xref: /freebsd/sys/netinet/in_pcb.c (revision b08fc26cbdd00df6852e71e1be58fa9cc92019f0)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993, 1995
3  *	The Regents of the University of California.
4  * Copyright (c) 2007-2009 Robert N. M. Watson
5  * Copyright (c) 2010-2011 Juniper Networks, Inc.
6  * All rights reserved.
7  *
8  * Portions of this software were developed by Robert N. M. Watson under
9  * contract to Juniper Networks, Inc.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include "opt_ddb.h"
42 #include "opt_ipsec.h"
43 #include "opt_inet.h"
44 #include "opt_inet6.h"
45 #include "opt_ratelimit.h"
46 #include "opt_pcbgroup.h"
47 #include "opt_rss.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/mbuf.h>
54 #include <sys/callout.h>
55 #include <sys/eventhandler.h>
56 #include <sys/domain.h>
57 #include <sys/protosw.h>
58 #include <sys/rmlock.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/sockio.h>
62 #include <sys/priv.h>
63 #include <sys/proc.h>
64 #include <sys/refcount.h>
65 #include <sys/jail.h>
66 #include <sys/kernel.h>
67 #include <sys/sysctl.h>
68 
69 #ifdef DDB
70 #include <ddb/ddb.h>
71 #endif
72 
73 #include <vm/uma.h>
74 
75 #include <net/if.h>
76 #include <net/if_var.h>
77 #include <net/if_types.h>
78 #include <net/if_llatbl.h>
79 #include <net/route.h>
80 #include <net/rss_config.h>
81 #include <net/vnet.h>
82 
83 #if defined(INET) || defined(INET6)
84 #include <netinet/in.h>
85 #include <netinet/in_pcb.h>
86 #include <netinet/ip_var.h>
87 #include <netinet/tcp_var.h>
88 #include <netinet/udp.h>
89 #include <netinet/udp_var.h>
90 #endif
91 #ifdef INET
92 #include <netinet/in_var.h>
93 #endif
94 #ifdef INET6
95 #include <netinet/ip6.h>
96 #include <netinet6/in6_pcb.h>
97 #include <netinet6/in6_var.h>
98 #include <netinet6/ip6_var.h>
99 #endif /* INET6 */
100 
101 #include <netipsec/ipsec_support.h>
102 
103 #include <security/mac/mac_framework.h>
104 
105 static struct callout	ipport_tick_callout;
106 
107 /*
108  * These configure the range of local port addresses assigned to
109  * "unspecified" outgoing connections/packets/whatever.
110  */
111 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
112 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
113 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
114 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
115 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
116 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
117 
118 /*
119  * Reserved ports accessible only to root. There are significant
120  * security considerations that must be accounted for when changing these,
121  * but the security benefits can be great. Please be careful.
122  */
123 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
124 VNET_DEFINE(int, ipport_reservedlow);
125 
126 /* Variables dealing with random ephemeral port allocation. */
127 VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
128 VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
129 VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
130 VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
131 VNET_DEFINE(int, ipport_tcpallocs);
132 static VNET_DEFINE(int, ipport_tcplastcount);
133 
134 #define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
135 
136 static void	in_pcbremlists(struct inpcb *inp);
137 #ifdef INET
138 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
139 			    struct in_addr faddr, u_int fport_arg,
140 			    struct in_addr laddr, u_int lport_arg,
141 			    int lookupflags, struct ifnet *ifp);
142 
143 #define RANGECHK(var, min, max) \
144 	if ((var) < (min)) { (var) = (min); } \
145 	else if ((var) > (max)) { (var) = (max); }
146 
147 static int
148 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
149 {
150 	int error;
151 
152 	error = sysctl_handle_int(oidp, arg1, arg2, req);
153 	if (error == 0) {
154 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
155 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
156 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
157 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
158 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
159 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
160 	}
161 	return (error);
162 }
163 
164 #undef RANGECHK
165 
166 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
167     "IP Ports");
168 
169 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
170 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
171 	&VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", "");
172 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
173 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
174 	&VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", "");
175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
176 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
177 	&VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", "");
178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
179 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
180 	&VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", "");
181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
182 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
183 	&VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", "");
184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
185 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
186 	&VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", "");
187 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
188 	CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
189 	&VNET_NAME(ipport_reservedhigh), 0, "");
190 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
191 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
192 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
193 	CTLFLAG_VNET | CTLFLAG_RW,
194 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
195 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
196 	CTLFLAG_VNET | CTLFLAG_RW,
197 	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
198 	"allocations before switching to a sequental one");
199 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
200 	CTLFLAG_VNET | CTLFLAG_RW,
201 	&VNET_NAME(ipport_randomtime), 0,
202 	"Minimum time to keep sequental port "
203 	"allocation before switching to a random one");
204 #endif /* INET */
205 
206 /*
207  * in_pcb.c: manage the Protocol Control Blocks.
208  *
209  * NOTE: It is assumed that most of these functions will be called with
210  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
211  * functions often modify hash chains or addresses in pcbs.
212  */
213 
214 /*
215  * Initialize an inpcbinfo -- we should be able to reduce the number of
216  * arguments in time.
217  */
218 void
219 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
220     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
221     char *inpcbzone_name, uma_init inpcbzone_init, uma_fini inpcbzone_fini,
222     uint32_t inpcbzone_flags, u_int hashfields)
223 {
224 
225 	INP_INFO_LOCK_INIT(pcbinfo, name);
226 	INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");	/* XXXRW: argument? */
227 	INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist");
228 #ifdef VIMAGE
229 	pcbinfo->ipi_vnet = curvnet;
230 #endif
231 	pcbinfo->ipi_listhead = listhead;
232 	LIST_INIT(pcbinfo->ipi_listhead);
233 	pcbinfo->ipi_count = 0;
234 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
235 	    &pcbinfo->ipi_hashmask);
236 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
237 	    &pcbinfo->ipi_porthashmask);
238 #ifdef PCBGROUP
239 	in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
240 #endif
241 	pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
242 	    NULL, NULL, inpcbzone_init, inpcbzone_fini, UMA_ALIGN_PTR,
243 	    inpcbzone_flags);
244 	uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
245 	uma_zone_set_warning(pcbinfo->ipi_zone,
246 	    "kern.ipc.maxsockets limit reached");
247 }
248 
249 /*
250  * Destroy an inpcbinfo.
251  */
252 void
253 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
254 {
255 
256 	KASSERT(pcbinfo->ipi_count == 0,
257 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
258 
259 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
260 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
261 	    pcbinfo->ipi_porthashmask);
262 #ifdef PCBGROUP
263 	in_pcbgroup_destroy(pcbinfo);
264 #endif
265 	uma_zdestroy(pcbinfo->ipi_zone);
266 	INP_LIST_LOCK_DESTROY(pcbinfo);
267 	INP_HASH_LOCK_DESTROY(pcbinfo);
268 	INP_INFO_LOCK_DESTROY(pcbinfo);
269 }
270 
271 /*
272  * Allocate a PCB and associate it with the socket.
273  * On success return with the PCB locked.
274  */
275 int
276 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
277 {
278 	struct inpcb *inp;
279 	int error;
280 
281 #ifdef INVARIANTS
282 	if (pcbinfo == &V_tcbinfo) {
283 		INP_INFO_RLOCK_ASSERT(pcbinfo);
284 	} else {
285 		INP_INFO_WLOCK_ASSERT(pcbinfo);
286 	}
287 #endif
288 
289 	error = 0;
290 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
291 	if (inp == NULL)
292 		return (ENOBUFS);
293 	bzero(inp, inp_zero_size);
294 	inp->inp_pcbinfo = pcbinfo;
295 	inp->inp_socket = so;
296 	inp->inp_cred = crhold(so->so_cred);
297 	inp->inp_inc.inc_fibnum = so->so_fibnum;
298 #ifdef MAC
299 	error = mac_inpcb_init(inp, M_NOWAIT);
300 	if (error != 0)
301 		goto out;
302 	mac_inpcb_create(so, inp);
303 #endif
304 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
305 	error = ipsec_init_pcbpolicy(inp);
306 	if (error != 0) {
307 #ifdef MAC
308 		mac_inpcb_destroy(inp);
309 #endif
310 		goto out;
311 	}
312 #endif /*IPSEC*/
313 #ifdef INET6
314 	if (INP_SOCKAF(so) == AF_INET6) {
315 		inp->inp_vflag |= INP_IPV6PROTO;
316 		if (V_ip6_v6only)
317 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
318 	}
319 #endif
320 	INP_WLOCK(inp);
321 	INP_LIST_WLOCK(pcbinfo);
322 	LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
323 	pcbinfo->ipi_count++;
324 	so->so_pcb = (caddr_t)inp;
325 #ifdef INET6
326 	if (V_ip6_auto_flowlabel)
327 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
328 #endif
329 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
330 	refcount_init(&inp->inp_refcount, 1);	/* Reference from inpcbinfo */
331 	INP_LIST_WUNLOCK(pcbinfo);
332 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
333 out:
334 	if (error != 0) {
335 		crfree(inp->inp_cred);
336 		uma_zfree(pcbinfo->ipi_zone, inp);
337 	}
338 #endif
339 	return (error);
340 }
341 
342 #ifdef INET
343 int
344 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
345 {
346 	int anonport, error;
347 
348 	INP_WLOCK_ASSERT(inp);
349 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
350 
351 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
352 		return (EINVAL);
353 	anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
354 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
355 	    &inp->inp_lport, cred);
356 	if (error)
357 		return (error);
358 	if (in_pcbinshash(inp) != 0) {
359 		inp->inp_laddr.s_addr = INADDR_ANY;
360 		inp->inp_lport = 0;
361 		return (EAGAIN);
362 	}
363 	if (anonport)
364 		inp->inp_flags |= INP_ANONPORT;
365 	return (0);
366 }
367 #endif
368 
369 /*
370  * Select a local port (number) to use.
371  */
372 #if defined(INET) || defined(INET6)
373 int
374 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
375     struct ucred *cred, int lookupflags)
376 {
377 	struct inpcbinfo *pcbinfo;
378 	struct inpcb *tmpinp;
379 	unsigned short *lastport;
380 	int count, dorandom, error;
381 	u_short aux, first, last, lport;
382 #ifdef INET
383 	struct in_addr laddr;
384 #endif
385 
386 	pcbinfo = inp->inp_pcbinfo;
387 
388 	/*
389 	 * Because no actual state changes occur here, a global write lock on
390 	 * the pcbinfo isn't required.
391 	 */
392 	INP_LOCK_ASSERT(inp);
393 	INP_HASH_LOCK_ASSERT(pcbinfo);
394 
395 	if (inp->inp_flags & INP_HIGHPORT) {
396 		first = V_ipport_hifirstauto;	/* sysctl */
397 		last  = V_ipport_hilastauto;
398 		lastport = &pcbinfo->ipi_lasthi;
399 	} else if (inp->inp_flags & INP_LOWPORT) {
400 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
401 		if (error)
402 			return (error);
403 		first = V_ipport_lowfirstauto;	/* 1023 */
404 		last  = V_ipport_lowlastauto;	/* 600 */
405 		lastport = &pcbinfo->ipi_lastlow;
406 	} else {
407 		first = V_ipport_firstauto;	/* sysctl */
408 		last  = V_ipport_lastauto;
409 		lastport = &pcbinfo->ipi_lastport;
410 	}
411 	/*
412 	 * For UDP(-Lite), use random port allocation as long as the user
413 	 * allows it.  For TCP (and as of yet unknown) connections,
414 	 * use random port allocation only if the user allows it AND
415 	 * ipport_tick() allows it.
416 	 */
417 	if (V_ipport_randomized &&
418 		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
419 		pcbinfo == &V_ulitecbinfo))
420 		dorandom = 1;
421 	else
422 		dorandom = 0;
423 	/*
424 	 * It makes no sense to do random port allocation if
425 	 * we have the only port available.
426 	 */
427 	if (first == last)
428 		dorandom = 0;
429 	/* Make sure to not include UDP(-Lite) packets in the count. */
430 	if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
431 		V_ipport_tcpallocs++;
432 	/*
433 	 * Instead of having two loops further down counting up or down
434 	 * make sure that first is always <= last and go with only one
435 	 * code path implementing all logic.
436 	 */
437 	if (first > last) {
438 		aux = first;
439 		first = last;
440 		last = aux;
441 	}
442 
443 #ifdef INET
444 	/* Make the compiler happy. */
445 	laddr.s_addr = 0;
446 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
447 		KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
448 		    __func__, inp));
449 		laddr = *laddrp;
450 	}
451 #endif
452 	tmpinp = NULL;	/* Make compiler happy. */
453 	lport = *lportp;
454 
455 	if (dorandom)
456 		*lastport = first + (arc4random() % (last - first));
457 
458 	count = last - first;
459 
460 	do {
461 		if (count-- < 0)	/* completely used? */
462 			return (EADDRNOTAVAIL);
463 		++*lastport;
464 		if (*lastport < first || *lastport > last)
465 			*lastport = first;
466 		lport = htons(*lastport);
467 
468 #ifdef INET6
469 		if ((inp->inp_vflag & INP_IPV6) != 0)
470 			tmpinp = in6_pcblookup_local(pcbinfo,
471 			    &inp->in6p_laddr, lport, lookupflags, cred);
472 #endif
473 #if defined(INET) && defined(INET6)
474 		else
475 #endif
476 #ifdef INET
477 			tmpinp = in_pcblookup_local(pcbinfo, laddr,
478 			    lport, lookupflags, cred);
479 #endif
480 	} while (tmpinp != NULL);
481 
482 #ifdef INET
483 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
484 		laddrp->s_addr = laddr.s_addr;
485 #endif
486 	*lportp = lport;
487 
488 	return (0);
489 }
490 
491 /*
492  * Return cached socket options.
493  */
494 short
495 inp_so_options(const struct inpcb *inp)
496 {
497    short so_options;
498 
499    so_options = 0;
500 
501    if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
502 	   so_options |= SO_REUSEPORT;
503    if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
504 	   so_options |= SO_REUSEADDR;
505    return (so_options);
506 }
507 #endif /* INET || INET6 */
508 
509 /*
510  * Check if a new BINDMULTI socket is allowed to be created.
511  *
512  * ni points to the new inp.
513  * oi points to the exisitng inp.
514  *
515  * This checks whether the existing inp also has BINDMULTI and
516  * whether the credentials match.
517  */
518 int
519 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
520 {
521 	/* Check permissions match */
522 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
523 	    (ni->inp_cred->cr_uid !=
524 	    oi->inp_cred->cr_uid))
525 		return (0);
526 
527 	/* Check the existing inp has BINDMULTI set */
528 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
529 	    ((oi->inp_flags2 & INP_BINDMULTI) == 0))
530 		return (0);
531 
532 	/*
533 	 * We're okay - either INP_BINDMULTI isn't set on ni, or
534 	 * it is and it matches the checks.
535 	 */
536 	return (1);
537 }
538 
539 #ifdef INET
540 /*
541  * Set up a bind operation on a PCB, performing port allocation
542  * as required, but do not actually modify the PCB. Callers can
543  * either complete the bind by setting inp_laddr/inp_lport and
544  * calling in_pcbinshash(), or they can just use the resulting
545  * port and address to authorise the sending of a once-off packet.
546  *
547  * On error, the values of *laddrp and *lportp are not changed.
548  */
549 int
550 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
551     u_short *lportp, struct ucred *cred)
552 {
553 	struct socket *so = inp->inp_socket;
554 	struct sockaddr_in *sin;
555 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
556 	struct in_addr laddr;
557 	u_short lport = 0;
558 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
559 	int error;
560 
561 	/*
562 	 * No state changes, so read locks are sufficient here.
563 	 */
564 	INP_LOCK_ASSERT(inp);
565 	INP_HASH_LOCK_ASSERT(pcbinfo);
566 
567 	if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
568 		return (EADDRNOTAVAIL);
569 	laddr.s_addr = *laddrp;
570 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
571 		return (EINVAL);
572 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
573 		lookupflags = INPLOOKUP_WILDCARD;
574 	if (nam == NULL) {
575 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
576 			return (error);
577 	} else {
578 		sin = (struct sockaddr_in *)nam;
579 		if (nam->sa_len != sizeof (*sin))
580 			return (EINVAL);
581 #ifdef notdef
582 		/*
583 		 * We should check the family, but old programs
584 		 * incorrectly fail to initialize it.
585 		 */
586 		if (sin->sin_family != AF_INET)
587 			return (EAFNOSUPPORT);
588 #endif
589 		error = prison_local_ip4(cred, &sin->sin_addr);
590 		if (error)
591 			return (error);
592 		if (sin->sin_port != *lportp) {
593 			/* Don't allow the port to change. */
594 			if (*lportp != 0)
595 				return (EINVAL);
596 			lport = sin->sin_port;
597 		}
598 		/* NB: lport is left as 0 if the port isn't being changed. */
599 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
600 			/*
601 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
602 			 * allow complete duplication of binding if
603 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
604 			 * and a multicast address is bound on both
605 			 * new and duplicated sockets.
606 			 */
607 			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
608 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
609 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
610 			sin->sin_port = 0;		/* yech... */
611 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
612 			/*
613 			 * Is the address a local IP address?
614 			 * If INP_BINDANY is set, then the socket may be bound
615 			 * to any endpoint address, local or not.
616 			 */
617 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
618 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
619 				return (EADDRNOTAVAIL);
620 		}
621 		laddr = sin->sin_addr;
622 		if (lport) {
623 			struct inpcb *t;
624 			struct tcptw *tw;
625 
626 			/* GROSS */
627 			if (ntohs(lport) <= V_ipport_reservedhigh &&
628 			    ntohs(lport) >= V_ipport_reservedlow &&
629 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
630 			    0))
631 				return (EACCES);
632 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
633 			    priv_check_cred(inp->inp_cred,
634 			    PRIV_NETINET_REUSEPORT, 0) != 0) {
635 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
636 				    lport, INPLOOKUP_WILDCARD, cred);
637 	/*
638 	 * XXX
639 	 * This entire block sorely needs a rewrite.
640 	 */
641 				if (t &&
642 				    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
643 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
644 				    (so->so_type != SOCK_STREAM ||
645 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
646 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
647 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
648 				     (t->inp_flags2 & INP_REUSEPORT) == 0) &&
649 				    (inp->inp_cred->cr_uid !=
650 				     t->inp_cred->cr_uid))
651 					return (EADDRINUSE);
652 
653 				/*
654 				 * If the socket is a BINDMULTI socket, then
655 				 * the credentials need to match and the
656 				 * original socket also has to have been bound
657 				 * with BINDMULTI.
658 				 */
659 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
660 					return (EADDRINUSE);
661 			}
662 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
663 			    lport, lookupflags, cred);
664 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
665 				/*
666 				 * XXXRW: If an incpb has had its timewait
667 				 * state recycled, we treat the address as
668 				 * being in use (for now).  This is better
669 				 * than a panic, but not desirable.
670 				 */
671 				tw = intotw(t);
672 				if (tw == NULL ||
673 				    (reuseport & tw->tw_so_options) == 0)
674 					return (EADDRINUSE);
675 			} else if (t &&
676 			    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
677 			    (reuseport & inp_so_options(t)) == 0) {
678 #ifdef INET6
679 				if (ntohl(sin->sin_addr.s_addr) !=
680 				    INADDR_ANY ||
681 				    ntohl(t->inp_laddr.s_addr) !=
682 				    INADDR_ANY ||
683 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
684 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
685 #endif
686 				return (EADDRINUSE);
687 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
688 					return (EADDRINUSE);
689 			}
690 		}
691 	}
692 	if (*lportp != 0)
693 		lport = *lportp;
694 	if (lport == 0) {
695 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
696 		if (error != 0)
697 			return (error);
698 
699 	}
700 	*laddrp = laddr.s_addr;
701 	*lportp = lport;
702 	return (0);
703 }
704 
705 /*
706  * Connect from a socket to a specified address.
707  * Both address and port must be specified in argument sin.
708  * If don't have a local address for this socket yet,
709  * then pick one.
710  */
711 int
712 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
713     struct ucred *cred, struct mbuf *m)
714 {
715 	u_short lport, fport;
716 	in_addr_t laddr, faddr;
717 	int anonport, error;
718 
719 	INP_WLOCK_ASSERT(inp);
720 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
721 
722 	lport = inp->inp_lport;
723 	laddr = inp->inp_laddr.s_addr;
724 	anonport = (lport == 0);
725 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
726 	    NULL, cred);
727 	if (error)
728 		return (error);
729 
730 	/* Do the initial binding of the local address if required. */
731 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
732 		inp->inp_lport = lport;
733 		inp->inp_laddr.s_addr = laddr;
734 		if (in_pcbinshash(inp) != 0) {
735 			inp->inp_laddr.s_addr = INADDR_ANY;
736 			inp->inp_lport = 0;
737 			return (EAGAIN);
738 		}
739 	}
740 
741 	/* Commit the remaining changes. */
742 	inp->inp_lport = lport;
743 	inp->inp_laddr.s_addr = laddr;
744 	inp->inp_faddr.s_addr = faddr;
745 	inp->inp_fport = fport;
746 	in_pcbrehash_mbuf(inp, m);
747 
748 	if (anonport)
749 		inp->inp_flags |= INP_ANONPORT;
750 	return (0);
751 }
752 
753 int
754 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
755 {
756 
757 	return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
758 }
759 
760 /*
761  * Do proper source address selection on an unbound socket in case
762  * of connect. Take jails into account as well.
763  */
764 int
765 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
766     struct ucred *cred)
767 {
768 	struct ifaddr *ifa;
769 	struct sockaddr *sa;
770 	struct sockaddr_in *sin;
771 	struct route sro;
772 	int error;
773 
774 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
775 
776 	/*
777 	 * Bypass source address selection and use the primary jail IP
778 	 * if requested.
779 	 */
780 	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
781 		return (0);
782 
783 	error = 0;
784 	bzero(&sro, sizeof(sro));
785 
786 	sin = (struct sockaddr_in *)&sro.ro_dst;
787 	sin->sin_family = AF_INET;
788 	sin->sin_len = sizeof(struct sockaddr_in);
789 	sin->sin_addr.s_addr = faddr->s_addr;
790 
791 	/*
792 	 * If route is known our src addr is taken from the i/f,
793 	 * else punt.
794 	 *
795 	 * Find out route to destination.
796 	 */
797 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
798 		in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
799 
800 	/*
801 	 * If we found a route, use the address corresponding to
802 	 * the outgoing interface.
803 	 *
804 	 * Otherwise assume faddr is reachable on a directly connected
805 	 * network and try to find a corresponding interface to take
806 	 * the source address from.
807 	 */
808 	if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
809 		struct in_ifaddr *ia;
810 		struct ifnet *ifp;
811 
812 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
813 					inp->inp_socket->so_fibnum));
814 		if (ia == NULL)
815 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
816 						inp->inp_socket->so_fibnum));
817 		if (ia == NULL) {
818 			error = ENETUNREACH;
819 			goto done;
820 		}
821 
822 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
823 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
824 			ifa_free(&ia->ia_ifa);
825 			goto done;
826 		}
827 
828 		ifp = ia->ia_ifp;
829 		ifa_free(&ia->ia_ifa);
830 		ia = NULL;
831 		IF_ADDR_RLOCK(ifp);
832 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
833 
834 			sa = ifa->ifa_addr;
835 			if (sa->sa_family != AF_INET)
836 				continue;
837 			sin = (struct sockaddr_in *)sa;
838 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
839 				ia = (struct in_ifaddr *)ifa;
840 				break;
841 			}
842 		}
843 		if (ia != NULL) {
844 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
845 			IF_ADDR_RUNLOCK(ifp);
846 			goto done;
847 		}
848 		IF_ADDR_RUNLOCK(ifp);
849 
850 		/* 3. As a last resort return the 'default' jail address. */
851 		error = prison_get_ip4(cred, laddr);
852 		goto done;
853 	}
854 
855 	/*
856 	 * If the outgoing interface on the route found is not
857 	 * a loopback interface, use the address from that interface.
858 	 * In case of jails do those three steps:
859 	 * 1. check if the interface address belongs to the jail. If so use it.
860 	 * 2. check if we have any address on the outgoing interface
861 	 *    belonging to this jail. If so use it.
862 	 * 3. as a last resort return the 'default' jail address.
863 	 */
864 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
865 		struct in_ifaddr *ia;
866 		struct ifnet *ifp;
867 
868 		/* If not jailed, use the default returned. */
869 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
870 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
871 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
872 			goto done;
873 		}
874 
875 		/* Jailed. */
876 		/* 1. Check if the iface address belongs to the jail. */
877 		sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
878 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
879 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
880 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
881 			goto done;
882 		}
883 
884 		/*
885 		 * 2. Check if we have any address on the outgoing interface
886 		 *    belonging to this jail.
887 		 */
888 		ia = NULL;
889 		ifp = sro.ro_rt->rt_ifp;
890 		IF_ADDR_RLOCK(ifp);
891 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
892 			sa = ifa->ifa_addr;
893 			if (sa->sa_family != AF_INET)
894 				continue;
895 			sin = (struct sockaddr_in *)sa;
896 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
897 				ia = (struct in_ifaddr *)ifa;
898 				break;
899 			}
900 		}
901 		if (ia != NULL) {
902 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
903 			IF_ADDR_RUNLOCK(ifp);
904 			goto done;
905 		}
906 		IF_ADDR_RUNLOCK(ifp);
907 
908 		/* 3. As a last resort return the 'default' jail address. */
909 		error = prison_get_ip4(cred, laddr);
910 		goto done;
911 	}
912 
913 	/*
914 	 * The outgoing interface is marked with 'loopback net', so a route
915 	 * to ourselves is here.
916 	 * Try to find the interface of the destination address and then
917 	 * take the address from there. That interface is not necessarily
918 	 * a loopback interface.
919 	 * In case of jails, check that it is an address of the jail
920 	 * and if we cannot find, fall back to the 'default' jail address.
921 	 */
922 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
923 		struct sockaddr_in sain;
924 		struct in_ifaddr *ia;
925 
926 		bzero(&sain, sizeof(struct sockaddr_in));
927 		sain.sin_family = AF_INET;
928 		sain.sin_len = sizeof(struct sockaddr_in);
929 		sain.sin_addr.s_addr = faddr->s_addr;
930 
931 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain),
932 					inp->inp_socket->so_fibnum));
933 		if (ia == NULL)
934 			ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0,
935 						inp->inp_socket->so_fibnum));
936 		if (ia == NULL)
937 			ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
938 
939 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
940 			if (ia == NULL) {
941 				error = ENETUNREACH;
942 				goto done;
943 			}
944 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
945 			ifa_free(&ia->ia_ifa);
946 			goto done;
947 		}
948 
949 		/* Jailed. */
950 		if (ia != NULL) {
951 			struct ifnet *ifp;
952 
953 			ifp = ia->ia_ifp;
954 			ifa_free(&ia->ia_ifa);
955 			ia = NULL;
956 			IF_ADDR_RLOCK(ifp);
957 			TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
958 
959 				sa = ifa->ifa_addr;
960 				if (sa->sa_family != AF_INET)
961 					continue;
962 				sin = (struct sockaddr_in *)sa;
963 				if (prison_check_ip4(cred,
964 				    &sin->sin_addr) == 0) {
965 					ia = (struct in_ifaddr *)ifa;
966 					break;
967 				}
968 			}
969 			if (ia != NULL) {
970 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
971 				IF_ADDR_RUNLOCK(ifp);
972 				goto done;
973 			}
974 			IF_ADDR_RUNLOCK(ifp);
975 		}
976 
977 		/* 3. As a last resort return the 'default' jail address. */
978 		error = prison_get_ip4(cred, laddr);
979 		goto done;
980 	}
981 
982 done:
983 	if (sro.ro_rt != NULL)
984 		RTFREE(sro.ro_rt);
985 	return (error);
986 }
987 
988 /*
989  * Set up for a connect from a socket to the specified address.
990  * On entry, *laddrp and *lportp should contain the current local
991  * address and port for the PCB; these are updated to the values
992  * that should be placed in inp_laddr and inp_lport to complete
993  * the connect.
994  *
995  * On success, *faddrp and *fportp will be set to the remote address
996  * and port. These are not updated in the error case.
997  *
998  * If the operation fails because the connection already exists,
999  * *oinpp will be set to the PCB of that connection so that the
1000  * caller can decide to override it. In all other cases, *oinpp
1001  * is set to NULL.
1002  */
1003 int
1004 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
1005     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1006     struct inpcb **oinpp, struct ucred *cred)
1007 {
1008 	struct rm_priotracker in_ifa_tracker;
1009 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1010 	struct in_ifaddr *ia;
1011 	struct inpcb *oinp;
1012 	struct in_addr laddr, faddr;
1013 	u_short lport, fport;
1014 	int error;
1015 
1016 	/*
1017 	 * Because a global state change doesn't actually occur here, a read
1018 	 * lock is sufficient.
1019 	 */
1020 	INP_LOCK_ASSERT(inp);
1021 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1022 
1023 	if (oinpp != NULL)
1024 		*oinpp = NULL;
1025 	if (nam->sa_len != sizeof (*sin))
1026 		return (EINVAL);
1027 	if (sin->sin_family != AF_INET)
1028 		return (EAFNOSUPPORT);
1029 	if (sin->sin_port == 0)
1030 		return (EADDRNOTAVAIL);
1031 	laddr.s_addr = *laddrp;
1032 	lport = *lportp;
1033 	faddr = sin->sin_addr;
1034 	fport = sin->sin_port;
1035 
1036 	if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
1037 		/*
1038 		 * If the destination address is INADDR_ANY,
1039 		 * use the primary local address.
1040 		 * If the supplied address is INADDR_BROADCAST,
1041 		 * and the primary interface supports broadcast,
1042 		 * choose the broadcast address for that interface.
1043 		 */
1044 		if (faddr.s_addr == INADDR_ANY) {
1045 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1046 			faddr =
1047 			    IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1048 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1049 			if (cred != NULL &&
1050 			    (error = prison_get_ip4(cred, &faddr)) != 0)
1051 				return (error);
1052 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1053 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1054 			if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1055 			    IFF_BROADCAST)
1056 				faddr = satosin(&TAILQ_FIRST(
1057 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1058 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1059 		}
1060 	}
1061 	if (laddr.s_addr == INADDR_ANY) {
1062 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
1063 		/*
1064 		 * If the destination address is multicast and an outgoing
1065 		 * interface has been set as a multicast option, prefer the
1066 		 * address of that interface as our source address.
1067 		 */
1068 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1069 		    inp->inp_moptions != NULL) {
1070 			struct ip_moptions *imo;
1071 			struct ifnet *ifp;
1072 
1073 			imo = inp->inp_moptions;
1074 			if (imo->imo_multicast_ifp != NULL) {
1075 				ifp = imo->imo_multicast_ifp;
1076 				IN_IFADDR_RLOCK(&in_ifa_tracker);
1077 				TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1078 					if ((ia->ia_ifp == ifp) &&
1079 					    (cred == NULL ||
1080 					    prison_check_ip4(cred,
1081 					    &ia->ia_addr.sin_addr) == 0))
1082 						break;
1083 				}
1084 				if (ia == NULL)
1085 					error = EADDRNOTAVAIL;
1086 				else {
1087 					laddr = ia->ia_addr.sin_addr;
1088 					error = 0;
1089 				}
1090 				IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1091 			}
1092 		}
1093 		if (error)
1094 			return (error);
1095 	}
1096 	oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1097 	    laddr, lport, 0, NULL);
1098 	if (oinp != NULL) {
1099 		if (oinpp != NULL)
1100 			*oinpp = oinp;
1101 		return (EADDRINUSE);
1102 	}
1103 	if (lport == 0) {
1104 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1105 		    cred);
1106 		if (error)
1107 			return (error);
1108 	}
1109 	*laddrp = laddr.s_addr;
1110 	*lportp = lport;
1111 	*faddrp = faddr.s_addr;
1112 	*fportp = fport;
1113 	return (0);
1114 }
1115 
1116 void
1117 in_pcbdisconnect(struct inpcb *inp)
1118 {
1119 
1120 	INP_WLOCK_ASSERT(inp);
1121 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1122 
1123 	inp->inp_faddr.s_addr = INADDR_ANY;
1124 	inp->inp_fport = 0;
1125 	in_pcbrehash(inp);
1126 }
1127 #endif /* INET */
1128 
1129 /*
1130  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1131  * For most protocols, this will be invoked immediately prior to calling
1132  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1133  * socket, in which case in_pcbfree() is deferred.
1134  */
1135 void
1136 in_pcbdetach(struct inpcb *inp)
1137 {
1138 
1139 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1140 
1141 #ifdef RATELIMIT
1142 	if (inp->inp_snd_tag != NULL)
1143 		in_pcbdetach_txrtlmt(inp);
1144 #endif
1145 	inp->inp_socket->so_pcb = NULL;
1146 	inp->inp_socket = NULL;
1147 }
1148 
1149 /*
1150  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1151  * stability of an inpcb pointer despite the inpcb lock being released.  This
1152  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1153  * but where the inpcb lock may already held, or when acquiring a reference
1154  * via a pcbgroup.
1155  *
1156  * in_pcbref() should be used only to provide brief memory stability, and
1157  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1158  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1159  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1160  * lock and rele are the *only* safe operations that may be performed on the
1161  * inpcb.
1162  *
1163  * While the inpcb will not be freed, releasing the inpcb lock means that the
1164  * connection's state may change, so the caller should be careful to
1165  * revalidate any cached state on reacquiring the lock.  Drop the reference
1166  * using in_pcbrele().
1167  */
1168 void
1169 in_pcbref(struct inpcb *inp)
1170 {
1171 
1172 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1173 
1174 	refcount_acquire(&inp->inp_refcount);
1175 }
1176 
1177 /*
1178  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1179  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1180  * return a flag indicating whether or not the inpcb remains valid.  If it is
1181  * valid, we return with the inpcb lock held.
1182  *
1183  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1184  * reference on an inpcb.  Historically more work was done here (actually, in
1185  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1186  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1187  * about memory stability (and continued use of the write lock).
1188  */
1189 int
1190 in_pcbrele_rlocked(struct inpcb *inp)
1191 {
1192 	struct inpcbinfo *pcbinfo;
1193 
1194 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1195 
1196 	INP_RLOCK_ASSERT(inp);
1197 
1198 	if (refcount_release(&inp->inp_refcount) == 0) {
1199 		/*
1200 		 * If the inpcb has been freed, let the caller know, even if
1201 		 * this isn't the last reference.
1202 		 */
1203 		if (inp->inp_flags2 & INP_FREED) {
1204 			INP_RUNLOCK(inp);
1205 			return (1);
1206 		}
1207 		return (0);
1208 	}
1209 
1210 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1211 
1212 	INP_RUNLOCK(inp);
1213 	pcbinfo = inp->inp_pcbinfo;
1214 	uma_zfree(pcbinfo->ipi_zone, inp);
1215 	return (1);
1216 }
1217 
1218 int
1219 in_pcbrele_wlocked(struct inpcb *inp)
1220 {
1221 	struct inpcbinfo *pcbinfo;
1222 
1223 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1224 
1225 	INP_WLOCK_ASSERT(inp);
1226 
1227 	if (refcount_release(&inp->inp_refcount) == 0) {
1228 		/*
1229 		 * If the inpcb has been freed, let the caller know, even if
1230 		 * this isn't the last reference.
1231 		 */
1232 		if (inp->inp_flags2 & INP_FREED) {
1233 			INP_WUNLOCK(inp);
1234 			return (1);
1235 		}
1236 		return (0);
1237 	}
1238 
1239 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1240 
1241 	INP_WUNLOCK(inp);
1242 	pcbinfo = inp->inp_pcbinfo;
1243 	uma_zfree(pcbinfo->ipi_zone, inp);
1244 	return (1);
1245 }
1246 
1247 /*
1248  * Temporary wrapper.
1249  */
1250 int
1251 in_pcbrele(struct inpcb *inp)
1252 {
1253 
1254 	return (in_pcbrele_wlocked(inp));
1255 }
1256 
1257 /*
1258  * Unconditionally schedule an inpcb to be freed by decrementing its
1259  * reference count, which should occur only after the inpcb has been detached
1260  * from its socket.  If another thread holds a temporary reference (acquired
1261  * using in_pcbref()) then the free is deferred until that reference is
1262  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1263  * work, including removal from global lists, is done in this context, where
1264  * the pcbinfo lock is held.
1265  */
1266 void
1267 in_pcbfree(struct inpcb *inp)
1268 {
1269 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1270 
1271 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1272 
1273 #ifdef INVARIANTS
1274 	if (pcbinfo == &V_tcbinfo) {
1275 		INP_INFO_LOCK_ASSERT(pcbinfo);
1276 	} else {
1277 		INP_INFO_WLOCK_ASSERT(pcbinfo);
1278 	}
1279 #endif
1280 	INP_WLOCK_ASSERT(inp);
1281 
1282 	/* XXXRW: Do as much as possible here. */
1283 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1284 	if (inp->inp_sp != NULL)
1285 		ipsec_delete_pcbpolicy(inp);
1286 #endif
1287 	INP_LIST_WLOCK(pcbinfo);
1288 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1289 	in_pcbremlists(inp);
1290 	INP_LIST_WUNLOCK(pcbinfo);
1291 #ifdef INET6
1292 	if (inp->inp_vflag & INP_IPV6PROTO) {
1293 		ip6_freepcbopts(inp->in6p_outputopts);
1294 		if (inp->in6p_moptions != NULL)
1295 			ip6_freemoptions(inp->in6p_moptions);
1296 	}
1297 #endif
1298 	if (inp->inp_options)
1299 		(void)m_free(inp->inp_options);
1300 #ifdef INET
1301 	if (inp->inp_moptions != NULL)
1302 		inp_freemoptions(inp->inp_moptions);
1303 #endif
1304 	RO_RTFREE(&inp->inp_route);
1305 	if (inp->inp_route.ro_lle)
1306 		LLE_FREE(inp->inp_route.ro_lle);	/* zeros ro_lle */
1307 
1308 	inp->inp_vflag = 0;
1309 	inp->inp_flags2 |= INP_FREED;
1310 	crfree(inp->inp_cred);
1311 #ifdef MAC
1312 	mac_inpcb_destroy(inp);
1313 #endif
1314 	if (!in_pcbrele_wlocked(inp))
1315 		INP_WUNLOCK(inp);
1316 }
1317 
1318 /*
1319  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1320  * port reservation, and preventing it from being returned by inpcb lookups.
1321  *
1322  * It is used by TCP to mark an inpcb as unused and avoid future packet
1323  * delivery or event notification when a socket remains open but TCP has
1324  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1325  * or a RST on the wire, and allows the port binding to be reused while still
1326  * maintaining the invariant that so_pcb always points to a valid inpcb until
1327  * in_pcbdetach().
1328  *
1329  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1330  * in_pcbnotifyall() and in_pcbpurgeif0()?
1331  */
1332 void
1333 in_pcbdrop(struct inpcb *inp)
1334 {
1335 
1336 	INP_WLOCK_ASSERT(inp);
1337 
1338 	/*
1339 	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1340 	 * the hash lock...?
1341 	 */
1342 	inp->inp_flags |= INP_DROPPED;
1343 	if (inp->inp_flags & INP_INHASHLIST) {
1344 		struct inpcbport *phd = inp->inp_phd;
1345 
1346 		INP_HASH_WLOCK(inp->inp_pcbinfo);
1347 		LIST_REMOVE(inp, inp_hash);
1348 		LIST_REMOVE(inp, inp_portlist);
1349 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1350 			LIST_REMOVE(phd, phd_hash);
1351 			free(phd, M_PCB);
1352 		}
1353 		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1354 		inp->inp_flags &= ~INP_INHASHLIST;
1355 #ifdef PCBGROUP
1356 		in_pcbgroup_remove(inp);
1357 #endif
1358 	}
1359 }
1360 
1361 #ifdef INET
1362 /*
1363  * Common routines to return the socket addresses associated with inpcbs.
1364  */
1365 struct sockaddr *
1366 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1367 {
1368 	struct sockaddr_in *sin;
1369 
1370 	sin = malloc(sizeof *sin, M_SONAME,
1371 		M_WAITOK | M_ZERO);
1372 	sin->sin_family = AF_INET;
1373 	sin->sin_len = sizeof(*sin);
1374 	sin->sin_addr = *addr_p;
1375 	sin->sin_port = port;
1376 
1377 	return (struct sockaddr *)sin;
1378 }
1379 
1380 int
1381 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1382 {
1383 	struct inpcb *inp;
1384 	struct in_addr addr;
1385 	in_port_t port;
1386 
1387 	inp = sotoinpcb(so);
1388 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1389 
1390 	INP_RLOCK(inp);
1391 	port = inp->inp_lport;
1392 	addr = inp->inp_laddr;
1393 	INP_RUNLOCK(inp);
1394 
1395 	*nam = in_sockaddr(port, &addr);
1396 	return 0;
1397 }
1398 
1399 int
1400 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1401 {
1402 	struct inpcb *inp;
1403 	struct in_addr addr;
1404 	in_port_t port;
1405 
1406 	inp = sotoinpcb(so);
1407 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1408 
1409 	INP_RLOCK(inp);
1410 	port = inp->inp_fport;
1411 	addr = inp->inp_faddr;
1412 	INP_RUNLOCK(inp);
1413 
1414 	*nam = in_sockaddr(port, &addr);
1415 	return 0;
1416 }
1417 
1418 void
1419 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1420     struct inpcb *(*notify)(struct inpcb *, int))
1421 {
1422 	struct inpcb *inp, *inp_temp;
1423 
1424 	INP_INFO_WLOCK(pcbinfo);
1425 	LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1426 		INP_WLOCK(inp);
1427 #ifdef INET6
1428 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1429 			INP_WUNLOCK(inp);
1430 			continue;
1431 		}
1432 #endif
1433 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1434 		    inp->inp_socket == NULL) {
1435 			INP_WUNLOCK(inp);
1436 			continue;
1437 		}
1438 		if ((*notify)(inp, errno))
1439 			INP_WUNLOCK(inp);
1440 	}
1441 	INP_INFO_WUNLOCK(pcbinfo);
1442 }
1443 
1444 void
1445 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1446 {
1447 	struct inpcb *inp;
1448 	struct ip_moptions *imo;
1449 	int i, gap;
1450 
1451 	INP_INFO_WLOCK(pcbinfo);
1452 	LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1453 		INP_WLOCK(inp);
1454 		imo = inp->inp_moptions;
1455 		if ((inp->inp_vflag & INP_IPV4) &&
1456 		    imo != NULL) {
1457 			/*
1458 			 * Unselect the outgoing interface if it is being
1459 			 * detached.
1460 			 */
1461 			if (imo->imo_multicast_ifp == ifp)
1462 				imo->imo_multicast_ifp = NULL;
1463 
1464 			/*
1465 			 * Drop multicast group membership if we joined
1466 			 * through the interface being detached.
1467 			 */
1468 			for (i = 0, gap = 0; i < imo->imo_num_memberships;
1469 			    i++) {
1470 				if (imo->imo_membership[i]->inm_ifp == ifp) {
1471 					in_delmulti(imo->imo_membership[i]);
1472 					gap++;
1473 				} else if (gap != 0)
1474 					imo->imo_membership[i - gap] =
1475 					    imo->imo_membership[i];
1476 			}
1477 			imo->imo_num_memberships -= gap;
1478 		}
1479 		INP_WUNLOCK(inp);
1480 	}
1481 	INP_INFO_WUNLOCK(pcbinfo);
1482 }
1483 
1484 /*
1485  * Lookup a PCB based on the local address and port.  Caller must hold the
1486  * hash lock.  No inpcb locks or references are acquired.
1487  */
1488 #define INP_LOOKUP_MAPPED_PCB_COST	3
1489 struct inpcb *
1490 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1491     u_short lport, int lookupflags, struct ucred *cred)
1492 {
1493 	struct inpcb *inp;
1494 #ifdef INET6
1495 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1496 #else
1497 	int matchwild = 3;
1498 #endif
1499 	int wildcard;
1500 
1501 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1502 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1503 
1504 	INP_HASH_LOCK_ASSERT(pcbinfo);
1505 
1506 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1507 		struct inpcbhead *head;
1508 		/*
1509 		 * Look for an unconnected (wildcard foreign addr) PCB that
1510 		 * matches the local address and port we're looking for.
1511 		 */
1512 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1513 		    0, pcbinfo->ipi_hashmask)];
1514 		LIST_FOREACH(inp, head, inp_hash) {
1515 #ifdef INET6
1516 			/* XXX inp locking */
1517 			if ((inp->inp_vflag & INP_IPV4) == 0)
1518 				continue;
1519 #endif
1520 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1521 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1522 			    inp->inp_lport == lport) {
1523 				/*
1524 				 * Found?
1525 				 */
1526 				if (cred == NULL ||
1527 				    prison_equal_ip4(cred->cr_prison,
1528 					inp->inp_cred->cr_prison))
1529 					return (inp);
1530 			}
1531 		}
1532 		/*
1533 		 * Not found.
1534 		 */
1535 		return (NULL);
1536 	} else {
1537 		struct inpcbporthead *porthash;
1538 		struct inpcbport *phd;
1539 		struct inpcb *match = NULL;
1540 		/*
1541 		 * Best fit PCB lookup.
1542 		 *
1543 		 * First see if this local port is in use by looking on the
1544 		 * port hash list.
1545 		 */
1546 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1547 		    pcbinfo->ipi_porthashmask)];
1548 		LIST_FOREACH(phd, porthash, phd_hash) {
1549 			if (phd->phd_port == lport)
1550 				break;
1551 		}
1552 		if (phd != NULL) {
1553 			/*
1554 			 * Port is in use by one or more PCBs. Look for best
1555 			 * fit.
1556 			 */
1557 			LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1558 				wildcard = 0;
1559 				if (cred != NULL &&
1560 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
1561 					cred->cr_prison))
1562 					continue;
1563 #ifdef INET6
1564 				/* XXX inp locking */
1565 				if ((inp->inp_vflag & INP_IPV4) == 0)
1566 					continue;
1567 				/*
1568 				 * We never select the PCB that has
1569 				 * INP_IPV6 flag and is bound to :: if
1570 				 * we have another PCB which is bound
1571 				 * to 0.0.0.0.  If a PCB has the
1572 				 * INP_IPV6 flag, then we set its cost
1573 				 * higher than IPv4 only PCBs.
1574 				 *
1575 				 * Note that the case only happens
1576 				 * when a socket is bound to ::, under
1577 				 * the condition that the use of the
1578 				 * mapped address is allowed.
1579 				 */
1580 				if ((inp->inp_vflag & INP_IPV6) != 0)
1581 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1582 #endif
1583 				if (inp->inp_faddr.s_addr != INADDR_ANY)
1584 					wildcard++;
1585 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
1586 					if (laddr.s_addr == INADDR_ANY)
1587 						wildcard++;
1588 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
1589 						continue;
1590 				} else {
1591 					if (laddr.s_addr != INADDR_ANY)
1592 						wildcard++;
1593 				}
1594 				if (wildcard < matchwild) {
1595 					match = inp;
1596 					matchwild = wildcard;
1597 					if (matchwild == 0)
1598 						break;
1599 				}
1600 			}
1601 		}
1602 		return (match);
1603 	}
1604 }
1605 #undef INP_LOOKUP_MAPPED_PCB_COST
1606 
1607 #ifdef PCBGROUP
1608 /*
1609  * Lookup PCB in hash list, using pcbgroup tables.
1610  */
1611 static struct inpcb *
1612 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
1613     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
1614     u_int lport_arg, int lookupflags, struct ifnet *ifp)
1615 {
1616 	struct inpcbhead *head;
1617 	struct inpcb *inp, *tmpinp;
1618 	u_short fport = fport_arg, lport = lport_arg;
1619 
1620 	/*
1621 	 * First look for an exact match.
1622 	 */
1623 	tmpinp = NULL;
1624 	INP_GROUP_LOCK(pcbgroup);
1625 	head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1626 	    pcbgroup->ipg_hashmask)];
1627 	LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1628 #ifdef INET6
1629 		/* XXX inp locking */
1630 		if ((inp->inp_vflag & INP_IPV4) == 0)
1631 			continue;
1632 #endif
1633 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1634 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1635 		    inp->inp_fport == fport &&
1636 		    inp->inp_lport == lport) {
1637 			/*
1638 			 * XXX We should be able to directly return
1639 			 * the inp here, without any checks.
1640 			 * Well unless both bound with SO_REUSEPORT?
1641 			 */
1642 			if (prison_flag(inp->inp_cred, PR_IP4))
1643 				goto found;
1644 			if (tmpinp == NULL)
1645 				tmpinp = inp;
1646 		}
1647 	}
1648 	if (tmpinp != NULL) {
1649 		inp = tmpinp;
1650 		goto found;
1651 	}
1652 
1653 #ifdef	RSS
1654 	/*
1655 	 * For incoming connections, we may wish to do a wildcard
1656 	 * match for an RSS-local socket.
1657 	 */
1658 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1659 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1660 #ifdef INET6
1661 		struct inpcb *local_wild_mapped = NULL;
1662 #endif
1663 		struct inpcb *jail_wild = NULL;
1664 		struct inpcbhead *head;
1665 		int injail;
1666 
1667 		/*
1668 		 * Order of socket selection - we always prefer jails.
1669 		 *      1. jailed, non-wild.
1670 		 *      2. jailed, wild.
1671 		 *      3. non-jailed, non-wild.
1672 		 *      4. non-jailed, wild.
1673 		 */
1674 
1675 		head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
1676 		    lport, 0, pcbgroup->ipg_hashmask)];
1677 		LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1678 #ifdef INET6
1679 			/* XXX inp locking */
1680 			if ((inp->inp_vflag & INP_IPV4) == 0)
1681 				continue;
1682 #endif
1683 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1684 			    inp->inp_lport != lport)
1685 				continue;
1686 
1687 			injail = prison_flag(inp->inp_cred, PR_IP4);
1688 			if (injail) {
1689 				if (prison_check_ip4(inp->inp_cred,
1690 				    &laddr) != 0)
1691 					continue;
1692 			} else {
1693 				if (local_exact != NULL)
1694 					continue;
1695 			}
1696 
1697 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1698 				if (injail)
1699 					goto found;
1700 				else
1701 					local_exact = inp;
1702 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1703 #ifdef INET6
1704 				/* XXX inp locking, NULL check */
1705 				if (inp->inp_vflag & INP_IPV6PROTO)
1706 					local_wild_mapped = inp;
1707 				else
1708 #endif
1709 					if (injail)
1710 						jail_wild = inp;
1711 					else
1712 						local_wild = inp;
1713 			}
1714 		} /* LIST_FOREACH */
1715 
1716 		inp = jail_wild;
1717 		if (inp == NULL)
1718 			inp = local_exact;
1719 		if (inp == NULL)
1720 			inp = local_wild;
1721 #ifdef INET6
1722 		if (inp == NULL)
1723 			inp = local_wild_mapped;
1724 #endif
1725 		if (inp != NULL)
1726 			goto found;
1727 	}
1728 #endif
1729 
1730 	/*
1731 	 * Then look for a wildcard match, if requested.
1732 	 */
1733 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1734 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1735 #ifdef INET6
1736 		struct inpcb *local_wild_mapped = NULL;
1737 #endif
1738 		struct inpcb *jail_wild = NULL;
1739 		struct inpcbhead *head;
1740 		int injail;
1741 
1742 		/*
1743 		 * Order of socket selection - we always prefer jails.
1744 		 *      1. jailed, non-wild.
1745 		 *      2. jailed, wild.
1746 		 *      3. non-jailed, non-wild.
1747 		 *      4. non-jailed, wild.
1748 		 */
1749 		head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
1750 		    0, pcbinfo->ipi_wildmask)];
1751 		LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
1752 #ifdef INET6
1753 			/* XXX inp locking */
1754 			if ((inp->inp_vflag & INP_IPV4) == 0)
1755 				continue;
1756 #endif
1757 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1758 			    inp->inp_lport != lport)
1759 				continue;
1760 
1761 			injail = prison_flag(inp->inp_cred, PR_IP4);
1762 			if (injail) {
1763 				if (prison_check_ip4(inp->inp_cred,
1764 				    &laddr) != 0)
1765 					continue;
1766 			} else {
1767 				if (local_exact != NULL)
1768 					continue;
1769 			}
1770 
1771 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1772 				if (injail)
1773 					goto found;
1774 				else
1775 					local_exact = inp;
1776 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1777 #ifdef INET6
1778 				/* XXX inp locking, NULL check */
1779 				if (inp->inp_vflag & INP_IPV6PROTO)
1780 					local_wild_mapped = inp;
1781 				else
1782 #endif
1783 					if (injail)
1784 						jail_wild = inp;
1785 					else
1786 						local_wild = inp;
1787 			}
1788 		} /* LIST_FOREACH */
1789 		inp = jail_wild;
1790 		if (inp == NULL)
1791 			inp = local_exact;
1792 		if (inp == NULL)
1793 			inp = local_wild;
1794 #ifdef INET6
1795 		if (inp == NULL)
1796 			inp = local_wild_mapped;
1797 #endif
1798 		if (inp != NULL)
1799 			goto found;
1800 	} /* if (lookupflags & INPLOOKUP_WILDCARD) */
1801 	INP_GROUP_UNLOCK(pcbgroup);
1802 	return (NULL);
1803 
1804 found:
1805 	in_pcbref(inp);
1806 	INP_GROUP_UNLOCK(pcbgroup);
1807 	if (lookupflags & INPLOOKUP_WLOCKPCB) {
1808 		INP_WLOCK(inp);
1809 		if (in_pcbrele_wlocked(inp))
1810 			return (NULL);
1811 	} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1812 		INP_RLOCK(inp);
1813 		if (in_pcbrele_rlocked(inp))
1814 			return (NULL);
1815 	} else
1816 		panic("%s: locking bug", __func__);
1817 	return (inp);
1818 }
1819 #endif /* PCBGROUP */
1820 
1821 /*
1822  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
1823  * that the caller has locked the hash list, and will not perform any further
1824  * locking or reference operations on either the hash list or the connection.
1825  */
1826 static struct inpcb *
1827 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1828     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
1829     struct ifnet *ifp)
1830 {
1831 	struct inpcbhead *head;
1832 	struct inpcb *inp, *tmpinp;
1833 	u_short fport = fport_arg, lport = lport_arg;
1834 
1835 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1836 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1837 
1838 	INP_HASH_LOCK_ASSERT(pcbinfo);
1839 
1840 	/*
1841 	 * First look for an exact match.
1842 	 */
1843 	tmpinp = NULL;
1844 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1845 	    pcbinfo->ipi_hashmask)];
1846 	LIST_FOREACH(inp, head, inp_hash) {
1847 #ifdef INET6
1848 		/* XXX inp locking */
1849 		if ((inp->inp_vflag & INP_IPV4) == 0)
1850 			continue;
1851 #endif
1852 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1853 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1854 		    inp->inp_fport == fport &&
1855 		    inp->inp_lport == lport) {
1856 			/*
1857 			 * XXX We should be able to directly return
1858 			 * the inp here, without any checks.
1859 			 * Well unless both bound with SO_REUSEPORT?
1860 			 */
1861 			if (prison_flag(inp->inp_cred, PR_IP4))
1862 				return (inp);
1863 			if (tmpinp == NULL)
1864 				tmpinp = inp;
1865 		}
1866 	}
1867 	if (tmpinp != NULL)
1868 		return (tmpinp);
1869 
1870 	/*
1871 	 * Then look for a wildcard match, if requested.
1872 	 */
1873 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1874 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1875 #ifdef INET6
1876 		struct inpcb *local_wild_mapped = NULL;
1877 #endif
1878 		struct inpcb *jail_wild = NULL;
1879 		int injail;
1880 
1881 		/*
1882 		 * Order of socket selection - we always prefer jails.
1883 		 *      1. jailed, non-wild.
1884 		 *      2. jailed, wild.
1885 		 *      3. non-jailed, non-wild.
1886 		 *      4. non-jailed, wild.
1887 		 */
1888 
1889 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1890 		    0, pcbinfo->ipi_hashmask)];
1891 		LIST_FOREACH(inp, head, inp_hash) {
1892 #ifdef INET6
1893 			/* XXX inp locking */
1894 			if ((inp->inp_vflag & INP_IPV4) == 0)
1895 				continue;
1896 #endif
1897 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1898 			    inp->inp_lport != lport)
1899 				continue;
1900 
1901 			injail = prison_flag(inp->inp_cred, PR_IP4);
1902 			if (injail) {
1903 				if (prison_check_ip4(inp->inp_cred,
1904 				    &laddr) != 0)
1905 					continue;
1906 			} else {
1907 				if (local_exact != NULL)
1908 					continue;
1909 			}
1910 
1911 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1912 				if (injail)
1913 					return (inp);
1914 				else
1915 					local_exact = inp;
1916 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1917 #ifdef INET6
1918 				/* XXX inp locking, NULL check */
1919 				if (inp->inp_vflag & INP_IPV6PROTO)
1920 					local_wild_mapped = inp;
1921 				else
1922 #endif
1923 					if (injail)
1924 						jail_wild = inp;
1925 					else
1926 						local_wild = inp;
1927 			}
1928 		} /* LIST_FOREACH */
1929 		if (jail_wild != NULL)
1930 			return (jail_wild);
1931 		if (local_exact != NULL)
1932 			return (local_exact);
1933 		if (local_wild != NULL)
1934 			return (local_wild);
1935 #ifdef INET6
1936 		if (local_wild_mapped != NULL)
1937 			return (local_wild_mapped);
1938 #endif
1939 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
1940 
1941 	return (NULL);
1942 }
1943 
1944 /*
1945  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
1946  * hash list lock, and will return the inpcb locked (i.e., requires
1947  * INPLOOKUP_LOCKPCB).
1948  */
1949 static struct inpcb *
1950 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1951     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
1952     struct ifnet *ifp)
1953 {
1954 	struct inpcb *inp;
1955 
1956 	INP_HASH_RLOCK(pcbinfo);
1957 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
1958 	    (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
1959 	if (inp != NULL) {
1960 		in_pcbref(inp);
1961 		INP_HASH_RUNLOCK(pcbinfo);
1962 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
1963 			INP_WLOCK(inp);
1964 			if (in_pcbrele_wlocked(inp))
1965 				return (NULL);
1966 		} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1967 			INP_RLOCK(inp);
1968 			if (in_pcbrele_rlocked(inp))
1969 				return (NULL);
1970 		} else
1971 			panic("%s: locking bug", __func__);
1972 	} else
1973 		INP_HASH_RUNLOCK(pcbinfo);
1974 	return (inp);
1975 }
1976 
1977 /*
1978  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
1979  * from which a pre-calculated hash value may be extracted.
1980  *
1981  * Possibly more of this logic should be in in_pcbgroup.c.
1982  */
1983 struct inpcb *
1984 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
1985     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
1986 {
1987 #if defined(PCBGROUP) && !defined(RSS)
1988 	struct inpcbgroup *pcbgroup;
1989 #endif
1990 
1991 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
1992 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1993 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
1994 	    ("%s: LOCKPCB not set", __func__));
1995 
1996 	/*
1997 	 * When not using RSS, use connection groups in preference to the
1998 	 * reservation table when looking up 4-tuples.  When using RSS, just
1999 	 * use the reservation table, due to the cost of the Toeplitz hash
2000 	 * in software.
2001 	 *
2002 	 * XXXRW: This policy belongs in the pcbgroup code, as in principle
2003 	 * we could be doing RSS with a non-Toeplitz hash that is affordable
2004 	 * in software.
2005 	 */
2006 #if defined(PCBGROUP) && !defined(RSS)
2007 	if (in_pcbgroup_enabled(pcbinfo)) {
2008 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2009 		    fport);
2010 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2011 		    laddr, lport, lookupflags, ifp));
2012 	}
2013 #endif
2014 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2015 	    lookupflags, ifp));
2016 }
2017 
2018 struct inpcb *
2019 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2020     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2021     struct ifnet *ifp, struct mbuf *m)
2022 {
2023 #ifdef PCBGROUP
2024 	struct inpcbgroup *pcbgroup;
2025 #endif
2026 
2027 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2028 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2029 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2030 	    ("%s: LOCKPCB not set", __func__));
2031 
2032 #ifdef PCBGROUP
2033 	/*
2034 	 * If we can use a hardware-generated hash to look up the connection
2035 	 * group, use that connection group to find the inpcb.  Otherwise
2036 	 * fall back on a software hash -- or the reservation table if we're
2037 	 * using RSS.
2038 	 *
2039 	 * XXXRW: As above, that policy belongs in the pcbgroup code.
2040 	 */
2041 	if (in_pcbgroup_enabled(pcbinfo) &&
2042 	    !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
2043 		pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
2044 		    m->m_pkthdr.flowid);
2045 		if (pcbgroup != NULL)
2046 			return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
2047 			    fport, laddr, lport, lookupflags, ifp));
2048 #ifndef RSS
2049 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2050 		    fport);
2051 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2052 		    laddr, lport, lookupflags, ifp));
2053 #endif
2054 	}
2055 #endif
2056 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2057 	    lookupflags, ifp));
2058 }
2059 #endif /* INET */
2060 
2061 /*
2062  * Insert PCB onto various hash lists.
2063  */
2064 static int
2065 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
2066 {
2067 	struct inpcbhead *pcbhash;
2068 	struct inpcbporthead *pcbporthash;
2069 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2070 	struct inpcbport *phd;
2071 	u_int32_t hashkey_faddr;
2072 
2073 	INP_WLOCK_ASSERT(inp);
2074 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2075 
2076 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2077 	    ("in_pcbinshash: INP_INHASHLIST"));
2078 
2079 #ifdef INET6
2080 	if (inp->inp_vflag & INP_IPV6)
2081 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2082 	else
2083 #endif
2084 	hashkey_faddr = inp->inp_faddr.s_addr;
2085 
2086 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2087 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2088 
2089 	pcbporthash = &pcbinfo->ipi_porthashbase[
2090 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2091 
2092 	/*
2093 	 * Go through port list and look for a head for this lport.
2094 	 */
2095 	LIST_FOREACH(phd, pcbporthash, phd_hash) {
2096 		if (phd->phd_port == inp->inp_lport)
2097 			break;
2098 	}
2099 	/*
2100 	 * If none exists, malloc one and tack it on.
2101 	 */
2102 	if (phd == NULL) {
2103 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
2104 		if (phd == NULL) {
2105 			return (ENOBUFS); /* XXX */
2106 		}
2107 		phd->phd_port = inp->inp_lport;
2108 		LIST_INIT(&phd->phd_pcblist);
2109 		LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2110 	}
2111 	inp->inp_phd = phd;
2112 	LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2113 	LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2114 	inp->inp_flags |= INP_INHASHLIST;
2115 #ifdef PCBGROUP
2116 	if (do_pcbgroup_update)
2117 		in_pcbgroup_update(inp);
2118 #endif
2119 	return (0);
2120 }
2121 
2122 /*
2123  * For now, there are two public interfaces to insert an inpcb into the hash
2124  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
2125  * is used only in the TCP syncache, where in_pcbinshash is called before the
2126  * full 4-tuple is set for the inpcb, and we don't want to install in the
2127  * pcbgroup until later.
2128  *
2129  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
2130  * connection groups, and partially initialised inpcbs should not be exposed
2131  * to either reservation hash tables or pcbgroups.
2132  */
2133 int
2134 in_pcbinshash(struct inpcb *inp)
2135 {
2136 
2137 	return (in_pcbinshash_internal(inp, 1));
2138 }
2139 
2140 int
2141 in_pcbinshash_nopcbgroup(struct inpcb *inp)
2142 {
2143 
2144 	return (in_pcbinshash_internal(inp, 0));
2145 }
2146 
2147 /*
2148  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2149  * changed. NOTE: This does not handle the case of the lport changing (the
2150  * hashed port list would have to be updated as well), so the lport must
2151  * not change after in_pcbinshash() has been called.
2152  */
2153 void
2154 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
2155 {
2156 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2157 	struct inpcbhead *head;
2158 	u_int32_t hashkey_faddr;
2159 
2160 	INP_WLOCK_ASSERT(inp);
2161 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2162 
2163 	KASSERT(inp->inp_flags & INP_INHASHLIST,
2164 	    ("in_pcbrehash: !INP_INHASHLIST"));
2165 
2166 #ifdef INET6
2167 	if (inp->inp_vflag & INP_IPV6)
2168 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2169 	else
2170 #endif
2171 	hashkey_faddr = inp->inp_faddr.s_addr;
2172 
2173 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2174 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2175 
2176 	LIST_REMOVE(inp, inp_hash);
2177 	LIST_INSERT_HEAD(head, inp, inp_hash);
2178 
2179 #ifdef PCBGROUP
2180 	if (m != NULL)
2181 		in_pcbgroup_update_mbuf(inp, m);
2182 	else
2183 		in_pcbgroup_update(inp);
2184 #endif
2185 }
2186 
2187 void
2188 in_pcbrehash(struct inpcb *inp)
2189 {
2190 
2191 	in_pcbrehash_mbuf(inp, NULL);
2192 }
2193 
2194 /*
2195  * Remove PCB from various lists.
2196  */
2197 static void
2198 in_pcbremlists(struct inpcb *inp)
2199 {
2200 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2201 
2202 #ifdef INVARIANTS
2203 	if (pcbinfo == &V_tcbinfo) {
2204 		INP_INFO_RLOCK_ASSERT(pcbinfo);
2205 	} else {
2206 		INP_INFO_WLOCK_ASSERT(pcbinfo);
2207 	}
2208 #endif
2209 
2210 	INP_WLOCK_ASSERT(inp);
2211 	INP_LIST_WLOCK_ASSERT(pcbinfo);
2212 
2213 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2214 	if (inp->inp_flags & INP_INHASHLIST) {
2215 		struct inpcbport *phd = inp->inp_phd;
2216 
2217 		INP_HASH_WLOCK(pcbinfo);
2218 		LIST_REMOVE(inp, inp_hash);
2219 		LIST_REMOVE(inp, inp_portlist);
2220 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
2221 			LIST_REMOVE(phd, phd_hash);
2222 			free(phd, M_PCB);
2223 		}
2224 		INP_HASH_WUNLOCK(pcbinfo);
2225 		inp->inp_flags &= ~INP_INHASHLIST;
2226 	}
2227 	LIST_REMOVE(inp, inp_list);
2228 	pcbinfo->ipi_count--;
2229 #ifdef PCBGROUP
2230 	in_pcbgroup_remove(inp);
2231 #endif
2232 }
2233 
2234 /*
2235  * Check for alternatives when higher level complains
2236  * about service problems.  For now, invalidate cached
2237  * routing information.  If the route was created dynamically
2238  * (by a redirect), time to try a default gateway again.
2239  */
2240 void
2241 in_losing(struct inpcb *inp)
2242 {
2243 
2244 	RO_RTFREE(&inp->inp_route);
2245 	if (inp->inp_route.ro_lle)
2246 		LLE_FREE(inp->inp_route.ro_lle);	/* zeros ro_lle */
2247 	return;
2248 }
2249 
2250 /*
2251  * A set label operation has occurred at the socket layer, propagate the
2252  * label change into the in_pcb for the socket.
2253  */
2254 void
2255 in_pcbsosetlabel(struct socket *so)
2256 {
2257 #ifdef MAC
2258 	struct inpcb *inp;
2259 
2260 	inp = sotoinpcb(so);
2261 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2262 
2263 	INP_WLOCK(inp);
2264 	SOCK_LOCK(so);
2265 	mac_inpcb_sosetlabel(so, inp);
2266 	SOCK_UNLOCK(so);
2267 	INP_WUNLOCK(inp);
2268 #endif
2269 }
2270 
2271 /*
2272  * ipport_tick runs once per second, determining if random port allocation
2273  * should be continued.  If more than ipport_randomcps ports have been
2274  * allocated in the last second, then we return to sequential port
2275  * allocation. We return to random allocation only once we drop below
2276  * ipport_randomcps for at least ipport_randomtime seconds.
2277  */
2278 static void
2279 ipport_tick(void *xtp)
2280 {
2281 	VNET_ITERATOR_DECL(vnet_iter);
2282 
2283 	VNET_LIST_RLOCK_NOSLEEP();
2284 	VNET_FOREACH(vnet_iter) {
2285 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
2286 		if (V_ipport_tcpallocs <=
2287 		    V_ipport_tcplastcount + V_ipport_randomcps) {
2288 			if (V_ipport_stoprandom > 0)
2289 				V_ipport_stoprandom--;
2290 		} else
2291 			V_ipport_stoprandom = V_ipport_randomtime;
2292 		V_ipport_tcplastcount = V_ipport_tcpallocs;
2293 		CURVNET_RESTORE();
2294 	}
2295 	VNET_LIST_RUNLOCK_NOSLEEP();
2296 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2297 }
2298 
2299 static void
2300 ip_fini(void *xtp)
2301 {
2302 
2303 	callout_stop(&ipport_tick_callout);
2304 }
2305 
2306 /*
2307  * The ipport_callout should start running at about the time we attach the
2308  * inet or inet6 domains.
2309  */
2310 static void
2311 ipport_tick_init(const void *unused __unused)
2312 {
2313 
2314 	/* Start ipport_tick. */
2315 	callout_init(&ipport_tick_callout, 1);
2316 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2317 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2318 		SHUTDOWN_PRI_DEFAULT);
2319 }
2320 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
2321     ipport_tick_init, NULL);
2322 
2323 void
2324 inp_wlock(struct inpcb *inp)
2325 {
2326 
2327 	INP_WLOCK(inp);
2328 }
2329 
2330 void
2331 inp_wunlock(struct inpcb *inp)
2332 {
2333 
2334 	INP_WUNLOCK(inp);
2335 }
2336 
2337 void
2338 inp_rlock(struct inpcb *inp)
2339 {
2340 
2341 	INP_RLOCK(inp);
2342 }
2343 
2344 void
2345 inp_runlock(struct inpcb *inp)
2346 {
2347 
2348 	INP_RUNLOCK(inp);
2349 }
2350 
2351 #ifdef INVARIANT_SUPPORT
2352 void
2353 inp_lock_assert(struct inpcb *inp)
2354 {
2355 
2356 	INP_WLOCK_ASSERT(inp);
2357 }
2358 
2359 void
2360 inp_unlock_assert(struct inpcb *inp)
2361 {
2362 
2363 	INP_UNLOCK_ASSERT(inp);
2364 }
2365 #endif
2366 
2367 void
2368 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2369 {
2370 	struct inpcb *inp;
2371 
2372 	INP_INFO_WLOCK(&V_tcbinfo);
2373 	LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2374 		INP_WLOCK(inp);
2375 		func(inp, arg);
2376 		INP_WUNLOCK(inp);
2377 	}
2378 	INP_INFO_WUNLOCK(&V_tcbinfo);
2379 }
2380 
2381 struct socket *
2382 inp_inpcbtosocket(struct inpcb *inp)
2383 {
2384 
2385 	INP_WLOCK_ASSERT(inp);
2386 	return (inp->inp_socket);
2387 }
2388 
2389 struct tcpcb *
2390 inp_inpcbtotcpcb(struct inpcb *inp)
2391 {
2392 
2393 	INP_WLOCK_ASSERT(inp);
2394 	return ((struct tcpcb *)inp->inp_ppcb);
2395 }
2396 
2397 int
2398 inp_ip_tos_get(const struct inpcb *inp)
2399 {
2400 
2401 	return (inp->inp_ip_tos);
2402 }
2403 
2404 void
2405 inp_ip_tos_set(struct inpcb *inp, int val)
2406 {
2407 
2408 	inp->inp_ip_tos = val;
2409 }
2410 
2411 void
2412 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2413     uint32_t *faddr, uint16_t *fp)
2414 {
2415 
2416 	INP_LOCK_ASSERT(inp);
2417 	*laddr = inp->inp_laddr.s_addr;
2418 	*faddr = inp->inp_faddr.s_addr;
2419 	*lp = inp->inp_lport;
2420 	*fp = inp->inp_fport;
2421 }
2422 
2423 struct inpcb *
2424 so_sotoinpcb(struct socket *so)
2425 {
2426 
2427 	return (sotoinpcb(so));
2428 }
2429 
2430 struct tcpcb *
2431 so_sototcpcb(struct socket *so)
2432 {
2433 
2434 	return (sototcpcb(so));
2435 }
2436 
2437 #ifdef DDB
2438 static void
2439 db_print_indent(int indent)
2440 {
2441 	int i;
2442 
2443 	for (i = 0; i < indent; i++)
2444 		db_printf(" ");
2445 }
2446 
2447 static void
2448 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2449 {
2450 	char faddr_str[48], laddr_str[48];
2451 
2452 	db_print_indent(indent);
2453 	db_printf("%s at %p\n", name, inc);
2454 
2455 	indent += 2;
2456 
2457 #ifdef INET6
2458 	if (inc->inc_flags & INC_ISIPV6) {
2459 		/* IPv6. */
2460 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
2461 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
2462 	} else
2463 #endif
2464 	{
2465 		/* IPv4. */
2466 		inet_ntoa_r(inc->inc_laddr, laddr_str);
2467 		inet_ntoa_r(inc->inc_faddr, faddr_str);
2468 	}
2469 	db_print_indent(indent);
2470 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2471 	    ntohs(inc->inc_lport));
2472 	db_print_indent(indent);
2473 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2474 	    ntohs(inc->inc_fport));
2475 }
2476 
2477 static void
2478 db_print_inpflags(int inp_flags)
2479 {
2480 	int comma;
2481 
2482 	comma = 0;
2483 	if (inp_flags & INP_RECVOPTS) {
2484 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2485 		comma = 1;
2486 	}
2487 	if (inp_flags & INP_RECVRETOPTS) {
2488 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2489 		comma = 1;
2490 	}
2491 	if (inp_flags & INP_RECVDSTADDR) {
2492 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2493 		comma = 1;
2494 	}
2495 	if (inp_flags & INP_ORIGDSTADDR) {
2496 		db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
2497 		comma = 1;
2498 	}
2499 	if (inp_flags & INP_HDRINCL) {
2500 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
2501 		comma = 1;
2502 	}
2503 	if (inp_flags & INP_HIGHPORT) {
2504 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2505 		comma = 1;
2506 	}
2507 	if (inp_flags & INP_LOWPORT) {
2508 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
2509 		comma = 1;
2510 	}
2511 	if (inp_flags & INP_ANONPORT) {
2512 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
2513 		comma = 1;
2514 	}
2515 	if (inp_flags & INP_RECVIF) {
2516 		db_printf("%sINP_RECVIF", comma ? ", " : "");
2517 		comma = 1;
2518 	}
2519 	if (inp_flags & INP_MTUDISC) {
2520 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
2521 		comma = 1;
2522 	}
2523 	if (inp_flags & INP_RECVTTL) {
2524 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
2525 		comma = 1;
2526 	}
2527 	if (inp_flags & INP_DONTFRAG) {
2528 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2529 		comma = 1;
2530 	}
2531 	if (inp_flags & INP_RECVTOS) {
2532 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
2533 		comma = 1;
2534 	}
2535 	if (inp_flags & IN6P_IPV6_V6ONLY) {
2536 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
2537 		comma = 1;
2538 	}
2539 	if (inp_flags & IN6P_PKTINFO) {
2540 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
2541 		comma = 1;
2542 	}
2543 	if (inp_flags & IN6P_HOPLIMIT) {
2544 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
2545 		comma = 1;
2546 	}
2547 	if (inp_flags & IN6P_HOPOPTS) {
2548 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
2549 		comma = 1;
2550 	}
2551 	if (inp_flags & IN6P_DSTOPTS) {
2552 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
2553 		comma = 1;
2554 	}
2555 	if (inp_flags & IN6P_RTHDR) {
2556 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
2557 		comma = 1;
2558 	}
2559 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
2560 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
2561 		comma = 1;
2562 	}
2563 	if (inp_flags & IN6P_TCLASS) {
2564 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
2565 		comma = 1;
2566 	}
2567 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
2568 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
2569 		comma = 1;
2570 	}
2571 	if (inp_flags & INP_TIMEWAIT) {
2572 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
2573 		comma  = 1;
2574 	}
2575 	if (inp_flags & INP_ONESBCAST) {
2576 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
2577 		comma  = 1;
2578 	}
2579 	if (inp_flags & INP_DROPPED) {
2580 		db_printf("%sINP_DROPPED", comma ? ", " : "");
2581 		comma  = 1;
2582 	}
2583 	if (inp_flags & INP_SOCKREF) {
2584 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
2585 		comma  = 1;
2586 	}
2587 	if (inp_flags & IN6P_RFC2292) {
2588 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
2589 		comma = 1;
2590 	}
2591 	if (inp_flags & IN6P_MTU) {
2592 		db_printf("IN6P_MTU%s", comma ? ", " : "");
2593 		comma = 1;
2594 	}
2595 }
2596 
2597 static void
2598 db_print_inpvflag(u_char inp_vflag)
2599 {
2600 	int comma;
2601 
2602 	comma = 0;
2603 	if (inp_vflag & INP_IPV4) {
2604 		db_printf("%sINP_IPV4", comma ? ", " : "");
2605 		comma  = 1;
2606 	}
2607 	if (inp_vflag & INP_IPV6) {
2608 		db_printf("%sINP_IPV6", comma ? ", " : "");
2609 		comma  = 1;
2610 	}
2611 	if (inp_vflag & INP_IPV6PROTO) {
2612 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
2613 		comma  = 1;
2614 	}
2615 }
2616 
2617 static void
2618 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
2619 {
2620 
2621 	db_print_indent(indent);
2622 	db_printf("%s at %p\n", name, inp);
2623 
2624 	indent += 2;
2625 
2626 	db_print_indent(indent);
2627 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
2628 
2629 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
2630 
2631 	db_print_indent(indent);
2632 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
2633 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
2634 
2635 	db_print_indent(indent);
2636 	db_printf("inp_label: %p   inp_flags: 0x%x (",
2637 	   inp->inp_label, inp->inp_flags);
2638 	db_print_inpflags(inp->inp_flags);
2639 	db_printf(")\n");
2640 
2641 	db_print_indent(indent);
2642 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
2643 	    inp->inp_vflag);
2644 	db_print_inpvflag(inp->inp_vflag);
2645 	db_printf(")\n");
2646 
2647 	db_print_indent(indent);
2648 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
2649 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
2650 
2651 	db_print_indent(indent);
2652 #ifdef INET6
2653 	if (inp->inp_vflag & INP_IPV6) {
2654 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
2655 		    "in6p_moptions: %p\n", inp->in6p_options,
2656 		    inp->in6p_outputopts, inp->in6p_moptions);
2657 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
2658 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
2659 		    inp->in6p_hops);
2660 	} else
2661 #endif
2662 	{
2663 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
2664 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
2665 		    inp->inp_options, inp->inp_moptions);
2666 	}
2667 
2668 	db_print_indent(indent);
2669 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
2670 	    (uintmax_t)inp->inp_gencnt);
2671 }
2672 
2673 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
2674 {
2675 	struct inpcb *inp;
2676 
2677 	if (!have_addr) {
2678 		db_printf("usage: show inpcb <addr>\n");
2679 		return;
2680 	}
2681 	inp = (struct inpcb *)addr;
2682 
2683 	db_print_inpcb(inp, "inpcb", 0);
2684 }
2685 #endif /* DDB */
2686 
2687 #ifdef RATELIMIT
2688 /*
2689  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
2690  * if any.
2691  */
2692 int
2693 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
2694 {
2695 	union if_snd_tag_modify_params params = {
2696 		.rate_limit.max_rate = max_pacing_rate,
2697 	};
2698 	struct m_snd_tag *mst;
2699 	struct ifnet *ifp;
2700 	int error;
2701 
2702 	mst = inp->inp_snd_tag;
2703 	if (mst == NULL)
2704 		return (EINVAL);
2705 
2706 	ifp = mst->ifp;
2707 	if (ifp == NULL)
2708 		return (EINVAL);
2709 
2710 	if (ifp->if_snd_tag_modify == NULL) {
2711 		error = EOPNOTSUPP;
2712 	} else {
2713 		error = ifp->if_snd_tag_modify(mst, &params);
2714 	}
2715 	return (error);
2716 }
2717 
2718 /*
2719  * Query existing TX rate limit based on the existing
2720  * "inp->inp_snd_tag", if any.
2721  */
2722 int
2723 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
2724 {
2725 	union if_snd_tag_query_params params = { };
2726 	struct m_snd_tag *mst;
2727 	struct ifnet *ifp;
2728 	int error;
2729 
2730 	mst = inp->inp_snd_tag;
2731 	if (mst == NULL)
2732 		return (EINVAL);
2733 
2734 	ifp = mst->ifp;
2735 	if (ifp == NULL)
2736 		return (EINVAL);
2737 
2738 	if (ifp->if_snd_tag_query == NULL) {
2739 		error = EOPNOTSUPP;
2740 	} else {
2741 		error = ifp->if_snd_tag_query(mst, &params);
2742 		if (error == 0 &&  p_max_pacing_rate != NULL)
2743 			*p_max_pacing_rate = params.rate_limit.max_rate;
2744 	}
2745 	return (error);
2746 }
2747 
2748 /*
2749  * Allocate a new TX rate limit send tag from the network interface
2750  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
2751  */
2752 int
2753 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
2754     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate)
2755 {
2756 	union if_snd_tag_alloc_params params = {
2757 		.rate_limit.hdr.type = IF_SND_TAG_TYPE_RATE_LIMIT,
2758 		.rate_limit.hdr.flowid = flowid,
2759 		.rate_limit.hdr.flowtype = flowtype,
2760 		.rate_limit.max_rate = max_pacing_rate,
2761 	};
2762 	int error;
2763 
2764 	INP_WLOCK_ASSERT(inp);
2765 
2766 	if (inp->inp_snd_tag != NULL)
2767 		return (EINVAL);
2768 
2769 	if (ifp->if_snd_tag_alloc == NULL) {
2770 		error = EOPNOTSUPP;
2771 	} else {
2772 		error = ifp->if_snd_tag_alloc(ifp, &params, &inp->inp_snd_tag);
2773 
2774 		/*
2775 		 * At success increment the refcount on
2776 		 * the send tag's network interface:
2777 		 */
2778 		if (error == 0)
2779 			if_ref(inp->inp_snd_tag->ifp);
2780 	}
2781 	return (error);
2782 }
2783 
2784 /*
2785  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
2786  * if any:
2787  */
2788 void
2789 in_pcbdetach_txrtlmt(struct inpcb *inp)
2790 {
2791 	struct m_snd_tag *mst;
2792 	struct ifnet *ifp;
2793 
2794 	INP_WLOCK_ASSERT(inp);
2795 
2796 	mst = inp->inp_snd_tag;
2797 	inp->inp_snd_tag = NULL;
2798 
2799 	if (mst == NULL)
2800 		return;
2801 
2802 	ifp = mst->ifp;
2803 	if (ifp == NULL)
2804 		return;
2805 
2806 	/*
2807 	 * If the device was detached while we still had reference(s)
2808 	 * on the ifp, we assume if_snd_tag_free() was replaced with
2809 	 * stubs.
2810 	 */
2811 	ifp->if_snd_tag_free(mst);
2812 
2813 	/* release reference count on network interface */
2814 	if_rele(ifp);
2815 }
2816 
2817 /*
2818  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
2819  * is set in the fast path and will attach/detach/modify the TX rate
2820  * limit send tag based on the socket's so_max_pacing_rate value.
2821  */
2822 void
2823 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
2824 {
2825 	struct socket *socket;
2826 	uint32_t max_pacing_rate;
2827 	bool did_upgrade;
2828 	int error;
2829 
2830 	if (inp == NULL)
2831 		return;
2832 
2833 	socket = inp->inp_socket;
2834 	if (socket == NULL)
2835 		return;
2836 
2837 	if (!INP_WLOCKED(inp)) {
2838 		/*
2839 		 * NOTE: If the write locking fails, we need to bail
2840 		 * out and use the non-ratelimited ring for the
2841 		 * transmit until there is a new chance to get the
2842 		 * write lock.
2843 		 */
2844 		if (!INP_TRY_UPGRADE(inp))
2845 			return;
2846 		did_upgrade = 1;
2847 	} else {
2848 		did_upgrade = 0;
2849 	}
2850 
2851 	/*
2852 	 * NOTE: The so_max_pacing_rate value is read unlocked,
2853 	 * because atomic updates are not required since the variable
2854 	 * is checked at every mbuf we send. It is assumed that the
2855 	 * variable read itself will be atomic.
2856 	 */
2857 	max_pacing_rate = socket->so_max_pacing_rate;
2858 
2859 	/*
2860 	 * NOTE: When attaching to a network interface a reference is
2861 	 * made to ensure the network interface doesn't go away until
2862 	 * all ratelimit connections are gone. The network interface
2863 	 * pointers compared below represent valid network interfaces,
2864 	 * except when comparing towards NULL.
2865 	 */
2866 	if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
2867 		error = 0;
2868 	} else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
2869 		if (inp->inp_snd_tag != NULL)
2870 			in_pcbdetach_txrtlmt(inp);
2871 		error = 0;
2872 	} else if (inp->inp_snd_tag == NULL) {
2873 		/*
2874 		 * In order to utilize packet pacing with RSS, we need
2875 		 * to wait until there is a valid RSS hash before we
2876 		 * can proceed:
2877 		 */
2878 		if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
2879 			error = EAGAIN;
2880 		} else {
2881 			error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
2882 			    mb->m_pkthdr.flowid, max_pacing_rate);
2883 		}
2884 	} else {
2885 		error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
2886 	}
2887 	if (error == 0 || error == EOPNOTSUPP)
2888 		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
2889 	if (did_upgrade)
2890 		INP_DOWNGRADE(inp);
2891 }
2892 
2893 /*
2894  * Track route changes for TX rate limiting.
2895  */
2896 void
2897 in_pcboutput_eagain(struct inpcb *inp)
2898 {
2899 	struct socket *socket;
2900 	bool did_upgrade;
2901 
2902 	if (inp == NULL)
2903 		return;
2904 
2905 	socket = inp->inp_socket;
2906 	if (socket == NULL)
2907 		return;
2908 
2909 	if (inp->inp_snd_tag == NULL)
2910 		return;
2911 
2912 	if (!INP_WLOCKED(inp)) {
2913 		/*
2914 		 * NOTE: If the write locking fails, we need to bail
2915 		 * out and use the non-ratelimited ring for the
2916 		 * transmit until there is a new chance to get the
2917 		 * write lock.
2918 		 */
2919 		if (!INP_TRY_UPGRADE(inp))
2920 			return;
2921 		did_upgrade = 1;
2922 	} else {
2923 		did_upgrade = 0;
2924 	}
2925 
2926 	/* detach rate limiting */
2927 	in_pcbdetach_txrtlmt(inp);
2928 
2929 	/* make sure new mbuf send tag allocation is made */
2930 	inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
2931 
2932 	if (did_upgrade)
2933 		INP_DOWNGRADE(inp);
2934 }
2935 #endif /* RATELIMIT */
2936