1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * Copyright (c) 2021-2022 Gleb Smirnoff <glebius@FreeBSD.org> 9 * All rights reserved. 10 * 11 * Portions of this software were developed by Robert N. M. Watson under 12 * contract to Juniper Networks, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 */ 38 39 #include <sys/cdefs.h> 40 #include "opt_ddb.h" 41 #include "opt_ipsec.h" 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_ratelimit.h" 45 #include "opt_route.h" 46 #include "opt_rss.h" 47 48 #include <sys/param.h> 49 #include <sys/hash.h> 50 #include <sys/systm.h> 51 #include <sys/libkern.h> 52 #include <sys/lock.h> 53 #include <sys/malloc.h> 54 #include <sys/mbuf.h> 55 #include <sys/eventhandler.h> 56 #include <sys/domain.h> 57 #include <sys/proc.h> 58 #include <sys/protosw.h> 59 #include <sys/smp.h> 60 #include <sys/smr.h> 61 #include <sys/socket.h> 62 #include <sys/socketvar.h> 63 #include <sys/sockio.h> 64 #include <sys/priv.h> 65 #include <sys/proc.h> 66 #include <sys/refcount.h> 67 #include <sys/jail.h> 68 #include <sys/kernel.h> 69 #include <sys/sysctl.h> 70 71 #ifdef DDB 72 #include <ddb/ddb.h> 73 #endif 74 75 #include <vm/uma.h> 76 #include <vm/vm.h> 77 78 #include <net/if.h> 79 #include <net/if_var.h> 80 #include <net/if_private.h> 81 #include <net/if_types.h> 82 #include <net/if_llatbl.h> 83 #include <net/route.h> 84 #include <net/rss_config.h> 85 #include <net/vnet.h> 86 87 #if defined(INET) || defined(INET6) 88 #include <netinet/in.h> 89 #include <netinet/in_pcb.h> 90 #include <netinet/in_pcb_var.h> 91 #include <netinet/tcp.h> 92 #ifdef INET 93 #include <netinet/in_var.h> 94 #include <netinet/in_fib.h> 95 #endif 96 #include <netinet/ip_var.h> 97 #ifdef INET6 98 #include <netinet/ip6.h> 99 #include <netinet6/in6_pcb.h> 100 #include <netinet6/in6_var.h> 101 #include <netinet6/ip6_var.h> 102 #endif /* INET6 */ 103 #include <net/route/nhop.h> 104 #endif 105 106 #include <netipsec/ipsec_support.h> 107 108 #include <security/mac/mac_framework.h> 109 110 #define INPCBLBGROUP_SIZMIN 8 111 #define INPCBLBGROUP_SIZMAX 256 112 113 #define INP_FREED 0x00000200 /* Went through in_pcbfree(). */ 114 #define INP_INLBGROUP 0x01000000 /* Inserted into inpcblbgroup. */ 115 116 /* 117 * These configure the range of local port addresses assigned to 118 * "unspecified" outgoing connections/packets/whatever. 119 */ 120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 126 127 /* 128 * Reserved ports accessible only to root. There are significant 129 * security considerations that must be accounted for when changing these, 130 * but the security benefits can be great. Please be careful. 131 */ 132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 133 VNET_DEFINE(int, ipport_reservedlow); 134 135 /* Enable random ephemeral port allocation by default. */ 136 VNET_DEFINE(int, ipport_randomized) = 1; 137 138 #ifdef INET 139 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 140 struct in_addr faddr, u_int fport_arg, 141 struct in_addr laddr, u_int lport_arg, 142 int lookupflags, uint8_t numa_domain); 143 144 #define RANGECHK(var, min, max) \ 145 if ((var) < (min)) { (var) = (min); } \ 146 else if ((var) > (max)) { (var) = (max); } 147 148 static int 149 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 150 { 151 int error; 152 153 error = sysctl_handle_int(oidp, arg1, arg2, req); 154 if (error == 0) { 155 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 156 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 157 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 158 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 159 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 160 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 161 } 162 return (error); 163 } 164 165 #undef RANGECHK 166 167 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, 168 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 169 "IP Ports"); 170 171 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 172 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 173 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", 174 ""); 175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 176 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 177 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", 178 ""); 179 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 180 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 181 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", 182 ""); 183 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 184 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 185 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", 186 ""); 187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 188 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 189 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", 190 ""); 191 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 192 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 193 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", 194 ""); 195 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 196 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 197 &VNET_NAME(ipport_reservedhigh), 0, ""); 198 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 199 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 200 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 201 CTLFLAG_VNET | CTLFLAG_RW, 202 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 203 204 #ifdef RATELIMIT 205 counter_u64_t rate_limit_new; 206 counter_u64_t rate_limit_chg; 207 counter_u64_t rate_limit_active; 208 counter_u64_t rate_limit_alloc_fail; 209 counter_u64_t rate_limit_set_ok; 210 211 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 212 "IP Rate Limiting"); 213 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD, 214 &rate_limit_active, "Active rate limited connections"); 215 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD, 216 &rate_limit_alloc_fail, "Rate limited connection failures"); 217 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD, 218 &rate_limit_set_ok, "Rate limited setting succeeded"); 219 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD, 220 &rate_limit_new, "Total Rate limit new attempts"); 221 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD, 222 &rate_limit_chg, "Total Rate limited change attempts"); 223 #endif /* RATELIMIT */ 224 225 #endif /* INET */ 226 227 VNET_DEFINE(uint32_t, in_pcbhashseed); 228 static void 229 in_pcbhashseed_init(void) 230 { 231 232 V_in_pcbhashseed = arc4random(); 233 } 234 VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, 235 in_pcbhashseed_init, 0); 236 237 #ifdef INET 238 VNET_DEFINE_STATIC(int, connect_inaddr_wild) = 1; 239 #define V_connect_inaddr_wild VNET(connect_inaddr_wild) 240 SYSCTL_INT(_net_inet_ip, OID_AUTO, connect_inaddr_wild, 241 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(connect_inaddr_wild), 0, 242 "Allow connecting to INADDR_ANY or INADDR_BROADCAST for connect(2)"); 243 #endif 244 245 static void in_pcbremhash(struct inpcb *); 246 247 /* 248 * in_pcb.c: manage the Protocol Control Blocks. 249 * 250 * NOTE: It is assumed that most of these functions will be called with 251 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 252 * functions often modify hash chains or addresses in pcbs. 253 */ 254 255 static struct inpcblbgroup * 256 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, struct ucred *cred, 257 u_char vflag, uint16_t port, const union in_dependaddr *addr, int size, 258 uint8_t numa_domain) 259 { 260 struct inpcblbgroup *grp; 261 size_t bytes; 262 263 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 264 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 265 if (grp == NULL) 266 return (NULL); 267 grp->il_cred = crhold(cred); 268 grp->il_vflag = vflag; 269 grp->il_lport = port; 270 grp->il_numa_domain = numa_domain; 271 grp->il_dependladdr = *addr; 272 grp->il_inpsiz = size; 273 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 274 return (grp); 275 } 276 277 static void 278 in_pcblbgroup_free_deferred(epoch_context_t ctx) 279 { 280 struct inpcblbgroup *grp; 281 282 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); 283 crfree(grp->il_cred); 284 free(grp, M_PCB); 285 } 286 287 static void 288 in_pcblbgroup_free(struct inpcblbgroup *grp) 289 { 290 291 CK_LIST_REMOVE(grp, il_list); 292 NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx); 293 } 294 295 static struct inpcblbgroup * 296 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 297 struct inpcblbgroup *old_grp, int size) 298 { 299 struct inpcblbgroup *grp; 300 int i; 301 302 grp = in_pcblbgroup_alloc(hdr, old_grp->il_cred, old_grp->il_vflag, 303 old_grp->il_lport, &old_grp->il_dependladdr, size, 304 old_grp->il_numa_domain); 305 if (grp == NULL) 306 return (NULL); 307 308 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 309 ("invalid new local group size %d and old local group count %d", 310 grp->il_inpsiz, old_grp->il_inpcnt)); 311 312 for (i = 0; i < old_grp->il_inpcnt; ++i) 313 grp->il_inp[i] = old_grp->il_inp[i]; 314 grp->il_inpcnt = old_grp->il_inpcnt; 315 in_pcblbgroup_free(old_grp); 316 return (grp); 317 } 318 319 /* 320 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] 321 * and shrink group if possible. 322 */ 323 static void 324 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, 325 int i) 326 { 327 struct inpcblbgroup *grp, *new_grp; 328 329 grp = *grpp; 330 for (; i + 1 < grp->il_inpcnt; ++i) 331 grp->il_inp[i] = grp->il_inp[i + 1]; 332 grp->il_inpcnt--; 333 334 if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && 335 grp->il_inpcnt <= grp->il_inpsiz / 4) { 336 /* Shrink this group. */ 337 new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); 338 if (new_grp != NULL) 339 *grpp = new_grp; 340 } 341 } 342 343 /* 344 * Add PCB to load balance group for SO_REUSEPORT_LB option. 345 */ 346 static int 347 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain) 348 { 349 const static struct timeval interval = { 60, 0 }; 350 static struct timeval lastprint; 351 struct inpcbinfo *pcbinfo; 352 struct inpcblbgrouphead *hdr; 353 struct inpcblbgroup *grp; 354 uint32_t idx; 355 356 pcbinfo = inp->inp_pcbinfo; 357 358 INP_WLOCK_ASSERT(inp); 359 INP_HASH_WLOCK_ASSERT(pcbinfo); 360 361 #ifdef INET6 362 /* 363 * Don't allow IPv4 mapped INET6 wild socket. 364 */ 365 if ((inp->inp_vflag & INP_IPV4) && 366 inp->inp_laddr.s_addr == INADDR_ANY && 367 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 368 return (0); 369 } 370 #endif 371 372 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); 373 hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; 374 CK_LIST_FOREACH(grp, hdr, il_list) { 375 if (grp->il_cred->cr_prison == inp->inp_cred->cr_prison && 376 grp->il_vflag == inp->inp_vflag && 377 grp->il_lport == inp->inp_lport && 378 grp->il_numa_domain == numa_domain && 379 memcmp(&grp->il_dependladdr, 380 &inp->inp_inc.inc_ie.ie_dependladdr, 381 sizeof(grp->il_dependladdr)) == 0) { 382 break; 383 } 384 } 385 if (grp == NULL) { 386 /* Create new load balance group. */ 387 grp = in_pcblbgroup_alloc(hdr, inp->inp_cred, inp->inp_vflag, 388 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 389 INPCBLBGROUP_SIZMIN, numa_domain); 390 if (grp == NULL) 391 return (ENOBUFS); 392 } else if (grp->il_inpcnt == grp->il_inpsiz) { 393 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 394 if (ratecheck(&lastprint, &interval)) 395 printf("lb group port %d, limit reached\n", 396 ntohs(grp->il_lport)); 397 return (0); 398 } 399 400 /* Expand this local group. */ 401 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 402 if (grp == NULL) 403 return (ENOBUFS); 404 } 405 406 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 407 ("invalid local group size %d and count %d", grp->il_inpsiz, 408 grp->il_inpcnt)); 409 410 grp->il_inp[grp->il_inpcnt] = inp; 411 grp->il_inpcnt++; 412 inp->inp_flags |= INP_INLBGROUP; 413 return (0); 414 } 415 416 /* 417 * Remove PCB from load balance group. 418 */ 419 static void 420 in_pcbremlbgrouphash(struct inpcb *inp) 421 { 422 struct inpcbinfo *pcbinfo; 423 struct inpcblbgrouphead *hdr; 424 struct inpcblbgroup *grp; 425 int i; 426 427 pcbinfo = inp->inp_pcbinfo; 428 429 INP_WLOCK_ASSERT(inp); 430 MPASS(inp->inp_flags & INP_INLBGROUP); 431 INP_HASH_WLOCK_ASSERT(pcbinfo); 432 433 hdr = &pcbinfo->ipi_lbgrouphashbase[ 434 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 435 CK_LIST_FOREACH(grp, hdr, il_list) { 436 for (i = 0; i < grp->il_inpcnt; ++i) { 437 if (grp->il_inp[i] != inp) 438 continue; 439 440 if (grp->il_inpcnt == 1) { 441 /* We are the last, free this local group. */ 442 in_pcblbgroup_free(grp); 443 } else { 444 /* Pull up inpcbs, shrink group if possible. */ 445 in_pcblbgroup_reorder(hdr, &grp, i); 446 } 447 inp->inp_flags &= ~INP_INLBGROUP; 448 return; 449 } 450 } 451 KASSERT(0, ("%s: did not find %p", __func__, inp)); 452 } 453 454 int 455 in_pcblbgroup_numa(struct inpcb *inp, int arg) 456 { 457 struct inpcbinfo *pcbinfo; 458 struct inpcblbgrouphead *hdr; 459 struct inpcblbgroup *grp; 460 int err, i; 461 uint8_t numa_domain; 462 463 switch (arg) { 464 case TCP_REUSPORT_LB_NUMA_NODOM: 465 numa_domain = M_NODOM; 466 break; 467 case TCP_REUSPORT_LB_NUMA_CURDOM: 468 numa_domain = PCPU_GET(domain); 469 break; 470 default: 471 if (arg < 0 || arg >= vm_ndomains) 472 return (EINVAL); 473 numa_domain = arg; 474 } 475 476 err = 0; 477 pcbinfo = inp->inp_pcbinfo; 478 INP_WLOCK_ASSERT(inp); 479 INP_HASH_WLOCK(pcbinfo); 480 hdr = &pcbinfo->ipi_lbgrouphashbase[ 481 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 482 CK_LIST_FOREACH(grp, hdr, il_list) { 483 for (i = 0; i < grp->il_inpcnt; ++i) { 484 if (grp->il_inp[i] != inp) 485 continue; 486 487 if (grp->il_numa_domain == numa_domain) { 488 goto abort_with_hash_wlock; 489 } 490 491 /* Remove it from the old group. */ 492 in_pcbremlbgrouphash(inp); 493 494 /* Add it to the new group based on numa domain. */ 495 in_pcbinslbgrouphash(inp, numa_domain); 496 goto abort_with_hash_wlock; 497 } 498 } 499 err = ENOENT; 500 abort_with_hash_wlock: 501 INP_HASH_WUNLOCK(pcbinfo); 502 return (err); 503 } 504 505 /* Make sure it is safe to use hashinit(9) on CK_LIST. */ 506 CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb))); 507 508 /* 509 * Initialize an inpcbinfo - a per-VNET instance of connections db. 510 */ 511 void 512 in_pcbinfo_init(struct inpcbinfo *pcbinfo, struct inpcbstorage *pcbstor, 513 u_int hash_nelements, u_int porthash_nelements) 514 { 515 516 mtx_init(&pcbinfo->ipi_lock, pcbstor->ips_infolock_name, NULL, MTX_DEF); 517 mtx_init(&pcbinfo->ipi_hash_lock, pcbstor->ips_hashlock_name, 518 NULL, MTX_DEF); 519 #ifdef VIMAGE 520 pcbinfo->ipi_vnet = curvnet; 521 #endif 522 CK_LIST_INIT(&pcbinfo->ipi_listhead); 523 pcbinfo->ipi_count = 0; 524 pcbinfo->ipi_hash_exact = hashinit(hash_nelements, M_PCB, 525 &pcbinfo->ipi_hashmask); 526 pcbinfo->ipi_hash_wild = hashinit(hash_nelements, M_PCB, 527 &pcbinfo->ipi_hashmask); 528 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); 529 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 530 &pcbinfo->ipi_porthashmask); 531 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, 532 &pcbinfo->ipi_lbgrouphashmask); 533 pcbinfo->ipi_zone = pcbstor->ips_zone; 534 pcbinfo->ipi_portzone = pcbstor->ips_portzone; 535 pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone); 536 } 537 538 /* 539 * Destroy an inpcbinfo. 540 */ 541 void 542 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 543 { 544 545 KASSERT(pcbinfo->ipi_count == 0, 546 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 547 548 hashdestroy(pcbinfo->ipi_hash_exact, M_PCB, pcbinfo->ipi_hashmask); 549 hashdestroy(pcbinfo->ipi_hash_wild, M_PCB, pcbinfo->ipi_hashmask); 550 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 551 pcbinfo->ipi_porthashmask); 552 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 553 pcbinfo->ipi_lbgrouphashmask); 554 mtx_destroy(&pcbinfo->ipi_hash_lock); 555 mtx_destroy(&pcbinfo->ipi_lock); 556 } 557 558 /* 559 * Initialize a pcbstorage - per protocol zones to allocate inpcbs. 560 */ 561 static void inpcb_fini(void *, int); 562 void 563 in_pcbstorage_init(void *arg) 564 { 565 struct inpcbstorage *pcbstor = arg; 566 567 pcbstor->ips_zone = uma_zcreate(pcbstor->ips_zone_name, 568 pcbstor->ips_size, NULL, NULL, pcbstor->ips_pcbinit, 569 inpcb_fini, UMA_ALIGN_CACHE, UMA_ZONE_SMR); 570 pcbstor->ips_portzone = uma_zcreate(pcbstor->ips_portzone_name, 571 sizeof(struct inpcbport), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 572 uma_zone_set_smr(pcbstor->ips_portzone, 573 uma_zone_get_smr(pcbstor->ips_zone)); 574 } 575 576 /* 577 * Destroy a pcbstorage - used by unloadable protocols. 578 */ 579 void 580 in_pcbstorage_destroy(void *arg) 581 { 582 struct inpcbstorage *pcbstor = arg; 583 584 uma_zdestroy(pcbstor->ips_zone); 585 uma_zdestroy(pcbstor->ips_portzone); 586 } 587 588 /* 589 * Allocate a PCB and associate it with the socket. 590 * On success return with the PCB locked. 591 */ 592 int 593 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 594 { 595 struct inpcb *inp; 596 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 597 int error; 598 #endif 599 600 inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT); 601 if (inp == NULL) 602 return (ENOBUFS); 603 bzero(&inp->inp_start_zero, inp_zero_size); 604 #ifdef NUMA 605 inp->inp_numa_domain = M_NODOM; 606 #endif 607 inp->inp_pcbinfo = pcbinfo; 608 inp->inp_socket = so; 609 inp->inp_cred = crhold(so->so_cred); 610 inp->inp_inc.inc_fibnum = so->so_fibnum; 611 #ifdef MAC 612 error = mac_inpcb_init(inp, M_NOWAIT); 613 if (error != 0) 614 goto out; 615 mac_inpcb_create(so, inp); 616 #endif 617 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 618 error = ipsec_init_pcbpolicy(inp); 619 if (error != 0) { 620 #ifdef MAC 621 mac_inpcb_destroy(inp); 622 #endif 623 goto out; 624 } 625 #endif /*IPSEC*/ 626 #ifdef INET6 627 if (INP_SOCKAF(so) == AF_INET6) { 628 inp->inp_vflag |= INP_IPV6PROTO | INP_IPV6; 629 if (V_ip6_v6only) 630 inp->inp_flags |= IN6P_IPV6_V6ONLY; 631 #ifdef INET 632 else 633 inp->inp_vflag |= INP_IPV4; 634 #endif 635 if (V_ip6_auto_flowlabel) 636 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 637 inp->in6p_hops = -1; /* use kernel default */ 638 } 639 #endif 640 #if defined(INET) && defined(INET6) 641 else 642 #endif 643 #ifdef INET 644 inp->inp_vflag |= INP_IPV4; 645 #endif 646 inp->inp_smr = SMR_SEQ_INVALID; 647 648 /* 649 * Routes in inpcb's can cache L2 as well; they are guaranteed 650 * to be cleaned up. 651 */ 652 inp->inp_route.ro_flags = RT_LLE_CACHE; 653 refcount_init(&inp->inp_refcount, 1); /* Reference from socket. */ 654 INP_WLOCK(inp); 655 INP_INFO_WLOCK(pcbinfo); 656 pcbinfo->ipi_count++; 657 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 658 CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list); 659 INP_INFO_WUNLOCK(pcbinfo); 660 so->so_pcb = inp; 661 662 return (0); 663 664 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 665 out: 666 crfree(inp->inp_cred); 667 #ifdef INVARIANTS 668 inp->inp_cred = NULL; 669 #endif 670 uma_zfree_smr(pcbinfo->ipi_zone, inp); 671 return (error); 672 #endif 673 } 674 675 #ifdef INET 676 int 677 in_pcbbind(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred) 678 { 679 int anonport, error; 680 681 KASSERT(sin == NULL || sin->sin_family == AF_INET, 682 ("%s: invalid address family for %p", __func__, sin)); 683 KASSERT(sin == NULL || sin->sin_len == sizeof(struct sockaddr_in), 684 ("%s: invalid address length for %p", __func__, sin)); 685 INP_WLOCK_ASSERT(inp); 686 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 687 688 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 689 return (EINVAL); 690 anonport = sin == NULL || sin->sin_port == 0; 691 error = in_pcbbind_setup(inp, sin, &inp->inp_laddr.s_addr, 692 &inp->inp_lport, cred); 693 if (error) 694 return (error); 695 if (in_pcbinshash(inp) != 0) { 696 inp->inp_laddr.s_addr = INADDR_ANY; 697 inp->inp_lport = 0; 698 return (EAGAIN); 699 } 700 if (anonport) 701 inp->inp_flags |= INP_ANONPORT; 702 return (0); 703 } 704 #endif 705 706 #if defined(INET) || defined(INET6) 707 /* 708 * Assign a local port like in_pcb_lport(), but also used with connect() 709 * and a foreign address and port. If fsa is non-NULL, choose a local port 710 * that is unused with those, otherwise one that is completely unused. 711 * lsa can be NULL for IPv6. 712 */ 713 int 714 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp, 715 struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags) 716 { 717 struct inpcbinfo *pcbinfo; 718 struct inpcb *tmpinp; 719 unsigned short *lastport; 720 int count, error; 721 u_short aux, first, last, lport; 722 #ifdef INET 723 struct in_addr laddr, faddr; 724 #endif 725 #ifdef INET6 726 struct in6_addr *laddr6, *faddr6; 727 #endif 728 729 pcbinfo = inp->inp_pcbinfo; 730 731 /* 732 * Because no actual state changes occur here, a global write lock on 733 * the pcbinfo isn't required. 734 */ 735 INP_LOCK_ASSERT(inp); 736 INP_HASH_LOCK_ASSERT(pcbinfo); 737 738 if (inp->inp_flags & INP_HIGHPORT) { 739 first = V_ipport_hifirstauto; /* sysctl */ 740 last = V_ipport_hilastauto; 741 lastport = &pcbinfo->ipi_lasthi; 742 } else if (inp->inp_flags & INP_LOWPORT) { 743 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); 744 if (error) 745 return (error); 746 first = V_ipport_lowfirstauto; /* 1023 */ 747 last = V_ipport_lowlastauto; /* 600 */ 748 lastport = &pcbinfo->ipi_lastlow; 749 } else { 750 first = V_ipport_firstauto; /* sysctl */ 751 last = V_ipport_lastauto; 752 lastport = &pcbinfo->ipi_lastport; 753 } 754 755 /* 756 * Instead of having two loops further down counting up or down 757 * make sure that first is always <= last and go with only one 758 * code path implementing all logic. 759 */ 760 if (first > last) { 761 aux = first; 762 first = last; 763 last = aux; 764 } 765 766 #ifdef INET 767 laddr.s_addr = INADDR_ANY; /* used by INET6+INET below too */ 768 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 769 if (lsa != NULL) 770 laddr = ((struct sockaddr_in *)lsa)->sin_addr; 771 if (fsa != NULL) 772 faddr = ((struct sockaddr_in *)fsa)->sin_addr; 773 } 774 #endif 775 #ifdef INET6 776 laddr6 = NULL; 777 if ((inp->inp_vflag & INP_IPV6) != 0) { 778 if (lsa != NULL) 779 laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr; 780 if (fsa != NULL) 781 faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr; 782 } 783 #endif 784 785 tmpinp = NULL; 786 lport = *lportp; 787 788 if (V_ipport_randomized) 789 *lastport = first + (arc4random() % (last - first)); 790 791 count = last - first; 792 793 do { 794 if (count-- < 0) /* completely used? */ 795 return (EADDRNOTAVAIL); 796 ++*lastport; 797 if (*lastport < first || *lastport > last) 798 *lastport = first; 799 lport = htons(*lastport); 800 801 if (fsa != NULL) { 802 #ifdef INET 803 if (lsa->sa_family == AF_INET) { 804 tmpinp = in_pcblookup_hash_locked(pcbinfo, 805 faddr, fport, laddr, lport, lookupflags, 806 M_NODOM); 807 } 808 #endif 809 #ifdef INET6 810 if (lsa->sa_family == AF_INET6) { 811 tmpinp = in6_pcblookup_hash_locked(pcbinfo, 812 faddr6, fport, laddr6, lport, lookupflags, 813 M_NODOM); 814 } 815 #endif 816 } else { 817 #ifdef INET6 818 if ((inp->inp_vflag & INP_IPV6) != 0) { 819 tmpinp = in6_pcblookup_local(pcbinfo, 820 &inp->in6p_laddr, lport, lookupflags, cred); 821 #ifdef INET 822 if (tmpinp == NULL && 823 (inp->inp_vflag & INP_IPV4)) 824 tmpinp = in_pcblookup_local(pcbinfo, 825 laddr, lport, lookupflags, cred); 826 #endif 827 } 828 #endif 829 #if defined(INET) && defined(INET6) 830 else 831 #endif 832 #ifdef INET 833 tmpinp = in_pcblookup_local(pcbinfo, laddr, 834 lport, lookupflags, cred); 835 #endif 836 } 837 } while (tmpinp != NULL); 838 839 *lportp = lport; 840 841 return (0); 842 } 843 844 /* 845 * Select a local port (number) to use. 846 */ 847 int 848 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 849 struct ucred *cred, int lookupflags) 850 { 851 struct sockaddr_in laddr; 852 853 if (laddrp) { 854 bzero(&laddr, sizeof(laddr)); 855 laddr.sin_family = AF_INET; 856 laddr.sin_addr = *laddrp; 857 } 858 return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr : 859 NULL, lportp, NULL, 0, cred, lookupflags)); 860 } 861 #endif /* INET || INET6 */ 862 863 #ifdef INET 864 /* 865 * Determine whether the inpcb can be bound to the specified address/port tuple. 866 */ 867 static int 868 in_pcbbind_avail(struct inpcb *inp, const struct in_addr laddr, 869 const u_short lport, int sooptions, int lookupflags, struct ucred *cred) 870 { 871 int reuseport, reuseport_lb; 872 873 INP_LOCK_ASSERT(inp); 874 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 875 876 reuseport = (sooptions & SO_REUSEPORT); 877 reuseport_lb = (sooptions & SO_REUSEPORT_LB); 878 879 if (IN_MULTICAST(ntohl(laddr.s_addr))) { 880 /* 881 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 882 * allow complete duplication of binding if 883 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 884 * and a multicast address is bound on both 885 * new and duplicated sockets. 886 */ 887 if ((sooptions & (SO_REUSEADDR | SO_REUSEPORT)) != 0) 888 reuseport = SO_REUSEADDR | SO_REUSEPORT; 889 /* 890 * XXX: How to deal with SO_REUSEPORT_LB here? 891 * Treat same as SO_REUSEPORT for now. 892 */ 893 if ((sooptions & (SO_REUSEADDR | SO_REUSEPORT_LB)) != 0) 894 reuseport_lb = SO_REUSEADDR | SO_REUSEPORT_LB; 895 } else if (!in_nullhost(laddr)) { 896 struct sockaddr_in sin; 897 898 memset(&sin, 0, sizeof(sin)); 899 sin.sin_family = AF_INET; 900 sin.sin_len = sizeof(sin); 901 sin.sin_addr = laddr; 902 903 /* 904 * Is the address a local IP address? 905 * If INP_BINDANY is set, then the socket may be bound 906 * to any endpoint address, local or not. 907 */ 908 if ((inp->inp_flags & INP_BINDANY) == 0 && 909 ifa_ifwithaddr_check((const struct sockaddr *)&sin) == 0) 910 return (EADDRNOTAVAIL); 911 } 912 913 if (lport != 0) { 914 struct inpcb *t; 915 916 if (ntohs(lport) <= V_ipport_reservedhigh && 917 ntohs(lport) >= V_ipport_reservedlow && 918 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) 919 return (EACCES); 920 921 if (!IN_MULTICAST(ntohl(laddr.s_addr)) && 922 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { 923 t = in_pcblookup_local(inp->inp_pcbinfo, laddr, lport, 924 INPLOOKUP_WILDCARD, cred); 925 if (t != NULL && 926 (inp->inp_socket->so_type != SOCK_STREAM || 927 in_nullhost(t->inp_faddr)) && 928 (!in_nullhost(laddr) || 929 !in_nullhost(t->inp_laddr) || 930 (t->inp_socket->so_options & SO_REUSEPORT) || 931 (t->inp_socket->so_options & SO_REUSEPORT_LB) == 0) && 932 (inp->inp_cred->cr_uid != t->inp_cred->cr_uid)) 933 return (EADDRINUSE); 934 } 935 t = in_pcblookup_local(inp->inp_pcbinfo, laddr, lport, 936 lookupflags, cred); 937 if (t != NULL && ((reuseport | reuseport_lb) & 938 t->inp_socket->so_options) == 0) { 939 #ifdef INET6 940 if (!in_nullhost(laddr) || 941 !in_nullhost(t->inp_laddr) || 942 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 943 (t->inp_vflag & INP_IPV6PROTO) == 0) 944 #endif 945 return (EADDRINUSE); 946 } 947 } 948 return (0); 949 } 950 951 /* 952 * Set up a bind operation on a PCB, performing port allocation 953 * as required, but do not actually modify the PCB. Callers can 954 * either complete the bind by setting inp_laddr/inp_lport and 955 * calling in_pcbinshash(), or they can just use the resulting 956 * port and address to authorise the sending of a once-off packet. 957 * 958 * On error, the values of *laddrp and *lportp are not changed. 959 */ 960 int 961 in_pcbbind_setup(struct inpcb *inp, struct sockaddr_in *sin, in_addr_t *laddrp, 962 u_short *lportp, struct ucred *cred) 963 { 964 struct socket *so = inp->inp_socket; 965 struct in_addr laddr; 966 u_short lport = 0; 967 int lookupflags, sooptions; 968 int error; 969 970 /* 971 * No state changes, so read locks are sufficient here. 972 */ 973 INP_LOCK_ASSERT(inp); 974 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 975 976 laddr.s_addr = *laddrp; 977 if (sin != NULL && laddr.s_addr != INADDR_ANY) 978 return (EINVAL); 979 980 lookupflags = 0; 981 sooptions = atomic_load_int(&so->so_options); 982 if ((sooptions & (SO_REUSEADDR | SO_REUSEPORT | SO_REUSEPORT_LB)) == 0) 983 lookupflags = INPLOOKUP_WILDCARD; 984 if (sin == NULL) { 985 if ((error = prison_local_ip4(cred, &laddr)) != 0) 986 return (error); 987 } else { 988 KASSERT(sin->sin_family == AF_INET, 989 ("%s: invalid family for address %p", __func__, sin)); 990 KASSERT(sin->sin_len == sizeof(*sin), 991 ("%s: invalid length for address %p", __func__, sin)); 992 993 error = prison_local_ip4(cred, &sin->sin_addr); 994 if (error) 995 return (error); 996 if (sin->sin_port != *lportp) { 997 /* Don't allow the port to change. */ 998 if (*lportp != 0) 999 return (EINVAL); 1000 lport = sin->sin_port; 1001 } 1002 laddr = sin->sin_addr; 1003 1004 /* See if this address/port combo is available. */ 1005 error = in_pcbbind_avail(inp, laddr, lport, sooptions, 1006 lookupflags, cred); 1007 if (error != 0) 1008 return (error); 1009 } 1010 if (*lportp != 0) 1011 lport = *lportp; 1012 if (lport == 0) { 1013 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 1014 if (error != 0) 1015 return (error); 1016 } 1017 *laddrp = laddr.s_addr; 1018 *lportp = lport; 1019 return (0); 1020 } 1021 1022 /* 1023 * Connect from a socket to a specified address. 1024 * Both address and port must be specified in argument sin. 1025 * If don't have a local address for this socket yet, 1026 * then pick one. 1027 */ 1028 int 1029 in_pcbconnect(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred) 1030 { 1031 u_short lport, fport; 1032 in_addr_t laddr, faddr; 1033 int anonport, error; 1034 1035 INP_WLOCK_ASSERT(inp); 1036 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1037 KASSERT(in_nullhost(inp->inp_faddr), 1038 ("%s: inp is already connected", __func__)); 1039 1040 lport = inp->inp_lport; 1041 laddr = inp->inp_laddr.s_addr; 1042 anonport = (lport == 0); 1043 error = in_pcbconnect_setup(inp, sin, &laddr, &lport, &faddr, &fport, 1044 cred); 1045 if (error) 1046 return (error); 1047 1048 inp->inp_faddr.s_addr = faddr; 1049 inp->inp_fport = fport; 1050 1051 /* Do the initial binding of the local address if required. */ 1052 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 1053 inp->inp_lport = lport; 1054 inp->inp_laddr.s_addr = laddr; 1055 if (in_pcbinshash(inp) != 0) { 1056 inp->inp_laddr.s_addr = inp->inp_faddr.s_addr = 1057 INADDR_ANY; 1058 inp->inp_lport = inp->inp_fport = 0; 1059 return (EAGAIN); 1060 } 1061 } else { 1062 inp->inp_lport = lport; 1063 inp->inp_laddr.s_addr = laddr; 1064 if ((inp->inp_flags & INP_INHASHLIST) != 0) 1065 in_pcbrehash(inp); 1066 else 1067 in_pcbinshash(inp); 1068 } 1069 1070 if (anonport) 1071 inp->inp_flags |= INP_ANONPORT; 1072 return (0); 1073 } 1074 1075 /* 1076 * Do proper source address selection on an unbound socket in case 1077 * of connect. Take jails into account as well. 1078 */ 1079 int 1080 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 1081 struct ucred *cred) 1082 { 1083 struct ifaddr *ifa; 1084 struct sockaddr *sa; 1085 struct sockaddr_in *sin, dst; 1086 struct nhop_object *nh; 1087 int error; 1088 1089 NET_EPOCH_ASSERT(); 1090 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1091 1092 /* 1093 * Bypass source address selection and use the primary jail IP 1094 * if requested. 1095 */ 1096 if (!prison_saddrsel_ip4(cred, laddr)) 1097 return (0); 1098 1099 error = 0; 1100 1101 nh = NULL; 1102 bzero(&dst, sizeof(dst)); 1103 sin = &dst; 1104 sin->sin_family = AF_INET; 1105 sin->sin_len = sizeof(struct sockaddr_in); 1106 sin->sin_addr.s_addr = faddr->s_addr; 1107 1108 /* 1109 * If route is known our src addr is taken from the i/f, 1110 * else punt. 1111 * 1112 * Find out route to destination. 1113 */ 1114 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1115 nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr, 1116 0, NHR_NONE, 0); 1117 1118 /* 1119 * If we found a route, use the address corresponding to 1120 * the outgoing interface. 1121 * 1122 * Otherwise assume faddr is reachable on a directly connected 1123 * network and try to find a corresponding interface to take 1124 * the source address from. 1125 */ 1126 if (nh == NULL || nh->nh_ifp == NULL) { 1127 struct in_ifaddr *ia; 1128 struct ifnet *ifp; 1129 1130 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1131 inp->inp_socket->so_fibnum)); 1132 if (ia == NULL) { 1133 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1134 inp->inp_socket->so_fibnum)); 1135 } 1136 if (ia == NULL) { 1137 error = ENETUNREACH; 1138 goto done; 1139 } 1140 1141 if (!prison_flag(cred, PR_IP4)) { 1142 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1143 goto done; 1144 } 1145 1146 ifp = ia->ia_ifp; 1147 ia = NULL; 1148 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1149 sa = ifa->ifa_addr; 1150 if (sa->sa_family != AF_INET) 1151 continue; 1152 sin = (struct sockaddr_in *)sa; 1153 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1154 ia = (struct in_ifaddr *)ifa; 1155 break; 1156 } 1157 } 1158 if (ia != NULL) { 1159 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1160 goto done; 1161 } 1162 1163 /* 3. As a last resort return the 'default' jail address. */ 1164 error = prison_get_ip4(cred, laddr); 1165 goto done; 1166 } 1167 1168 /* 1169 * If the outgoing interface on the route found is not 1170 * a loopback interface, use the address from that interface. 1171 * In case of jails do those three steps: 1172 * 1. check if the interface address belongs to the jail. If so use it. 1173 * 2. check if we have any address on the outgoing interface 1174 * belonging to this jail. If so use it. 1175 * 3. as a last resort return the 'default' jail address. 1176 */ 1177 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) { 1178 struct in_ifaddr *ia; 1179 struct ifnet *ifp; 1180 1181 /* If not jailed, use the default returned. */ 1182 if (!prison_flag(cred, PR_IP4)) { 1183 ia = (struct in_ifaddr *)nh->nh_ifa; 1184 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1185 goto done; 1186 } 1187 1188 /* Jailed. */ 1189 /* 1. Check if the iface address belongs to the jail. */ 1190 sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr; 1191 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1192 ia = (struct in_ifaddr *)nh->nh_ifa; 1193 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1194 goto done; 1195 } 1196 1197 /* 1198 * 2. Check if we have any address on the outgoing interface 1199 * belonging to this jail. 1200 */ 1201 ia = NULL; 1202 ifp = nh->nh_ifp; 1203 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1204 sa = ifa->ifa_addr; 1205 if (sa->sa_family != AF_INET) 1206 continue; 1207 sin = (struct sockaddr_in *)sa; 1208 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1209 ia = (struct in_ifaddr *)ifa; 1210 break; 1211 } 1212 } 1213 if (ia != NULL) { 1214 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1215 goto done; 1216 } 1217 1218 /* 3. As a last resort return the 'default' jail address. */ 1219 error = prison_get_ip4(cred, laddr); 1220 goto done; 1221 } 1222 1223 /* 1224 * The outgoing interface is marked with 'loopback net', so a route 1225 * to ourselves is here. 1226 * Try to find the interface of the destination address and then 1227 * take the address from there. That interface is not necessarily 1228 * a loopback interface. 1229 * In case of jails, check that it is an address of the jail 1230 * and if we cannot find, fall back to the 'default' jail address. 1231 */ 1232 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) { 1233 struct in_ifaddr *ia; 1234 1235 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst), 1236 inp->inp_socket->so_fibnum)); 1237 if (ia == NULL) 1238 ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0, 1239 inp->inp_socket->so_fibnum)); 1240 if (ia == NULL) 1241 ia = ifatoia(ifa_ifwithaddr(sintosa(&dst))); 1242 1243 if (!prison_flag(cred, PR_IP4)) { 1244 if (ia == NULL) { 1245 error = ENETUNREACH; 1246 goto done; 1247 } 1248 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1249 goto done; 1250 } 1251 1252 /* Jailed. */ 1253 if (ia != NULL) { 1254 struct ifnet *ifp; 1255 1256 ifp = ia->ia_ifp; 1257 ia = NULL; 1258 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1259 sa = ifa->ifa_addr; 1260 if (sa->sa_family != AF_INET) 1261 continue; 1262 sin = (struct sockaddr_in *)sa; 1263 if (prison_check_ip4(cred, 1264 &sin->sin_addr) == 0) { 1265 ia = (struct in_ifaddr *)ifa; 1266 break; 1267 } 1268 } 1269 if (ia != NULL) { 1270 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1271 goto done; 1272 } 1273 } 1274 1275 /* 3. As a last resort return the 'default' jail address. */ 1276 error = prison_get_ip4(cred, laddr); 1277 goto done; 1278 } 1279 1280 done: 1281 if (error == 0 && laddr->s_addr == INADDR_ANY) 1282 return (EHOSTUNREACH); 1283 return (error); 1284 } 1285 1286 /* 1287 * Set up for a connect from a socket to the specified address. 1288 * On entry, *laddrp and *lportp should contain the current local 1289 * address and port for the PCB; these are updated to the values 1290 * that should be placed in inp_laddr and inp_lport to complete 1291 * the connect. 1292 * 1293 * On success, *faddrp and *fportp will be set to the remote address 1294 * and port. These are not updated in the error case. 1295 */ 1296 int 1297 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr_in *sin, 1298 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1299 struct ucred *cred) 1300 { 1301 struct in_ifaddr *ia; 1302 struct in_addr laddr, faddr; 1303 u_short lport, fport; 1304 int error; 1305 1306 KASSERT(sin->sin_family == AF_INET, 1307 ("%s: invalid address family for %p", __func__, sin)); 1308 KASSERT(sin->sin_len == sizeof(*sin), 1309 ("%s: invalid address length for %p", __func__, sin)); 1310 1311 /* 1312 * Because a global state change doesn't actually occur here, a read 1313 * lock is sufficient. 1314 */ 1315 NET_EPOCH_ASSERT(); 1316 INP_LOCK_ASSERT(inp); 1317 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1318 1319 if (sin->sin_port == 0) 1320 return (EADDRNOTAVAIL); 1321 laddr.s_addr = *laddrp; 1322 lport = *lportp; 1323 faddr = sin->sin_addr; 1324 fport = sin->sin_port; 1325 #ifdef ROUTE_MPATH 1326 if (CALC_FLOWID_OUTBOUND) { 1327 uint32_t hash_val, hash_type; 1328 1329 hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport, 1330 inp->inp_socket->so_proto->pr_protocol, &hash_type); 1331 1332 inp->inp_flowid = hash_val; 1333 inp->inp_flowtype = hash_type; 1334 } 1335 #endif 1336 if (V_connect_inaddr_wild && !CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1337 /* 1338 * If the destination address is INADDR_ANY, 1339 * use the primary local address. 1340 * If the supplied address is INADDR_BROADCAST, 1341 * and the primary interface supports broadcast, 1342 * choose the broadcast address for that interface. 1343 */ 1344 if (faddr.s_addr == INADDR_ANY) { 1345 faddr = 1346 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1347 if ((error = prison_get_ip4(cred, &faddr)) != 0) 1348 return (error); 1349 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1350 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1351 IFF_BROADCAST) 1352 faddr = satosin(&CK_STAILQ_FIRST( 1353 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1354 } 1355 } else if (faddr.s_addr == INADDR_ANY) { 1356 return (ENETUNREACH); 1357 } 1358 if (laddr.s_addr == INADDR_ANY) { 1359 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1360 /* 1361 * If the destination address is multicast and an outgoing 1362 * interface has been set as a multicast option, prefer the 1363 * address of that interface as our source address. 1364 */ 1365 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1366 inp->inp_moptions != NULL) { 1367 struct ip_moptions *imo; 1368 struct ifnet *ifp; 1369 1370 imo = inp->inp_moptions; 1371 if (imo->imo_multicast_ifp != NULL) { 1372 ifp = imo->imo_multicast_ifp; 1373 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1374 if (ia->ia_ifp == ifp && 1375 prison_check_ip4(cred, 1376 &ia->ia_addr.sin_addr) == 0) 1377 break; 1378 } 1379 if (ia == NULL) 1380 error = EADDRNOTAVAIL; 1381 else { 1382 laddr = ia->ia_addr.sin_addr; 1383 error = 0; 1384 } 1385 } 1386 } 1387 if (error) 1388 return (error); 1389 } 1390 1391 if (lport != 0) { 1392 if (in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, 1393 fport, laddr, lport, 0, M_NODOM) != NULL) 1394 return (EADDRINUSE); 1395 } else { 1396 struct sockaddr_in lsin, fsin; 1397 1398 bzero(&lsin, sizeof(lsin)); 1399 bzero(&fsin, sizeof(fsin)); 1400 lsin.sin_family = AF_INET; 1401 lsin.sin_addr = laddr; 1402 fsin.sin_family = AF_INET; 1403 fsin.sin_addr = faddr; 1404 error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin, 1405 &lport, (struct sockaddr *)& fsin, fport, cred, 1406 INPLOOKUP_WILDCARD); 1407 if (error) 1408 return (error); 1409 } 1410 *laddrp = laddr.s_addr; 1411 *lportp = lport; 1412 *faddrp = faddr.s_addr; 1413 *fportp = fport; 1414 return (0); 1415 } 1416 1417 void 1418 in_pcbdisconnect(struct inpcb *inp) 1419 { 1420 1421 INP_WLOCK_ASSERT(inp); 1422 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1423 KASSERT(inp->inp_smr == SMR_SEQ_INVALID, 1424 ("%s: inp %p was already disconnected", __func__, inp)); 1425 1426 in_pcbremhash_locked(inp); 1427 1428 /* See the comment in in_pcbinshash(). */ 1429 inp->inp_smr = smr_advance(inp->inp_pcbinfo->ipi_smr); 1430 inp->inp_laddr.s_addr = INADDR_ANY; 1431 inp->inp_faddr.s_addr = INADDR_ANY; 1432 inp->inp_fport = 0; 1433 } 1434 #endif /* INET */ 1435 1436 /* 1437 * inpcb hash lookups are protected by SMR section. 1438 * 1439 * Once desired pcb has been found, switching from SMR section to a pcb 1440 * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK 1441 * here because SMR is a critical section. 1442 * In 99%+ cases inp_smr_lock() would obtain the lock immediately. 1443 */ 1444 void 1445 inp_lock(struct inpcb *inp, const inp_lookup_t lock) 1446 { 1447 1448 lock == INPLOOKUP_RLOCKPCB ? 1449 rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock); 1450 } 1451 1452 void 1453 inp_unlock(struct inpcb *inp, const inp_lookup_t lock) 1454 { 1455 1456 lock == INPLOOKUP_RLOCKPCB ? 1457 rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock); 1458 } 1459 1460 int 1461 inp_trylock(struct inpcb *inp, const inp_lookup_t lock) 1462 { 1463 1464 return (lock == INPLOOKUP_RLOCKPCB ? 1465 rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock)); 1466 } 1467 1468 static inline bool 1469 _inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock, const int ignflags) 1470 { 1471 1472 MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB); 1473 SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr); 1474 1475 if (__predict_true(inp_trylock(inp, lock))) { 1476 if (__predict_false(inp->inp_flags & ignflags)) { 1477 smr_exit(inp->inp_pcbinfo->ipi_smr); 1478 inp_unlock(inp, lock); 1479 return (false); 1480 } 1481 smr_exit(inp->inp_pcbinfo->ipi_smr); 1482 return (true); 1483 } 1484 1485 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1486 smr_exit(inp->inp_pcbinfo->ipi_smr); 1487 inp_lock(inp, lock); 1488 if (__predict_false(in_pcbrele(inp, lock))) 1489 return (false); 1490 /* 1491 * inp acquired through refcount & lock for sure didn't went 1492 * through uma_zfree(). However, it may have already went 1493 * through in_pcbfree() and has another reference, that 1494 * prevented its release by our in_pcbrele(). 1495 */ 1496 if (__predict_false(inp->inp_flags & ignflags)) { 1497 inp_unlock(inp, lock); 1498 return (false); 1499 } 1500 return (true); 1501 } else { 1502 smr_exit(inp->inp_pcbinfo->ipi_smr); 1503 return (false); 1504 } 1505 } 1506 1507 bool 1508 inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock) 1509 { 1510 1511 /* 1512 * in_pcblookup() family of functions ignore not only freed entries, 1513 * that may be found due to lockless access to the hash, but dropped 1514 * entries, too. 1515 */ 1516 return (_inp_smr_lock(inp, lock, INP_FREED | INP_DROPPED)); 1517 } 1518 1519 /* 1520 * inp_next() - inpcb hash/list traversal iterator 1521 * 1522 * Requires initialized struct inpcb_iterator for context. 1523 * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR(). 1524 * 1525 * - Iterator can have either write-lock or read-lock semantics, that can not 1526 * be changed later. 1527 * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through 1528 * a single hash slot. Note: only rip_input() does the latter. 1529 * - Iterator may have optional bool matching function. The matching function 1530 * will be executed for each inpcb in the SMR context, so it can not acquire 1531 * locks and can safely access only immutable fields of inpcb. 1532 * 1533 * A fresh initialized iterator has NULL inpcb in its context and that 1534 * means that inp_next() call would return the very first inpcb on the list 1535 * locked with desired semantic. In all following calls the context pointer 1536 * shall hold the current inpcb pointer. The KPI user is not supposed to 1537 * unlock the current inpcb! Upon end of traversal inp_next() will return NULL 1538 * and write NULL to its context. After end of traversal an iterator can be 1539 * reused. 1540 * 1541 * List traversals have the following features/constraints: 1542 * - New entries won't be seen, as they are always added to the head of a list. 1543 * - Removed entries won't stop traversal as long as they are not added to 1544 * a different list. This is violated by in_pcbrehash(). 1545 */ 1546 #define II_LIST_FIRST(ipi, hash) \ 1547 (((hash) == INP_ALL_LIST) ? \ 1548 CK_LIST_FIRST(&(ipi)->ipi_listhead) : \ 1549 CK_LIST_FIRST(&(ipi)->ipi_hash_exact[(hash)])) 1550 #define II_LIST_NEXT(inp, hash) \ 1551 (((hash) == INP_ALL_LIST) ? \ 1552 CK_LIST_NEXT((inp), inp_list) : \ 1553 CK_LIST_NEXT((inp), inp_hash_exact)) 1554 #define II_LOCK_ASSERT(inp, lock) \ 1555 rw_assert(&(inp)->inp_lock, \ 1556 (lock) == INPLOOKUP_RLOCKPCB ? RA_RLOCKED : RA_WLOCKED ) 1557 struct inpcb * 1558 inp_next(struct inpcb_iterator *ii) 1559 { 1560 const struct inpcbinfo *ipi = ii->ipi; 1561 inp_match_t *match = ii->match; 1562 void *ctx = ii->ctx; 1563 inp_lookup_t lock = ii->lock; 1564 int hash = ii->hash; 1565 struct inpcb *inp; 1566 1567 if (ii->inp == NULL) { /* First call. */ 1568 smr_enter(ipi->ipi_smr); 1569 /* This is unrolled CK_LIST_FOREACH(). */ 1570 for (inp = II_LIST_FIRST(ipi, hash); 1571 inp != NULL; 1572 inp = II_LIST_NEXT(inp, hash)) { 1573 if (match != NULL && (match)(inp, ctx) == false) 1574 continue; 1575 if (__predict_true(_inp_smr_lock(inp, lock, INP_FREED))) 1576 break; 1577 else { 1578 smr_enter(ipi->ipi_smr); 1579 MPASS(inp != II_LIST_FIRST(ipi, hash)); 1580 inp = II_LIST_FIRST(ipi, hash); 1581 if (inp == NULL) 1582 break; 1583 } 1584 } 1585 1586 if (inp == NULL) 1587 smr_exit(ipi->ipi_smr); 1588 else 1589 ii->inp = inp; 1590 1591 return (inp); 1592 } 1593 1594 /* Not a first call. */ 1595 smr_enter(ipi->ipi_smr); 1596 restart: 1597 inp = ii->inp; 1598 II_LOCK_ASSERT(inp, lock); 1599 next: 1600 inp = II_LIST_NEXT(inp, hash); 1601 if (inp == NULL) { 1602 smr_exit(ipi->ipi_smr); 1603 goto found; 1604 } 1605 1606 if (match != NULL && (match)(inp, ctx) == false) 1607 goto next; 1608 1609 if (__predict_true(inp_trylock(inp, lock))) { 1610 if (__predict_false(inp->inp_flags & INP_FREED)) { 1611 /* 1612 * Entries are never inserted in middle of a list, thus 1613 * as long as we are in SMR, we can continue traversal. 1614 * Jump to 'restart' should yield in the same result, 1615 * but could produce unnecessary looping. Could this 1616 * looping be unbound? 1617 */ 1618 inp_unlock(inp, lock); 1619 goto next; 1620 } else { 1621 smr_exit(ipi->ipi_smr); 1622 goto found; 1623 } 1624 } 1625 1626 /* 1627 * Can't obtain lock immediately, thus going hard. Once we exit the 1628 * SMR section we can no longer jump to 'next', and our only stable 1629 * anchoring point is ii->inp, which we keep locked for this case, so 1630 * we jump to 'restart'. 1631 */ 1632 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1633 smr_exit(ipi->ipi_smr); 1634 inp_lock(inp, lock); 1635 if (__predict_false(in_pcbrele(inp, lock))) { 1636 smr_enter(ipi->ipi_smr); 1637 goto restart; 1638 } 1639 /* 1640 * See comment in inp_smr_lock(). 1641 */ 1642 if (__predict_false(inp->inp_flags & INP_FREED)) { 1643 inp_unlock(inp, lock); 1644 smr_enter(ipi->ipi_smr); 1645 goto restart; 1646 } 1647 } else 1648 goto next; 1649 1650 found: 1651 inp_unlock(ii->inp, lock); 1652 ii->inp = inp; 1653 1654 return (ii->inp); 1655 } 1656 1657 /* 1658 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1659 * stability of an inpcb pointer despite the inpcb lock being released or 1660 * SMR section exited. 1661 * 1662 * To free a reference later in_pcbrele_(r|w)locked() must be performed. 1663 */ 1664 void 1665 in_pcbref(struct inpcb *inp) 1666 { 1667 u_int old __diagused; 1668 1669 old = refcount_acquire(&inp->inp_refcount); 1670 KASSERT(old > 0, ("%s: refcount 0", __func__)); 1671 } 1672 1673 /* 1674 * Drop a refcount on an inpcb elevated using in_pcbref(), potentially 1675 * freeing the pcb, if the reference was very last. 1676 */ 1677 bool 1678 in_pcbrele_rlocked(struct inpcb *inp) 1679 { 1680 1681 INP_RLOCK_ASSERT(inp); 1682 1683 if (!refcount_release(&inp->inp_refcount)) 1684 return (false); 1685 1686 MPASS(inp->inp_flags & INP_FREED); 1687 MPASS(inp->inp_socket == NULL); 1688 crfree(inp->inp_cred); 1689 #ifdef INVARIANTS 1690 inp->inp_cred = NULL; 1691 #endif 1692 INP_RUNLOCK(inp); 1693 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1694 return (true); 1695 } 1696 1697 bool 1698 in_pcbrele_wlocked(struct inpcb *inp) 1699 { 1700 1701 INP_WLOCK_ASSERT(inp); 1702 1703 if (!refcount_release(&inp->inp_refcount)) 1704 return (false); 1705 1706 MPASS(inp->inp_flags & INP_FREED); 1707 MPASS(inp->inp_socket == NULL); 1708 crfree(inp->inp_cred); 1709 #ifdef INVARIANTS 1710 inp->inp_cred = NULL; 1711 #endif 1712 INP_WUNLOCK(inp); 1713 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1714 return (true); 1715 } 1716 1717 bool 1718 in_pcbrele(struct inpcb *inp, const inp_lookup_t lock) 1719 { 1720 1721 return (lock == INPLOOKUP_RLOCKPCB ? 1722 in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp)); 1723 } 1724 1725 /* 1726 * Unconditionally schedule an inpcb to be freed by decrementing its 1727 * reference count, which should occur only after the inpcb has been detached 1728 * from its socket. If another thread holds a temporary reference (acquired 1729 * using in_pcbref()) then the free is deferred until that reference is 1730 * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked. 1731 * Almost all work, including removal from global lists, is done in this 1732 * context, where the pcbinfo lock is held. 1733 */ 1734 void 1735 in_pcbfree(struct inpcb *inp) 1736 { 1737 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1738 #ifdef INET 1739 struct ip_moptions *imo; 1740 #endif 1741 #ifdef INET6 1742 struct ip6_moptions *im6o; 1743 #endif 1744 1745 INP_WLOCK_ASSERT(inp); 1746 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1747 KASSERT((inp->inp_flags & INP_FREED) == 0, 1748 ("%s: called twice for pcb %p", __func__, inp)); 1749 1750 /* 1751 * in_pcblookup_local() and in6_pcblookup_local() may return an inpcb 1752 * from the hash without acquiring inpcb lock, they rely on the hash 1753 * lock, thus in_pcbremhash() should be the first action. 1754 */ 1755 if (inp->inp_flags & INP_INHASHLIST) 1756 in_pcbremhash(inp); 1757 INP_INFO_WLOCK(pcbinfo); 1758 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1759 pcbinfo->ipi_count--; 1760 CK_LIST_REMOVE(inp, inp_list); 1761 INP_INFO_WUNLOCK(pcbinfo); 1762 1763 #ifdef RATELIMIT 1764 if (inp->inp_snd_tag != NULL) 1765 in_pcbdetach_txrtlmt(inp); 1766 #endif 1767 inp->inp_flags |= INP_FREED; 1768 inp->inp_socket->so_pcb = NULL; 1769 inp->inp_socket = NULL; 1770 1771 RO_INVALIDATE_CACHE(&inp->inp_route); 1772 #ifdef MAC 1773 mac_inpcb_destroy(inp); 1774 #endif 1775 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1776 if (inp->inp_sp != NULL) 1777 ipsec_delete_pcbpolicy(inp); 1778 #endif 1779 #ifdef INET 1780 if (inp->inp_options) 1781 (void)m_free(inp->inp_options); 1782 DEBUG_POISON_POINTER(inp->inp_options); 1783 imo = inp->inp_moptions; 1784 DEBUG_POISON_POINTER(inp->inp_moptions); 1785 #endif 1786 #ifdef INET6 1787 if (inp->inp_vflag & INP_IPV6PROTO) { 1788 ip6_freepcbopts(inp->in6p_outputopts); 1789 DEBUG_POISON_POINTER(inp->in6p_outputopts); 1790 im6o = inp->in6p_moptions; 1791 DEBUG_POISON_POINTER(inp->in6p_moptions); 1792 } else 1793 im6o = NULL; 1794 #endif 1795 1796 if (__predict_false(in_pcbrele_wlocked(inp) == false)) { 1797 INP_WUNLOCK(inp); 1798 } 1799 #ifdef INET6 1800 ip6_freemoptions(im6o); 1801 #endif 1802 #ifdef INET 1803 inp_freemoptions(imo); 1804 #endif 1805 } 1806 1807 /* 1808 * Different protocols initialize their inpcbs differently - giving 1809 * different name to the lock. But they all are disposed the same. 1810 */ 1811 static void 1812 inpcb_fini(void *mem, int size) 1813 { 1814 struct inpcb *inp = mem; 1815 1816 INP_LOCK_DESTROY(inp); 1817 } 1818 1819 /* 1820 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1821 * port reservation, and preventing it from being returned by inpcb lookups. 1822 * 1823 * It is used by TCP to mark an inpcb as unused and avoid future packet 1824 * delivery or event notification when a socket remains open but TCP has 1825 * closed. This might occur as a result of a shutdown()-initiated TCP close 1826 * or a RST on the wire, and allows the port binding to be reused while still 1827 * maintaining the invariant that so_pcb always points to a valid inpcb until 1828 * in_pcbdetach(). 1829 * 1830 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1831 * in_pcbpurgeif0()? 1832 */ 1833 void 1834 in_pcbdrop(struct inpcb *inp) 1835 { 1836 1837 INP_WLOCK_ASSERT(inp); 1838 1839 inp->inp_flags |= INP_DROPPED; 1840 if (inp->inp_flags & INP_INHASHLIST) 1841 in_pcbremhash(inp); 1842 } 1843 1844 #ifdef INET 1845 /* 1846 * Common routines to return the socket addresses associated with inpcbs. 1847 */ 1848 int 1849 in_getsockaddr(struct socket *so, struct sockaddr *sa) 1850 { 1851 struct inpcb *inp; 1852 1853 inp = sotoinpcb(so); 1854 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1855 1856 *(struct sockaddr_in *)sa = (struct sockaddr_in ){ 1857 .sin_len = sizeof(struct sockaddr_in), 1858 .sin_family = AF_INET, 1859 .sin_port = inp->inp_lport, 1860 .sin_addr = inp->inp_laddr, 1861 }; 1862 1863 return (0); 1864 } 1865 1866 int 1867 in_getpeeraddr(struct socket *so, struct sockaddr *sa) 1868 { 1869 struct inpcb *inp; 1870 1871 inp = sotoinpcb(so); 1872 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1873 1874 *(struct sockaddr_in *)sa = (struct sockaddr_in ){ 1875 .sin_len = sizeof(struct sockaddr_in), 1876 .sin_family = AF_INET, 1877 .sin_port = inp->inp_fport, 1878 .sin_addr = inp->inp_faddr, 1879 }; 1880 1881 return (0); 1882 } 1883 1884 static bool 1885 inp_v4_multi_match(const struct inpcb *inp, void *v __unused) 1886 { 1887 1888 if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL) 1889 return (true); 1890 else 1891 return (false); 1892 } 1893 1894 void 1895 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1896 { 1897 struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB, 1898 inp_v4_multi_match, NULL); 1899 struct inpcb *inp; 1900 struct in_multi *inm; 1901 struct in_mfilter *imf; 1902 struct ip_moptions *imo; 1903 1904 IN_MULTI_LOCK_ASSERT(); 1905 1906 while ((inp = inp_next(&inpi)) != NULL) { 1907 INP_WLOCK_ASSERT(inp); 1908 1909 imo = inp->inp_moptions; 1910 /* 1911 * Unselect the outgoing interface if it is being 1912 * detached. 1913 */ 1914 if (imo->imo_multicast_ifp == ifp) 1915 imo->imo_multicast_ifp = NULL; 1916 1917 /* 1918 * Drop multicast group membership if we joined 1919 * through the interface being detached. 1920 * 1921 * XXX This can all be deferred to an epoch_call 1922 */ 1923 restart: 1924 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 1925 if ((inm = imf->imf_inm) == NULL) 1926 continue; 1927 if (inm->inm_ifp != ifp) 1928 continue; 1929 ip_mfilter_remove(&imo->imo_head, imf); 1930 in_leavegroup_locked(inm, NULL); 1931 ip_mfilter_free(imf); 1932 goto restart; 1933 } 1934 } 1935 } 1936 1937 /* 1938 * Lookup a PCB based on the local address and port. Caller must hold the 1939 * hash lock. No inpcb locks or references are acquired. 1940 */ 1941 #define INP_LOOKUP_MAPPED_PCB_COST 3 1942 struct inpcb * 1943 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1944 u_short lport, int lookupflags, struct ucred *cred) 1945 { 1946 struct inpcb *inp; 1947 #ifdef INET6 1948 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1949 #else 1950 int matchwild = 3; 1951 #endif 1952 int wildcard; 1953 1954 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1955 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1956 INP_HASH_LOCK_ASSERT(pcbinfo); 1957 1958 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1959 struct inpcbhead *head; 1960 /* 1961 * Look for an unconnected (wildcard foreign addr) PCB that 1962 * matches the local address and port we're looking for. 1963 */ 1964 head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport, 1965 pcbinfo->ipi_hashmask)]; 1966 CK_LIST_FOREACH(inp, head, inp_hash_wild) { 1967 #ifdef INET6 1968 /* XXX inp locking */ 1969 if ((inp->inp_vflag & INP_IPV4) == 0) 1970 continue; 1971 #endif 1972 if (inp->inp_faddr.s_addr == INADDR_ANY && 1973 inp->inp_laddr.s_addr == laddr.s_addr && 1974 inp->inp_lport == lport) { 1975 /* 1976 * Found? 1977 */ 1978 if (prison_equal_ip4(cred->cr_prison, 1979 inp->inp_cred->cr_prison)) 1980 return (inp); 1981 } 1982 } 1983 /* 1984 * Not found. 1985 */ 1986 return (NULL); 1987 } else { 1988 struct inpcbporthead *porthash; 1989 struct inpcbport *phd; 1990 struct inpcb *match = NULL; 1991 /* 1992 * Best fit PCB lookup. 1993 * 1994 * First see if this local port is in use by looking on the 1995 * port hash list. 1996 */ 1997 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1998 pcbinfo->ipi_porthashmask)]; 1999 CK_LIST_FOREACH(phd, porthash, phd_hash) { 2000 if (phd->phd_port == lport) 2001 break; 2002 } 2003 if (phd != NULL) { 2004 /* 2005 * Port is in use by one or more PCBs. Look for best 2006 * fit. 2007 */ 2008 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 2009 wildcard = 0; 2010 if (!prison_equal_ip4(inp->inp_cred->cr_prison, 2011 cred->cr_prison)) 2012 continue; 2013 #ifdef INET6 2014 /* XXX inp locking */ 2015 if ((inp->inp_vflag & INP_IPV4) == 0) 2016 continue; 2017 /* 2018 * We never select the PCB that has 2019 * INP_IPV6 flag and is bound to :: if 2020 * we have another PCB which is bound 2021 * to 0.0.0.0. If a PCB has the 2022 * INP_IPV6 flag, then we set its cost 2023 * higher than IPv4 only PCBs. 2024 * 2025 * Note that the case only happens 2026 * when a socket is bound to ::, under 2027 * the condition that the use of the 2028 * mapped address is allowed. 2029 */ 2030 if ((inp->inp_vflag & INP_IPV6) != 0) 2031 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 2032 #endif 2033 if (inp->inp_faddr.s_addr != INADDR_ANY) 2034 wildcard++; 2035 if (inp->inp_laddr.s_addr != INADDR_ANY) { 2036 if (laddr.s_addr == INADDR_ANY) 2037 wildcard++; 2038 else if (inp->inp_laddr.s_addr != laddr.s_addr) 2039 continue; 2040 } else { 2041 if (laddr.s_addr != INADDR_ANY) 2042 wildcard++; 2043 } 2044 if (wildcard < matchwild) { 2045 match = inp; 2046 matchwild = wildcard; 2047 if (matchwild == 0) 2048 break; 2049 } 2050 } 2051 } 2052 return (match); 2053 } 2054 } 2055 #undef INP_LOOKUP_MAPPED_PCB_COST 2056 2057 static bool 2058 in_pcblookup_lb_numa_match(const struct inpcblbgroup *grp, int domain) 2059 { 2060 return (domain == M_NODOM || domain == grp->il_numa_domain); 2061 } 2062 2063 static struct inpcb * 2064 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 2065 const struct in_addr *faddr, uint16_t fport, const struct in_addr *laddr, 2066 uint16_t lport, int domain) 2067 { 2068 const struct inpcblbgrouphead *hdr; 2069 struct inpcblbgroup *grp; 2070 struct inpcblbgroup *jail_exact, *jail_wild, *local_exact, *local_wild; 2071 2072 INP_HASH_LOCK_ASSERT(pcbinfo); 2073 2074 hdr = &pcbinfo->ipi_lbgrouphashbase[ 2075 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; 2076 2077 /* 2078 * Search for an LB group match based on the following criteria: 2079 * - prefer jailed groups to non-jailed groups 2080 * - prefer exact source address matches to wildcard matches 2081 * - prefer groups bound to the specified NUMA domain 2082 */ 2083 jail_exact = jail_wild = local_exact = local_wild = NULL; 2084 CK_LIST_FOREACH(grp, hdr, il_list) { 2085 bool injail; 2086 2087 #ifdef INET6 2088 if (!(grp->il_vflag & INP_IPV4)) 2089 continue; 2090 #endif 2091 if (grp->il_lport != lport) 2092 continue; 2093 2094 injail = prison_flag(grp->il_cred, PR_IP4) != 0; 2095 if (injail && prison_check_ip4_locked(grp->il_cred->cr_prison, 2096 laddr) != 0) 2097 continue; 2098 2099 if (grp->il_laddr.s_addr == laddr->s_addr) { 2100 if (injail) { 2101 jail_exact = grp; 2102 if (in_pcblookup_lb_numa_match(grp, domain)) 2103 /* This is a perfect match. */ 2104 goto out; 2105 } else if (local_exact == NULL || 2106 in_pcblookup_lb_numa_match(grp, domain)) { 2107 local_exact = grp; 2108 } 2109 } else if (grp->il_laddr.s_addr == INADDR_ANY) { 2110 if (injail) { 2111 if (jail_wild == NULL || 2112 in_pcblookup_lb_numa_match(grp, domain)) 2113 jail_wild = grp; 2114 } else if (local_wild == NULL || 2115 in_pcblookup_lb_numa_match(grp, domain)) { 2116 local_wild = grp; 2117 } 2118 } 2119 } 2120 2121 if (jail_exact != NULL) 2122 grp = jail_exact; 2123 else if (jail_wild != NULL) 2124 grp = jail_wild; 2125 else if (local_exact != NULL) 2126 grp = local_exact; 2127 else 2128 grp = local_wild; 2129 if (grp == NULL) 2130 return (NULL); 2131 out: 2132 return (grp->il_inp[INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) % 2133 grp->il_inpcnt]); 2134 } 2135 2136 static bool 2137 in_pcblookup_exact_match(const struct inpcb *inp, struct in_addr faddr, 2138 u_short fport, struct in_addr laddr, u_short lport) 2139 { 2140 #ifdef INET6 2141 /* XXX inp locking */ 2142 if ((inp->inp_vflag & INP_IPV4) == 0) 2143 return (false); 2144 #endif 2145 if (inp->inp_faddr.s_addr == faddr.s_addr && 2146 inp->inp_laddr.s_addr == laddr.s_addr && 2147 inp->inp_fport == fport && 2148 inp->inp_lport == lport) 2149 return (true); 2150 return (false); 2151 } 2152 2153 static struct inpcb * 2154 in_pcblookup_hash_exact(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2155 u_short fport, struct in_addr laddr, u_short lport) 2156 { 2157 struct inpcbhead *head; 2158 struct inpcb *inp; 2159 2160 INP_HASH_LOCK_ASSERT(pcbinfo); 2161 2162 head = &pcbinfo->ipi_hash_exact[INP_PCBHASH(&faddr, lport, fport, 2163 pcbinfo->ipi_hashmask)]; 2164 CK_LIST_FOREACH(inp, head, inp_hash_exact) { 2165 if (in_pcblookup_exact_match(inp, faddr, fport, laddr, lport)) 2166 return (inp); 2167 } 2168 return (NULL); 2169 } 2170 2171 typedef enum { 2172 INPLOOKUP_MATCH_NONE = 0, 2173 INPLOOKUP_MATCH_WILD = 1, 2174 INPLOOKUP_MATCH_LADDR = 2, 2175 } inp_lookup_match_t; 2176 2177 static inp_lookup_match_t 2178 in_pcblookup_wild_match(const struct inpcb *inp, struct in_addr laddr, 2179 u_short lport) 2180 { 2181 #ifdef INET6 2182 /* XXX inp locking */ 2183 if ((inp->inp_vflag & INP_IPV4) == 0) 2184 return (INPLOOKUP_MATCH_NONE); 2185 #endif 2186 if (inp->inp_faddr.s_addr != INADDR_ANY || inp->inp_lport != lport) 2187 return (INPLOOKUP_MATCH_NONE); 2188 if (inp->inp_laddr.s_addr == INADDR_ANY) 2189 return (INPLOOKUP_MATCH_WILD); 2190 if (inp->inp_laddr.s_addr == laddr.s_addr) 2191 return (INPLOOKUP_MATCH_LADDR); 2192 return (INPLOOKUP_MATCH_NONE); 2193 } 2194 2195 #define INP_LOOKUP_AGAIN ((struct inpcb *)(uintptr_t)-1) 2196 2197 static struct inpcb * 2198 in_pcblookup_hash_wild_smr(struct inpcbinfo *pcbinfo, struct in_addr laddr, 2199 u_short lport, const inp_lookup_t lockflags) 2200 { 2201 struct inpcbhead *head; 2202 struct inpcb *inp; 2203 2204 KASSERT(SMR_ENTERED(pcbinfo->ipi_smr), 2205 ("%s: not in SMR read section", __func__)); 2206 2207 head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport, 2208 pcbinfo->ipi_hashmask)]; 2209 CK_LIST_FOREACH(inp, head, inp_hash_wild) { 2210 inp_lookup_match_t match; 2211 2212 match = in_pcblookup_wild_match(inp, laddr, lport); 2213 if (match == INPLOOKUP_MATCH_NONE) 2214 continue; 2215 2216 if (__predict_true(inp_smr_lock(inp, lockflags))) { 2217 match = in_pcblookup_wild_match(inp, laddr, lport); 2218 if (match != INPLOOKUP_MATCH_NONE && 2219 prison_check_ip4_locked(inp->inp_cred->cr_prison, 2220 &laddr) == 0) 2221 return (inp); 2222 inp_unlock(inp, lockflags); 2223 } 2224 2225 /* 2226 * The matching socket disappeared out from under us. Fall back 2227 * to a serialized lookup. 2228 */ 2229 return (INP_LOOKUP_AGAIN); 2230 } 2231 return (NULL); 2232 } 2233 2234 static struct inpcb * 2235 in_pcblookup_hash_wild_locked(struct inpcbinfo *pcbinfo, struct in_addr laddr, 2236 u_short lport) 2237 { 2238 struct inpcbhead *head; 2239 struct inpcb *inp, *local_wild, *local_exact, *jail_wild; 2240 #ifdef INET6 2241 struct inpcb *local_wild_mapped; 2242 #endif 2243 2244 INP_HASH_LOCK_ASSERT(pcbinfo); 2245 2246 /* 2247 * Order of socket selection - we always prefer jails. 2248 * 1. jailed, non-wild. 2249 * 2. jailed, wild. 2250 * 3. non-jailed, non-wild. 2251 * 4. non-jailed, wild. 2252 */ 2253 head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport, 2254 pcbinfo->ipi_hashmask)]; 2255 local_wild = local_exact = jail_wild = NULL; 2256 #ifdef INET6 2257 local_wild_mapped = NULL; 2258 #endif 2259 CK_LIST_FOREACH(inp, head, inp_hash_wild) { 2260 inp_lookup_match_t match; 2261 bool injail; 2262 2263 match = in_pcblookup_wild_match(inp, laddr, lport); 2264 if (match == INPLOOKUP_MATCH_NONE) 2265 continue; 2266 2267 injail = prison_flag(inp->inp_cred, PR_IP4) != 0; 2268 if (injail) { 2269 if (prison_check_ip4_locked(inp->inp_cred->cr_prison, 2270 &laddr) != 0) 2271 continue; 2272 } else { 2273 if (local_exact != NULL) 2274 continue; 2275 } 2276 2277 if (match == INPLOOKUP_MATCH_LADDR) { 2278 if (injail) 2279 return (inp); 2280 local_exact = inp; 2281 } else { 2282 #ifdef INET6 2283 /* XXX inp locking, NULL check */ 2284 if (inp->inp_vflag & INP_IPV6PROTO) 2285 local_wild_mapped = inp; 2286 else 2287 #endif 2288 if (injail) 2289 jail_wild = inp; 2290 else 2291 local_wild = inp; 2292 } 2293 } 2294 if (jail_wild != NULL) 2295 return (jail_wild); 2296 if (local_exact != NULL) 2297 return (local_exact); 2298 if (local_wild != NULL) 2299 return (local_wild); 2300 #ifdef INET6 2301 if (local_wild_mapped != NULL) 2302 return (local_wild_mapped); 2303 #endif 2304 return (NULL); 2305 } 2306 2307 /* 2308 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2309 * that the caller has either locked the hash list, which usually happens 2310 * for bind(2) operations, or is in SMR section, which happens when sorting 2311 * out incoming packets. 2312 */ 2313 static struct inpcb * 2314 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2315 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2316 uint8_t numa_domain) 2317 { 2318 struct inpcb *inp; 2319 const u_short fport = fport_arg, lport = lport_arg; 2320 2321 KASSERT((lookupflags & ~INPLOOKUP_WILDCARD) == 0, 2322 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2323 KASSERT(faddr.s_addr != INADDR_ANY, 2324 ("%s: invalid foreign address", __func__)); 2325 KASSERT(laddr.s_addr != INADDR_ANY, 2326 ("%s: invalid local address", __func__)); 2327 INP_HASH_WLOCK_ASSERT(pcbinfo); 2328 2329 inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport); 2330 if (inp != NULL) 2331 return (inp); 2332 2333 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2334 inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport, 2335 &laddr, lport, numa_domain); 2336 if (inp == NULL) { 2337 inp = in_pcblookup_hash_wild_locked(pcbinfo, laddr, 2338 lport); 2339 } 2340 } 2341 2342 return (inp); 2343 } 2344 2345 static struct inpcb * 2346 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2347 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2348 uint8_t numa_domain) 2349 { 2350 struct inpcb *inp; 2351 const inp_lookup_t lockflags = lookupflags & INPLOOKUP_LOCKMASK; 2352 2353 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2354 ("%s: LOCKPCB not set", __func__)); 2355 2356 INP_HASH_WLOCK(pcbinfo); 2357 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2358 lookupflags & ~INPLOOKUP_LOCKMASK, numa_domain); 2359 if (inp != NULL && !inp_trylock(inp, lockflags)) { 2360 in_pcbref(inp); 2361 INP_HASH_WUNLOCK(pcbinfo); 2362 inp_lock(inp, lockflags); 2363 if (in_pcbrele(inp, lockflags)) 2364 /* XXX-MJ or retry until we get a negative match? */ 2365 inp = NULL; 2366 } else { 2367 INP_HASH_WUNLOCK(pcbinfo); 2368 } 2369 return (inp); 2370 } 2371 2372 static struct inpcb * 2373 in_pcblookup_hash_smr(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2374 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2375 uint8_t numa_domain) 2376 { 2377 struct inpcb *inp; 2378 const inp_lookup_t lockflags = lookupflags & INPLOOKUP_LOCKMASK; 2379 const u_short fport = fport_arg, lport = lport_arg; 2380 2381 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2382 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2383 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2384 ("%s: LOCKPCB not set", __func__)); 2385 2386 smr_enter(pcbinfo->ipi_smr); 2387 inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport); 2388 if (inp != NULL) { 2389 if (__predict_true(inp_smr_lock(inp, lockflags))) { 2390 /* 2391 * Revalidate the 4-tuple, the socket could have been 2392 * disconnected. 2393 */ 2394 if (__predict_true(in_pcblookup_exact_match(inp, 2395 faddr, fport, laddr, lport))) 2396 return (inp); 2397 inp_unlock(inp, lockflags); 2398 } 2399 2400 /* 2401 * We failed to lock the inpcb, or its connection state changed 2402 * out from under us. Fall back to a precise search. 2403 */ 2404 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2405 lookupflags, numa_domain)); 2406 } 2407 2408 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2409 inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport, 2410 &laddr, lport, numa_domain); 2411 if (inp != NULL) { 2412 if (__predict_true(inp_smr_lock(inp, lockflags))) { 2413 if (__predict_true(in_pcblookup_wild_match(inp, 2414 laddr, lport) != INPLOOKUP_MATCH_NONE)) 2415 return (inp); 2416 inp_unlock(inp, lockflags); 2417 } 2418 inp = INP_LOOKUP_AGAIN; 2419 } else { 2420 inp = in_pcblookup_hash_wild_smr(pcbinfo, laddr, lport, 2421 lockflags); 2422 } 2423 if (inp == INP_LOOKUP_AGAIN) { 2424 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, 2425 lport, lookupflags, numa_domain)); 2426 } 2427 } 2428 2429 if (inp == NULL) 2430 smr_exit(pcbinfo->ipi_smr); 2431 2432 return (inp); 2433 } 2434 2435 /* 2436 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2437 * from which a pre-calculated hash value may be extracted. 2438 */ 2439 struct inpcb * 2440 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2441 struct in_addr laddr, u_int lport, int lookupflags, 2442 struct ifnet *ifp __unused) 2443 { 2444 return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport, 2445 lookupflags, M_NODOM)); 2446 } 2447 2448 struct inpcb * 2449 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2450 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2451 struct ifnet *ifp __unused, struct mbuf *m) 2452 { 2453 return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport, 2454 lookupflags, m->m_pkthdr.numa_domain)); 2455 } 2456 #endif /* INET */ 2457 2458 static bool 2459 in_pcbjailed(const struct inpcb *inp, unsigned int flag) 2460 { 2461 return (prison_flag(inp->inp_cred, flag) != 0); 2462 } 2463 2464 /* 2465 * Insert the PCB into a hash chain using ordering rules which ensure that 2466 * in_pcblookup_hash_wild_*() always encounter the highest-ranking PCB first. 2467 * 2468 * Specifically, keep jailed PCBs in front of non-jailed PCBs, and keep PCBs 2469 * with exact local addresses ahead of wildcard PCBs. Unbound v4-mapped v6 PCBs 2470 * always appear last no matter whether they are jailed. 2471 */ 2472 static void 2473 _in_pcbinshash_wild(struct inpcbhead *pcbhash, struct inpcb *inp) 2474 { 2475 struct inpcb *last; 2476 bool bound, injail; 2477 2478 INP_LOCK_ASSERT(inp); 2479 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 2480 2481 last = NULL; 2482 bound = inp->inp_laddr.s_addr != INADDR_ANY; 2483 if (!bound && (inp->inp_vflag & INP_IPV6PROTO) != 0) { 2484 CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) { 2485 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) { 2486 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild); 2487 return; 2488 } 2489 } 2490 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild); 2491 return; 2492 } 2493 2494 injail = in_pcbjailed(inp, PR_IP4); 2495 if (!injail) { 2496 CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) { 2497 if (!in_pcbjailed(last, PR_IP4)) 2498 break; 2499 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) { 2500 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild); 2501 return; 2502 } 2503 } 2504 } else if (!CK_LIST_EMPTY(pcbhash) && 2505 !in_pcbjailed(CK_LIST_FIRST(pcbhash), PR_IP4)) { 2506 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild); 2507 return; 2508 } 2509 if (!bound) { 2510 CK_LIST_FOREACH_FROM(last, pcbhash, inp_hash_wild) { 2511 if (last->inp_laddr.s_addr == INADDR_ANY) 2512 break; 2513 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) { 2514 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild); 2515 return; 2516 } 2517 } 2518 } 2519 if (last == NULL) 2520 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild); 2521 else 2522 CK_LIST_INSERT_BEFORE(last, inp, inp_hash_wild); 2523 } 2524 2525 #ifdef INET6 2526 /* 2527 * See the comment above _in_pcbinshash_wild(). 2528 */ 2529 static void 2530 _in6_pcbinshash_wild(struct inpcbhead *pcbhash, struct inpcb *inp) 2531 { 2532 struct inpcb *last; 2533 bool bound, injail; 2534 2535 INP_LOCK_ASSERT(inp); 2536 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 2537 2538 last = NULL; 2539 bound = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr); 2540 injail = in_pcbjailed(inp, PR_IP6); 2541 if (!injail) { 2542 CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) { 2543 if (!in_pcbjailed(last, PR_IP6)) 2544 break; 2545 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) { 2546 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild); 2547 return; 2548 } 2549 } 2550 } else if (!CK_LIST_EMPTY(pcbhash) && 2551 !in_pcbjailed(CK_LIST_FIRST(pcbhash), PR_IP6)) { 2552 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild); 2553 return; 2554 } 2555 if (!bound) { 2556 CK_LIST_FOREACH_FROM(last, pcbhash, inp_hash_wild) { 2557 if (IN6_IS_ADDR_UNSPECIFIED(&last->in6p_laddr)) 2558 break; 2559 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) { 2560 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild); 2561 return; 2562 } 2563 } 2564 } 2565 if (last == NULL) 2566 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild); 2567 else 2568 CK_LIST_INSERT_BEFORE(last, inp, inp_hash_wild); 2569 } 2570 #endif 2571 2572 /* 2573 * Insert PCB onto various hash lists. 2574 */ 2575 int 2576 in_pcbinshash(struct inpcb *inp) 2577 { 2578 struct inpcbhead *pcbhash; 2579 struct inpcbporthead *pcbporthash; 2580 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2581 struct inpcbport *phd; 2582 uint32_t hash; 2583 bool connected; 2584 2585 INP_WLOCK_ASSERT(inp); 2586 INP_HASH_WLOCK_ASSERT(pcbinfo); 2587 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2588 ("in_pcbinshash: INP_INHASHLIST")); 2589 2590 #ifdef INET6 2591 if (inp->inp_vflag & INP_IPV6) { 2592 hash = INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport, 2593 inp->inp_fport, pcbinfo->ipi_hashmask); 2594 connected = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr); 2595 } else 2596 #endif 2597 { 2598 hash = INP_PCBHASH(&inp->inp_faddr, inp->inp_lport, 2599 inp->inp_fport, pcbinfo->ipi_hashmask); 2600 connected = !in_nullhost(inp->inp_faddr); 2601 } 2602 2603 if (connected) 2604 pcbhash = &pcbinfo->ipi_hash_exact[hash]; 2605 else 2606 pcbhash = &pcbinfo->ipi_hash_wild[hash]; 2607 2608 pcbporthash = &pcbinfo->ipi_porthashbase[ 2609 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2610 2611 /* 2612 * Add entry to load balance group. 2613 * Only do this if SO_REUSEPORT_LB is set. 2614 */ 2615 if ((inp->inp_socket->so_options & SO_REUSEPORT_LB) != 0) { 2616 int error = in_pcbinslbgrouphash(inp, M_NODOM); 2617 if (error != 0) 2618 return (error); 2619 } 2620 2621 /* 2622 * Go through port list and look for a head for this lport. 2623 */ 2624 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2625 if (phd->phd_port == inp->inp_lport) 2626 break; 2627 } 2628 2629 /* 2630 * If none exists, malloc one and tack it on. 2631 */ 2632 if (phd == NULL) { 2633 phd = uma_zalloc_smr(pcbinfo->ipi_portzone, M_NOWAIT); 2634 if (phd == NULL) { 2635 if ((inp->inp_flags & INP_INLBGROUP) != 0) 2636 in_pcbremlbgrouphash(inp); 2637 return (ENOMEM); 2638 } 2639 phd->phd_port = inp->inp_lport; 2640 CK_LIST_INIT(&phd->phd_pcblist); 2641 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2642 } 2643 inp->inp_phd = phd; 2644 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2645 2646 /* 2647 * The PCB may have been disconnected in the past. Before we can safely 2648 * make it visible in the hash table, we must wait for all readers which 2649 * may be traversing this PCB to finish. 2650 */ 2651 if (inp->inp_smr != SMR_SEQ_INVALID) { 2652 smr_wait(pcbinfo->ipi_smr, inp->inp_smr); 2653 inp->inp_smr = SMR_SEQ_INVALID; 2654 } 2655 2656 if (connected) 2657 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_exact); 2658 else { 2659 #ifdef INET6 2660 if ((inp->inp_vflag & INP_IPV6) != 0) 2661 _in6_pcbinshash_wild(pcbhash, inp); 2662 else 2663 #endif 2664 _in_pcbinshash_wild(pcbhash, inp); 2665 } 2666 inp->inp_flags |= INP_INHASHLIST; 2667 2668 return (0); 2669 } 2670 2671 void 2672 in_pcbremhash_locked(struct inpcb *inp) 2673 { 2674 struct inpcbport *phd = inp->inp_phd; 2675 2676 INP_WLOCK_ASSERT(inp); 2677 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 2678 MPASS(inp->inp_flags & INP_INHASHLIST); 2679 2680 if ((inp->inp_flags & INP_INLBGROUP) != 0) 2681 in_pcbremlbgrouphash(inp); 2682 #ifdef INET6 2683 if (inp->inp_vflag & INP_IPV6) { 2684 if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) 2685 CK_LIST_REMOVE(inp, inp_hash_wild); 2686 else 2687 CK_LIST_REMOVE(inp, inp_hash_exact); 2688 } else 2689 #endif 2690 { 2691 if (in_nullhost(inp->inp_faddr)) 2692 CK_LIST_REMOVE(inp, inp_hash_wild); 2693 else 2694 CK_LIST_REMOVE(inp, inp_hash_exact); 2695 } 2696 CK_LIST_REMOVE(inp, inp_portlist); 2697 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 2698 CK_LIST_REMOVE(phd, phd_hash); 2699 uma_zfree_smr(inp->inp_pcbinfo->ipi_portzone, phd); 2700 } 2701 inp->inp_flags &= ~INP_INHASHLIST; 2702 } 2703 2704 static void 2705 in_pcbremhash(struct inpcb *inp) 2706 { 2707 INP_HASH_WLOCK(inp->inp_pcbinfo); 2708 in_pcbremhash_locked(inp); 2709 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 2710 } 2711 2712 /* 2713 * Move PCB to the proper hash bucket when { faddr, fport } have been 2714 * changed. NOTE: This does not handle the case of the lport changing (the 2715 * hashed port list would have to be updated as well), so the lport must 2716 * not change after in_pcbinshash() has been called. 2717 */ 2718 void 2719 in_pcbrehash(struct inpcb *inp) 2720 { 2721 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2722 struct inpcbhead *head; 2723 uint32_t hash; 2724 bool connected; 2725 2726 INP_WLOCK_ASSERT(inp); 2727 INP_HASH_WLOCK_ASSERT(pcbinfo); 2728 KASSERT(inp->inp_flags & INP_INHASHLIST, 2729 ("%s: !INP_INHASHLIST", __func__)); 2730 KASSERT(inp->inp_smr == SMR_SEQ_INVALID, 2731 ("%s: inp was disconnected", __func__)); 2732 2733 #ifdef INET6 2734 if (inp->inp_vflag & INP_IPV6) { 2735 hash = INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport, 2736 inp->inp_fport, pcbinfo->ipi_hashmask); 2737 connected = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr); 2738 } else 2739 #endif 2740 { 2741 hash = INP_PCBHASH(&inp->inp_faddr, inp->inp_lport, 2742 inp->inp_fport, pcbinfo->ipi_hashmask); 2743 connected = !in_nullhost(inp->inp_faddr); 2744 } 2745 2746 /* 2747 * When rehashing, the caller must ensure that either the new or the old 2748 * foreign address was unspecified. 2749 */ 2750 if (connected) 2751 CK_LIST_REMOVE(inp, inp_hash_wild); 2752 else 2753 CK_LIST_REMOVE(inp, inp_hash_exact); 2754 2755 if (connected) { 2756 head = &pcbinfo->ipi_hash_exact[hash]; 2757 CK_LIST_INSERT_HEAD(head, inp, inp_hash_exact); 2758 } else { 2759 head = &pcbinfo->ipi_hash_wild[hash]; 2760 CK_LIST_INSERT_HEAD(head, inp, inp_hash_wild); 2761 } 2762 } 2763 2764 /* 2765 * Check for alternatives when higher level complains 2766 * about service problems. For now, invalidate cached 2767 * routing information. If the route was created dynamically 2768 * (by a redirect), time to try a default gateway again. 2769 */ 2770 void 2771 in_losing(struct inpcb *inp) 2772 { 2773 2774 RO_INVALIDATE_CACHE(&inp->inp_route); 2775 return; 2776 } 2777 2778 /* 2779 * A set label operation has occurred at the socket layer, propagate the 2780 * label change into the in_pcb for the socket. 2781 */ 2782 void 2783 in_pcbsosetlabel(struct socket *so) 2784 { 2785 #ifdef MAC 2786 struct inpcb *inp; 2787 2788 inp = sotoinpcb(so); 2789 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2790 2791 INP_WLOCK(inp); 2792 SOCK_LOCK(so); 2793 mac_inpcb_sosetlabel(so, inp); 2794 SOCK_UNLOCK(so); 2795 INP_WUNLOCK(inp); 2796 #endif 2797 } 2798 2799 void 2800 inp_wlock(struct inpcb *inp) 2801 { 2802 2803 INP_WLOCK(inp); 2804 } 2805 2806 void 2807 inp_wunlock(struct inpcb *inp) 2808 { 2809 2810 INP_WUNLOCK(inp); 2811 } 2812 2813 void 2814 inp_rlock(struct inpcb *inp) 2815 { 2816 2817 INP_RLOCK(inp); 2818 } 2819 2820 void 2821 inp_runlock(struct inpcb *inp) 2822 { 2823 2824 INP_RUNLOCK(inp); 2825 } 2826 2827 #ifdef INVARIANT_SUPPORT 2828 void 2829 inp_lock_assert(struct inpcb *inp) 2830 { 2831 2832 INP_WLOCK_ASSERT(inp); 2833 } 2834 2835 void 2836 inp_unlock_assert(struct inpcb *inp) 2837 { 2838 2839 INP_UNLOCK_ASSERT(inp); 2840 } 2841 #endif 2842 2843 void 2844 inp_apply_all(struct inpcbinfo *pcbinfo, 2845 void (*func)(struct inpcb *, void *), void *arg) 2846 { 2847 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, 2848 INPLOOKUP_WLOCKPCB); 2849 struct inpcb *inp; 2850 2851 while ((inp = inp_next(&inpi)) != NULL) 2852 func(inp, arg); 2853 } 2854 2855 struct socket * 2856 inp_inpcbtosocket(struct inpcb *inp) 2857 { 2858 2859 INP_WLOCK_ASSERT(inp); 2860 return (inp->inp_socket); 2861 } 2862 2863 void 2864 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2865 uint32_t *faddr, uint16_t *fp) 2866 { 2867 2868 INP_LOCK_ASSERT(inp); 2869 *laddr = inp->inp_laddr.s_addr; 2870 *faddr = inp->inp_faddr.s_addr; 2871 *lp = inp->inp_lport; 2872 *fp = inp->inp_fport; 2873 } 2874 2875 /* 2876 * Create an external-format (``xinpcb'') structure using the information in 2877 * the kernel-format in_pcb structure pointed to by inp. This is done to 2878 * reduce the spew of irrelevant information over this interface, to isolate 2879 * user code from changes in the kernel structure, and potentially to provide 2880 * information-hiding if we decide that some of this information should be 2881 * hidden from users. 2882 */ 2883 void 2884 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2885 { 2886 2887 bzero(xi, sizeof(*xi)); 2888 xi->xi_len = sizeof(struct xinpcb); 2889 if (inp->inp_socket) 2890 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2891 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2892 xi->inp_gencnt = inp->inp_gencnt; 2893 xi->inp_flow = inp->inp_flow; 2894 xi->inp_flowid = inp->inp_flowid; 2895 xi->inp_flowtype = inp->inp_flowtype; 2896 xi->inp_flags = inp->inp_flags; 2897 xi->inp_flags2 = inp->inp_flags2; 2898 xi->in6p_cksum = inp->in6p_cksum; 2899 xi->in6p_hops = inp->in6p_hops; 2900 xi->inp_ip_tos = inp->inp_ip_tos; 2901 xi->inp_vflag = inp->inp_vflag; 2902 xi->inp_ip_ttl = inp->inp_ip_ttl; 2903 xi->inp_ip_p = inp->inp_ip_p; 2904 xi->inp_ip_minttl = inp->inp_ip_minttl; 2905 } 2906 2907 int 2908 sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo, 2909 int (*ctloutput_set)(struct inpcb *, struct sockopt *)) 2910 { 2911 struct sockopt sopt; 2912 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, 2913 INPLOOKUP_WLOCKPCB); 2914 struct inpcb *inp; 2915 struct sockopt_parameters *params; 2916 struct socket *so; 2917 int error; 2918 char buf[1024]; 2919 2920 if (req->oldptr != NULL || req->oldlen != 0) 2921 return (EINVAL); 2922 if (req->newptr == NULL) 2923 return (EPERM); 2924 if (req->newlen > sizeof(buf)) 2925 return (ENOMEM); 2926 error = SYSCTL_IN(req, buf, req->newlen); 2927 if (error != 0) 2928 return (error); 2929 if (req->newlen < sizeof(struct sockopt_parameters)) 2930 return (EINVAL); 2931 params = (struct sockopt_parameters *)buf; 2932 sopt.sopt_level = params->sop_level; 2933 sopt.sopt_name = params->sop_optname; 2934 sopt.sopt_dir = SOPT_SET; 2935 sopt.sopt_val = params->sop_optval; 2936 sopt.sopt_valsize = req->newlen - sizeof(struct sockopt_parameters); 2937 sopt.sopt_td = NULL; 2938 #ifdef INET6 2939 if (params->sop_inc.inc_flags & INC_ISIPV6) { 2940 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_laddr)) 2941 params->sop_inc.inc6_laddr.s6_addr16[1] = 2942 htons(params->sop_inc.inc6_zoneid & 0xffff); 2943 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_faddr)) 2944 params->sop_inc.inc6_faddr.s6_addr16[1] = 2945 htons(params->sop_inc.inc6_zoneid & 0xffff); 2946 } 2947 #endif 2948 if (params->sop_inc.inc_lport != htons(0) && 2949 params->sop_inc.inc_fport != htons(0)) { 2950 #ifdef INET6 2951 if (params->sop_inc.inc_flags & INC_ISIPV6) 2952 inpi.hash = INP6_PCBHASH( 2953 ¶ms->sop_inc.inc6_faddr, 2954 params->sop_inc.inc_lport, 2955 params->sop_inc.inc_fport, 2956 pcbinfo->ipi_hashmask); 2957 else 2958 #endif 2959 inpi.hash = INP_PCBHASH( 2960 ¶ms->sop_inc.inc_faddr, 2961 params->sop_inc.inc_lport, 2962 params->sop_inc.inc_fport, 2963 pcbinfo->ipi_hashmask); 2964 } 2965 while ((inp = inp_next(&inpi)) != NULL) 2966 if (inp->inp_gencnt == params->sop_id) { 2967 if (inp->inp_flags & INP_DROPPED) { 2968 INP_WUNLOCK(inp); 2969 return (ECONNRESET); 2970 } 2971 so = inp->inp_socket; 2972 KASSERT(so != NULL, ("inp_socket == NULL")); 2973 soref(so); 2974 if (params->sop_level == SOL_SOCKET) { 2975 INP_WUNLOCK(inp); 2976 error = sosetopt(so, &sopt); 2977 } else 2978 error = (*ctloutput_set)(inp, &sopt); 2979 sorele(so); 2980 break; 2981 } 2982 if (inp == NULL) 2983 error = ESRCH; 2984 return (error); 2985 } 2986 2987 #ifdef DDB 2988 static void 2989 db_print_indent(int indent) 2990 { 2991 int i; 2992 2993 for (i = 0; i < indent; i++) 2994 db_printf(" "); 2995 } 2996 2997 static void 2998 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2999 { 3000 char faddr_str[48], laddr_str[48]; 3001 3002 db_print_indent(indent); 3003 db_printf("%s at %p\n", name, inc); 3004 3005 indent += 2; 3006 3007 #ifdef INET6 3008 if (inc->inc_flags & INC_ISIPV6) { 3009 /* IPv6. */ 3010 ip6_sprintf(laddr_str, &inc->inc6_laddr); 3011 ip6_sprintf(faddr_str, &inc->inc6_faddr); 3012 } else 3013 #endif 3014 { 3015 /* IPv4. */ 3016 inet_ntoa_r(inc->inc_laddr, laddr_str); 3017 inet_ntoa_r(inc->inc_faddr, faddr_str); 3018 } 3019 db_print_indent(indent); 3020 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 3021 ntohs(inc->inc_lport)); 3022 db_print_indent(indent); 3023 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 3024 ntohs(inc->inc_fport)); 3025 } 3026 3027 static void 3028 db_print_inpflags(int inp_flags) 3029 { 3030 int comma; 3031 3032 comma = 0; 3033 if (inp_flags & INP_RECVOPTS) { 3034 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 3035 comma = 1; 3036 } 3037 if (inp_flags & INP_RECVRETOPTS) { 3038 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 3039 comma = 1; 3040 } 3041 if (inp_flags & INP_RECVDSTADDR) { 3042 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 3043 comma = 1; 3044 } 3045 if (inp_flags & INP_ORIGDSTADDR) { 3046 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 3047 comma = 1; 3048 } 3049 if (inp_flags & INP_HDRINCL) { 3050 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 3051 comma = 1; 3052 } 3053 if (inp_flags & INP_HIGHPORT) { 3054 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 3055 comma = 1; 3056 } 3057 if (inp_flags & INP_LOWPORT) { 3058 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 3059 comma = 1; 3060 } 3061 if (inp_flags & INP_ANONPORT) { 3062 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 3063 comma = 1; 3064 } 3065 if (inp_flags & INP_RECVIF) { 3066 db_printf("%sINP_RECVIF", comma ? ", " : ""); 3067 comma = 1; 3068 } 3069 if (inp_flags & INP_MTUDISC) { 3070 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 3071 comma = 1; 3072 } 3073 if (inp_flags & INP_RECVTTL) { 3074 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 3075 comma = 1; 3076 } 3077 if (inp_flags & INP_DONTFRAG) { 3078 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 3079 comma = 1; 3080 } 3081 if (inp_flags & INP_RECVTOS) { 3082 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 3083 comma = 1; 3084 } 3085 if (inp_flags & IN6P_IPV6_V6ONLY) { 3086 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 3087 comma = 1; 3088 } 3089 if (inp_flags & IN6P_PKTINFO) { 3090 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 3091 comma = 1; 3092 } 3093 if (inp_flags & IN6P_HOPLIMIT) { 3094 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 3095 comma = 1; 3096 } 3097 if (inp_flags & IN6P_HOPOPTS) { 3098 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 3099 comma = 1; 3100 } 3101 if (inp_flags & IN6P_DSTOPTS) { 3102 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 3103 comma = 1; 3104 } 3105 if (inp_flags & IN6P_RTHDR) { 3106 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 3107 comma = 1; 3108 } 3109 if (inp_flags & IN6P_RTHDRDSTOPTS) { 3110 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 3111 comma = 1; 3112 } 3113 if (inp_flags & IN6P_TCLASS) { 3114 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 3115 comma = 1; 3116 } 3117 if (inp_flags & IN6P_AUTOFLOWLABEL) { 3118 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 3119 comma = 1; 3120 } 3121 if (inp_flags & INP_ONESBCAST) { 3122 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 3123 comma = 1; 3124 } 3125 if (inp_flags & INP_DROPPED) { 3126 db_printf("%sINP_DROPPED", comma ? ", " : ""); 3127 comma = 1; 3128 } 3129 if (inp_flags & INP_SOCKREF) { 3130 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 3131 comma = 1; 3132 } 3133 if (inp_flags & IN6P_RFC2292) { 3134 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 3135 comma = 1; 3136 } 3137 if (inp_flags & IN6P_MTU) { 3138 db_printf("IN6P_MTU%s", comma ? ", " : ""); 3139 comma = 1; 3140 } 3141 } 3142 3143 static void 3144 db_print_inpvflag(u_char inp_vflag) 3145 { 3146 int comma; 3147 3148 comma = 0; 3149 if (inp_vflag & INP_IPV4) { 3150 db_printf("%sINP_IPV4", comma ? ", " : ""); 3151 comma = 1; 3152 } 3153 if (inp_vflag & INP_IPV6) { 3154 db_printf("%sINP_IPV6", comma ? ", " : ""); 3155 comma = 1; 3156 } 3157 if (inp_vflag & INP_IPV6PROTO) { 3158 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 3159 comma = 1; 3160 } 3161 } 3162 3163 static void 3164 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 3165 { 3166 3167 db_print_indent(indent); 3168 db_printf("%s at %p\n", name, inp); 3169 3170 indent += 2; 3171 3172 db_print_indent(indent); 3173 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 3174 3175 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 3176 3177 db_print_indent(indent); 3178 db_printf("inp_label: %p inp_flags: 0x%x (", 3179 inp->inp_label, inp->inp_flags); 3180 db_print_inpflags(inp->inp_flags); 3181 db_printf(")\n"); 3182 3183 db_print_indent(indent); 3184 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 3185 inp->inp_vflag); 3186 db_print_inpvflag(inp->inp_vflag); 3187 db_printf(")\n"); 3188 3189 db_print_indent(indent); 3190 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 3191 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 3192 3193 db_print_indent(indent); 3194 #ifdef INET6 3195 if (inp->inp_vflag & INP_IPV6) { 3196 db_printf("in6p_options: %p in6p_outputopts: %p " 3197 "in6p_moptions: %p\n", inp->in6p_options, 3198 inp->in6p_outputopts, inp->in6p_moptions); 3199 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 3200 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 3201 inp->in6p_hops); 3202 } else 3203 #endif 3204 { 3205 db_printf("inp_ip_tos: %d inp_ip_options: %p " 3206 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 3207 inp->inp_options, inp->inp_moptions); 3208 } 3209 3210 db_print_indent(indent); 3211 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 3212 (uintmax_t)inp->inp_gencnt); 3213 } 3214 3215 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 3216 { 3217 struct inpcb *inp; 3218 3219 if (!have_addr) { 3220 db_printf("usage: show inpcb <addr>\n"); 3221 return; 3222 } 3223 inp = (struct inpcb *)addr; 3224 3225 db_print_inpcb(inp, "inpcb", 0); 3226 } 3227 #endif /* DDB */ 3228 3229 #ifdef RATELIMIT 3230 /* 3231 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 3232 * if any. 3233 */ 3234 int 3235 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 3236 { 3237 union if_snd_tag_modify_params params = { 3238 .rate_limit.max_rate = max_pacing_rate, 3239 .rate_limit.flags = M_NOWAIT, 3240 }; 3241 struct m_snd_tag *mst; 3242 int error; 3243 3244 mst = inp->inp_snd_tag; 3245 if (mst == NULL) 3246 return (EINVAL); 3247 3248 if (mst->sw->snd_tag_modify == NULL) { 3249 error = EOPNOTSUPP; 3250 } else { 3251 error = mst->sw->snd_tag_modify(mst, ¶ms); 3252 } 3253 return (error); 3254 } 3255 3256 /* 3257 * Query existing TX rate limit based on the existing 3258 * "inp->inp_snd_tag", if any. 3259 */ 3260 int 3261 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3262 { 3263 union if_snd_tag_query_params params = { }; 3264 struct m_snd_tag *mst; 3265 int error; 3266 3267 mst = inp->inp_snd_tag; 3268 if (mst == NULL) 3269 return (EINVAL); 3270 3271 if (mst->sw->snd_tag_query == NULL) { 3272 error = EOPNOTSUPP; 3273 } else { 3274 error = mst->sw->snd_tag_query(mst, ¶ms); 3275 if (error == 0 && p_max_pacing_rate != NULL) 3276 *p_max_pacing_rate = params.rate_limit.max_rate; 3277 } 3278 return (error); 3279 } 3280 3281 /* 3282 * Query existing TX queue level based on the existing 3283 * "inp->inp_snd_tag", if any. 3284 */ 3285 int 3286 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3287 { 3288 union if_snd_tag_query_params params = { }; 3289 struct m_snd_tag *mst; 3290 int error; 3291 3292 mst = inp->inp_snd_tag; 3293 if (mst == NULL) 3294 return (EINVAL); 3295 3296 if (mst->sw->snd_tag_query == NULL) 3297 return (EOPNOTSUPP); 3298 3299 error = mst->sw->snd_tag_query(mst, ¶ms); 3300 if (error == 0 && p_txqueue_level != NULL) 3301 *p_txqueue_level = params.rate_limit.queue_level; 3302 return (error); 3303 } 3304 3305 /* 3306 * Allocate a new TX rate limit send tag from the network interface 3307 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3308 */ 3309 int 3310 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3311 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st) 3312 3313 { 3314 union if_snd_tag_alloc_params params = { 3315 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3316 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3317 .rate_limit.hdr.flowid = flowid, 3318 .rate_limit.hdr.flowtype = flowtype, 3319 .rate_limit.hdr.numa_domain = inp->inp_numa_domain, 3320 .rate_limit.max_rate = max_pacing_rate, 3321 .rate_limit.flags = M_NOWAIT, 3322 }; 3323 int error; 3324 3325 INP_WLOCK_ASSERT(inp); 3326 3327 /* 3328 * If there is already a send tag, or the INP is being torn 3329 * down, allocating a new send tag is not allowed. Else send 3330 * tags may leak. 3331 */ 3332 if (*st != NULL || (inp->inp_flags & INP_DROPPED) != 0) 3333 return (EINVAL); 3334 3335 error = m_snd_tag_alloc(ifp, ¶ms, st); 3336 #ifdef INET 3337 if (error == 0) { 3338 counter_u64_add(rate_limit_set_ok, 1); 3339 counter_u64_add(rate_limit_active, 1); 3340 } else if (error != EOPNOTSUPP) 3341 counter_u64_add(rate_limit_alloc_fail, 1); 3342 #endif 3343 return (error); 3344 } 3345 3346 void 3347 in_pcbdetach_tag(struct m_snd_tag *mst) 3348 { 3349 3350 m_snd_tag_rele(mst); 3351 #ifdef INET 3352 counter_u64_add(rate_limit_active, -1); 3353 #endif 3354 } 3355 3356 /* 3357 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3358 * if any: 3359 */ 3360 void 3361 in_pcbdetach_txrtlmt(struct inpcb *inp) 3362 { 3363 struct m_snd_tag *mst; 3364 3365 INP_WLOCK_ASSERT(inp); 3366 3367 mst = inp->inp_snd_tag; 3368 inp->inp_snd_tag = NULL; 3369 3370 if (mst == NULL) 3371 return; 3372 3373 m_snd_tag_rele(mst); 3374 #ifdef INET 3375 counter_u64_add(rate_limit_active, -1); 3376 #endif 3377 } 3378 3379 int 3380 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate) 3381 { 3382 int error; 3383 3384 /* 3385 * If the existing send tag is for the wrong interface due to 3386 * a route change, first drop the existing tag. Set the 3387 * CHANGED flag so that we will keep trying to allocate a new 3388 * tag if we fail to allocate one this time. 3389 */ 3390 if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) { 3391 in_pcbdetach_txrtlmt(inp); 3392 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3393 } 3394 3395 /* 3396 * NOTE: When attaching to a network interface a reference is 3397 * made to ensure the network interface doesn't go away until 3398 * all ratelimit connections are gone. The network interface 3399 * pointers compared below represent valid network interfaces, 3400 * except when comparing towards NULL. 3401 */ 3402 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3403 error = 0; 3404 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3405 if (inp->inp_snd_tag != NULL) 3406 in_pcbdetach_txrtlmt(inp); 3407 error = 0; 3408 } else if (inp->inp_snd_tag == NULL) { 3409 /* 3410 * In order to utilize packet pacing with RSS, we need 3411 * to wait until there is a valid RSS hash before we 3412 * can proceed: 3413 */ 3414 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3415 error = EAGAIN; 3416 } else { 3417 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3418 mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag); 3419 } 3420 } else { 3421 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3422 } 3423 if (error == 0 || error == EOPNOTSUPP) 3424 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3425 3426 return (error); 3427 } 3428 3429 /* 3430 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3431 * is set in the fast path and will attach/detach/modify the TX rate 3432 * limit send tag based on the socket's so_max_pacing_rate value. 3433 */ 3434 void 3435 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3436 { 3437 struct socket *socket; 3438 uint32_t max_pacing_rate; 3439 bool did_upgrade; 3440 3441 if (inp == NULL) 3442 return; 3443 3444 socket = inp->inp_socket; 3445 if (socket == NULL) 3446 return; 3447 3448 if (!INP_WLOCKED(inp)) { 3449 /* 3450 * NOTE: If the write locking fails, we need to bail 3451 * out and use the non-ratelimited ring for the 3452 * transmit until there is a new chance to get the 3453 * write lock. 3454 */ 3455 if (!INP_TRY_UPGRADE(inp)) 3456 return; 3457 did_upgrade = 1; 3458 } else { 3459 did_upgrade = 0; 3460 } 3461 3462 /* 3463 * NOTE: The so_max_pacing_rate value is read unlocked, 3464 * because atomic updates are not required since the variable 3465 * is checked at every mbuf we send. It is assumed that the 3466 * variable read itself will be atomic. 3467 */ 3468 max_pacing_rate = socket->so_max_pacing_rate; 3469 3470 in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate); 3471 3472 if (did_upgrade) 3473 INP_DOWNGRADE(inp); 3474 } 3475 3476 /* 3477 * Track route changes for TX rate limiting. 3478 */ 3479 void 3480 in_pcboutput_eagain(struct inpcb *inp) 3481 { 3482 bool did_upgrade; 3483 3484 if (inp == NULL) 3485 return; 3486 3487 if (inp->inp_snd_tag == NULL) 3488 return; 3489 3490 if (!INP_WLOCKED(inp)) { 3491 /* 3492 * NOTE: If the write locking fails, we need to bail 3493 * out and use the non-ratelimited ring for the 3494 * transmit until there is a new chance to get the 3495 * write lock. 3496 */ 3497 if (!INP_TRY_UPGRADE(inp)) 3498 return; 3499 did_upgrade = 1; 3500 } else { 3501 did_upgrade = 0; 3502 } 3503 3504 /* detach rate limiting */ 3505 in_pcbdetach_txrtlmt(inp); 3506 3507 /* make sure new mbuf send tag allocation is made */ 3508 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3509 3510 if (did_upgrade) 3511 INP_DOWNGRADE(inp); 3512 } 3513 3514 #ifdef INET 3515 static void 3516 rl_init(void *st) 3517 { 3518 rate_limit_new = counter_u64_alloc(M_WAITOK); 3519 rate_limit_chg = counter_u64_alloc(M_WAITOK); 3520 rate_limit_active = counter_u64_alloc(M_WAITOK); 3521 rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK); 3522 rate_limit_set_ok = counter_u64_alloc(M_WAITOK); 3523 } 3524 3525 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL); 3526 #endif 3527 #endif /* RATELIMIT */ 3528