1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993, 1995 3 * The Regents of the University of California. 4 * Copyright (c) 2007-2009 Robert N. M. Watson 5 * Copyright (c) 2010-2011 Juniper Networks, Inc. 6 * All rights reserved. 7 * 8 * Portions of this software were developed by Robert N. M. Watson under 9 * contract to Juniper Networks, Inc. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_ddb.h" 42 #include "opt_ipsec.h" 43 #include "opt_inet.h" 44 #include "opt_inet6.h" 45 #include "opt_ratelimit.h" 46 #include "opt_pcbgroup.h" 47 #include "opt_rss.h" 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/lock.h> 52 #include <sys/malloc.h> 53 #include <sys/mbuf.h> 54 #include <sys/callout.h> 55 #include <sys/eventhandler.h> 56 #include <sys/domain.h> 57 #include <sys/protosw.h> 58 #include <sys/rmlock.h> 59 #include <sys/socket.h> 60 #include <sys/socketvar.h> 61 #include <sys/sockio.h> 62 #include <sys/priv.h> 63 #include <sys/proc.h> 64 #include <sys/refcount.h> 65 #include <sys/jail.h> 66 #include <sys/kernel.h> 67 #include <sys/sysctl.h> 68 69 #ifdef DDB 70 #include <ddb/ddb.h> 71 #endif 72 73 #include <vm/uma.h> 74 75 #include <net/if.h> 76 #include <net/if_var.h> 77 #include <net/if_types.h> 78 #include <net/if_llatbl.h> 79 #include <net/route.h> 80 #include <net/rss_config.h> 81 #include <net/vnet.h> 82 83 #if defined(INET) || defined(INET6) 84 #include <netinet/in.h> 85 #include <netinet/in_pcb.h> 86 #include <netinet/ip_var.h> 87 #include <netinet/tcp_var.h> 88 #include <netinet/udp.h> 89 #include <netinet/udp_var.h> 90 #endif 91 #ifdef INET 92 #include <netinet/in_var.h> 93 #endif 94 #ifdef INET6 95 #include <netinet/ip6.h> 96 #include <netinet6/in6_pcb.h> 97 #include <netinet6/in6_var.h> 98 #include <netinet6/ip6_var.h> 99 #endif /* INET6 */ 100 101 #include <netipsec/ipsec_support.h> 102 103 #include <security/mac/mac_framework.h> 104 105 static struct callout ipport_tick_callout; 106 107 /* 108 * These configure the range of local port addresses assigned to 109 * "unspecified" outgoing connections/packets/whatever. 110 */ 111 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 112 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 113 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 114 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 115 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 116 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 117 118 /* 119 * Reserved ports accessible only to root. There are significant 120 * security considerations that must be accounted for when changing these, 121 * but the security benefits can be great. Please be careful. 122 */ 123 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 124 VNET_DEFINE(int, ipport_reservedlow); 125 126 /* Variables dealing with random ephemeral port allocation. */ 127 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 128 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 129 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 130 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 131 VNET_DEFINE(int, ipport_tcpallocs); 132 static VNET_DEFINE(int, ipport_tcplastcount); 133 134 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 135 136 static void in_pcbremlists(struct inpcb *inp); 137 #ifdef INET 138 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 139 struct in_addr faddr, u_int fport_arg, 140 struct in_addr laddr, u_int lport_arg, 141 int lookupflags, struct ifnet *ifp); 142 143 #define RANGECHK(var, min, max) \ 144 if ((var) < (min)) { (var) = (min); } \ 145 else if ((var) > (max)) { (var) = (max); } 146 147 static int 148 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 149 { 150 int error; 151 152 error = sysctl_handle_int(oidp, arg1, arg2, req); 153 if (error == 0) { 154 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 155 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 156 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 157 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 158 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 159 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 160 } 161 return (error); 162 } 163 164 #undef RANGECHK 165 166 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, 167 "IP Ports"); 168 169 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 170 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 171 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", ""); 172 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 173 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 174 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", ""); 175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 176 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 177 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", ""); 178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 179 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 180 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", ""); 181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 182 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 183 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", ""); 184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 185 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 186 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", ""); 187 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 188 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 189 &VNET_NAME(ipport_reservedhigh), 0, ""); 190 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 191 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 192 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 193 CTLFLAG_VNET | CTLFLAG_RW, 194 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 195 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 196 CTLFLAG_VNET | CTLFLAG_RW, 197 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 198 "allocations before switching to a sequental one"); 199 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 200 CTLFLAG_VNET | CTLFLAG_RW, 201 &VNET_NAME(ipport_randomtime), 0, 202 "Minimum time to keep sequental port " 203 "allocation before switching to a random one"); 204 #endif /* INET */ 205 206 /* 207 * in_pcb.c: manage the Protocol Control Blocks. 208 * 209 * NOTE: It is assumed that most of these functions will be called with 210 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 211 * functions often modify hash chains or addresses in pcbs. 212 */ 213 214 /* 215 * Initialize an inpcbinfo -- we should be able to reduce the number of 216 * arguments in time. 217 */ 218 void 219 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 220 struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, 221 char *inpcbzone_name, uma_init inpcbzone_init, uma_fini inpcbzone_fini, 222 uint32_t inpcbzone_flags, u_int hashfields) 223 { 224 225 INP_INFO_LOCK_INIT(pcbinfo, name); 226 INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ 227 INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist"); 228 #ifdef VIMAGE 229 pcbinfo->ipi_vnet = curvnet; 230 #endif 231 pcbinfo->ipi_listhead = listhead; 232 LIST_INIT(pcbinfo->ipi_listhead); 233 pcbinfo->ipi_count = 0; 234 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 235 &pcbinfo->ipi_hashmask); 236 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 237 &pcbinfo->ipi_porthashmask); 238 #ifdef PCBGROUP 239 in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); 240 #endif 241 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 242 NULL, NULL, inpcbzone_init, inpcbzone_fini, UMA_ALIGN_PTR, 243 inpcbzone_flags); 244 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 245 uma_zone_set_warning(pcbinfo->ipi_zone, 246 "kern.ipc.maxsockets limit reached"); 247 } 248 249 /* 250 * Destroy an inpcbinfo. 251 */ 252 void 253 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 254 { 255 256 KASSERT(pcbinfo->ipi_count == 0, 257 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 258 259 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 260 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 261 pcbinfo->ipi_porthashmask); 262 #ifdef PCBGROUP 263 in_pcbgroup_destroy(pcbinfo); 264 #endif 265 uma_zdestroy(pcbinfo->ipi_zone); 266 INP_LIST_LOCK_DESTROY(pcbinfo); 267 INP_HASH_LOCK_DESTROY(pcbinfo); 268 INP_INFO_LOCK_DESTROY(pcbinfo); 269 } 270 271 /* 272 * Allocate a PCB and associate it with the socket. 273 * On success return with the PCB locked. 274 */ 275 int 276 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 277 { 278 struct inpcb *inp; 279 int error; 280 281 #ifdef INVARIANTS 282 if (pcbinfo == &V_tcbinfo) { 283 INP_INFO_RLOCK_ASSERT(pcbinfo); 284 } else { 285 INP_INFO_WLOCK_ASSERT(pcbinfo); 286 } 287 #endif 288 289 error = 0; 290 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 291 if (inp == NULL) 292 return (ENOBUFS); 293 bzero(inp, inp_zero_size); 294 inp->inp_pcbinfo = pcbinfo; 295 inp->inp_socket = so; 296 inp->inp_cred = crhold(so->so_cred); 297 inp->inp_inc.inc_fibnum = so->so_fibnum; 298 #ifdef MAC 299 error = mac_inpcb_init(inp, M_NOWAIT); 300 if (error != 0) 301 goto out; 302 mac_inpcb_create(so, inp); 303 #endif 304 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 305 error = ipsec_init_pcbpolicy(inp); 306 if (error != 0) { 307 #ifdef MAC 308 mac_inpcb_destroy(inp); 309 #endif 310 goto out; 311 } 312 #endif /*IPSEC*/ 313 #ifdef INET6 314 if (INP_SOCKAF(so) == AF_INET6) { 315 inp->inp_vflag |= INP_IPV6PROTO; 316 if (V_ip6_v6only) 317 inp->inp_flags |= IN6P_IPV6_V6ONLY; 318 } 319 #endif 320 INP_WLOCK(inp); 321 INP_LIST_WLOCK(pcbinfo); 322 LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 323 pcbinfo->ipi_count++; 324 so->so_pcb = (caddr_t)inp; 325 #ifdef INET6 326 if (V_ip6_auto_flowlabel) 327 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 328 #endif 329 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 330 refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ 331 INP_LIST_WUNLOCK(pcbinfo); 332 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 333 out: 334 if (error != 0) { 335 crfree(inp->inp_cred); 336 uma_zfree(pcbinfo->ipi_zone, inp); 337 } 338 #endif 339 return (error); 340 } 341 342 #ifdef INET 343 int 344 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 345 { 346 int anonport, error; 347 348 INP_WLOCK_ASSERT(inp); 349 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 350 351 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 352 return (EINVAL); 353 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 354 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 355 &inp->inp_lport, cred); 356 if (error) 357 return (error); 358 if (in_pcbinshash(inp) != 0) { 359 inp->inp_laddr.s_addr = INADDR_ANY; 360 inp->inp_lport = 0; 361 return (EAGAIN); 362 } 363 if (anonport) 364 inp->inp_flags |= INP_ANONPORT; 365 return (0); 366 } 367 #endif 368 369 /* 370 * Select a local port (number) to use. 371 */ 372 #if defined(INET) || defined(INET6) 373 int 374 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 375 struct ucred *cred, int lookupflags) 376 { 377 struct inpcbinfo *pcbinfo; 378 struct inpcb *tmpinp; 379 unsigned short *lastport; 380 int count, dorandom, error; 381 u_short aux, first, last, lport; 382 #ifdef INET 383 struct in_addr laddr; 384 #endif 385 386 pcbinfo = inp->inp_pcbinfo; 387 388 /* 389 * Because no actual state changes occur here, a global write lock on 390 * the pcbinfo isn't required. 391 */ 392 INP_LOCK_ASSERT(inp); 393 INP_HASH_LOCK_ASSERT(pcbinfo); 394 395 if (inp->inp_flags & INP_HIGHPORT) { 396 first = V_ipport_hifirstauto; /* sysctl */ 397 last = V_ipport_hilastauto; 398 lastport = &pcbinfo->ipi_lasthi; 399 } else if (inp->inp_flags & INP_LOWPORT) { 400 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0); 401 if (error) 402 return (error); 403 first = V_ipport_lowfirstauto; /* 1023 */ 404 last = V_ipport_lowlastauto; /* 600 */ 405 lastport = &pcbinfo->ipi_lastlow; 406 } else { 407 first = V_ipport_firstauto; /* sysctl */ 408 last = V_ipport_lastauto; 409 lastport = &pcbinfo->ipi_lastport; 410 } 411 /* 412 * For UDP(-Lite), use random port allocation as long as the user 413 * allows it. For TCP (and as of yet unknown) connections, 414 * use random port allocation only if the user allows it AND 415 * ipport_tick() allows it. 416 */ 417 if (V_ipport_randomized && 418 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 419 pcbinfo == &V_ulitecbinfo)) 420 dorandom = 1; 421 else 422 dorandom = 0; 423 /* 424 * It makes no sense to do random port allocation if 425 * we have the only port available. 426 */ 427 if (first == last) 428 dorandom = 0; 429 /* Make sure to not include UDP(-Lite) packets in the count. */ 430 if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) 431 V_ipport_tcpallocs++; 432 /* 433 * Instead of having two loops further down counting up or down 434 * make sure that first is always <= last and go with only one 435 * code path implementing all logic. 436 */ 437 if (first > last) { 438 aux = first; 439 first = last; 440 last = aux; 441 } 442 443 #ifdef INET 444 /* Make the compiler happy. */ 445 laddr.s_addr = 0; 446 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 447 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p", 448 __func__, inp)); 449 laddr = *laddrp; 450 } 451 #endif 452 tmpinp = NULL; /* Make compiler happy. */ 453 lport = *lportp; 454 455 if (dorandom) 456 *lastport = first + (arc4random() % (last - first)); 457 458 count = last - first; 459 460 do { 461 if (count-- < 0) /* completely used? */ 462 return (EADDRNOTAVAIL); 463 ++*lastport; 464 if (*lastport < first || *lastport > last) 465 *lastport = first; 466 lport = htons(*lastport); 467 468 #ifdef INET6 469 if ((inp->inp_vflag & INP_IPV6) != 0) 470 tmpinp = in6_pcblookup_local(pcbinfo, 471 &inp->in6p_laddr, lport, lookupflags, cred); 472 #endif 473 #if defined(INET) && defined(INET6) 474 else 475 #endif 476 #ifdef INET 477 tmpinp = in_pcblookup_local(pcbinfo, laddr, 478 lport, lookupflags, cred); 479 #endif 480 } while (tmpinp != NULL); 481 482 #ifdef INET 483 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) 484 laddrp->s_addr = laddr.s_addr; 485 #endif 486 *lportp = lport; 487 488 return (0); 489 } 490 491 /* 492 * Return cached socket options. 493 */ 494 short 495 inp_so_options(const struct inpcb *inp) 496 { 497 short so_options; 498 499 so_options = 0; 500 501 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 502 so_options |= SO_REUSEPORT; 503 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 504 so_options |= SO_REUSEADDR; 505 return (so_options); 506 } 507 #endif /* INET || INET6 */ 508 509 /* 510 * Check if a new BINDMULTI socket is allowed to be created. 511 * 512 * ni points to the new inp. 513 * oi points to the exisitng inp. 514 * 515 * This checks whether the existing inp also has BINDMULTI and 516 * whether the credentials match. 517 */ 518 int 519 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 520 { 521 /* Check permissions match */ 522 if ((ni->inp_flags2 & INP_BINDMULTI) && 523 (ni->inp_cred->cr_uid != 524 oi->inp_cred->cr_uid)) 525 return (0); 526 527 /* Check the existing inp has BINDMULTI set */ 528 if ((ni->inp_flags2 & INP_BINDMULTI) && 529 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 530 return (0); 531 532 /* 533 * We're okay - either INP_BINDMULTI isn't set on ni, or 534 * it is and it matches the checks. 535 */ 536 return (1); 537 } 538 539 #ifdef INET 540 /* 541 * Set up a bind operation on a PCB, performing port allocation 542 * as required, but do not actually modify the PCB. Callers can 543 * either complete the bind by setting inp_laddr/inp_lport and 544 * calling in_pcbinshash(), or they can just use the resulting 545 * port and address to authorise the sending of a once-off packet. 546 * 547 * On error, the values of *laddrp and *lportp are not changed. 548 */ 549 int 550 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 551 u_short *lportp, struct ucred *cred) 552 { 553 struct socket *so = inp->inp_socket; 554 struct sockaddr_in *sin; 555 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 556 struct in_addr laddr; 557 u_short lport = 0; 558 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 559 int error; 560 561 /* 562 * No state changes, so read locks are sufficient here. 563 */ 564 INP_LOCK_ASSERT(inp); 565 INP_HASH_LOCK_ASSERT(pcbinfo); 566 567 if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 568 return (EADDRNOTAVAIL); 569 laddr.s_addr = *laddrp; 570 if (nam != NULL && laddr.s_addr != INADDR_ANY) 571 return (EINVAL); 572 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) 573 lookupflags = INPLOOKUP_WILDCARD; 574 if (nam == NULL) { 575 if ((error = prison_local_ip4(cred, &laddr)) != 0) 576 return (error); 577 } else { 578 sin = (struct sockaddr_in *)nam; 579 if (nam->sa_len != sizeof (*sin)) 580 return (EINVAL); 581 #ifdef notdef 582 /* 583 * We should check the family, but old programs 584 * incorrectly fail to initialize it. 585 */ 586 if (sin->sin_family != AF_INET) 587 return (EAFNOSUPPORT); 588 #endif 589 error = prison_local_ip4(cred, &sin->sin_addr); 590 if (error) 591 return (error); 592 if (sin->sin_port != *lportp) { 593 /* Don't allow the port to change. */ 594 if (*lportp != 0) 595 return (EINVAL); 596 lport = sin->sin_port; 597 } 598 /* NB: lport is left as 0 if the port isn't being changed. */ 599 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 600 /* 601 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 602 * allow complete duplication of binding if 603 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 604 * and a multicast address is bound on both 605 * new and duplicated sockets. 606 */ 607 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 608 reuseport = SO_REUSEADDR|SO_REUSEPORT; 609 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 610 sin->sin_port = 0; /* yech... */ 611 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 612 /* 613 * Is the address a local IP address? 614 * If INP_BINDANY is set, then the socket may be bound 615 * to any endpoint address, local or not. 616 */ 617 if ((inp->inp_flags & INP_BINDANY) == 0 && 618 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 619 return (EADDRNOTAVAIL); 620 } 621 laddr = sin->sin_addr; 622 if (lport) { 623 struct inpcb *t; 624 struct tcptw *tw; 625 626 /* GROSS */ 627 if (ntohs(lport) <= V_ipport_reservedhigh && 628 ntohs(lport) >= V_ipport_reservedlow && 629 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 630 0)) 631 return (EACCES); 632 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 633 priv_check_cred(inp->inp_cred, 634 PRIV_NETINET_REUSEPORT, 0) != 0) { 635 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 636 lport, INPLOOKUP_WILDCARD, cred); 637 /* 638 * XXX 639 * This entire block sorely needs a rewrite. 640 */ 641 if (t && 642 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 643 ((t->inp_flags & INP_TIMEWAIT) == 0) && 644 (so->so_type != SOCK_STREAM || 645 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 646 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 647 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 648 (t->inp_flags2 & INP_REUSEPORT) == 0) && 649 (inp->inp_cred->cr_uid != 650 t->inp_cred->cr_uid)) 651 return (EADDRINUSE); 652 653 /* 654 * If the socket is a BINDMULTI socket, then 655 * the credentials need to match and the 656 * original socket also has to have been bound 657 * with BINDMULTI. 658 */ 659 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 660 return (EADDRINUSE); 661 } 662 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 663 lport, lookupflags, cred); 664 if (t && (t->inp_flags & INP_TIMEWAIT)) { 665 /* 666 * XXXRW: If an incpb has had its timewait 667 * state recycled, we treat the address as 668 * being in use (for now). This is better 669 * than a panic, but not desirable. 670 */ 671 tw = intotw(t); 672 if (tw == NULL || 673 (reuseport & tw->tw_so_options) == 0) 674 return (EADDRINUSE); 675 } else if (t && 676 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 677 (reuseport & inp_so_options(t)) == 0) { 678 #ifdef INET6 679 if (ntohl(sin->sin_addr.s_addr) != 680 INADDR_ANY || 681 ntohl(t->inp_laddr.s_addr) != 682 INADDR_ANY || 683 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 684 (t->inp_vflag & INP_IPV6PROTO) == 0) 685 #endif 686 return (EADDRINUSE); 687 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 688 return (EADDRINUSE); 689 } 690 } 691 } 692 if (*lportp != 0) 693 lport = *lportp; 694 if (lport == 0) { 695 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 696 if (error != 0) 697 return (error); 698 699 } 700 *laddrp = laddr.s_addr; 701 *lportp = lport; 702 return (0); 703 } 704 705 /* 706 * Connect from a socket to a specified address. 707 * Both address and port must be specified in argument sin. 708 * If don't have a local address for this socket yet, 709 * then pick one. 710 */ 711 int 712 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, 713 struct ucred *cred, struct mbuf *m) 714 { 715 u_short lport, fport; 716 in_addr_t laddr, faddr; 717 int anonport, error; 718 719 INP_WLOCK_ASSERT(inp); 720 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 721 722 lport = inp->inp_lport; 723 laddr = inp->inp_laddr.s_addr; 724 anonport = (lport == 0); 725 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 726 NULL, cred); 727 if (error) 728 return (error); 729 730 /* Do the initial binding of the local address if required. */ 731 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 732 inp->inp_lport = lport; 733 inp->inp_laddr.s_addr = laddr; 734 if (in_pcbinshash(inp) != 0) { 735 inp->inp_laddr.s_addr = INADDR_ANY; 736 inp->inp_lport = 0; 737 return (EAGAIN); 738 } 739 } 740 741 /* Commit the remaining changes. */ 742 inp->inp_lport = lport; 743 inp->inp_laddr.s_addr = laddr; 744 inp->inp_faddr.s_addr = faddr; 745 inp->inp_fport = fport; 746 in_pcbrehash_mbuf(inp, m); 747 748 if (anonport) 749 inp->inp_flags |= INP_ANONPORT; 750 return (0); 751 } 752 753 int 754 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 755 { 756 757 return (in_pcbconnect_mbuf(inp, nam, cred, NULL)); 758 } 759 760 /* 761 * Do proper source address selection on an unbound socket in case 762 * of connect. Take jails into account as well. 763 */ 764 int 765 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 766 struct ucred *cred) 767 { 768 struct ifaddr *ifa; 769 struct sockaddr *sa; 770 struct sockaddr_in *sin; 771 struct route sro; 772 int error; 773 774 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 775 776 /* 777 * Bypass source address selection and use the primary jail IP 778 * if requested. 779 */ 780 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 781 return (0); 782 783 error = 0; 784 bzero(&sro, sizeof(sro)); 785 786 sin = (struct sockaddr_in *)&sro.ro_dst; 787 sin->sin_family = AF_INET; 788 sin->sin_len = sizeof(struct sockaddr_in); 789 sin->sin_addr.s_addr = faddr->s_addr; 790 791 /* 792 * If route is known our src addr is taken from the i/f, 793 * else punt. 794 * 795 * Find out route to destination. 796 */ 797 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 798 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); 799 800 /* 801 * If we found a route, use the address corresponding to 802 * the outgoing interface. 803 * 804 * Otherwise assume faddr is reachable on a directly connected 805 * network and try to find a corresponding interface to take 806 * the source address from. 807 */ 808 if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { 809 struct in_ifaddr *ia; 810 struct ifnet *ifp; 811 812 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 813 inp->inp_socket->so_fibnum)); 814 if (ia == NULL) 815 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 816 inp->inp_socket->so_fibnum)); 817 if (ia == NULL) { 818 error = ENETUNREACH; 819 goto done; 820 } 821 822 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 823 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 824 ifa_free(&ia->ia_ifa); 825 goto done; 826 } 827 828 ifp = ia->ia_ifp; 829 ifa_free(&ia->ia_ifa); 830 ia = NULL; 831 IF_ADDR_RLOCK(ifp); 832 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 833 834 sa = ifa->ifa_addr; 835 if (sa->sa_family != AF_INET) 836 continue; 837 sin = (struct sockaddr_in *)sa; 838 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 839 ia = (struct in_ifaddr *)ifa; 840 break; 841 } 842 } 843 if (ia != NULL) { 844 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 845 IF_ADDR_RUNLOCK(ifp); 846 goto done; 847 } 848 IF_ADDR_RUNLOCK(ifp); 849 850 /* 3. As a last resort return the 'default' jail address. */ 851 error = prison_get_ip4(cred, laddr); 852 goto done; 853 } 854 855 /* 856 * If the outgoing interface on the route found is not 857 * a loopback interface, use the address from that interface. 858 * In case of jails do those three steps: 859 * 1. check if the interface address belongs to the jail. If so use it. 860 * 2. check if we have any address on the outgoing interface 861 * belonging to this jail. If so use it. 862 * 3. as a last resort return the 'default' jail address. 863 */ 864 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { 865 struct in_ifaddr *ia; 866 struct ifnet *ifp; 867 868 /* If not jailed, use the default returned. */ 869 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 870 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 871 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 872 goto done; 873 } 874 875 /* Jailed. */ 876 /* 1. Check if the iface address belongs to the jail. */ 877 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; 878 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 879 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 880 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 881 goto done; 882 } 883 884 /* 885 * 2. Check if we have any address on the outgoing interface 886 * belonging to this jail. 887 */ 888 ia = NULL; 889 ifp = sro.ro_rt->rt_ifp; 890 IF_ADDR_RLOCK(ifp); 891 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 892 sa = ifa->ifa_addr; 893 if (sa->sa_family != AF_INET) 894 continue; 895 sin = (struct sockaddr_in *)sa; 896 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 897 ia = (struct in_ifaddr *)ifa; 898 break; 899 } 900 } 901 if (ia != NULL) { 902 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 903 IF_ADDR_RUNLOCK(ifp); 904 goto done; 905 } 906 IF_ADDR_RUNLOCK(ifp); 907 908 /* 3. As a last resort return the 'default' jail address. */ 909 error = prison_get_ip4(cred, laddr); 910 goto done; 911 } 912 913 /* 914 * The outgoing interface is marked with 'loopback net', so a route 915 * to ourselves is here. 916 * Try to find the interface of the destination address and then 917 * take the address from there. That interface is not necessarily 918 * a loopback interface. 919 * In case of jails, check that it is an address of the jail 920 * and if we cannot find, fall back to the 'default' jail address. 921 */ 922 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 923 struct sockaddr_in sain; 924 struct in_ifaddr *ia; 925 926 bzero(&sain, sizeof(struct sockaddr_in)); 927 sain.sin_family = AF_INET; 928 sain.sin_len = sizeof(struct sockaddr_in); 929 sain.sin_addr.s_addr = faddr->s_addr; 930 931 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain), 932 inp->inp_socket->so_fibnum)); 933 if (ia == NULL) 934 ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0, 935 inp->inp_socket->so_fibnum)); 936 if (ia == NULL) 937 ia = ifatoia(ifa_ifwithaddr(sintosa(&sain))); 938 939 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 940 if (ia == NULL) { 941 error = ENETUNREACH; 942 goto done; 943 } 944 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 945 ifa_free(&ia->ia_ifa); 946 goto done; 947 } 948 949 /* Jailed. */ 950 if (ia != NULL) { 951 struct ifnet *ifp; 952 953 ifp = ia->ia_ifp; 954 ifa_free(&ia->ia_ifa); 955 ia = NULL; 956 IF_ADDR_RLOCK(ifp); 957 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 958 959 sa = ifa->ifa_addr; 960 if (sa->sa_family != AF_INET) 961 continue; 962 sin = (struct sockaddr_in *)sa; 963 if (prison_check_ip4(cred, 964 &sin->sin_addr) == 0) { 965 ia = (struct in_ifaddr *)ifa; 966 break; 967 } 968 } 969 if (ia != NULL) { 970 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 971 IF_ADDR_RUNLOCK(ifp); 972 goto done; 973 } 974 IF_ADDR_RUNLOCK(ifp); 975 } 976 977 /* 3. As a last resort return the 'default' jail address. */ 978 error = prison_get_ip4(cred, laddr); 979 goto done; 980 } 981 982 done: 983 if (sro.ro_rt != NULL) 984 RTFREE(sro.ro_rt); 985 return (error); 986 } 987 988 /* 989 * Set up for a connect from a socket to the specified address. 990 * On entry, *laddrp and *lportp should contain the current local 991 * address and port for the PCB; these are updated to the values 992 * that should be placed in inp_laddr and inp_lport to complete 993 * the connect. 994 * 995 * On success, *faddrp and *fportp will be set to the remote address 996 * and port. These are not updated in the error case. 997 * 998 * If the operation fails because the connection already exists, 999 * *oinpp will be set to the PCB of that connection so that the 1000 * caller can decide to override it. In all other cases, *oinpp 1001 * is set to NULL. 1002 */ 1003 int 1004 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1005 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1006 struct inpcb **oinpp, struct ucred *cred) 1007 { 1008 struct rm_priotracker in_ifa_tracker; 1009 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1010 struct in_ifaddr *ia; 1011 struct inpcb *oinp; 1012 struct in_addr laddr, faddr; 1013 u_short lport, fport; 1014 int error; 1015 1016 /* 1017 * Because a global state change doesn't actually occur here, a read 1018 * lock is sufficient. 1019 */ 1020 INP_LOCK_ASSERT(inp); 1021 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1022 1023 if (oinpp != NULL) 1024 *oinpp = NULL; 1025 if (nam->sa_len != sizeof (*sin)) 1026 return (EINVAL); 1027 if (sin->sin_family != AF_INET) 1028 return (EAFNOSUPPORT); 1029 if (sin->sin_port == 0) 1030 return (EADDRNOTAVAIL); 1031 laddr.s_addr = *laddrp; 1032 lport = *lportp; 1033 faddr = sin->sin_addr; 1034 fport = sin->sin_port; 1035 1036 if (!TAILQ_EMPTY(&V_in_ifaddrhead)) { 1037 /* 1038 * If the destination address is INADDR_ANY, 1039 * use the primary local address. 1040 * If the supplied address is INADDR_BROADCAST, 1041 * and the primary interface supports broadcast, 1042 * choose the broadcast address for that interface. 1043 */ 1044 if (faddr.s_addr == INADDR_ANY) { 1045 IN_IFADDR_RLOCK(&in_ifa_tracker); 1046 faddr = 1047 IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1048 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1049 if (cred != NULL && 1050 (error = prison_get_ip4(cred, &faddr)) != 0) 1051 return (error); 1052 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1053 IN_IFADDR_RLOCK(&in_ifa_tracker); 1054 if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1055 IFF_BROADCAST) 1056 faddr = satosin(&TAILQ_FIRST( 1057 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1058 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1059 } 1060 } 1061 if (laddr.s_addr == INADDR_ANY) { 1062 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1063 /* 1064 * If the destination address is multicast and an outgoing 1065 * interface has been set as a multicast option, prefer the 1066 * address of that interface as our source address. 1067 */ 1068 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1069 inp->inp_moptions != NULL) { 1070 struct ip_moptions *imo; 1071 struct ifnet *ifp; 1072 1073 imo = inp->inp_moptions; 1074 if (imo->imo_multicast_ifp != NULL) { 1075 ifp = imo->imo_multicast_ifp; 1076 IN_IFADDR_RLOCK(&in_ifa_tracker); 1077 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1078 if ((ia->ia_ifp == ifp) && 1079 (cred == NULL || 1080 prison_check_ip4(cred, 1081 &ia->ia_addr.sin_addr) == 0)) 1082 break; 1083 } 1084 if (ia == NULL) 1085 error = EADDRNOTAVAIL; 1086 else { 1087 laddr = ia->ia_addr.sin_addr; 1088 error = 0; 1089 } 1090 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1091 } 1092 } 1093 if (error) 1094 return (error); 1095 } 1096 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport, 1097 laddr, lport, 0, NULL); 1098 if (oinp != NULL) { 1099 if (oinpp != NULL) 1100 *oinpp = oinp; 1101 return (EADDRINUSE); 1102 } 1103 if (lport == 0) { 1104 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 1105 cred); 1106 if (error) 1107 return (error); 1108 } 1109 *laddrp = laddr.s_addr; 1110 *lportp = lport; 1111 *faddrp = faddr.s_addr; 1112 *fportp = fport; 1113 return (0); 1114 } 1115 1116 void 1117 in_pcbdisconnect(struct inpcb *inp) 1118 { 1119 1120 INP_WLOCK_ASSERT(inp); 1121 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1122 1123 inp->inp_faddr.s_addr = INADDR_ANY; 1124 inp->inp_fport = 0; 1125 in_pcbrehash(inp); 1126 } 1127 #endif /* INET */ 1128 1129 /* 1130 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1131 * For most protocols, this will be invoked immediately prior to calling 1132 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1133 * socket, in which case in_pcbfree() is deferred. 1134 */ 1135 void 1136 in_pcbdetach(struct inpcb *inp) 1137 { 1138 1139 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1140 1141 #ifdef RATELIMIT 1142 if (inp->inp_snd_tag != NULL) 1143 in_pcbdetach_txrtlmt(inp); 1144 #endif 1145 inp->inp_socket->so_pcb = NULL; 1146 inp->inp_socket = NULL; 1147 } 1148 1149 /* 1150 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1151 * stability of an inpcb pointer despite the inpcb lock being released. This 1152 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 1153 * but where the inpcb lock may already held, or when acquiring a reference 1154 * via a pcbgroup. 1155 * 1156 * in_pcbref() should be used only to provide brief memory stability, and 1157 * must always be followed by a call to INP_WLOCK() and in_pcbrele() to 1158 * garbage collect the inpcb if it has been in_pcbfree()'d from another 1159 * context. Until in_pcbrele() has returned that the inpcb is still valid, 1160 * lock and rele are the *only* safe operations that may be performed on the 1161 * inpcb. 1162 * 1163 * While the inpcb will not be freed, releasing the inpcb lock means that the 1164 * connection's state may change, so the caller should be careful to 1165 * revalidate any cached state on reacquiring the lock. Drop the reference 1166 * using in_pcbrele(). 1167 */ 1168 void 1169 in_pcbref(struct inpcb *inp) 1170 { 1171 1172 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1173 1174 refcount_acquire(&inp->inp_refcount); 1175 } 1176 1177 /* 1178 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 1179 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 1180 * return a flag indicating whether or not the inpcb remains valid. If it is 1181 * valid, we return with the inpcb lock held. 1182 * 1183 * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a 1184 * reference on an inpcb. Historically more work was done here (actually, in 1185 * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the 1186 * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely 1187 * about memory stability (and continued use of the write lock). 1188 */ 1189 int 1190 in_pcbrele_rlocked(struct inpcb *inp) 1191 { 1192 struct inpcbinfo *pcbinfo; 1193 1194 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1195 1196 INP_RLOCK_ASSERT(inp); 1197 1198 if (refcount_release(&inp->inp_refcount) == 0) { 1199 /* 1200 * If the inpcb has been freed, let the caller know, even if 1201 * this isn't the last reference. 1202 */ 1203 if (inp->inp_flags2 & INP_FREED) { 1204 INP_RUNLOCK(inp); 1205 return (1); 1206 } 1207 return (0); 1208 } 1209 1210 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1211 1212 INP_RUNLOCK(inp); 1213 pcbinfo = inp->inp_pcbinfo; 1214 uma_zfree(pcbinfo->ipi_zone, inp); 1215 return (1); 1216 } 1217 1218 int 1219 in_pcbrele_wlocked(struct inpcb *inp) 1220 { 1221 struct inpcbinfo *pcbinfo; 1222 1223 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1224 1225 INP_WLOCK_ASSERT(inp); 1226 1227 if (refcount_release(&inp->inp_refcount) == 0) { 1228 /* 1229 * If the inpcb has been freed, let the caller know, even if 1230 * this isn't the last reference. 1231 */ 1232 if (inp->inp_flags2 & INP_FREED) { 1233 INP_WUNLOCK(inp); 1234 return (1); 1235 } 1236 return (0); 1237 } 1238 1239 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1240 1241 INP_WUNLOCK(inp); 1242 pcbinfo = inp->inp_pcbinfo; 1243 uma_zfree(pcbinfo->ipi_zone, inp); 1244 return (1); 1245 } 1246 1247 /* 1248 * Temporary wrapper. 1249 */ 1250 int 1251 in_pcbrele(struct inpcb *inp) 1252 { 1253 1254 return (in_pcbrele_wlocked(inp)); 1255 } 1256 1257 /* 1258 * Unconditionally schedule an inpcb to be freed by decrementing its 1259 * reference count, which should occur only after the inpcb has been detached 1260 * from its socket. If another thread holds a temporary reference (acquired 1261 * using in_pcbref()) then the free is deferred until that reference is 1262 * released using in_pcbrele(), but the inpcb is still unlocked. Almost all 1263 * work, including removal from global lists, is done in this context, where 1264 * the pcbinfo lock is held. 1265 */ 1266 void 1267 in_pcbfree(struct inpcb *inp) 1268 { 1269 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1270 1271 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1272 1273 #ifdef INVARIANTS 1274 if (pcbinfo == &V_tcbinfo) { 1275 INP_INFO_LOCK_ASSERT(pcbinfo); 1276 } else { 1277 INP_INFO_WLOCK_ASSERT(pcbinfo); 1278 } 1279 #endif 1280 INP_WLOCK_ASSERT(inp); 1281 1282 /* XXXRW: Do as much as possible here. */ 1283 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1284 if (inp->inp_sp != NULL) 1285 ipsec_delete_pcbpolicy(inp); 1286 #endif 1287 INP_LIST_WLOCK(pcbinfo); 1288 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1289 in_pcbremlists(inp); 1290 INP_LIST_WUNLOCK(pcbinfo); 1291 #ifdef INET6 1292 if (inp->inp_vflag & INP_IPV6PROTO) { 1293 ip6_freepcbopts(inp->in6p_outputopts); 1294 if (inp->in6p_moptions != NULL) 1295 ip6_freemoptions(inp->in6p_moptions); 1296 } 1297 #endif 1298 if (inp->inp_options) 1299 (void)m_free(inp->inp_options); 1300 #ifdef INET 1301 if (inp->inp_moptions != NULL) 1302 inp_freemoptions(inp->inp_moptions); 1303 #endif 1304 RO_RTFREE(&inp->inp_route); 1305 if (inp->inp_route.ro_lle) 1306 LLE_FREE(inp->inp_route.ro_lle); /* zeros ro_lle */ 1307 1308 inp->inp_vflag = 0; 1309 inp->inp_flags2 |= INP_FREED; 1310 crfree(inp->inp_cred); 1311 #ifdef MAC 1312 mac_inpcb_destroy(inp); 1313 #endif 1314 if (!in_pcbrele_wlocked(inp)) 1315 INP_WUNLOCK(inp); 1316 } 1317 1318 /* 1319 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1320 * port reservation, and preventing it from being returned by inpcb lookups. 1321 * 1322 * It is used by TCP to mark an inpcb as unused and avoid future packet 1323 * delivery or event notification when a socket remains open but TCP has 1324 * closed. This might occur as a result of a shutdown()-initiated TCP close 1325 * or a RST on the wire, and allows the port binding to be reused while still 1326 * maintaining the invariant that so_pcb always points to a valid inpcb until 1327 * in_pcbdetach(). 1328 * 1329 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1330 * in_pcbnotifyall() and in_pcbpurgeif0()? 1331 */ 1332 void 1333 in_pcbdrop(struct inpcb *inp) 1334 { 1335 1336 INP_WLOCK_ASSERT(inp); 1337 1338 /* 1339 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1340 * the hash lock...? 1341 */ 1342 inp->inp_flags |= INP_DROPPED; 1343 if (inp->inp_flags & INP_INHASHLIST) { 1344 struct inpcbport *phd = inp->inp_phd; 1345 1346 INP_HASH_WLOCK(inp->inp_pcbinfo); 1347 LIST_REMOVE(inp, inp_hash); 1348 LIST_REMOVE(inp, inp_portlist); 1349 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 1350 LIST_REMOVE(phd, phd_hash); 1351 free(phd, M_PCB); 1352 } 1353 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1354 inp->inp_flags &= ~INP_INHASHLIST; 1355 #ifdef PCBGROUP 1356 in_pcbgroup_remove(inp); 1357 #endif 1358 } 1359 } 1360 1361 #ifdef INET 1362 /* 1363 * Common routines to return the socket addresses associated with inpcbs. 1364 */ 1365 struct sockaddr * 1366 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1367 { 1368 struct sockaddr_in *sin; 1369 1370 sin = malloc(sizeof *sin, M_SONAME, 1371 M_WAITOK | M_ZERO); 1372 sin->sin_family = AF_INET; 1373 sin->sin_len = sizeof(*sin); 1374 sin->sin_addr = *addr_p; 1375 sin->sin_port = port; 1376 1377 return (struct sockaddr *)sin; 1378 } 1379 1380 int 1381 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1382 { 1383 struct inpcb *inp; 1384 struct in_addr addr; 1385 in_port_t port; 1386 1387 inp = sotoinpcb(so); 1388 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1389 1390 INP_RLOCK(inp); 1391 port = inp->inp_lport; 1392 addr = inp->inp_laddr; 1393 INP_RUNLOCK(inp); 1394 1395 *nam = in_sockaddr(port, &addr); 1396 return 0; 1397 } 1398 1399 int 1400 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1401 { 1402 struct inpcb *inp; 1403 struct in_addr addr; 1404 in_port_t port; 1405 1406 inp = sotoinpcb(so); 1407 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1408 1409 INP_RLOCK(inp); 1410 port = inp->inp_fport; 1411 addr = inp->inp_faddr; 1412 INP_RUNLOCK(inp); 1413 1414 *nam = in_sockaddr(port, &addr); 1415 return 0; 1416 } 1417 1418 void 1419 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1420 struct inpcb *(*notify)(struct inpcb *, int)) 1421 { 1422 struct inpcb *inp, *inp_temp; 1423 1424 INP_INFO_WLOCK(pcbinfo); 1425 LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1426 INP_WLOCK(inp); 1427 #ifdef INET6 1428 if ((inp->inp_vflag & INP_IPV4) == 0) { 1429 INP_WUNLOCK(inp); 1430 continue; 1431 } 1432 #endif 1433 if (inp->inp_faddr.s_addr != faddr.s_addr || 1434 inp->inp_socket == NULL) { 1435 INP_WUNLOCK(inp); 1436 continue; 1437 } 1438 if ((*notify)(inp, errno)) 1439 INP_WUNLOCK(inp); 1440 } 1441 INP_INFO_WUNLOCK(pcbinfo); 1442 } 1443 1444 void 1445 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1446 { 1447 struct inpcb *inp; 1448 struct ip_moptions *imo; 1449 int i, gap; 1450 1451 INP_INFO_WLOCK(pcbinfo); 1452 LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1453 INP_WLOCK(inp); 1454 imo = inp->inp_moptions; 1455 if ((inp->inp_vflag & INP_IPV4) && 1456 imo != NULL) { 1457 /* 1458 * Unselect the outgoing interface if it is being 1459 * detached. 1460 */ 1461 if (imo->imo_multicast_ifp == ifp) 1462 imo->imo_multicast_ifp = NULL; 1463 1464 /* 1465 * Drop multicast group membership if we joined 1466 * through the interface being detached. 1467 */ 1468 for (i = 0, gap = 0; i < imo->imo_num_memberships; 1469 i++) { 1470 if (imo->imo_membership[i]->inm_ifp == ifp) { 1471 in_delmulti(imo->imo_membership[i]); 1472 gap++; 1473 } else if (gap != 0) 1474 imo->imo_membership[i - gap] = 1475 imo->imo_membership[i]; 1476 } 1477 imo->imo_num_memberships -= gap; 1478 } 1479 INP_WUNLOCK(inp); 1480 } 1481 INP_INFO_WUNLOCK(pcbinfo); 1482 } 1483 1484 /* 1485 * Lookup a PCB based on the local address and port. Caller must hold the 1486 * hash lock. No inpcb locks or references are acquired. 1487 */ 1488 #define INP_LOOKUP_MAPPED_PCB_COST 3 1489 struct inpcb * 1490 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1491 u_short lport, int lookupflags, struct ucred *cred) 1492 { 1493 struct inpcb *inp; 1494 #ifdef INET6 1495 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1496 #else 1497 int matchwild = 3; 1498 #endif 1499 int wildcard; 1500 1501 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1502 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1503 1504 INP_HASH_LOCK_ASSERT(pcbinfo); 1505 1506 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1507 struct inpcbhead *head; 1508 /* 1509 * Look for an unconnected (wildcard foreign addr) PCB that 1510 * matches the local address and port we're looking for. 1511 */ 1512 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1513 0, pcbinfo->ipi_hashmask)]; 1514 LIST_FOREACH(inp, head, inp_hash) { 1515 #ifdef INET6 1516 /* XXX inp locking */ 1517 if ((inp->inp_vflag & INP_IPV4) == 0) 1518 continue; 1519 #endif 1520 if (inp->inp_faddr.s_addr == INADDR_ANY && 1521 inp->inp_laddr.s_addr == laddr.s_addr && 1522 inp->inp_lport == lport) { 1523 /* 1524 * Found? 1525 */ 1526 if (cred == NULL || 1527 prison_equal_ip4(cred->cr_prison, 1528 inp->inp_cred->cr_prison)) 1529 return (inp); 1530 } 1531 } 1532 /* 1533 * Not found. 1534 */ 1535 return (NULL); 1536 } else { 1537 struct inpcbporthead *porthash; 1538 struct inpcbport *phd; 1539 struct inpcb *match = NULL; 1540 /* 1541 * Best fit PCB lookup. 1542 * 1543 * First see if this local port is in use by looking on the 1544 * port hash list. 1545 */ 1546 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1547 pcbinfo->ipi_porthashmask)]; 1548 LIST_FOREACH(phd, porthash, phd_hash) { 1549 if (phd->phd_port == lport) 1550 break; 1551 } 1552 if (phd != NULL) { 1553 /* 1554 * Port is in use by one or more PCBs. Look for best 1555 * fit. 1556 */ 1557 LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1558 wildcard = 0; 1559 if (cred != NULL && 1560 !prison_equal_ip4(inp->inp_cred->cr_prison, 1561 cred->cr_prison)) 1562 continue; 1563 #ifdef INET6 1564 /* XXX inp locking */ 1565 if ((inp->inp_vflag & INP_IPV4) == 0) 1566 continue; 1567 /* 1568 * We never select the PCB that has 1569 * INP_IPV6 flag and is bound to :: if 1570 * we have another PCB which is bound 1571 * to 0.0.0.0. If a PCB has the 1572 * INP_IPV6 flag, then we set its cost 1573 * higher than IPv4 only PCBs. 1574 * 1575 * Note that the case only happens 1576 * when a socket is bound to ::, under 1577 * the condition that the use of the 1578 * mapped address is allowed. 1579 */ 1580 if ((inp->inp_vflag & INP_IPV6) != 0) 1581 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1582 #endif 1583 if (inp->inp_faddr.s_addr != INADDR_ANY) 1584 wildcard++; 1585 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1586 if (laddr.s_addr == INADDR_ANY) 1587 wildcard++; 1588 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1589 continue; 1590 } else { 1591 if (laddr.s_addr != INADDR_ANY) 1592 wildcard++; 1593 } 1594 if (wildcard < matchwild) { 1595 match = inp; 1596 matchwild = wildcard; 1597 if (matchwild == 0) 1598 break; 1599 } 1600 } 1601 } 1602 return (match); 1603 } 1604 } 1605 #undef INP_LOOKUP_MAPPED_PCB_COST 1606 1607 #ifdef PCBGROUP 1608 /* 1609 * Lookup PCB in hash list, using pcbgroup tables. 1610 */ 1611 static struct inpcb * 1612 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, 1613 struct in_addr faddr, u_int fport_arg, struct in_addr laddr, 1614 u_int lport_arg, int lookupflags, struct ifnet *ifp) 1615 { 1616 struct inpcbhead *head; 1617 struct inpcb *inp, *tmpinp; 1618 u_short fport = fport_arg, lport = lport_arg; 1619 1620 /* 1621 * First look for an exact match. 1622 */ 1623 tmpinp = NULL; 1624 INP_GROUP_LOCK(pcbgroup); 1625 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1626 pcbgroup->ipg_hashmask)]; 1627 LIST_FOREACH(inp, head, inp_pcbgrouphash) { 1628 #ifdef INET6 1629 /* XXX inp locking */ 1630 if ((inp->inp_vflag & INP_IPV4) == 0) 1631 continue; 1632 #endif 1633 if (inp->inp_faddr.s_addr == faddr.s_addr && 1634 inp->inp_laddr.s_addr == laddr.s_addr && 1635 inp->inp_fport == fport && 1636 inp->inp_lport == lport) { 1637 /* 1638 * XXX We should be able to directly return 1639 * the inp here, without any checks. 1640 * Well unless both bound with SO_REUSEPORT? 1641 */ 1642 if (prison_flag(inp->inp_cred, PR_IP4)) 1643 goto found; 1644 if (tmpinp == NULL) 1645 tmpinp = inp; 1646 } 1647 } 1648 if (tmpinp != NULL) { 1649 inp = tmpinp; 1650 goto found; 1651 } 1652 1653 #ifdef RSS 1654 /* 1655 * For incoming connections, we may wish to do a wildcard 1656 * match for an RSS-local socket. 1657 */ 1658 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1659 struct inpcb *local_wild = NULL, *local_exact = NULL; 1660 #ifdef INET6 1661 struct inpcb *local_wild_mapped = NULL; 1662 #endif 1663 struct inpcb *jail_wild = NULL; 1664 struct inpcbhead *head; 1665 int injail; 1666 1667 /* 1668 * Order of socket selection - we always prefer jails. 1669 * 1. jailed, non-wild. 1670 * 2. jailed, wild. 1671 * 3. non-jailed, non-wild. 1672 * 4. non-jailed, wild. 1673 */ 1674 1675 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, 1676 lport, 0, pcbgroup->ipg_hashmask)]; 1677 LIST_FOREACH(inp, head, inp_pcbgrouphash) { 1678 #ifdef INET6 1679 /* XXX inp locking */ 1680 if ((inp->inp_vflag & INP_IPV4) == 0) 1681 continue; 1682 #endif 1683 if (inp->inp_faddr.s_addr != INADDR_ANY || 1684 inp->inp_lport != lport) 1685 continue; 1686 1687 injail = prison_flag(inp->inp_cred, PR_IP4); 1688 if (injail) { 1689 if (prison_check_ip4(inp->inp_cred, 1690 &laddr) != 0) 1691 continue; 1692 } else { 1693 if (local_exact != NULL) 1694 continue; 1695 } 1696 1697 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1698 if (injail) 1699 goto found; 1700 else 1701 local_exact = inp; 1702 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1703 #ifdef INET6 1704 /* XXX inp locking, NULL check */ 1705 if (inp->inp_vflag & INP_IPV6PROTO) 1706 local_wild_mapped = inp; 1707 else 1708 #endif 1709 if (injail) 1710 jail_wild = inp; 1711 else 1712 local_wild = inp; 1713 } 1714 } /* LIST_FOREACH */ 1715 1716 inp = jail_wild; 1717 if (inp == NULL) 1718 inp = local_exact; 1719 if (inp == NULL) 1720 inp = local_wild; 1721 #ifdef INET6 1722 if (inp == NULL) 1723 inp = local_wild_mapped; 1724 #endif 1725 if (inp != NULL) 1726 goto found; 1727 } 1728 #endif 1729 1730 /* 1731 * Then look for a wildcard match, if requested. 1732 */ 1733 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1734 struct inpcb *local_wild = NULL, *local_exact = NULL; 1735 #ifdef INET6 1736 struct inpcb *local_wild_mapped = NULL; 1737 #endif 1738 struct inpcb *jail_wild = NULL; 1739 struct inpcbhead *head; 1740 int injail; 1741 1742 /* 1743 * Order of socket selection - we always prefer jails. 1744 * 1. jailed, non-wild. 1745 * 2. jailed, wild. 1746 * 3. non-jailed, non-wild. 1747 * 4. non-jailed, wild. 1748 */ 1749 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 1750 0, pcbinfo->ipi_wildmask)]; 1751 LIST_FOREACH(inp, head, inp_pcbgroup_wild) { 1752 #ifdef INET6 1753 /* XXX inp locking */ 1754 if ((inp->inp_vflag & INP_IPV4) == 0) 1755 continue; 1756 #endif 1757 if (inp->inp_faddr.s_addr != INADDR_ANY || 1758 inp->inp_lport != lport) 1759 continue; 1760 1761 injail = prison_flag(inp->inp_cred, PR_IP4); 1762 if (injail) { 1763 if (prison_check_ip4(inp->inp_cred, 1764 &laddr) != 0) 1765 continue; 1766 } else { 1767 if (local_exact != NULL) 1768 continue; 1769 } 1770 1771 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1772 if (injail) 1773 goto found; 1774 else 1775 local_exact = inp; 1776 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1777 #ifdef INET6 1778 /* XXX inp locking, NULL check */ 1779 if (inp->inp_vflag & INP_IPV6PROTO) 1780 local_wild_mapped = inp; 1781 else 1782 #endif 1783 if (injail) 1784 jail_wild = inp; 1785 else 1786 local_wild = inp; 1787 } 1788 } /* LIST_FOREACH */ 1789 inp = jail_wild; 1790 if (inp == NULL) 1791 inp = local_exact; 1792 if (inp == NULL) 1793 inp = local_wild; 1794 #ifdef INET6 1795 if (inp == NULL) 1796 inp = local_wild_mapped; 1797 #endif 1798 if (inp != NULL) 1799 goto found; 1800 } /* if (lookupflags & INPLOOKUP_WILDCARD) */ 1801 INP_GROUP_UNLOCK(pcbgroup); 1802 return (NULL); 1803 1804 found: 1805 in_pcbref(inp); 1806 INP_GROUP_UNLOCK(pcbgroup); 1807 if (lookupflags & INPLOOKUP_WLOCKPCB) { 1808 INP_WLOCK(inp); 1809 if (in_pcbrele_wlocked(inp)) 1810 return (NULL); 1811 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 1812 INP_RLOCK(inp); 1813 if (in_pcbrele_rlocked(inp)) 1814 return (NULL); 1815 } else 1816 panic("%s: locking bug", __func__); 1817 return (inp); 1818 } 1819 #endif /* PCBGROUP */ 1820 1821 /* 1822 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 1823 * that the caller has locked the hash list, and will not perform any further 1824 * locking or reference operations on either the hash list or the connection. 1825 */ 1826 static struct inpcb * 1827 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1828 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 1829 struct ifnet *ifp) 1830 { 1831 struct inpcbhead *head; 1832 struct inpcb *inp, *tmpinp; 1833 u_short fport = fport_arg, lport = lport_arg; 1834 1835 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1836 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1837 1838 INP_HASH_LOCK_ASSERT(pcbinfo); 1839 1840 /* 1841 * First look for an exact match. 1842 */ 1843 tmpinp = NULL; 1844 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1845 pcbinfo->ipi_hashmask)]; 1846 LIST_FOREACH(inp, head, inp_hash) { 1847 #ifdef INET6 1848 /* XXX inp locking */ 1849 if ((inp->inp_vflag & INP_IPV4) == 0) 1850 continue; 1851 #endif 1852 if (inp->inp_faddr.s_addr == faddr.s_addr && 1853 inp->inp_laddr.s_addr == laddr.s_addr && 1854 inp->inp_fport == fport && 1855 inp->inp_lport == lport) { 1856 /* 1857 * XXX We should be able to directly return 1858 * the inp here, without any checks. 1859 * Well unless both bound with SO_REUSEPORT? 1860 */ 1861 if (prison_flag(inp->inp_cred, PR_IP4)) 1862 return (inp); 1863 if (tmpinp == NULL) 1864 tmpinp = inp; 1865 } 1866 } 1867 if (tmpinp != NULL) 1868 return (tmpinp); 1869 1870 /* 1871 * Then look for a wildcard match, if requested. 1872 */ 1873 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1874 struct inpcb *local_wild = NULL, *local_exact = NULL; 1875 #ifdef INET6 1876 struct inpcb *local_wild_mapped = NULL; 1877 #endif 1878 struct inpcb *jail_wild = NULL; 1879 int injail; 1880 1881 /* 1882 * Order of socket selection - we always prefer jails. 1883 * 1. jailed, non-wild. 1884 * 2. jailed, wild. 1885 * 3. non-jailed, non-wild. 1886 * 4. non-jailed, wild. 1887 */ 1888 1889 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1890 0, pcbinfo->ipi_hashmask)]; 1891 LIST_FOREACH(inp, head, inp_hash) { 1892 #ifdef INET6 1893 /* XXX inp locking */ 1894 if ((inp->inp_vflag & INP_IPV4) == 0) 1895 continue; 1896 #endif 1897 if (inp->inp_faddr.s_addr != INADDR_ANY || 1898 inp->inp_lport != lport) 1899 continue; 1900 1901 injail = prison_flag(inp->inp_cred, PR_IP4); 1902 if (injail) { 1903 if (prison_check_ip4(inp->inp_cred, 1904 &laddr) != 0) 1905 continue; 1906 } else { 1907 if (local_exact != NULL) 1908 continue; 1909 } 1910 1911 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1912 if (injail) 1913 return (inp); 1914 else 1915 local_exact = inp; 1916 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1917 #ifdef INET6 1918 /* XXX inp locking, NULL check */ 1919 if (inp->inp_vflag & INP_IPV6PROTO) 1920 local_wild_mapped = inp; 1921 else 1922 #endif 1923 if (injail) 1924 jail_wild = inp; 1925 else 1926 local_wild = inp; 1927 } 1928 } /* LIST_FOREACH */ 1929 if (jail_wild != NULL) 1930 return (jail_wild); 1931 if (local_exact != NULL) 1932 return (local_exact); 1933 if (local_wild != NULL) 1934 return (local_wild); 1935 #ifdef INET6 1936 if (local_wild_mapped != NULL) 1937 return (local_wild_mapped); 1938 #endif 1939 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 1940 1941 return (NULL); 1942 } 1943 1944 /* 1945 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 1946 * hash list lock, and will return the inpcb locked (i.e., requires 1947 * INPLOOKUP_LOCKPCB). 1948 */ 1949 static struct inpcb * 1950 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1951 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 1952 struct ifnet *ifp) 1953 { 1954 struct inpcb *inp; 1955 1956 INP_HASH_RLOCK(pcbinfo); 1957 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 1958 (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp); 1959 if (inp != NULL) { 1960 in_pcbref(inp); 1961 INP_HASH_RUNLOCK(pcbinfo); 1962 if (lookupflags & INPLOOKUP_WLOCKPCB) { 1963 INP_WLOCK(inp); 1964 if (in_pcbrele_wlocked(inp)) 1965 return (NULL); 1966 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 1967 INP_RLOCK(inp); 1968 if (in_pcbrele_rlocked(inp)) 1969 return (NULL); 1970 } else 1971 panic("%s: locking bug", __func__); 1972 } else 1973 INP_HASH_RUNLOCK(pcbinfo); 1974 return (inp); 1975 } 1976 1977 /* 1978 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 1979 * from which a pre-calculated hash value may be extracted. 1980 * 1981 * Possibly more of this logic should be in in_pcbgroup.c. 1982 */ 1983 struct inpcb * 1984 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 1985 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 1986 { 1987 #if defined(PCBGROUP) && !defined(RSS) 1988 struct inpcbgroup *pcbgroup; 1989 #endif 1990 1991 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 1992 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1993 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 1994 ("%s: LOCKPCB not set", __func__)); 1995 1996 /* 1997 * When not using RSS, use connection groups in preference to the 1998 * reservation table when looking up 4-tuples. When using RSS, just 1999 * use the reservation table, due to the cost of the Toeplitz hash 2000 * in software. 2001 * 2002 * XXXRW: This policy belongs in the pcbgroup code, as in principle 2003 * we could be doing RSS with a non-Toeplitz hash that is affordable 2004 * in software. 2005 */ 2006 #if defined(PCBGROUP) && !defined(RSS) 2007 if (in_pcbgroup_enabled(pcbinfo)) { 2008 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2009 fport); 2010 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2011 laddr, lport, lookupflags, ifp)); 2012 } 2013 #endif 2014 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2015 lookupflags, ifp)); 2016 } 2017 2018 struct inpcb * 2019 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2020 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2021 struct ifnet *ifp, struct mbuf *m) 2022 { 2023 #ifdef PCBGROUP 2024 struct inpcbgroup *pcbgroup; 2025 #endif 2026 2027 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2028 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2029 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2030 ("%s: LOCKPCB not set", __func__)); 2031 2032 #ifdef PCBGROUP 2033 /* 2034 * If we can use a hardware-generated hash to look up the connection 2035 * group, use that connection group to find the inpcb. Otherwise 2036 * fall back on a software hash -- or the reservation table if we're 2037 * using RSS. 2038 * 2039 * XXXRW: As above, that policy belongs in the pcbgroup code. 2040 */ 2041 if (in_pcbgroup_enabled(pcbinfo) && 2042 !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { 2043 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), 2044 m->m_pkthdr.flowid); 2045 if (pcbgroup != NULL) 2046 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, 2047 fport, laddr, lport, lookupflags, ifp)); 2048 #ifndef RSS 2049 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2050 fport); 2051 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2052 laddr, lport, lookupflags, ifp)); 2053 #endif 2054 } 2055 #endif 2056 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2057 lookupflags, ifp)); 2058 } 2059 #endif /* INET */ 2060 2061 /* 2062 * Insert PCB onto various hash lists. 2063 */ 2064 static int 2065 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update) 2066 { 2067 struct inpcbhead *pcbhash; 2068 struct inpcbporthead *pcbporthash; 2069 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2070 struct inpcbport *phd; 2071 u_int32_t hashkey_faddr; 2072 2073 INP_WLOCK_ASSERT(inp); 2074 INP_HASH_WLOCK_ASSERT(pcbinfo); 2075 2076 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2077 ("in_pcbinshash: INP_INHASHLIST")); 2078 2079 #ifdef INET6 2080 if (inp->inp_vflag & INP_IPV6) 2081 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2082 else 2083 #endif 2084 hashkey_faddr = inp->inp_faddr.s_addr; 2085 2086 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2087 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2088 2089 pcbporthash = &pcbinfo->ipi_porthashbase[ 2090 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2091 2092 /* 2093 * Go through port list and look for a head for this lport. 2094 */ 2095 LIST_FOREACH(phd, pcbporthash, phd_hash) { 2096 if (phd->phd_port == inp->inp_lport) 2097 break; 2098 } 2099 /* 2100 * If none exists, malloc one and tack it on. 2101 */ 2102 if (phd == NULL) { 2103 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 2104 if (phd == NULL) { 2105 return (ENOBUFS); /* XXX */ 2106 } 2107 phd->phd_port = inp->inp_lport; 2108 LIST_INIT(&phd->phd_pcblist); 2109 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2110 } 2111 inp->inp_phd = phd; 2112 LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2113 LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2114 inp->inp_flags |= INP_INHASHLIST; 2115 #ifdef PCBGROUP 2116 if (do_pcbgroup_update) 2117 in_pcbgroup_update(inp); 2118 #endif 2119 return (0); 2120 } 2121 2122 /* 2123 * For now, there are two public interfaces to insert an inpcb into the hash 2124 * lists -- one that does update pcbgroups, and one that doesn't. The latter 2125 * is used only in the TCP syncache, where in_pcbinshash is called before the 2126 * full 4-tuple is set for the inpcb, and we don't want to install in the 2127 * pcbgroup until later. 2128 * 2129 * XXXRW: This seems like a misfeature. in_pcbinshash should always update 2130 * connection groups, and partially initialised inpcbs should not be exposed 2131 * to either reservation hash tables or pcbgroups. 2132 */ 2133 int 2134 in_pcbinshash(struct inpcb *inp) 2135 { 2136 2137 return (in_pcbinshash_internal(inp, 1)); 2138 } 2139 2140 int 2141 in_pcbinshash_nopcbgroup(struct inpcb *inp) 2142 { 2143 2144 return (in_pcbinshash_internal(inp, 0)); 2145 } 2146 2147 /* 2148 * Move PCB to the proper hash bucket when { faddr, fport } have been 2149 * changed. NOTE: This does not handle the case of the lport changing (the 2150 * hashed port list would have to be updated as well), so the lport must 2151 * not change after in_pcbinshash() has been called. 2152 */ 2153 void 2154 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) 2155 { 2156 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2157 struct inpcbhead *head; 2158 u_int32_t hashkey_faddr; 2159 2160 INP_WLOCK_ASSERT(inp); 2161 INP_HASH_WLOCK_ASSERT(pcbinfo); 2162 2163 KASSERT(inp->inp_flags & INP_INHASHLIST, 2164 ("in_pcbrehash: !INP_INHASHLIST")); 2165 2166 #ifdef INET6 2167 if (inp->inp_vflag & INP_IPV6) 2168 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2169 else 2170 #endif 2171 hashkey_faddr = inp->inp_faddr.s_addr; 2172 2173 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2174 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2175 2176 LIST_REMOVE(inp, inp_hash); 2177 LIST_INSERT_HEAD(head, inp, inp_hash); 2178 2179 #ifdef PCBGROUP 2180 if (m != NULL) 2181 in_pcbgroup_update_mbuf(inp, m); 2182 else 2183 in_pcbgroup_update(inp); 2184 #endif 2185 } 2186 2187 void 2188 in_pcbrehash(struct inpcb *inp) 2189 { 2190 2191 in_pcbrehash_mbuf(inp, NULL); 2192 } 2193 2194 /* 2195 * Remove PCB from various lists. 2196 */ 2197 static void 2198 in_pcbremlists(struct inpcb *inp) 2199 { 2200 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2201 2202 #ifdef INVARIANTS 2203 if (pcbinfo == &V_tcbinfo) { 2204 INP_INFO_RLOCK_ASSERT(pcbinfo); 2205 } else { 2206 INP_INFO_WLOCK_ASSERT(pcbinfo); 2207 } 2208 #endif 2209 2210 INP_WLOCK_ASSERT(inp); 2211 INP_LIST_WLOCK_ASSERT(pcbinfo); 2212 2213 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 2214 if (inp->inp_flags & INP_INHASHLIST) { 2215 struct inpcbport *phd = inp->inp_phd; 2216 2217 INP_HASH_WLOCK(pcbinfo); 2218 LIST_REMOVE(inp, inp_hash); 2219 LIST_REMOVE(inp, inp_portlist); 2220 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 2221 LIST_REMOVE(phd, phd_hash); 2222 free(phd, M_PCB); 2223 } 2224 INP_HASH_WUNLOCK(pcbinfo); 2225 inp->inp_flags &= ~INP_INHASHLIST; 2226 } 2227 LIST_REMOVE(inp, inp_list); 2228 pcbinfo->ipi_count--; 2229 #ifdef PCBGROUP 2230 in_pcbgroup_remove(inp); 2231 #endif 2232 } 2233 2234 /* 2235 * Check for alternatives when higher level complains 2236 * about service problems. For now, invalidate cached 2237 * routing information. If the route was created dynamically 2238 * (by a redirect), time to try a default gateway again. 2239 */ 2240 void 2241 in_losing(struct inpcb *inp) 2242 { 2243 2244 RO_RTFREE(&inp->inp_route); 2245 if (inp->inp_route.ro_lle) 2246 LLE_FREE(inp->inp_route.ro_lle); /* zeros ro_lle */ 2247 return; 2248 } 2249 2250 /* 2251 * A set label operation has occurred at the socket layer, propagate the 2252 * label change into the in_pcb for the socket. 2253 */ 2254 void 2255 in_pcbsosetlabel(struct socket *so) 2256 { 2257 #ifdef MAC 2258 struct inpcb *inp; 2259 2260 inp = sotoinpcb(so); 2261 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2262 2263 INP_WLOCK(inp); 2264 SOCK_LOCK(so); 2265 mac_inpcb_sosetlabel(so, inp); 2266 SOCK_UNLOCK(so); 2267 INP_WUNLOCK(inp); 2268 #endif 2269 } 2270 2271 /* 2272 * ipport_tick runs once per second, determining if random port allocation 2273 * should be continued. If more than ipport_randomcps ports have been 2274 * allocated in the last second, then we return to sequential port 2275 * allocation. We return to random allocation only once we drop below 2276 * ipport_randomcps for at least ipport_randomtime seconds. 2277 */ 2278 static void 2279 ipport_tick(void *xtp) 2280 { 2281 VNET_ITERATOR_DECL(vnet_iter); 2282 2283 VNET_LIST_RLOCK_NOSLEEP(); 2284 VNET_FOREACH(vnet_iter) { 2285 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2286 if (V_ipport_tcpallocs <= 2287 V_ipport_tcplastcount + V_ipport_randomcps) { 2288 if (V_ipport_stoprandom > 0) 2289 V_ipport_stoprandom--; 2290 } else 2291 V_ipport_stoprandom = V_ipport_randomtime; 2292 V_ipport_tcplastcount = V_ipport_tcpallocs; 2293 CURVNET_RESTORE(); 2294 } 2295 VNET_LIST_RUNLOCK_NOSLEEP(); 2296 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2297 } 2298 2299 static void 2300 ip_fini(void *xtp) 2301 { 2302 2303 callout_stop(&ipport_tick_callout); 2304 } 2305 2306 /* 2307 * The ipport_callout should start running at about the time we attach the 2308 * inet or inet6 domains. 2309 */ 2310 static void 2311 ipport_tick_init(const void *unused __unused) 2312 { 2313 2314 /* Start ipport_tick. */ 2315 callout_init(&ipport_tick_callout, 1); 2316 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2317 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2318 SHUTDOWN_PRI_DEFAULT); 2319 } 2320 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2321 ipport_tick_init, NULL); 2322 2323 void 2324 inp_wlock(struct inpcb *inp) 2325 { 2326 2327 INP_WLOCK(inp); 2328 } 2329 2330 void 2331 inp_wunlock(struct inpcb *inp) 2332 { 2333 2334 INP_WUNLOCK(inp); 2335 } 2336 2337 void 2338 inp_rlock(struct inpcb *inp) 2339 { 2340 2341 INP_RLOCK(inp); 2342 } 2343 2344 void 2345 inp_runlock(struct inpcb *inp) 2346 { 2347 2348 INP_RUNLOCK(inp); 2349 } 2350 2351 #ifdef INVARIANT_SUPPORT 2352 void 2353 inp_lock_assert(struct inpcb *inp) 2354 { 2355 2356 INP_WLOCK_ASSERT(inp); 2357 } 2358 2359 void 2360 inp_unlock_assert(struct inpcb *inp) 2361 { 2362 2363 INP_UNLOCK_ASSERT(inp); 2364 } 2365 #endif 2366 2367 void 2368 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2369 { 2370 struct inpcb *inp; 2371 2372 INP_INFO_WLOCK(&V_tcbinfo); 2373 LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 2374 INP_WLOCK(inp); 2375 func(inp, arg); 2376 INP_WUNLOCK(inp); 2377 } 2378 INP_INFO_WUNLOCK(&V_tcbinfo); 2379 } 2380 2381 struct socket * 2382 inp_inpcbtosocket(struct inpcb *inp) 2383 { 2384 2385 INP_WLOCK_ASSERT(inp); 2386 return (inp->inp_socket); 2387 } 2388 2389 struct tcpcb * 2390 inp_inpcbtotcpcb(struct inpcb *inp) 2391 { 2392 2393 INP_WLOCK_ASSERT(inp); 2394 return ((struct tcpcb *)inp->inp_ppcb); 2395 } 2396 2397 int 2398 inp_ip_tos_get(const struct inpcb *inp) 2399 { 2400 2401 return (inp->inp_ip_tos); 2402 } 2403 2404 void 2405 inp_ip_tos_set(struct inpcb *inp, int val) 2406 { 2407 2408 inp->inp_ip_tos = val; 2409 } 2410 2411 void 2412 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2413 uint32_t *faddr, uint16_t *fp) 2414 { 2415 2416 INP_LOCK_ASSERT(inp); 2417 *laddr = inp->inp_laddr.s_addr; 2418 *faddr = inp->inp_faddr.s_addr; 2419 *lp = inp->inp_lport; 2420 *fp = inp->inp_fport; 2421 } 2422 2423 struct inpcb * 2424 so_sotoinpcb(struct socket *so) 2425 { 2426 2427 return (sotoinpcb(so)); 2428 } 2429 2430 struct tcpcb * 2431 so_sototcpcb(struct socket *so) 2432 { 2433 2434 return (sototcpcb(so)); 2435 } 2436 2437 #ifdef DDB 2438 static void 2439 db_print_indent(int indent) 2440 { 2441 int i; 2442 2443 for (i = 0; i < indent; i++) 2444 db_printf(" "); 2445 } 2446 2447 static void 2448 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2449 { 2450 char faddr_str[48], laddr_str[48]; 2451 2452 db_print_indent(indent); 2453 db_printf("%s at %p\n", name, inc); 2454 2455 indent += 2; 2456 2457 #ifdef INET6 2458 if (inc->inc_flags & INC_ISIPV6) { 2459 /* IPv6. */ 2460 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2461 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2462 } else 2463 #endif 2464 { 2465 /* IPv4. */ 2466 inet_ntoa_r(inc->inc_laddr, laddr_str); 2467 inet_ntoa_r(inc->inc_faddr, faddr_str); 2468 } 2469 db_print_indent(indent); 2470 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2471 ntohs(inc->inc_lport)); 2472 db_print_indent(indent); 2473 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2474 ntohs(inc->inc_fport)); 2475 } 2476 2477 static void 2478 db_print_inpflags(int inp_flags) 2479 { 2480 int comma; 2481 2482 comma = 0; 2483 if (inp_flags & INP_RECVOPTS) { 2484 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2485 comma = 1; 2486 } 2487 if (inp_flags & INP_RECVRETOPTS) { 2488 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2489 comma = 1; 2490 } 2491 if (inp_flags & INP_RECVDSTADDR) { 2492 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2493 comma = 1; 2494 } 2495 if (inp_flags & INP_ORIGDSTADDR) { 2496 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 2497 comma = 1; 2498 } 2499 if (inp_flags & INP_HDRINCL) { 2500 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2501 comma = 1; 2502 } 2503 if (inp_flags & INP_HIGHPORT) { 2504 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2505 comma = 1; 2506 } 2507 if (inp_flags & INP_LOWPORT) { 2508 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2509 comma = 1; 2510 } 2511 if (inp_flags & INP_ANONPORT) { 2512 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2513 comma = 1; 2514 } 2515 if (inp_flags & INP_RECVIF) { 2516 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2517 comma = 1; 2518 } 2519 if (inp_flags & INP_MTUDISC) { 2520 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2521 comma = 1; 2522 } 2523 if (inp_flags & INP_RECVTTL) { 2524 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 2525 comma = 1; 2526 } 2527 if (inp_flags & INP_DONTFRAG) { 2528 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 2529 comma = 1; 2530 } 2531 if (inp_flags & INP_RECVTOS) { 2532 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 2533 comma = 1; 2534 } 2535 if (inp_flags & IN6P_IPV6_V6ONLY) { 2536 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 2537 comma = 1; 2538 } 2539 if (inp_flags & IN6P_PKTINFO) { 2540 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 2541 comma = 1; 2542 } 2543 if (inp_flags & IN6P_HOPLIMIT) { 2544 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 2545 comma = 1; 2546 } 2547 if (inp_flags & IN6P_HOPOPTS) { 2548 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 2549 comma = 1; 2550 } 2551 if (inp_flags & IN6P_DSTOPTS) { 2552 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 2553 comma = 1; 2554 } 2555 if (inp_flags & IN6P_RTHDR) { 2556 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 2557 comma = 1; 2558 } 2559 if (inp_flags & IN6P_RTHDRDSTOPTS) { 2560 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 2561 comma = 1; 2562 } 2563 if (inp_flags & IN6P_TCLASS) { 2564 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 2565 comma = 1; 2566 } 2567 if (inp_flags & IN6P_AUTOFLOWLABEL) { 2568 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 2569 comma = 1; 2570 } 2571 if (inp_flags & INP_TIMEWAIT) { 2572 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 2573 comma = 1; 2574 } 2575 if (inp_flags & INP_ONESBCAST) { 2576 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 2577 comma = 1; 2578 } 2579 if (inp_flags & INP_DROPPED) { 2580 db_printf("%sINP_DROPPED", comma ? ", " : ""); 2581 comma = 1; 2582 } 2583 if (inp_flags & INP_SOCKREF) { 2584 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 2585 comma = 1; 2586 } 2587 if (inp_flags & IN6P_RFC2292) { 2588 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 2589 comma = 1; 2590 } 2591 if (inp_flags & IN6P_MTU) { 2592 db_printf("IN6P_MTU%s", comma ? ", " : ""); 2593 comma = 1; 2594 } 2595 } 2596 2597 static void 2598 db_print_inpvflag(u_char inp_vflag) 2599 { 2600 int comma; 2601 2602 comma = 0; 2603 if (inp_vflag & INP_IPV4) { 2604 db_printf("%sINP_IPV4", comma ? ", " : ""); 2605 comma = 1; 2606 } 2607 if (inp_vflag & INP_IPV6) { 2608 db_printf("%sINP_IPV6", comma ? ", " : ""); 2609 comma = 1; 2610 } 2611 if (inp_vflag & INP_IPV6PROTO) { 2612 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 2613 comma = 1; 2614 } 2615 } 2616 2617 static void 2618 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 2619 { 2620 2621 db_print_indent(indent); 2622 db_printf("%s at %p\n", name, inp); 2623 2624 indent += 2; 2625 2626 db_print_indent(indent); 2627 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 2628 2629 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 2630 2631 db_print_indent(indent); 2632 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 2633 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 2634 2635 db_print_indent(indent); 2636 db_printf("inp_label: %p inp_flags: 0x%x (", 2637 inp->inp_label, inp->inp_flags); 2638 db_print_inpflags(inp->inp_flags); 2639 db_printf(")\n"); 2640 2641 db_print_indent(indent); 2642 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 2643 inp->inp_vflag); 2644 db_print_inpvflag(inp->inp_vflag); 2645 db_printf(")\n"); 2646 2647 db_print_indent(indent); 2648 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 2649 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 2650 2651 db_print_indent(indent); 2652 #ifdef INET6 2653 if (inp->inp_vflag & INP_IPV6) { 2654 db_printf("in6p_options: %p in6p_outputopts: %p " 2655 "in6p_moptions: %p\n", inp->in6p_options, 2656 inp->in6p_outputopts, inp->in6p_moptions); 2657 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 2658 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 2659 inp->in6p_hops); 2660 } else 2661 #endif 2662 { 2663 db_printf("inp_ip_tos: %d inp_ip_options: %p " 2664 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 2665 inp->inp_options, inp->inp_moptions); 2666 } 2667 2668 db_print_indent(indent); 2669 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 2670 (uintmax_t)inp->inp_gencnt); 2671 } 2672 2673 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 2674 { 2675 struct inpcb *inp; 2676 2677 if (!have_addr) { 2678 db_printf("usage: show inpcb <addr>\n"); 2679 return; 2680 } 2681 inp = (struct inpcb *)addr; 2682 2683 db_print_inpcb(inp, "inpcb", 0); 2684 } 2685 #endif /* DDB */ 2686 2687 #ifdef RATELIMIT 2688 /* 2689 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 2690 * if any. 2691 */ 2692 int 2693 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 2694 { 2695 union if_snd_tag_modify_params params = { 2696 .rate_limit.max_rate = max_pacing_rate, 2697 }; 2698 struct m_snd_tag *mst; 2699 struct ifnet *ifp; 2700 int error; 2701 2702 mst = inp->inp_snd_tag; 2703 if (mst == NULL) 2704 return (EINVAL); 2705 2706 ifp = mst->ifp; 2707 if (ifp == NULL) 2708 return (EINVAL); 2709 2710 if (ifp->if_snd_tag_modify == NULL) { 2711 error = EOPNOTSUPP; 2712 } else { 2713 error = ifp->if_snd_tag_modify(mst, ¶ms); 2714 } 2715 return (error); 2716 } 2717 2718 /* 2719 * Query existing TX rate limit based on the existing 2720 * "inp->inp_snd_tag", if any. 2721 */ 2722 int 2723 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 2724 { 2725 union if_snd_tag_query_params params = { }; 2726 struct m_snd_tag *mst; 2727 struct ifnet *ifp; 2728 int error; 2729 2730 mst = inp->inp_snd_tag; 2731 if (mst == NULL) 2732 return (EINVAL); 2733 2734 ifp = mst->ifp; 2735 if (ifp == NULL) 2736 return (EINVAL); 2737 2738 if (ifp->if_snd_tag_query == NULL) { 2739 error = EOPNOTSUPP; 2740 } else { 2741 error = ifp->if_snd_tag_query(mst, ¶ms); 2742 if (error == 0 && p_max_pacing_rate != NULL) 2743 *p_max_pacing_rate = params.rate_limit.max_rate; 2744 } 2745 return (error); 2746 } 2747 2748 /* 2749 * Allocate a new TX rate limit send tag from the network interface 2750 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 2751 */ 2752 int 2753 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 2754 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate) 2755 { 2756 union if_snd_tag_alloc_params params = { 2757 .rate_limit.hdr.type = IF_SND_TAG_TYPE_RATE_LIMIT, 2758 .rate_limit.hdr.flowid = flowid, 2759 .rate_limit.hdr.flowtype = flowtype, 2760 .rate_limit.max_rate = max_pacing_rate, 2761 }; 2762 int error; 2763 2764 INP_WLOCK_ASSERT(inp); 2765 2766 if (inp->inp_snd_tag != NULL) 2767 return (EINVAL); 2768 2769 if (ifp->if_snd_tag_alloc == NULL) { 2770 error = EOPNOTSUPP; 2771 } else { 2772 error = ifp->if_snd_tag_alloc(ifp, ¶ms, &inp->inp_snd_tag); 2773 2774 /* 2775 * At success increment the refcount on 2776 * the send tag's network interface: 2777 */ 2778 if (error == 0) 2779 if_ref(inp->inp_snd_tag->ifp); 2780 } 2781 return (error); 2782 } 2783 2784 /* 2785 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 2786 * if any: 2787 */ 2788 void 2789 in_pcbdetach_txrtlmt(struct inpcb *inp) 2790 { 2791 struct m_snd_tag *mst; 2792 struct ifnet *ifp; 2793 2794 INP_WLOCK_ASSERT(inp); 2795 2796 mst = inp->inp_snd_tag; 2797 inp->inp_snd_tag = NULL; 2798 2799 if (mst == NULL) 2800 return; 2801 2802 ifp = mst->ifp; 2803 if (ifp == NULL) 2804 return; 2805 2806 /* 2807 * If the device was detached while we still had reference(s) 2808 * on the ifp, we assume if_snd_tag_free() was replaced with 2809 * stubs. 2810 */ 2811 ifp->if_snd_tag_free(mst); 2812 2813 /* release reference count on network interface */ 2814 if_rele(ifp); 2815 } 2816 2817 /* 2818 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 2819 * is set in the fast path and will attach/detach/modify the TX rate 2820 * limit send tag based on the socket's so_max_pacing_rate value. 2821 */ 2822 void 2823 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 2824 { 2825 struct socket *socket; 2826 uint32_t max_pacing_rate; 2827 bool did_upgrade; 2828 int error; 2829 2830 if (inp == NULL) 2831 return; 2832 2833 socket = inp->inp_socket; 2834 if (socket == NULL) 2835 return; 2836 2837 if (!INP_WLOCKED(inp)) { 2838 /* 2839 * NOTE: If the write locking fails, we need to bail 2840 * out and use the non-ratelimited ring for the 2841 * transmit until there is a new chance to get the 2842 * write lock. 2843 */ 2844 if (!INP_TRY_UPGRADE(inp)) 2845 return; 2846 did_upgrade = 1; 2847 } else { 2848 did_upgrade = 0; 2849 } 2850 2851 /* 2852 * NOTE: The so_max_pacing_rate value is read unlocked, 2853 * because atomic updates are not required since the variable 2854 * is checked at every mbuf we send. It is assumed that the 2855 * variable read itself will be atomic. 2856 */ 2857 max_pacing_rate = socket->so_max_pacing_rate; 2858 2859 /* 2860 * NOTE: When attaching to a network interface a reference is 2861 * made to ensure the network interface doesn't go away until 2862 * all ratelimit connections are gone. The network interface 2863 * pointers compared below represent valid network interfaces, 2864 * except when comparing towards NULL. 2865 */ 2866 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 2867 error = 0; 2868 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 2869 if (inp->inp_snd_tag != NULL) 2870 in_pcbdetach_txrtlmt(inp); 2871 error = 0; 2872 } else if (inp->inp_snd_tag == NULL) { 2873 /* 2874 * In order to utilize packet pacing with RSS, we need 2875 * to wait until there is a valid RSS hash before we 2876 * can proceed: 2877 */ 2878 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 2879 error = EAGAIN; 2880 } else { 2881 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 2882 mb->m_pkthdr.flowid, max_pacing_rate); 2883 } 2884 } else { 2885 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 2886 } 2887 if (error == 0 || error == EOPNOTSUPP) 2888 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 2889 if (did_upgrade) 2890 INP_DOWNGRADE(inp); 2891 } 2892 2893 /* 2894 * Track route changes for TX rate limiting. 2895 */ 2896 void 2897 in_pcboutput_eagain(struct inpcb *inp) 2898 { 2899 struct socket *socket; 2900 bool did_upgrade; 2901 2902 if (inp == NULL) 2903 return; 2904 2905 socket = inp->inp_socket; 2906 if (socket == NULL) 2907 return; 2908 2909 if (inp->inp_snd_tag == NULL) 2910 return; 2911 2912 if (!INP_WLOCKED(inp)) { 2913 /* 2914 * NOTE: If the write locking fails, we need to bail 2915 * out and use the non-ratelimited ring for the 2916 * transmit until there is a new chance to get the 2917 * write lock. 2918 */ 2919 if (!INP_TRY_UPGRADE(inp)) 2920 return; 2921 did_upgrade = 1; 2922 } else { 2923 did_upgrade = 0; 2924 } 2925 2926 /* detach rate limiting */ 2927 in_pcbdetach_txrtlmt(inp); 2928 2929 /* make sure new mbuf send tag allocation is made */ 2930 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 2931 2932 if (did_upgrade) 2933 INP_DOWNGRADE(inp); 2934 } 2935 #endif /* RATELIMIT */ 2936