookupflags, ifp));
2148 #endif
2149 	}
2150 #endif
2151 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2152 	    lookupflags, ifp));
2153 }
2154 #endif /* INET */
2155 
2156 /*
2157  * Insert PCB onto various hash lists.
2158  */
2159 static int
2160 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
2161 {
2162 	struct inpcbhead *pcbhash;
2163 	struct inpcbporthead *pcbporthash;
2164 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2165 	struct inpcbport *phd;
2166 	u_int32_t hashkey_faddr;
2167 
2168 	INP_WLOCK_ASSERT(inp);
2169 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2170 
2171 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2172 	    ("in_pcbinshash: INP_INHASHLIST"));
2173 
2174 #ifdef INET6
2175 	if (inp->inp_vflag & INP_IPV6)
2176 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2177 	else
2178 #endif
2179 	hashkey_faddr = inp->inp_faddr.s_addr;
2180 
2181 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2182 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2183 
2184 	pcbporthash = &pcbinfo->ipi_porthashbase[
2185 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2186 
2187 	/*
2188 	 * Go through port list and look for a head for this lport.
2189 	 */
2190 	LIST_FOREACH(phd, pcbporthash, phd_hash) {
2191 		if (phd->phd_port == inp->inp_lport)
2192 			break;
2193 	}
2194 	/*
2195 	 * If none exists, malloc one and tack it on.
2196 	 */
2197 	if (phd == NULL) {
2198 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
2199 		if (phd == NULL) {
2200 			return (ENOBUFS); /* XXX */
2201 		}
2202 		phd->phd_port = inp->inp_lport;
2203 		LIST_INIT(&phd->phd_pcblist);
2204 		LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2205 	}
2206 	inp->inp_phd = phd;
2207 	LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2208 	LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2209 	inp->inp_flags |= INP_INHASHLIST;
2210 #ifdef PCBGROUP
2211 	if (do_pcbgroup_update)
2212 		in_pcbgroup_update(inp);
2213 #endif
2214 	return (0);
2215 }
2216 
2217 /*
2218  * For now, there are two public interfaces to insert an inpcb into the hash
2219  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
2220  * is used only in the TCP syncache, where in_pcbinshash is called before the
2221  * full 4-tuple is set for the inpcb, and we don't want to install in the
2222  * pcbgroup until later.
2223  *
2224  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
2225  * connection groups, and partially initialised inpcbs should not be exposed
2226  * to either reservation hash tables or pcbgroups.
2227  */
2228 int
2229 in_pcbinshash(struct inpcb *inp)
2230 {
2231 
2232 	return (in_pcbinshash_internal(inp, 1));
2233 }
2234 
2235 int
2236 in_pcbinshash_nopcbgroup(struct inpcb *inp)
2237 {
2238 
2239 	return (in_pcbinshash_internal(inp, 0));
2240 }
2241 
2242 /*
2243  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2244  * changed. NOTE: This does not handle the case of the lport changing (the
2245  * hashed port list would have to be updated as well), so the lport must
2246  * not change after in_pcbinshash() has been called.
2247  */
2248 void
2249 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
2250 {
2251 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2252 	struct inpcbhead *head;
2253 	u_int32_t hashkey_faddr;
2254 
2255 	INP_WLOCK_ASSERT(inp);
2256 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2257 
2258 	KASSERT(inp->inp_flags & INP_INHASHLIST,
2259 	    ("in_pcbrehash: !INP_INHASHLIST"));
2260 
2261 #ifdef INET6
2262 	if (inp->inp_vflag & INP_IPV6)
2263 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2264 	else
2265 #endif
2266 	hashkey_faddr = inp->inp_faddr.s_addr;
2267 
2268 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2269 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2270 
2271 	LIST_REMOVE(inp, inp_hash);
2272 	LIST_INSERT_HEAD(head, inp, inp_hash);
2273 
2274 #ifdef PCBGROUP
2275 	if (m != NULL)
2276 		in_pcbgroup_update_mbuf(inp, m);
2277 	else
2278 		in_pcbgroup_update(inp);
2279 #endif
2280 }
2281 
2282 void
2283 in_pcbrehash(struct inpcb *inp)
2284 {
2285 
2286 	in_pcbrehash_mbuf(inp, NULL);
2287 }
2288 
2289 /*
2290  * Remove PCB from various lists.
2291  */
2292 static void
2293 in_pcbremlists(struct inpcb *inp)
2294 {
2295 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2296 
2297 #ifdef INVARIANTS
2298 	if (pcbinfo == &V_tcbinfo) {
2299 		INP_INFO_RLOCK_ASSERT(pcbinfo);
2300 	} else {
2301 		INP_INFO_WLOCK_ASSERT(pcbinfo);
2302 	}
2303 #endif
2304 
2305 	INP_WLOCK_ASSERT(inp);
2306 	INP_LIST_WLOCK_ASSERT(pcbinfo);
2307 
2308 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2309 	if (inp->inp_flags & INP_INHASHLIST) {
2310 		struct inpcbport *phd = inp->inp_phd;
2311 
2312 		INP_HASH_WLOCK(pcbinfo);
2313 		LIST_REMOVE(inp, inp_hash);
2314 		LIST_REMOVE(inp, inp_portlist);
2315 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
2316 			LIST_REMOVE(phd, phd_hash);
2317 			free(phd, M_PCB);
2318 		}
2319 		INP_HASH_WUNLOCK(pcbinfo);
2320 		inp->inp_flags &= ~INP_INHASHLIST;
2321 	}
2322 	LIST_REMOVE(inp, inp_list);
2323 	pcbinfo->ipi_count--;
2324 #ifdef PCBGROUP
2325 	in_pcbgroup_remove(inp);
2326 #endif
2327 }
2328 
2329 /*
2330  * Check for alternatives when higher level complains
2331  * about service problems.  For now, invalidate cached
2332  * routing information.  If the route was created dynamically
2333  * (by a redirect), time to try a default gateway again.
2334  */
2335 void
2336 in_losing(struct inpcb *inp)
2337 {
2338 
2339 	RO_INVALIDATE_CACHE(&inp->inp_route);
2340 	return;
2341 }
2342 
2343 /*
2344  * A set label operation has occurred at the socket layer, propagate the
2345  * label change into the in_pcb for the socket.
2346  */
2347 void
2348 in_pcbsosetlabel(struct socket *so)
2349 {
2350 #ifdef MAC
2351 	struct inpcb *inp;
2352 
2353 	inp = sotoinpcb(so);
2354 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2355 
2356 	INP_WLOCK(inp);
2357 	SOCK_LOCK(so);
2358 	mac_inpcb_sosetlabel(so, inp);
2359 	SOCK_UNLOCK(so);
2360 	INP_WUNLOCK(inp);
2361 #endif
2362 }
2363 
2364 /*
2365  * ipport_tick runs once per second, determining if random port allocation
2366  * should be continued.  If more than ipport_randomcps ports have been
2367  * allocated in the last second, then we return to sequential port
2368  * allocation. We return to random allocation only once we drop below
2369  * ipport_randomcps for at least ipport_randomtime seconds.
2370  */
2371 static void
2372 ipport_tick(void *xtp)
2373 {
2374 	VNET_ITERATOR_DECL(vnet_iter);
2375 
2376 	VNET_LIST_RLOCK_NOSLEEP();
2377 	VNET_FOREACH(vnet_iter) {
2378 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
2379 		if (V_ipport_tcpallocs <=
2380 		    V_ipport_tcplastcount + V_ipport_randomcps) {
2381 			if (V_ipport_stoprandom > 0)
2382 				V_ipport_stoprandom--;
2383 		} else
2384 			V_ipport_stoprandom = V_ipport_randomtime;
2385 		V_ipport_tcplastcount = V_ipport_tcpallocs;
2386 		CURVNET_RESTORE();
2387 	}
2388 	VNET_LIST_RUNLOCK_NOSLEEP();
2389 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2390 }
2391 
2392 static void
2393 ip_fini(void *xtp)
2394 {
2395 
2396 	callout_stop(&ipport_tick_callout);
2397 }
2398 
2399 /*
2400  * The ipport_callout should start running at about the time we attach the
2401  * inet or inet6 domains.
2402  */
2403 static void
2404 ipport_tick_init(const void *unused __unused)
2405 {
2406 
2407 	/* Start ipport_tick. */
2408 	callout_init(&ipport_tick_callout, 1);
2409 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2410 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2411 		SHUTDOWN_PRI_DEFAULT);
2412 }
2413 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
2414     ipport_tick_init, NULL);
2415 
2416 void
2417 inp_wlock(struct inpcb *inp)
2418 {
2419 
2420 	INP_WLOCK(inp);
2421 }
2422 
2423 void
2424 inp_wunlock(struct inpcb *inp)
2425 {
2426 
2427 	INP_WUNLOCK(inp);
2428 }
2429 
2430 void
2431 inp_rlock(struct inpcb *inp)
2432 {
2433 
2434 	INP_RLOCK(inp);
2435 }
2436 
2437 void
2438 inp_runlock(struct inpcb *inp)
2439 {
2440 
2441 	INP_RUNLOCK(inp);
2442 }
2443 
2444 #ifdef INVARIANT_SUPPORT
2445 void
2446 inp_lock_assert(struct inpcb *inp)
2447 {
2448 
2449 	INP_WLOCK_ASSERT(inp);
2450 }
2451 
2452 void
2453 inp_unlock_assert(struct inpcb *inp)
2454 {
2455 
2456 	INP_UNLOCK_ASSERT(inp);
2457 }
2458 #endif
2459 
2460 void
2461 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2462 {
2463 	struct inpcb *inp;
2464 
2465 	INP_INFO_WLOCK(&V_tcbinfo);
2466 	LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2467 		INP_WLOCK(inp);
2468 		func(inp, arg);
2469 		INP_WUNLOCK(inp);
2470 	}
2471 	INP_INFO_WUNLOCK(&V_tcbinfo);
2472 }
2473 
2474 struct socket *
2475 inp_inpcbtosocket(struct inpcb *inp)
2476 {
2477 
2478 	INP_WLOCK_ASSERT(inp);
2479 	return (inp->inp_socket);
2480 }
2481 
2482 struct tcpcb *
2483 inp_inpcbtotcpcb(struct inpcb *inp)
2484 {
2485 
2486 	INP_WLOCK_ASSERT(inp);
2487 	return ((struct tcpcb *)inp->inp_ppcb);
2488 }
2489 
2490 int
2491 inp_ip_tos_get(const struct inpcb *inp)
2492 {
2493 
2494 	return (inp->inp_ip_tos);
2495 }
2496 
2497 void
2498 inp_ip_tos_set(struct inpcb *inp, int val)
2499 {
2500 
2501 	inp->inp_ip_tos = val;
2502 }
2503 
2504 void
2505 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2506     uint32_t *faddr, uint16_t *fp)
2507 {
2508 
2509 	INP_LOCK_ASSERT(inp);
2510 	*laddr = inp->inp_laddr.s_addr;
2511 	*faddr = inp->inp_faddr.s_addr;
2512 	*lp = inp->inp_lport;
2513 	*fp = inp->inp_fport;
2514 }
2515 
2516 struct inpcb *
2517 so_sotoinpcb(struct socket *so)
2518 {
2519 
2520 	return (sotoinpcb(so));
2521 }
2522 
2523 struct tcpcb *
2524 so_sototcpcb(struct socket *so)
2525 {
2526 
2527 	return (sototcpcb(so));
2528 }
2529 
2530 /*
2531  * Create an external-format (``xinpcb'') structure using the information in
2532  * the kernel-format in_pcb structure pointed to by inp.  This is done to
2533  * reduce the spew of irrelevant information over this interface, to isolate
2534  * user code from changes in the kernel structure, and potentially to provide
2535  * information-hiding if we decide that some of this information should be
2536  * hidden from users.
2537  */
2538 void
2539 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2540 {
2541 
2542 	xi->xi_len = sizeof(struct xinpcb);
2543 	if (inp->inp_socket)
2544 		sotoxsocket(inp->inp_socket, &xi->xi_socket);
2545 	else
2546 		bzero(&xi->xi_socket, sizeof(struct xsocket));
2547 	bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2548 	xi->inp_gencnt = inp->inp_gencnt;
2549 	xi->inp_ppcb = inp->inp_ppcb;
2550 	xi->inp_flow = inp->inp_flow;
2551 	xi->inp_flowid = inp->inp_flowid;
2552 	xi->inp_flowtype = inp->inp_flowtype;
2553 	xi->inp_flags = inp->inp_flags;
2554 	xi->inp_flags2 = inp->inp_flags2;
2555 	xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket;
2556 	xi->in6p_cksum = inp->in6p_cksum;
2557 	xi->in6p_hops = inp->in6p_hops;
2558 	xi->inp_ip_tos = inp->inp_ip_tos;
2559 	xi->inp_vflag = inp->inp_vflag;
2560 	xi->inp_ip_ttl = inp->inp_ip_ttl;
2561 	xi->inp_ip_p = inp->inp_ip_p;
2562 	xi->inp_ip_minttl = inp->inp_ip_minttl;
2563 }
2564 
2565 #ifdef DDB
2566 static void
2567 db_print_indent(int indent)
2568 {
2569 	int i;
2570 
2571 	for (i = 0; i < indent; i++)
2572 		db_printf(" ");
2573 }
2574 
2575 static void
2576 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2577 {
2578 	char faddr_str[48], laddr_str[48];
2579 
2580 	db_print_indent(indent);
2581 	db_printf("%s at %p\n", name, inc);
2582 
2583 	indent += 2;
2584 
2585 #ifdef INET6
2586 	if (inc->inc_flags & INC_ISIPV6) {
2587 		/* IPv6. */
2588 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
2589 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
2590 	} else
2591 #endif
2592 	{
2593 		/* IPv4. */
2594 		inet_ntoa_r(inc->inc_laddr, laddr_str);
2595 		inet_ntoa_r(inc->inc_faddr, faddr_str);
2596 	}
2597 	db_print_indent(indent);
2598 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2599 	    ntohs(inc->inc_lport));
2600 	db_print_indent(indent);
2601 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2602 	    ntohs(inc->inc_fport));
2603 }
2604 
2605 static void
2606 db_print_inpflags(int inp_flags)
2607 {
2608 	int comma;
2609 
2610 	comma = 0;
2611 	if (inp_flags & INP_RECVOPTS) {
2612 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2613 		comma = 1;
2614 	}
2615 	if (inp_flags & INP_RECVRETOPTS) {
2616 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2617 		comma = 1;
2618 	}
2619 	if (inp_flags & INP_RECVDSTADDR) {
2620 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2621 		comma = 1;
2622 	}
2623 	if (inp_flags & INP_ORIGDSTADDR) {
2624 		db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
2625 		comma = 1;
2626 	}
2627 	if (inp_flags & INP_HDRINCL) {
2628 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
2629 		comma = 1;
2630 	}
2631 	if (inp_flags & INP_HIGHPORT) {
2632 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2633 		comma = 1;
2634 	}
2635 	if (inp_flags & INP_LOWPORT) {
2636 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
2637 		comma = 1;
2638 	}
2639 	if (inp_flags & INP_ANONPORT) {
2640 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
2641 		comma = 1;
2642 	}
2643 	if (inp_flags & INP_RECVIF) {
2644 		db_printf("%sINP_RECVIF", comma ? ", " : "");
2645 		comma = 1;
2646 	}
2647 	if (inp_flags & INP_MTUDISC) {
2648 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
2649 		comma = 1;
2650 	}
2651 	if (inp_flags & INP_RECVTTL) {
2652 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
2653 		comma = 1;
2654 	}
2655 	if (inp_flags & INP_DONTFRAG) {
2656 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2657 		comma = 1;
2658 	}
2659 	if (inp_flags & INP_RECVTOS) {
2660 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
2661 		comma = 1;
2662 	}
2663 	if (inp_flags & IN6P_IPV6_V6ONLY) {
2664 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
2665 		comma = 1;
2666 	}
2667 	if (inp_flags & IN6P_PKTINFO) {
2668 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
2669 		comma = 1;
2670 	}
2671 	if (inp_flags & IN6P_HOPLIMIT) {
2672 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
2673 		comma = 1;
2674 	}
2675 	if (inp_flags & IN6P_HOPOPTS) {
2676 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
2677 		comma = 1;
2678 	}
2679 	if (inp_flags & IN6P_DSTOPTS) {
2680 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
2681 		comma = 1;
2682 	}
2683 	if (inp_flags & IN6P_RTHDR) {
2684 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
2685 		comma = 1;
2686 	}
2687 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
2688 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
2689 		comma = 1;
2690 	}
2691 	if (inp_flags & IN6P_TCLASS) {
2692 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
2693 		comma = 1;
2694 	}
2695 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
2696 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
2697 		comma = 1;
2698 	}
2699 	if (inp_flags & INP_TIMEWAIT) {
2700 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
2701 		comma  = 1;
2702 	}
2703 	if (inp_flags & INP_ONESBCAST) {
2704 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
2705 		comma  = 1;
2706 	}
2707 	if (inp_flags & INP_DROPPED) {
2708 		db_printf("%sINP_DROPPED", comma ? ", " : "");
2709 		comma  = 1;
2710 	}
2711 	if (inp_flags & INP_SOCKREF) {
2712 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
2713 		comma  = 1;
2714 	}
2715 	if (inp_flags & IN6P_RFC2292) {
2716 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
2717 		comma = 1;
2718 	}
2719 	if (inp_flags & IN6P_MTU) {
2720 		db_printf("IN6P_MTU%s", comma ? ", " : "");
2721 		comma = 1;
2722 	}
2723 }
2724 
2725 static void
2726 db_print_inpvflag(u_char inp_vflag)
2727 {
2728 	int comma;
2729 
2730 	comma = 0;
2731 	if (inp_vflag & INP_IPV4) {
2732 		db_printf("%sINP_IPV4", comma ? ", " : "");
2733 		comma  = 1;
2734 	}
2735 	if (inp_vflag & INP_IPV6) {
2736 		db_printf("%sINP_IPV6", comma ? ", " : "");
2737 		comma  = 1;
2738 	}
2739 	if (inp_vflag & INP_IPV6PROTO) {
2740 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
2741 		comma  = 1;
2742 	}
2743 }
2744 
2745 static void
2746 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
2747 {
2748 
2749 	db_print_indent(indent);
2750 	db_printf("%s at %p\n", name, inp);
2751 
2752 	indent += 2;
2753 
2754 	db_print_indent(indent);
2755 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
2756 
2757 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
2758 
2759 	db_print_indent(indent);
2760 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
2761 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
2762 
2763 	db_print_indent(indent);
2764 	db_printf("inp_label: %p   inp_flags: 0x%x (",
2765 	   inp->inp_label, inp->inp_flags);
2766 	db_print_inpflags(inp->inp_flags);
2767 	db_printf(")\n");
2768 
2769 	db_print_indent(indent);
2770 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
2771 	    inp->inp_vflag);
2772 	db_print_inpvflag(inp->inp_vflag);
2773 	db_printf(")\n");
2774 
2775 	db_print_indent(indent);
2776 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
2777 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
2778 
2779 	db_print_indent(indent);
2780 #ifdef INET6
2781 	if (inp->inp_vflag & INP_IPV6) {
2782 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
2783 		    "in6p_moptions: %p\n", inp->in6p_options,
2784 		    inp->in6p_outputopts, inp->in6p_moptions);
2785 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
2786 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
2787 		    inp->in6p_hops);
2788 	} else
2789 #endif
2790 	{
2791 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
2792 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
2793 		    inp->inp_options, inp->inp_moptions);
2794 	}
2795 
2796 	db_print_indent(indent);
2797 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
2798 	    (uintmax_t)inp->inp_gencnt);
2799 }
2800 
2801 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
2802 {
2803 	struct inpcb *inp;
2804 
2805 	if (!have_addr) {
2806 		db_printf("usage: show inpcb <addr>\n");
2807 		return;
2808 	}
2809 	inp = (struct inpcb *)addr;
2810 
2811 	db_print_inpcb(inp, "inpcb", 0);
2812 }
2813 #endif /* DDB */
2814 
2815 #ifdef RATELIMIT
2816 /*
2817  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
2818  * if any.
2819  */
2820 int
2821 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
2822 {
2823 	union if_snd_tag_modify_params params = {
2824 		.rate_limit.max_rate = max_pacing_rate,
2825 	};
2826 	struct m_snd_tag *mst;
2827 	struct ifnet *ifp;
2828 	int error;
2829 
2830 	mst = inp->inp_snd_tag;
2831 	if (mst == NULL)
2832 		return (EINVAL);
2833 
2834 	ifp = mst->ifp;
2835 	if (ifp == NULL)
2836 		return (EINVAL);
2837 
2838 	if (ifp->if_snd_tag_modify == NULL) {
2839 		error = EOPNOTSUPP;
2840 	} else {
2841 		error = ifp->if_snd_tag_modify(mst, &params);
2842 	}
2843 	return (error);
2844 }
2845 
2846 /*
2847  * Query existing TX rate limit based on the existing
2848  * "inp->inp_snd_tag", if any.
2849  */
2850 int
2851 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
2852 {
2853 	union if_snd_tag_query_params params = { };
2854 	struct m_snd_tag *mst;
2855 	struct ifnet *ifp;
2856 	int error;
2857 
2858 	mst = inp->inp_snd_tag;
2859 	if (mst == NULL)
2860 		return (EINVAL);
2861 
2862 	ifp = mst->ifp;
2863 	if (ifp == NULL)
2864 		return (EINVAL);
2865 
2866 	if (ifp->if_snd_tag_query == NULL) {
2867 		error = EOPNOTSUPP;
2868 	} else {
2869 		error = ifp->if_snd_tag_query(mst, &params);
2870 		if (error == 0 &&  p_max_pacing_rate != NULL)
2871 			*p_max_pacing_rate = params.rate_limit.max_rate;
2872 	}
2873 	return (error);
2874 }
2875 
2876 /*
2877  * Query existing TX queue level based on the existing
2878  * "inp->inp_snd_tag", if any.
2879  */
2880 int
2881 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
2882 {
2883 	union if_snd_tag_query_params params = { };
2884 	struct m_snd_tag *mst;
2885 	struct ifnet *ifp;
2886 	int error;
2887 
2888 	mst = inp->inp_snd_tag;
2889 	if (mst == NULL)
2890 		return (EINVAL);
2891 
2892 	ifp = mst->ifp;
2893 	if (ifp == NULL)
2894 		return (EINVAL);
2895 
2896 	if (ifp->if_snd_tag_query == NULL)
2897 		return (EOPNOTSUPP);
2898 
2899 	error = ifp->if_snd_tag_query(mst, &params);
2900 	if (error == 0 &&  p_txqueue_level != NULL)
2901 		*p_txqueue_level = params.rate_limit.queue_level;
2902 	return (error);
2903 }
2904 
2905 /*
2906  * Allocate a new TX rate limit send tag from the network interface
2907  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
2908  */
2909 int
2910 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
2911     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate)
2912 {
2913 	union if_snd_tag_alloc_params params = {
2914 		.rate_limit.hdr.type = (max_pacing_rate == -1U) ?
2915 		    IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
2916 		.rate_limit.hdr.flowid = flowid,
2917 		.rate_limit.hdr.flowtype = flowtype,
2918 		.rate_limit.max_rate = max_pacing_rate,
2919 	};
2920 	int error;
2921 
2922 	INP_WLOCK_ASSERT(inp);
2923 
2924 	if (inp->inp_snd_tag != NULL)
2925 		return (EINVAL);
2926 
2927 	if (ifp->if_snd_tag_alloc == NULL) {
2928 		error = EOPNOTSUPP;
2929 	} else {
2930 		error = ifp->if_snd_tag_alloc(ifp, &params, &inp->inp_snd_tag);
2931 
2932 		/*
2933 		 * At success increment the refcount on
2934 		 * the send tag's network interface:
2935 		 */
2936 		if (error == 0)
2937 			if_ref(inp->inp_snd_tag->ifp);
2938 	}
2939 	return (error);
2940 }
2941 
2942 /*
2943  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
2944  * if any:
2945  */
2946 void
2947 in_pcbdetach_txrtlmt(struct inpcb *inp)
2948 {
2949 	struct m_snd_tag *mst;
2950 	struct ifnet *ifp;
2951 
2952 	INP_WLOCK_ASSERT(inp);
2953 
2954 	mst = inp->inp_snd_tag;
2955 	inp->inp_snd_tag = NULL;
2956 
2957 	if (mst == NULL)
2958 		return;
2959 
2960 	ifp = mst->ifp;
2961 	if (ifp == NULL)
2962 		return;
2963 
2964 	/*
2965 	 * If the device was detached while we still had reference(s)
2966 	 * on the ifp, we assume if_snd_tag_free() was replaced with
2967 	 * stubs.
2968 	 */
2969 	ifp->if_snd_tag_free(mst);
2970 
2971 	/* release reference count on network interface */
2972 	if_rele(ifp);
2973 }
2974 
2975 /*
2976  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
2977  * is set in the fast path and will attach/detach/modify the TX rate
2978  * limit send tag based on the socket's so_max_pacing_rate value.
2979  */
2980 void
2981 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
2982 {
2983 	struct socket *socket;
2984 	uint32_t max_pacing_rate;
2985 	bool did_upgrade;
2986 	int error;
2987 
2988 	if (inp == NULL)
2989 		return;
2990 
2991 	socket = inp->inp_socket;
2992 	if (socket == NULL)
2993 		return;
2994 
2995 	if (!INP_WLOCKED(inp)) {
2996 		/*
2997 		 * NOTE: If the write locking fails, we need to bail
2998 		 * out and use the non-ratelimited ring for the
2999 		 * transmit until there is a new chance to get the
3000 		 * write lock.
3001 		 */
3002 		if (!INP_TRY_UPGRADE(inp))
3003 			return;
3004 		did_upgrade = 1;
3005 	} else {
3006 		did_upgrade = 0;
3007 	}
3008 
3009 	/*
3010 	 * NOTE: The so_max_pacing_rate value is read unlocked,
3011 	 * because atomic updates are not required since the variable
3012 	 * is checked at every mbuf we send. It is assumed that the
3013 	 * variable read itself will be atomic.
3014 	 */
3015 	max_pacing_rate = socket->so_max_pacing_rate;
3016 
3017 	/*
3018 	 * NOTE: When attaching to a network interface a reference is
3019 	 * made to ensure the network interface doesn't go away until
3020 	 * all ratelimit connections are gone. The network interface
3021 	 * pointers compared below represent valid network interfaces,
3022 	 * except when comparing towards NULL.
3023 	 */
3024 	if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3025 		error = 0;
3026 	} else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3027 		if (inp->inp_snd_tag != NULL)
3028 			in_pcbdetach_txrtlmt(inp);
3029 		error = 0;
3030 	} else if (inp->inp_snd_tag == NULL) {
3031 		/*
3032 		 * In order to utilize packet pacing with RSS, we need
3033 		 * to wait until there is a valid RSS hash before we
3034 		 * can proceed:
3035 		 */
3036 		if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3037 			error = EAGAIN;
3038 		} else {
3039 			error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3040 			    mb->m_pkthdr.flowid, max_pacing_rate);
3041 		}
3042 	} else {
3043 		error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3044 	}
3045 	if (error == 0 || error == EOPNOTSUPP)
3046 		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3047 	if (did_upgrade)
3048 		INP_DOWNGRADE(inp);
3049 }
3050 
3051 /*
3052  * Track route changes for TX rate limiting.
3053  */
3054 void
3055 in_pcboutput_eagain(struct inpcb *inp)
3056 {
3057 	struct socket *socket;
3058 	bool did_upgrade;
3059 
3060 	if (inp == NULL)
3061 		return;
3062 
3063 	socket = inp->inp_socket;
3064 	if (socket == NULL)
3065 		return;
3066 
3067 	if (inp->inp_snd_tag == NULL)
3068 		return;
3069 
3070 	if (!INP_WLOCKED(inp)) {
3071 		/*
3072 		 * NOTE: If the write locking fails, we need to bail
3073 		 * out and use the non-ratelimited ring for the
3074 		 * transmit until there is a new chance to get the
3075 		 * write lock.
3076 		 */
3077 		if (!INP_TRY_UPGRADE(inp))
3078 			return;
3079 		did_upgrade = 1;
3080 	} else {
3081 		did_upgrade = 0;
3082 	}
3083 
3084 	/* detach rate limiting */
3085 	in_pcbdetach_txrtlmt(inp);
3086 
3087 	/* make sure new mbuf send tag allocation is made */
3088 	inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3089 
3090 	if (did_upgrade)
3091 		INP_DOWNGRADE(inp);
3092 }
3093 #endif /* RATELIMIT */
3094