xref: /freebsd/sys/netinet/in_pcb.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2007-2009 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * Copyright (c) 2021-2022 Gleb Smirnoff <glebius@FreeBSD.org>
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Robert N. M. Watson under
12  * contract to Juniper Networks, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #include <sys/cdefs.h>
40 #include "opt_ddb.h"
41 #include "opt_ipsec.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 #include "opt_ratelimit.h"
45 #include "opt_route.h"
46 #include "opt_rss.h"
47 
48 #include <sys/param.h>
49 #include <sys/hash.h>
50 #include <sys/systm.h>
51 #include <sys/libkern.h>
52 #include <sys/lock.h>
53 #include <sys/malloc.h>
54 #include <sys/mbuf.h>
55 #include <sys/eventhandler.h>
56 #include <sys/domain.h>
57 #include <sys/proc.h>
58 #include <sys/protosw.h>
59 #include <sys/smp.h>
60 #include <sys/smr.h>
61 #include <sys/socket.h>
62 #include <sys/socketvar.h>
63 #include <sys/sockio.h>
64 #include <sys/priv.h>
65 #include <sys/proc.h>
66 #include <sys/refcount.h>
67 #include <sys/jail.h>
68 #include <sys/kernel.h>
69 #include <sys/sysctl.h>
70 
71 #ifdef DDB
72 #include <ddb/ddb.h>
73 #endif
74 
75 #include <vm/uma.h>
76 #include <vm/vm.h>
77 
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/if_private.h>
81 #include <net/if_types.h>
82 #include <net/if_llatbl.h>
83 #include <net/route.h>
84 #include <net/rss_config.h>
85 #include <net/vnet.h>
86 
87 #if defined(INET) || defined(INET6)
88 #include <netinet/in.h>
89 #include <netinet/in_pcb.h>
90 #include <netinet/in_pcb_var.h>
91 #include <netinet/tcp.h>
92 #ifdef INET
93 #include <netinet/in_var.h>
94 #include <netinet/in_fib.h>
95 #endif
96 #include <netinet/ip_var.h>
97 #ifdef INET6
98 #include <netinet/ip6.h>
99 #include <netinet6/in6_pcb.h>
100 #include <netinet6/in6_var.h>
101 #include <netinet6/ip6_var.h>
102 #endif /* INET6 */
103 #include <net/route/nhop.h>
104 #endif
105 
106 #include <netipsec/ipsec_support.h>
107 
108 #include <security/mac/mac_framework.h>
109 
110 #define	INPCBLBGROUP_SIZMIN	8
111 #define	INPCBLBGROUP_SIZMAX	256
112 
113 #define	INP_FREED	0x00000200	/* Went through in_pcbfree(). */
114 #define	INP_INLBGROUP	0x01000000	/* Inserted into inpcblbgroup. */
115 
116 /*
117  * These configure the range of local port addresses assigned to
118  * "unspecified" outgoing connections/packets/whatever.
119  */
120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
126 
127 /*
128  * Reserved ports accessible only to root. There are significant
129  * security considerations that must be accounted for when changing these,
130  * but the security benefits can be great. Please be careful.
131  */
132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
133 VNET_DEFINE(int, ipport_reservedlow);
134 
135 /* Enable random ephemeral port allocation by default. */
136 VNET_DEFINE(int, ipport_randomized) = 1;
137 
138 #ifdef INET
139 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
140 			    struct in_addr faddr, u_int fport_arg,
141 			    struct in_addr laddr, u_int lport_arg,
142 			    int lookupflags, uint8_t numa_domain);
143 
144 #define RANGECHK(var, min, max) \
145 	if ((var) < (min)) { (var) = (min); } \
146 	else if ((var) > (max)) { (var) = (max); }
147 
148 static int
149 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
150 {
151 	int error;
152 
153 	error = sysctl_handle_int(oidp, arg1, arg2, req);
154 	if (error == 0) {
155 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
156 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
157 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
158 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
159 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
160 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
161 	}
162 	return (error);
163 }
164 
165 #undef RANGECHK
166 
167 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange,
168     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
169     "IP Ports");
170 
171 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
172     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
173     &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I",
174     "");
175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
176     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
177     &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I",
178     "");
179 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
180     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
181     &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I",
182     "");
183 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
184     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
185     &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I",
186     "");
187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
188     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
189     &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I",
190     "");
191 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
192     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
193     &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I",
194     "");
195 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
196 	CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
197 	&VNET_NAME(ipport_reservedhigh), 0, "");
198 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
199 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
200 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
201 	CTLFLAG_VNET | CTLFLAG_RW,
202 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
203 
204 #ifdef RATELIMIT
205 counter_u64_t rate_limit_new;
206 counter_u64_t rate_limit_chg;
207 counter_u64_t rate_limit_active;
208 counter_u64_t rate_limit_alloc_fail;
209 counter_u64_t rate_limit_set_ok;
210 
211 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
212     "IP Rate Limiting");
213 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD,
214     &rate_limit_active, "Active rate limited connections");
215 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD,
216    &rate_limit_alloc_fail, "Rate limited connection failures");
217 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD,
218    &rate_limit_set_ok, "Rate limited setting succeeded");
219 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD,
220    &rate_limit_new, "Total Rate limit new attempts");
221 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD,
222    &rate_limit_chg, "Total Rate limited change attempts");
223 #endif /* RATELIMIT */
224 
225 #endif /* INET */
226 
227 VNET_DEFINE(uint32_t, in_pcbhashseed);
228 static void
229 in_pcbhashseed_init(void)
230 {
231 
232 	V_in_pcbhashseed = arc4random();
233 }
234 VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST,
235     in_pcbhashseed_init, NULL);
236 
237 #ifdef INET
238 VNET_DEFINE_STATIC(int, connect_inaddr_wild) = 1;
239 #define	V_connect_inaddr_wild	VNET(connect_inaddr_wild)
240 SYSCTL_INT(_net_inet_ip, OID_AUTO, connect_inaddr_wild,
241     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(connect_inaddr_wild), 0,
242     "Allow connecting to INADDR_ANY or INADDR_BROADCAST for connect(2)");
243 #endif
244 
245 static void in_pcbremhash(struct inpcb *);
246 
247 /*
248  * in_pcb.c: manage the Protocol Control Blocks.
249  *
250  * NOTE: It is assumed that most of these functions will be called with
251  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
252  * functions often modify hash chains or addresses in pcbs.
253  */
254 
255 static struct inpcblbgroup *
256 in_pcblbgroup_alloc(struct ucred *cred, u_char vflag, uint16_t port,
257     const union in_dependaddr *addr, int size, uint8_t numa_domain)
258 {
259 	struct inpcblbgroup *grp;
260 	size_t bytes;
261 
262 	bytes = __offsetof(struct inpcblbgroup, il_inp[size]);
263 	grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT);
264 	if (grp == NULL)
265 		return (NULL);
266 	grp->il_cred = crhold(cred);
267 	grp->il_vflag = vflag;
268 	grp->il_lport = port;
269 	grp->il_numa_domain = numa_domain;
270 	grp->il_dependladdr = *addr;
271 	grp->il_inpsiz = size;
272 	return (grp);
273 }
274 
275 static void
276 in_pcblbgroup_free_deferred(epoch_context_t ctx)
277 {
278 	struct inpcblbgroup *grp;
279 
280 	grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx);
281 	crfree(grp->il_cred);
282 	free(grp, M_PCB);
283 }
284 
285 static void
286 in_pcblbgroup_free(struct inpcblbgroup *grp)
287 {
288 
289 	CK_LIST_REMOVE(grp, il_list);
290 	NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx);
291 }
292 
293 static void
294 in_pcblbgroup_insert(struct inpcblbgroup *grp, struct inpcb *inp)
295 {
296 	KASSERT(grp->il_inpcnt < grp->il_inpsiz,
297 	    ("invalid local group size %d and count %d", grp->il_inpsiz,
298 	    grp->il_inpcnt));
299 	INP_WLOCK_ASSERT(inp);
300 
301 	inp->inp_flags |= INP_INLBGROUP;
302 	grp->il_inp[grp->il_inpcnt] = inp;
303 
304 	/*
305 	 * Synchronize with in_pcblookup_lbgroup(): make sure that we don't
306 	 * expose a null slot to the lookup path.
307 	 */
308 	atomic_store_rel_int(&grp->il_inpcnt, grp->il_inpcnt + 1);
309 }
310 
311 static struct inpcblbgroup *
312 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr,
313     struct inpcblbgroup *old_grp, int size)
314 {
315 	struct inpcblbgroup *grp;
316 	int i;
317 
318 	grp = in_pcblbgroup_alloc(old_grp->il_cred, old_grp->il_vflag,
319 	    old_grp->il_lport, &old_grp->il_dependladdr, size,
320 	    old_grp->il_numa_domain);
321 	if (grp == NULL)
322 		return (NULL);
323 
324 	KASSERT(old_grp->il_inpcnt < grp->il_inpsiz,
325 	    ("invalid new local group size %d and old local group count %d",
326 	     grp->il_inpsiz, old_grp->il_inpcnt));
327 
328 	for (i = 0; i < old_grp->il_inpcnt; ++i)
329 		grp->il_inp[i] = old_grp->il_inp[i];
330 	grp->il_inpcnt = old_grp->il_inpcnt;
331 	CK_LIST_INSERT_HEAD(hdr, grp, il_list);
332 	in_pcblbgroup_free(old_grp);
333 	return (grp);
334 }
335 
336 /*
337  * Add PCB to load balance group for SO_REUSEPORT_LB option.
338  */
339 static int
340 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain)
341 {
342 	const static struct timeval interval = { 60, 0 };
343 	static struct timeval lastprint;
344 	struct inpcbinfo *pcbinfo;
345 	struct inpcblbgrouphead *hdr;
346 	struct inpcblbgroup *grp;
347 	uint32_t idx;
348 
349 	pcbinfo = inp->inp_pcbinfo;
350 
351 	INP_WLOCK_ASSERT(inp);
352 	INP_HASH_WLOCK_ASSERT(pcbinfo);
353 
354 #ifdef INET6
355 	/*
356 	 * Don't allow IPv4 mapped INET6 wild socket.
357 	 */
358 	if ((inp->inp_vflag & INP_IPV4) &&
359 	    inp->inp_laddr.s_addr == INADDR_ANY &&
360 	    INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) {
361 		return (0);
362 	}
363 #endif
364 
365 	idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask);
366 	hdr = &pcbinfo->ipi_lbgrouphashbase[idx];
367 	CK_LIST_FOREACH(grp, hdr, il_list) {
368 		if (grp->il_cred->cr_prison == inp->inp_cred->cr_prison &&
369 		    grp->il_vflag == inp->inp_vflag &&
370 		    grp->il_lport == inp->inp_lport &&
371 		    grp->il_numa_domain == numa_domain &&
372 		    memcmp(&grp->il_dependladdr,
373 		    &inp->inp_inc.inc_ie.ie_dependladdr,
374 		    sizeof(grp->il_dependladdr)) == 0) {
375 			break;
376 		}
377 	}
378 	if (grp == NULL) {
379 		/* Create new load balance group. */
380 		grp = in_pcblbgroup_alloc(inp->inp_cred, inp->inp_vflag,
381 		    inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr,
382 		    INPCBLBGROUP_SIZMIN, numa_domain);
383 		if (grp == NULL)
384 			return (ENOBUFS);
385 		in_pcblbgroup_insert(grp, inp);
386 		CK_LIST_INSERT_HEAD(hdr, grp, il_list);
387 	} else if (grp->il_inpcnt == grp->il_inpsiz) {
388 		if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) {
389 			if (ratecheck(&lastprint, &interval))
390 				printf("lb group port %d, limit reached\n",
391 				    ntohs(grp->il_lport));
392 			return (0);
393 		}
394 
395 		/* Expand this local group. */
396 		grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2);
397 		if (grp == NULL)
398 			return (ENOBUFS);
399 		in_pcblbgroup_insert(grp, inp);
400 	} else {
401 		in_pcblbgroup_insert(grp, inp);
402 	}
403 	return (0);
404 }
405 
406 /*
407  * Remove PCB from load balance group.
408  */
409 static void
410 in_pcbremlbgrouphash(struct inpcb *inp)
411 {
412 	struct inpcbinfo *pcbinfo;
413 	struct inpcblbgrouphead *hdr;
414 	struct inpcblbgroup *grp;
415 	int i;
416 
417 	pcbinfo = inp->inp_pcbinfo;
418 
419 	INP_WLOCK_ASSERT(inp);
420 	MPASS(inp->inp_flags & INP_INLBGROUP);
421 	INP_HASH_WLOCK_ASSERT(pcbinfo);
422 
423 	hdr = &pcbinfo->ipi_lbgrouphashbase[
424 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
425 	CK_LIST_FOREACH(grp, hdr, il_list) {
426 		for (i = 0; i < grp->il_inpcnt; ++i) {
427 			if (grp->il_inp[i] != inp)
428 				continue;
429 
430 			if (grp->il_inpcnt == 1) {
431 				/* We are the last, free this local group. */
432 				in_pcblbgroup_free(grp);
433 			} else {
434 				KASSERT(grp->il_inpcnt >= 2,
435 				    ("invalid local group count %d",
436 				    grp->il_inpcnt));
437 				grp->il_inp[i] =
438 				    grp->il_inp[grp->il_inpcnt - 1];
439 
440 				/*
441 				 * Synchronize with in_pcblookup_lbgroup().
442 				 */
443 				atomic_store_rel_int(&grp->il_inpcnt,
444 				    grp->il_inpcnt - 1);
445 			}
446 			inp->inp_flags &= ~INP_INLBGROUP;
447 			return;
448 		}
449 	}
450 	KASSERT(0, ("%s: did not find %p", __func__, inp));
451 }
452 
453 int
454 in_pcblbgroup_numa(struct inpcb *inp, int arg)
455 {
456 	struct inpcbinfo *pcbinfo;
457 	struct inpcblbgrouphead *hdr;
458 	struct inpcblbgroup *grp;
459 	int err, i;
460 	uint8_t numa_domain;
461 
462 	switch (arg) {
463 	case TCP_REUSPORT_LB_NUMA_NODOM:
464 		numa_domain = M_NODOM;
465 		break;
466 	case TCP_REUSPORT_LB_NUMA_CURDOM:
467 		numa_domain = PCPU_GET(domain);
468 		break;
469 	default:
470 		if (arg < 0 || arg >= vm_ndomains)
471 			return (EINVAL);
472 		numa_domain = arg;
473 	}
474 
475 	err = 0;
476 	pcbinfo = inp->inp_pcbinfo;
477 	INP_WLOCK_ASSERT(inp);
478 	INP_HASH_WLOCK(pcbinfo);
479 	hdr = &pcbinfo->ipi_lbgrouphashbase[
480 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
481 	CK_LIST_FOREACH(grp, hdr, il_list) {
482 		for (i = 0; i < grp->il_inpcnt; ++i) {
483 			if (grp->il_inp[i] != inp)
484 				continue;
485 
486 			if (grp->il_numa_domain == numa_domain) {
487 				goto abort_with_hash_wlock;
488 			}
489 
490 			/* Remove it from the old group. */
491 			in_pcbremlbgrouphash(inp);
492 
493 			/* Add it to the new group based on numa domain. */
494 			in_pcbinslbgrouphash(inp, numa_domain);
495 			goto abort_with_hash_wlock;
496 		}
497 	}
498 	err = ENOENT;
499 abort_with_hash_wlock:
500 	INP_HASH_WUNLOCK(pcbinfo);
501 	return (err);
502 }
503 
504 /* Make sure it is safe to use hashinit(9) on CK_LIST. */
505 CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb)));
506 
507 /*
508  * Initialize an inpcbinfo - a per-VNET instance of connections db.
509  */
510 void
511 in_pcbinfo_init(struct inpcbinfo *pcbinfo, struct inpcbstorage *pcbstor,
512     u_int hash_nelements, u_int porthash_nelements)
513 {
514 
515 	mtx_init(&pcbinfo->ipi_lock, pcbstor->ips_infolock_name, NULL, MTX_DEF);
516 	mtx_init(&pcbinfo->ipi_hash_lock, pcbstor->ips_hashlock_name,
517 	    NULL, MTX_DEF);
518 #ifdef VIMAGE
519 	pcbinfo->ipi_vnet = curvnet;
520 #endif
521 	CK_LIST_INIT(&pcbinfo->ipi_listhead);
522 	pcbinfo->ipi_count = 0;
523 	pcbinfo->ipi_hash_exact = hashinit(hash_nelements, M_PCB,
524 	    &pcbinfo->ipi_hashmask);
525 	pcbinfo->ipi_hash_wild = hashinit(hash_nelements, M_PCB,
526 	    &pcbinfo->ipi_hashmask);
527 	porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1);
528 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
529 	    &pcbinfo->ipi_porthashmask);
530 	pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB,
531 	    &pcbinfo->ipi_lbgrouphashmask);
532 	pcbinfo->ipi_zone = pcbstor->ips_zone;
533 	pcbinfo->ipi_portzone = pcbstor->ips_portzone;
534 	pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone);
535 }
536 
537 /*
538  * Destroy an inpcbinfo.
539  */
540 void
541 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
542 {
543 
544 	KASSERT(pcbinfo->ipi_count == 0,
545 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
546 
547 	hashdestroy(pcbinfo->ipi_hash_exact, M_PCB, pcbinfo->ipi_hashmask);
548 	hashdestroy(pcbinfo->ipi_hash_wild, M_PCB, pcbinfo->ipi_hashmask);
549 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
550 	    pcbinfo->ipi_porthashmask);
551 	hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB,
552 	    pcbinfo->ipi_lbgrouphashmask);
553 	mtx_destroy(&pcbinfo->ipi_hash_lock);
554 	mtx_destroy(&pcbinfo->ipi_lock);
555 }
556 
557 /*
558  * Initialize a pcbstorage - per protocol zones to allocate inpcbs.
559  */
560 static void inpcb_fini(void *, int);
561 void
562 in_pcbstorage_init(void *arg)
563 {
564 	struct inpcbstorage *pcbstor = arg;
565 
566 	pcbstor->ips_zone = uma_zcreate(pcbstor->ips_zone_name,
567 	    pcbstor->ips_size, NULL, NULL, pcbstor->ips_pcbinit,
568 	    inpcb_fini, UMA_ALIGN_CACHE, UMA_ZONE_SMR);
569 	pcbstor->ips_portzone = uma_zcreate(pcbstor->ips_portzone_name,
570 	    sizeof(struct inpcbport), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
571 	uma_zone_set_smr(pcbstor->ips_portzone,
572 	    uma_zone_get_smr(pcbstor->ips_zone));
573 }
574 
575 /*
576  * Destroy a pcbstorage - used by unloadable protocols.
577  */
578 void
579 in_pcbstorage_destroy(void *arg)
580 {
581 	struct inpcbstorage *pcbstor = arg;
582 
583 	uma_zdestroy(pcbstor->ips_zone);
584 	uma_zdestroy(pcbstor->ips_portzone);
585 }
586 
587 /*
588  * Allocate a PCB and associate it with the socket.
589  * On success return with the PCB locked.
590  */
591 int
592 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
593 {
594 	struct inpcb *inp;
595 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
596 	int error;
597 #endif
598 
599 	inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT);
600 	if (inp == NULL)
601 		return (ENOBUFS);
602 	bzero(&inp->inp_start_zero, inp_zero_size);
603 #ifdef NUMA
604 	inp->inp_numa_domain = M_NODOM;
605 #endif
606 	inp->inp_pcbinfo = pcbinfo;
607 	inp->inp_socket = so;
608 	inp->inp_cred = crhold(so->so_cred);
609 	inp->inp_inc.inc_fibnum = so->so_fibnum;
610 #ifdef MAC
611 	error = mac_inpcb_init(inp, M_NOWAIT);
612 	if (error != 0)
613 		goto out;
614 	mac_inpcb_create(so, inp);
615 #endif
616 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
617 	error = ipsec_init_pcbpolicy(inp);
618 	if (error != 0) {
619 #ifdef MAC
620 		mac_inpcb_destroy(inp);
621 #endif
622 		goto out;
623 	}
624 #endif /*IPSEC*/
625 #ifdef INET6
626 	if (INP_SOCKAF(so) == AF_INET6) {
627 		inp->inp_vflag |= INP_IPV6PROTO | INP_IPV6;
628 		if (V_ip6_v6only)
629 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
630 #ifdef INET
631 		else
632 			inp->inp_vflag |= INP_IPV4;
633 #endif
634 		if (V_ip6_auto_flowlabel)
635 			inp->inp_flags |= IN6P_AUTOFLOWLABEL;
636 		inp->in6p_hops = -1;	/* use kernel default */
637 	}
638 #endif
639 #if defined(INET) && defined(INET6)
640 	else
641 #endif
642 #ifdef INET
643 		inp->inp_vflag |= INP_IPV4;
644 #endif
645 	inp->inp_smr = SMR_SEQ_INVALID;
646 
647 	/*
648 	 * Routes in inpcb's can cache L2 as well; they are guaranteed
649 	 * to be cleaned up.
650 	 */
651 	inp->inp_route.ro_flags = RT_LLE_CACHE;
652 	refcount_init(&inp->inp_refcount, 1);   /* Reference from socket. */
653 	INP_WLOCK(inp);
654 	INP_INFO_WLOCK(pcbinfo);
655 	pcbinfo->ipi_count++;
656 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
657 	CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list);
658 	INP_INFO_WUNLOCK(pcbinfo);
659 	so->so_pcb = inp;
660 
661 	return (0);
662 
663 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
664 out:
665 	crfree(inp->inp_cred);
666 #ifdef INVARIANTS
667 	inp->inp_cred = NULL;
668 #endif
669 	uma_zfree_smr(pcbinfo->ipi_zone, inp);
670 	return (error);
671 #endif
672 }
673 
674 #ifdef INET
675 int
676 in_pcbbind(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred)
677 {
678 	int anonport, error;
679 
680 	KASSERT(sin == NULL || sin->sin_family == AF_INET,
681 	    ("%s: invalid address family for %p", __func__, sin));
682 	KASSERT(sin == NULL || sin->sin_len == sizeof(struct sockaddr_in),
683 	    ("%s: invalid address length for %p", __func__, sin));
684 	INP_WLOCK_ASSERT(inp);
685 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
686 
687 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
688 		return (EINVAL);
689 	anonport = sin == NULL || sin->sin_port == 0;
690 	error = in_pcbbind_setup(inp, sin, &inp->inp_laddr.s_addr,
691 	    &inp->inp_lport, cred);
692 	if (error)
693 		return (error);
694 	if (in_pcbinshash(inp) != 0) {
695 		inp->inp_laddr.s_addr = INADDR_ANY;
696 		inp->inp_lport = 0;
697 		return (EAGAIN);
698 	}
699 	if (anonport)
700 		inp->inp_flags |= INP_ANONPORT;
701 	return (0);
702 }
703 #endif
704 
705 #if defined(INET) || defined(INET6)
706 /*
707  * Assign a local port like in_pcb_lport(), but also used with connect()
708  * and a foreign address and port.  If fsa is non-NULL, choose a local port
709  * that is unused with those, otherwise one that is completely unused.
710  * lsa can be NULL for IPv6.
711  */
712 int
713 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp,
714     struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags)
715 {
716 	struct inpcbinfo *pcbinfo;
717 	struct inpcb *tmpinp;
718 	unsigned short *lastport;
719 	int count, error;
720 	u_short aux, first, last, lport;
721 #ifdef INET
722 	struct in_addr laddr, faddr;
723 #endif
724 #ifdef INET6
725 	struct in6_addr *laddr6, *faddr6;
726 #endif
727 
728 	pcbinfo = inp->inp_pcbinfo;
729 
730 	/*
731 	 * Because no actual state changes occur here, a global write lock on
732 	 * the pcbinfo isn't required.
733 	 */
734 	INP_LOCK_ASSERT(inp);
735 	INP_HASH_LOCK_ASSERT(pcbinfo);
736 
737 	if (inp->inp_flags & INP_HIGHPORT) {
738 		first = V_ipport_hifirstauto;	/* sysctl */
739 		last  = V_ipport_hilastauto;
740 		lastport = &pcbinfo->ipi_lasthi;
741 	} else if (inp->inp_flags & INP_LOWPORT) {
742 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT);
743 		if (error)
744 			return (error);
745 		first = V_ipport_lowfirstauto;	/* 1023 */
746 		last  = V_ipport_lowlastauto;	/* 600 */
747 		lastport = &pcbinfo->ipi_lastlow;
748 	} else {
749 		first = V_ipport_firstauto;	/* sysctl */
750 		last  = V_ipport_lastauto;
751 		lastport = &pcbinfo->ipi_lastport;
752 	}
753 
754 	/*
755 	 * Instead of having two loops further down counting up or down
756 	 * make sure that first is always <= last and go with only one
757 	 * code path implementing all logic.
758 	 */
759 	if (first > last) {
760 		aux = first;
761 		first = last;
762 		last = aux;
763 	}
764 
765 #ifdef INET
766 	laddr.s_addr = INADDR_ANY;	/* used by INET6+INET below too */
767 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
768 		if (lsa != NULL)
769 			laddr = ((struct sockaddr_in *)lsa)->sin_addr;
770 		if (fsa != NULL)
771 			faddr = ((struct sockaddr_in *)fsa)->sin_addr;
772 	}
773 #endif
774 #ifdef INET6
775 	laddr6 = NULL;
776 	if ((inp->inp_vflag & INP_IPV6) != 0) {
777 		if (lsa != NULL)
778 			laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr;
779 		if (fsa != NULL)
780 			faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr;
781 	}
782 #endif
783 
784 	tmpinp = NULL;
785 	lport = *lportp;
786 
787 	if (V_ipport_randomized)
788 		*lastport = first + (arc4random() % (last - first));
789 
790 	count = last - first;
791 
792 	do {
793 		if (count-- < 0)	/* completely used? */
794 			return (EADDRNOTAVAIL);
795 		++*lastport;
796 		if (*lastport < first || *lastport > last)
797 			*lastport = first;
798 		lport = htons(*lastport);
799 
800 		if (fsa != NULL) {
801 #ifdef INET
802 			if (lsa->sa_family == AF_INET) {
803 				tmpinp = in_pcblookup_hash_locked(pcbinfo,
804 				    faddr, fport, laddr, lport, lookupflags,
805 				    M_NODOM);
806 			}
807 #endif
808 #ifdef INET6
809 			if (lsa->sa_family == AF_INET6) {
810 				tmpinp = in6_pcblookup_hash_locked(pcbinfo,
811 				    faddr6, fport, laddr6, lport, lookupflags,
812 				    M_NODOM);
813 			}
814 #endif
815 		} else {
816 #ifdef INET6
817 			if ((inp->inp_vflag & INP_IPV6) != 0) {
818 				tmpinp = in6_pcblookup_local(pcbinfo,
819 				    &inp->in6p_laddr, lport, lookupflags, cred);
820 #ifdef INET
821 				if (tmpinp == NULL &&
822 				    (inp->inp_vflag & INP_IPV4))
823 					tmpinp = in_pcblookup_local(pcbinfo,
824 					    laddr, lport, lookupflags, cred);
825 #endif
826 			}
827 #endif
828 #if defined(INET) && defined(INET6)
829 			else
830 #endif
831 #ifdef INET
832 				tmpinp = in_pcblookup_local(pcbinfo, laddr,
833 				    lport, lookupflags, cred);
834 #endif
835 		}
836 	} while (tmpinp != NULL);
837 
838 	*lportp = lport;
839 
840 	return (0);
841 }
842 
843 /*
844  * Select a local port (number) to use.
845  */
846 int
847 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
848     struct ucred *cred, int lookupflags)
849 {
850 	struct sockaddr_in laddr;
851 
852 	if (laddrp) {
853 		bzero(&laddr, sizeof(laddr));
854 		laddr.sin_family = AF_INET;
855 		laddr.sin_addr = *laddrp;
856 	}
857 	return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr :
858 	    NULL, lportp, NULL, 0, cred, lookupflags));
859 }
860 #endif /* INET || INET6 */
861 
862 #ifdef INET
863 /*
864  * Determine whether the inpcb can be bound to the specified address/port tuple.
865  */
866 static int
867 in_pcbbind_avail(struct inpcb *inp, const struct in_addr laddr,
868     const u_short lport, int sooptions, int lookupflags, struct ucred *cred)
869 {
870 	int reuseport, reuseport_lb;
871 
872 	INP_LOCK_ASSERT(inp);
873 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
874 
875 	reuseport = (sooptions & SO_REUSEPORT);
876 	reuseport_lb = (sooptions & SO_REUSEPORT_LB);
877 
878 	if (IN_MULTICAST(ntohl(laddr.s_addr))) {
879 		/*
880 		 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
881 		 * allow complete duplication of binding if
882 		 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
883 		 * and a multicast address is bound on both
884 		 * new and duplicated sockets.
885 		 */
886 		if ((sooptions & (SO_REUSEADDR | SO_REUSEPORT)) != 0)
887 			reuseport = SO_REUSEADDR | SO_REUSEPORT;
888 		/*
889 		 * XXX: How to deal with SO_REUSEPORT_LB here?
890 		 * Treat same as SO_REUSEPORT for now.
891 		 */
892 		if ((sooptions & (SO_REUSEADDR | SO_REUSEPORT_LB)) != 0)
893 			reuseport_lb = SO_REUSEADDR | SO_REUSEPORT_LB;
894 	} else if (!in_nullhost(laddr)) {
895 		struct sockaddr_in sin;
896 
897 		memset(&sin, 0, sizeof(sin));
898 		sin.sin_family = AF_INET;
899 		sin.sin_len = sizeof(sin);
900 		sin.sin_addr = laddr;
901 
902 		/*
903 		 * Is the address a local IP address?
904 		 * If INP_BINDANY is set, then the socket may be bound
905 		 * to any endpoint address, local or not.
906 		 */
907 		if ((inp->inp_flags & INP_BINDANY) == 0 &&
908 		    ifa_ifwithaddr_check((const struct sockaddr *)&sin) == 0)
909 			return (EADDRNOTAVAIL);
910 	}
911 
912 	if (lport != 0) {
913 		struct inpcb *t;
914 
915 		if (ntohs(lport) <= V_ipport_reservedhigh &&
916 		    ntohs(lport) >= V_ipport_reservedlow &&
917 		    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT))
918 			return (EACCES);
919 
920 		if (!IN_MULTICAST(ntohl(laddr.s_addr)) &&
921 		    priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) {
922 			t = in_pcblookup_local(inp->inp_pcbinfo, laddr, lport,
923 			    INPLOOKUP_WILDCARD, cred);
924 			if (t != NULL &&
925 			    (inp->inp_socket->so_type != SOCK_STREAM ||
926 			     in_nullhost(t->inp_faddr)) &&
927 			    (!in_nullhost(laddr) ||
928 			     !in_nullhost(t->inp_laddr)) &&
929 			    (inp->inp_cred->cr_uid != t->inp_cred->cr_uid))
930 				return (EADDRINUSE);
931 		}
932 		t = in_pcblookup_local(inp->inp_pcbinfo, laddr, lport,
933 		    lookupflags, cred);
934 		if (t != NULL && ((reuseport | reuseport_lb) &
935 		    t->inp_socket->so_options) == 0) {
936 #ifdef INET6
937 			if (!in_nullhost(laddr) ||
938 			    !in_nullhost(t->inp_laddr) ||
939 			    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
940 			    (t->inp_vflag & INP_IPV6PROTO) == 0)
941 #endif
942 				return (EADDRINUSE);
943 		}
944 	}
945 	return (0);
946 }
947 
948 /*
949  * Set up a bind operation on a PCB, performing port allocation
950  * as required, but do not actually modify the PCB. Callers can
951  * either complete the bind by setting inp_laddr/inp_lport and
952  * calling in_pcbinshash(), or they can just use the resulting
953  * port and address to authorise the sending of a once-off packet.
954  *
955  * On error, the values of *laddrp and *lportp are not changed.
956  */
957 int
958 in_pcbbind_setup(struct inpcb *inp, struct sockaddr_in *sin, in_addr_t *laddrp,
959     u_short *lportp, struct ucred *cred)
960 {
961 	struct socket *so = inp->inp_socket;
962 	struct in_addr laddr;
963 	u_short lport = 0;
964 	int lookupflags, sooptions;
965 	int error;
966 
967 	/*
968 	 * No state changes, so read locks are sufficient here.
969 	 */
970 	INP_LOCK_ASSERT(inp);
971 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
972 
973 	laddr.s_addr = *laddrp;
974 	if (sin != NULL && laddr.s_addr != INADDR_ANY)
975 		return (EINVAL);
976 
977 	lookupflags = 0;
978 	sooptions = atomic_load_int(&so->so_options);
979 	if ((sooptions & (SO_REUSEADDR | SO_REUSEPORT | SO_REUSEPORT_LB)) == 0)
980 		lookupflags = INPLOOKUP_WILDCARD;
981 	if (sin == NULL) {
982 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
983 			return (error);
984 	} else {
985 		KASSERT(sin->sin_family == AF_INET,
986 		    ("%s: invalid family for address %p", __func__, sin));
987 		KASSERT(sin->sin_len == sizeof(*sin),
988 		    ("%s: invalid length for address %p", __func__, sin));
989 
990 		error = prison_local_ip4(cred, &sin->sin_addr);
991 		if (error)
992 			return (error);
993 		if (sin->sin_port != *lportp) {
994 			/* Don't allow the port to change. */
995 			if (*lportp != 0)
996 				return (EINVAL);
997 			lport = sin->sin_port;
998 		}
999 		laddr = sin->sin_addr;
1000 
1001 		/* See if this address/port combo is available. */
1002 		error = in_pcbbind_avail(inp, laddr, lport, sooptions,
1003 		    lookupflags, cred);
1004 		if (error != 0)
1005 			return (error);
1006 	}
1007 	if (*lportp != 0)
1008 		lport = *lportp;
1009 	if (lport == 0) {
1010 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
1011 		if (error != 0)
1012 			return (error);
1013 	}
1014 	*laddrp = laddr.s_addr;
1015 	*lportp = lport;
1016 	return (0);
1017 }
1018 
1019 /*
1020  * Connect from a socket to a specified address.
1021  * Both address and port must be specified in argument sin.
1022  * If don't have a local address for this socket yet,
1023  * then pick one.
1024  */
1025 int
1026 in_pcbconnect(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred)
1027 {
1028 	u_short lport, fport;
1029 	in_addr_t laddr, faddr;
1030 	int anonport, error;
1031 
1032 	INP_WLOCK_ASSERT(inp);
1033 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1034 	KASSERT(in_nullhost(inp->inp_faddr),
1035 	    ("%s: inp is already connected", __func__));
1036 
1037 	lport = inp->inp_lport;
1038 	laddr = inp->inp_laddr.s_addr;
1039 	anonport = (lport == 0);
1040 	error = in_pcbconnect_setup(inp, sin, &laddr, &lport, &faddr, &fport,
1041 	    cred);
1042 	if (error)
1043 		return (error);
1044 
1045 	inp->inp_faddr.s_addr = faddr;
1046 	inp->inp_fport = fport;
1047 
1048 	/* Do the initial binding of the local address if required. */
1049 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
1050 		inp->inp_lport = lport;
1051 		inp->inp_laddr.s_addr = laddr;
1052 		if (in_pcbinshash(inp) != 0) {
1053 			inp->inp_laddr.s_addr = inp->inp_faddr.s_addr =
1054 			    INADDR_ANY;
1055 			inp->inp_lport = inp->inp_fport = 0;
1056 			return (EAGAIN);
1057 		}
1058 	} else {
1059 		inp->inp_lport = lport;
1060 		inp->inp_laddr.s_addr = laddr;
1061 		if ((inp->inp_flags & INP_INHASHLIST) != 0)
1062 			in_pcbrehash(inp);
1063 		else
1064 			in_pcbinshash(inp);
1065 	}
1066 
1067 	if (anonport)
1068 		inp->inp_flags |= INP_ANONPORT;
1069 	return (0);
1070 }
1071 
1072 /*
1073  * Do proper source address selection on an unbound socket in case
1074  * of connect. Take jails into account as well.
1075  */
1076 int
1077 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
1078     struct ucred *cred)
1079 {
1080 	struct ifaddr *ifa;
1081 	struct sockaddr *sa;
1082 	struct sockaddr_in *sin, dst;
1083 	struct nhop_object *nh;
1084 	int error;
1085 
1086 	NET_EPOCH_ASSERT();
1087 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
1088 
1089 	/*
1090 	 * Bypass source address selection and use the primary jail IP
1091 	 * if requested.
1092 	 */
1093 	if (!prison_saddrsel_ip4(cred, laddr))
1094 		return (0);
1095 
1096 	error = 0;
1097 
1098 	nh = NULL;
1099 	bzero(&dst, sizeof(dst));
1100 	sin = &dst;
1101 	sin->sin_family = AF_INET;
1102 	sin->sin_len = sizeof(struct sockaddr_in);
1103 	sin->sin_addr.s_addr = faddr->s_addr;
1104 
1105 	/*
1106 	 * If route is known our src addr is taken from the i/f,
1107 	 * else punt.
1108 	 *
1109 	 * Find out route to destination.
1110 	 */
1111 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
1112 		nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr,
1113 		    0, NHR_NONE, 0);
1114 
1115 	/*
1116 	 * If we found a route, use the address corresponding to
1117 	 * the outgoing interface.
1118 	 *
1119 	 * Otherwise assume faddr is reachable on a directly connected
1120 	 * network and try to find a corresponding interface to take
1121 	 * the source address from.
1122 	 */
1123 	if (nh == NULL || nh->nh_ifp == NULL) {
1124 		struct in_ifaddr *ia;
1125 		struct ifnet *ifp;
1126 
1127 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
1128 					inp->inp_socket->so_fibnum));
1129 		if (ia == NULL) {
1130 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
1131 						inp->inp_socket->so_fibnum));
1132 		}
1133 		if (ia == NULL) {
1134 			error = ENETUNREACH;
1135 			goto done;
1136 		}
1137 
1138 		if (!prison_flag(cred, PR_IP4)) {
1139 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1140 			goto done;
1141 		}
1142 
1143 		ifp = ia->ia_ifp;
1144 		ia = NULL;
1145 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1146 			sa = ifa->ifa_addr;
1147 			if (sa->sa_family != AF_INET)
1148 				continue;
1149 			sin = (struct sockaddr_in *)sa;
1150 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1151 				ia = (struct in_ifaddr *)ifa;
1152 				break;
1153 			}
1154 		}
1155 		if (ia != NULL) {
1156 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1157 			goto done;
1158 		}
1159 
1160 		/* 3. As a last resort return the 'default' jail address. */
1161 		error = prison_get_ip4(cred, laddr);
1162 		goto done;
1163 	}
1164 
1165 	/*
1166 	 * If the outgoing interface on the route found is not
1167 	 * a loopback interface, use the address from that interface.
1168 	 * In case of jails do those three steps:
1169 	 * 1. check if the interface address belongs to the jail. If so use it.
1170 	 * 2. check if we have any address on the outgoing interface
1171 	 *    belonging to this jail. If so use it.
1172 	 * 3. as a last resort return the 'default' jail address.
1173 	 */
1174 	if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) {
1175 		struct in_ifaddr *ia;
1176 		struct ifnet *ifp;
1177 
1178 		/* If not jailed, use the default returned. */
1179 		if (!prison_flag(cred, PR_IP4)) {
1180 			ia = (struct in_ifaddr *)nh->nh_ifa;
1181 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1182 			goto done;
1183 		}
1184 
1185 		/* Jailed. */
1186 		/* 1. Check if the iface address belongs to the jail. */
1187 		sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr;
1188 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1189 			ia = (struct in_ifaddr *)nh->nh_ifa;
1190 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1191 			goto done;
1192 		}
1193 
1194 		/*
1195 		 * 2. Check if we have any address on the outgoing interface
1196 		 *    belonging to this jail.
1197 		 */
1198 		ia = NULL;
1199 		ifp = nh->nh_ifp;
1200 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1201 			sa = ifa->ifa_addr;
1202 			if (sa->sa_family != AF_INET)
1203 				continue;
1204 			sin = (struct sockaddr_in *)sa;
1205 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1206 				ia = (struct in_ifaddr *)ifa;
1207 				break;
1208 			}
1209 		}
1210 		if (ia != NULL) {
1211 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1212 			goto done;
1213 		}
1214 
1215 		/* 3. As a last resort return the 'default' jail address. */
1216 		error = prison_get_ip4(cred, laddr);
1217 		goto done;
1218 	}
1219 
1220 	/*
1221 	 * The outgoing interface is marked with 'loopback net', so a route
1222 	 * to ourselves is here.
1223 	 * Try to find the interface of the destination address and then
1224 	 * take the address from there. That interface is not necessarily
1225 	 * a loopback interface.
1226 	 * In case of jails, check that it is an address of the jail
1227 	 * and if we cannot find, fall back to the 'default' jail address.
1228 	 */
1229 	if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) {
1230 		struct in_ifaddr *ia;
1231 
1232 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst),
1233 					inp->inp_socket->so_fibnum));
1234 		if (ia == NULL)
1235 			ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0,
1236 						inp->inp_socket->so_fibnum));
1237 		if (ia == NULL)
1238 			ia = ifatoia(ifa_ifwithaddr(sintosa(&dst)));
1239 
1240 		if (!prison_flag(cred, PR_IP4)) {
1241 			if (ia == NULL) {
1242 				error = ENETUNREACH;
1243 				goto done;
1244 			}
1245 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1246 			goto done;
1247 		}
1248 
1249 		/* Jailed. */
1250 		if (ia != NULL) {
1251 			struct ifnet *ifp;
1252 
1253 			ifp = ia->ia_ifp;
1254 			ia = NULL;
1255 			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1256 				sa = ifa->ifa_addr;
1257 				if (sa->sa_family != AF_INET)
1258 					continue;
1259 				sin = (struct sockaddr_in *)sa;
1260 				if (prison_check_ip4(cred,
1261 				    &sin->sin_addr) == 0) {
1262 					ia = (struct in_ifaddr *)ifa;
1263 					break;
1264 				}
1265 			}
1266 			if (ia != NULL) {
1267 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1268 				goto done;
1269 			}
1270 		}
1271 
1272 		/* 3. As a last resort return the 'default' jail address. */
1273 		error = prison_get_ip4(cred, laddr);
1274 		goto done;
1275 	}
1276 
1277 done:
1278 	if (error == 0 && laddr->s_addr == INADDR_ANY)
1279 		return (EHOSTUNREACH);
1280 	return (error);
1281 }
1282 
1283 /*
1284  * Set up for a connect from a socket to the specified address.
1285  * On entry, *laddrp and *lportp should contain the current local
1286  * address and port for the PCB; these are updated to the values
1287  * that should be placed in inp_laddr and inp_lport to complete
1288  * the connect.
1289  *
1290  * On success, *faddrp and *fportp will be set to the remote address
1291  * and port. These are not updated in the error case.
1292  */
1293 int
1294 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr_in *sin,
1295     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1296     struct ucred *cred)
1297 {
1298 	struct in_ifaddr *ia;
1299 	struct in_addr laddr, faddr;
1300 	u_short lport, fport;
1301 	int error;
1302 
1303 	KASSERT(sin->sin_family == AF_INET,
1304 	    ("%s: invalid address family for %p", __func__, sin));
1305 	KASSERT(sin->sin_len == sizeof(*sin),
1306 	    ("%s: invalid address length for %p", __func__, sin));
1307 
1308 	/*
1309 	 * Because a global state change doesn't actually occur here, a read
1310 	 * lock is sufficient.
1311 	 */
1312 	NET_EPOCH_ASSERT();
1313 	INP_LOCK_ASSERT(inp);
1314 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1315 
1316 	if (sin->sin_port == 0)
1317 		return (EADDRNOTAVAIL);
1318 	laddr.s_addr = *laddrp;
1319 	lport = *lportp;
1320 	faddr = sin->sin_addr;
1321 	fport = sin->sin_port;
1322 #ifdef ROUTE_MPATH
1323 	if (CALC_FLOWID_OUTBOUND) {
1324 		uint32_t hash_val, hash_type;
1325 
1326 		hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport,
1327 		    inp->inp_socket->so_proto->pr_protocol, &hash_type);
1328 
1329 		inp->inp_flowid = hash_val;
1330 		inp->inp_flowtype = hash_type;
1331 	}
1332 #endif
1333 	if (V_connect_inaddr_wild && !CK_STAILQ_EMPTY(&V_in_ifaddrhead)) {
1334 		/*
1335 		 * If the destination address is INADDR_ANY,
1336 		 * use the primary local address.
1337 		 * If the supplied address is INADDR_BROADCAST,
1338 		 * and the primary interface supports broadcast,
1339 		 * choose the broadcast address for that interface.
1340 		 */
1341 		if (faddr.s_addr == INADDR_ANY) {
1342 			faddr =
1343 			    IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1344 			if ((error = prison_get_ip4(cred, &faddr)) != 0)
1345 				return (error);
1346 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1347 			if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1348 			    IFF_BROADCAST)
1349 				faddr = satosin(&CK_STAILQ_FIRST(
1350 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1351 		}
1352 	} else if (faddr.s_addr == INADDR_ANY) {
1353 		return (ENETUNREACH);
1354 	}
1355 	if (laddr.s_addr == INADDR_ANY) {
1356 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
1357 		/*
1358 		 * If the destination address is multicast and an outgoing
1359 		 * interface has been set as a multicast option, prefer the
1360 		 * address of that interface as our source address.
1361 		 */
1362 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1363 		    inp->inp_moptions != NULL) {
1364 			struct ip_moptions *imo;
1365 			struct ifnet *ifp;
1366 
1367 			imo = inp->inp_moptions;
1368 			if (imo->imo_multicast_ifp != NULL) {
1369 				ifp = imo->imo_multicast_ifp;
1370 				CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1371 					if (ia->ia_ifp == ifp &&
1372 					    prison_check_ip4(cred,
1373 					    &ia->ia_addr.sin_addr) == 0)
1374 						break;
1375 				}
1376 				if (ia == NULL)
1377 					error = EADDRNOTAVAIL;
1378 				else {
1379 					laddr = ia->ia_addr.sin_addr;
1380 					error = 0;
1381 				}
1382 			}
1383 		}
1384 		if (error)
1385 			return (error);
1386 	}
1387 
1388 	if (lport != 0) {
1389 		if (in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr,
1390 		    fport, laddr, lport, 0, M_NODOM) != NULL)
1391 			return (EADDRINUSE);
1392 	} else {
1393 		struct sockaddr_in lsin, fsin;
1394 
1395 		bzero(&lsin, sizeof(lsin));
1396 		bzero(&fsin, sizeof(fsin));
1397 		lsin.sin_family = AF_INET;
1398 		lsin.sin_addr = laddr;
1399 		fsin.sin_family = AF_INET;
1400 		fsin.sin_addr = faddr;
1401 		error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin,
1402 		    &lport, (struct sockaddr *)& fsin, fport, cred,
1403 		    INPLOOKUP_WILDCARD);
1404 		if (error)
1405 			return (error);
1406 	}
1407 	*laddrp = laddr.s_addr;
1408 	*lportp = lport;
1409 	*faddrp = faddr.s_addr;
1410 	*fportp = fport;
1411 	return (0);
1412 }
1413 
1414 void
1415 in_pcbdisconnect(struct inpcb *inp)
1416 {
1417 
1418 	INP_WLOCK_ASSERT(inp);
1419 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1420 	KASSERT(inp->inp_smr == SMR_SEQ_INVALID,
1421 	    ("%s: inp %p was already disconnected", __func__, inp));
1422 
1423 	in_pcbremhash_locked(inp);
1424 
1425 	/* See the comment in in_pcbinshash(). */
1426 	inp->inp_smr = smr_advance(inp->inp_pcbinfo->ipi_smr);
1427 	inp->inp_laddr.s_addr = INADDR_ANY;
1428 	inp->inp_faddr.s_addr = INADDR_ANY;
1429 	inp->inp_fport = 0;
1430 }
1431 #endif /* INET */
1432 
1433 /*
1434  * inpcb hash lookups are protected by SMR section.
1435  *
1436  * Once desired pcb has been found, switching from SMR section to a pcb
1437  * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK
1438  * here because SMR is a critical section.
1439  * In 99%+ cases inp_smr_lock() would obtain the lock immediately.
1440  */
1441 void
1442 inp_lock(struct inpcb *inp, const inp_lookup_t lock)
1443 {
1444 
1445 	lock == INPLOOKUP_RLOCKPCB ?
1446 	    rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock);
1447 }
1448 
1449 void
1450 inp_unlock(struct inpcb *inp, const inp_lookup_t lock)
1451 {
1452 
1453 	lock == INPLOOKUP_RLOCKPCB ?
1454 	    rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock);
1455 }
1456 
1457 int
1458 inp_trylock(struct inpcb *inp, const inp_lookup_t lock)
1459 {
1460 
1461 	return (lock == INPLOOKUP_RLOCKPCB ?
1462 	    rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock));
1463 }
1464 
1465 static inline bool
1466 _inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock, const int ignflags)
1467 {
1468 
1469 	MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB);
1470 	SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr);
1471 
1472 	if (__predict_true(inp_trylock(inp, lock))) {
1473 		if (__predict_false(inp->inp_flags & ignflags)) {
1474 			smr_exit(inp->inp_pcbinfo->ipi_smr);
1475 			inp_unlock(inp, lock);
1476 			return (false);
1477 		}
1478 		smr_exit(inp->inp_pcbinfo->ipi_smr);
1479 		return (true);
1480 	}
1481 
1482 	if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) {
1483 		smr_exit(inp->inp_pcbinfo->ipi_smr);
1484 		inp_lock(inp, lock);
1485 		if (__predict_false(in_pcbrele(inp, lock)))
1486 			return (false);
1487 		/*
1488 		 * inp acquired through refcount & lock for sure didn't went
1489 		 * through uma_zfree().  However, it may have already went
1490 		 * through in_pcbfree() and has another reference, that
1491 		 * prevented its release by our in_pcbrele().
1492 		 */
1493 		if (__predict_false(inp->inp_flags & ignflags)) {
1494 			inp_unlock(inp, lock);
1495 			return (false);
1496 		}
1497 		return (true);
1498 	} else {
1499 		smr_exit(inp->inp_pcbinfo->ipi_smr);
1500 		return (false);
1501 	}
1502 }
1503 
1504 bool
1505 inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock)
1506 {
1507 
1508 	/*
1509 	 * in_pcblookup() family of functions ignore not only freed entries,
1510 	 * that may be found due to lockless access to the hash, but dropped
1511 	 * entries, too.
1512 	 */
1513 	return (_inp_smr_lock(inp, lock, INP_FREED | INP_DROPPED));
1514 }
1515 
1516 /*
1517  * inp_next() - inpcb hash/list traversal iterator
1518  *
1519  * Requires initialized struct inpcb_iterator for context.
1520  * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR().
1521  *
1522  * - Iterator can have either write-lock or read-lock semantics, that can not
1523  *   be changed later.
1524  * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through
1525  *   a single hash slot.  Note: only rip_input() does the latter.
1526  * - Iterator may have optional bool matching function.  The matching function
1527  *   will be executed for each inpcb in the SMR context, so it can not acquire
1528  *   locks and can safely access only immutable fields of inpcb.
1529  *
1530  * A fresh initialized iterator has NULL inpcb in its context and that
1531  * means that inp_next() call would return the very first inpcb on the list
1532  * locked with desired semantic.  In all following calls the context pointer
1533  * shall hold the current inpcb pointer.  The KPI user is not supposed to
1534  * unlock the current inpcb!  Upon end of traversal inp_next() will return NULL
1535  * and write NULL to its context.  After end of traversal an iterator can be
1536  * reused.
1537  *
1538  * List traversals have the following features/constraints:
1539  * - New entries won't be seen, as they are always added to the head of a list.
1540  * - Removed entries won't stop traversal as long as they are not added to
1541  *   a different list. This is violated by in_pcbrehash().
1542  */
1543 #define	II_LIST_FIRST(ipi, hash)					\
1544 		(((hash) == INP_ALL_LIST) ?				\
1545 		    CK_LIST_FIRST(&(ipi)->ipi_listhead) :		\
1546 		    CK_LIST_FIRST(&(ipi)->ipi_hash_exact[(hash)]))
1547 #define	II_LIST_NEXT(inp, hash)						\
1548 		(((hash) == INP_ALL_LIST) ?				\
1549 		    CK_LIST_NEXT((inp), inp_list) :			\
1550 		    CK_LIST_NEXT((inp), inp_hash_exact))
1551 #define	II_LOCK_ASSERT(inp, lock)					\
1552 		rw_assert(&(inp)->inp_lock,				\
1553 		    (lock) == INPLOOKUP_RLOCKPCB ?  RA_RLOCKED : RA_WLOCKED )
1554 struct inpcb *
1555 inp_next(struct inpcb_iterator *ii)
1556 {
1557 	const struct inpcbinfo *ipi = ii->ipi;
1558 	inp_match_t *match = ii->match;
1559 	void *ctx = ii->ctx;
1560 	inp_lookup_t lock = ii->lock;
1561 	int hash = ii->hash;
1562 	struct inpcb *inp;
1563 
1564 	if (ii->inp == NULL) {		/* First call. */
1565 		smr_enter(ipi->ipi_smr);
1566 		/* This is unrolled CK_LIST_FOREACH(). */
1567 		for (inp = II_LIST_FIRST(ipi, hash);
1568 		    inp != NULL;
1569 		    inp = II_LIST_NEXT(inp, hash)) {
1570 			if (match != NULL && (match)(inp, ctx) == false)
1571 				continue;
1572 			if (__predict_true(_inp_smr_lock(inp, lock, INP_FREED)))
1573 				break;
1574 			else {
1575 				smr_enter(ipi->ipi_smr);
1576 				MPASS(inp != II_LIST_FIRST(ipi, hash));
1577 				inp = II_LIST_FIRST(ipi, hash);
1578 				if (inp == NULL)
1579 					break;
1580 			}
1581 		}
1582 
1583 		if (inp == NULL)
1584 			smr_exit(ipi->ipi_smr);
1585 		else
1586 			ii->inp = inp;
1587 
1588 		return (inp);
1589 	}
1590 
1591 	/* Not a first call. */
1592 	smr_enter(ipi->ipi_smr);
1593 restart:
1594 	inp = ii->inp;
1595 	II_LOCK_ASSERT(inp, lock);
1596 next:
1597 	inp = II_LIST_NEXT(inp, hash);
1598 	if (inp == NULL) {
1599 		smr_exit(ipi->ipi_smr);
1600 		goto found;
1601 	}
1602 
1603 	if (match != NULL && (match)(inp, ctx) == false)
1604 		goto next;
1605 
1606 	if (__predict_true(inp_trylock(inp, lock))) {
1607 		if (__predict_false(inp->inp_flags & INP_FREED)) {
1608 			/*
1609 			 * Entries are never inserted in middle of a list, thus
1610 			 * as long as we are in SMR, we can continue traversal.
1611 			 * Jump to 'restart' should yield in the same result,
1612 			 * but could produce unnecessary looping.  Could this
1613 			 * looping be unbound?
1614 			 */
1615 			inp_unlock(inp, lock);
1616 			goto next;
1617 		} else {
1618 			smr_exit(ipi->ipi_smr);
1619 			goto found;
1620 		}
1621 	}
1622 
1623 	/*
1624 	 * Can't obtain lock immediately, thus going hard.  Once we exit the
1625 	 * SMR section we can no longer jump to 'next', and our only stable
1626 	 * anchoring point is ii->inp, which we keep locked for this case, so
1627 	 * we jump to 'restart'.
1628 	 */
1629 	if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) {
1630 		smr_exit(ipi->ipi_smr);
1631 		inp_lock(inp, lock);
1632 		if (__predict_false(in_pcbrele(inp, lock))) {
1633 			smr_enter(ipi->ipi_smr);
1634 			goto restart;
1635 		}
1636 		/*
1637 		 * See comment in inp_smr_lock().
1638 		 */
1639 		if (__predict_false(inp->inp_flags & INP_FREED)) {
1640 			inp_unlock(inp, lock);
1641 			smr_enter(ipi->ipi_smr);
1642 			goto restart;
1643 		}
1644 	} else
1645 		goto next;
1646 
1647 found:
1648 	inp_unlock(ii->inp, lock);
1649 	ii->inp = inp;
1650 
1651 	return (ii->inp);
1652 }
1653 
1654 /*
1655  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1656  * stability of an inpcb pointer despite the inpcb lock being released or
1657  * SMR section exited.
1658  *
1659  * To free a reference later in_pcbrele_(r|w)locked() must be performed.
1660  */
1661 void
1662 in_pcbref(struct inpcb *inp)
1663 {
1664 	u_int old __diagused;
1665 
1666 	old = refcount_acquire(&inp->inp_refcount);
1667 	KASSERT(old > 0, ("%s: refcount 0", __func__));
1668 }
1669 
1670 /*
1671  * Drop a refcount on an inpcb elevated using in_pcbref(), potentially
1672  * freeing the pcb, if the reference was very last.
1673  */
1674 bool
1675 in_pcbrele_rlocked(struct inpcb *inp)
1676 {
1677 
1678 	INP_RLOCK_ASSERT(inp);
1679 
1680 	if (!refcount_release(&inp->inp_refcount))
1681 		return (false);
1682 
1683 	MPASS(inp->inp_flags & INP_FREED);
1684 	MPASS(inp->inp_socket == NULL);
1685 	crfree(inp->inp_cred);
1686 #ifdef INVARIANTS
1687 	inp->inp_cred = NULL;
1688 #endif
1689 	INP_RUNLOCK(inp);
1690 	uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp);
1691 	return (true);
1692 }
1693 
1694 bool
1695 in_pcbrele_wlocked(struct inpcb *inp)
1696 {
1697 
1698 	INP_WLOCK_ASSERT(inp);
1699 
1700 	if (!refcount_release(&inp->inp_refcount))
1701 		return (false);
1702 
1703 	MPASS(inp->inp_flags & INP_FREED);
1704 	MPASS(inp->inp_socket == NULL);
1705 	crfree(inp->inp_cred);
1706 #ifdef INVARIANTS
1707 	inp->inp_cred = NULL;
1708 #endif
1709 	INP_WUNLOCK(inp);
1710 	uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp);
1711 	return (true);
1712 }
1713 
1714 bool
1715 in_pcbrele(struct inpcb *inp, const inp_lookup_t lock)
1716 {
1717 
1718 	return (lock == INPLOOKUP_RLOCKPCB ?
1719 	    in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp));
1720 }
1721 
1722 /*
1723  * Unconditionally schedule an inpcb to be freed by decrementing its
1724  * reference count, which should occur only after the inpcb has been detached
1725  * from its socket.  If another thread holds a temporary reference (acquired
1726  * using in_pcbref()) then the free is deferred until that reference is
1727  * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked.
1728  *  Almost all work, including removal from global lists, is done in this
1729  * context, where the pcbinfo lock is held.
1730  */
1731 void
1732 in_pcbfree(struct inpcb *inp)
1733 {
1734 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1735 #ifdef INET
1736 	struct ip_moptions *imo;
1737 #endif
1738 #ifdef INET6
1739 	struct ip6_moptions *im6o;
1740 #endif
1741 
1742 	INP_WLOCK_ASSERT(inp);
1743 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1744 	KASSERT((inp->inp_flags & INP_FREED) == 0,
1745 	    ("%s: called twice for pcb %p", __func__, inp));
1746 
1747 	/*
1748 	 * in_pcblookup_local() and in6_pcblookup_local() may return an inpcb
1749 	 * from the hash without acquiring inpcb lock, they rely on the hash
1750 	 * lock, thus in_pcbremhash() should be the first action.
1751 	 */
1752 	if (inp->inp_flags & INP_INHASHLIST)
1753 		in_pcbremhash(inp);
1754 	INP_INFO_WLOCK(pcbinfo);
1755 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1756 	pcbinfo->ipi_count--;
1757 	CK_LIST_REMOVE(inp, inp_list);
1758 	INP_INFO_WUNLOCK(pcbinfo);
1759 
1760 #ifdef RATELIMIT
1761 	if (inp->inp_snd_tag != NULL)
1762 		in_pcbdetach_txrtlmt(inp);
1763 #endif
1764 	inp->inp_flags |= INP_FREED;
1765 	inp->inp_socket->so_pcb = NULL;
1766 	inp->inp_socket = NULL;
1767 
1768 	RO_INVALIDATE_CACHE(&inp->inp_route);
1769 #ifdef MAC
1770 	mac_inpcb_destroy(inp);
1771 #endif
1772 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1773 	if (inp->inp_sp != NULL)
1774 		ipsec_delete_pcbpolicy(inp);
1775 #endif
1776 #ifdef INET
1777 	if (inp->inp_options)
1778 		(void)m_free(inp->inp_options);
1779 	DEBUG_POISON_POINTER(inp->inp_options);
1780 	imo = inp->inp_moptions;
1781 	DEBUG_POISON_POINTER(inp->inp_moptions);
1782 #endif
1783 #ifdef INET6
1784 	if (inp->inp_vflag & INP_IPV6PROTO) {
1785 		ip6_freepcbopts(inp->in6p_outputopts);
1786 		DEBUG_POISON_POINTER(inp->in6p_outputopts);
1787 		im6o = inp->in6p_moptions;
1788 		DEBUG_POISON_POINTER(inp->in6p_moptions);
1789 	} else
1790 		im6o = NULL;
1791 #endif
1792 
1793 	if (__predict_false(in_pcbrele_wlocked(inp) == false)) {
1794 		INP_WUNLOCK(inp);
1795 	}
1796 #ifdef INET6
1797 	ip6_freemoptions(im6o);
1798 #endif
1799 #ifdef INET
1800 	inp_freemoptions(imo);
1801 #endif
1802 }
1803 
1804 /*
1805  * Different protocols initialize their inpcbs differently - giving
1806  * different name to the lock.  But they all are disposed the same.
1807  */
1808 static void
1809 inpcb_fini(void *mem, int size)
1810 {
1811 	struct inpcb *inp = mem;
1812 
1813 	INP_LOCK_DESTROY(inp);
1814 }
1815 
1816 /*
1817  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1818  * port reservation, and preventing it from being returned by inpcb lookups.
1819  *
1820  * It is used by TCP to mark an inpcb as unused and avoid future packet
1821  * delivery or event notification when a socket remains open but TCP has
1822  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1823  * or a RST on the wire, and allows the port binding to be reused while still
1824  * maintaining the invariant that so_pcb always points to a valid inpcb until
1825  * in_pcbdetach().
1826  *
1827  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1828  * in_pcbpurgeif0()?
1829  */
1830 void
1831 in_pcbdrop(struct inpcb *inp)
1832 {
1833 
1834 	INP_WLOCK_ASSERT(inp);
1835 
1836 	inp->inp_flags |= INP_DROPPED;
1837 	if (inp->inp_flags & INP_INHASHLIST)
1838 		in_pcbremhash(inp);
1839 }
1840 
1841 #ifdef INET
1842 /*
1843  * Common routines to return the socket addresses associated with inpcbs.
1844  */
1845 int
1846 in_getsockaddr(struct socket *so, struct sockaddr *sa)
1847 {
1848 	struct inpcb *inp;
1849 
1850 	inp = sotoinpcb(so);
1851 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1852 
1853 	*(struct sockaddr_in *)sa = (struct sockaddr_in ){
1854 		.sin_len = sizeof(struct sockaddr_in),
1855 		.sin_family = AF_INET,
1856 		.sin_port = inp->inp_lport,
1857 		.sin_addr = inp->inp_laddr,
1858 	};
1859 
1860 	return (0);
1861 }
1862 
1863 int
1864 in_getpeeraddr(struct socket *so, struct sockaddr *sa)
1865 {
1866 	struct inpcb *inp;
1867 
1868 	inp = sotoinpcb(so);
1869 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1870 
1871 	*(struct sockaddr_in *)sa = (struct sockaddr_in ){
1872 		.sin_len = sizeof(struct sockaddr_in),
1873 		.sin_family = AF_INET,
1874 		.sin_port = inp->inp_fport,
1875 		.sin_addr = inp->inp_faddr,
1876 	};
1877 
1878 	return (0);
1879 }
1880 
1881 static bool
1882 inp_v4_multi_match(const struct inpcb *inp, void *v __unused)
1883 {
1884 
1885 	if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL)
1886 		return (true);
1887 	else
1888 		return (false);
1889 }
1890 
1891 void
1892 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1893 {
1894 	struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB,
1895 	    inp_v4_multi_match, NULL);
1896 	struct inpcb *inp;
1897 	struct in_multi *inm;
1898 	struct in_mfilter *imf;
1899 	struct ip_moptions *imo;
1900 
1901 	IN_MULTI_LOCK_ASSERT();
1902 
1903 	while ((inp = inp_next(&inpi)) != NULL) {
1904 		INP_WLOCK_ASSERT(inp);
1905 
1906 		imo = inp->inp_moptions;
1907 		/*
1908 		 * Unselect the outgoing interface if it is being
1909 		 * detached.
1910 		 */
1911 		if (imo->imo_multicast_ifp == ifp)
1912 			imo->imo_multicast_ifp = NULL;
1913 
1914 		/*
1915 		 * Drop multicast group membership if we joined
1916 		 * through the interface being detached.
1917 		 *
1918 		 * XXX This can all be deferred to an epoch_call
1919 		 */
1920 restart:
1921 		IP_MFILTER_FOREACH(imf, &imo->imo_head) {
1922 			if ((inm = imf->imf_inm) == NULL)
1923 				continue;
1924 			if (inm->inm_ifp != ifp)
1925 				continue;
1926 			ip_mfilter_remove(&imo->imo_head, imf);
1927 			in_leavegroup_locked(inm, NULL);
1928 			ip_mfilter_free(imf);
1929 			goto restart;
1930 		}
1931 	}
1932 }
1933 
1934 /*
1935  * Lookup a PCB based on the local address and port.  Caller must hold the
1936  * hash lock.  No inpcb locks or references are acquired.
1937  */
1938 #define INP_LOOKUP_MAPPED_PCB_COST	3
1939 struct inpcb *
1940 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1941     u_short lport, int lookupflags, struct ucred *cred)
1942 {
1943 	struct inpcb *inp;
1944 #ifdef INET6
1945 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1946 #else
1947 	int matchwild = 3;
1948 #endif
1949 	int wildcard;
1950 
1951 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1952 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1953 	INP_HASH_LOCK_ASSERT(pcbinfo);
1954 
1955 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1956 		struct inpcbhead *head;
1957 		/*
1958 		 * Look for an unconnected (wildcard foreign addr) PCB that
1959 		 * matches the local address and port we're looking for.
1960 		 */
1961 		head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport,
1962 		    pcbinfo->ipi_hashmask)];
1963 		CK_LIST_FOREACH(inp, head, inp_hash_wild) {
1964 #ifdef INET6
1965 			/* XXX inp locking */
1966 			if ((inp->inp_vflag & INP_IPV4) == 0)
1967 				continue;
1968 #endif
1969 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1970 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1971 			    inp->inp_lport == lport) {
1972 				/*
1973 				 * Found?
1974 				 */
1975 				if (prison_equal_ip4(cred->cr_prison,
1976 				    inp->inp_cred->cr_prison))
1977 					return (inp);
1978 			}
1979 		}
1980 		/*
1981 		 * Not found.
1982 		 */
1983 		return (NULL);
1984 	} else {
1985 		struct inpcbporthead *porthash;
1986 		struct inpcbport *phd;
1987 		struct inpcb *match = NULL;
1988 		/*
1989 		 * Best fit PCB lookup.
1990 		 *
1991 		 * First see if this local port is in use by looking on the
1992 		 * port hash list.
1993 		 */
1994 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1995 		    pcbinfo->ipi_porthashmask)];
1996 		CK_LIST_FOREACH(phd, porthash, phd_hash) {
1997 			if (phd->phd_port == lport)
1998 				break;
1999 		}
2000 		if (phd != NULL) {
2001 			/*
2002 			 * Port is in use by one or more PCBs. Look for best
2003 			 * fit.
2004 			 */
2005 			CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
2006 				wildcard = 0;
2007 				if (!prison_equal_ip4(inp->inp_cred->cr_prison,
2008 				    cred->cr_prison))
2009 					continue;
2010 #ifdef INET6
2011 				/* XXX inp locking */
2012 				if ((inp->inp_vflag & INP_IPV4) == 0)
2013 					continue;
2014 				/*
2015 				 * We never select the PCB that has
2016 				 * INP_IPV6 flag and is bound to :: if
2017 				 * we have another PCB which is bound
2018 				 * to 0.0.0.0.  If a PCB has the
2019 				 * INP_IPV6 flag, then we set its cost
2020 				 * higher than IPv4 only PCBs.
2021 				 *
2022 				 * Note that the case only happens
2023 				 * when a socket is bound to ::, under
2024 				 * the condition that the use of the
2025 				 * mapped address is allowed.
2026 				 */
2027 				if ((inp->inp_vflag & INP_IPV6) != 0)
2028 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
2029 #endif
2030 				if (inp->inp_faddr.s_addr != INADDR_ANY)
2031 					wildcard++;
2032 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
2033 					if (laddr.s_addr == INADDR_ANY)
2034 						wildcard++;
2035 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
2036 						continue;
2037 				} else {
2038 					if (laddr.s_addr != INADDR_ANY)
2039 						wildcard++;
2040 				}
2041 				if (wildcard < matchwild) {
2042 					match = inp;
2043 					matchwild = wildcard;
2044 					if (matchwild == 0)
2045 						break;
2046 				}
2047 			}
2048 		}
2049 		return (match);
2050 	}
2051 }
2052 #undef INP_LOOKUP_MAPPED_PCB_COST
2053 
2054 static bool
2055 in_pcblookup_lb_numa_match(const struct inpcblbgroup *grp, int domain)
2056 {
2057 	return (domain == M_NODOM || domain == grp->il_numa_domain);
2058 }
2059 
2060 static struct inpcb *
2061 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo,
2062     const struct in_addr *faddr, uint16_t fport, const struct in_addr *laddr,
2063     uint16_t lport, int domain)
2064 {
2065 	const struct inpcblbgrouphead *hdr;
2066 	struct inpcblbgroup *grp;
2067 	struct inpcblbgroup *jail_exact, *jail_wild, *local_exact, *local_wild;
2068 	struct inpcb *inp;
2069 	u_int count;
2070 
2071 	INP_HASH_LOCK_ASSERT(pcbinfo);
2072 	NET_EPOCH_ASSERT();
2073 
2074 	hdr = &pcbinfo->ipi_lbgrouphashbase[
2075 	    INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)];
2076 
2077 	/*
2078 	 * Search for an LB group match based on the following criteria:
2079 	 * - prefer jailed groups to non-jailed groups
2080 	 * - prefer exact source address matches to wildcard matches
2081 	 * - prefer groups bound to the specified NUMA domain
2082 	 */
2083 	jail_exact = jail_wild = local_exact = local_wild = NULL;
2084 	CK_LIST_FOREACH(grp, hdr, il_list) {
2085 		bool injail;
2086 
2087 #ifdef INET6
2088 		if (!(grp->il_vflag & INP_IPV4))
2089 			continue;
2090 #endif
2091 		if (grp->il_lport != lport)
2092 			continue;
2093 
2094 		injail = prison_flag(grp->il_cred, PR_IP4) != 0;
2095 		if (injail && prison_check_ip4_locked(grp->il_cred->cr_prison,
2096 		    laddr) != 0)
2097 			continue;
2098 
2099 		if (grp->il_laddr.s_addr == laddr->s_addr) {
2100 			if (injail) {
2101 				jail_exact = grp;
2102 				if (in_pcblookup_lb_numa_match(grp, domain))
2103 					/* This is a perfect match. */
2104 					goto out;
2105 			} else if (local_exact == NULL ||
2106 			    in_pcblookup_lb_numa_match(grp, domain)) {
2107 				local_exact = grp;
2108 			}
2109 		} else if (grp->il_laddr.s_addr == INADDR_ANY) {
2110 			if (injail) {
2111 				if (jail_wild == NULL ||
2112 				    in_pcblookup_lb_numa_match(grp, domain))
2113 					jail_wild = grp;
2114 			} else if (local_wild == NULL ||
2115 			    in_pcblookup_lb_numa_match(grp, domain)) {
2116 				local_wild = grp;
2117 			}
2118 		}
2119 	}
2120 
2121 	if (jail_exact != NULL)
2122 		grp = jail_exact;
2123 	else if (jail_wild != NULL)
2124 		grp = jail_wild;
2125 	else if (local_exact != NULL)
2126 		grp = local_exact;
2127 	else
2128 		grp = local_wild;
2129 	if (grp == NULL)
2130 		return (NULL);
2131 
2132 out:
2133 	/*
2134 	 * Synchronize with in_pcblbgroup_insert().
2135 	 */
2136 	count = atomic_load_acq_int(&grp->il_inpcnt);
2137 	if (count == 0)
2138 		return (NULL);
2139 	inp = grp->il_inp[INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) % count];
2140 	KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
2141 	return (inp);
2142 }
2143 
2144 static bool
2145 in_pcblookup_exact_match(const struct inpcb *inp, struct in_addr faddr,
2146     u_short fport, struct in_addr laddr, u_short lport)
2147 {
2148 #ifdef INET6
2149 	/* XXX inp locking */
2150 	if ((inp->inp_vflag & INP_IPV4) == 0)
2151 		return (false);
2152 #endif
2153 	if (inp->inp_faddr.s_addr == faddr.s_addr &&
2154 	    inp->inp_laddr.s_addr == laddr.s_addr &&
2155 	    inp->inp_fport == fport &&
2156 	    inp->inp_lport == lport)
2157 		return (true);
2158 	return (false);
2159 }
2160 
2161 static struct inpcb *
2162 in_pcblookup_hash_exact(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2163     u_short fport, struct in_addr laddr, u_short lport)
2164 {
2165 	struct inpcbhead *head;
2166 	struct inpcb *inp;
2167 
2168 	INP_HASH_LOCK_ASSERT(pcbinfo);
2169 
2170 	head = &pcbinfo->ipi_hash_exact[INP_PCBHASH(&faddr, lport, fport,
2171 	    pcbinfo->ipi_hashmask)];
2172 	CK_LIST_FOREACH(inp, head, inp_hash_exact) {
2173 		if (in_pcblookup_exact_match(inp, faddr, fport, laddr, lport))
2174 			return (inp);
2175 	}
2176 	return (NULL);
2177 }
2178 
2179 typedef enum {
2180 	INPLOOKUP_MATCH_NONE = 0,
2181 	INPLOOKUP_MATCH_WILD = 1,
2182 	INPLOOKUP_MATCH_LADDR = 2,
2183 } inp_lookup_match_t;
2184 
2185 static inp_lookup_match_t
2186 in_pcblookup_wild_match(const struct inpcb *inp, struct in_addr laddr,
2187     u_short lport)
2188 {
2189 #ifdef INET6
2190 	/* XXX inp locking */
2191 	if ((inp->inp_vflag & INP_IPV4) == 0)
2192 		return (INPLOOKUP_MATCH_NONE);
2193 #endif
2194 	if (inp->inp_faddr.s_addr != INADDR_ANY || inp->inp_lport != lport)
2195 		return (INPLOOKUP_MATCH_NONE);
2196 	if (inp->inp_laddr.s_addr == INADDR_ANY)
2197 		return (INPLOOKUP_MATCH_WILD);
2198 	if (inp->inp_laddr.s_addr == laddr.s_addr)
2199 		return (INPLOOKUP_MATCH_LADDR);
2200 	return (INPLOOKUP_MATCH_NONE);
2201 }
2202 
2203 #define	INP_LOOKUP_AGAIN	((struct inpcb *)(uintptr_t)-1)
2204 
2205 static struct inpcb *
2206 in_pcblookup_hash_wild_smr(struct inpcbinfo *pcbinfo, struct in_addr laddr,
2207     u_short lport, const inp_lookup_t lockflags)
2208 {
2209 	struct inpcbhead *head;
2210 	struct inpcb *inp;
2211 
2212 	KASSERT(SMR_ENTERED(pcbinfo->ipi_smr),
2213 	    ("%s: not in SMR read section", __func__));
2214 
2215 	head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport,
2216 	    pcbinfo->ipi_hashmask)];
2217 	CK_LIST_FOREACH(inp, head, inp_hash_wild) {
2218 		inp_lookup_match_t match;
2219 
2220 		match = in_pcblookup_wild_match(inp, laddr, lport);
2221 		if (match == INPLOOKUP_MATCH_NONE)
2222 			continue;
2223 
2224 		if (__predict_true(inp_smr_lock(inp, lockflags))) {
2225 			match = in_pcblookup_wild_match(inp, laddr, lport);
2226 			if (match != INPLOOKUP_MATCH_NONE &&
2227 			    prison_check_ip4_locked(inp->inp_cred->cr_prison,
2228 			    &laddr) == 0)
2229 				return (inp);
2230 			inp_unlock(inp, lockflags);
2231 		}
2232 
2233 		/*
2234 		 * The matching socket disappeared out from under us.  Fall back
2235 		 * to a serialized lookup.
2236 		 */
2237 		return (INP_LOOKUP_AGAIN);
2238 	}
2239 	return (NULL);
2240 }
2241 
2242 static struct inpcb *
2243 in_pcblookup_hash_wild_locked(struct inpcbinfo *pcbinfo, struct in_addr laddr,
2244     u_short lport)
2245 {
2246 	struct inpcbhead *head;
2247 	struct inpcb *inp, *local_wild, *local_exact, *jail_wild;
2248 #ifdef INET6
2249 	struct inpcb *local_wild_mapped;
2250 #endif
2251 
2252 	INP_HASH_LOCK_ASSERT(pcbinfo);
2253 
2254 	/*
2255 	 * Order of socket selection - we always prefer jails.
2256 	 *      1. jailed, non-wild.
2257 	 *      2. jailed, wild.
2258 	 *      3. non-jailed, non-wild.
2259 	 *      4. non-jailed, wild.
2260 	 */
2261 	head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport,
2262 	    pcbinfo->ipi_hashmask)];
2263 	local_wild = local_exact = jail_wild = NULL;
2264 #ifdef INET6
2265 	local_wild_mapped = NULL;
2266 #endif
2267 	CK_LIST_FOREACH(inp, head, inp_hash_wild) {
2268 		inp_lookup_match_t match;
2269 		bool injail;
2270 
2271 		match = in_pcblookup_wild_match(inp, laddr, lport);
2272 		if (match == INPLOOKUP_MATCH_NONE)
2273 			continue;
2274 
2275 		injail = prison_flag(inp->inp_cred, PR_IP4) != 0;
2276 		if (injail) {
2277 			if (prison_check_ip4_locked(inp->inp_cred->cr_prison,
2278 			    &laddr) != 0)
2279 				continue;
2280 		} else {
2281 			if (local_exact != NULL)
2282 				continue;
2283 		}
2284 
2285 		if (match == INPLOOKUP_MATCH_LADDR) {
2286 			if (injail)
2287 				return (inp);
2288 			local_exact = inp;
2289 		} else {
2290 #ifdef INET6
2291 			/* XXX inp locking, NULL check */
2292 			if (inp->inp_vflag & INP_IPV6PROTO)
2293 				local_wild_mapped = inp;
2294 			else
2295 #endif
2296 				if (injail)
2297 					jail_wild = inp;
2298 				else
2299 					local_wild = inp;
2300 		}
2301 	}
2302 	if (jail_wild != NULL)
2303 		return (jail_wild);
2304 	if (local_exact != NULL)
2305 		return (local_exact);
2306 	if (local_wild != NULL)
2307 		return (local_wild);
2308 #ifdef INET6
2309 	if (local_wild_mapped != NULL)
2310 		return (local_wild_mapped);
2311 #endif
2312 	return (NULL);
2313 }
2314 
2315 /*
2316  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
2317  * that the caller has either locked the hash list, which usually happens
2318  * for bind(2) operations, or is in SMR section, which happens when sorting
2319  * out incoming packets.
2320  */
2321 static struct inpcb *
2322 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2323     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2324     uint8_t numa_domain)
2325 {
2326 	struct inpcb *inp;
2327 	const u_short fport = fport_arg, lport = lport_arg;
2328 
2329 	KASSERT((lookupflags & ~INPLOOKUP_WILDCARD) == 0,
2330 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2331 	KASSERT(faddr.s_addr != INADDR_ANY,
2332 	    ("%s: invalid foreign address", __func__));
2333 	KASSERT(laddr.s_addr != INADDR_ANY,
2334 	    ("%s: invalid local address", __func__));
2335 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2336 
2337 	inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport);
2338 	if (inp != NULL)
2339 		return (inp);
2340 
2341 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2342 		inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport,
2343 		    &laddr, lport, numa_domain);
2344 		if (inp == NULL) {
2345 			inp = in_pcblookup_hash_wild_locked(pcbinfo, laddr,
2346 			    lport);
2347 		}
2348 	}
2349 
2350 	return (inp);
2351 }
2352 
2353 static struct inpcb *
2354 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2355     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2356     uint8_t numa_domain)
2357 {
2358 	struct inpcb *inp;
2359 	const inp_lookup_t lockflags = lookupflags & INPLOOKUP_LOCKMASK;
2360 
2361 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2362 	    ("%s: LOCKPCB not set", __func__));
2363 
2364 	INP_HASH_WLOCK(pcbinfo);
2365 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2366 	    lookupflags & ~INPLOOKUP_LOCKMASK, numa_domain);
2367 	if (inp != NULL && !inp_trylock(inp, lockflags)) {
2368 		in_pcbref(inp);
2369 		INP_HASH_WUNLOCK(pcbinfo);
2370 		inp_lock(inp, lockflags);
2371 		if (in_pcbrele(inp, lockflags))
2372 			/* XXX-MJ or retry until we get a negative match? */
2373 			inp = NULL;
2374 	} else {
2375 		INP_HASH_WUNLOCK(pcbinfo);
2376 	}
2377 	return (inp);
2378 }
2379 
2380 static struct inpcb *
2381 in_pcblookup_hash_smr(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2382     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2383     uint8_t numa_domain)
2384 {
2385 	struct inpcb *inp;
2386 	const inp_lookup_t lockflags = lookupflags & INPLOOKUP_LOCKMASK;
2387 	const u_short fport = fport_arg, lport = lport_arg;
2388 
2389 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2390 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2391 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2392 	    ("%s: LOCKPCB not set", __func__));
2393 
2394 	smr_enter(pcbinfo->ipi_smr);
2395 	inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport);
2396 	if (inp != NULL) {
2397 		if (__predict_true(inp_smr_lock(inp, lockflags))) {
2398 			/*
2399 			 * Revalidate the 4-tuple, the socket could have been
2400 			 * disconnected.
2401 			 */
2402 			if (__predict_true(in_pcblookup_exact_match(inp,
2403 			    faddr, fport, laddr, lport)))
2404 				return (inp);
2405 			inp_unlock(inp, lockflags);
2406 		}
2407 
2408 		/*
2409 		 * We failed to lock the inpcb, or its connection state changed
2410 		 * out from under us.  Fall back to a precise search.
2411 		 */
2412 		return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2413 		    lookupflags, numa_domain));
2414 	}
2415 
2416 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2417 		inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport,
2418 		    &laddr, lport, numa_domain);
2419 		if (inp != NULL) {
2420 			if (__predict_true(inp_smr_lock(inp, lockflags))) {
2421 				if (__predict_true(in_pcblookup_wild_match(inp,
2422 				    laddr, lport) != INPLOOKUP_MATCH_NONE))
2423 					return (inp);
2424 				inp_unlock(inp, lockflags);
2425 			}
2426 			inp = INP_LOOKUP_AGAIN;
2427 		} else {
2428 			inp = in_pcblookup_hash_wild_smr(pcbinfo, laddr, lport,
2429 			    lockflags);
2430 		}
2431 		if (inp == INP_LOOKUP_AGAIN) {
2432 			return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr,
2433 			    lport, lookupflags, numa_domain));
2434 		}
2435 	}
2436 
2437 	if (inp == NULL)
2438 		smr_exit(pcbinfo->ipi_smr);
2439 
2440 	return (inp);
2441 }
2442 
2443 /*
2444  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2445  * from which a pre-calculated hash value may be extracted.
2446  */
2447 struct inpcb *
2448 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2449     struct in_addr laddr, u_int lport, int lookupflags,
2450     struct ifnet *ifp __unused)
2451 {
2452 	return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport,
2453 	    lookupflags, M_NODOM));
2454 }
2455 
2456 struct inpcb *
2457 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2458     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2459     struct ifnet *ifp __unused, struct mbuf *m)
2460 {
2461 	return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport,
2462 	    lookupflags, m->m_pkthdr.numa_domain));
2463 }
2464 #endif /* INET */
2465 
2466 static bool
2467 in_pcbjailed(const struct inpcb *inp, unsigned int flag)
2468 {
2469 	return (prison_flag(inp->inp_cred, flag) != 0);
2470 }
2471 
2472 /*
2473  * Insert the PCB into a hash chain using ordering rules which ensure that
2474  * in_pcblookup_hash_wild_*() always encounter the highest-ranking PCB first.
2475  *
2476  * Specifically, keep jailed PCBs in front of non-jailed PCBs, and keep PCBs
2477  * with exact local addresses ahead of wildcard PCBs.  Unbound v4-mapped v6 PCBs
2478  * always appear last no matter whether they are jailed.
2479  */
2480 static void
2481 _in_pcbinshash_wild(struct inpcbhead *pcbhash, struct inpcb *inp)
2482 {
2483 	struct inpcb *last;
2484 	bool bound, injail;
2485 
2486 	INP_LOCK_ASSERT(inp);
2487 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
2488 
2489 	last = NULL;
2490 	bound = inp->inp_laddr.s_addr != INADDR_ANY;
2491 	if (!bound && (inp->inp_vflag & INP_IPV6PROTO) != 0) {
2492 		CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) {
2493 			if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2494 				CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2495 				return;
2496 			}
2497 		}
2498 		CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2499 		return;
2500 	}
2501 
2502 	injail = in_pcbjailed(inp, PR_IP4);
2503 	if (!injail) {
2504 		CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) {
2505 			if (!in_pcbjailed(last, PR_IP4))
2506 				break;
2507 			if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2508 				CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2509 				return;
2510 			}
2511 		}
2512 	} else if (!CK_LIST_EMPTY(pcbhash) &&
2513 	    !in_pcbjailed(CK_LIST_FIRST(pcbhash), PR_IP4)) {
2514 		CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2515 		return;
2516 	}
2517 	if (!bound) {
2518 		CK_LIST_FOREACH_FROM(last, pcbhash, inp_hash_wild) {
2519 			if (last->inp_laddr.s_addr == INADDR_ANY)
2520 				break;
2521 			if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2522 				CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2523 				return;
2524 			}
2525 		}
2526 	}
2527 	if (last == NULL)
2528 		CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2529 	else
2530 		CK_LIST_INSERT_BEFORE(last, inp, inp_hash_wild);
2531 }
2532 
2533 #ifdef INET6
2534 /*
2535  * See the comment above _in_pcbinshash_wild().
2536  */
2537 static void
2538 _in6_pcbinshash_wild(struct inpcbhead *pcbhash, struct inpcb *inp)
2539 {
2540 	struct inpcb *last;
2541 	bool bound, injail;
2542 
2543 	INP_LOCK_ASSERT(inp);
2544 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
2545 
2546 	last = NULL;
2547 	bound = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr);
2548 	injail = in_pcbjailed(inp, PR_IP6);
2549 	if (!injail) {
2550 		CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) {
2551 			if (!in_pcbjailed(last, PR_IP6))
2552 				break;
2553 			if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2554 				CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2555 				return;
2556 			}
2557 		}
2558 	} else if (!CK_LIST_EMPTY(pcbhash) &&
2559 	    !in_pcbjailed(CK_LIST_FIRST(pcbhash), PR_IP6)) {
2560 		CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2561 		return;
2562 	}
2563 	if (!bound) {
2564 		CK_LIST_FOREACH_FROM(last, pcbhash, inp_hash_wild) {
2565 			if (IN6_IS_ADDR_UNSPECIFIED(&last->in6p_laddr))
2566 				break;
2567 			if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2568 				CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2569 				return;
2570 			}
2571 		}
2572 	}
2573 	if (last == NULL)
2574 		CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2575 	else
2576 		CK_LIST_INSERT_BEFORE(last, inp, inp_hash_wild);
2577 }
2578 #endif
2579 
2580 /*
2581  * Insert PCB onto various hash lists.
2582  */
2583 int
2584 in_pcbinshash(struct inpcb *inp)
2585 {
2586 	struct inpcbhead *pcbhash;
2587 	struct inpcbporthead *pcbporthash;
2588 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2589 	struct inpcbport *phd;
2590 	uint32_t hash;
2591 	bool connected;
2592 
2593 	INP_WLOCK_ASSERT(inp);
2594 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2595 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2596 	    ("in_pcbinshash: INP_INHASHLIST"));
2597 
2598 #ifdef INET6
2599 	if (inp->inp_vflag & INP_IPV6) {
2600 		hash = INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport,
2601 		    inp->inp_fport, pcbinfo->ipi_hashmask);
2602 		connected = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr);
2603 	} else
2604 #endif
2605 	{
2606 		hash = INP_PCBHASH(&inp->inp_faddr, inp->inp_lport,
2607 		    inp->inp_fport, pcbinfo->ipi_hashmask);
2608 		connected = !in_nullhost(inp->inp_faddr);
2609 	}
2610 
2611 	if (connected)
2612 		pcbhash = &pcbinfo->ipi_hash_exact[hash];
2613 	else
2614 		pcbhash = &pcbinfo->ipi_hash_wild[hash];
2615 
2616 	pcbporthash = &pcbinfo->ipi_porthashbase[
2617 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2618 
2619 	/*
2620 	 * Add entry to load balance group.
2621 	 * Only do this if SO_REUSEPORT_LB is set.
2622 	 */
2623 	if ((inp->inp_socket->so_options & SO_REUSEPORT_LB) != 0) {
2624 		int error = in_pcbinslbgrouphash(inp, M_NODOM);
2625 		if (error != 0)
2626 			return (error);
2627 	}
2628 
2629 	/*
2630 	 * Go through port list and look for a head for this lport.
2631 	 */
2632 	CK_LIST_FOREACH(phd, pcbporthash, phd_hash) {
2633 		if (phd->phd_port == inp->inp_lport)
2634 			break;
2635 	}
2636 
2637 	/*
2638 	 * If none exists, malloc one and tack it on.
2639 	 */
2640 	if (phd == NULL) {
2641 		phd = uma_zalloc_smr(pcbinfo->ipi_portzone, M_NOWAIT);
2642 		if (phd == NULL) {
2643 			if ((inp->inp_flags & INP_INLBGROUP) != 0)
2644 				in_pcbremlbgrouphash(inp);
2645 			return (ENOMEM);
2646 		}
2647 		phd->phd_port = inp->inp_lport;
2648 		CK_LIST_INIT(&phd->phd_pcblist);
2649 		CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2650 	}
2651 	inp->inp_phd = phd;
2652 	CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2653 
2654 	/*
2655 	 * The PCB may have been disconnected in the past.  Before we can safely
2656 	 * make it visible in the hash table, we must wait for all readers which
2657 	 * may be traversing this PCB to finish.
2658 	 */
2659 	if (inp->inp_smr != SMR_SEQ_INVALID) {
2660 		smr_wait(pcbinfo->ipi_smr, inp->inp_smr);
2661 		inp->inp_smr = SMR_SEQ_INVALID;
2662 	}
2663 
2664 	if (connected)
2665 		CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_exact);
2666 	else {
2667 #ifdef INET6
2668 		if ((inp->inp_vflag & INP_IPV6) != 0)
2669 			_in6_pcbinshash_wild(pcbhash, inp);
2670 		else
2671 #endif
2672 			_in_pcbinshash_wild(pcbhash, inp);
2673 	}
2674 	inp->inp_flags |= INP_INHASHLIST;
2675 
2676 	return (0);
2677 }
2678 
2679 void
2680 in_pcbremhash_locked(struct inpcb *inp)
2681 {
2682 	struct inpcbport *phd = inp->inp_phd;
2683 
2684 	INP_WLOCK_ASSERT(inp);
2685 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
2686 	MPASS(inp->inp_flags & INP_INHASHLIST);
2687 
2688 	if ((inp->inp_flags & INP_INLBGROUP) != 0)
2689 		in_pcbremlbgrouphash(inp);
2690 #ifdef INET6
2691 	if (inp->inp_vflag & INP_IPV6) {
2692 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr))
2693 			CK_LIST_REMOVE(inp, inp_hash_wild);
2694 		else
2695 			CK_LIST_REMOVE(inp, inp_hash_exact);
2696 	} else
2697 #endif
2698 	{
2699 		if (in_nullhost(inp->inp_faddr))
2700 			CK_LIST_REMOVE(inp, inp_hash_wild);
2701 		else
2702 			CK_LIST_REMOVE(inp, inp_hash_exact);
2703 	}
2704 	CK_LIST_REMOVE(inp, inp_portlist);
2705 	if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
2706 		CK_LIST_REMOVE(phd, phd_hash);
2707 		uma_zfree_smr(inp->inp_pcbinfo->ipi_portzone, phd);
2708 	}
2709 	inp->inp_flags &= ~INP_INHASHLIST;
2710 }
2711 
2712 static void
2713 in_pcbremhash(struct inpcb *inp)
2714 {
2715 	INP_HASH_WLOCK(inp->inp_pcbinfo);
2716 	in_pcbremhash_locked(inp);
2717 	INP_HASH_WUNLOCK(inp->inp_pcbinfo);
2718 }
2719 
2720 /*
2721  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2722  * changed. NOTE: This does not handle the case of the lport changing (the
2723  * hashed port list would have to be updated as well), so the lport must
2724  * not change after in_pcbinshash() has been called.
2725  */
2726 void
2727 in_pcbrehash(struct inpcb *inp)
2728 {
2729 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2730 	struct inpcbhead *head;
2731 	uint32_t hash;
2732 	bool connected;
2733 
2734 	INP_WLOCK_ASSERT(inp);
2735 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2736 	KASSERT(inp->inp_flags & INP_INHASHLIST,
2737 	    ("%s: !INP_INHASHLIST", __func__));
2738 	KASSERT(inp->inp_smr == SMR_SEQ_INVALID,
2739 	    ("%s: inp was disconnected", __func__));
2740 
2741 #ifdef INET6
2742 	if (inp->inp_vflag & INP_IPV6) {
2743 		hash = INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport,
2744 		    inp->inp_fport, pcbinfo->ipi_hashmask);
2745 		connected = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr);
2746 	} else
2747 #endif
2748 	{
2749 		hash = INP_PCBHASH(&inp->inp_faddr, inp->inp_lport,
2750 		    inp->inp_fport, pcbinfo->ipi_hashmask);
2751 		connected = !in_nullhost(inp->inp_faddr);
2752 	}
2753 
2754 	/*
2755 	 * When rehashing, the caller must ensure that either the new or the old
2756 	 * foreign address was unspecified.
2757 	 */
2758 	if (connected)
2759 		CK_LIST_REMOVE(inp, inp_hash_wild);
2760 	else
2761 		CK_LIST_REMOVE(inp, inp_hash_exact);
2762 
2763 	if (connected) {
2764 		head = &pcbinfo->ipi_hash_exact[hash];
2765 		CK_LIST_INSERT_HEAD(head, inp, inp_hash_exact);
2766 	} else {
2767 		head = &pcbinfo->ipi_hash_wild[hash];
2768 		CK_LIST_INSERT_HEAD(head, inp, inp_hash_wild);
2769 	}
2770 }
2771 
2772 /*
2773  * Check for alternatives when higher level complains
2774  * about service problems.  For now, invalidate cached
2775  * routing information.  If the route was created dynamically
2776  * (by a redirect), time to try a default gateway again.
2777  */
2778 void
2779 in_losing(struct inpcb *inp)
2780 {
2781 
2782 	RO_INVALIDATE_CACHE(&inp->inp_route);
2783 	return;
2784 }
2785 
2786 /*
2787  * A set label operation has occurred at the socket layer, propagate the
2788  * label change into the in_pcb for the socket.
2789  */
2790 void
2791 in_pcbsosetlabel(struct socket *so)
2792 {
2793 #ifdef MAC
2794 	struct inpcb *inp;
2795 
2796 	inp = sotoinpcb(so);
2797 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2798 
2799 	INP_WLOCK(inp);
2800 	SOCK_LOCK(so);
2801 	mac_inpcb_sosetlabel(so, inp);
2802 	SOCK_UNLOCK(so);
2803 	INP_WUNLOCK(inp);
2804 #endif
2805 }
2806 
2807 void
2808 inp_wlock(struct inpcb *inp)
2809 {
2810 
2811 	INP_WLOCK(inp);
2812 }
2813 
2814 void
2815 inp_wunlock(struct inpcb *inp)
2816 {
2817 
2818 	INP_WUNLOCK(inp);
2819 }
2820 
2821 void
2822 inp_rlock(struct inpcb *inp)
2823 {
2824 
2825 	INP_RLOCK(inp);
2826 }
2827 
2828 void
2829 inp_runlock(struct inpcb *inp)
2830 {
2831 
2832 	INP_RUNLOCK(inp);
2833 }
2834 
2835 #ifdef INVARIANT_SUPPORT
2836 void
2837 inp_lock_assert(struct inpcb *inp)
2838 {
2839 
2840 	INP_WLOCK_ASSERT(inp);
2841 }
2842 
2843 void
2844 inp_unlock_assert(struct inpcb *inp)
2845 {
2846 
2847 	INP_UNLOCK_ASSERT(inp);
2848 }
2849 #endif
2850 
2851 void
2852 inp_apply_all(struct inpcbinfo *pcbinfo,
2853     void (*func)(struct inpcb *, void *), void *arg)
2854 {
2855 	struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo,
2856 	    INPLOOKUP_WLOCKPCB);
2857 	struct inpcb *inp;
2858 
2859 	while ((inp = inp_next(&inpi)) != NULL)
2860 		func(inp, arg);
2861 }
2862 
2863 struct socket *
2864 inp_inpcbtosocket(struct inpcb *inp)
2865 {
2866 
2867 	INP_WLOCK_ASSERT(inp);
2868 	return (inp->inp_socket);
2869 }
2870 
2871 void
2872 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2873     uint32_t *faddr, uint16_t *fp)
2874 {
2875 
2876 	INP_LOCK_ASSERT(inp);
2877 	*laddr = inp->inp_laddr.s_addr;
2878 	*faddr = inp->inp_faddr.s_addr;
2879 	*lp = inp->inp_lport;
2880 	*fp = inp->inp_fport;
2881 }
2882 
2883 /*
2884  * Create an external-format (``xinpcb'') structure using the information in
2885  * the kernel-format in_pcb structure pointed to by inp.  This is done to
2886  * reduce the spew of irrelevant information over this interface, to isolate
2887  * user code from changes in the kernel structure, and potentially to provide
2888  * information-hiding if we decide that some of this information should be
2889  * hidden from users.
2890  */
2891 void
2892 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2893 {
2894 
2895 	bzero(xi, sizeof(*xi));
2896 	xi->xi_len = sizeof(struct xinpcb);
2897 	if (inp->inp_socket)
2898 		sotoxsocket(inp->inp_socket, &xi->xi_socket);
2899 	bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2900 	xi->inp_gencnt = inp->inp_gencnt;
2901 	xi->inp_flow = inp->inp_flow;
2902 	xi->inp_flowid = inp->inp_flowid;
2903 	xi->inp_flowtype = inp->inp_flowtype;
2904 	xi->inp_flags = inp->inp_flags;
2905 	xi->inp_flags2 = inp->inp_flags2;
2906 	xi->in6p_cksum = inp->in6p_cksum;
2907 	xi->in6p_hops = inp->in6p_hops;
2908 	xi->inp_ip_tos = inp->inp_ip_tos;
2909 	xi->inp_vflag = inp->inp_vflag;
2910 	xi->inp_ip_ttl = inp->inp_ip_ttl;
2911 	xi->inp_ip_p = inp->inp_ip_p;
2912 	xi->inp_ip_minttl = inp->inp_ip_minttl;
2913 }
2914 
2915 int
2916 sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo,
2917     int (*ctloutput_set)(struct inpcb *, struct sockopt *))
2918 {
2919 	struct sockopt sopt;
2920 	struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo,
2921 	    INPLOOKUP_WLOCKPCB);
2922 	struct inpcb *inp;
2923 	struct sockopt_parameters *params;
2924 	struct socket *so;
2925 	int error;
2926 	char buf[1024];
2927 
2928 	if (req->oldptr != NULL || req->oldlen != 0)
2929 		return (EINVAL);
2930 	if (req->newptr == NULL)
2931 		return (EPERM);
2932 	if (req->newlen > sizeof(buf))
2933 		return (ENOMEM);
2934 	error = SYSCTL_IN(req, buf, req->newlen);
2935 	if (error != 0)
2936 		return (error);
2937 	if (req->newlen < sizeof(struct sockopt_parameters))
2938 		return (EINVAL);
2939 	params = (struct sockopt_parameters *)buf;
2940 	sopt.sopt_level = params->sop_level;
2941 	sopt.sopt_name = params->sop_optname;
2942 	sopt.sopt_dir = SOPT_SET;
2943 	sopt.sopt_val = params->sop_optval;
2944 	sopt.sopt_valsize = req->newlen - sizeof(struct sockopt_parameters);
2945 	sopt.sopt_td = NULL;
2946 #ifdef INET6
2947 	if (params->sop_inc.inc_flags & INC_ISIPV6) {
2948 		if (IN6_IS_SCOPE_LINKLOCAL(&params->sop_inc.inc6_laddr))
2949 			params->sop_inc.inc6_laddr.s6_addr16[1] =
2950 			    htons(params->sop_inc.inc6_zoneid & 0xffff);
2951 		if (IN6_IS_SCOPE_LINKLOCAL(&params->sop_inc.inc6_faddr))
2952 			params->sop_inc.inc6_faddr.s6_addr16[1] =
2953 			    htons(params->sop_inc.inc6_zoneid & 0xffff);
2954 	}
2955 #endif
2956 	if (params->sop_inc.inc_lport != htons(0) &&
2957 	    params->sop_inc.inc_fport != htons(0)) {
2958 #ifdef INET6
2959 		if (params->sop_inc.inc_flags & INC_ISIPV6)
2960 			inpi.hash = INP6_PCBHASH(
2961 			    &params->sop_inc.inc6_faddr,
2962 			    params->sop_inc.inc_lport,
2963 			    params->sop_inc.inc_fport,
2964 			    pcbinfo->ipi_hashmask);
2965 		else
2966 #endif
2967 			inpi.hash = INP_PCBHASH(
2968 			    &params->sop_inc.inc_faddr,
2969 			    params->sop_inc.inc_lport,
2970 			    params->sop_inc.inc_fport,
2971 			    pcbinfo->ipi_hashmask);
2972 	}
2973 	while ((inp = inp_next(&inpi)) != NULL)
2974 		if (inp->inp_gencnt == params->sop_id) {
2975 			if (inp->inp_flags & INP_DROPPED) {
2976 				INP_WUNLOCK(inp);
2977 				return (ECONNRESET);
2978 			}
2979 			so = inp->inp_socket;
2980 			KASSERT(so != NULL, ("inp_socket == NULL"));
2981 			soref(so);
2982 			if (params->sop_level == SOL_SOCKET) {
2983 				INP_WUNLOCK(inp);
2984 				error = sosetopt(so, &sopt);
2985 			} else
2986 				error = (*ctloutput_set)(inp, &sopt);
2987 			sorele(so);
2988 			break;
2989 		}
2990 	if (inp == NULL)
2991 		error = ESRCH;
2992 	return (error);
2993 }
2994 
2995 #ifdef DDB
2996 static void
2997 db_print_indent(int indent)
2998 {
2999 	int i;
3000 
3001 	for (i = 0; i < indent; i++)
3002 		db_printf(" ");
3003 }
3004 
3005 static void
3006 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
3007 {
3008 	char faddr_str[48], laddr_str[48];
3009 
3010 	db_print_indent(indent);
3011 	db_printf("%s at %p\n", name, inc);
3012 
3013 	indent += 2;
3014 
3015 #ifdef INET6
3016 	if (inc->inc_flags & INC_ISIPV6) {
3017 		/* IPv6. */
3018 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
3019 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
3020 	} else
3021 #endif
3022 	{
3023 		/* IPv4. */
3024 		inet_ntoa_r(inc->inc_laddr, laddr_str);
3025 		inet_ntoa_r(inc->inc_faddr, faddr_str);
3026 	}
3027 	db_print_indent(indent);
3028 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
3029 	    ntohs(inc->inc_lport));
3030 	db_print_indent(indent);
3031 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
3032 	    ntohs(inc->inc_fport));
3033 }
3034 
3035 static void
3036 db_print_inpflags(int inp_flags)
3037 {
3038 	int comma;
3039 
3040 	comma = 0;
3041 	if (inp_flags & INP_RECVOPTS) {
3042 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
3043 		comma = 1;
3044 	}
3045 	if (inp_flags & INP_RECVRETOPTS) {
3046 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
3047 		comma = 1;
3048 	}
3049 	if (inp_flags & INP_RECVDSTADDR) {
3050 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
3051 		comma = 1;
3052 	}
3053 	if (inp_flags & INP_ORIGDSTADDR) {
3054 		db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
3055 		comma = 1;
3056 	}
3057 	if (inp_flags & INP_HDRINCL) {
3058 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
3059 		comma = 1;
3060 	}
3061 	if (inp_flags & INP_HIGHPORT) {
3062 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
3063 		comma = 1;
3064 	}
3065 	if (inp_flags & INP_LOWPORT) {
3066 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
3067 		comma = 1;
3068 	}
3069 	if (inp_flags & INP_ANONPORT) {
3070 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
3071 		comma = 1;
3072 	}
3073 	if (inp_flags & INP_RECVIF) {
3074 		db_printf("%sINP_RECVIF", comma ? ", " : "");
3075 		comma = 1;
3076 	}
3077 	if (inp_flags & INP_MTUDISC) {
3078 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
3079 		comma = 1;
3080 	}
3081 	if (inp_flags & INP_RECVTTL) {
3082 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
3083 		comma = 1;
3084 	}
3085 	if (inp_flags & INP_DONTFRAG) {
3086 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
3087 		comma = 1;
3088 	}
3089 	if (inp_flags & INP_RECVTOS) {
3090 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
3091 		comma = 1;
3092 	}
3093 	if (inp_flags & IN6P_IPV6_V6ONLY) {
3094 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
3095 		comma = 1;
3096 	}
3097 	if (inp_flags & IN6P_PKTINFO) {
3098 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
3099 		comma = 1;
3100 	}
3101 	if (inp_flags & IN6P_HOPLIMIT) {
3102 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
3103 		comma = 1;
3104 	}
3105 	if (inp_flags & IN6P_HOPOPTS) {
3106 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
3107 		comma = 1;
3108 	}
3109 	if (inp_flags & IN6P_DSTOPTS) {
3110 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
3111 		comma = 1;
3112 	}
3113 	if (inp_flags & IN6P_RTHDR) {
3114 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
3115 		comma = 1;
3116 	}
3117 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
3118 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
3119 		comma = 1;
3120 	}
3121 	if (inp_flags & IN6P_TCLASS) {
3122 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
3123 		comma = 1;
3124 	}
3125 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
3126 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
3127 		comma = 1;
3128 	}
3129 	if (inp_flags & INP_ONESBCAST) {
3130 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
3131 		comma  = 1;
3132 	}
3133 	if (inp_flags & INP_DROPPED) {
3134 		db_printf("%sINP_DROPPED", comma ? ", " : "");
3135 		comma  = 1;
3136 	}
3137 	if (inp_flags & INP_SOCKREF) {
3138 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
3139 		comma  = 1;
3140 	}
3141 	if (inp_flags & IN6P_RFC2292) {
3142 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
3143 		comma = 1;
3144 	}
3145 	if (inp_flags & IN6P_MTU) {
3146 		db_printf("IN6P_MTU%s", comma ? ", " : "");
3147 		comma = 1;
3148 	}
3149 }
3150 
3151 static void
3152 db_print_inpvflag(u_char inp_vflag)
3153 {
3154 	int comma;
3155 
3156 	comma = 0;
3157 	if (inp_vflag & INP_IPV4) {
3158 		db_printf("%sINP_IPV4", comma ? ", " : "");
3159 		comma  = 1;
3160 	}
3161 	if (inp_vflag & INP_IPV6) {
3162 		db_printf("%sINP_IPV6", comma ? ", " : "");
3163 		comma  = 1;
3164 	}
3165 	if (inp_vflag & INP_IPV6PROTO) {
3166 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
3167 		comma  = 1;
3168 	}
3169 }
3170 
3171 static void
3172 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
3173 {
3174 
3175 	db_print_indent(indent);
3176 	db_printf("%s at %p\n", name, inp);
3177 
3178 	indent += 2;
3179 
3180 	db_print_indent(indent);
3181 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
3182 
3183 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
3184 
3185 	db_print_indent(indent);
3186 	db_printf("inp_label: %p   inp_flags: 0x%x (",
3187 	   inp->inp_label, inp->inp_flags);
3188 	db_print_inpflags(inp->inp_flags);
3189 	db_printf(")\n");
3190 
3191 	db_print_indent(indent);
3192 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
3193 	    inp->inp_vflag);
3194 	db_print_inpvflag(inp->inp_vflag);
3195 	db_printf(")\n");
3196 
3197 	db_print_indent(indent);
3198 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
3199 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
3200 
3201 	db_print_indent(indent);
3202 #ifdef INET6
3203 	if (inp->inp_vflag & INP_IPV6) {
3204 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
3205 		    "in6p_moptions: %p\n", inp->in6p_options,
3206 		    inp->in6p_outputopts, inp->in6p_moptions);
3207 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
3208 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
3209 		    inp->in6p_hops);
3210 	} else
3211 #endif
3212 	{
3213 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
3214 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
3215 		    inp->inp_options, inp->inp_moptions);
3216 	}
3217 
3218 	db_print_indent(indent);
3219 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
3220 	    (uintmax_t)inp->inp_gencnt);
3221 }
3222 
3223 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
3224 {
3225 	struct inpcb *inp;
3226 
3227 	if (!have_addr) {
3228 		db_printf("usage: show inpcb <addr>\n");
3229 		return;
3230 	}
3231 	inp = (struct inpcb *)addr;
3232 
3233 	db_print_inpcb(inp, "inpcb", 0);
3234 }
3235 #endif /* DDB */
3236 
3237 #ifdef RATELIMIT
3238 /*
3239  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
3240  * if any.
3241  */
3242 int
3243 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
3244 {
3245 	union if_snd_tag_modify_params params = {
3246 		.rate_limit.max_rate = max_pacing_rate,
3247 		.rate_limit.flags = M_NOWAIT,
3248 	};
3249 	struct m_snd_tag *mst;
3250 	int error;
3251 
3252 	mst = inp->inp_snd_tag;
3253 	if (mst == NULL)
3254 		return (EINVAL);
3255 
3256 	if (mst->sw->snd_tag_modify == NULL) {
3257 		error = EOPNOTSUPP;
3258 	} else {
3259 		error = mst->sw->snd_tag_modify(mst, &params);
3260 	}
3261 	return (error);
3262 }
3263 
3264 /*
3265  * Query existing TX rate limit based on the existing
3266  * "inp->inp_snd_tag", if any.
3267  */
3268 int
3269 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
3270 {
3271 	union if_snd_tag_query_params params = { };
3272 	struct m_snd_tag *mst;
3273 	int error;
3274 
3275 	mst = inp->inp_snd_tag;
3276 	if (mst == NULL)
3277 		return (EINVAL);
3278 
3279 	if (mst->sw->snd_tag_query == NULL) {
3280 		error = EOPNOTSUPP;
3281 	} else {
3282 		error = mst->sw->snd_tag_query(mst, &params);
3283 		if (error == 0 && p_max_pacing_rate != NULL)
3284 			*p_max_pacing_rate = params.rate_limit.max_rate;
3285 	}
3286 	return (error);
3287 }
3288 
3289 /*
3290  * Query existing TX queue level based on the existing
3291  * "inp->inp_snd_tag", if any.
3292  */
3293 int
3294 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
3295 {
3296 	union if_snd_tag_query_params params = { };
3297 	struct m_snd_tag *mst;
3298 	int error;
3299 
3300 	mst = inp->inp_snd_tag;
3301 	if (mst == NULL)
3302 		return (EINVAL);
3303 
3304 	if (mst->sw->snd_tag_query == NULL)
3305 		return (EOPNOTSUPP);
3306 
3307 	error = mst->sw->snd_tag_query(mst, &params);
3308 	if (error == 0 && p_txqueue_level != NULL)
3309 		*p_txqueue_level = params.rate_limit.queue_level;
3310 	return (error);
3311 }
3312 
3313 /*
3314  * Allocate a new TX rate limit send tag from the network interface
3315  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
3316  */
3317 int
3318 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
3319     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st)
3320 
3321 {
3322 	union if_snd_tag_alloc_params params = {
3323 		.rate_limit.hdr.type = (max_pacing_rate == -1U) ?
3324 		    IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
3325 		.rate_limit.hdr.flowid = flowid,
3326 		.rate_limit.hdr.flowtype = flowtype,
3327 		.rate_limit.hdr.numa_domain = inp->inp_numa_domain,
3328 		.rate_limit.max_rate = max_pacing_rate,
3329 		.rate_limit.flags = M_NOWAIT,
3330 	};
3331 	int error;
3332 
3333 	INP_WLOCK_ASSERT(inp);
3334 
3335 	/*
3336 	 * If there is already a send tag, or the INP is being torn
3337 	 * down, allocating a new send tag is not allowed. Else send
3338 	 * tags may leak.
3339 	 */
3340 	if (*st != NULL || (inp->inp_flags & INP_DROPPED) != 0)
3341 		return (EINVAL);
3342 
3343 	error = m_snd_tag_alloc(ifp, &params, st);
3344 #ifdef INET
3345 	if (error == 0) {
3346 		counter_u64_add(rate_limit_set_ok, 1);
3347 		counter_u64_add(rate_limit_active, 1);
3348 	} else if (error != EOPNOTSUPP)
3349 		  counter_u64_add(rate_limit_alloc_fail, 1);
3350 #endif
3351 	return (error);
3352 }
3353 
3354 void
3355 in_pcbdetach_tag(struct m_snd_tag *mst)
3356 {
3357 
3358 	m_snd_tag_rele(mst);
3359 #ifdef INET
3360 	counter_u64_add(rate_limit_active, -1);
3361 #endif
3362 }
3363 
3364 /*
3365  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
3366  * if any:
3367  */
3368 void
3369 in_pcbdetach_txrtlmt(struct inpcb *inp)
3370 {
3371 	struct m_snd_tag *mst;
3372 
3373 	INP_WLOCK_ASSERT(inp);
3374 
3375 	mst = inp->inp_snd_tag;
3376 	inp->inp_snd_tag = NULL;
3377 
3378 	if (mst == NULL)
3379 		return;
3380 
3381 	m_snd_tag_rele(mst);
3382 #ifdef INET
3383 	counter_u64_add(rate_limit_active, -1);
3384 #endif
3385 }
3386 
3387 int
3388 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate)
3389 {
3390 	int error;
3391 
3392 	/*
3393 	 * If the existing send tag is for the wrong interface due to
3394 	 * a route change, first drop the existing tag.  Set the
3395 	 * CHANGED flag so that we will keep trying to allocate a new
3396 	 * tag if we fail to allocate one this time.
3397 	 */
3398 	if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) {
3399 		in_pcbdetach_txrtlmt(inp);
3400 		inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3401 	}
3402 
3403 	/*
3404 	 * NOTE: When attaching to a network interface a reference is
3405 	 * made to ensure the network interface doesn't go away until
3406 	 * all ratelimit connections are gone. The network interface
3407 	 * pointers compared below represent valid network interfaces,
3408 	 * except when comparing towards NULL.
3409 	 */
3410 	if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3411 		error = 0;
3412 	} else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3413 		if (inp->inp_snd_tag != NULL)
3414 			in_pcbdetach_txrtlmt(inp);
3415 		error = 0;
3416 	} else if (inp->inp_snd_tag == NULL) {
3417 		/*
3418 		 * In order to utilize packet pacing with RSS, we need
3419 		 * to wait until there is a valid RSS hash before we
3420 		 * can proceed:
3421 		 */
3422 		if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3423 			error = EAGAIN;
3424 		} else {
3425 			error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3426 			    mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag);
3427 		}
3428 	} else {
3429 		error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3430 	}
3431 	if (error == 0 || error == EOPNOTSUPP)
3432 		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3433 
3434 	return (error);
3435 }
3436 
3437 /*
3438  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
3439  * is set in the fast path and will attach/detach/modify the TX rate
3440  * limit send tag based on the socket's so_max_pacing_rate value.
3441  */
3442 void
3443 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
3444 {
3445 	struct socket *socket;
3446 	uint32_t max_pacing_rate;
3447 	bool did_upgrade;
3448 
3449 	if (inp == NULL)
3450 		return;
3451 
3452 	socket = inp->inp_socket;
3453 	if (socket == NULL)
3454 		return;
3455 
3456 	if (!INP_WLOCKED(inp)) {
3457 		/*
3458 		 * NOTE: If the write locking fails, we need to bail
3459 		 * out and use the non-ratelimited ring for the
3460 		 * transmit until there is a new chance to get the
3461 		 * write lock.
3462 		 */
3463 		if (!INP_TRY_UPGRADE(inp))
3464 			return;
3465 		did_upgrade = 1;
3466 	} else {
3467 		did_upgrade = 0;
3468 	}
3469 
3470 	/*
3471 	 * NOTE: The so_max_pacing_rate value is read unlocked,
3472 	 * because atomic updates are not required since the variable
3473 	 * is checked at every mbuf we send. It is assumed that the
3474 	 * variable read itself will be atomic.
3475 	 */
3476 	max_pacing_rate = socket->so_max_pacing_rate;
3477 
3478 	in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate);
3479 
3480 	if (did_upgrade)
3481 		INP_DOWNGRADE(inp);
3482 }
3483 
3484 /*
3485  * Track route changes for TX rate limiting.
3486  */
3487 void
3488 in_pcboutput_eagain(struct inpcb *inp)
3489 {
3490 	bool did_upgrade;
3491 
3492 	if (inp == NULL)
3493 		return;
3494 
3495 	if (inp->inp_snd_tag == NULL)
3496 		return;
3497 
3498 	if (!INP_WLOCKED(inp)) {
3499 		/*
3500 		 * NOTE: If the write locking fails, we need to bail
3501 		 * out and use the non-ratelimited ring for the
3502 		 * transmit until there is a new chance to get the
3503 		 * write lock.
3504 		 */
3505 		if (!INP_TRY_UPGRADE(inp))
3506 			return;
3507 		did_upgrade = 1;
3508 	} else {
3509 		did_upgrade = 0;
3510 	}
3511 
3512 	/* detach rate limiting */
3513 	in_pcbdetach_txrtlmt(inp);
3514 
3515 	/* make sure new mbuf send tag allocation is made */
3516 	inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3517 
3518 	if (did_upgrade)
3519 		INP_DOWNGRADE(inp);
3520 }
3521 
3522 #ifdef INET
3523 static void
3524 rl_init(void *st)
3525 {
3526 	rate_limit_new = counter_u64_alloc(M_WAITOK);
3527 	rate_limit_chg = counter_u64_alloc(M_WAITOK);
3528 	rate_limit_active = counter_u64_alloc(M_WAITOK);
3529 	rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK);
3530 	rate_limit_set_ok = counter_u64_alloc(M_WAITOK);
3531 }
3532 
3533 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL);
3534 #endif
3535 #endif /* RATELIMIT */
3536