1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Robert N. M. Watson under 11 * contract to Juniper Networks, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_ddb.h" 44 #include "opt_ipsec.h" 45 #include "opt_inet.h" 46 #include "opt_inet6.h" 47 #include "opt_ratelimit.h" 48 #include "opt_route.h" 49 #include "opt_rss.h" 50 51 #include <sys/param.h> 52 #include <sys/hash.h> 53 #include <sys/systm.h> 54 #include <sys/libkern.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/mbuf.h> 58 #include <sys/callout.h> 59 #include <sys/eventhandler.h> 60 #include <sys/domain.h> 61 #include <sys/protosw.h> 62 #include <sys/smp.h> 63 #include <sys/socket.h> 64 #include <sys/socketvar.h> 65 #include <sys/sockio.h> 66 #include <sys/priv.h> 67 #include <sys/proc.h> 68 #include <sys/refcount.h> 69 #include <sys/jail.h> 70 #include <sys/kernel.h> 71 #include <sys/sysctl.h> 72 73 #ifdef DDB 74 #include <ddb/ddb.h> 75 #endif 76 77 #include <vm/uma.h> 78 #include <vm/vm.h> 79 80 #include <net/if.h> 81 #include <net/if_var.h> 82 #include <net/if_types.h> 83 #include <net/if_llatbl.h> 84 #include <net/route.h> 85 #include <net/rss_config.h> 86 #include <net/vnet.h> 87 88 #if defined(INET) || defined(INET6) 89 #include <netinet/in.h> 90 #include <netinet/in_pcb.h> 91 #include <netinet/in_pcb_var.h> 92 #ifdef INET 93 #include <netinet/in_var.h> 94 #include <netinet/in_fib.h> 95 #endif 96 #include <netinet/ip_var.h> 97 #include <netinet/tcp_var.h> 98 #ifdef TCPHPTS 99 #include <netinet/tcp_hpts.h> 100 #endif 101 #include <netinet/udp.h> 102 #include <netinet/udp_var.h> 103 #ifdef INET6 104 #include <netinet/ip6.h> 105 #include <netinet6/in6_pcb.h> 106 #include <netinet6/in6_var.h> 107 #include <netinet6/ip6_var.h> 108 #endif /* INET6 */ 109 #include <net/route/nhop.h> 110 #endif 111 112 #include <netipsec/ipsec_support.h> 113 114 #include <security/mac/mac_framework.h> 115 116 #define INPCBLBGROUP_SIZMIN 8 117 #define INPCBLBGROUP_SIZMAX 256 118 #define INP_FREED 0x00000200 /* See in_pcb.h. */ 119 120 static struct callout ipport_tick_callout; 121 122 /* 123 * These configure the range of local port addresses assigned to 124 * "unspecified" outgoing connections/packets/whatever. 125 */ 126 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 127 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 128 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 129 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 130 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 131 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 132 133 /* 134 * Reserved ports accessible only to root. There are significant 135 * security considerations that must be accounted for when changing these, 136 * but the security benefits can be great. Please be careful. 137 */ 138 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 139 VNET_DEFINE(int, ipport_reservedlow); 140 141 /* Variables dealing with random ephemeral port allocation. */ 142 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 143 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 144 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 145 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 146 VNET_DEFINE(int, ipport_tcpallocs); 147 VNET_DEFINE_STATIC(int, ipport_tcplastcount); 148 149 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 150 151 #ifdef INET 152 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 153 struct in_addr faddr, u_int fport_arg, 154 struct in_addr laddr, u_int lport_arg, 155 int lookupflags, struct ifnet *ifp, 156 uint8_t numa_domain); 157 158 #define RANGECHK(var, min, max) \ 159 if ((var) < (min)) { (var) = (min); } \ 160 else if ((var) > (max)) { (var) = (max); } 161 162 static int 163 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 164 { 165 int error; 166 167 error = sysctl_handle_int(oidp, arg1, arg2, req); 168 if (error == 0) { 169 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 170 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 171 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 172 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 173 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 174 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 175 } 176 return (error); 177 } 178 179 #undef RANGECHK 180 181 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, 182 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 183 "IP Ports"); 184 185 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 186 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 187 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", 188 ""); 189 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 190 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 191 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", 192 ""); 193 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 194 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 195 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", 196 ""); 197 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 198 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 199 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", 200 ""); 201 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 202 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 203 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", 204 ""); 205 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 206 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 207 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", 208 ""); 209 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 210 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 211 &VNET_NAME(ipport_reservedhigh), 0, ""); 212 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 213 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 214 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 215 CTLFLAG_VNET | CTLFLAG_RW, 216 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 217 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 218 CTLFLAG_VNET | CTLFLAG_RW, 219 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 220 "allocations before switching to a sequential one"); 221 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 222 CTLFLAG_VNET | CTLFLAG_RW, 223 &VNET_NAME(ipport_randomtime), 0, 224 "Minimum time to keep sequential port " 225 "allocation before switching to a random one"); 226 227 #ifdef RATELIMIT 228 counter_u64_t rate_limit_new; 229 counter_u64_t rate_limit_chg; 230 counter_u64_t rate_limit_active; 231 counter_u64_t rate_limit_alloc_fail; 232 counter_u64_t rate_limit_set_ok; 233 234 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 235 "IP Rate Limiting"); 236 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD, 237 &rate_limit_active, "Active rate limited connections"); 238 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD, 239 &rate_limit_alloc_fail, "Rate limited connection failures"); 240 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD, 241 &rate_limit_set_ok, "Rate limited setting succeeded"); 242 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD, 243 &rate_limit_new, "Total Rate limit new attempts"); 244 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD, 245 &rate_limit_chg, "Total Rate limited change attempts"); 246 247 #endif /* RATELIMIT */ 248 249 #endif /* INET */ 250 251 VNET_DEFINE(uint32_t, in_pcbhashseed); 252 static void 253 in_pcbhashseed_init(void) 254 { 255 256 V_in_pcbhashseed = arc4random(); 257 } 258 VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, 259 in_pcbhashseed_init, 0); 260 261 /* 262 * in_pcb.c: manage the Protocol Control Blocks. 263 * 264 * NOTE: It is assumed that most of these functions will be called with 265 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 266 * functions often modify hash chains or addresses in pcbs. 267 */ 268 269 static struct inpcblbgroup * 270 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag, 271 uint16_t port, const union in_dependaddr *addr, int size, 272 uint8_t numa_domain) 273 { 274 struct inpcblbgroup *grp; 275 size_t bytes; 276 277 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 278 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 279 if (!grp) 280 return (NULL); 281 grp->il_vflag = vflag; 282 grp->il_lport = port; 283 grp->il_numa_domain = numa_domain; 284 grp->il_dependladdr = *addr; 285 grp->il_inpsiz = size; 286 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 287 return (grp); 288 } 289 290 static void 291 in_pcblbgroup_free_deferred(epoch_context_t ctx) 292 { 293 struct inpcblbgroup *grp; 294 295 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); 296 free(grp, M_PCB); 297 } 298 299 static void 300 in_pcblbgroup_free(struct inpcblbgroup *grp) 301 { 302 303 CK_LIST_REMOVE(grp, il_list); 304 NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx); 305 } 306 307 static struct inpcblbgroup * 308 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 309 struct inpcblbgroup *old_grp, int size) 310 { 311 struct inpcblbgroup *grp; 312 int i; 313 314 grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag, 315 old_grp->il_lport, &old_grp->il_dependladdr, size, 316 old_grp->il_numa_domain); 317 if (grp == NULL) 318 return (NULL); 319 320 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 321 ("invalid new local group size %d and old local group count %d", 322 grp->il_inpsiz, old_grp->il_inpcnt)); 323 324 for (i = 0; i < old_grp->il_inpcnt; ++i) 325 grp->il_inp[i] = old_grp->il_inp[i]; 326 grp->il_inpcnt = old_grp->il_inpcnt; 327 in_pcblbgroup_free(old_grp); 328 return (grp); 329 } 330 331 /* 332 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] 333 * and shrink group if possible. 334 */ 335 static void 336 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, 337 int i) 338 { 339 struct inpcblbgroup *grp, *new_grp; 340 341 grp = *grpp; 342 for (; i + 1 < grp->il_inpcnt; ++i) 343 grp->il_inp[i] = grp->il_inp[i + 1]; 344 grp->il_inpcnt--; 345 346 if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && 347 grp->il_inpcnt <= grp->il_inpsiz / 4) { 348 /* Shrink this group. */ 349 new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); 350 if (new_grp != NULL) 351 *grpp = new_grp; 352 } 353 } 354 355 /* 356 * Add PCB to load balance group for SO_REUSEPORT_LB option. 357 */ 358 static int 359 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain) 360 { 361 const static struct timeval interval = { 60, 0 }; 362 static struct timeval lastprint; 363 struct inpcbinfo *pcbinfo; 364 struct inpcblbgrouphead *hdr; 365 struct inpcblbgroup *grp; 366 uint32_t idx; 367 368 pcbinfo = inp->inp_pcbinfo; 369 370 INP_WLOCK_ASSERT(inp); 371 INP_HASH_WLOCK_ASSERT(pcbinfo); 372 373 /* 374 * Don't allow jailed socket to join local group. 375 */ 376 if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred)) 377 return (0); 378 379 #ifdef INET6 380 /* 381 * Don't allow IPv4 mapped INET6 wild socket. 382 */ 383 if ((inp->inp_vflag & INP_IPV4) && 384 inp->inp_laddr.s_addr == INADDR_ANY && 385 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 386 return (0); 387 } 388 #endif 389 390 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); 391 hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; 392 CK_LIST_FOREACH(grp, hdr, il_list) { 393 if (grp->il_vflag == inp->inp_vflag && 394 grp->il_lport == inp->inp_lport && 395 grp->il_numa_domain == numa_domain && 396 memcmp(&grp->il_dependladdr, 397 &inp->inp_inc.inc_ie.ie_dependladdr, 398 sizeof(grp->il_dependladdr)) == 0) 399 break; 400 } 401 if (grp == NULL) { 402 /* Create new load balance group. */ 403 grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag, 404 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 405 INPCBLBGROUP_SIZMIN, numa_domain); 406 if (grp == NULL) 407 return (ENOBUFS); 408 } else if (grp->il_inpcnt == grp->il_inpsiz) { 409 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 410 if (ratecheck(&lastprint, &interval)) 411 printf("lb group port %d, limit reached\n", 412 ntohs(grp->il_lport)); 413 return (0); 414 } 415 416 /* Expand this local group. */ 417 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 418 if (grp == NULL) 419 return (ENOBUFS); 420 } 421 422 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 423 ("invalid local group size %d and count %d", grp->il_inpsiz, 424 grp->il_inpcnt)); 425 426 grp->il_inp[grp->il_inpcnt] = inp; 427 grp->il_inpcnt++; 428 return (0); 429 } 430 431 /* 432 * Remove PCB from load balance group. 433 */ 434 static void 435 in_pcbremlbgrouphash(struct inpcb *inp) 436 { 437 struct inpcbinfo *pcbinfo; 438 struct inpcblbgrouphead *hdr; 439 struct inpcblbgroup *grp; 440 int i; 441 442 pcbinfo = inp->inp_pcbinfo; 443 444 INP_WLOCK_ASSERT(inp); 445 INP_HASH_WLOCK_ASSERT(pcbinfo); 446 447 hdr = &pcbinfo->ipi_lbgrouphashbase[ 448 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 449 CK_LIST_FOREACH(grp, hdr, il_list) { 450 for (i = 0; i < grp->il_inpcnt; ++i) { 451 if (grp->il_inp[i] != inp) 452 continue; 453 454 if (grp->il_inpcnt == 1) { 455 /* We are the last, free this local group. */ 456 in_pcblbgroup_free(grp); 457 } else { 458 /* Pull up inpcbs, shrink group if possible. */ 459 in_pcblbgroup_reorder(hdr, &grp, i); 460 } 461 return; 462 } 463 } 464 } 465 466 int 467 in_pcblbgroup_numa(struct inpcb *inp, int arg) 468 { 469 struct inpcbinfo *pcbinfo; 470 struct inpcblbgrouphead *hdr; 471 struct inpcblbgroup *grp; 472 int err, i; 473 uint8_t numa_domain; 474 475 switch (arg) { 476 case TCP_REUSPORT_LB_NUMA_NODOM: 477 numa_domain = M_NODOM; 478 break; 479 case TCP_REUSPORT_LB_NUMA_CURDOM: 480 numa_domain = PCPU_GET(domain); 481 break; 482 default: 483 if (arg < 0 || arg >= vm_ndomains) 484 return (EINVAL); 485 numa_domain = arg; 486 } 487 488 err = 0; 489 pcbinfo = inp->inp_pcbinfo; 490 INP_WLOCK_ASSERT(inp); 491 INP_HASH_WLOCK(pcbinfo); 492 hdr = &pcbinfo->ipi_lbgrouphashbase[ 493 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 494 CK_LIST_FOREACH(grp, hdr, il_list) { 495 for (i = 0; i < grp->il_inpcnt; ++i) { 496 if (grp->il_inp[i] != inp) 497 continue; 498 499 if (grp->il_numa_domain == numa_domain) { 500 goto abort_with_hash_wlock; 501 } 502 503 /* Remove it from the old group. */ 504 in_pcbremlbgrouphash(inp); 505 506 /* Add it to the new group based on numa domain. */ 507 in_pcbinslbgrouphash(inp, numa_domain); 508 goto abort_with_hash_wlock; 509 } 510 } 511 err = ENOENT; 512 abort_with_hash_wlock: 513 INP_HASH_WUNLOCK(pcbinfo); 514 return (err); 515 } 516 517 /* Make sure it is safe to use hashinit(9) on CK_LIST. */ 518 CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb))); 519 520 /* 521 * Initialize an inpcbinfo -- we should be able to reduce the number of 522 * arguments in time. 523 */ 524 static void inpcb_dtor(void *, int, void *); 525 static void inpcb_fini(void *, int); 526 void 527 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 528 u_int hash_nelements, int porthash_nelements, char *inpcbzone_name, 529 uma_init inpcbzone_init) 530 { 531 532 mtx_init(&pcbinfo->ipi_lock, name, NULL, MTX_DEF); 533 mtx_init(&pcbinfo->ipi_hash_lock, "pcbinfohash", NULL, MTX_DEF); 534 #ifdef VIMAGE 535 pcbinfo->ipi_vnet = curvnet; 536 #endif 537 CK_LIST_INIT(&pcbinfo->ipi_listhead); 538 pcbinfo->ipi_count = 0; 539 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 540 &pcbinfo->ipi_hashmask); 541 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); 542 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 543 &pcbinfo->ipi_porthashmask); 544 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, 545 &pcbinfo->ipi_lbgrouphashmask); 546 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 547 NULL, inpcb_dtor, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 548 UMA_ZONE_SMR); 549 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 550 uma_zone_set_warning(pcbinfo->ipi_zone, 551 "kern.ipc.maxsockets limit reached"); 552 pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone); 553 pcbinfo->ipi_portzone = uma_zcreate(inpcbzone_name, 554 sizeof(struct inpcbport), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 555 uma_zone_set_smr(pcbinfo->ipi_portzone, pcbinfo->ipi_smr); 556 } 557 558 /* 559 * Destroy an inpcbinfo. 560 */ 561 void 562 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 563 { 564 565 KASSERT(pcbinfo->ipi_count == 0, 566 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 567 568 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 569 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 570 pcbinfo->ipi_porthashmask); 571 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 572 pcbinfo->ipi_lbgrouphashmask); 573 uma_zdestroy(pcbinfo->ipi_zone); 574 uma_zdestroy(pcbinfo->ipi_portzone); 575 mtx_destroy(&pcbinfo->ipi_hash_lock); 576 mtx_destroy(&pcbinfo->ipi_lock); 577 } 578 579 /* 580 * Allocate a PCB and associate it with the socket. 581 * On success return with the PCB locked. 582 */ 583 int 584 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 585 { 586 struct inpcb *inp; 587 int error; 588 589 error = 0; 590 inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT); 591 if (inp == NULL) 592 return (ENOBUFS); 593 bzero(&inp->inp_start_zero, inp_zero_size); 594 #ifdef NUMA 595 inp->inp_numa_domain = M_NODOM; 596 #endif 597 inp->inp_pcbinfo = pcbinfo; 598 inp->inp_socket = so; 599 inp->inp_cred = crhold(so->so_cred); 600 inp->inp_inc.inc_fibnum = so->so_fibnum; 601 #ifdef MAC 602 error = mac_inpcb_init(inp, M_NOWAIT); 603 if (error != 0) 604 goto out; 605 mac_inpcb_create(so, inp); 606 #endif 607 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 608 error = ipsec_init_pcbpolicy(inp); 609 if (error != 0) { 610 #ifdef MAC 611 mac_inpcb_destroy(inp); 612 #endif 613 goto out; 614 } 615 #endif /*IPSEC*/ 616 #ifdef INET6 617 if (INP_SOCKAF(so) == AF_INET6) { 618 inp->inp_vflag |= INP_IPV6PROTO; 619 if (V_ip6_v6only) 620 inp->inp_flags |= IN6P_IPV6_V6ONLY; 621 } 622 if (V_ip6_auto_flowlabel) 623 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 624 #endif 625 /* 626 * Routes in inpcb's can cache L2 as well; they are guaranteed 627 * to be cleaned up. 628 */ 629 inp->inp_route.ro_flags = RT_LLE_CACHE; 630 #ifdef TCPHPTS 631 /* 632 * If using hpts lets drop a random number in so 633 * not all new connections fall on the same CPU. 634 */ 635 inp->inp_hpts_cpu = hpts_random_cpu(inp); 636 #endif 637 refcount_init(&inp->inp_refcount, 1); /* Reference from socket. */ 638 INP_WLOCK(inp); 639 INP_INFO_WLOCK(pcbinfo); 640 pcbinfo->ipi_count++; 641 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 642 CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list); 643 INP_INFO_WUNLOCK(pcbinfo); 644 so->so_pcb = inp; 645 646 return (0); 647 648 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 649 out: 650 uma_zfree_smr(pcbinfo->ipi_zone, inp); 651 return (error); 652 #endif 653 } 654 655 #ifdef INET 656 int 657 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 658 { 659 int anonport, error; 660 661 KASSERT(nam == NULL || nam->sa_family == AF_INET, 662 ("%s: invalid address family for %p", __func__, nam)); 663 KASSERT(nam == NULL || nam->sa_len == sizeof(struct sockaddr_in), 664 ("%s: invalid address length for %p", __func__, nam)); 665 INP_WLOCK_ASSERT(inp); 666 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 667 668 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 669 return (EINVAL); 670 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 671 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 672 &inp->inp_lport, cred); 673 if (error) 674 return (error); 675 if (in_pcbinshash(inp) != 0) { 676 inp->inp_laddr.s_addr = INADDR_ANY; 677 inp->inp_lport = 0; 678 return (EAGAIN); 679 } 680 if (anonport) 681 inp->inp_flags |= INP_ANONPORT; 682 return (0); 683 } 684 #endif 685 686 #if defined(INET) || defined(INET6) 687 /* 688 * Assign a local port like in_pcb_lport(), but also used with connect() 689 * and a foreign address and port. If fsa is non-NULL, choose a local port 690 * that is unused with those, otherwise one that is completely unused. 691 * lsa can be NULL for IPv6. 692 */ 693 int 694 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp, 695 struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags) 696 { 697 struct inpcbinfo *pcbinfo; 698 struct inpcb *tmpinp; 699 unsigned short *lastport; 700 int count, dorandom, error; 701 u_short aux, first, last, lport; 702 #ifdef INET 703 struct in_addr laddr, faddr; 704 #endif 705 #ifdef INET6 706 struct in6_addr *laddr6, *faddr6; 707 #endif 708 709 pcbinfo = inp->inp_pcbinfo; 710 711 /* 712 * Because no actual state changes occur here, a global write lock on 713 * the pcbinfo isn't required. 714 */ 715 INP_LOCK_ASSERT(inp); 716 INP_HASH_LOCK_ASSERT(pcbinfo); 717 718 if (inp->inp_flags & INP_HIGHPORT) { 719 first = V_ipport_hifirstauto; /* sysctl */ 720 last = V_ipport_hilastauto; 721 lastport = &pcbinfo->ipi_lasthi; 722 } else if (inp->inp_flags & INP_LOWPORT) { 723 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); 724 if (error) 725 return (error); 726 first = V_ipport_lowfirstauto; /* 1023 */ 727 last = V_ipport_lowlastauto; /* 600 */ 728 lastport = &pcbinfo->ipi_lastlow; 729 } else { 730 first = V_ipport_firstauto; /* sysctl */ 731 last = V_ipport_lastauto; 732 lastport = &pcbinfo->ipi_lastport; 733 } 734 /* 735 * For UDP(-Lite), use random port allocation as long as the user 736 * allows it. For TCP (and as of yet unknown) connections, 737 * use random port allocation only if the user allows it AND 738 * ipport_tick() allows it. 739 */ 740 if (V_ipport_randomized && 741 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 742 pcbinfo == &V_ulitecbinfo)) 743 dorandom = 1; 744 else 745 dorandom = 0; 746 /* 747 * It makes no sense to do random port allocation if 748 * we have the only port available. 749 */ 750 if (first == last) 751 dorandom = 0; 752 /* Make sure to not include UDP(-Lite) packets in the count. */ 753 if (pcbinfo != &V_udbinfo && pcbinfo != &V_ulitecbinfo) 754 V_ipport_tcpallocs++; 755 /* 756 * Instead of having two loops further down counting up or down 757 * make sure that first is always <= last and go with only one 758 * code path implementing all logic. 759 */ 760 if (first > last) { 761 aux = first; 762 first = last; 763 last = aux; 764 } 765 766 #ifdef INET 767 laddr.s_addr = INADDR_ANY; 768 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 769 if (lsa != NULL) 770 laddr = ((struct sockaddr_in *)lsa)->sin_addr; 771 if (fsa != NULL) 772 faddr = ((struct sockaddr_in *)fsa)->sin_addr; 773 } 774 #endif 775 #ifdef INET6 776 laddr6 = NULL; 777 if ((inp->inp_vflag & INP_IPV6) != 0) { 778 if (lsa != NULL) 779 laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr; 780 if (fsa != NULL) 781 faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr; 782 } 783 #endif 784 785 tmpinp = NULL; 786 lport = *lportp; 787 788 if (dorandom) 789 *lastport = first + (arc4random() % (last - first)); 790 791 count = last - first; 792 793 do { 794 if (count-- < 0) /* completely used? */ 795 return (EADDRNOTAVAIL); 796 ++*lastport; 797 if (*lastport < first || *lastport > last) 798 *lastport = first; 799 lport = htons(*lastport); 800 801 if (fsa != NULL) { 802 #ifdef INET 803 if (lsa->sa_family == AF_INET) { 804 tmpinp = in_pcblookup_hash_locked(pcbinfo, 805 faddr, fport, laddr, lport, lookupflags, 806 NULL, M_NODOM); 807 } 808 #endif 809 #ifdef INET6 810 if (lsa->sa_family == AF_INET6) { 811 tmpinp = in6_pcblookup_hash_locked(pcbinfo, 812 faddr6, fport, laddr6, lport, lookupflags, 813 NULL, M_NODOM); 814 } 815 #endif 816 } else { 817 #ifdef INET6 818 if ((inp->inp_vflag & INP_IPV6) != 0) 819 tmpinp = in6_pcblookup_local(pcbinfo, 820 &inp->in6p_laddr, lport, lookupflags, cred); 821 #endif 822 #if defined(INET) && defined(INET6) 823 else 824 #endif 825 #ifdef INET 826 tmpinp = in_pcblookup_local(pcbinfo, laddr, 827 lport, lookupflags, cred); 828 #endif 829 } 830 } while (tmpinp != NULL); 831 832 *lportp = lport; 833 834 return (0); 835 } 836 837 /* 838 * Select a local port (number) to use. 839 */ 840 int 841 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 842 struct ucred *cred, int lookupflags) 843 { 844 struct sockaddr_in laddr; 845 846 if (laddrp) { 847 bzero(&laddr, sizeof(laddr)); 848 laddr.sin_family = AF_INET; 849 laddr.sin_addr = *laddrp; 850 } 851 return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr : 852 NULL, lportp, NULL, 0, cred, lookupflags)); 853 } 854 855 /* 856 * Return cached socket options. 857 */ 858 int 859 inp_so_options(const struct inpcb *inp) 860 { 861 int so_options; 862 863 so_options = 0; 864 865 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 866 so_options |= SO_REUSEPORT_LB; 867 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 868 so_options |= SO_REUSEPORT; 869 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 870 so_options |= SO_REUSEADDR; 871 return (so_options); 872 } 873 #endif /* INET || INET6 */ 874 875 /* 876 * Check if a new BINDMULTI socket is allowed to be created. 877 * 878 * ni points to the new inp. 879 * oi points to the exisitng inp. 880 * 881 * This checks whether the existing inp also has BINDMULTI and 882 * whether the credentials match. 883 */ 884 int 885 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 886 { 887 /* Check permissions match */ 888 if ((ni->inp_flags2 & INP_BINDMULTI) && 889 (ni->inp_cred->cr_uid != 890 oi->inp_cred->cr_uid)) 891 return (0); 892 893 /* Check the existing inp has BINDMULTI set */ 894 if ((ni->inp_flags2 & INP_BINDMULTI) && 895 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 896 return (0); 897 898 /* 899 * We're okay - either INP_BINDMULTI isn't set on ni, or 900 * it is and it matches the checks. 901 */ 902 return (1); 903 } 904 905 #ifdef INET 906 /* 907 * Set up a bind operation on a PCB, performing port allocation 908 * as required, but do not actually modify the PCB. Callers can 909 * either complete the bind by setting inp_laddr/inp_lport and 910 * calling in_pcbinshash(), or they can just use the resulting 911 * port and address to authorise the sending of a once-off packet. 912 * 913 * On error, the values of *laddrp and *lportp are not changed. 914 */ 915 int 916 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 917 u_short *lportp, struct ucred *cred) 918 { 919 struct socket *so = inp->inp_socket; 920 struct sockaddr_in *sin; 921 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 922 struct in_addr laddr; 923 u_short lport = 0; 924 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 925 int error; 926 927 /* 928 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here 929 * so that we don't have to add to the (already messy) code below. 930 */ 931 int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); 932 933 /* 934 * No state changes, so read locks are sufficient here. 935 */ 936 INP_LOCK_ASSERT(inp); 937 INP_HASH_LOCK_ASSERT(pcbinfo); 938 939 laddr.s_addr = *laddrp; 940 if (nam != NULL && laddr.s_addr != INADDR_ANY) 941 return (EINVAL); 942 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) 943 lookupflags = INPLOOKUP_WILDCARD; 944 if (nam == NULL) { 945 if ((error = prison_local_ip4(cred, &laddr)) != 0) 946 return (error); 947 } else { 948 sin = (struct sockaddr_in *)nam; 949 KASSERT(sin->sin_family == AF_INET, 950 ("%s: invalid family for address %p", __func__, sin)); 951 KASSERT(sin->sin_len == sizeof(*sin), 952 ("%s: invalid length for address %p", __func__, sin)); 953 954 error = prison_local_ip4(cred, &sin->sin_addr); 955 if (error) 956 return (error); 957 if (sin->sin_port != *lportp) { 958 /* Don't allow the port to change. */ 959 if (*lportp != 0) 960 return (EINVAL); 961 lport = sin->sin_port; 962 } 963 /* NB: lport is left as 0 if the port isn't being changed. */ 964 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 965 /* 966 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 967 * allow complete duplication of binding if 968 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 969 * and a multicast address is bound on both 970 * new and duplicated sockets. 971 */ 972 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 973 reuseport = SO_REUSEADDR|SO_REUSEPORT; 974 /* 975 * XXX: How to deal with SO_REUSEPORT_LB here? 976 * Treat same as SO_REUSEPORT for now. 977 */ 978 if ((so->so_options & 979 (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) 980 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; 981 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 982 sin->sin_port = 0; /* yech... */ 983 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 984 /* 985 * Is the address a local IP address? 986 * If INP_BINDANY is set, then the socket may be bound 987 * to any endpoint address, local or not. 988 */ 989 if ((inp->inp_flags & INP_BINDANY) == 0 && 990 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 991 return (EADDRNOTAVAIL); 992 } 993 laddr = sin->sin_addr; 994 if (lport) { 995 struct inpcb *t; 996 struct tcptw *tw; 997 998 /* GROSS */ 999 if (ntohs(lport) <= V_ipport_reservedhigh && 1000 ntohs(lport) >= V_ipport_reservedlow && 1001 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) 1002 return (EACCES); 1003 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 1004 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { 1005 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 1006 lport, INPLOOKUP_WILDCARD, cred); 1007 /* 1008 * XXX 1009 * This entire block sorely needs a rewrite. 1010 */ 1011 if (t && 1012 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 1013 ((t->inp_flags & INP_TIMEWAIT) == 0) && 1014 (so->so_type != SOCK_STREAM || 1015 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 1016 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 1017 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 1018 (t->inp_flags2 & INP_REUSEPORT) || 1019 (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && 1020 (inp->inp_cred->cr_uid != 1021 t->inp_cred->cr_uid)) 1022 return (EADDRINUSE); 1023 1024 /* 1025 * If the socket is a BINDMULTI socket, then 1026 * the credentials need to match and the 1027 * original socket also has to have been bound 1028 * with BINDMULTI. 1029 */ 1030 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 1031 return (EADDRINUSE); 1032 } 1033 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 1034 lport, lookupflags, cred); 1035 if (t && (t->inp_flags & INP_TIMEWAIT)) { 1036 /* 1037 * XXXRW: If an incpb has had its timewait 1038 * state recycled, we treat the address as 1039 * being in use (for now). This is better 1040 * than a panic, but not desirable. 1041 */ 1042 tw = intotw(t); 1043 if (tw == NULL || 1044 ((reuseport & tw->tw_so_options) == 0 && 1045 (reuseport_lb & 1046 tw->tw_so_options) == 0)) { 1047 return (EADDRINUSE); 1048 } 1049 } else if (t && 1050 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 1051 (reuseport & inp_so_options(t)) == 0 && 1052 (reuseport_lb & inp_so_options(t)) == 0) { 1053 #ifdef INET6 1054 if (ntohl(sin->sin_addr.s_addr) != 1055 INADDR_ANY || 1056 ntohl(t->inp_laddr.s_addr) != 1057 INADDR_ANY || 1058 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 1059 (t->inp_vflag & INP_IPV6PROTO) == 0) 1060 #endif 1061 return (EADDRINUSE); 1062 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 1063 return (EADDRINUSE); 1064 } 1065 } 1066 } 1067 if (*lportp != 0) 1068 lport = *lportp; 1069 if (lport == 0) { 1070 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 1071 if (error != 0) 1072 return (error); 1073 } 1074 *laddrp = laddr.s_addr; 1075 *lportp = lport; 1076 return (0); 1077 } 1078 1079 /* 1080 * Connect from a socket to a specified address. 1081 * Both address and port must be specified in argument sin. 1082 * If don't have a local address for this socket yet, 1083 * then pick one. 1084 */ 1085 int 1086 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred, 1087 bool rehash) 1088 { 1089 u_short lport, fport; 1090 in_addr_t laddr, faddr; 1091 int anonport, error; 1092 1093 INP_WLOCK_ASSERT(inp); 1094 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1095 1096 lport = inp->inp_lport; 1097 laddr = inp->inp_laddr.s_addr; 1098 anonport = (lport == 0); 1099 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 1100 NULL, cred); 1101 if (error) 1102 return (error); 1103 1104 /* Do the initial binding of the local address if required. */ 1105 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 1106 KASSERT(rehash == true, 1107 ("Rehashing required for unbound inps")); 1108 inp->inp_lport = lport; 1109 inp->inp_laddr.s_addr = laddr; 1110 if (in_pcbinshash(inp) != 0) { 1111 inp->inp_laddr.s_addr = INADDR_ANY; 1112 inp->inp_lport = 0; 1113 return (EAGAIN); 1114 } 1115 } 1116 1117 /* Commit the remaining changes. */ 1118 inp->inp_lport = lport; 1119 inp->inp_laddr.s_addr = laddr; 1120 inp->inp_faddr.s_addr = faddr; 1121 inp->inp_fport = fport; 1122 if (rehash) { 1123 in_pcbrehash(inp); 1124 } else { 1125 in_pcbinshash(inp); 1126 } 1127 1128 if (anonport) 1129 inp->inp_flags |= INP_ANONPORT; 1130 return (0); 1131 } 1132 1133 /* 1134 * Do proper source address selection on an unbound socket in case 1135 * of connect. Take jails into account as well. 1136 */ 1137 int 1138 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 1139 struct ucred *cred) 1140 { 1141 struct ifaddr *ifa; 1142 struct sockaddr *sa; 1143 struct sockaddr_in *sin, dst; 1144 struct nhop_object *nh; 1145 int error; 1146 1147 NET_EPOCH_ASSERT(); 1148 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1149 /* 1150 * Bypass source address selection and use the primary jail IP 1151 * if requested. 1152 */ 1153 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 1154 return (0); 1155 1156 error = 0; 1157 1158 nh = NULL; 1159 bzero(&dst, sizeof(dst)); 1160 sin = &dst; 1161 sin->sin_family = AF_INET; 1162 sin->sin_len = sizeof(struct sockaddr_in); 1163 sin->sin_addr.s_addr = faddr->s_addr; 1164 1165 /* 1166 * If route is known our src addr is taken from the i/f, 1167 * else punt. 1168 * 1169 * Find out route to destination. 1170 */ 1171 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1172 nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr, 1173 0, NHR_NONE, 0); 1174 1175 /* 1176 * If we found a route, use the address corresponding to 1177 * the outgoing interface. 1178 * 1179 * Otherwise assume faddr is reachable on a directly connected 1180 * network and try to find a corresponding interface to take 1181 * the source address from. 1182 */ 1183 if (nh == NULL || nh->nh_ifp == NULL) { 1184 struct in_ifaddr *ia; 1185 struct ifnet *ifp; 1186 1187 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1188 inp->inp_socket->so_fibnum)); 1189 if (ia == NULL) { 1190 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1191 inp->inp_socket->so_fibnum)); 1192 } 1193 if (ia == NULL) { 1194 error = ENETUNREACH; 1195 goto done; 1196 } 1197 1198 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1199 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1200 goto done; 1201 } 1202 1203 ifp = ia->ia_ifp; 1204 ia = NULL; 1205 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1206 sa = ifa->ifa_addr; 1207 if (sa->sa_family != AF_INET) 1208 continue; 1209 sin = (struct sockaddr_in *)sa; 1210 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1211 ia = (struct in_ifaddr *)ifa; 1212 break; 1213 } 1214 } 1215 if (ia != NULL) { 1216 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1217 goto done; 1218 } 1219 1220 /* 3. As a last resort return the 'default' jail address. */ 1221 error = prison_get_ip4(cred, laddr); 1222 goto done; 1223 } 1224 1225 /* 1226 * If the outgoing interface on the route found is not 1227 * a loopback interface, use the address from that interface. 1228 * In case of jails do those three steps: 1229 * 1. check if the interface address belongs to the jail. If so use it. 1230 * 2. check if we have any address on the outgoing interface 1231 * belonging to this jail. If so use it. 1232 * 3. as a last resort return the 'default' jail address. 1233 */ 1234 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) { 1235 struct in_ifaddr *ia; 1236 struct ifnet *ifp; 1237 1238 /* If not jailed, use the default returned. */ 1239 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1240 ia = (struct in_ifaddr *)nh->nh_ifa; 1241 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1242 goto done; 1243 } 1244 1245 /* Jailed. */ 1246 /* 1. Check if the iface address belongs to the jail. */ 1247 sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr; 1248 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1249 ia = (struct in_ifaddr *)nh->nh_ifa; 1250 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1251 goto done; 1252 } 1253 1254 /* 1255 * 2. Check if we have any address on the outgoing interface 1256 * belonging to this jail. 1257 */ 1258 ia = NULL; 1259 ifp = nh->nh_ifp; 1260 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1261 sa = ifa->ifa_addr; 1262 if (sa->sa_family != AF_INET) 1263 continue; 1264 sin = (struct sockaddr_in *)sa; 1265 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1266 ia = (struct in_ifaddr *)ifa; 1267 break; 1268 } 1269 } 1270 if (ia != NULL) { 1271 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1272 goto done; 1273 } 1274 1275 /* 3. As a last resort return the 'default' jail address. */ 1276 error = prison_get_ip4(cred, laddr); 1277 goto done; 1278 } 1279 1280 /* 1281 * The outgoing interface is marked with 'loopback net', so a route 1282 * to ourselves is here. 1283 * Try to find the interface of the destination address and then 1284 * take the address from there. That interface is not necessarily 1285 * a loopback interface. 1286 * In case of jails, check that it is an address of the jail 1287 * and if we cannot find, fall back to the 'default' jail address. 1288 */ 1289 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) { 1290 struct in_ifaddr *ia; 1291 1292 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst), 1293 inp->inp_socket->so_fibnum)); 1294 if (ia == NULL) 1295 ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0, 1296 inp->inp_socket->so_fibnum)); 1297 if (ia == NULL) 1298 ia = ifatoia(ifa_ifwithaddr(sintosa(&dst))); 1299 1300 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1301 if (ia == NULL) { 1302 error = ENETUNREACH; 1303 goto done; 1304 } 1305 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1306 goto done; 1307 } 1308 1309 /* Jailed. */ 1310 if (ia != NULL) { 1311 struct ifnet *ifp; 1312 1313 ifp = ia->ia_ifp; 1314 ia = NULL; 1315 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1316 sa = ifa->ifa_addr; 1317 if (sa->sa_family != AF_INET) 1318 continue; 1319 sin = (struct sockaddr_in *)sa; 1320 if (prison_check_ip4(cred, 1321 &sin->sin_addr) == 0) { 1322 ia = (struct in_ifaddr *)ifa; 1323 break; 1324 } 1325 } 1326 if (ia != NULL) { 1327 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1328 goto done; 1329 } 1330 } 1331 1332 /* 3. As a last resort return the 'default' jail address. */ 1333 error = prison_get_ip4(cred, laddr); 1334 goto done; 1335 } 1336 1337 done: 1338 return (error); 1339 } 1340 1341 /* 1342 * Set up for a connect from a socket to the specified address. 1343 * On entry, *laddrp and *lportp should contain the current local 1344 * address and port for the PCB; these are updated to the values 1345 * that should be placed in inp_laddr and inp_lport to complete 1346 * the connect. 1347 * 1348 * On success, *faddrp and *fportp will be set to the remote address 1349 * and port. These are not updated in the error case. 1350 * 1351 * If the operation fails because the connection already exists, 1352 * *oinpp will be set to the PCB of that connection so that the 1353 * caller can decide to override it. In all other cases, *oinpp 1354 * is set to NULL. 1355 */ 1356 int 1357 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1358 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1359 struct inpcb **oinpp, struct ucred *cred) 1360 { 1361 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1362 struct in_ifaddr *ia; 1363 struct inpcb *oinp; 1364 struct in_addr laddr, faddr; 1365 u_short lport, fport; 1366 int error; 1367 1368 KASSERT(sin->sin_family == AF_INET, 1369 ("%s: invalid address family for %p", __func__, sin)); 1370 KASSERT(sin->sin_len == sizeof(*sin), 1371 ("%s: invalid address length for %p", __func__, sin)); 1372 1373 /* 1374 * Because a global state change doesn't actually occur here, a read 1375 * lock is sufficient. 1376 */ 1377 NET_EPOCH_ASSERT(); 1378 INP_LOCK_ASSERT(inp); 1379 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1380 1381 if (oinpp != NULL) 1382 *oinpp = NULL; 1383 if (sin->sin_port == 0) 1384 return (EADDRNOTAVAIL); 1385 laddr.s_addr = *laddrp; 1386 lport = *lportp; 1387 faddr = sin->sin_addr; 1388 fport = sin->sin_port; 1389 #ifdef ROUTE_MPATH 1390 if (CALC_FLOWID_OUTBOUND) { 1391 uint32_t hash_val, hash_type; 1392 1393 hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport, 1394 inp->inp_socket->so_proto->pr_protocol, &hash_type); 1395 1396 inp->inp_flowid = hash_val; 1397 inp->inp_flowtype = hash_type; 1398 } 1399 #endif 1400 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1401 /* 1402 * If the destination address is INADDR_ANY, 1403 * use the primary local address. 1404 * If the supplied address is INADDR_BROADCAST, 1405 * and the primary interface supports broadcast, 1406 * choose the broadcast address for that interface. 1407 */ 1408 if (faddr.s_addr == INADDR_ANY) { 1409 faddr = 1410 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1411 if (cred != NULL && 1412 (error = prison_get_ip4(cred, &faddr)) != 0) 1413 return (error); 1414 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1415 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1416 IFF_BROADCAST) 1417 faddr = satosin(&CK_STAILQ_FIRST( 1418 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1419 } 1420 } 1421 if (laddr.s_addr == INADDR_ANY) { 1422 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1423 /* 1424 * If the destination address is multicast and an outgoing 1425 * interface has been set as a multicast option, prefer the 1426 * address of that interface as our source address. 1427 */ 1428 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1429 inp->inp_moptions != NULL) { 1430 struct ip_moptions *imo; 1431 struct ifnet *ifp; 1432 1433 imo = inp->inp_moptions; 1434 if (imo->imo_multicast_ifp != NULL) { 1435 ifp = imo->imo_multicast_ifp; 1436 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1437 if ((ia->ia_ifp == ifp) && 1438 (cred == NULL || 1439 prison_check_ip4(cred, 1440 &ia->ia_addr.sin_addr) == 0)) 1441 break; 1442 } 1443 if (ia == NULL) 1444 error = EADDRNOTAVAIL; 1445 else { 1446 laddr = ia->ia_addr.sin_addr; 1447 error = 0; 1448 } 1449 } 1450 } 1451 if (error) 1452 return (error); 1453 } 1454 1455 if (lport != 0) { 1456 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, 1457 fport, laddr, lport, 0, NULL, M_NODOM); 1458 if (oinp != NULL) { 1459 if (oinpp != NULL) 1460 *oinpp = oinp; 1461 return (EADDRINUSE); 1462 } 1463 } else { 1464 struct sockaddr_in lsin, fsin; 1465 1466 bzero(&lsin, sizeof(lsin)); 1467 bzero(&fsin, sizeof(fsin)); 1468 lsin.sin_family = AF_INET; 1469 lsin.sin_addr = laddr; 1470 fsin.sin_family = AF_INET; 1471 fsin.sin_addr = faddr; 1472 error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin, 1473 &lport, (struct sockaddr *)& fsin, fport, cred, 1474 INPLOOKUP_WILDCARD); 1475 if (error) 1476 return (error); 1477 } 1478 *laddrp = laddr.s_addr; 1479 *lportp = lport; 1480 *faddrp = faddr.s_addr; 1481 *fportp = fport; 1482 return (0); 1483 } 1484 1485 void 1486 in_pcbdisconnect(struct inpcb *inp) 1487 { 1488 1489 INP_WLOCK_ASSERT(inp); 1490 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1491 1492 inp->inp_faddr.s_addr = INADDR_ANY; 1493 inp->inp_fport = 0; 1494 in_pcbrehash(inp); 1495 } 1496 #endif /* INET */ 1497 1498 /* 1499 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1500 * For most protocols, this will be invoked immediately prior to calling 1501 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1502 * socket, in which case in_pcbfree() is deferred. 1503 */ 1504 void 1505 in_pcbdetach(struct inpcb *inp) 1506 { 1507 1508 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1509 1510 #ifdef RATELIMIT 1511 if (inp->inp_snd_tag != NULL) 1512 in_pcbdetach_txrtlmt(inp); 1513 #endif 1514 inp->inp_socket->so_pcb = NULL; 1515 inp->inp_socket = NULL; 1516 } 1517 1518 /* 1519 * inpcb hash lookups are protected by SMR section. 1520 * 1521 * Once desired pcb has been found, switching from SMR section to a pcb 1522 * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK 1523 * here because SMR is a critical section. 1524 * In 99%+ cases inp_smr_lock() would obtain the lock immediately. 1525 */ 1526 static inline void 1527 inp_lock(struct inpcb *inp, const inp_lookup_t lock) 1528 { 1529 1530 lock == INPLOOKUP_RLOCKPCB ? 1531 rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock); 1532 } 1533 1534 static inline void 1535 inp_unlock(struct inpcb *inp, const inp_lookup_t lock) 1536 { 1537 1538 lock == INPLOOKUP_RLOCKPCB ? 1539 rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock); 1540 } 1541 1542 static inline int 1543 inp_trylock(struct inpcb *inp, const inp_lookup_t lock) 1544 { 1545 1546 return (lock == INPLOOKUP_RLOCKPCB ? 1547 rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock)); 1548 } 1549 1550 static inline bool 1551 in_pcbrele(struct inpcb *inp, const inp_lookup_t lock) 1552 { 1553 1554 return (lock == INPLOOKUP_RLOCKPCB ? 1555 in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp)); 1556 } 1557 1558 bool 1559 inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock) 1560 { 1561 1562 MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB); 1563 SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr); 1564 1565 if (__predict_true(inp_trylock(inp, lock))) { 1566 if (__predict_false(inp->inp_flags & INP_FREED)) { 1567 smr_exit(inp->inp_pcbinfo->ipi_smr); 1568 inp_unlock(inp, lock); 1569 return (false); 1570 } 1571 smr_exit(inp->inp_pcbinfo->ipi_smr); 1572 return (true); 1573 } 1574 1575 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1576 smr_exit(inp->inp_pcbinfo->ipi_smr); 1577 inp_lock(inp, lock); 1578 if (__predict_false(in_pcbrele(inp, lock))) 1579 return (false); 1580 /* 1581 * inp acquired through refcount & lock for sure didn't went 1582 * through uma_zfree(). However, it may have already went 1583 * through in_pcbfree() and has another reference, that 1584 * prevented its release by our in_pcbrele(). 1585 */ 1586 if (__predict_false(inp->inp_flags & INP_FREED)) { 1587 inp_unlock(inp, lock); 1588 return (false); 1589 } 1590 return (true); 1591 } else { 1592 smr_exit(inp->inp_pcbinfo->ipi_smr); 1593 return (false); 1594 } 1595 } 1596 1597 /* 1598 * inp_next() - inpcb hash/list traversal iterator 1599 * 1600 * Requires initialized struct inpcb_iterator for context. 1601 * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR(). 1602 * 1603 * - Iterator can have either write-lock or read-lock semantics, that can not 1604 * be changed later. 1605 * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through 1606 * a single hash slot. Note: only rip_input() does the latter. 1607 * - Iterator may have optional bool matching function. The matching function 1608 * will be executed for each inpcb in the SMR context, so it can not acquire 1609 * locks and can safely access only immutable fields of inpcb. 1610 * 1611 * A fresh initialized iterator has NULL inpcb in its context and that 1612 * means that inp_next() call would return the very first inpcb on the list 1613 * locked with desired semantic. In all following calls the context pointer 1614 * shall hold the current inpcb pointer. The KPI user is not supposed to 1615 * unlock the current inpcb! Upon end of traversal inp_next() will return NULL 1616 * and write NULL to its context. After end of traversal an iterator can be 1617 * reused. 1618 * 1619 * List traversals have the following features/constraints: 1620 * - New entries won't be seen, as they are always added to the head of a list. 1621 * - Removed entries won't stop traversal as long as they are not added to 1622 * a different list. This is violated by in_pcbrehash(). 1623 */ 1624 #define II_LIST_FIRST(ipi, hash) \ 1625 (((hash) == INP_ALL_LIST) ? \ 1626 CK_LIST_FIRST(&(ipi)->ipi_listhead) : \ 1627 CK_LIST_FIRST(&(ipi)->ipi_hashbase[(hash)])) 1628 #define II_LIST_NEXT(inp, hash) \ 1629 (((hash) == INP_ALL_LIST) ? \ 1630 CK_LIST_NEXT((inp), inp_list) : \ 1631 CK_LIST_NEXT((inp), inp_hash)) 1632 #define II_LOCK_ASSERT(inp, lock) \ 1633 rw_assert(&(inp)->inp_lock, \ 1634 (lock) == INPLOOKUP_RLOCKPCB ? RA_RLOCKED : RA_WLOCKED ) 1635 struct inpcb * 1636 inp_next(struct inpcb_iterator *ii) 1637 { 1638 const struct inpcbinfo *ipi = ii->ipi; 1639 inp_match_t *match = ii->match; 1640 void *ctx = ii->ctx; 1641 inp_lookup_t lock = ii->lock; 1642 int hash = ii->hash; 1643 struct inpcb *inp; 1644 1645 if (ii->inp == NULL) { /* First call. */ 1646 smr_enter(ipi->ipi_smr); 1647 /* This is unrolled CK_LIST_FOREACH(). */ 1648 for (inp = II_LIST_FIRST(ipi, hash); 1649 inp != NULL; 1650 inp = II_LIST_NEXT(inp, hash)) { 1651 if (match != NULL && (match)(inp, ctx) == false) 1652 continue; 1653 if (__predict_true(inp_smr_lock(inp, lock))) 1654 break; 1655 else { 1656 smr_enter(ipi->ipi_smr); 1657 MPASS(inp != II_LIST_FIRST(ipi, hash)); 1658 inp = II_LIST_FIRST(ipi, hash); 1659 } 1660 } 1661 1662 if (inp == NULL) 1663 smr_exit(ipi->ipi_smr); 1664 else 1665 ii->inp = inp; 1666 1667 return (inp); 1668 } 1669 1670 /* Not a first call. */ 1671 smr_enter(ipi->ipi_smr); 1672 restart: 1673 inp = ii->inp; 1674 II_LOCK_ASSERT(inp, lock); 1675 next: 1676 inp = II_LIST_NEXT(inp, hash); 1677 if (inp == NULL) { 1678 smr_exit(ipi->ipi_smr); 1679 goto found; 1680 } 1681 1682 if (match != NULL && (match)(inp, ctx) == false) 1683 goto next; 1684 1685 if (__predict_true(inp_trylock(inp, lock))) { 1686 if (__predict_false(inp->inp_flags & INP_FREED)) { 1687 /* 1688 * Entries are never inserted in middle of a list, thus 1689 * as long as we are in SMR, we can continue traversal. 1690 * Jump to 'restart' should yield in the same result, 1691 * but could produce unnecessary looping. Could this 1692 * looping be unbound? 1693 */ 1694 inp_unlock(inp, lock); 1695 goto next; 1696 } else { 1697 smr_exit(ipi->ipi_smr); 1698 goto found; 1699 } 1700 } 1701 1702 /* 1703 * Can't obtain lock immediately, thus going hard. Once we exit the 1704 * SMR section we can no longer jump to 'next', and our only stable 1705 * anchoring point is ii->inp, which we keep locked for this case, so 1706 * we jump to 'restart'. 1707 */ 1708 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1709 smr_exit(ipi->ipi_smr); 1710 inp_lock(inp, lock); 1711 if (__predict_false(in_pcbrele(inp, lock))) { 1712 smr_enter(ipi->ipi_smr); 1713 goto restart; 1714 } 1715 /* 1716 * See comment in inp_smr_lock(). 1717 */ 1718 if (__predict_false(inp->inp_flags & INP_FREED)) { 1719 inp_unlock(inp, lock); 1720 smr_enter(ipi->ipi_smr); 1721 goto restart; 1722 } 1723 } else 1724 goto next; 1725 1726 found: 1727 inp_unlock(ii->inp, lock); 1728 ii->inp = inp; 1729 1730 return (ii->inp); 1731 } 1732 1733 /* 1734 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1735 * stability of an inpcb pointer despite the inpcb lock being released or 1736 * SMR section exited. 1737 * 1738 * To free a reference later in_pcbrele_(r|w)locked() must be performed. 1739 */ 1740 void 1741 in_pcbref(struct inpcb *inp) 1742 { 1743 u_int old __diagused; 1744 1745 old = refcount_acquire(&inp->inp_refcount); 1746 KASSERT(old > 0, ("%s: refcount 0", __func__)); 1747 } 1748 1749 /* 1750 * Drop a refcount on an inpcb elevated using in_pcbref(), potentially 1751 * freeing the pcb, if the reference was very last. 1752 */ 1753 bool 1754 in_pcbrele_rlocked(struct inpcb *inp) 1755 { 1756 1757 INP_RLOCK_ASSERT(inp); 1758 1759 if (refcount_release(&inp->inp_refcount) == 0) 1760 return (false); 1761 1762 MPASS(inp->inp_flags & INP_FREED); 1763 MPASS(inp->inp_socket == NULL); 1764 MPASS(inp->inp_in_hpts == 0); 1765 INP_RUNLOCK(inp); 1766 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1767 return (true); 1768 } 1769 1770 bool 1771 in_pcbrele_wlocked(struct inpcb *inp) 1772 { 1773 1774 INP_WLOCK_ASSERT(inp); 1775 1776 if (refcount_release(&inp->inp_refcount) == 0) 1777 return (false); 1778 1779 MPASS(inp->inp_flags & INP_FREED); 1780 MPASS(inp->inp_socket == NULL); 1781 MPASS(inp->inp_in_hpts == 0); 1782 INP_WUNLOCK(inp); 1783 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1784 return (true); 1785 } 1786 1787 /* 1788 * Unconditionally schedule an inpcb to be freed by decrementing its 1789 * reference count, which should occur only after the inpcb has been detached 1790 * from its socket. If another thread holds a temporary reference (acquired 1791 * using in_pcbref()) then the free is deferred until that reference is 1792 * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked. 1793 * Almost all work, including removal from global lists, is done in this 1794 * context, where the pcbinfo lock is held. 1795 */ 1796 void 1797 in_pcbfree(struct inpcb *inp) 1798 { 1799 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1800 #ifdef INET 1801 struct ip_moptions *imo; 1802 #endif 1803 #ifdef INET6 1804 struct ip6_moptions *im6o; 1805 #endif 1806 1807 INP_WLOCK_ASSERT(inp); 1808 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1809 KASSERT((inp->inp_flags & INP_FREED) == 0, 1810 ("%s: called twice for pcb %p", __func__, inp)); 1811 1812 inp->inp_flags |= INP_FREED; 1813 INP_INFO_WLOCK(pcbinfo); 1814 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1815 pcbinfo->ipi_count--; 1816 CK_LIST_REMOVE(inp, inp_list); 1817 INP_INFO_WUNLOCK(pcbinfo); 1818 1819 if (inp->inp_flags & INP_INHASHLIST) { 1820 struct inpcbport *phd = inp->inp_phd; 1821 1822 INP_HASH_WLOCK(pcbinfo); 1823 /* XXX: Only do if SO_REUSEPORT_LB set? */ 1824 in_pcbremlbgrouphash(inp); 1825 1826 CK_LIST_REMOVE(inp, inp_hash); 1827 CK_LIST_REMOVE(inp, inp_portlist); 1828 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 1829 CK_LIST_REMOVE(phd, phd_hash); 1830 uma_zfree_smr(pcbinfo->ipi_portzone, phd); 1831 } 1832 INP_HASH_WUNLOCK(pcbinfo); 1833 inp->inp_flags &= ~INP_INHASHLIST; 1834 } 1835 1836 RO_INVALIDATE_CACHE(&inp->inp_route); 1837 #ifdef MAC 1838 mac_inpcb_destroy(inp); 1839 #endif 1840 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1841 if (inp->inp_sp != NULL) 1842 ipsec_delete_pcbpolicy(inp); 1843 #endif 1844 #ifdef INET 1845 if (inp->inp_options) 1846 (void)m_free(inp->inp_options); 1847 imo = inp->inp_moptions; 1848 #endif 1849 #ifdef INET6 1850 if (inp->inp_vflag & INP_IPV6PROTO) { 1851 ip6_freepcbopts(inp->in6p_outputopts); 1852 im6o = inp->in6p_moptions; 1853 } else 1854 im6o = NULL; 1855 #endif 1856 1857 if (__predict_false(in_pcbrele_wlocked(inp) == false)) { 1858 INP_WUNLOCK(inp); 1859 } 1860 #ifdef INET6 1861 ip6_freemoptions(im6o); 1862 #endif 1863 #ifdef INET 1864 inp_freemoptions(imo); 1865 #endif 1866 /* Destruction is finalized in inpcb_dtor(). */ 1867 } 1868 1869 static void 1870 inpcb_dtor(void *mem, int size, void *arg) 1871 { 1872 struct inpcb *inp = mem; 1873 1874 crfree(inp->inp_cred); 1875 #ifdef INVARIANTS 1876 inp->inp_cred = NULL; 1877 #endif 1878 } 1879 1880 /* 1881 * Different protocols initialize their inpcbs differently - giving 1882 * different name to the lock. But they all are disposed the same. 1883 */ 1884 static void 1885 inpcb_fini(void *mem, int size) 1886 { 1887 struct inpcb *inp = mem; 1888 1889 INP_LOCK_DESTROY(inp); 1890 } 1891 1892 /* 1893 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1894 * port reservation, and preventing it from being returned by inpcb lookups. 1895 * 1896 * It is used by TCP to mark an inpcb as unused and avoid future packet 1897 * delivery or event notification when a socket remains open but TCP has 1898 * closed. This might occur as a result of a shutdown()-initiated TCP close 1899 * or a RST on the wire, and allows the port binding to be reused while still 1900 * maintaining the invariant that so_pcb always points to a valid inpcb until 1901 * in_pcbdetach(). 1902 * 1903 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1904 * in_pcbnotifyall() and in_pcbpurgeif0()? 1905 */ 1906 void 1907 in_pcbdrop(struct inpcb *inp) 1908 { 1909 1910 INP_WLOCK_ASSERT(inp); 1911 #ifdef INVARIANTS 1912 if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) 1913 MPASS(inp->inp_refcount > 1); 1914 #endif 1915 1916 /* 1917 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1918 * the hash lock...? 1919 */ 1920 inp->inp_flags |= INP_DROPPED; 1921 if (inp->inp_flags & INP_INHASHLIST) { 1922 struct inpcbport *phd = inp->inp_phd; 1923 1924 INP_HASH_WLOCK(inp->inp_pcbinfo); 1925 in_pcbremlbgrouphash(inp); 1926 CK_LIST_REMOVE(inp, inp_hash); 1927 CK_LIST_REMOVE(inp, inp_portlist); 1928 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 1929 CK_LIST_REMOVE(phd, phd_hash); 1930 uma_zfree_smr(inp->inp_pcbinfo->ipi_portzone, phd); 1931 } 1932 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1933 inp->inp_flags &= ~INP_INHASHLIST; 1934 } 1935 } 1936 1937 #ifdef INET 1938 /* 1939 * Common routines to return the socket addresses associated with inpcbs. 1940 */ 1941 struct sockaddr * 1942 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1943 { 1944 struct sockaddr_in *sin; 1945 1946 sin = malloc(sizeof *sin, M_SONAME, 1947 M_WAITOK | M_ZERO); 1948 sin->sin_family = AF_INET; 1949 sin->sin_len = sizeof(*sin); 1950 sin->sin_addr = *addr_p; 1951 sin->sin_port = port; 1952 1953 return (struct sockaddr *)sin; 1954 } 1955 1956 int 1957 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1958 { 1959 struct inpcb *inp; 1960 struct in_addr addr; 1961 in_port_t port; 1962 1963 inp = sotoinpcb(so); 1964 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1965 1966 INP_RLOCK(inp); 1967 port = inp->inp_lport; 1968 addr = inp->inp_laddr; 1969 INP_RUNLOCK(inp); 1970 1971 *nam = in_sockaddr(port, &addr); 1972 return 0; 1973 } 1974 1975 int 1976 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1977 { 1978 struct inpcb *inp; 1979 struct in_addr addr; 1980 in_port_t port; 1981 1982 inp = sotoinpcb(so); 1983 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1984 1985 INP_RLOCK(inp); 1986 port = inp->inp_fport; 1987 addr = inp->inp_faddr; 1988 INP_RUNLOCK(inp); 1989 1990 *nam = in_sockaddr(port, &addr); 1991 return 0; 1992 } 1993 1994 void 1995 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1996 struct inpcb *(*notify)(struct inpcb *, int)) 1997 { 1998 struct inpcb *inp, *inp_temp; 1999 2000 INP_INFO_WLOCK(pcbinfo); 2001 CK_LIST_FOREACH_SAFE(inp, &pcbinfo->ipi_listhead, inp_list, inp_temp) { 2002 INP_WLOCK(inp); 2003 #ifdef INET6 2004 if ((inp->inp_vflag & INP_IPV4) == 0) { 2005 INP_WUNLOCK(inp); 2006 continue; 2007 } 2008 #endif 2009 if (inp->inp_faddr.s_addr != faddr.s_addr || 2010 inp->inp_socket == NULL) { 2011 INP_WUNLOCK(inp); 2012 continue; 2013 } 2014 if ((*notify)(inp, errno)) 2015 INP_WUNLOCK(inp); 2016 } 2017 INP_INFO_WUNLOCK(pcbinfo); 2018 } 2019 2020 static bool 2021 inp_v4_multi_match(const struct inpcb *inp, void *v __unused) 2022 { 2023 2024 if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL) 2025 return (true); 2026 else 2027 return (false); 2028 } 2029 2030 void 2031 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 2032 { 2033 struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB, 2034 inp_v4_multi_match, NULL); 2035 struct inpcb *inp; 2036 struct in_multi *inm; 2037 struct in_mfilter *imf; 2038 struct ip_moptions *imo; 2039 2040 IN_MULTI_LOCK_ASSERT(); 2041 2042 while ((inp = inp_next(&inpi)) != NULL) { 2043 INP_WLOCK_ASSERT(inp); 2044 2045 imo = inp->inp_moptions; 2046 /* 2047 * Unselect the outgoing interface if it is being 2048 * detached. 2049 */ 2050 if (imo->imo_multicast_ifp == ifp) 2051 imo->imo_multicast_ifp = NULL; 2052 2053 /* 2054 * Drop multicast group membership if we joined 2055 * through the interface being detached. 2056 * 2057 * XXX This can all be deferred to an epoch_call 2058 */ 2059 restart: 2060 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 2061 if ((inm = imf->imf_inm) == NULL) 2062 continue; 2063 if (inm->inm_ifp != ifp) 2064 continue; 2065 ip_mfilter_remove(&imo->imo_head, imf); 2066 in_leavegroup_locked(inm, NULL); 2067 ip_mfilter_free(imf); 2068 goto restart; 2069 } 2070 } 2071 } 2072 2073 /* 2074 * Lookup a PCB based on the local address and port. Caller must hold the 2075 * hash lock. No inpcb locks or references are acquired. 2076 */ 2077 #define INP_LOOKUP_MAPPED_PCB_COST 3 2078 struct inpcb * 2079 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 2080 u_short lport, int lookupflags, struct ucred *cred) 2081 { 2082 struct inpcb *inp; 2083 #ifdef INET6 2084 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 2085 #else 2086 int matchwild = 3; 2087 #endif 2088 int wildcard; 2089 2090 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2091 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2092 INP_HASH_LOCK_ASSERT(pcbinfo); 2093 2094 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 2095 struct inpcbhead *head; 2096 /* 2097 * Look for an unconnected (wildcard foreign addr) PCB that 2098 * matches the local address and port we're looking for. 2099 */ 2100 head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport, 2101 pcbinfo->ipi_hashmask)]; 2102 CK_LIST_FOREACH(inp, head, inp_hash) { 2103 #ifdef INET6 2104 /* XXX inp locking */ 2105 if ((inp->inp_vflag & INP_IPV4) == 0) 2106 continue; 2107 #endif 2108 if (inp->inp_faddr.s_addr == INADDR_ANY && 2109 inp->inp_laddr.s_addr == laddr.s_addr && 2110 inp->inp_lport == lport) { 2111 /* 2112 * Found? 2113 */ 2114 if (cred == NULL || 2115 prison_equal_ip4(cred->cr_prison, 2116 inp->inp_cred->cr_prison)) 2117 return (inp); 2118 } 2119 } 2120 /* 2121 * Not found. 2122 */ 2123 return (NULL); 2124 } else { 2125 struct inpcbporthead *porthash; 2126 struct inpcbport *phd; 2127 struct inpcb *match = NULL; 2128 /* 2129 * Best fit PCB lookup. 2130 * 2131 * First see if this local port is in use by looking on the 2132 * port hash list. 2133 */ 2134 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 2135 pcbinfo->ipi_porthashmask)]; 2136 CK_LIST_FOREACH(phd, porthash, phd_hash) { 2137 if (phd->phd_port == lport) 2138 break; 2139 } 2140 if (phd != NULL) { 2141 /* 2142 * Port is in use by one or more PCBs. Look for best 2143 * fit. 2144 */ 2145 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 2146 wildcard = 0; 2147 if (cred != NULL && 2148 !prison_equal_ip4(inp->inp_cred->cr_prison, 2149 cred->cr_prison)) 2150 continue; 2151 #ifdef INET6 2152 /* XXX inp locking */ 2153 if ((inp->inp_vflag & INP_IPV4) == 0) 2154 continue; 2155 /* 2156 * We never select the PCB that has 2157 * INP_IPV6 flag and is bound to :: if 2158 * we have another PCB which is bound 2159 * to 0.0.0.0. If a PCB has the 2160 * INP_IPV6 flag, then we set its cost 2161 * higher than IPv4 only PCBs. 2162 * 2163 * Note that the case only happens 2164 * when a socket is bound to ::, under 2165 * the condition that the use of the 2166 * mapped address is allowed. 2167 */ 2168 if ((inp->inp_vflag & INP_IPV6) != 0) 2169 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 2170 #endif 2171 if (inp->inp_faddr.s_addr != INADDR_ANY) 2172 wildcard++; 2173 if (inp->inp_laddr.s_addr != INADDR_ANY) { 2174 if (laddr.s_addr == INADDR_ANY) 2175 wildcard++; 2176 else if (inp->inp_laddr.s_addr != laddr.s_addr) 2177 continue; 2178 } else { 2179 if (laddr.s_addr != INADDR_ANY) 2180 wildcard++; 2181 } 2182 if (wildcard < matchwild) { 2183 match = inp; 2184 matchwild = wildcard; 2185 if (matchwild == 0) 2186 break; 2187 } 2188 } 2189 } 2190 return (match); 2191 } 2192 } 2193 #undef INP_LOOKUP_MAPPED_PCB_COST 2194 2195 static struct inpcb * 2196 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 2197 const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr, 2198 uint16_t fport, int lookupflags, int numa_domain) 2199 { 2200 struct inpcb *local_wild, *numa_wild; 2201 const struct inpcblbgrouphead *hdr; 2202 struct inpcblbgroup *grp; 2203 uint32_t idx; 2204 2205 INP_HASH_LOCK_ASSERT(pcbinfo); 2206 2207 hdr = &pcbinfo->ipi_lbgrouphashbase[ 2208 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; 2209 2210 /* 2211 * Order of socket selection: 2212 * 1. non-wild. 2213 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD). 2214 * 2215 * NOTE: 2216 * - Load balanced group does not contain jailed sockets 2217 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets 2218 */ 2219 local_wild = NULL; 2220 numa_wild = NULL; 2221 CK_LIST_FOREACH(grp, hdr, il_list) { 2222 #ifdef INET6 2223 if (!(grp->il_vflag & INP_IPV4)) 2224 continue; 2225 #endif 2226 if (grp->il_lport != lport) 2227 continue; 2228 2229 idx = INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) % 2230 grp->il_inpcnt; 2231 if (grp->il_laddr.s_addr == laddr->s_addr) { 2232 if (numa_domain == M_NODOM || 2233 grp->il_numa_domain == numa_domain) { 2234 return (grp->il_inp[idx]); 2235 } else { 2236 numa_wild = grp->il_inp[idx]; 2237 } 2238 } 2239 if (grp->il_laddr.s_addr == INADDR_ANY && 2240 (lookupflags & INPLOOKUP_WILDCARD) != 0 && 2241 (local_wild == NULL || numa_domain == M_NODOM || 2242 grp->il_numa_domain == numa_domain)) { 2243 local_wild = grp->il_inp[idx]; 2244 } 2245 } 2246 if (numa_wild != NULL) 2247 return (numa_wild); 2248 2249 return (local_wild); 2250 } 2251 2252 /* 2253 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2254 * that the caller has either locked the hash list, which usually happens 2255 * for bind(2) operations, or is in SMR section, which happens when sorting 2256 * out incoming packets. 2257 */ 2258 static struct inpcb * 2259 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2260 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2261 struct ifnet *ifp, uint8_t numa_domain) 2262 { 2263 struct inpcbhead *head; 2264 struct inpcb *inp, *tmpinp; 2265 u_short fport = fport_arg, lport = lport_arg; 2266 2267 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2268 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2269 INP_HASH_LOCK_ASSERT(pcbinfo); 2270 2271 /* 2272 * First look for an exact match. 2273 */ 2274 tmpinp = NULL; 2275 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&faddr, lport, fport, 2276 pcbinfo->ipi_hashmask)]; 2277 CK_LIST_FOREACH(inp, head, inp_hash) { 2278 #ifdef INET6 2279 /* XXX inp locking */ 2280 if ((inp->inp_vflag & INP_IPV4) == 0) 2281 continue; 2282 #endif 2283 if (inp->inp_faddr.s_addr == faddr.s_addr && 2284 inp->inp_laddr.s_addr == laddr.s_addr && 2285 inp->inp_fport == fport && 2286 inp->inp_lport == lport) { 2287 /* 2288 * XXX We should be able to directly return 2289 * the inp here, without any checks. 2290 * Well unless both bound with SO_REUSEPORT? 2291 */ 2292 if (prison_flag(inp->inp_cred, PR_IP4)) 2293 return (inp); 2294 if (tmpinp == NULL) 2295 tmpinp = inp; 2296 } 2297 } 2298 if (tmpinp != NULL) 2299 return (tmpinp); 2300 2301 /* 2302 * Then look in lb group (for wildcard match). 2303 */ 2304 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2305 inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr, 2306 fport, lookupflags, numa_domain); 2307 if (inp != NULL) 2308 return (inp); 2309 } 2310 2311 /* 2312 * Then look for a wildcard match, if requested. 2313 */ 2314 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2315 struct inpcb *local_wild = NULL, *local_exact = NULL; 2316 #ifdef INET6 2317 struct inpcb *local_wild_mapped = NULL; 2318 #endif 2319 struct inpcb *jail_wild = NULL; 2320 int injail; 2321 2322 /* 2323 * Order of socket selection - we always prefer jails. 2324 * 1. jailed, non-wild. 2325 * 2. jailed, wild. 2326 * 3. non-jailed, non-wild. 2327 * 4. non-jailed, wild. 2328 */ 2329 2330 head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport, 2331 pcbinfo->ipi_hashmask)]; 2332 CK_LIST_FOREACH(inp, head, inp_hash) { 2333 #ifdef INET6 2334 /* XXX inp locking */ 2335 if ((inp->inp_vflag & INP_IPV4) == 0) 2336 continue; 2337 #endif 2338 if (inp->inp_faddr.s_addr != INADDR_ANY || 2339 inp->inp_lport != lport) 2340 continue; 2341 2342 injail = prison_flag(inp->inp_cred, PR_IP4); 2343 if (injail) { 2344 if (prison_check_ip4_locked( 2345 inp->inp_cred->cr_prison, &laddr) != 0) 2346 continue; 2347 } else { 2348 if (local_exact != NULL) 2349 continue; 2350 } 2351 2352 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2353 if (injail) 2354 return (inp); 2355 else 2356 local_exact = inp; 2357 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2358 #ifdef INET6 2359 /* XXX inp locking, NULL check */ 2360 if (inp->inp_vflag & INP_IPV6PROTO) 2361 local_wild_mapped = inp; 2362 else 2363 #endif 2364 if (injail) 2365 jail_wild = inp; 2366 else 2367 local_wild = inp; 2368 } 2369 } /* LIST_FOREACH */ 2370 if (jail_wild != NULL) 2371 return (jail_wild); 2372 if (local_exact != NULL) 2373 return (local_exact); 2374 if (local_wild != NULL) 2375 return (local_wild); 2376 #ifdef INET6 2377 if (local_wild_mapped != NULL) 2378 return (local_wild_mapped); 2379 #endif 2380 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 2381 2382 return (NULL); 2383 } 2384 2385 /* 2386 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 2387 * hash list lock, and will return the inpcb locked (i.e., requires 2388 * INPLOOKUP_LOCKPCB). 2389 */ 2390 static struct inpcb * 2391 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2392 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2393 struct ifnet *ifp, uint8_t numa_domain) 2394 { 2395 struct inpcb *inp; 2396 2397 smr_enter(pcbinfo->ipi_smr); 2398 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2399 lookupflags & INPLOOKUP_WILDCARD, ifp, numa_domain); 2400 if (inp != NULL) { 2401 if (__predict_false(inp_smr_lock(inp, 2402 (lookupflags & INPLOOKUP_LOCKMASK)) == false)) 2403 inp = NULL; 2404 } else 2405 smr_exit(pcbinfo->ipi_smr); 2406 2407 return (inp); 2408 } 2409 2410 /* 2411 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2412 * from which a pre-calculated hash value may be extracted. 2413 */ 2414 struct inpcb * 2415 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2416 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 2417 { 2418 2419 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2420 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2421 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2422 ("%s: LOCKPCB not set", __func__)); 2423 2424 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2425 lookupflags, ifp, M_NODOM)); 2426 } 2427 2428 struct inpcb * 2429 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2430 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2431 struct ifnet *ifp, struct mbuf *m) 2432 { 2433 2434 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2435 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2436 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2437 ("%s: LOCKPCB not set", __func__)); 2438 2439 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2440 lookupflags, ifp, m->m_pkthdr.numa_domain)); 2441 } 2442 #endif /* INET */ 2443 2444 /* 2445 * Insert PCB onto various hash lists. 2446 */ 2447 int 2448 in_pcbinshash(struct inpcb *inp) 2449 { 2450 struct inpcbhead *pcbhash; 2451 struct inpcbporthead *pcbporthash; 2452 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2453 struct inpcbport *phd; 2454 int so_options; 2455 2456 INP_WLOCK_ASSERT(inp); 2457 INP_HASH_WLOCK_ASSERT(pcbinfo); 2458 2459 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2460 ("in_pcbinshash: INP_INHASHLIST")); 2461 2462 #ifdef INET6 2463 if (inp->inp_vflag & INP_IPV6) 2464 pcbhash = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr, 2465 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2466 else 2467 #endif 2468 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr, 2469 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2470 2471 pcbporthash = &pcbinfo->ipi_porthashbase[ 2472 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2473 2474 /* 2475 * Add entry to load balance group. 2476 * Only do this if SO_REUSEPORT_LB is set. 2477 */ 2478 so_options = inp_so_options(inp); 2479 if (so_options & SO_REUSEPORT_LB) { 2480 int ret = in_pcbinslbgrouphash(inp, M_NODOM); 2481 if (ret) { 2482 /* pcb lb group malloc fail (ret=ENOBUFS). */ 2483 return (ret); 2484 } 2485 } 2486 2487 /* 2488 * Go through port list and look for a head for this lport. 2489 */ 2490 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2491 if (phd->phd_port == inp->inp_lport) 2492 break; 2493 } 2494 /* 2495 * If none exists, malloc one and tack it on. 2496 */ 2497 if (phd == NULL) { 2498 phd = uma_zalloc_smr(pcbinfo->ipi_portzone, M_NOWAIT); 2499 if (phd == NULL) { 2500 return (ENOBUFS); /* XXX */ 2501 } 2502 phd->phd_port = inp->inp_lport; 2503 CK_LIST_INIT(&phd->phd_pcblist); 2504 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2505 } 2506 inp->inp_phd = phd; 2507 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2508 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2509 inp->inp_flags |= INP_INHASHLIST; 2510 2511 return (0); 2512 } 2513 2514 /* 2515 * Move PCB to the proper hash bucket when { faddr, fport } have been 2516 * changed. NOTE: This does not handle the case of the lport changing (the 2517 * hashed port list would have to be updated as well), so the lport must 2518 * not change after in_pcbinshash() has been called. 2519 * 2520 * XXXGL: a race between this function and SMR-protected hash iterator 2521 * will lead to iterator traversing a possibly wrong hash list. However, 2522 * this race should have been here since change from rwlock to epoch. 2523 */ 2524 void 2525 in_pcbrehash(struct inpcb *inp) 2526 { 2527 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2528 struct inpcbhead *head; 2529 2530 INP_WLOCK_ASSERT(inp); 2531 INP_HASH_WLOCK_ASSERT(pcbinfo); 2532 2533 KASSERT(inp->inp_flags & INP_INHASHLIST, 2534 ("in_pcbrehash: !INP_INHASHLIST")); 2535 2536 #ifdef INET6 2537 if (inp->inp_vflag & INP_IPV6) 2538 head = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr, 2539 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2540 else 2541 #endif 2542 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr, 2543 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2544 2545 CK_LIST_REMOVE(inp, inp_hash); 2546 CK_LIST_INSERT_HEAD(head, inp, inp_hash); 2547 } 2548 2549 /* 2550 * Check for alternatives when higher level complains 2551 * about service problems. For now, invalidate cached 2552 * routing information. If the route was created dynamically 2553 * (by a redirect), time to try a default gateway again. 2554 */ 2555 void 2556 in_losing(struct inpcb *inp) 2557 { 2558 2559 RO_INVALIDATE_CACHE(&inp->inp_route); 2560 return; 2561 } 2562 2563 /* 2564 * A set label operation has occurred at the socket layer, propagate the 2565 * label change into the in_pcb for the socket. 2566 */ 2567 void 2568 in_pcbsosetlabel(struct socket *so) 2569 { 2570 #ifdef MAC 2571 struct inpcb *inp; 2572 2573 inp = sotoinpcb(so); 2574 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2575 2576 INP_WLOCK(inp); 2577 SOCK_LOCK(so); 2578 mac_inpcb_sosetlabel(so, inp); 2579 SOCK_UNLOCK(so); 2580 INP_WUNLOCK(inp); 2581 #endif 2582 } 2583 2584 /* 2585 * ipport_tick runs once per second, determining if random port allocation 2586 * should be continued. If more than ipport_randomcps ports have been 2587 * allocated in the last second, then we return to sequential port 2588 * allocation. We return to random allocation only once we drop below 2589 * ipport_randomcps for at least ipport_randomtime seconds. 2590 */ 2591 static void 2592 ipport_tick(void *xtp) 2593 { 2594 VNET_ITERATOR_DECL(vnet_iter); 2595 2596 VNET_LIST_RLOCK_NOSLEEP(); 2597 VNET_FOREACH(vnet_iter) { 2598 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2599 if (V_ipport_tcpallocs - V_ipport_tcplastcount <= 2600 V_ipport_randomcps) { 2601 if (V_ipport_stoprandom > 0) 2602 V_ipport_stoprandom--; 2603 } else 2604 V_ipport_stoprandom = V_ipport_randomtime; 2605 V_ipport_tcplastcount = V_ipport_tcpallocs; 2606 CURVNET_RESTORE(); 2607 } 2608 VNET_LIST_RUNLOCK_NOSLEEP(); 2609 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2610 } 2611 2612 static void 2613 ip_fini(void *xtp) 2614 { 2615 2616 callout_stop(&ipport_tick_callout); 2617 } 2618 2619 /* 2620 * The ipport_callout should start running at about the time we attach the 2621 * inet or inet6 domains. 2622 */ 2623 static void 2624 ipport_tick_init(const void *unused __unused) 2625 { 2626 2627 /* Start ipport_tick. */ 2628 callout_init(&ipport_tick_callout, 1); 2629 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2630 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2631 SHUTDOWN_PRI_DEFAULT); 2632 } 2633 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2634 ipport_tick_init, NULL); 2635 2636 void 2637 inp_wlock(struct inpcb *inp) 2638 { 2639 2640 INP_WLOCK(inp); 2641 } 2642 2643 void 2644 inp_wunlock(struct inpcb *inp) 2645 { 2646 2647 INP_WUNLOCK(inp); 2648 } 2649 2650 void 2651 inp_rlock(struct inpcb *inp) 2652 { 2653 2654 INP_RLOCK(inp); 2655 } 2656 2657 void 2658 inp_runlock(struct inpcb *inp) 2659 { 2660 2661 INP_RUNLOCK(inp); 2662 } 2663 2664 #ifdef INVARIANT_SUPPORT 2665 void 2666 inp_lock_assert(struct inpcb *inp) 2667 { 2668 2669 INP_WLOCK_ASSERT(inp); 2670 } 2671 2672 void 2673 inp_unlock_assert(struct inpcb *inp) 2674 { 2675 2676 INP_UNLOCK_ASSERT(inp); 2677 } 2678 #endif 2679 2680 void 2681 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2682 { 2683 struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo, 2684 INPLOOKUP_WLOCKPCB); 2685 struct inpcb *inp; 2686 2687 while ((inp = inp_next(&inpi)) != NULL) 2688 func(inp, arg); 2689 } 2690 2691 struct socket * 2692 inp_inpcbtosocket(struct inpcb *inp) 2693 { 2694 2695 INP_WLOCK_ASSERT(inp); 2696 return (inp->inp_socket); 2697 } 2698 2699 struct tcpcb * 2700 inp_inpcbtotcpcb(struct inpcb *inp) 2701 { 2702 2703 INP_WLOCK_ASSERT(inp); 2704 return ((struct tcpcb *)inp->inp_ppcb); 2705 } 2706 2707 int 2708 inp_ip_tos_get(const struct inpcb *inp) 2709 { 2710 2711 return (inp->inp_ip_tos); 2712 } 2713 2714 void 2715 inp_ip_tos_set(struct inpcb *inp, int val) 2716 { 2717 2718 inp->inp_ip_tos = val; 2719 } 2720 2721 void 2722 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2723 uint32_t *faddr, uint16_t *fp) 2724 { 2725 2726 INP_LOCK_ASSERT(inp); 2727 *laddr = inp->inp_laddr.s_addr; 2728 *faddr = inp->inp_faddr.s_addr; 2729 *lp = inp->inp_lport; 2730 *fp = inp->inp_fport; 2731 } 2732 2733 struct inpcb * 2734 so_sotoinpcb(struct socket *so) 2735 { 2736 2737 return (sotoinpcb(so)); 2738 } 2739 2740 struct tcpcb * 2741 so_sototcpcb(struct socket *so) 2742 { 2743 2744 return (sototcpcb(so)); 2745 } 2746 2747 /* 2748 * Create an external-format (``xinpcb'') structure using the information in 2749 * the kernel-format in_pcb structure pointed to by inp. This is done to 2750 * reduce the spew of irrelevant information over this interface, to isolate 2751 * user code from changes in the kernel structure, and potentially to provide 2752 * information-hiding if we decide that some of this information should be 2753 * hidden from users. 2754 */ 2755 void 2756 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2757 { 2758 2759 bzero(xi, sizeof(*xi)); 2760 xi->xi_len = sizeof(struct xinpcb); 2761 if (inp->inp_socket) 2762 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2763 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2764 xi->inp_gencnt = inp->inp_gencnt; 2765 xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; 2766 xi->inp_flow = inp->inp_flow; 2767 xi->inp_flowid = inp->inp_flowid; 2768 xi->inp_flowtype = inp->inp_flowtype; 2769 xi->inp_flags = inp->inp_flags; 2770 xi->inp_flags2 = inp->inp_flags2; 2771 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2772 xi->in6p_cksum = inp->in6p_cksum; 2773 xi->in6p_hops = inp->in6p_hops; 2774 xi->inp_ip_tos = inp->inp_ip_tos; 2775 xi->inp_vflag = inp->inp_vflag; 2776 xi->inp_ip_ttl = inp->inp_ip_ttl; 2777 xi->inp_ip_p = inp->inp_ip_p; 2778 xi->inp_ip_minttl = inp->inp_ip_minttl; 2779 } 2780 2781 #ifdef DDB 2782 static void 2783 db_print_indent(int indent) 2784 { 2785 int i; 2786 2787 for (i = 0; i < indent; i++) 2788 db_printf(" "); 2789 } 2790 2791 static void 2792 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2793 { 2794 char faddr_str[48], laddr_str[48]; 2795 2796 db_print_indent(indent); 2797 db_printf("%s at %p\n", name, inc); 2798 2799 indent += 2; 2800 2801 #ifdef INET6 2802 if (inc->inc_flags & INC_ISIPV6) { 2803 /* IPv6. */ 2804 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2805 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2806 } else 2807 #endif 2808 { 2809 /* IPv4. */ 2810 inet_ntoa_r(inc->inc_laddr, laddr_str); 2811 inet_ntoa_r(inc->inc_faddr, faddr_str); 2812 } 2813 db_print_indent(indent); 2814 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2815 ntohs(inc->inc_lport)); 2816 db_print_indent(indent); 2817 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2818 ntohs(inc->inc_fport)); 2819 } 2820 2821 static void 2822 db_print_inpflags(int inp_flags) 2823 { 2824 int comma; 2825 2826 comma = 0; 2827 if (inp_flags & INP_RECVOPTS) { 2828 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2829 comma = 1; 2830 } 2831 if (inp_flags & INP_RECVRETOPTS) { 2832 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2833 comma = 1; 2834 } 2835 if (inp_flags & INP_RECVDSTADDR) { 2836 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2837 comma = 1; 2838 } 2839 if (inp_flags & INP_ORIGDSTADDR) { 2840 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 2841 comma = 1; 2842 } 2843 if (inp_flags & INP_HDRINCL) { 2844 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2845 comma = 1; 2846 } 2847 if (inp_flags & INP_HIGHPORT) { 2848 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2849 comma = 1; 2850 } 2851 if (inp_flags & INP_LOWPORT) { 2852 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2853 comma = 1; 2854 } 2855 if (inp_flags & INP_ANONPORT) { 2856 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2857 comma = 1; 2858 } 2859 if (inp_flags & INP_RECVIF) { 2860 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2861 comma = 1; 2862 } 2863 if (inp_flags & INP_MTUDISC) { 2864 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2865 comma = 1; 2866 } 2867 if (inp_flags & INP_RECVTTL) { 2868 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 2869 comma = 1; 2870 } 2871 if (inp_flags & INP_DONTFRAG) { 2872 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 2873 comma = 1; 2874 } 2875 if (inp_flags & INP_RECVTOS) { 2876 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 2877 comma = 1; 2878 } 2879 if (inp_flags & IN6P_IPV6_V6ONLY) { 2880 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 2881 comma = 1; 2882 } 2883 if (inp_flags & IN6P_PKTINFO) { 2884 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 2885 comma = 1; 2886 } 2887 if (inp_flags & IN6P_HOPLIMIT) { 2888 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 2889 comma = 1; 2890 } 2891 if (inp_flags & IN6P_HOPOPTS) { 2892 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 2893 comma = 1; 2894 } 2895 if (inp_flags & IN6P_DSTOPTS) { 2896 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 2897 comma = 1; 2898 } 2899 if (inp_flags & IN6P_RTHDR) { 2900 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 2901 comma = 1; 2902 } 2903 if (inp_flags & IN6P_RTHDRDSTOPTS) { 2904 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 2905 comma = 1; 2906 } 2907 if (inp_flags & IN6P_TCLASS) { 2908 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 2909 comma = 1; 2910 } 2911 if (inp_flags & IN6P_AUTOFLOWLABEL) { 2912 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 2913 comma = 1; 2914 } 2915 if (inp_flags & INP_TIMEWAIT) { 2916 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 2917 comma = 1; 2918 } 2919 if (inp_flags & INP_ONESBCAST) { 2920 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 2921 comma = 1; 2922 } 2923 if (inp_flags & INP_DROPPED) { 2924 db_printf("%sINP_DROPPED", comma ? ", " : ""); 2925 comma = 1; 2926 } 2927 if (inp_flags & INP_SOCKREF) { 2928 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 2929 comma = 1; 2930 } 2931 if (inp_flags & IN6P_RFC2292) { 2932 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 2933 comma = 1; 2934 } 2935 if (inp_flags & IN6P_MTU) { 2936 db_printf("IN6P_MTU%s", comma ? ", " : ""); 2937 comma = 1; 2938 } 2939 } 2940 2941 static void 2942 db_print_inpvflag(u_char inp_vflag) 2943 { 2944 int comma; 2945 2946 comma = 0; 2947 if (inp_vflag & INP_IPV4) { 2948 db_printf("%sINP_IPV4", comma ? ", " : ""); 2949 comma = 1; 2950 } 2951 if (inp_vflag & INP_IPV6) { 2952 db_printf("%sINP_IPV6", comma ? ", " : ""); 2953 comma = 1; 2954 } 2955 if (inp_vflag & INP_IPV6PROTO) { 2956 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 2957 comma = 1; 2958 } 2959 } 2960 2961 static void 2962 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 2963 { 2964 2965 db_print_indent(indent); 2966 db_printf("%s at %p\n", name, inp); 2967 2968 indent += 2; 2969 2970 db_print_indent(indent); 2971 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 2972 2973 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 2974 2975 db_print_indent(indent); 2976 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 2977 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 2978 2979 db_print_indent(indent); 2980 db_printf("inp_label: %p inp_flags: 0x%x (", 2981 inp->inp_label, inp->inp_flags); 2982 db_print_inpflags(inp->inp_flags); 2983 db_printf(")\n"); 2984 2985 db_print_indent(indent); 2986 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 2987 inp->inp_vflag); 2988 db_print_inpvflag(inp->inp_vflag); 2989 db_printf(")\n"); 2990 2991 db_print_indent(indent); 2992 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 2993 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 2994 2995 db_print_indent(indent); 2996 #ifdef INET6 2997 if (inp->inp_vflag & INP_IPV6) { 2998 db_printf("in6p_options: %p in6p_outputopts: %p " 2999 "in6p_moptions: %p\n", inp->in6p_options, 3000 inp->in6p_outputopts, inp->in6p_moptions); 3001 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 3002 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 3003 inp->in6p_hops); 3004 } else 3005 #endif 3006 { 3007 db_printf("inp_ip_tos: %d inp_ip_options: %p " 3008 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 3009 inp->inp_options, inp->inp_moptions); 3010 } 3011 3012 db_print_indent(indent); 3013 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 3014 (uintmax_t)inp->inp_gencnt); 3015 } 3016 3017 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 3018 { 3019 struct inpcb *inp; 3020 3021 if (!have_addr) { 3022 db_printf("usage: show inpcb <addr>\n"); 3023 return; 3024 } 3025 inp = (struct inpcb *)addr; 3026 3027 db_print_inpcb(inp, "inpcb", 0); 3028 } 3029 #endif /* DDB */ 3030 3031 #ifdef RATELIMIT 3032 /* 3033 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 3034 * if any. 3035 */ 3036 int 3037 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 3038 { 3039 union if_snd_tag_modify_params params = { 3040 .rate_limit.max_rate = max_pacing_rate, 3041 .rate_limit.flags = M_NOWAIT, 3042 }; 3043 struct m_snd_tag *mst; 3044 int error; 3045 3046 mst = inp->inp_snd_tag; 3047 if (mst == NULL) 3048 return (EINVAL); 3049 3050 if (mst->sw->snd_tag_modify == NULL) { 3051 error = EOPNOTSUPP; 3052 } else { 3053 error = mst->sw->snd_tag_modify(mst, ¶ms); 3054 } 3055 return (error); 3056 } 3057 3058 /* 3059 * Query existing TX rate limit based on the existing 3060 * "inp->inp_snd_tag", if any. 3061 */ 3062 int 3063 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3064 { 3065 union if_snd_tag_query_params params = { }; 3066 struct m_snd_tag *mst; 3067 int error; 3068 3069 mst = inp->inp_snd_tag; 3070 if (mst == NULL) 3071 return (EINVAL); 3072 3073 if (mst->sw->snd_tag_query == NULL) { 3074 error = EOPNOTSUPP; 3075 } else { 3076 error = mst->sw->snd_tag_query(mst, ¶ms); 3077 if (error == 0 && p_max_pacing_rate != NULL) 3078 *p_max_pacing_rate = params.rate_limit.max_rate; 3079 } 3080 return (error); 3081 } 3082 3083 /* 3084 * Query existing TX queue level based on the existing 3085 * "inp->inp_snd_tag", if any. 3086 */ 3087 int 3088 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3089 { 3090 union if_snd_tag_query_params params = { }; 3091 struct m_snd_tag *mst; 3092 int error; 3093 3094 mst = inp->inp_snd_tag; 3095 if (mst == NULL) 3096 return (EINVAL); 3097 3098 if (mst->sw->snd_tag_query == NULL) 3099 return (EOPNOTSUPP); 3100 3101 error = mst->sw->snd_tag_query(mst, ¶ms); 3102 if (error == 0 && p_txqueue_level != NULL) 3103 *p_txqueue_level = params.rate_limit.queue_level; 3104 return (error); 3105 } 3106 3107 /* 3108 * Allocate a new TX rate limit send tag from the network interface 3109 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3110 */ 3111 int 3112 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3113 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st) 3114 3115 { 3116 union if_snd_tag_alloc_params params = { 3117 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3118 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3119 .rate_limit.hdr.flowid = flowid, 3120 .rate_limit.hdr.flowtype = flowtype, 3121 .rate_limit.hdr.numa_domain = inp->inp_numa_domain, 3122 .rate_limit.max_rate = max_pacing_rate, 3123 .rate_limit.flags = M_NOWAIT, 3124 }; 3125 int error; 3126 3127 INP_WLOCK_ASSERT(inp); 3128 3129 /* 3130 * If there is already a send tag, or the INP is being torn 3131 * down, allocating a new send tag is not allowed. Else send 3132 * tags may leak. 3133 */ 3134 if (*st != NULL || (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) != 0) 3135 return (EINVAL); 3136 3137 error = m_snd_tag_alloc(ifp, ¶ms, st); 3138 #ifdef INET 3139 if (error == 0) { 3140 counter_u64_add(rate_limit_set_ok, 1); 3141 counter_u64_add(rate_limit_active, 1); 3142 } else if (error != EOPNOTSUPP) 3143 counter_u64_add(rate_limit_alloc_fail, 1); 3144 #endif 3145 return (error); 3146 } 3147 3148 void 3149 in_pcbdetach_tag(struct m_snd_tag *mst) 3150 { 3151 3152 m_snd_tag_rele(mst); 3153 #ifdef INET 3154 counter_u64_add(rate_limit_active, -1); 3155 #endif 3156 } 3157 3158 /* 3159 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3160 * if any: 3161 */ 3162 void 3163 in_pcbdetach_txrtlmt(struct inpcb *inp) 3164 { 3165 struct m_snd_tag *mst; 3166 3167 INP_WLOCK_ASSERT(inp); 3168 3169 mst = inp->inp_snd_tag; 3170 inp->inp_snd_tag = NULL; 3171 3172 if (mst == NULL) 3173 return; 3174 3175 m_snd_tag_rele(mst); 3176 #ifdef INET 3177 counter_u64_add(rate_limit_active, -1); 3178 #endif 3179 } 3180 3181 int 3182 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate) 3183 { 3184 int error; 3185 3186 /* 3187 * If the existing send tag is for the wrong interface due to 3188 * a route change, first drop the existing tag. Set the 3189 * CHANGED flag so that we will keep trying to allocate a new 3190 * tag if we fail to allocate one this time. 3191 */ 3192 if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) { 3193 in_pcbdetach_txrtlmt(inp); 3194 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3195 } 3196 3197 /* 3198 * NOTE: When attaching to a network interface a reference is 3199 * made to ensure the network interface doesn't go away until 3200 * all ratelimit connections are gone. The network interface 3201 * pointers compared below represent valid network interfaces, 3202 * except when comparing towards NULL. 3203 */ 3204 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3205 error = 0; 3206 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3207 if (inp->inp_snd_tag != NULL) 3208 in_pcbdetach_txrtlmt(inp); 3209 error = 0; 3210 } else if (inp->inp_snd_tag == NULL) { 3211 /* 3212 * In order to utilize packet pacing with RSS, we need 3213 * to wait until there is a valid RSS hash before we 3214 * can proceed: 3215 */ 3216 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3217 error = EAGAIN; 3218 } else { 3219 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3220 mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag); 3221 } 3222 } else { 3223 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3224 } 3225 if (error == 0 || error == EOPNOTSUPP) 3226 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3227 3228 return (error); 3229 } 3230 3231 /* 3232 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3233 * is set in the fast path and will attach/detach/modify the TX rate 3234 * limit send tag based on the socket's so_max_pacing_rate value. 3235 */ 3236 void 3237 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3238 { 3239 struct socket *socket; 3240 uint32_t max_pacing_rate; 3241 bool did_upgrade; 3242 int error; 3243 3244 if (inp == NULL) 3245 return; 3246 3247 socket = inp->inp_socket; 3248 if (socket == NULL) 3249 return; 3250 3251 if (!INP_WLOCKED(inp)) { 3252 /* 3253 * NOTE: If the write locking fails, we need to bail 3254 * out and use the non-ratelimited ring for the 3255 * transmit until there is a new chance to get the 3256 * write lock. 3257 */ 3258 if (!INP_TRY_UPGRADE(inp)) 3259 return; 3260 did_upgrade = 1; 3261 } else { 3262 did_upgrade = 0; 3263 } 3264 3265 /* 3266 * NOTE: The so_max_pacing_rate value is read unlocked, 3267 * because atomic updates are not required since the variable 3268 * is checked at every mbuf we send. It is assumed that the 3269 * variable read itself will be atomic. 3270 */ 3271 max_pacing_rate = socket->so_max_pacing_rate; 3272 3273 error = in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate); 3274 3275 if (did_upgrade) 3276 INP_DOWNGRADE(inp); 3277 } 3278 3279 /* 3280 * Track route changes for TX rate limiting. 3281 */ 3282 void 3283 in_pcboutput_eagain(struct inpcb *inp) 3284 { 3285 bool did_upgrade; 3286 3287 if (inp == NULL) 3288 return; 3289 3290 if (inp->inp_snd_tag == NULL) 3291 return; 3292 3293 if (!INP_WLOCKED(inp)) { 3294 /* 3295 * NOTE: If the write locking fails, we need to bail 3296 * out and use the non-ratelimited ring for the 3297 * transmit until there is a new chance to get the 3298 * write lock. 3299 */ 3300 if (!INP_TRY_UPGRADE(inp)) 3301 return; 3302 did_upgrade = 1; 3303 } else { 3304 did_upgrade = 0; 3305 } 3306 3307 /* detach rate limiting */ 3308 in_pcbdetach_txrtlmt(inp); 3309 3310 /* make sure new mbuf send tag allocation is made */ 3311 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3312 3313 if (did_upgrade) 3314 INP_DOWNGRADE(inp); 3315 } 3316 3317 #ifdef INET 3318 static void 3319 rl_init(void *st) 3320 { 3321 rate_limit_new = counter_u64_alloc(M_WAITOK); 3322 rate_limit_chg = counter_u64_alloc(M_WAITOK); 3323 rate_limit_active = counter_u64_alloc(M_WAITOK); 3324 rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK); 3325 rate_limit_set_ok = counter_u64_alloc(M_WAITOK); 3326 } 3327 3328 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL); 3329 #endif 3330 #endif /* RATELIMIT */ 3331