1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * Copyright (c) 2021-2022 Gleb Smirnoff <glebius@FreeBSD.org> 9 * All rights reserved. 10 * 11 * Portions of this software were developed by Robert N. M. Watson under 12 * contract to Juniper Networks, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include "opt_ddb.h" 45 #include "opt_ipsec.h" 46 #include "opt_inet.h" 47 #include "opt_inet6.h" 48 #include "opt_ratelimit.h" 49 #include "opt_route.h" 50 #include "opt_rss.h" 51 52 #include <sys/param.h> 53 #include <sys/hash.h> 54 #include <sys/systm.h> 55 #include <sys/libkern.h> 56 #include <sys/lock.h> 57 #include <sys/malloc.h> 58 #include <sys/mbuf.h> 59 #include <sys/eventhandler.h> 60 #include <sys/domain.h> 61 #include <sys/protosw.h> 62 #include <sys/smp.h> 63 #include <sys/socket.h> 64 #include <sys/socketvar.h> 65 #include <sys/sockio.h> 66 #include <sys/priv.h> 67 #include <sys/proc.h> 68 #include <sys/refcount.h> 69 #include <sys/jail.h> 70 #include <sys/kernel.h> 71 #include <sys/sysctl.h> 72 73 #ifdef DDB 74 #include <ddb/ddb.h> 75 #endif 76 77 #include <vm/uma.h> 78 #include <vm/vm.h> 79 80 #include <net/if.h> 81 #include <net/if_var.h> 82 #include <net/if_private.h> 83 #include <net/if_types.h> 84 #include <net/if_llatbl.h> 85 #include <net/route.h> 86 #include <net/rss_config.h> 87 #include <net/vnet.h> 88 89 #if defined(INET) || defined(INET6) 90 #include <netinet/in.h> 91 #include <netinet/in_pcb.h> 92 #include <netinet/in_pcb_var.h> 93 #include <netinet/tcp.h> 94 #ifdef INET 95 #include <netinet/in_var.h> 96 #include <netinet/in_fib.h> 97 #endif 98 #include <netinet/ip_var.h> 99 #ifdef INET6 100 #include <netinet/ip6.h> 101 #include <netinet6/in6_pcb.h> 102 #include <netinet6/in6_var.h> 103 #include <netinet6/ip6_var.h> 104 #endif /* INET6 */ 105 #include <net/route/nhop.h> 106 #endif 107 108 #include <netipsec/ipsec_support.h> 109 110 #include <security/mac/mac_framework.h> 111 112 #define INPCBLBGROUP_SIZMIN 8 113 #define INPCBLBGROUP_SIZMAX 256 114 #define INP_FREED 0x00000200 /* See in_pcb.h. */ 115 116 /* 117 * These configure the range of local port addresses assigned to 118 * "unspecified" outgoing connections/packets/whatever. 119 */ 120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 126 127 /* 128 * Reserved ports accessible only to root. There are significant 129 * security considerations that must be accounted for when changing these, 130 * but the security benefits can be great. Please be careful. 131 */ 132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 133 VNET_DEFINE(int, ipport_reservedlow); 134 135 /* Enable random ephemeral port allocation by default. */ 136 VNET_DEFINE(int, ipport_randomized) = 1; 137 138 #ifdef INET 139 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 140 struct in_addr faddr, u_int fport_arg, 141 struct in_addr laddr, u_int lport_arg, 142 int lookupflags, uint8_t numa_domain); 143 144 #define RANGECHK(var, min, max) \ 145 if ((var) < (min)) { (var) = (min); } \ 146 else if ((var) > (max)) { (var) = (max); } 147 148 static int 149 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 150 { 151 int error; 152 153 error = sysctl_handle_int(oidp, arg1, arg2, req); 154 if (error == 0) { 155 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 156 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 157 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 158 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 159 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 160 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 161 } 162 return (error); 163 } 164 165 #undef RANGECHK 166 167 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, 168 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 169 "IP Ports"); 170 171 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 172 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 173 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", 174 ""); 175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 176 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 177 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", 178 ""); 179 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 180 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 181 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", 182 ""); 183 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 184 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 185 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", 186 ""); 187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 188 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 189 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", 190 ""); 191 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 192 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 193 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", 194 ""); 195 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 196 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 197 &VNET_NAME(ipport_reservedhigh), 0, ""); 198 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 199 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 200 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 201 CTLFLAG_VNET | CTLFLAG_RW, 202 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 203 204 #ifdef RATELIMIT 205 counter_u64_t rate_limit_new; 206 counter_u64_t rate_limit_chg; 207 counter_u64_t rate_limit_active; 208 counter_u64_t rate_limit_alloc_fail; 209 counter_u64_t rate_limit_set_ok; 210 211 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 212 "IP Rate Limiting"); 213 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD, 214 &rate_limit_active, "Active rate limited connections"); 215 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD, 216 &rate_limit_alloc_fail, "Rate limited connection failures"); 217 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD, 218 &rate_limit_set_ok, "Rate limited setting succeeded"); 219 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD, 220 &rate_limit_new, "Total Rate limit new attempts"); 221 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD, 222 &rate_limit_chg, "Total Rate limited change attempts"); 223 224 #endif /* RATELIMIT */ 225 226 #endif /* INET */ 227 228 VNET_DEFINE(uint32_t, in_pcbhashseed); 229 static void 230 in_pcbhashseed_init(void) 231 { 232 233 V_in_pcbhashseed = arc4random(); 234 } 235 VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, 236 in_pcbhashseed_init, 0); 237 238 static void in_pcbremhash(struct inpcb *); 239 240 /* 241 * in_pcb.c: manage the Protocol Control Blocks. 242 * 243 * NOTE: It is assumed that most of these functions will be called with 244 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 245 * functions often modify hash chains or addresses in pcbs. 246 */ 247 248 static struct inpcblbgroup * 249 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, struct ucred *cred, 250 u_char vflag, uint16_t port, const union in_dependaddr *addr, int size, 251 uint8_t numa_domain) 252 { 253 struct inpcblbgroup *grp; 254 size_t bytes; 255 256 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 257 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 258 if (grp == NULL) 259 return (NULL); 260 grp->il_cred = crhold(cred); 261 grp->il_vflag = vflag; 262 grp->il_lport = port; 263 grp->il_numa_domain = numa_domain; 264 grp->il_dependladdr = *addr; 265 grp->il_inpsiz = size; 266 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 267 return (grp); 268 } 269 270 static void 271 in_pcblbgroup_free_deferred(epoch_context_t ctx) 272 { 273 struct inpcblbgroup *grp; 274 275 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); 276 crfree(grp->il_cred); 277 free(grp, M_PCB); 278 } 279 280 static void 281 in_pcblbgroup_free(struct inpcblbgroup *grp) 282 { 283 284 CK_LIST_REMOVE(grp, il_list); 285 NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx); 286 } 287 288 static struct inpcblbgroup * 289 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 290 struct inpcblbgroup *old_grp, int size) 291 { 292 struct inpcblbgroup *grp; 293 int i; 294 295 grp = in_pcblbgroup_alloc(hdr, old_grp->il_cred, old_grp->il_vflag, 296 old_grp->il_lport, &old_grp->il_dependladdr, size, 297 old_grp->il_numa_domain); 298 if (grp == NULL) 299 return (NULL); 300 301 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 302 ("invalid new local group size %d and old local group count %d", 303 grp->il_inpsiz, old_grp->il_inpcnt)); 304 305 for (i = 0; i < old_grp->il_inpcnt; ++i) 306 grp->il_inp[i] = old_grp->il_inp[i]; 307 grp->il_inpcnt = old_grp->il_inpcnt; 308 in_pcblbgroup_free(old_grp); 309 return (grp); 310 } 311 312 /* 313 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] 314 * and shrink group if possible. 315 */ 316 static void 317 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, 318 int i) 319 { 320 struct inpcblbgroup *grp, *new_grp; 321 322 grp = *grpp; 323 for (; i + 1 < grp->il_inpcnt; ++i) 324 grp->il_inp[i] = grp->il_inp[i + 1]; 325 grp->il_inpcnt--; 326 327 if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && 328 grp->il_inpcnt <= grp->il_inpsiz / 4) { 329 /* Shrink this group. */ 330 new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); 331 if (new_grp != NULL) 332 *grpp = new_grp; 333 } 334 } 335 336 /* 337 * Add PCB to load balance group for SO_REUSEPORT_LB option. 338 */ 339 static int 340 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain) 341 { 342 const static struct timeval interval = { 60, 0 }; 343 static struct timeval lastprint; 344 struct inpcbinfo *pcbinfo; 345 struct inpcblbgrouphead *hdr; 346 struct inpcblbgroup *grp; 347 uint32_t idx; 348 349 pcbinfo = inp->inp_pcbinfo; 350 351 INP_WLOCK_ASSERT(inp); 352 INP_HASH_WLOCK_ASSERT(pcbinfo); 353 354 #ifdef INET6 355 /* 356 * Don't allow IPv4 mapped INET6 wild socket. 357 */ 358 if ((inp->inp_vflag & INP_IPV4) && 359 inp->inp_laddr.s_addr == INADDR_ANY && 360 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 361 return (0); 362 } 363 #endif 364 365 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); 366 hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; 367 CK_LIST_FOREACH(grp, hdr, il_list) { 368 if (grp->il_cred->cr_prison == inp->inp_cred->cr_prison && 369 grp->il_vflag == inp->inp_vflag && 370 grp->il_lport == inp->inp_lport && 371 grp->il_numa_domain == numa_domain && 372 memcmp(&grp->il_dependladdr, 373 &inp->inp_inc.inc_ie.ie_dependladdr, 374 sizeof(grp->il_dependladdr)) == 0) { 375 break; 376 } 377 } 378 if (grp == NULL) { 379 /* Create new load balance group. */ 380 grp = in_pcblbgroup_alloc(hdr, inp->inp_cred, inp->inp_vflag, 381 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 382 INPCBLBGROUP_SIZMIN, numa_domain); 383 if (grp == NULL) 384 return (ENOBUFS); 385 } else if (grp->il_inpcnt == grp->il_inpsiz) { 386 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 387 if (ratecheck(&lastprint, &interval)) 388 printf("lb group port %d, limit reached\n", 389 ntohs(grp->il_lport)); 390 return (0); 391 } 392 393 /* Expand this local group. */ 394 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 395 if (grp == NULL) 396 return (ENOBUFS); 397 } 398 399 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 400 ("invalid local group size %d and count %d", grp->il_inpsiz, 401 grp->il_inpcnt)); 402 403 grp->il_inp[grp->il_inpcnt] = inp; 404 grp->il_inpcnt++; 405 return (0); 406 } 407 408 /* 409 * Remove PCB from load balance group. 410 */ 411 static void 412 in_pcbremlbgrouphash(struct inpcb *inp) 413 { 414 struct inpcbinfo *pcbinfo; 415 struct inpcblbgrouphead *hdr; 416 struct inpcblbgroup *grp; 417 int i; 418 419 pcbinfo = inp->inp_pcbinfo; 420 421 INP_WLOCK_ASSERT(inp); 422 INP_HASH_WLOCK_ASSERT(pcbinfo); 423 424 hdr = &pcbinfo->ipi_lbgrouphashbase[ 425 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 426 CK_LIST_FOREACH(grp, hdr, il_list) { 427 for (i = 0; i < grp->il_inpcnt; ++i) { 428 if (grp->il_inp[i] != inp) 429 continue; 430 431 if (grp->il_inpcnt == 1) { 432 /* We are the last, free this local group. */ 433 in_pcblbgroup_free(grp); 434 } else { 435 /* Pull up inpcbs, shrink group if possible. */ 436 in_pcblbgroup_reorder(hdr, &grp, i); 437 } 438 return; 439 } 440 } 441 } 442 443 int 444 in_pcblbgroup_numa(struct inpcb *inp, int arg) 445 { 446 struct inpcbinfo *pcbinfo; 447 struct inpcblbgrouphead *hdr; 448 struct inpcblbgroup *grp; 449 int err, i; 450 uint8_t numa_domain; 451 452 switch (arg) { 453 case TCP_REUSPORT_LB_NUMA_NODOM: 454 numa_domain = M_NODOM; 455 break; 456 case TCP_REUSPORT_LB_NUMA_CURDOM: 457 numa_domain = PCPU_GET(domain); 458 break; 459 default: 460 if (arg < 0 || arg >= vm_ndomains) 461 return (EINVAL); 462 numa_domain = arg; 463 } 464 465 err = 0; 466 pcbinfo = inp->inp_pcbinfo; 467 INP_WLOCK_ASSERT(inp); 468 INP_HASH_WLOCK(pcbinfo); 469 hdr = &pcbinfo->ipi_lbgrouphashbase[ 470 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 471 CK_LIST_FOREACH(grp, hdr, il_list) { 472 for (i = 0; i < grp->il_inpcnt; ++i) { 473 if (grp->il_inp[i] != inp) 474 continue; 475 476 if (grp->il_numa_domain == numa_domain) { 477 goto abort_with_hash_wlock; 478 } 479 480 /* Remove it from the old group. */ 481 in_pcbremlbgrouphash(inp); 482 483 /* Add it to the new group based on numa domain. */ 484 in_pcbinslbgrouphash(inp, numa_domain); 485 goto abort_with_hash_wlock; 486 } 487 } 488 err = ENOENT; 489 abort_with_hash_wlock: 490 INP_HASH_WUNLOCK(pcbinfo); 491 return (err); 492 } 493 494 /* Make sure it is safe to use hashinit(9) on CK_LIST. */ 495 CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb))); 496 497 /* 498 * Initialize an inpcbinfo - a per-VNET instance of connections db. 499 */ 500 void 501 in_pcbinfo_init(struct inpcbinfo *pcbinfo, struct inpcbstorage *pcbstor, 502 u_int hash_nelements, u_int porthash_nelements) 503 { 504 505 mtx_init(&pcbinfo->ipi_lock, pcbstor->ips_infolock_name, NULL, MTX_DEF); 506 mtx_init(&pcbinfo->ipi_hash_lock, pcbstor->ips_hashlock_name, 507 NULL, MTX_DEF); 508 #ifdef VIMAGE 509 pcbinfo->ipi_vnet = curvnet; 510 #endif 511 CK_LIST_INIT(&pcbinfo->ipi_listhead); 512 pcbinfo->ipi_count = 0; 513 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 514 &pcbinfo->ipi_hashmask); 515 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); 516 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 517 &pcbinfo->ipi_porthashmask); 518 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, 519 &pcbinfo->ipi_lbgrouphashmask); 520 pcbinfo->ipi_zone = pcbstor->ips_zone; 521 pcbinfo->ipi_portzone = pcbstor->ips_portzone; 522 pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone); 523 } 524 525 /* 526 * Destroy an inpcbinfo. 527 */ 528 void 529 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 530 { 531 532 KASSERT(pcbinfo->ipi_count == 0, 533 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 534 535 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 536 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 537 pcbinfo->ipi_porthashmask); 538 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 539 pcbinfo->ipi_lbgrouphashmask); 540 mtx_destroy(&pcbinfo->ipi_hash_lock); 541 mtx_destroy(&pcbinfo->ipi_lock); 542 } 543 544 /* 545 * Initialize a pcbstorage - per protocol zones to allocate inpcbs. 546 */ 547 static void inpcb_dtor(void *, int, void *); 548 static void inpcb_fini(void *, int); 549 void 550 in_pcbstorage_init(void *arg) 551 { 552 struct inpcbstorage *pcbstor = arg; 553 554 pcbstor->ips_zone = uma_zcreate(pcbstor->ips_zone_name, 555 pcbstor->ips_size, NULL, inpcb_dtor, pcbstor->ips_pcbinit, 556 inpcb_fini, UMA_ALIGN_CACHE, UMA_ZONE_SMR); 557 pcbstor->ips_portzone = uma_zcreate(pcbstor->ips_portzone_name, 558 sizeof(struct inpcbport), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 559 uma_zone_set_smr(pcbstor->ips_portzone, 560 uma_zone_get_smr(pcbstor->ips_zone)); 561 } 562 563 /* 564 * Destroy a pcbstorage - used by unloadable protocols. 565 */ 566 void 567 in_pcbstorage_destroy(void *arg) 568 { 569 struct inpcbstorage *pcbstor = arg; 570 571 uma_zdestroy(pcbstor->ips_zone); 572 uma_zdestroy(pcbstor->ips_portzone); 573 } 574 575 /* 576 * Allocate a PCB and associate it with the socket. 577 * On success return with the PCB locked. 578 */ 579 int 580 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 581 { 582 struct inpcb *inp; 583 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 584 int error; 585 #endif 586 587 inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT); 588 if (inp == NULL) 589 return (ENOBUFS); 590 bzero(&inp->inp_start_zero, inp_zero_size); 591 #ifdef NUMA 592 inp->inp_numa_domain = M_NODOM; 593 #endif 594 inp->inp_pcbinfo = pcbinfo; 595 inp->inp_socket = so; 596 inp->inp_cred = crhold(so->so_cred); 597 inp->inp_inc.inc_fibnum = so->so_fibnum; 598 #ifdef MAC 599 error = mac_inpcb_init(inp, M_NOWAIT); 600 if (error != 0) 601 goto out; 602 mac_inpcb_create(so, inp); 603 #endif 604 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 605 error = ipsec_init_pcbpolicy(inp); 606 if (error != 0) { 607 #ifdef MAC 608 mac_inpcb_destroy(inp); 609 #endif 610 goto out; 611 } 612 #endif /*IPSEC*/ 613 #ifdef INET6 614 if (INP_SOCKAF(so) == AF_INET6) { 615 inp->inp_vflag |= INP_IPV6PROTO | INP_IPV6; 616 if (V_ip6_v6only) 617 inp->inp_flags |= IN6P_IPV6_V6ONLY; 618 #ifdef INET 619 else 620 inp->inp_vflag |= INP_IPV4; 621 #endif 622 if (V_ip6_auto_flowlabel) 623 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 624 inp->in6p_hops = -1; /* use kernel default */ 625 } 626 #endif 627 #if defined(INET) && defined(INET6) 628 else 629 #endif 630 #ifdef INET 631 inp->inp_vflag |= INP_IPV4; 632 #endif 633 /* 634 * Routes in inpcb's can cache L2 as well; they are guaranteed 635 * to be cleaned up. 636 */ 637 inp->inp_route.ro_flags = RT_LLE_CACHE; 638 refcount_init(&inp->inp_refcount, 1); /* Reference from socket. */ 639 INP_WLOCK(inp); 640 INP_INFO_WLOCK(pcbinfo); 641 pcbinfo->ipi_count++; 642 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 643 CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list); 644 INP_INFO_WUNLOCK(pcbinfo); 645 so->so_pcb = inp; 646 647 return (0); 648 649 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 650 out: 651 uma_zfree_smr(pcbinfo->ipi_zone, inp); 652 return (error); 653 #endif 654 } 655 656 #ifdef INET 657 int 658 in_pcbbind(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred) 659 { 660 int anonport, error; 661 662 KASSERT(sin == NULL || sin->sin_family == AF_INET, 663 ("%s: invalid address family for %p", __func__, sin)); 664 KASSERT(sin == NULL || sin->sin_len == sizeof(struct sockaddr_in), 665 ("%s: invalid address length for %p", __func__, sin)); 666 INP_WLOCK_ASSERT(inp); 667 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 668 669 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 670 return (EINVAL); 671 anonport = sin == NULL || sin->sin_port == 0; 672 error = in_pcbbind_setup(inp, sin, &inp->inp_laddr.s_addr, 673 &inp->inp_lport, cred); 674 if (error) 675 return (error); 676 if (in_pcbinshash(inp) != 0) { 677 inp->inp_laddr.s_addr = INADDR_ANY; 678 inp->inp_lport = 0; 679 return (EAGAIN); 680 } 681 if (anonport) 682 inp->inp_flags |= INP_ANONPORT; 683 return (0); 684 } 685 #endif 686 687 #if defined(INET) || defined(INET6) 688 /* 689 * Assign a local port like in_pcb_lport(), but also used with connect() 690 * and a foreign address and port. If fsa is non-NULL, choose a local port 691 * that is unused with those, otherwise one that is completely unused. 692 * lsa can be NULL for IPv6. 693 */ 694 int 695 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp, 696 struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags) 697 { 698 struct inpcbinfo *pcbinfo; 699 struct inpcb *tmpinp; 700 unsigned short *lastport; 701 int count, error; 702 u_short aux, first, last, lport; 703 #ifdef INET 704 struct in_addr laddr, faddr; 705 #endif 706 #ifdef INET6 707 struct in6_addr *laddr6, *faddr6; 708 #endif 709 710 pcbinfo = inp->inp_pcbinfo; 711 712 /* 713 * Because no actual state changes occur here, a global write lock on 714 * the pcbinfo isn't required. 715 */ 716 INP_LOCK_ASSERT(inp); 717 INP_HASH_LOCK_ASSERT(pcbinfo); 718 719 if (inp->inp_flags & INP_HIGHPORT) { 720 first = V_ipport_hifirstauto; /* sysctl */ 721 last = V_ipport_hilastauto; 722 lastport = &pcbinfo->ipi_lasthi; 723 } else if (inp->inp_flags & INP_LOWPORT) { 724 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); 725 if (error) 726 return (error); 727 first = V_ipport_lowfirstauto; /* 1023 */ 728 last = V_ipport_lowlastauto; /* 600 */ 729 lastport = &pcbinfo->ipi_lastlow; 730 } else { 731 first = V_ipport_firstauto; /* sysctl */ 732 last = V_ipport_lastauto; 733 lastport = &pcbinfo->ipi_lastport; 734 } 735 736 /* 737 * Instead of having two loops further down counting up or down 738 * make sure that first is always <= last and go with only one 739 * code path implementing all logic. 740 */ 741 if (first > last) { 742 aux = first; 743 first = last; 744 last = aux; 745 } 746 747 #ifdef INET 748 laddr.s_addr = INADDR_ANY; /* used by INET6+INET below too */ 749 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 750 if (lsa != NULL) 751 laddr = ((struct sockaddr_in *)lsa)->sin_addr; 752 if (fsa != NULL) 753 faddr = ((struct sockaddr_in *)fsa)->sin_addr; 754 } 755 #endif 756 #ifdef INET6 757 laddr6 = NULL; 758 if ((inp->inp_vflag & INP_IPV6) != 0) { 759 if (lsa != NULL) 760 laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr; 761 if (fsa != NULL) 762 faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr; 763 } 764 #endif 765 766 tmpinp = NULL; 767 lport = *lportp; 768 769 if (V_ipport_randomized) 770 *lastport = first + (arc4random() % (last - first)); 771 772 count = last - first; 773 774 do { 775 if (count-- < 0) /* completely used? */ 776 return (EADDRNOTAVAIL); 777 ++*lastport; 778 if (*lastport < first || *lastport > last) 779 *lastport = first; 780 lport = htons(*lastport); 781 782 if (fsa != NULL) { 783 #ifdef INET 784 if (lsa->sa_family == AF_INET) { 785 tmpinp = in_pcblookup_hash_locked(pcbinfo, 786 faddr, fport, laddr, lport, lookupflags, 787 M_NODOM); 788 } 789 #endif 790 #ifdef INET6 791 if (lsa->sa_family == AF_INET6) { 792 tmpinp = in6_pcblookup_hash_locked(pcbinfo, 793 faddr6, fport, laddr6, lport, lookupflags, 794 M_NODOM); 795 } 796 #endif 797 } else { 798 #ifdef INET6 799 if ((inp->inp_vflag & INP_IPV6) != 0) { 800 tmpinp = in6_pcblookup_local(pcbinfo, 801 &inp->in6p_laddr, lport, lookupflags, cred); 802 #ifdef INET 803 if (tmpinp == NULL && 804 (inp->inp_vflag & INP_IPV4)) 805 tmpinp = in_pcblookup_local(pcbinfo, 806 laddr, lport, lookupflags, cred); 807 #endif 808 } 809 #endif 810 #if defined(INET) && defined(INET6) 811 else 812 #endif 813 #ifdef INET 814 tmpinp = in_pcblookup_local(pcbinfo, laddr, 815 lport, lookupflags, cred); 816 #endif 817 } 818 } while (tmpinp != NULL); 819 820 *lportp = lport; 821 822 return (0); 823 } 824 825 /* 826 * Select a local port (number) to use. 827 */ 828 int 829 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 830 struct ucred *cred, int lookupflags) 831 { 832 struct sockaddr_in laddr; 833 834 if (laddrp) { 835 bzero(&laddr, sizeof(laddr)); 836 laddr.sin_family = AF_INET; 837 laddr.sin_addr = *laddrp; 838 } 839 return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr : 840 NULL, lportp, NULL, 0, cred, lookupflags)); 841 } 842 843 /* 844 * Return cached socket options. 845 */ 846 int 847 inp_so_options(const struct inpcb *inp) 848 { 849 int so_options; 850 851 so_options = 0; 852 853 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 854 so_options |= SO_REUSEPORT_LB; 855 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 856 so_options |= SO_REUSEPORT; 857 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 858 so_options |= SO_REUSEADDR; 859 return (so_options); 860 } 861 #endif /* INET || INET6 */ 862 863 #ifdef INET 864 /* 865 * Set up a bind operation on a PCB, performing port allocation 866 * as required, but do not actually modify the PCB. Callers can 867 * either complete the bind by setting inp_laddr/inp_lport and 868 * calling in_pcbinshash(), or they can just use the resulting 869 * port and address to authorise the sending of a once-off packet. 870 * 871 * On error, the values of *laddrp and *lportp are not changed. 872 */ 873 int 874 in_pcbbind_setup(struct inpcb *inp, struct sockaddr_in *sin, in_addr_t *laddrp, 875 u_short *lportp, struct ucred *cred) 876 { 877 struct socket *so = inp->inp_socket; 878 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 879 struct in_addr laddr; 880 u_short lport = 0; 881 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 882 int error; 883 884 /* 885 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here 886 * so that we don't have to add to the (already messy) code below. 887 */ 888 int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); 889 890 /* 891 * No state changes, so read locks are sufficient here. 892 */ 893 INP_LOCK_ASSERT(inp); 894 INP_HASH_LOCK_ASSERT(pcbinfo); 895 896 laddr.s_addr = *laddrp; 897 if (sin != NULL && laddr.s_addr != INADDR_ANY) 898 return (EINVAL); 899 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) 900 lookupflags = INPLOOKUP_WILDCARD; 901 if (sin == NULL) { 902 if ((error = prison_local_ip4(cred, &laddr)) != 0) 903 return (error); 904 } else { 905 KASSERT(sin->sin_family == AF_INET, 906 ("%s: invalid family for address %p", __func__, sin)); 907 KASSERT(sin->sin_len == sizeof(*sin), 908 ("%s: invalid length for address %p", __func__, sin)); 909 910 error = prison_local_ip4(cred, &sin->sin_addr); 911 if (error) 912 return (error); 913 if (sin->sin_port != *lportp) { 914 /* Don't allow the port to change. */ 915 if (*lportp != 0) 916 return (EINVAL); 917 lport = sin->sin_port; 918 } 919 /* NB: lport is left as 0 if the port isn't being changed. */ 920 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 921 /* 922 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 923 * allow complete duplication of binding if 924 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 925 * and a multicast address is bound on both 926 * new and duplicated sockets. 927 */ 928 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 929 reuseport = SO_REUSEADDR|SO_REUSEPORT; 930 /* 931 * XXX: How to deal with SO_REUSEPORT_LB here? 932 * Treat same as SO_REUSEPORT for now. 933 */ 934 if ((so->so_options & 935 (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) 936 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; 937 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 938 sin->sin_port = 0; /* yech... */ 939 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 940 /* 941 * Is the address a local IP address? 942 * If INP_BINDANY is set, then the socket may be bound 943 * to any endpoint address, local or not. 944 */ 945 if ((inp->inp_flags & INP_BINDANY) == 0 && 946 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 947 return (EADDRNOTAVAIL); 948 } 949 laddr = sin->sin_addr; 950 if (lport) { 951 struct inpcb *t; 952 953 /* GROSS */ 954 if (ntohs(lport) <= V_ipport_reservedhigh && 955 ntohs(lport) >= V_ipport_reservedlow && 956 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) 957 return (EACCES); 958 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 959 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { 960 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 961 lport, INPLOOKUP_WILDCARD, cred); 962 /* 963 * XXX 964 * This entire block sorely needs a rewrite. 965 */ 966 if (t != NULL && 967 (so->so_type != SOCK_STREAM || 968 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 969 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 970 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 971 (t->inp_flags2 & INP_REUSEPORT) || 972 (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && 973 (inp->inp_cred->cr_uid != 974 t->inp_cred->cr_uid)) 975 return (EADDRINUSE); 976 } 977 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 978 lport, lookupflags, cred); 979 if (t != NULL && (reuseport & inp_so_options(t)) == 0 && 980 (reuseport_lb & inp_so_options(t)) == 0) { 981 #ifdef INET6 982 if (ntohl(sin->sin_addr.s_addr) != 983 INADDR_ANY || 984 ntohl(t->inp_laddr.s_addr) != 985 INADDR_ANY || 986 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 987 (t->inp_vflag & INP_IPV6PROTO) == 0) 988 #endif 989 return (EADDRINUSE); 990 } 991 } 992 } 993 if (*lportp != 0) 994 lport = *lportp; 995 if (lport == 0) { 996 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 997 if (error != 0) 998 return (error); 999 } 1000 *laddrp = laddr.s_addr; 1001 *lportp = lport; 1002 return (0); 1003 } 1004 1005 /* 1006 * Connect from a socket to a specified address. 1007 * Both address and port must be specified in argument sin. 1008 * If don't have a local address for this socket yet, 1009 * then pick one. 1010 */ 1011 int 1012 in_pcbconnect(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred, 1013 bool rehash) 1014 { 1015 u_short lport, fport; 1016 in_addr_t laddr, faddr; 1017 int anonport, error; 1018 1019 INP_WLOCK_ASSERT(inp); 1020 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1021 1022 lport = inp->inp_lport; 1023 laddr = inp->inp_laddr.s_addr; 1024 anonport = (lport == 0); 1025 error = in_pcbconnect_setup(inp, sin, &laddr, &lport, &faddr, &fport, 1026 cred); 1027 if (error) 1028 return (error); 1029 1030 /* Do the initial binding of the local address if required. */ 1031 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 1032 KASSERT(rehash == true, 1033 ("Rehashing required for unbound inps")); 1034 inp->inp_lport = lport; 1035 inp->inp_laddr.s_addr = laddr; 1036 if (in_pcbinshash(inp) != 0) { 1037 inp->inp_laddr.s_addr = INADDR_ANY; 1038 inp->inp_lport = 0; 1039 return (EAGAIN); 1040 } 1041 } 1042 1043 /* Commit the remaining changes. */ 1044 inp->inp_lport = lport; 1045 inp->inp_laddr.s_addr = laddr; 1046 inp->inp_faddr.s_addr = faddr; 1047 inp->inp_fport = fport; 1048 if (rehash) { 1049 in_pcbrehash(inp); 1050 } else { 1051 in_pcbinshash(inp); 1052 } 1053 1054 if (anonport) 1055 inp->inp_flags |= INP_ANONPORT; 1056 return (0); 1057 } 1058 1059 /* 1060 * Do proper source address selection on an unbound socket in case 1061 * of connect. Take jails into account as well. 1062 */ 1063 int 1064 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 1065 struct ucred *cred) 1066 { 1067 struct ifaddr *ifa; 1068 struct sockaddr *sa; 1069 struct sockaddr_in *sin, dst; 1070 struct nhop_object *nh; 1071 int error; 1072 1073 NET_EPOCH_ASSERT(); 1074 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1075 1076 /* 1077 * Bypass source address selection and use the primary jail IP 1078 * if requested. 1079 */ 1080 if (!prison_saddrsel_ip4(cred, laddr)) 1081 return (0); 1082 1083 error = 0; 1084 1085 nh = NULL; 1086 bzero(&dst, sizeof(dst)); 1087 sin = &dst; 1088 sin->sin_family = AF_INET; 1089 sin->sin_len = sizeof(struct sockaddr_in); 1090 sin->sin_addr.s_addr = faddr->s_addr; 1091 1092 /* 1093 * If route is known our src addr is taken from the i/f, 1094 * else punt. 1095 * 1096 * Find out route to destination. 1097 */ 1098 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1099 nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr, 1100 0, NHR_NONE, 0); 1101 1102 /* 1103 * If we found a route, use the address corresponding to 1104 * the outgoing interface. 1105 * 1106 * Otherwise assume faddr is reachable on a directly connected 1107 * network and try to find a corresponding interface to take 1108 * the source address from. 1109 */ 1110 if (nh == NULL || nh->nh_ifp == NULL) { 1111 struct in_ifaddr *ia; 1112 struct ifnet *ifp; 1113 1114 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1115 inp->inp_socket->so_fibnum)); 1116 if (ia == NULL) { 1117 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1118 inp->inp_socket->so_fibnum)); 1119 } 1120 if (ia == NULL) { 1121 error = ENETUNREACH; 1122 goto done; 1123 } 1124 1125 if (!prison_flag(cred, PR_IP4)) { 1126 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1127 goto done; 1128 } 1129 1130 ifp = ia->ia_ifp; 1131 ia = NULL; 1132 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1133 sa = ifa->ifa_addr; 1134 if (sa->sa_family != AF_INET) 1135 continue; 1136 sin = (struct sockaddr_in *)sa; 1137 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1138 ia = (struct in_ifaddr *)ifa; 1139 break; 1140 } 1141 } 1142 if (ia != NULL) { 1143 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1144 goto done; 1145 } 1146 1147 /* 3. As a last resort return the 'default' jail address. */ 1148 error = prison_get_ip4(cred, laddr); 1149 goto done; 1150 } 1151 1152 /* 1153 * If the outgoing interface on the route found is not 1154 * a loopback interface, use the address from that interface. 1155 * In case of jails do those three steps: 1156 * 1. check if the interface address belongs to the jail. If so use it. 1157 * 2. check if we have any address on the outgoing interface 1158 * belonging to this jail. If so use it. 1159 * 3. as a last resort return the 'default' jail address. 1160 */ 1161 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) { 1162 struct in_ifaddr *ia; 1163 struct ifnet *ifp; 1164 1165 /* If not jailed, use the default returned. */ 1166 if (!prison_flag(cred, PR_IP4)) { 1167 ia = (struct in_ifaddr *)nh->nh_ifa; 1168 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1169 goto done; 1170 } 1171 1172 /* Jailed. */ 1173 /* 1. Check if the iface address belongs to the jail. */ 1174 sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr; 1175 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1176 ia = (struct in_ifaddr *)nh->nh_ifa; 1177 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1178 goto done; 1179 } 1180 1181 /* 1182 * 2. Check if we have any address on the outgoing interface 1183 * belonging to this jail. 1184 */ 1185 ia = NULL; 1186 ifp = nh->nh_ifp; 1187 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1188 sa = ifa->ifa_addr; 1189 if (sa->sa_family != AF_INET) 1190 continue; 1191 sin = (struct sockaddr_in *)sa; 1192 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1193 ia = (struct in_ifaddr *)ifa; 1194 break; 1195 } 1196 } 1197 if (ia != NULL) { 1198 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1199 goto done; 1200 } 1201 1202 /* 3. As a last resort return the 'default' jail address. */ 1203 error = prison_get_ip4(cred, laddr); 1204 goto done; 1205 } 1206 1207 /* 1208 * The outgoing interface is marked with 'loopback net', so a route 1209 * to ourselves is here. 1210 * Try to find the interface of the destination address and then 1211 * take the address from there. That interface is not necessarily 1212 * a loopback interface. 1213 * In case of jails, check that it is an address of the jail 1214 * and if we cannot find, fall back to the 'default' jail address. 1215 */ 1216 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) { 1217 struct in_ifaddr *ia; 1218 1219 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst), 1220 inp->inp_socket->so_fibnum)); 1221 if (ia == NULL) 1222 ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0, 1223 inp->inp_socket->so_fibnum)); 1224 if (ia == NULL) 1225 ia = ifatoia(ifa_ifwithaddr(sintosa(&dst))); 1226 1227 if (!prison_flag(cred, PR_IP4)) { 1228 if (ia == NULL) { 1229 error = ENETUNREACH; 1230 goto done; 1231 } 1232 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1233 goto done; 1234 } 1235 1236 /* Jailed. */ 1237 if (ia != NULL) { 1238 struct ifnet *ifp; 1239 1240 ifp = ia->ia_ifp; 1241 ia = NULL; 1242 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1243 sa = ifa->ifa_addr; 1244 if (sa->sa_family != AF_INET) 1245 continue; 1246 sin = (struct sockaddr_in *)sa; 1247 if (prison_check_ip4(cred, 1248 &sin->sin_addr) == 0) { 1249 ia = (struct in_ifaddr *)ifa; 1250 break; 1251 } 1252 } 1253 if (ia != NULL) { 1254 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1255 goto done; 1256 } 1257 } 1258 1259 /* 3. As a last resort return the 'default' jail address. */ 1260 error = prison_get_ip4(cred, laddr); 1261 goto done; 1262 } 1263 1264 done: 1265 return (error); 1266 } 1267 1268 /* 1269 * Set up for a connect from a socket to the specified address. 1270 * On entry, *laddrp and *lportp should contain the current local 1271 * address and port for the PCB; these are updated to the values 1272 * that should be placed in inp_laddr and inp_lport to complete 1273 * the connect. 1274 * 1275 * On success, *faddrp and *fportp will be set to the remote address 1276 * and port. These are not updated in the error case. 1277 */ 1278 int 1279 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr_in *sin, 1280 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1281 struct ucred *cred) 1282 { 1283 struct in_ifaddr *ia; 1284 struct in_addr laddr, faddr; 1285 u_short lport, fport; 1286 int error; 1287 1288 KASSERT(sin->sin_family == AF_INET, 1289 ("%s: invalid address family for %p", __func__, sin)); 1290 KASSERT(sin->sin_len == sizeof(*sin), 1291 ("%s: invalid address length for %p", __func__, sin)); 1292 1293 /* 1294 * Because a global state change doesn't actually occur here, a read 1295 * lock is sufficient. 1296 */ 1297 NET_EPOCH_ASSERT(); 1298 INP_LOCK_ASSERT(inp); 1299 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1300 1301 if (sin->sin_port == 0) 1302 return (EADDRNOTAVAIL); 1303 laddr.s_addr = *laddrp; 1304 lport = *lportp; 1305 faddr = sin->sin_addr; 1306 fport = sin->sin_port; 1307 #ifdef ROUTE_MPATH 1308 if (CALC_FLOWID_OUTBOUND) { 1309 uint32_t hash_val, hash_type; 1310 1311 hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport, 1312 inp->inp_socket->so_proto->pr_protocol, &hash_type); 1313 1314 inp->inp_flowid = hash_val; 1315 inp->inp_flowtype = hash_type; 1316 } 1317 #endif 1318 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1319 /* 1320 * If the destination address is INADDR_ANY, 1321 * use the primary local address. 1322 * If the supplied address is INADDR_BROADCAST, 1323 * and the primary interface supports broadcast, 1324 * choose the broadcast address for that interface. 1325 */ 1326 if (faddr.s_addr == INADDR_ANY) { 1327 faddr = 1328 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1329 if ((error = prison_get_ip4(cred, &faddr)) != 0) 1330 return (error); 1331 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1332 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1333 IFF_BROADCAST) 1334 faddr = satosin(&CK_STAILQ_FIRST( 1335 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1336 } 1337 } 1338 if (laddr.s_addr == INADDR_ANY) { 1339 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1340 /* 1341 * If the destination address is multicast and an outgoing 1342 * interface has been set as a multicast option, prefer the 1343 * address of that interface as our source address. 1344 */ 1345 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1346 inp->inp_moptions != NULL) { 1347 struct ip_moptions *imo; 1348 struct ifnet *ifp; 1349 1350 imo = inp->inp_moptions; 1351 if (imo->imo_multicast_ifp != NULL) { 1352 ifp = imo->imo_multicast_ifp; 1353 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1354 if (ia->ia_ifp == ifp && 1355 prison_check_ip4(cred, 1356 &ia->ia_addr.sin_addr) == 0) 1357 break; 1358 } 1359 if (ia == NULL) 1360 error = EADDRNOTAVAIL; 1361 else { 1362 laddr = ia->ia_addr.sin_addr; 1363 error = 0; 1364 } 1365 } 1366 } 1367 if (error) 1368 return (error); 1369 } 1370 1371 if (lport != 0) { 1372 if (in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, 1373 fport, laddr, lport, 0, M_NODOM) != NULL) 1374 return (EADDRINUSE); 1375 } else { 1376 struct sockaddr_in lsin, fsin; 1377 1378 bzero(&lsin, sizeof(lsin)); 1379 bzero(&fsin, sizeof(fsin)); 1380 lsin.sin_family = AF_INET; 1381 lsin.sin_addr = laddr; 1382 fsin.sin_family = AF_INET; 1383 fsin.sin_addr = faddr; 1384 error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin, 1385 &lport, (struct sockaddr *)& fsin, fport, cred, 1386 INPLOOKUP_WILDCARD); 1387 if (error) 1388 return (error); 1389 } 1390 *laddrp = laddr.s_addr; 1391 *lportp = lport; 1392 *faddrp = faddr.s_addr; 1393 *fportp = fport; 1394 return (0); 1395 } 1396 1397 void 1398 in_pcbdisconnect(struct inpcb *inp) 1399 { 1400 1401 INP_WLOCK_ASSERT(inp); 1402 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1403 1404 inp->inp_laddr.s_addr = INADDR_ANY; 1405 inp->inp_faddr.s_addr = INADDR_ANY; 1406 inp->inp_fport = 0; 1407 in_pcbrehash(inp); 1408 } 1409 #endif /* INET */ 1410 1411 /* 1412 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1413 * For most protocols, this will be invoked immediately prior to calling 1414 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1415 * socket, in which case in_pcbfree() is deferred. 1416 */ 1417 void 1418 in_pcbdetach(struct inpcb *inp) 1419 { 1420 1421 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1422 1423 #ifdef RATELIMIT 1424 if (inp->inp_snd_tag != NULL) 1425 in_pcbdetach_txrtlmt(inp); 1426 #endif 1427 inp->inp_socket->so_pcb = NULL; 1428 inp->inp_socket = NULL; 1429 } 1430 1431 /* 1432 * inpcb hash lookups are protected by SMR section. 1433 * 1434 * Once desired pcb has been found, switching from SMR section to a pcb 1435 * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK 1436 * here because SMR is a critical section. 1437 * In 99%+ cases inp_smr_lock() would obtain the lock immediately. 1438 */ 1439 static inline void 1440 inp_lock(struct inpcb *inp, const inp_lookup_t lock) 1441 { 1442 1443 lock == INPLOOKUP_RLOCKPCB ? 1444 rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock); 1445 } 1446 1447 static inline void 1448 inp_unlock(struct inpcb *inp, const inp_lookup_t lock) 1449 { 1450 1451 lock == INPLOOKUP_RLOCKPCB ? 1452 rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock); 1453 } 1454 1455 static inline int 1456 inp_trylock(struct inpcb *inp, const inp_lookup_t lock) 1457 { 1458 1459 return (lock == INPLOOKUP_RLOCKPCB ? 1460 rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock)); 1461 } 1462 1463 static inline bool 1464 in_pcbrele(struct inpcb *inp, const inp_lookup_t lock) 1465 { 1466 1467 return (lock == INPLOOKUP_RLOCKPCB ? 1468 in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp)); 1469 } 1470 1471 static inline bool 1472 _inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock, const int ignflags) 1473 { 1474 1475 MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB); 1476 SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr); 1477 1478 if (__predict_true(inp_trylock(inp, lock))) { 1479 if (__predict_false(inp->inp_flags & ignflags)) { 1480 smr_exit(inp->inp_pcbinfo->ipi_smr); 1481 inp_unlock(inp, lock); 1482 return (false); 1483 } 1484 smr_exit(inp->inp_pcbinfo->ipi_smr); 1485 return (true); 1486 } 1487 1488 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1489 smr_exit(inp->inp_pcbinfo->ipi_smr); 1490 inp_lock(inp, lock); 1491 if (__predict_false(in_pcbrele(inp, lock))) 1492 return (false); 1493 /* 1494 * inp acquired through refcount & lock for sure didn't went 1495 * through uma_zfree(). However, it may have already went 1496 * through in_pcbfree() and has another reference, that 1497 * prevented its release by our in_pcbrele(). 1498 */ 1499 if (__predict_false(inp->inp_flags & ignflags)) { 1500 inp_unlock(inp, lock); 1501 return (false); 1502 } 1503 return (true); 1504 } else { 1505 smr_exit(inp->inp_pcbinfo->ipi_smr); 1506 return (false); 1507 } 1508 } 1509 1510 bool 1511 inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock) 1512 { 1513 1514 /* 1515 * in_pcblookup() family of functions ignore not only freed entries, 1516 * that may be found due to lockless access to the hash, but dropped 1517 * entries, too. 1518 */ 1519 return (_inp_smr_lock(inp, lock, INP_FREED | INP_DROPPED)); 1520 } 1521 1522 /* 1523 * inp_next() - inpcb hash/list traversal iterator 1524 * 1525 * Requires initialized struct inpcb_iterator for context. 1526 * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR(). 1527 * 1528 * - Iterator can have either write-lock or read-lock semantics, that can not 1529 * be changed later. 1530 * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through 1531 * a single hash slot. Note: only rip_input() does the latter. 1532 * - Iterator may have optional bool matching function. The matching function 1533 * will be executed for each inpcb in the SMR context, so it can not acquire 1534 * locks and can safely access only immutable fields of inpcb. 1535 * 1536 * A fresh initialized iterator has NULL inpcb in its context and that 1537 * means that inp_next() call would return the very first inpcb on the list 1538 * locked with desired semantic. In all following calls the context pointer 1539 * shall hold the current inpcb pointer. The KPI user is not supposed to 1540 * unlock the current inpcb! Upon end of traversal inp_next() will return NULL 1541 * and write NULL to its context. After end of traversal an iterator can be 1542 * reused. 1543 * 1544 * List traversals have the following features/constraints: 1545 * - New entries won't be seen, as they are always added to the head of a list. 1546 * - Removed entries won't stop traversal as long as they are not added to 1547 * a different list. This is violated by in_pcbrehash(). 1548 */ 1549 #define II_LIST_FIRST(ipi, hash) \ 1550 (((hash) == INP_ALL_LIST) ? \ 1551 CK_LIST_FIRST(&(ipi)->ipi_listhead) : \ 1552 CK_LIST_FIRST(&(ipi)->ipi_hashbase[(hash)])) 1553 #define II_LIST_NEXT(inp, hash) \ 1554 (((hash) == INP_ALL_LIST) ? \ 1555 CK_LIST_NEXT((inp), inp_list) : \ 1556 CK_LIST_NEXT((inp), inp_hash)) 1557 #define II_LOCK_ASSERT(inp, lock) \ 1558 rw_assert(&(inp)->inp_lock, \ 1559 (lock) == INPLOOKUP_RLOCKPCB ? RA_RLOCKED : RA_WLOCKED ) 1560 struct inpcb * 1561 inp_next(struct inpcb_iterator *ii) 1562 { 1563 const struct inpcbinfo *ipi = ii->ipi; 1564 inp_match_t *match = ii->match; 1565 void *ctx = ii->ctx; 1566 inp_lookup_t lock = ii->lock; 1567 int hash = ii->hash; 1568 struct inpcb *inp; 1569 1570 if (ii->inp == NULL) { /* First call. */ 1571 smr_enter(ipi->ipi_smr); 1572 /* This is unrolled CK_LIST_FOREACH(). */ 1573 for (inp = II_LIST_FIRST(ipi, hash); 1574 inp != NULL; 1575 inp = II_LIST_NEXT(inp, hash)) { 1576 if (match != NULL && (match)(inp, ctx) == false) 1577 continue; 1578 if (__predict_true(_inp_smr_lock(inp, lock, INP_FREED))) 1579 break; 1580 else { 1581 smr_enter(ipi->ipi_smr); 1582 MPASS(inp != II_LIST_FIRST(ipi, hash)); 1583 inp = II_LIST_FIRST(ipi, hash); 1584 if (inp == NULL) 1585 break; 1586 } 1587 } 1588 1589 if (inp == NULL) 1590 smr_exit(ipi->ipi_smr); 1591 else 1592 ii->inp = inp; 1593 1594 return (inp); 1595 } 1596 1597 /* Not a first call. */ 1598 smr_enter(ipi->ipi_smr); 1599 restart: 1600 inp = ii->inp; 1601 II_LOCK_ASSERT(inp, lock); 1602 next: 1603 inp = II_LIST_NEXT(inp, hash); 1604 if (inp == NULL) { 1605 smr_exit(ipi->ipi_smr); 1606 goto found; 1607 } 1608 1609 if (match != NULL && (match)(inp, ctx) == false) 1610 goto next; 1611 1612 if (__predict_true(inp_trylock(inp, lock))) { 1613 if (__predict_false(inp->inp_flags & INP_FREED)) { 1614 /* 1615 * Entries are never inserted in middle of a list, thus 1616 * as long as we are in SMR, we can continue traversal. 1617 * Jump to 'restart' should yield in the same result, 1618 * but could produce unnecessary looping. Could this 1619 * looping be unbound? 1620 */ 1621 inp_unlock(inp, lock); 1622 goto next; 1623 } else { 1624 smr_exit(ipi->ipi_smr); 1625 goto found; 1626 } 1627 } 1628 1629 /* 1630 * Can't obtain lock immediately, thus going hard. Once we exit the 1631 * SMR section we can no longer jump to 'next', and our only stable 1632 * anchoring point is ii->inp, which we keep locked for this case, so 1633 * we jump to 'restart'. 1634 */ 1635 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1636 smr_exit(ipi->ipi_smr); 1637 inp_lock(inp, lock); 1638 if (__predict_false(in_pcbrele(inp, lock))) { 1639 smr_enter(ipi->ipi_smr); 1640 goto restart; 1641 } 1642 /* 1643 * See comment in inp_smr_lock(). 1644 */ 1645 if (__predict_false(inp->inp_flags & INP_FREED)) { 1646 inp_unlock(inp, lock); 1647 smr_enter(ipi->ipi_smr); 1648 goto restart; 1649 } 1650 } else 1651 goto next; 1652 1653 found: 1654 inp_unlock(ii->inp, lock); 1655 ii->inp = inp; 1656 1657 return (ii->inp); 1658 } 1659 1660 /* 1661 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1662 * stability of an inpcb pointer despite the inpcb lock being released or 1663 * SMR section exited. 1664 * 1665 * To free a reference later in_pcbrele_(r|w)locked() must be performed. 1666 */ 1667 void 1668 in_pcbref(struct inpcb *inp) 1669 { 1670 u_int old __diagused; 1671 1672 old = refcount_acquire(&inp->inp_refcount); 1673 KASSERT(old > 0, ("%s: refcount 0", __func__)); 1674 } 1675 1676 /* 1677 * Drop a refcount on an inpcb elevated using in_pcbref(), potentially 1678 * freeing the pcb, if the reference was very last. 1679 */ 1680 bool 1681 in_pcbrele_rlocked(struct inpcb *inp) 1682 { 1683 1684 INP_RLOCK_ASSERT(inp); 1685 1686 if (!refcount_release(&inp->inp_refcount)) 1687 return (false); 1688 1689 MPASS(inp->inp_flags & INP_FREED); 1690 MPASS(inp->inp_socket == NULL); 1691 MPASS(inp->inp_in_hpts == 0); 1692 INP_RUNLOCK(inp); 1693 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1694 return (true); 1695 } 1696 1697 bool 1698 in_pcbrele_wlocked(struct inpcb *inp) 1699 { 1700 1701 INP_WLOCK_ASSERT(inp); 1702 1703 if (!refcount_release(&inp->inp_refcount)) 1704 return (false); 1705 1706 MPASS(inp->inp_flags & INP_FREED); 1707 MPASS(inp->inp_socket == NULL); 1708 MPASS(inp->inp_in_hpts == 0); 1709 INP_WUNLOCK(inp); 1710 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1711 return (true); 1712 } 1713 1714 /* 1715 * Unconditionally schedule an inpcb to be freed by decrementing its 1716 * reference count, which should occur only after the inpcb has been detached 1717 * from its socket. If another thread holds a temporary reference (acquired 1718 * using in_pcbref()) then the free is deferred until that reference is 1719 * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked. 1720 * Almost all work, including removal from global lists, is done in this 1721 * context, where the pcbinfo lock is held. 1722 */ 1723 void 1724 in_pcbfree(struct inpcb *inp) 1725 { 1726 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1727 #ifdef INET 1728 struct ip_moptions *imo; 1729 #endif 1730 #ifdef INET6 1731 struct ip6_moptions *im6o; 1732 #endif 1733 1734 INP_WLOCK_ASSERT(inp); 1735 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1736 KASSERT((inp->inp_flags & INP_FREED) == 0, 1737 ("%s: called twice for pcb %p", __func__, inp)); 1738 1739 inp->inp_flags |= INP_FREED; 1740 INP_INFO_WLOCK(pcbinfo); 1741 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1742 pcbinfo->ipi_count--; 1743 CK_LIST_REMOVE(inp, inp_list); 1744 INP_INFO_WUNLOCK(pcbinfo); 1745 1746 if (inp->inp_flags & INP_INHASHLIST) 1747 in_pcbremhash(inp); 1748 1749 RO_INVALIDATE_CACHE(&inp->inp_route); 1750 #ifdef MAC 1751 mac_inpcb_destroy(inp); 1752 #endif 1753 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1754 if (inp->inp_sp != NULL) 1755 ipsec_delete_pcbpolicy(inp); 1756 #endif 1757 #ifdef INET 1758 if (inp->inp_options) 1759 (void)m_free(inp->inp_options); 1760 imo = inp->inp_moptions; 1761 #endif 1762 #ifdef INET6 1763 if (inp->inp_vflag & INP_IPV6PROTO) { 1764 ip6_freepcbopts(inp->in6p_outputopts); 1765 im6o = inp->in6p_moptions; 1766 } else 1767 im6o = NULL; 1768 #endif 1769 1770 if (__predict_false(in_pcbrele_wlocked(inp) == false)) { 1771 INP_WUNLOCK(inp); 1772 } 1773 #ifdef INET6 1774 ip6_freemoptions(im6o); 1775 #endif 1776 #ifdef INET 1777 inp_freemoptions(imo); 1778 #endif 1779 /* Destruction is finalized in inpcb_dtor(). */ 1780 } 1781 1782 static void 1783 inpcb_dtor(void *mem, int size, void *arg) 1784 { 1785 struct inpcb *inp = mem; 1786 1787 crfree(inp->inp_cred); 1788 #ifdef INVARIANTS 1789 inp->inp_cred = NULL; 1790 #endif 1791 } 1792 1793 /* 1794 * Different protocols initialize their inpcbs differently - giving 1795 * different name to the lock. But they all are disposed the same. 1796 */ 1797 static void 1798 inpcb_fini(void *mem, int size) 1799 { 1800 struct inpcb *inp = mem; 1801 1802 INP_LOCK_DESTROY(inp); 1803 } 1804 1805 /* 1806 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1807 * port reservation, and preventing it from being returned by inpcb lookups. 1808 * 1809 * It is used by TCP to mark an inpcb as unused and avoid future packet 1810 * delivery or event notification when a socket remains open but TCP has 1811 * closed. This might occur as a result of a shutdown()-initiated TCP close 1812 * or a RST on the wire, and allows the port binding to be reused while still 1813 * maintaining the invariant that so_pcb always points to a valid inpcb until 1814 * in_pcbdetach(). 1815 * 1816 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1817 * in_pcbnotifyall() and in_pcbpurgeif0()? 1818 */ 1819 void 1820 in_pcbdrop(struct inpcb *inp) 1821 { 1822 1823 INP_WLOCK_ASSERT(inp); 1824 #ifdef INVARIANTS 1825 if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) 1826 MPASS(inp->inp_refcount > 1); 1827 #endif 1828 1829 inp->inp_flags |= INP_DROPPED; 1830 if (inp->inp_flags & INP_INHASHLIST) 1831 in_pcbremhash(inp); 1832 } 1833 1834 #ifdef INET 1835 /* 1836 * Common routines to return the socket addresses associated with inpcbs. 1837 */ 1838 struct sockaddr * 1839 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1840 { 1841 struct sockaddr_in *sin; 1842 1843 sin = malloc(sizeof *sin, M_SONAME, 1844 M_WAITOK | M_ZERO); 1845 sin->sin_family = AF_INET; 1846 sin->sin_len = sizeof(*sin); 1847 sin->sin_addr = *addr_p; 1848 sin->sin_port = port; 1849 1850 return (struct sockaddr *)sin; 1851 } 1852 1853 int 1854 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1855 { 1856 struct inpcb *inp; 1857 struct in_addr addr; 1858 in_port_t port; 1859 1860 inp = sotoinpcb(so); 1861 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1862 1863 INP_RLOCK(inp); 1864 port = inp->inp_lport; 1865 addr = inp->inp_laddr; 1866 INP_RUNLOCK(inp); 1867 1868 *nam = in_sockaddr(port, &addr); 1869 return 0; 1870 } 1871 1872 int 1873 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1874 { 1875 struct inpcb *inp; 1876 struct in_addr addr; 1877 in_port_t port; 1878 1879 inp = sotoinpcb(so); 1880 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1881 1882 INP_RLOCK(inp); 1883 port = inp->inp_fport; 1884 addr = inp->inp_faddr; 1885 INP_RUNLOCK(inp); 1886 1887 *nam = in_sockaddr(port, &addr); 1888 return 0; 1889 } 1890 1891 void 1892 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1893 struct inpcb *(*notify)(struct inpcb *, int)) 1894 { 1895 struct inpcb *inp, *inp_temp; 1896 1897 INP_INFO_WLOCK(pcbinfo); 1898 CK_LIST_FOREACH_SAFE(inp, &pcbinfo->ipi_listhead, inp_list, inp_temp) { 1899 INP_WLOCK(inp); 1900 #ifdef INET6 1901 if ((inp->inp_vflag & INP_IPV4) == 0) { 1902 INP_WUNLOCK(inp); 1903 continue; 1904 } 1905 #endif 1906 if (inp->inp_faddr.s_addr != faddr.s_addr || 1907 inp->inp_socket == NULL) { 1908 INP_WUNLOCK(inp); 1909 continue; 1910 } 1911 if ((*notify)(inp, errno)) 1912 INP_WUNLOCK(inp); 1913 } 1914 INP_INFO_WUNLOCK(pcbinfo); 1915 } 1916 1917 static bool 1918 inp_v4_multi_match(const struct inpcb *inp, void *v __unused) 1919 { 1920 1921 if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL) 1922 return (true); 1923 else 1924 return (false); 1925 } 1926 1927 void 1928 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1929 { 1930 struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB, 1931 inp_v4_multi_match, NULL); 1932 struct inpcb *inp; 1933 struct in_multi *inm; 1934 struct in_mfilter *imf; 1935 struct ip_moptions *imo; 1936 1937 IN_MULTI_LOCK_ASSERT(); 1938 1939 while ((inp = inp_next(&inpi)) != NULL) { 1940 INP_WLOCK_ASSERT(inp); 1941 1942 imo = inp->inp_moptions; 1943 /* 1944 * Unselect the outgoing interface if it is being 1945 * detached. 1946 */ 1947 if (imo->imo_multicast_ifp == ifp) 1948 imo->imo_multicast_ifp = NULL; 1949 1950 /* 1951 * Drop multicast group membership if we joined 1952 * through the interface being detached. 1953 * 1954 * XXX This can all be deferred to an epoch_call 1955 */ 1956 restart: 1957 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 1958 if ((inm = imf->imf_inm) == NULL) 1959 continue; 1960 if (inm->inm_ifp != ifp) 1961 continue; 1962 ip_mfilter_remove(&imo->imo_head, imf); 1963 in_leavegroup_locked(inm, NULL); 1964 ip_mfilter_free(imf); 1965 goto restart; 1966 } 1967 } 1968 } 1969 1970 /* 1971 * Lookup a PCB based on the local address and port. Caller must hold the 1972 * hash lock. No inpcb locks or references are acquired. 1973 */ 1974 #define INP_LOOKUP_MAPPED_PCB_COST 3 1975 struct inpcb * 1976 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1977 u_short lport, int lookupflags, struct ucred *cred) 1978 { 1979 struct inpcb *inp; 1980 #ifdef INET6 1981 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1982 #else 1983 int matchwild = 3; 1984 #endif 1985 int wildcard; 1986 1987 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1988 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1989 INP_HASH_LOCK_ASSERT(pcbinfo); 1990 1991 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1992 struct inpcbhead *head; 1993 /* 1994 * Look for an unconnected (wildcard foreign addr) PCB that 1995 * matches the local address and port we're looking for. 1996 */ 1997 head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport, 1998 pcbinfo->ipi_hashmask)]; 1999 CK_LIST_FOREACH(inp, head, inp_hash) { 2000 #ifdef INET6 2001 /* XXX inp locking */ 2002 if ((inp->inp_vflag & INP_IPV4) == 0) 2003 continue; 2004 #endif 2005 if (inp->inp_faddr.s_addr == INADDR_ANY && 2006 inp->inp_laddr.s_addr == laddr.s_addr && 2007 inp->inp_lport == lport) { 2008 /* 2009 * Found? 2010 */ 2011 if (prison_equal_ip4(cred->cr_prison, 2012 inp->inp_cred->cr_prison)) 2013 return (inp); 2014 } 2015 } 2016 /* 2017 * Not found. 2018 */ 2019 return (NULL); 2020 } else { 2021 struct inpcbporthead *porthash; 2022 struct inpcbport *phd; 2023 struct inpcb *match = NULL; 2024 /* 2025 * Best fit PCB lookup. 2026 * 2027 * First see if this local port is in use by looking on the 2028 * port hash list. 2029 */ 2030 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 2031 pcbinfo->ipi_porthashmask)]; 2032 CK_LIST_FOREACH(phd, porthash, phd_hash) { 2033 if (phd->phd_port == lport) 2034 break; 2035 } 2036 if (phd != NULL) { 2037 /* 2038 * Port is in use by one or more PCBs. Look for best 2039 * fit. 2040 */ 2041 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 2042 wildcard = 0; 2043 if (!prison_equal_ip4(inp->inp_cred->cr_prison, 2044 cred->cr_prison)) 2045 continue; 2046 #ifdef INET6 2047 /* XXX inp locking */ 2048 if ((inp->inp_vflag & INP_IPV4) == 0) 2049 continue; 2050 /* 2051 * We never select the PCB that has 2052 * INP_IPV6 flag and is bound to :: if 2053 * we have another PCB which is bound 2054 * to 0.0.0.0. If a PCB has the 2055 * INP_IPV6 flag, then we set its cost 2056 * higher than IPv4 only PCBs. 2057 * 2058 * Note that the case only happens 2059 * when a socket is bound to ::, under 2060 * the condition that the use of the 2061 * mapped address is allowed. 2062 */ 2063 if ((inp->inp_vflag & INP_IPV6) != 0) 2064 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 2065 #endif 2066 if (inp->inp_faddr.s_addr != INADDR_ANY) 2067 wildcard++; 2068 if (inp->inp_laddr.s_addr != INADDR_ANY) { 2069 if (laddr.s_addr == INADDR_ANY) 2070 wildcard++; 2071 else if (inp->inp_laddr.s_addr != laddr.s_addr) 2072 continue; 2073 } else { 2074 if (laddr.s_addr != INADDR_ANY) 2075 wildcard++; 2076 } 2077 if (wildcard < matchwild) { 2078 match = inp; 2079 matchwild = wildcard; 2080 if (matchwild == 0) 2081 break; 2082 } 2083 } 2084 } 2085 return (match); 2086 } 2087 } 2088 #undef INP_LOOKUP_MAPPED_PCB_COST 2089 2090 static bool 2091 in_pcblookup_lb_numa_match(const struct inpcblbgroup *grp, int domain) 2092 { 2093 return (domain == M_NODOM || domain == grp->il_numa_domain); 2094 } 2095 2096 static struct inpcb * 2097 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 2098 const struct in_addr *faddr, uint16_t fport, const struct in_addr *laddr, 2099 uint16_t lport, int domain) 2100 { 2101 const struct inpcblbgrouphead *hdr; 2102 struct inpcblbgroup *grp; 2103 struct inpcblbgroup *jail_exact, *jail_wild, *local_exact, *local_wild; 2104 2105 INP_HASH_LOCK_ASSERT(pcbinfo); 2106 2107 hdr = &pcbinfo->ipi_lbgrouphashbase[ 2108 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; 2109 2110 /* 2111 * Search for an LB group match based on the following criteria: 2112 * - prefer jailed groups to non-jailed groups 2113 * - prefer exact source address matches to wildcard matches 2114 * - prefer groups bound to the specified NUMA domain 2115 */ 2116 jail_exact = jail_wild = local_exact = local_wild = NULL; 2117 CK_LIST_FOREACH(grp, hdr, il_list) { 2118 bool injail; 2119 2120 #ifdef INET6 2121 if (!(grp->il_vflag & INP_IPV4)) 2122 continue; 2123 #endif 2124 if (grp->il_lport != lport) 2125 continue; 2126 2127 injail = prison_flag(grp->il_cred, PR_IP4) != 0; 2128 if (injail && prison_check_ip4_locked(grp->il_cred->cr_prison, 2129 laddr) != 0) 2130 continue; 2131 2132 if (grp->il_laddr.s_addr == laddr->s_addr) { 2133 if (injail) { 2134 jail_exact = grp; 2135 if (in_pcblookup_lb_numa_match(grp, domain)) 2136 /* This is a perfect match. */ 2137 goto out; 2138 } else if (local_exact == NULL || 2139 in_pcblookup_lb_numa_match(grp, domain)) { 2140 local_exact = grp; 2141 } 2142 } else if (grp->il_laddr.s_addr == INADDR_ANY) { 2143 if (injail) { 2144 if (jail_wild == NULL || 2145 in_pcblookup_lb_numa_match(grp, domain)) 2146 jail_wild = grp; 2147 } else if (local_wild == NULL || 2148 in_pcblookup_lb_numa_match(grp, domain)) { 2149 local_wild = grp; 2150 } 2151 } 2152 } 2153 2154 if (jail_exact != NULL) 2155 grp = jail_exact; 2156 else if (jail_wild != NULL) 2157 grp = jail_wild; 2158 else if (local_exact != NULL) 2159 grp = local_exact; 2160 else 2161 grp = local_wild; 2162 if (grp == NULL) 2163 return (NULL); 2164 out: 2165 return (grp->il_inp[INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) % 2166 grp->il_inpcnt]); 2167 } 2168 2169 static struct inpcb * 2170 in_pcblookup_hash_exact(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2171 u_short fport, struct in_addr laddr, u_short lport) 2172 { 2173 struct inpcbhead *head; 2174 struct inpcb *inp, *match; 2175 2176 INP_HASH_LOCK_ASSERT(pcbinfo); 2177 2178 match = NULL; 2179 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&faddr, lport, fport, 2180 pcbinfo->ipi_hashmask)]; 2181 CK_LIST_FOREACH(inp, head, inp_hash) { 2182 #ifdef INET6 2183 /* XXX inp locking */ 2184 if ((inp->inp_vflag & INP_IPV4) == 0) 2185 continue; 2186 #endif 2187 if (inp->inp_faddr.s_addr == faddr.s_addr && 2188 inp->inp_laddr.s_addr == laddr.s_addr && 2189 inp->inp_fport == fport && 2190 inp->inp_lport == lport) 2191 return (inp); 2192 } 2193 return (match); 2194 } 2195 2196 static struct inpcb * 2197 in_pcblookup_hash_wild_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2198 u_short fport, struct in_addr laddr, u_short lport) 2199 { 2200 struct inpcbhead *head; 2201 struct inpcb *inp, *local_wild, *local_exact, *jail_wild; 2202 #ifdef INET6 2203 struct inpcb *local_wild_mapped; 2204 #endif 2205 2206 INP_HASH_LOCK_ASSERT(pcbinfo); 2207 2208 /* 2209 * Order of socket selection - we always prefer jails. 2210 * 1. jailed, non-wild. 2211 * 2. jailed, wild. 2212 * 3. non-jailed, non-wild. 2213 * 4. non-jailed, wild. 2214 */ 2215 head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport, 2216 pcbinfo->ipi_hashmask)]; 2217 local_wild = local_exact = jail_wild = NULL; 2218 #ifdef INET6 2219 local_wild_mapped = NULL; 2220 #endif 2221 CK_LIST_FOREACH(inp, head, inp_hash) { 2222 bool injail; 2223 2224 #ifdef INET6 2225 /* XXX inp locking */ 2226 if ((inp->inp_vflag & INP_IPV4) == 0) 2227 continue; 2228 #endif 2229 if (inp->inp_faddr.s_addr != INADDR_ANY || 2230 inp->inp_lport != lport) 2231 continue; 2232 2233 injail = prison_flag(inp->inp_cred, PR_IP4) != 0; 2234 if (injail) { 2235 if (prison_check_ip4_locked(inp->inp_cred->cr_prison, 2236 &laddr) != 0) 2237 continue; 2238 } else { 2239 if (local_exact != NULL) 2240 continue; 2241 } 2242 2243 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2244 if (injail) 2245 return (inp); 2246 local_exact = inp; 2247 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2248 #ifdef INET6 2249 /* XXX inp locking, NULL check */ 2250 if (inp->inp_vflag & INP_IPV6PROTO) 2251 local_wild_mapped = inp; 2252 else 2253 #endif 2254 if (injail) 2255 jail_wild = inp; 2256 else 2257 local_wild = inp; 2258 } 2259 } 2260 if (jail_wild != NULL) 2261 return (jail_wild); 2262 if (local_exact != NULL) 2263 return (local_exact); 2264 if (local_wild != NULL) 2265 return (local_wild); 2266 #ifdef INET6 2267 if (local_wild_mapped != NULL) 2268 return (local_wild_mapped); 2269 #endif 2270 return (NULL); 2271 } 2272 2273 /* 2274 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2275 * that the caller has either locked the hash list, which usually happens 2276 * for bind(2) operations, or is in SMR section, which happens when sorting 2277 * out incoming packets. 2278 */ 2279 static struct inpcb * 2280 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2281 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2282 uint8_t numa_domain) 2283 { 2284 struct inpcb *inp; 2285 const u_short fport = fport_arg, lport = lport_arg; 2286 2287 KASSERT((lookupflags & ~INPLOOKUP_WILDCARD) == 0, 2288 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2289 KASSERT(faddr.s_addr != INADDR_ANY, 2290 ("%s: invalid foreign address", __func__)); 2291 KASSERT(laddr.s_addr != INADDR_ANY, 2292 ("%s: invalid local address", __func__)); 2293 INP_HASH_LOCK_ASSERT(pcbinfo); 2294 2295 inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport); 2296 if (inp != NULL) 2297 return (inp); 2298 2299 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2300 inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport, &laddr, 2301 lport, numa_domain); 2302 if (inp == NULL) { 2303 inp = in_pcblookup_hash_wild_locked(pcbinfo, faddr, 2304 fport, laddr, lport); 2305 } 2306 } 2307 2308 return (inp); 2309 } 2310 2311 static struct inpcb * 2312 in_pcblookup_hash_smr(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2313 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2314 uint8_t numa_domain) 2315 { 2316 struct inpcb *inp; 2317 2318 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2319 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2320 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2321 ("%s: LOCKPCB not set", __func__)); 2322 2323 smr_enter(pcbinfo->ipi_smr); 2324 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2325 lookupflags & INPLOOKUP_WILDCARD, numa_domain); 2326 if (inp != NULL) { 2327 if (__predict_false(inp_smr_lock(inp, 2328 (lookupflags & INPLOOKUP_LOCKMASK)) == false)) 2329 inp = NULL; 2330 } else 2331 smr_exit(pcbinfo->ipi_smr); 2332 2333 return (inp); 2334 } 2335 2336 /* 2337 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2338 * from which a pre-calculated hash value may be extracted. 2339 */ 2340 struct inpcb * 2341 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2342 struct in_addr laddr, u_int lport, int lookupflags, 2343 struct ifnet *ifp __unused) 2344 { 2345 return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport, 2346 lookupflags, M_NODOM)); 2347 } 2348 2349 struct inpcb * 2350 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2351 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2352 struct ifnet *ifp __unused, struct mbuf *m) 2353 { 2354 return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport, 2355 lookupflags, m->m_pkthdr.numa_domain)); 2356 } 2357 #endif /* INET */ 2358 2359 /* 2360 * Insert PCB onto various hash lists. 2361 */ 2362 int 2363 in_pcbinshash(struct inpcb *inp) 2364 { 2365 struct inpcbhead *pcbhash; 2366 struct inpcbporthead *pcbporthash; 2367 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2368 struct inpcbport *phd; 2369 2370 INP_WLOCK_ASSERT(inp); 2371 INP_HASH_WLOCK_ASSERT(pcbinfo); 2372 2373 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2374 ("in_pcbinshash: INP_INHASHLIST")); 2375 2376 #ifdef INET6 2377 if (inp->inp_vflag & INP_IPV6) 2378 pcbhash = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr, 2379 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2380 else 2381 #endif 2382 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr, 2383 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2384 2385 pcbporthash = &pcbinfo->ipi_porthashbase[ 2386 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2387 2388 /* 2389 * Add entry to load balance group. 2390 * Only do this if SO_REUSEPORT_LB is set. 2391 */ 2392 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) { 2393 int error = in_pcbinslbgrouphash(inp, M_NODOM); 2394 if (error != 0) 2395 return (error); 2396 } 2397 2398 /* 2399 * Go through port list and look for a head for this lport. 2400 */ 2401 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2402 if (phd->phd_port == inp->inp_lport) 2403 break; 2404 } 2405 2406 /* 2407 * If none exists, malloc one and tack it on. 2408 */ 2409 if (phd == NULL) { 2410 phd = uma_zalloc_smr(pcbinfo->ipi_portzone, M_NOWAIT); 2411 if (phd == NULL) { 2412 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 2413 in_pcbremlbgrouphash(inp); 2414 return (ENOMEM); 2415 } 2416 phd->phd_port = inp->inp_lport; 2417 CK_LIST_INIT(&phd->phd_pcblist); 2418 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2419 } 2420 inp->inp_phd = phd; 2421 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2422 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2423 inp->inp_flags |= INP_INHASHLIST; 2424 2425 return (0); 2426 } 2427 2428 static void 2429 in_pcbremhash(struct inpcb *inp) 2430 { 2431 struct inpcbport *phd = inp->inp_phd; 2432 2433 INP_WLOCK_ASSERT(inp); 2434 MPASS(inp->inp_flags & INP_INHASHLIST); 2435 2436 INP_HASH_WLOCK(inp->inp_pcbinfo); 2437 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 2438 in_pcbremlbgrouphash(inp); 2439 CK_LIST_REMOVE(inp, inp_hash); 2440 CK_LIST_REMOVE(inp, inp_portlist); 2441 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 2442 CK_LIST_REMOVE(phd, phd_hash); 2443 uma_zfree_smr(inp->inp_pcbinfo->ipi_portzone, phd); 2444 } 2445 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 2446 inp->inp_flags &= ~INP_INHASHLIST; 2447 } 2448 2449 /* 2450 * Move PCB to the proper hash bucket when { faddr, fport } have been 2451 * changed. NOTE: This does not handle the case of the lport changing (the 2452 * hashed port list would have to be updated as well), so the lport must 2453 * not change after in_pcbinshash() has been called. 2454 * 2455 * XXXGL: a race between this function and SMR-protected hash iterator 2456 * will lead to iterator traversing a possibly wrong hash list. However, 2457 * this race should have been here since change from rwlock to epoch. 2458 */ 2459 void 2460 in_pcbrehash(struct inpcb *inp) 2461 { 2462 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2463 struct inpcbhead *head; 2464 2465 INP_WLOCK_ASSERT(inp); 2466 INP_HASH_WLOCK_ASSERT(pcbinfo); 2467 2468 KASSERT(inp->inp_flags & INP_INHASHLIST, 2469 ("in_pcbrehash: !INP_INHASHLIST")); 2470 2471 #ifdef INET6 2472 if (inp->inp_vflag & INP_IPV6) 2473 head = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr, 2474 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2475 else 2476 #endif 2477 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr, 2478 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2479 2480 CK_LIST_REMOVE(inp, inp_hash); 2481 CK_LIST_INSERT_HEAD(head, inp, inp_hash); 2482 } 2483 2484 /* 2485 * Check for alternatives when higher level complains 2486 * about service problems. For now, invalidate cached 2487 * routing information. If the route was created dynamically 2488 * (by a redirect), time to try a default gateway again. 2489 */ 2490 void 2491 in_losing(struct inpcb *inp) 2492 { 2493 2494 RO_INVALIDATE_CACHE(&inp->inp_route); 2495 return; 2496 } 2497 2498 /* 2499 * A set label operation has occurred at the socket layer, propagate the 2500 * label change into the in_pcb for the socket. 2501 */ 2502 void 2503 in_pcbsosetlabel(struct socket *so) 2504 { 2505 #ifdef MAC 2506 struct inpcb *inp; 2507 2508 inp = sotoinpcb(so); 2509 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2510 2511 INP_WLOCK(inp); 2512 SOCK_LOCK(so); 2513 mac_inpcb_sosetlabel(so, inp); 2514 SOCK_UNLOCK(so); 2515 INP_WUNLOCK(inp); 2516 #endif 2517 } 2518 2519 void 2520 inp_wlock(struct inpcb *inp) 2521 { 2522 2523 INP_WLOCK(inp); 2524 } 2525 2526 void 2527 inp_wunlock(struct inpcb *inp) 2528 { 2529 2530 INP_WUNLOCK(inp); 2531 } 2532 2533 void 2534 inp_rlock(struct inpcb *inp) 2535 { 2536 2537 INP_RLOCK(inp); 2538 } 2539 2540 void 2541 inp_runlock(struct inpcb *inp) 2542 { 2543 2544 INP_RUNLOCK(inp); 2545 } 2546 2547 #ifdef INVARIANT_SUPPORT 2548 void 2549 inp_lock_assert(struct inpcb *inp) 2550 { 2551 2552 INP_WLOCK_ASSERT(inp); 2553 } 2554 2555 void 2556 inp_unlock_assert(struct inpcb *inp) 2557 { 2558 2559 INP_UNLOCK_ASSERT(inp); 2560 } 2561 #endif 2562 2563 void 2564 inp_apply_all(struct inpcbinfo *pcbinfo, 2565 void (*func)(struct inpcb *, void *), void *arg) 2566 { 2567 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, 2568 INPLOOKUP_WLOCKPCB); 2569 struct inpcb *inp; 2570 2571 while ((inp = inp_next(&inpi)) != NULL) 2572 func(inp, arg); 2573 } 2574 2575 struct socket * 2576 inp_inpcbtosocket(struct inpcb *inp) 2577 { 2578 2579 INP_WLOCK_ASSERT(inp); 2580 return (inp->inp_socket); 2581 } 2582 2583 struct tcpcb * 2584 inp_inpcbtotcpcb(struct inpcb *inp) 2585 { 2586 2587 INP_WLOCK_ASSERT(inp); 2588 return ((struct tcpcb *)inp->inp_ppcb); 2589 } 2590 2591 int 2592 inp_ip_tos_get(const struct inpcb *inp) 2593 { 2594 2595 return (inp->inp_ip_tos); 2596 } 2597 2598 void 2599 inp_ip_tos_set(struct inpcb *inp, int val) 2600 { 2601 2602 inp->inp_ip_tos = val; 2603 } 2604 2605 void 2606 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2607 uint32_t *faddr, uint16_t *fp) 2608 { 2609 2610 INP_LOCK_ASSERT(inp); 2611 *laddr = inp->inp_laddr.s_addr; 2612 *faddr = inp->inp_faddr.s_addr; 2613 *lp = inp->inp_lport; 2614 *fp = inp->inp_fport; 2615 } 2616 2617 struct inpcb * 2618 so_sotoinpcb(struct socket *so) 2619 { 2620 2621 return (sotoinpcb(so)); 2622 } 2623 2624 /* 2625 * Create an external-format (``xinpcb'') structure using the information in 2626 * the kernel-format in_pcb structure pointed to by inp. This is done to 2627 * reduce the spew of irrelevant information over this interface, to isolate 2628 * user code from changes in the kernel structure, and potentially to provide 2629 * information-hiding if we decide that some of this information should be 2630 * hidden from users. 2631 */ 2632 void 2633 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2634 { 2635 2636 bzero(xi, sizeof(*xi)); 2637 xi->xi_len = sizeof(struct xinpcb); 2638 if (inp->inp_socket) 2639 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2640 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2641 xi->inp_gencnt = inp->inp_gencnt; 2642 xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; 2643 xi->inp_flow = inp->inp_flow; 2644 xi->inp_flowid = inp->inp_flowid; 2645 xi->inp_flowtype = inp->inp_flowtype; 2646 xi->inp_flags = inp->inp_flags; 2647 xi->inp_flags2 = inp->inp_flags2; 2648 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2649 xi->in6p_cksum = inp->in6p_cksum; 2650 xi->in6p_hops = inp->in6p_hops; 2651 xi->inp_ip_tos = inp->inp_ip_tos; 2652 xi->inp_vflag = inp->inp_vflag; 2653 xi->inp_ip_ttl = inp->inp_ip_ttl; 2654 xi->inp_ip_p = inp->inp_ip_p; 2655 xi->inp_ip_minttl = inp->inp_ip_minttl; 2656 } 2657 2658 int 2659 sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo, 2660 int (*ctloutput_set)(struct inpcb *, struct sockopt *)) 2661 { 2662 struct sockopt sopt; 2663 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, 2664 INPLOOKUP_WLOCKPCB); 2665 struct inpcb *inp; 2666 struct sockopt_parameters *params; 2667 struct socket *so; 2668 int error; 2669 char buf[1024]; 2670 2671 if (req->oldptr != NULL || req->oldlen != 0) 2672 return (EINVAL); 2673 if (req->newptr == NULL) 2674 return (EPERM); 2675 if (req->newlen > sizeof(buf)) 2676 return (ENOMEM); 2677 error = SYSCTL_IN(req, buf, req->newlen); 2678 if (error != 0) 2679 return (error); 2680 if (req->newlen < sizeof(struct sockopt_parameters)) 2681 return (EINVAL); 2682 params = (struct sockopt_parameters *)buf; 2683 sopt.sopt_level = params->sop_level; 2684 sopt.sopt_name = params->sop_optname; 2685 sopt.sopt_dir = SOPT_SET; 2686 sopt.sopt_val = params->sop_optval; 2687 sopt.sopt_valsize = req->newlen - sizeof(struct sockopt_parameters); 2688 sopt.sopt_td = NULL; 2689 #ifdef INET6 2690 if (params->sop_inc.inc_flags & INC_ISIPV6) { 2691 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_laddr)) 2692 params->sop_inc.inc6_laddr.s6_addr16[1] = 2693 htons(params->sop_inc.inc6_zoneid & 0xffff); 2694 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_faddr)) 2695 params->sop_inc.inc6_faddr.s6_addr16[1] = 2696 htons(params->sop_inc.inc6_zoneid & 0xffff); 2697 } 2698 #endif 2699 if (params->sop_inc.inc_lport != htons(0)) { 2700 if (params->sop_inc.inc_fport == htons(0)) 2701 inpi.hash = INP_PCBHASH_WILD(params->sop_inc.inc_lport, 2702 pcbinfo->ipi_hashmask); 2703 else 2704 #ifdef INET6 2705 if (params->sop_inc.inc_flags & INC_ISIPV6) 2706 inpi.hash = INP6_PCBHASH( 2707 ¶ms->sop_inc.inc6_faddr, 2708 params->sop_inc.inc_lport, 2709 params->sop_inc.inc_fport, 2710 pcbinfo->ipi_hashmask); 2711 else 2712 #endif 2713 inpi.hash = INP_PCBHASH( 2714 ¶ms->sop_inc.inc_faddr, 2715 params->sop_inc.inc_lport, 2716 params->sop_inc.inc_fport, 2717 pcbinfo->ipi_hashmask); 2718 } 2719 while ((inp = inp_next(&inpi)) != NULL) 2720 if (inp->inp_gencnt == params->sop_id) { 2721 if (inp->inp_flags & INP_DROPPED) { 2722 INP_WUNLOCK(inp); 2723 return (ECONNRESET); 2724 } 2725 so = inp->inp_socket; 2726 KASSERT(so != NULL, ("inp_socket == NULL")); 2727 soref(so); 2728 error = (*ctloutput_set)(inp, &sopt); 2729 sorele(so); 2730 break; 2731 } 2732 if (inp == NULL) 2733 error = ESRCH; 2734 return (error); 2735 } 2736 2737 #ifdef DDB 2738 static void 2739 db_print_indent(int indent) 2740 { 2741 int i; 2742 2743 for (i = 0; i < indent; i++) 2744 db_printf(" "); 2745 } 2746 2747 static void 2748 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2749 { 2750 char faddr_str[48], laddr_str[48]; 2751 2752 db_print_indent(indent); 2753 db_printf("%s at %p\n", name, inc); 2754 2755 indent += 2; 2756 2757 #ifdef INET6 2758 if (inc->inc_flags & INC_ISIPV6) { 2759 /* IPv6. */ 2760 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2761 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2762 } else 2763 #endif 2764 { 2765 /* IPv4. */ 2766 inet_ntoa_r(inc->inc_laddr, laddr_str); 2767 inet_ntoa_r(inc->inc_faddr, faddr_str); 2768 } 2769 db_print_indent(indent); 2770 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2771 ntohs(inc->inc_lport)); 2772 db_print_indent(indent); 2773 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2774 ntohs(inc->inc_fport)); 2775 } 2776 2777 static void 2778 db_print_inpflags(int inp_flags) 2779 { 2780 int comma; 2781 2782 comma = 0; 2783 if (inp_flags & INP_RECVOPTS) { 2784 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2785 comma = 1; 2786 } 2787 if (inp_flags & INP_RECVRETOPTS) { 2788 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2789 comma = 1; 2790 } 2791 if (inp_flags & INP_RECVDSTADDR) { 2792 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2793 comma = 1; 2794 } 2795 if (inp_flags & INP_ORIGDSTADDR) { 2796 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 2797 comma = 1; 2798 } 2799 if (inp_flags & INP_HDRINCL) { 2800 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2801 comma = 1; 2802 } 2803 if (inp_flags & INP_HIGHPORT) { 2804 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2805 comma = 1; 2806 } 2807 if (inp_flags & INP_LOWPORT) { 2808 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2809 comma = 1; 2810 } 2811 if (inp_flags & INP_ANONPORT) { 2812 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2813 comma = 1; 2814 } 2815 if (inp_flags & INP_RECVIF) { 2816 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2817 comma = 1; 2818 } 2819 if (inp_flags & INP_MTUDISC) { 2820 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2821 comma = 1; 2822 } 2823 if (inp_flags & INP_RECVTTL) { 2824 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 2825 comma = 1; 2826 } 2827 if (inp_flags & INP_DONTFRAG) { 2828 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 2829 comma = 1; 2830 } 2831 if (inp_flags & INP_RECVTOS) { 2832 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 2833 comma = 1; 2834 } 2835 if (inp_flags & IN6P_IPV6_V6ONLY) { 2836 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 2837 comma = 1; 2838 } 2839 if (inp_flags & IN6P_PKTINFO) { 2840 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 2841 comma = 1; 2842 } 2843 if (inp_flags & IN6P_HOPLIMIT) { 2844 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 2845 comma = 1; 2846 } 2847 if (inp_flags & IN6P_HOPOPTS) { 2848 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 2849 comma = 1; 2850 } 2851 if (inp_flags & IN6P_DSTOPTS) { 2852 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 2853 comma = 1; 2854 } 2855 if (inp_flags & IN6P_RTHDR) { 2856 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 2857 comma = 1; 2858 } 2859 if (inp_flags & IN6P_RTHDRDSTOPTS) { 2860 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 2861 comma = 1; 2862 } 2863 if (inp_flags & IN6P_TCLASS) { 2864 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 2865 comma = 1; 2866 } 2867 if (inp_flags & IN6P_AUTOFLOWLABEL) { 2868 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 2869 comma = 1; 2870 } 2871 if (inp_flags & INP_ONESBCAST) { 2872 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 2873 comma = 1; 2874 } 2875 if (inp_flags & INP_DROPPED) { 2876 db_printf("%sINP_DROPPED", comma ? ", " : ""); 2877 comma = 1; 2878 } 2879 if (inp_flags & INP_SOCKREF) { 2880 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 2881 comma = 1; 2882 } 2883 if (inp_flags & IN6P_RFC2292) { 2884 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 2885 comma = 1; 2886 } 2887 if (inp_flags & IN6P_MTU) { 2888 db_printf("IN6P_MTU%s", comma ? ", " : ""); 2889 comma = 1; 2890 } 2891 } 2892 2893 static void 2894 db_print_inpvflag(u_char inp_vflag) 2895 { 2896 int comma; 2897 2898 comma = 0; 2899 if (inp_vflag & INP_IPV4) { 2900 db_printf("%sINP_IPV4", comma ? ", " : ""); 2901 comma = 1; 2902 } 2903 if (inp_vflag & INP_IPV6) { 2904 db_printf("%sINP_IPV6", comma ? ", " : ""); 2905 comma = 1; 2906 } 2907 if (inp_vflag & INP_IPV6PROTO) { 2908 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 2909 comma = 1; 2910 } 2911 } 2912 2913 static void 2914 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 2915 { 2916 2917 db_print_indent(indent); 2918 db_printf("%s at %p\n", name, inp); 2919 2920 indent += 2; 2921 2922 db_print_indent(indent); 2923 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 2924 2925 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 2926 2927 db_print_indent(indent); 2928 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 2929 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 2930 2931 db_print_indent(indent); 2932 db_printf("inp_label: %p inp_flags: 0x%x (", 2933 inp->inp_label, inp->inp_flags); 2934 db_print_inpflags(inp->inp_flags); 2935 db_printf(")\n"); 2936 2937 db_print_indent(indent); 2938 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 2939 inp->inp_vflag); 2940 db_print_inpvflag(inp->inp_vflag); 2941 db_printf(")\n"); 2942 2943 db_print_indent(indent); 2944 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 2945 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 2946 2947 db_print_indent(indent); 2948 #ifdef INET6 2949 if (inp->inp_vflag & INP_IPV6) { 2950 db_printf("in6p_options: %p in6p_outputopts: %p " 2951 "in6p_moptions: %p\n", inp->in6p_options, 2952 inp->in6p_outputopts, inp->in6p_moptions); 2953 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 2954 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 2955 inp->in6p_hops); 2956 } else 2957 #endif 2958 { 2959 db_printf("inp_ip_tos: %d inp_ip_options: %p " 2960 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 2961 inp->inp_options, inp->inp_moptions); 2962 } 2963 2964 db_print_indent(indent); 2965 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 2966 (uintmax_t)inp->inp_gencnt); 2967 } 2968 2969 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 2970 { 2971 struct inpcb *inp; 2972 2973 if (!have_addr) { 2974 db_printf("usage: show inpcb <addr>\n"); 2975 return; 2976 } 2977 inp = (struct inpcb *)addr; 2978 2979 db_print_inpcb(inp, "inpcb", 0); 2980 } 2981 #endif /* DDB */ 2982 2983 #ifdef RATELIMIT 2984 /* 2985 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 2986 * if any. 2987 */ 2988 int 2989 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 2990 { 2991 union if_snd_tag_modify_params params = { 2992 .rate_limit.max_rate = max_pacing_rate, 2993 .rate_limit.flags = M_NOWAIT, 2994 }; 2995 struct m_snd_tag *mst; 2996 int error; 2997 2998 mst = inp->inp_snd_tag; 2999 if (mst == NULL) 3000 return (EINVAL); 3001 3002 if (mst->sw->snd_tag_modify == NULL) { 3003 error = EOPNOTSUPP; 3004 } else { 3005 error = mst->sw->snd_tag_modify(mst, ¶ms); 3006 } 3007 return (error); 3008 } 3009 3010 /* 3011 * Query existing TX rate limit based on the existing 3012 * "inp->inp_snd_tag", if any. 3013 */ 3014 int 3015 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3016 { 3017 union if_snd_tag_query_params params = { }; 3018 struct m_snd_tag *mst; 3019 int error; 3020 3021 mst = inp->inp_snd_tag; 3022 if (mst == NULL) 3023 return (EINVAL); 3024 3025 if (mst->sw->snd_tag_query == NULL) { 3026 error = EOPNOTSUPP; 3027 } else { 3028 error = mst->sw->snd_tag_query(mst, ¶ms); 3029 if (error == 0 && p_max_pacing_rate != NULL) 3030 *p_max_pacing_rate = params.rate_limit.max_rate; 3031 } 3032 return (error); 3033 } 3034 3035 /* 3036 * Query existing TX queue level based on the existing 3037 * "inp->inp_snd_tag", if any. 3038 */ 3039 int 3040 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3041 { 3042 union if_snd_tag_query_params params = { }; 3043 struct m_snd_tag *mst; 3044 int error; 3045 3046 mst = inp->inp_snd_tag; 3047 if (mst == NULL) 3048 return (EINVAL); 3049 3050 if (mst->sw->snd_tag_query == NULL) 3051 return (EOPNOTSUPP); 3052 3053 error = mst->sw->snd_tag_query(mst, ¶ms); 3054 if (error == 0 && p_txqueue_level != NULL) 3055 *p_txqueue_level = params.rate_limit.queue_level; 3056 return (error); 3057 } 3058 3059 /* 3060 * Allocate a new TX rate limit send tag from the network interface 3061 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3062 */ 3063 int 3064 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3065 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st) 3066 3067 { 3068 union if_snd_tag_alloc_params params = { 3069 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3070 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3071 .rate_limit.hdr.flowid = flowid, 3072 .rate_limit.hdr.flowtype = flowtype, 3073 .rate_limit.hdr.numa_domain = inp->inp_numa_domain, 3074 .rate_limit.max_rate = max_pacing_rate, 3075 .rate_limit.flags = M_NOWAIT, 3076 }; 3077 int error; 3078 3079 INP_WLOCK_ASSERT(inp); 3080 3081 /* 3082 * If there is already a send tag, or the INP is being torn 3083 * down, allocating a new send tag is not allowed. Else send 3084 * tags may leak. 3085 */ 3086 if (*st != NULL || (inp->inp_flags & INP_DROPPED) != 0) 3087 return (EINVAL); 3088 3089 error = m_snd_tag_alloc(ifp, ¶ms, st); 3090 #ifdef INET 3091 if (error == 0) { 3092 counter_u64_add(rate_limit_set_ok, 1); 3093 counter_u64_add(rate_limit_active, 1); 3094 } else if (error != EOPNOTSUPP) 3095 counter_u64_add(rate_limit_alloc_fail, 1); 3096 #endif 3097 return (error); 3098 } 3099 3100 void 3101 in_pcbdetach_tag(struct m_snd_tag *mst) 3102 { 3103 3104 m_snd_tag_rele(mst); 3105 #ifdef INET 3106 counter_u64_add(rate_limit_active, -1); 3107 #endif 3108 } 3109 3110 /* 3111 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3112 * if any: 3113 */ 3114 void 3115 in_pcbdetach_txrtlmt(struct inpcb *inp) 3116 { 3117 struct m_snd_tag *mst; 3118 3119 INP_WLOCK_ASSERT(inp); 3120 3121 mst = inp->inp_snd_tag; 3122 inp->inp_snd_tag = NULL; 3123 3124 if (mst == NULL) 3125 return; 3126 3127 m_snd_tag_rele(mst); 3128 #ifdef INET 3129 counter_u64_add(rate_limit_active, -1); 3130 #endif 3131 } 3132 3133 int 3134 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate) 3135 { 3136 int error; 3137 3138 /* 3139 * If the existing send tag is for the wrong interface due to 3140 * a route change, first drop the existing tag. Set the 3141 * CHANGED flag so that we will keep trying to allocate a new 3142 * tag if we fail to allocate one this time. 3143 */ 3144 if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) { 3145 in_pcbdetach_txrtlmt(inp); 3146 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3147 } 3148 3149 /* 3150 * NOTE: When attaching to a network interface a reference is 3151 * made to ensure the network interface doesn't go away until 3152 * all ratelimit connections are gone. The network interface 3153 * pointers compared below represent valid network interfaces, 3154 * except when comparing towards NULL. 3155 */ 3156 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3157 error = 0; 3158 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3159 if (inp->inp_snd_tag != NULL) 3160 in_pcbdetach_txrtlmt(inp); 3161 error = 0; 3162 } else if (inp->inp_snd_tag == NULL) { 3163 /* 3164 * In order to utilize packet pacing with RSS, we need 3165 * to wait until there is a valid RSS hash before we 3166 * can proceed: 3167 */ 3168 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3169 error = EAGAIN; 3170 } else { 3171 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3172 mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag); 3173 } 3174 } else { 3175 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3176 } 3177 if (error == 0 || error == EOPNOTSUPP) 3178 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3179 3180 return (error); 3181 } 3182 3183 /* 3184 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3185 * is set in the fast path and will attach/detach/modify the TX rate 3186 * limit send tag based on the socket's so_max_pacing_rate value. 3187 */ 3188 void 3189 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3190 { 3191 struct socket *socket; 3192 uint32_t max_pacing_rate; 3193 bool did_upgrade; 3194 3195 if (inp == NULL) 3196 return; 3197 3198 socket = inp->inp_socket; 3199 if (socket == NULL) 3200 return; 3201 3202 if (!INP_WLOCKED(inp)) { 3203 /* 3204 * NOTE: If the write locking fails, we need to bail 3205 * out and use the non-ratelimited ring for the 3206 * transmit until there is a new chance to get the 3207 * write lock. 3208 */ 3209 if (!INP_TRY_UPGRADE(inp)) 3210 return; 3211 did_upgrade = 1; 3212 } else { 3213 did_upgrade = 0; 3214 } 3215 3216 /* 3217 * NOTE: The so_max_pacing_rate value is read unlocked, 3218 * because atomic updates are not required since the variable 3219 * is checked at every mbuf we send. It is assumed that the 3220 * variable read itself will be atomic. 3221 */ 3222 max_pacing_rate = socket->so_max_pacing_rate; 3223 3224 in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate); 3225 3226 if (did_upgrade) 3227 INP_DOWNGRADE(inp); 3228 } 3229 3230 /* 3231 * Track route changes for TX rate limiting. 3232 */ 3233 void 3234 in_pcboutput_eagain(struct inpcb *inp) 3235 { 3236 bool did_upgrade; 3237 3238 if (inp == NULL) 3239 return; 3240 3241 if (inp->inp_snd_tag == NULL) 3242 return; 3243 3244 if (!INP_WLOCKED(inp)) { 3245 /* 3246 * NOTE: If the write locking fails, we need to bail 3247 * out and use the non-ratelimited ring for the 3248 * transmit until there is a new chance to get the 3249 * write lock. 3250 */ 3251 if (!INP_TRY_UPGRADE(inp)) 3252 return; 3253 did_upgrade = 1; 3254 } else { 3255 did_upgrade = 0; 3256 } 3257 3258 /* detach rate limiting */ 3259 in_pcbdetach_txrtlmt(inp); 3260 3261 /* make sure new mbuf send tag allocation is made */ 3262 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3263 3264 if (did_upgrade) 3265 INP_DOWNGRADE(inp); 3266 } 3267 3268 #ifdef INET 3269 static void 3270 rl_init(void *st) 3271 { 3272 rate_limit_new = counter_u64_alloc(M_WAITOK); 3273 rate_limit_chg = counter_u64_alloc(M_WAITOK); 3274 rate_limit_active = counter_u64_alloc(M_WAITOK); 3275 rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK); 3276 rate_limit_set_ok = counter_u64_alloc(M_WAITOK); 3277 } 3278 3279 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL); 3280 #endif 3281 #endif /* RATELIMIT */ 3282