xref: /freebsd/sys/netinet/in_pcb.c (revision ae316d1d1cffd71ab7751f94e10118777a88e027)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2007-2009 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * Copyright (c) 2021-2022 Gleb Smirnoff <glebius@FreeBSD.org>
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Robert N. M. Watson under
12  * contract to Juniper Networks, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #include <sys/cdefs.h>
40 #include "opt_ddb.h"
41 #include "opt_ipsec.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 #include "opt_ratelimit.h"
45 #include "opt_route.h"
46 #include "opt_rss.h"
47 
48 #include <sys/param.h>
49 #include <sys/hash.h>
50 #include <sys/systm.h>
51 #include <sys/libkern.h>
52 #include <sys/lock.h>
53 #include <sys/malloc.h>
54 #include <sys/mbuf.h>
55 #include <sys/eventhandler.h>
56 #include <sys/domain.h>
57 #include <sys/proc.h>
58 #include <sys/protosw.h>
59 #include <sys/smp.h>
60 #include <sys/smr.h>
61 #include <sys/socket.h>
62 #include <sys/socketvar.h>
63 #include <sys/sockio.h>
64 #include <sys/priv.h>
65 #include <sys/proc.h>
66 #include <sys/refcount.h>
67 #include <sys/jail.h>
68 #include <sys/kernel.h>
69 #include <sys/sysctl.h>
70 
71 #ifdef DDB
72 #include <ddb/ddb.h>
73 #endif
74 
75 #include <vm/uma.h>
76 #include <vm/vm.h>
77 
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/if_private.h>
81 #include <net/if_types.h>
82 #include <net/if_llatbl.h>
83 #include <net/route.h>
84 #include <net/rss_config.h>
85 #include <net/vnet.h>
86 
87 #if defined(INET) || defined(INET6)
88 #include <netinet/in.h>
89 #include <netinet/in_pcb.h>
90 #include <netinet/in_pcb_var.h>
91 #include <netinet/tcp.h>
92 #ifdef INET
93 #include <netinet/in_var.h>
94 #include <netinet/in_fib.h>
95 #endif
96 #include <netinet/ip_var.h>
97 #ifdef INET6
98 #include <netinet/ip6.h>
99 #include <netinet6/in6_pcb.h>
100 #include <netinet6/in6_var.h>
101 #include <netinet6/ip6_var.h>
102 #endif /* INET6 */
103 #include <net/route/nhop.h>
104 #endif
105 
106 #include <netipsec/ipsec_support.h>
107 
108 #include <security/mac/mac_framework.h>
109 
110 #define	INPCBLBGROUP_SIZMIN	8
111 #define	INPCBLBGROUP_SIZMAX	256
112 
113 #define	INP_FREED	0x00000200	/* Went through in_pcbfree(). */
114 #define	INP_INLBGROUP	0x01000000	/* Inserted into inpcblbgroup. */
115 
116 /*
117  * These configure the range of local port addresses assigned to
118  * "unspecified" outgoing connections/packets/whatever.
119  */
120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
126 
127 /*
128  * Reserved ports accessible only to root. There are significant
129  * security considerations that must be accounted for when changing these,
130  * but the security benefits can be great. Please be careful.
131  */
132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
133 VNET_DEFINE(int, ipport_reservedlow);
134 
135 /* Enable random ephemeral port allocation by default. */
136 VNET_DEFINE(int, ipport_randomized) = 1;
137 
138 #ifdef INET
139 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
140 			    struct in_addr faddr, u_int fport_arg,
141 			    struct in_addr laddr, u_int lport_arg,
142 			    int lookupflags, uint8_t numa_domain);
143 
144 #define RANGECHK(var, min, max) \
145 	if ((var) < (min)) { (var) = (min); } \
146 	else if ((var) > (max)) { (var) = (max); }
147 
148 static int
149 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
150 {
151 	int error;
152 
153 	error = sysctl_handle_int(oidp, arg1, arg2, req);
154 	if (error == 0) {
155 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
156 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
157 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
158 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
159 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
160 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
161 	}
162 	return (error);
163 }
164 
165 #undef RANGECHK
166 
167 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange,
168     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
169     "IP Ports");
170 
171 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
172     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
173     &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I",
174     "");
175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
176     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
177     &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I",
178     "");
179 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
180     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
181     &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I",
182     "");
183 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
184     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
185     &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I",
186     "");
187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
188     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
189     &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I",
190     "");
191 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
192     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
193     &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I",
194     "");
195 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
196 	CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
197 	&VNET_NAME(ipport_reservedhigh), 0, "");
198 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
199 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
200 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
201 	CTLFLAG_VNET | CTLFLAG_RW,
202 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
203 
204 #ifdef RATELIMIT
205 counter_u64_t rate_limit_new;
206 counter_u64_t rate_limit_chg;
207 counter_u64_t rate_limit_active;
208 counter_u64_t rate_limit_alloc_fail;
209 counter_u64_t rate_limit_set_ok;
210 
211 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
212     "IP Rate Limiting");
213 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD,
214     &rate_limit_active, "Active rate limited connections");
215 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD,
216    &rate_limit_alloc_fail, "Rate limited connection failures");
217 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD,
218    &rate_limit_set_ok, "Rate limited setting succeeded");
219 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD,
220    &rate_limit_new, "Total Rate limit new attempts");
221 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD,
222    &rate_limit_chg, "Total Rate limited change attempts");
223 #endif /* RATELIMIT */
224 
225 #endif /* INET */
226 
227 VNET_DEFINE(uint32_t, in_pcbhashseed);
228 static void
229 in_pcbhashseed_init(void)
230 {
231 
232 	V_in_pcbhashseed = arc4random();
233 }
234 VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST,
235     in_pcbhashseed_init, 0);
236 
237 #ifdef INET
238 VNET_DEFINE_STATIC(int, connect_inaddr_wild) = 1;
239 #define	V_connect_inaddr_wild	VNET(connect_inaddr_wild)
240 SYSCTL_INT(_net_inet_ip, OID_AUTO, connect_inaddr_wild,
241     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(connect_inaddr_wild), 0,
242     "Allow connecting to INADDR_ANY or INADDR_BROADCAST for connect(2)");
243 #endif
244 
245 static void in_pcbremhash(struct inpcb *);
246 
247 /*
248  * in_pcb.c: manage the Protocol Control Blocks.
249  *
250  * NOTE: It is assumed that most of these functions will be called with
251  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
252  * functions often modify hash chains or addresses in pcbs.
253  */
254 
255 static struct inpcblbgroup *
256 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, struct ucred *cred,
257     u_char vflag, uint16_t port, const union in_dependaddr *addr, int size,
258     uint8_t numa_domain)
259 {
260 	struct inpcblbgroup *grp;
261 	size_t bytes;
262 
263 	bytes = __offsetof(struct inpcblbgroup, il_inp[size]);
264 	grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT);
265 	if (grp == NULL)
266 		return (NULL);
267 	grp->il_cred = crhold(cred);
268 	grp->il_vflag = vflag;
269 	grp->il_lport = port;
270 	grp->il_numa_domain = numa_domain;
271 	grp->il_dependladdr = *addr;
272 	grp->il_inpsiz = size;
273 	CK_LIST_INSERT_HEAD(hdr, grp, il_list);
274 	return (grp);
275 }
276 
277 static void
278 in_pcblbgroup_free_deferred(epoch_context_t ctx)
279 {
280 	struct inpcblbgroup *grp;
281 
282 	grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx);
283 	crfree(grp->il_cred);
284 	free(grp, M_PCB);
285 }
286 
287 static void
288 in_pcblbgroup_free(struct inpcblbgroup *grp)
289 {
290 
291 	CK_LIST_REMOVE(grp, il_list);
292 	NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx);
293 }
294 
295 static struct inpcblbgroup *
296 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr,
297     struct inpcblbgroup *old_grp, int size)
298 {
299 	struct inpcblbgroup *grp;
300 	int i;
301 
302 	grp = in_pcblbgroup_alloc(hdr, old_grp->il_cred, old_grp->il_vflag,
303 	    old_grp->il_lport, &old_grp->il_dependladdr, size,
304 	    old_grp->il_numa_domain);
305 	if (grp == NULL)
306 		return (NULL);
307 
308 	KASSERT(old_grp->il_inpcnt < grp->il_inpsiz,
309 	    ("invalid new local group size %d and old local group count %d",
310 	     grp->il_inpsiz, old_grp->il_inpcnt));
311 
312 	for (i = 0; i < old_grp->il_inpcnt; ++i)
313 		grp->il_inp[i] = old_grp->il_inp[i];
314 	grp->il_inpcnt = old_grp->il_inpcnt;
315 	in_pcblbgroup_free(old_grp);
316 	return (grp);
317 }
318 
319 /*
320  * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i]
321  * and shrink group if possible.
322  */
323 static void
324 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp,
325     int i)
326 {
327 	struct inpcblbgroup *grp, *new_grp;
328 
329 	grp = *grpp;
330 	for (; i + 1 < grp->il_inpcnt; ++i)
331 		grp->il_inp[i] = grp->il_inp[i + 1];
332 	grp->il_inpcnt--;
333 
334 	if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN &&
335 	    grp->il_inpcnt <= grp->il_inpsiz / 4) {
336 		/* Shrink this group. */
337 		new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2);
338 		if (new_grp != NULL)
339 			*grpp = new_grp;
340 	}
341 }
342 
343 /*
344  * Add PCB to load balance group for SO_REUSEPORT_LB option.
345  */
346 static int
347 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain)
348 {
349 	const static struct timeval interval = { 60, 0 };
350 	static struct timeval lastprint;
351 	struct inpcbinfo *pcbinfo;
352 	struct inpcblbgrouphead *hdr;
353 	struct inpcblbgroup *grp;
354 	uint32_t idx;
355 
356 	pcbinfo = inp->inp_pcbinfo;
357 
358 	INP_WLOCK_ASSERT(inp);
359 	INP_HASH_WLOCK_ASSERT(pcbinfo);
360 
361 #ifdef INET6
362 	/*
363 	 * Don't allow IPv4 mapped INET6 wild socket.
364 	 */
365 	if ((inp->inp_vflag & INP_IPV4) &&
366 	    inp->inp_laddr.s_addr == INADDR_ANY &&
367 	    INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) {
368 		return (0);
369 	}
370 #endif
371 
372 	idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask);
373 	hdr = &pcbinfo->ipi_lbgrouphashbase[idx];
374 	CK_LIST_FOREACH(grp, hdr, il_list) {
375 		if (grp->il_cred->cr_prison == inp->inp_cred->cr_prison &&
376 		    grp->il_vflag == inp->inp_vflag &&
377 		    grp->il_lport == inp->inp_lport &&
378 		    grp->il_numa_domain == numa_domain &&
379 		    memcmp(&grp->il_dependladdr,
380 		    &inp->inp_inc.inc_ie.ie_dependladdr,
381 		    sizeof(grp->il_dependladdr)) == 0) {
382 			break;
383 		}
384 	}
385 	if (grp == NULL) {
386 		/* Create new load balance group. */
387 		grp = in_pcblbgroup_alloc(hdr, inp->inp_cred, inp->inp_vflag,
388 		    inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr,
389 		    INPCBLBGROUP_SIZMIN, numa_domain);
390 		if (grp == NULL)
391 			return (ENOBUFS);
392 	} else if (grp->il_inpcnt == grp->il_inpsiz) {
393 		if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) {
394 			if (ratecheck(&lastprint, &interval))
395 				printf("lb group port %d, limit reached\n",
396 				    ntohs(grp->il_lport));
397 			return (0);
398 		}
399 
400 		/* Expand this local group. */
401 		grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2);
402 		if (grp == NULL)
403 			return (ENOBUFS);
404 	}
405 
406 	KASSERT(grp->il_inpcnt < grp->il_inpsiz,
407 	    ("invalid local group size %d and count %d", grp->il_inpsiz,
408 	    grp->il_inpcnt));
409 
410 	grp->il_inp[grp->il_inpcnt] = inp;
411 	grp->il_inpcnt++;
412 	inp->inp_flags |= INP_INLBGROUP;
413 	return (0);
414 }
415 
416 /*
417  * Remove PCB from load balance group.
418  */
419 static void
420 in_pcbremlbgrouphash(struct inpcb *inp)
421 {
422 	struct inpcbinfo *pcbinfo;
423 	struct inpcblbgrouphead *hdr;
424 	struct inpcblbgroup *grp;
425 	int i;
426 
427 	pcbinfo = inp->inp_pcbinfo;
428 
429 	INP_WLOCK_ASSERT(inp);
430 	MPASS(inp->inp_flags & INP_INLBGROUP);
431 	INP_HASH_WLOCK_ASSERT(pcbinfo);
432 
433 	hdr = &pcbinfo->ipi_lbgrouphashbase[
434 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
435 	CK_LIST_FOREACH(grp, hdr, il_list) {
436 		for (i = 0; i < grp->il_inpcnt; ++i) {
437 			if (grp->il_inp[i] != inp)
438 				continue;
439 
440 			if (grp->il_inpcnt == 1) {
441 				/* We are the last, free this local group. */
442 				in_pcblbgroup_free(grp);
443 			} else {
444 				/* Pull up inpcbs, shrink group if possible. */
445 				in_pcblbgroup_reorder(hdr, &grp, i);
446 			}
447 			inp->inp_flags &= ~INP_INLBGROUP;
448 			return;
449 		}
450 	}
451 	KASSERT(0, ("%s: did not find %p", __func__, inp));
452 }
453 
454 int
455 in_pcblbgroup_numa(struct inpcb *inp, int arg)
456 {
457 	struct inpcbinfo *pcbinfo;
458 	struct inpcblbgrouphead *hdr;
459 	struct inpcblbgroup *grp;
460 	int err, i;
461 	uint8_t numa_domain;
462 
463 	switch (arg) {
464 	case TCP_REUSPORT_LB_NUMA_NODOM:
465 		numa_domain = M_NODOM;
466 		break;
467 	case TCP_REUSPORT_LB_NUMA_CURDOM:
468 		numa_domain = PCPU_GET(domain);
469 		break;
470 	default:
471 		if (arg < 0 || arg >= vm_ndomains)
472 			return (EINVAL);
473 		numa_domain = arg;
474 	}
475 
476 	err = 0;
477 	pcbinfo = inp->inp_pcbinfo;
478 	INP_WLOCK_ASSERT(inp);
479 	INP_HASH_WLOCK(pcbinfo);
480 	hdr = &pcbinfo->ipi_lbgrouphashbase[
481 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
482 	CK_LIST_FOREACH(grp, hdr, il_list) {
483 		for (i = 0; i < grp->il_inpcnt; ++i) {
484 			if (grp->il_inp[i] != inp)
485 				continue;
486 
487 			if (grp->il_numa_domain == numa_domain) {
488 				goto abort_with_hash_wlock;
489 			}
490 
491 			/* Remove it from the old group. */
492 			in_pcbremlbgrouphash(inp);
493 
494 			/* Add it to the new group based on numa domain. */
495 			in_pcbinslbgrouphash(inp, numa_domain);
496 			goto abort_with_hash_wlock;
497 		}
498 	}
499 	err = ENOENT;
500 abort_with_hash_wlock:
501 	INP_HASH_WUNLOCK(pcbinfo);
502 	return (err);
503 }
504 
505 /* Make sure it is safe to use hashinit(9) on CK_LIST. */
506 CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb)));
507 
508 /*
509  * Initialize an inpcbinfo - a per-VNET instance of connections db.
510  */
511 void
512 in_pcbinfo_init(struct inpcbinfo *pcbinfo, struct inpcbstorage *pcbstor,
513     u_int hash_nelements, u_int porthash_nelements)
514 {
515 
516 	mtx_init(&pcbinfo->ipi_lock, pcbstor->ips_infolock_name, NULL, MTX_DEF);
517 	mtx_init(&pcbinfo->ipi_hash_lock, pcbstor->ips_hashlock_name,
518 	    NULL, MTX_DEF);
519 #ifdef VIMAGE
520 	pcbinfo->ipi_vnet = curvnet;
521 #endif
522 	CK_LIST_INIT(&pcbinfo->ipi_listhead);
523 	pcbinfo->ipi_count = 0;
524 	pcbinfo->ipi_hash_exact = hashinit(hash_nelements, M_PCB,
525 	    &pcbinfo->ipi_hashmask);
526 	pcbinfo->ipi_hash_wild = hashinit(hash_nelements, M_PCB,
527 	    &pcbinfo->ipi_hashmask);
528 	porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1);
529 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
530 	    &pcbinfo->ipi_porthashmask);
531 	pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB,
532 	    &pcbinfo->ipi_lbgrouphashmask);
533 	pcbinfo->ipi_zone = pcbstor->ips_zone;
534 	pcbinfo->ipi_portzone = pcbstor->ips_portzone;
535 	pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone);
536 }
537 
538 /*
539  * Destroy an inpcbinfo.
540  */
541 void
542 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
543 {
544 
545 	KASSERT(pcbinfo->ipi_count == 0,
546 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
547 
548 	hashdestroy(pcbinfo->ipi_hash_exact, M_PCB, pcbinfo->ipi_hashmask);
549 	hashdestroy(pcbinfo->ipi_hash_wild, M_PCB, pcbinfo->ipi_hashmask);
550 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
551 	    pcbinfo->ipi_porthashmask);
552 	hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB,
553 	    pcbinfo->ipi_lbgrouphashmask);
554 	mtx_destroy(&pcbinfo->ipi_hash_lock);
555 	mtx_destroy(&pcbinfo->ipi_lock);
556 }
557 
558 /*
559  * Initialize a pcbstorage - per protocol zones to allocate inpcbs.
560  */
561 static void inpcb_fini(void *, int);
562 void
563 in_pcbstorage_init(void *arg)
564 {
565 	struct inpcbstorage *pcbstor = arg;
566 
567 	pcbstor->ips_zone = uma_zcreate(pcbstor->ips_zone_name,
568 	    pcbstor->ips_size, NULL, NULL, pcbstor->ips_pcbinit,
569 	    inpcb_fini, UMA_ALIGN_CACHE, UMA_ZONE_SMR);
570 	pcbstor->ips_portzone = uma_zcreate(pcbstor->ips_portzone_name,
571 	    sizeof(struct inpcbport), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
572 	uma_zone_set_smr(pcbstor->ips_portzone,
573 	    uma_zone_get_smr(pcbstor->ips_zone));
574 }
575 
576 /*
577  * Destroy a pcbstorage - used by unloadable protocols.
578  */
579 void
580 in_pcbstorage_destroy(void *arg)
581 {
582 	struct inpcbstorage *pcbstor = arg;
583 
584 	uma_zdestroy(pcbstor->ips_zone);
585 	uma_zdestroy(pcbstor->ips_portzone);
586 }
587 
588 /*
589  * Allocate a PCB and associate it with the socket.
590  * On success return with the PCB locked.
591  */
592 int
593 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
594 {
595 	struct inpcb *inp;
596 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
597 	int error;
598 #endif
599 
600 	inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT);
601 	if (inp == NULL)
602 		return (ENOBUFS);
603 	bzero(&inp->inp_start_zero, inp_zero_size);
604 #ifdef NUMA
605 	inp->inp_numa_domain = M_NODOM;
606 #endif
607 	inp->inp_pcbinfo = pcbinfo;
608 	inp->inp_socket = so;
609 	inp->inp_cred = crhold(so->so_cred);
610 	inp->inp_inc.inc_fibnum = so->so_fibnum;
611 #ifdef MAC
612 	error = mac_inpcb_init(inp, M_NOWAIT);
613 	if (error != 0)
614 		goto out;
615 	mac_inpcb_create(so, inp);
616 #endif
617 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
618 	error = ipsec_init_pcbpolicy(inp);
619 	if (error != 0) {
620 #ifdef MAC
621 		mac_inpcb_destroy(inp);
622 #endif
623 		goto out;
624 	}
625 #endif /*IPSEC*/
626 #ifdef INET6
627 	if (INP_SOCKAF(so) == AF_INET6) {
628 		inp->inp_vflag |= INP_IPV6PROTO | INP_IPV6;
629 		if (V_ip6_v6only)
630 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
631 #ifdef INET
632 		else
633 			inp->inp_vflag |= INP_IPV4;
634 #endif
635 		if (V_ip6_auto_flowlabel)
636 			inp->inp_flags |= IN6P_AUTOFLOWLABEL;
637 		inp->in6p_hops = -1;	/* use kernel default */
638 	}
639 #endif
640 #if defined(INET) && defined(INET6)
641 	else
642 #endif
643 #ifdef INET
644 		inp->inp_vflag |= INP_IPV4;
645 #endif
646 	inp->inp_smr = SMR_SEQ_INVALID;
647 
648 	/*
649 	 * Routes in inpcb's can cache L2 as well; they are guaranteed
650 	 * to be cleaned up.
651 	 */
652 	inp->inp_route.ro_flags = RT_LLE_CACHE;
653 	refcount_init(&inp->inp_refcount, 1);   /* Reference from socket. */
654 	INP_WLOCK(inp);
655 	INP_INFO_WLOCK(pcbinfo);
656 	pcbinfo->ipi_count++;
657 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
658 	CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list);
659 	INP_INFO_WUNLOCK(pcbinfo);
660 	so->so_pcb = inp;
661 
662 	return (0);
663 
664 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
665 out:
666 	crfree(inp->inp_cred);
667 #ifdef INVARIANTS
668 	inp->inp_cred = NULL;
669 #endif
670 	uma_zfree_smr(pcbinfo->ipi_zone, inp);
671 	return (error);
672 #endif
673 }
674 
675 #ifdef INET
676 int
677 in_pcbbind(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred)
678 {
679 	int anonport, error;
680 
681 	KASSERT(sin == NULL || sin->sin_family == AF_INET,
682 	    ("%s: invalid address family for %p", __func__, sin));
683 	KASSERT(sin == NULL || sin->sin_len == sizeof(struct sockaddr_in),
684 	    ("%s: invalid address length for %p", __func__, sin));
685 	INP_WLOCK_ASSERT(inp);
686 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
687 
688 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
689 		return (EINVAL);
690 	anonport = sin == NULL || sin->sin_port == 0;
691 	error = in_pcbbind_setup(inp, sin, &inp->inp_laddr.s_addr,
692 	    &inp->inp_lport, cred);
693 	if (error)
694 		return (error);
695 	if (in_pcbinshash(inp) != 0) {
696 		inp->inp_laddr.s_addr = INADDR_ANY;
697 		inp->inp_lport = 0;
698 		return (EAGAIN);
699 	}
700 	if (anonport)
701 		inp->inp_flags |= INP_ANONPORT;
702 	return (0);
703 }
704 #endif
705 
706 #if defined(INET) || defined(INET6)
707 /*
708  * Assign a local port like in_pcb_lport(), but also used with connect()
709  * and a foreign address and port.  If fsa is non-NULL, choose a local port
710  * that is unused with those, otherwise one that is completely unused.
711  * lsa can be NULL for IPv6.
712  */
713 int
714 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp,
715     struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags)
716 {
717 	struct inpcbinfo *pcbinfo;
718 	struct inpcb *tmpinp;
719 	unsigned short *lastport;
720 	int count, error;
721 	u_short aux, first, last, lport;
722 #ifdef INET
723 	struct in_addr laddr, faddr;
724 #endif
725 #ifdef INET6
726 	struct in6_addr *laddr6, *faddr6;
727 #endif
728 
729 	pcbinfo = inp->inp_pcbinfo;
730 
731 	/*
732 	 * Because no actual state changes occur here, a global write lock on
733 	 * the pcbinfo isn't required.
734 	 */
735 	INP_LOCK_ASSERT(inp);
736 	INP_HASH_LOCK_ASSERT(pcbinfo);
737 
738 	if (inp->inp_flags & INP_HIGHPORT) {
739 		first = V_ipport_hifirstauto;	/* sysctl */
740 		last  = V_ipport_hilastauto;
741 		lastport = &pcbinfo->ipi_lasthi;
742 	} else if (inp->inp_flags & INP_LOWPORT) {
743 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT);
744 		if (error)
745 			return (error);
746 		first = V_ipport_lowfirstauto;	/* 1023 */
747 		last  = V_ipport_lowlastauto;	/* 600 */
748 		lastport = &pcbinfo->ipi_lastlow;
749 	} else {
750 		first = V_ipport_firstauto;	/* sysctl */
751 		last  = V_ipport_lastauto;
752 		lastport = &pcbinfo->ipi_lastport;
753 	}
754 
755 	/*
756 	 * Instead of having two loops further down counting up or down
757 	 * make sure that first is always <= last and go with only one
758 	 * code path implementing all logic.
759 	 */
760 	if (first > last) {
761 		aux = first;
762 		first = last;
763 		last = aux;
764 	}
765 
766 #ifdef INET
767 	laddr.s_addr = INADDR_ANY;	/* used by INET6+INET below too */
768 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
769 		if (lsa != NULL)
770 			laddr = ((struct sockaddr_in *)lsa)->sin_addr;
771 		if (fsa != NULL)
772 			faddr = ((struct sockaddr_in *)fsa)->sin_addr;
773 	}
774 #endif
775 #ifdef INET6
776 	laddr6 = NULL;
777 	if ((inp->inp_vflag & INP_IPV6) != 0) {
778 		if (lsa != NULL)
779 			laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr;
780 		if (fsa != NULL)
781 			faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr;
782 	}
783 #endif
784 
785 	tmpinp = NULL;
786 	lport = *lportp;
787 
788 	if (V_ipport_randomized)
789 		*lastport = first + (arc4random() % (last - first));
790 
791 	count = last - first;
792 
793 	do {
794 		if (count-- < 0)	/* completely used? */
795 			return (EADDRNOTAVAIL);
796 		++*lastport;
797 		if (*lastport < first || *lastport > last)
798 			*lastport = first;
799 		lport = htons(*lastport);
800 
801 		if (fsa != NULL) {
802 #ifdef INET
803 			if (lsa->sa_family == AF_INET) {
804 				tmpinp = in_pcblookup_hash_locked(pcbinfo,
805 				    faddr, fport, laddr, lport, lookupflags,
806 				    M_NODOM);
807 			}
808 #endif
809 #ifdef INET6
810 			if (lsa->sa_family == AF_INET6) {
811 				tmpinp = in6_pcblookup_hash_locked(pcbinfo,
812 				    faddr6, fport, laddr6, lport, lookupflags,
813 				    M_NODOM);
814 			}
815 #endif
816 		} else {
817 #ifdef INET6
818 			if ((inp->inp_vflag & INP_IPV6) != 0) {
819 				tmpinp = in6_pcblookup_local(pcbinfo,
820 				    &inp->in6p_laddr, lport, lookupflags, cred);
821 #ifdef INET
822 				if (tmpinp == NULL &&
823 				    (inp->inp_vflag & INP_IPV4))
824 					tmpinp = in_pcblookup_local(pcbinfo,
825 					    laddr, lport, lookupflags, cred);
826 #endif
827 			}
828 #endif
829 #if defined(INET) && defined(INET6)
830 			else
831 #endif
832 #ifdef INET
833 				tmpinp = in_pcblookup_local(pcbinfo, laddr,
834 				    lport, lookupflags, cred);
835 #endif
836 		}
837 	} while (tmpinp != NULL);
838 
839 	*lportp = lport;
840 
841 	return (0);
842 }
843 
844 /*
845  * Select a local port (number) to use.
846  */
847 int
848 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
849     struct ucred *cred, int lookupflags)
850 {
851 	struct sockaddr_in laddr;
852 
853 	if (laddrp) {
854 		bzero(&laddr, sizeof(laddr));
855 		laddr.sin_family = AF_INET;
856 		laddr.sin_addr = *laddrp;
857 	}
858 	return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr :
859 	    NULL, lportp, NULL, 0, cred, lookupflags));
860 }
861 #endif /* INET || INET6 */
862 
863 #ifdef INET
864 /*
865  * Determine whether the inpcb can be bound to the specified address/port tuple.
866  */
867 static int
868 in_pcbbind_avail(struct inpcb *inp, const struct in_addr laddr,
869     const u_short lport, int sooptions, int lookupflags, struct ucred *cred)
870 {
871 	int reuseport, reuseport_lb;
872 
873 	INP_LOCK_ASSERT(inp);
874 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
875 
876 	reuseport = (sooptions & SO_REUSEPORT);
877 	reuseport_lb = (sooptions & SO_REUSEPORT_LB);
878 
879 	if (IN_MULTICAST(ntohl(laddr.s_addr))) {
880 		/*
881 		 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
882 		 * allow complete duplication of binding if
883 		 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
884 		 * and a multicast address is bound on both
885 		 * new and duplicated sockets.
886 		 */
887 		if ((sooptions & (SO_REUSEADDR | SO_REUSEPORT)) != 0)
888 			reuseport = SO_REUSEADDR | SO_REUSEPORT;
889 		/*
890 		 * XXX: How to deal with SO_REUSEPORT_LB here?
891 		 * Treat same as SO_REUSEPORT for now.
892 		 */
893 		if ((sooptions & (SO_REUSEADDR | SO_REUSEPORT_LB)) != 0)
894 			reuseport_lb = SO_REUSEADDR | SO_REUSEPORT_LB;
895 	} else if (!in_nullhost(laddr)) {
896 		struct sockaddr_in sin;
897 
898 		memset(&sin, 0, sizeof(sin));
899 		sin.sin_family = AF_INET;
900 		sin.sin_len = sizeof(sin);
901 		sin.sin_addr = laddr;
902 
903 		/*
904 		 * Is the address a local IP address?
905 		 * If INP_BINDANY is set, then the socket may be bound
906 		 * to any endpoint address, local or not.
907 		 */
908 		if ((inp->inp_flags & INP_BINDANY) == 0 &&
909 		    ifa_ifwithaddr_check((const struct sockaddr *)&sin) == 0)
910 			return (EADDRNOTAVAIL);
911 	}
912 
913 	if (lport != 0) {
914 		struct inpcb *t;
915 
916 		if (ntohs(lport) <= V_ipport_reservedhigh &&
917 		    ntohs(lport) >= V_ipport_reservedlow &&
918 		    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT))
919 			return (EACCES);
920 
921 		if (!IN_MULTICAST(ntohl(laddr.s_addr)) &&
922 		    priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) {
923 			t = in_pcblookup_local(inp->inp_pcbinfo, laddr, lport,
924 			    INPLOOKUP_WILDCARD, cred);
925 			if (t != NULL &&
926 			    (inp->inp_socket->so_type != SOCK_STREAM ||
927 			     in_nullhost(t->inp_faddr)) &&
928 			    (!in_nullhost(laddr) ||
929 			     !in_nullhost(t->inp_laddr) ||
930 			     (t->inp_socket->so_options & SO_REUSEPORT) ||
931 			     (t->inp_socket->so_options & SO_REUSEPORT_LB) == 0) &&
932 			    (inp->inp_cred->cr_uid != t->inp_cred->cr_uid))
933 				return (EADDRINUSE);
934 		}
935 		t = in_pcblookup_local(inp->inp_pcbinfo, laddr, lport,
936 		    lookupflags, cred);
937 		if (t != NULL && ((reuseport | reuseport_lb) &
938 		    t->inp_socket->so_options) == 0) {
939 #ifdef INET6
940 			if (!in_nullhost(laddr) ||
941 			    !in_nullhost(t->inp_laddr) ||
942 			    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
943 			    (t->inp_vflag & INP_IPV6PROTO) == 0)
944 #endif
945 				return (EADDRINUSE);
946 		}
947 	}
948 	return (0);
949 }
950 
951 /*
952  * Set up a bind operation on a PCB, performing port allocation
953  * as required, but do not actually modify the PCB. Callers can
954  * either complete the bind by setting inp_laddr/inp_lport and
955  * calling in_pcbinshash(), or they can just use the resulting
956  * port and address to authorise the sending of a once-off packet.
957  *
958  * On error, the values of *laddrp and *lportp are not changed.
959  */
960 int
961 in_pcbbind_setup(struct inpcb *inp, struct sockaddr_in *sin, in_addr_t *laddrp,
962     u_short *lportp, struct ucred *cred)
963 {
964 	struct socket *so = inp->inp_socket;
965 	struct in_addr laddr;
966 	u_short lport = 0;
967 	int lookupflags, sooptions;
968 	int error;
969 
970 	/*
971 	 * No state changes, so read locks are sufficient here.
972 	 */
973 	INP_LOCK_ASSERT(inp);
974 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
975 
976 	laddr.s_addr = *laddrp;
977 	if (sin != NULL && laddr.s_addr != INADDR_ANY)
978 		return (EINVAL);
979 
980 	lookupflags = 0;
981 	sooptions = atomic_load_int(&so->so_options);
982 	if ((sooptions & (SO_REUSEADDR | SO_REUSEPORT | SO_REUSEPORT_LB)) == 0)
983 		lookupflags = INPLOOKUP_WILDCARD;
984 	if (sin == NULL) {
985 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
986 			return (error);
987 	} else {
988 		KASSERT(sin->sin_family == AF_INET,
989 		    ("%s: invalid family for address %p", __func__, sin));
990 		KASSERT(sin->sin_len == sizeof(*sin),
991 		    ("%s: invalid length for address %p", __func__, sin));
992 
993 		error = prison_local_ip4(cred, &sin->sin_addr);
994 		if (error)
995 			return (error);
996 		if (sin->sin_port != *lportp) {
997 			/* Don't allow the port to change. */
998 			if (*lportp != 0)
999 				return (EINVAL);
1000 			lport = sin->sin_port;
1001 		}
1002 		laddr = sin->sin_addr;
1003 
1004 		/* See if this address/port combo is available. */
1005 		error = in_pcbbind_avail(inp, laddr, lport, sooptions,
1006 		    lookupflags, cred);
1007 		if (error != 0)
1008 			return (error);
1009 	}
1010 	if (*lportp != 0)
1011 		lport = *lportp;
1012 	if (lport == 0) {
1013 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
1014 		if (error != 0)
1015 			return (error);
1016 	}
1017 	*laddrp = laddr.s_addr;
1018 	*lportp = lport;
1019 	return (0);
1020 }
1021 
1022 /*
1023  * Connect from a socket to a specified address.
1024  * Both address and port must be specified in argument sin.
1025  * If don't have a local address for this socket yet,
1026  * then pick one.
1027  */
1028 int
1029 in_pcbconnect(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred)
1030 {
1031 	u_short lport, fport;
1032 	in_addr_t laddr, faddr;
1033 	int anonport, error;
1034 
1035 	INP_WLOCK_ASSERT(inp);
1036 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1037 	KASSERT(in_nullhost(inp->inp_faddr),
1038 	    ("%s: inp is already connected", __func__));
1039 
1040 	lport = inp->inp_lport;
1041 	laddr = inp->inp_laddr.s_addr;
1042 	anonport = (lport == 0);
1043 	error = in_pcbconnect_setup(inp, sin, &laddr, &lport, &faddr, &fport,
1044 	    cred);
1045 	if (error)
1046 		return (error);
1047 
1048 	inp->inp_faddr.s_addr = faddr;
1049 	inp->inp_fport = fport;
1050 
1051 	/* Do the initial binding of the local address if required. */
1052 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
1053 		inp->inp_lport = lport;
1054 		inp->inp_laddr.s_addr = laddr;
1055 		if (in_pcbinshash(inp) != 0) {
1056 			inp->inp_laddr.s_addr = inp->inp_faddr.s_addr =
1057 			    INADDR_ANY;
1058 			inp->inp_lport = inp->inp_fport = 0;
1059 			return (EAGAIN);
1060 		}
1061 	} else {
1062 		inp->inp_lport = lport;
1063 		inp->inp_laddr.s_addr = laddr;
1064 		if ((inp->inp_flags & INP_INHASHLIST) != 0)
1065 			in_pcbrehash(inp);
1066 		else
1067 			in_pcbinshash(inp);
1068 	}
1069 
1070 	if (anonport)
1071 		inp->inp_flags |= INP_ANONPORT;
1072 	return (0);
1073 }
1074 
1075 /*
1076  * Do proper source address selection on an unbound socket in case
1077  * of connect. Take jails into account as well.
1078  */
1079 int
1080 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
1081     struct ucred *cred)
1082 {
1083 	struct ifaddr *ifa;
1084 	struct sockaddr *sa;
1085 	struct sockaddr_in *sin, dst;
1086 	struct nhop_object *nh;
1087 	int error;
1088 
1089 	NET_EPOCH_ASSERT();
1090 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
1091 
1092 	/*
1093 	 * Bypass source address selection and use the primary jail IP
1094 	 * if requested.
1095 	 */
1096 	if (!prison_saddrsel_ip4(cred, laddr))
1097 		return (0);
1098 
1099 	error = 0;
1100 
1101 	nh = NULL;
1102 	bzero(&dst, sizeof(dst));
1103 	sin = &dst;
1104 	sin->sin_family = AF_INET;
1105 	sin->sin_len = sizeof(struct sockaddr_in);
1106 	sin->sin_addr.s_addr = faddr->s_addr;
1107 
1108 	/*
1109 	 * If route is known our src addr is taken from the i/f,
1110 	 * else punt.
1111 	 *
1112 	 * Find out route to destination.
1113 	 */
1114 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
1115 		nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr,
1116 		    0, NHR_NONE, 0);
1117 
1118 	/*
1119 	 * If we found a route, use the address corresponding to
1120 	 * the outgoing interface.
1121 	 *
1122 	 * Otherwise assume faddr is reachable on a directly connected
1123 	 * network and try to find a corresponding interface to take
1124 	 * the source address from.
1125 	 */
1126 	if (nh == NULL || nh->nh_ifp == NULL) {
1127 		struct in_ifaddr *ia;
1128 		struct ifnet *ifp;
1129 
1130 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
1131 					inp->inp_socket->so_fibnum));
1132 		if (ia == NULL) {
1133 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
1134 						inp->inp_socket->so_fibnum));
1135 		}
1136 		if (ia == NULL) {
1137 			error = ENETUNREACH;
1138 			goto done;
1139 		}
1140 
1141 		if (!prison_flag(cred, PR_IP4)) {
1142 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1143 			goto done;
1144 		}
1145 
1146 		ifp = ia->ia_ifp;
1147 		ia = NULL;
1148 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1149 			sa = ifa->ifa_addr;
1150 			if (sa->sa_family != AF_INET)
1151 				continue;
1152 			sin = (struct sockaddr_in *)sa;
1153 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1154 				ia = (struct in_ifaddr *)ifa;
1155 				break;
1156 			}
1157 		}
1158 		if (ia != NULL) {
1159 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1160 			goto done;
1161 		}
1162 
1163 		/* 3. As a last resort return the 'default' jail address. */
1164 		error = prison_get_ip4(cred, laddr);
1165 		goto done;
1166 	}
1167 
1168 	/*
1169 	 * If the outgoing interface on the route found is not
1170 	 * a loopback interface, use the address from that interface.
1171 	 * In case of jails do those three steps:
1172 	 * 1. check if the interface address belongs to the jail. If so use it.
1173 	 * 2. check if we have any address on the outgoing interface
1174 	 *    belonging to this jail. If so use it.
1175 	 * 3. as a last resort return the 'default' jail address.
1176 	 */
1177 	if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) {
1178 		struct in_ifaddr *ia;
1179 		struct ifnet *ifp;
1180 
1181 		/* If not jailed, use the default returned. */
1182 		if (!prison_flag(cred, PR_IP4)) {
1183 			ia = (struct in_ifaddr *)nh->nh_ifa;
1184 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1185 			goto done;
1186 		}
1187 
1188 		/* Jailed. */
1189 		/* 1. Check if the iface address belongs to the jail. */
1190 		sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr;
1191 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1192 			ia = (struct in_ifaddr *)nh->nh_ifa;
1193 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1194 			goto done;
1195 		}
1196 
1197 		/*
1198 		 * 2. Check if we have any address on the outgoing interface
1199 		 *    belonging to this jail.
1200 		 */
1201 		ia = NULL;
1202 		ifp = nh->nh_ifp;
1203 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1204 			sa = ifa->ifa_addr;
1205 			if (sa->sa_family != AF_INET)
1206 				continue;
1207 			sin = (struct sockaddr_in *)sa;
1208 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1209 				ia = (struct in_ifaddr *)ifa;
1210 				break;
1211 			}
1212 		}
1213 		if (ia != NULL) {
1214 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1215 			goto done;
1216 		}
1217 
1218 		/* 3. As a last resort return the 'default' jail address. */
1219 		error = prison_get_ip4(cred, laddr);
1220 		goto done;
1221 	}
1222 
1223 	/*
1224 	 * The outgoing interface is marked with 'loopback net', so a route
1225 	 * to ourselves is here.
1226 	 * Try to find the interface of the destination address and then
1227 	 * take the address from there. That interface is not necessarily
1228 	 * a loopback interface.
1229 	 * In case of jails, check that it is an address of the jail
1230 	 * and if we cannot find, fall back to the 'default' jail address.
1231 	 */
1232 	if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) {
1233 		struct in_ifaddr *ia;
1234 
1235 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst),
1236 					inp->inp_socket->so_fibnum));
1237 		if (ia == NULL)
1238 			ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0,
1239 						inp->inp_socket->so_fibnum));
1240 		if (ia == NULL)
1241 			ia = ifatoia(ifa_ifwithaddr(sintosa(&dst)));
1242 
1243 		if (!prison_flag(cred, PR_IP4)) {
1244 			if (ia == NULL) {
1245 				error = ENETUNREACH;
1246 				goto done;
1247 			}
1248 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1249 			goto done;
1250 		}
1251 
1252 		/* Jailed. */
1253 		if (ia != NULL) {
1254 			struct ifnet *ifp;
1255 
1256 			ifp = ia->ia_ifp;
1257 			ia = NULL;
1258 			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1259 				sa = ifa->ifa_addr;
1260 				if (sa->sa_family != AF_INET)
1261 					continue;
1262 				sin = (struct sockaddr_in *)sa;
1263 				if (prison_check_ip4(cred,
1264 				    &sin->sin_addr) == 0) {
1265 					ia = (struct in_ifaddr *)ifa;
1266 					break;
1267 				}
1268 			}
1269 			if (ia != NULL) {
1270 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1271 				goto done;
1272 			}
1273 		}
1274 
1275 		/* 3. As a last resort return the 'default' jail address. */
1276 		error = prison_get_ip4(cred, laddr);
1277 		goto done;
1278 	}
1279 
1280 done:
1281 	if (error == 0 && laddr->s_addr == INADDR_ANY)
1282 		return (EHOSTUNREACH);
1283 	return (error);
1284 }
1285 
1286 /*
1287  * Set up for a connect from a socket to the specified address.
1288  * On entry, *laddrp and *lportp should contain the current local
1289  * address and port for the PCB; these are updated to the values
1290  * that should be placed in inp_laddr and inp_lport to complete
1291  * the connect.
1292  *
1293  * On success, *faddrp and *fportp will be set to the remote address
1294  * and port. These are not updated in the error case.
1295  */
1296 int
1297 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr_in *sin,
1298     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1299     struct ucred *cred)
1300 {
1301 	struct in_ifaddr *ia;
1302 	struct in_addr laddr, faddr;
1303 	u_short lport, fport;
1304 	int error;
1305 
1306 	KASSERT(sin->sin_family == AF_INET,
1307 	    ("%s: invalid address family for %p", __func__, sin));
1308 	KASSERT(sin->sin_len == sizeof(*sin),
1309 	    ("%s: invalid address length for %p", __func__, sin));
1310 
1311 	/*
1312 	 * Because a global state change doesn't actually occur here, a read
1313 	 * lock is sufficient.
1314 	 */
1315 	NET_EPOCH_ASSERT();
1316 	INP_LOCK_ASSERT(inp);
1317 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1318 
1319 	if (sin->sin_port == 0)
1320 		return (EADDRNOTAVAIL);
1321 	laddr.s_addr = *laddrp;
1322 	lport = *lportp;
1323 	faddr = sin->sin_addr;
1324 	fport = sin->sin_port;
1325 #ifdef ROUTE_MPATH
1326 	if (CALC_FLOWID_OUTBOUND) {
1327 		uint32_t hash_val, hash_type;
1328 
1329 		hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport,
1330 		    inp->inp_socket->so_proto->pr_protocol, &hash_type);
1331 
1332 		inp->inp_flowid = hash_val;
1333 		inp->inp_flowtype = hash_type;
1334 	}
1335 #endif
1336 	if (V_connect_inaddr_wild && !CK_STAILQ_EMPTY(&V_in_ifaddrhead)) {
1337 		/*
1338 		 * If the destination address is INADDR_ANY,
1339 		 * use the primary local address.
1340 		 * If the supplied address is INADDR_BROADCAST,
1341 		 * and the primary interface supports broadcast,
1342 		 * choose the broadcast address for that interface.
1343 		 */
1344 		if (faddr.s_addr == INADDR_ANY) {
1345 			faddr =
1346 			    IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1347 			if ((error = prison_get_ip4(cred, &faddr)) != 0)
1348 				return (error);
1349 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1350 			if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1351 			    IFF_BROADCAST)
1352 				faddr = satosin(&CK_STAILQ_FIRST(
1353 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1354 		}
1355 	} else if (faddr.s_addr == INADDR_ANY) {
1356 		return (ENETUNREACH);
1357 	}
1358 	if (laddr.s_addr == INADDR_ANY) {
1359 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
1360 		/*
1361 		 * If the destination address is multicast and an outgoing
1362 		 * interface has been set as a multicast option, prefer the
1363 		 * address of that interface as our source address.
1364 		 */
1365 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1366 		    inp->inp_moptions != NULL) {
1367 			struct ip_moptions *imo;
1368 			struct ifnet *ifp;
1369 
1370 			imo = inp->inp_moptions;
1371 			if (imo->imo_multicast_ifp != NULL) {
1372 				ifp = imo->imo_multicast_ifp;
1373 				CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1374 					if (ia->ia_ifp == ifp &&
1375 					    prison_check_ip4(cred,
1376 					    &ia->ia_addr.sin_addr) == 0)
1377 						break;
1378 				}
1379 				if (ia == NULL)
1380 					error = EADDRNOTAVAIL;
1381 				else {
1382 					laddr = ia->ia_addr.sin_addr;
1383 					error = 0;
1384 				}
1385 			}
1386 		}
1387 		if (error)
1388 			return (error);
1389 	}
1390 
1391 	if (lport != 0) {
1392 		if (in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr,
1393 		    fport, laddr, lport, 0, M_NODOM) != NULL)
1394 			return (EADDRINUSE);
1395 	} else {
1396 		struct sockaddr_in lsin, fsin;
1397 
1398 		bzero(&lsin, sizeof(lsin));
1399 		bzero(&fsin, sizeof(fsin));
1400 		lsin.sin_family = AF_INET;
1401 		lsin.sin_addr = laddr;
1402 		fsin.sin_family = AF_INET;
1403 		fsin.sin_addr = faddr;
1404 		error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin,
1405 		    &lport, (struct sockaddr *)& fsin, fport, cred,
1406 		    INPLOOKUP_WILDCARD);
1407 		if (error)
1408 			return (error);
1409 	}
1410 	*laddrp = laddr.s_addr;
1411 	*lportp = lport;
1412 	*faddrp = faddr.s_addr;
1413 	*fportp = fport;
1414 	return (0);
1415 }
1416 
1417 void
1418 in_pcbdisconnect(struct inpcb *inp)
1419 {
1420 
1421 	INP_WLOCK_ASSERT(inp);
1422 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1423 	KASSERT(inp->inp_smr == SMR_SEQ_INVALID,
1424 	    ("%s: inp %p was already disconnected", __func__, inp));
1425 
1426 	in_pcbremhash_locked(inp);
1427 
1428 	/* See the comment in in_pcbinshash(). */
1429 	inp->inp_smr = smr_advance(inp->inp_pcbinfo->ipi_smr);
1430 	inp->inp_laddr.s_addr = INADDR_ANY;
1431 	inp->inp_faddr.s_addr = INADDR_ANY;
1432 	inp->inp_fport = 0;
1433 }
1434 #endif /* INET */
1435 
1436 /*
1437  * inpcb hash lookups are protected by SMR section.
1438  *
1439  * Once desired pcb has been found, switching from SMR section to a pcb
1440  * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK
1441  * here because SMR is a critical section.
1442  * In 99%+ cases inp_smr_lock() would obtain the lock immediately.
1443  */
1444 void
1445 inp_lock(struct inpcb *inp, const inp_lookup_t lock)
1446 {
1447 
1448 	lock == INPLOOKUP_RLOCKPCB ?
1449 	    rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock);
1450 }
1451 
1452 void
1453 inp_unlock(struct inpcb *inp, const inp_lookup_t lock)
1454 {
1455 
1456 	lock == INPLOOKUP_RLOCKPCB ?
1457 	    rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock);
1458 }
1459 
1460 int
1461 inp_trylock(struct inpcb *inp, const inp_lookup_t lock)
1462 {
1463 
1464 	return (lock == INPLOOKUP_RLOCKPCB ?
1465 	    rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock));
1466 }
1467 
1468 static inline bool
1469 _inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock, const int ignflags)
1470 {
1471 
1472 	MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB);
1473 	SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr);
1474 
1475 	if (__predict_true(inp_trylock(inp, lock))) {
1476 		if (__predict_false(inp->inp_flags & ignflags)) {
1477 			smr_exit(inp->inp_pcbinfo->ipi_smr);
1478 			inp_unlock(inp, lock);
1479 			return (false);
1480 		}
1481 		smr_exit(inp->inp_pcbinfo->ipi_smr);
1482 		return (true);
1483 	}
1484 
1485 	if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) {
1486 		smr_exit(inp->inp_pcbinfo->ipi_smr);
1487 		inp_lock(inp, lock);
1488 		if (__predict_false(in_pcbrele(inp, lock)))
1489 			return (false);
1490 		/*
1491 		 * inp acquired through refcount & lock for sure didn't went
1492 		 * through uma_zfree().  However, it may have already went
1493 		 * through in_pcbfree() and has another reference, that
1494 		 * prevented its release by our in_pcbrele().
1495 		 */
1496 		if (__predict_false(inp->inp_flags & ignflags)) {
1497 			inp_unlock(inp, lock);
1498 			return (false);
1499 		}
1500 		return (true);
1501 	} else {
1502 		smr_exit(inp->inp_pcbinfo->ipi_smr);
1503 		return (false);
1504 	}
1505 }
1506 
1507 bool
1508 inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock)
1509 {
1510 
1511 	/*
1512 	 * in_pcblookup() family of functions ignore not only freed entries,
1513 	 * that may be found due to lockless access to the hash, but dropped
1514 	 * entries, too.
1515 	 */
1516 	return (_inp_smr_lock(inp, lock, INP_FREED | INP_DROPPED));
1517 }
1518 
1519 /*
1520  * inp_next() - inpcb hash/list traversal iterator
1521  *
1522  * Requires initialized struct inpcb_iterator for context.
1523  * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR().
1524  *
1525  * - Iterator can have either write-lock or read-lock semantics, that can not
1526  *   be changed later.
1527  * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through
1528  *   a single hash slot.  Note: only rip_input() does the latter.
1529  * - Iterator may have optional bool matching function.  The matching function
1530  *   will be executed for each inpcb in the SMR context, so it can not acquire
1531  *   locks and can safely access only immutable fields of inpcb.
1532  *
1533  * A fresh initialized iterator has NULL inpcb in its context and that
1534  * means that inp_next() call would return the very first inpcb on the list
1535  * locked with desired semantic.  In all following calls the context pointer
1536  * shall hold the current inpcb pointer.  The KPI user is not supposed to
1537  * unlock the current inpcb!  Upon end of traversal inp_next() will return NULL
1538  * and write NULL to its context.  After end of traversal an iterator can be
1539  * reused.
1540  *
1541  * List traversals have the following features/constraints:
1542  * - New entries won't be seen, as they are always added to the head of a list.
1543  * - Removed entries won't stop traversal as long as they are not added to
1544  *   a different list. This is violated by in_pcbrehash().
1545  */
1546 #define	II_LIST_FIRST(ipi, hash)					\
1547 		(((hash) == INP_ALL_LIST) ?				\
1548 		    CK_LIST_FIRST(&(ipi)->ipi_listhead) :		\
1549 		    CK_LIST_FIRST(&(ipi)->ipi_hash_exact[(hash)]))
1550 #define	II_LIST_NEXT(inp, hash)						\
1551 		(((hash) == INP_ALL_LIST) ?				\
1552 		    CK_LIST_NEXT((inp), inp_list) :			\
1553 		    CK_LIST_NEXT((inp), inp_hash_exact))
1554 #define	II_LOCK_ASSERT(inp, lock)					\
1555 		rw_assert(&(inp)->inp_lock,				\
1556 		    (lock) == INPLOOKUP_RLOCKPCB ?  RA_RLOCKED : RA_WLOCKED )
1557 struct inpcb *
1558 inp_next(struct inpcb_iterator *ii)
1559 {
1560 	const struct inpcbinfo *ipi = ii->ipi;
1561 	inp_match_t *match = ii->match;
1562 	void *ctx = ii->ctx;
1563 	inp_lookup_t lock = ii->lock;
1564 	int hash = ii->hash;
1565 	struct inpcb *inp;
1566 
1567 	if (ii->inp == NULL) {		/* First call. */
1568 		smr_enter(ipi->ipi_smr);
1569 		/* This is unrolled CK_LIST_FOREACH(). */
1570 		for (inp = II_LIST_FIRST(ipi, hash);
1571 		    inp != NULL;
1572 		    inp = II_LIST_NEXT(inp, hash)) {
1573 			if (match != NULL && (match)(inp, ctx) == false)
1574 				continue;
1575 			if (__predict_true(_inp_smr_lock(inp, lock, INP_FREED)))
1576 				break;
1577 			else {
1578 				smr_enter(ipi->ipi_smr);
1579 				MPASS(inp != II_LIST_FIRST(ipi, hash));
1580 				inp = II_LIST_FIRST(ipi, hash);
1581 				if (inp == NULL)
1582 					break;
1583 			}
1584 		}
1585 
1586 		if (inp == NULL)
1587 			smr_exit(ipi->ipi_smr);
1588 		else
1589 			ii->inp = inp;
1590 
1591 		return (inp);
1592 	}
1593 
1594 	/* Not a first call. */
1595 	smr_enter(ipi->ipi_smr);
1596 restart:
1597 	inp = ii->inp;
1598 	II_LOCK_ASSERT(inp, lock);
1599 next:
1600 	inp = II_LIST_NEXT(inp, hash);
1601 	if (inp == NULL) {
1602 		smr_exit(ipi->ipi_smr);
1603 		goto found;
1604 	}
1605 
1606 	if (match != NULL && (match)(inp, ctx) == false)
1607 		goto next;
1608 
1609 	if (__predict_true(inp_trylock(inp, lock))) {
1610 		if (__predict_false(inp->inp_flags & INP_FREED)) {
1611 			/*
1612 			 * Entries are never inserted in middle of a list, thus
1613 			 * as long as we are in SMR, we can continue traversal.
1614 			 * Jump to 'restart' should yield in the same result,
1615 			 * but could produce unnecessary looping.  Could this
1616 			 * looping be unbound?
1617 			 */
1618 			inp_unlock(inp, lock);
1619 			goto next;
1620 		} else {
1621 			smr_exit(ipi->ipi_smr);
1622 			goto found;
1623 		}
1624 	}
1625 
1626 	/*
1627 	 * Can't obtain lock immediately, thus going hard.  Once we exit the
1628 	 * SMR section we can no longer jump to 'next', and our only stable
1629 	 * anchoring point is ii->inp, which we keep locked for this case, so
1630 	 * we jump to 'restart'.
1631 	 */
1632 	if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) {
1633 		smr_exit(ipi->ipi_smr);
1634 		inp_lock(inp, lock);
1635 		if (__predict_false(in_pcbrele(inp, lock))) {
1636 			smr_enter(ipi->ipi_smr);
1637 			goto restart;
1638 		}
1639 		/*
1640 		 * See comment in inp_smr_lock().
1641 		 */
1642 		if (__predict_false(inp->inp_flags & INP_FREED)) {
1643 			inp_unlock(inp, lock);
1644 			smr_enter(ipi->ipi_smr);
1645 			goto restart;
1646 		}
1647 	} else
1648 		goto next;
1649 
1650 found:
1651 	inp_unlock(ii->inp, lock);
1652 	ii->inp = inp;
1653 
1654 	return (ii->inp);
1655 }
1656 
1657 /*
1658  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1659  * stability of an inpcb pointer despite the inpcb lock being released or
1660  * SMR section exited.
1661  *
1662  * To free a reference later in_pcbrele_(r|w)locked() must be performed.
1663  */
1664 void
1665 in_pcbref(struct inpcb *inp)
1666 {
1667 	u_int old __diagused;
1668 
1669 	old = refcount_acquire(&inp->inp_refcount);
1670 	KASSERT(old > 0, ("%s: refcount 0", __func__));
1671 }
1672 
1673 /*
1674  * Drop a refcount on an inpcb elevated using in_pcbref(), potentially
1675  * freeing the pcb, if the reference was very last.
1676  */
1677 bool
1678 in_pcbrele_rlocked(struct inpcb *inp)
1679 {
1680 
1681 	INP_RLOCK_ASSERT(inp);
1682 
1683 	if (!refcount_release(&inp->inp_refcount))
1684 		return (false);
1685 
1686 	MPASS(inp->inp_flags & INP_FREED);
1687 	MPASS(inp->inp_socket == NULL);
1688 	crfree(inp->inp_cred);
1689 #ifdef INVARIANTS
1690 	inp->inp_cred = NULL;
1691 #endif
1692 	INP_RUNLOCK(inp);
1693 	uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp);
1694 	return (true);
1695 }
1696 
1697 bool
1698 in_pcbrele_wlocked(struct inpcb *inp)
1699 {
1700 
1701 	INP_WLOCK_ASSERT(inp);
1702 
1703 	if (!refcount_release(&inp->inp_refcount))
1704 		return (false);
1705 
1706 	MPASS(inp->inp_flags & INP_FREED);
1707 	MPASS(inp->inp_socket == NULL);
1708 	crfree(inp->inp_cred);
1709 #ifdef INVARIANTS
1710 	inp->inp_cred = NULL;
1711 #endif
1712 	INP_WUNLOCK(inp);
1713 	uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp);
1714 	return (true);
1715 }
1716 
1717 bool
1718 in_pcbrele(struct inpcb *inp, const inp_lookup_t lock)
1719 {
1720 
1721 	return (lock == INPLOOKUP_RLOCKPCB ?
1722 	    in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp));
1723 }
1724 
1725 /*
1726  * Unconditionally schedule an inpcb to be freed by decrementing its
1727  * reference count, which should occur only after the inpcb has been detached
1728  * from its socket.  If another thread holds a temporary reference (acquired
1729  * using in_pcbref()) then the free is deferred until that reference is
1730  * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked.
1731  *  Almost all work, including removal from global lists, is done in this
1732  * context, where the pcbinfo lock is held.
1733  */
1734 void
1735 in_pcbfree(struct inpcb *inp)
1736 {
1737 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1738 #ifdef INET
1739 	struct ip_moptions *imo;
1740 #endif
1741 #ifdef INET6
1742 	struct ip6_moptions *im6o;
1743 #endif
1744 
1745 	INP_WLOCK_ASSERT(inp);
1746 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1747 	KASSERT((inp->inp_flags & INP_FREED) == 0,
1748 	    ("%s: called twice for pcb %p", __func__, inp));
1749 
1750 	/*
1751 	 * in_pcblookup_local() and in6_pcblookup_local() may return an inpcb
1752 	 * from the hash without acquiring inpcb lock, they rely on the hash
1753 	 * lock, thus in_pcbremhash() should be the first action.
1754 	 */
1755 	if (inp->inp_flags & INP_INHASHLIST)
1756 		in_pcbremhash(inp);
1757 	INP_INFO_WLOCK(pcbinfo);
1758 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1759 	pcbinfo->ipi_count--;
1760 	CK_LIST_REMOVE(inp, inp_list);
1761 	INP_INFO_WUNLOCK(pcbinfo);
1762 
1763 #ifdef RATELIMIT
1764 	if (inp->inp_snd_tag != NULL)
1765 		in_pcbdetach_txrtlmt(inp);
1766 #endif
1767 	inp->inp_flags |= INP_FREED;
1768 	inp->inp_socket->so_pcb = NULL;
1769 	inp->inp_socket = NULL;
1770 
1771 	RO_INVALIDATE_CACHE(&inp->inp_route);
1772 #ifdef MAC
1773 	mac_inpcb_destroy(inp);
1774 #endif
1775 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1776 	if (inp->inp_sp != NULL)
1777 		ipsec_delete_pcbpolicy(inp);
1778 #endif
1779 #ifdef INET
1780 	if (inp->inp_options)
1781 		(void)m_free(inp->inp_options);
1782 	DEBUG_POISON_POINTER(inp->inp_options);
1783 	imo = inp->inp_moptions;
1784 	DEBUG_POISON_POINTER(inp->inp_moptions);
1785 #endif
1786 #ifdef INET6
1787 	if (inp->inp_vflag & INP_IPV6PROTO) {
1788 		ip6_freepcbopts(inp->in6p_outputopts);
1789 		DEBUG_POISON_POINTER(inp->in6p_outputopts);
1790 		im6o = inp->in6p_moptions;
1791 		DEBUG_POISON_POINTER(inp->in6p_moptions);
1792 	} else
1793 		im6o = NULL;
1794 #endif
1795 
1796 	if (__predict_false(in_pcbrele_wlocked(inp) == false)) {
1797 		INP_WUNLOCK(inp);
1798 	}
1799 #ifdef INET6
1800 	ip6_freemoptions(im6o);
1801 #endif
1802 #ifdef INET
1803 	inp_freemoptions(imo);
1804 #endif
1805 }
1806 
1807 /*
1808  * Different protocols initialize their inpcbs differently - giving
1809  * different name to the lock.  But they all are disposed the same.
1810  */
1811 static void
1812 inpcb_fini(void *mem, int size)
1813 {
1814 	struct inpcb *inp = mem;
1815 
1816 	INP_LOCK_DESTROY(inp);
1817 }
1818 
1819 /*
1820  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1821  * port reservation, and preventing it from being returned by inpcb lookups.
1822  *
1823  * It is used by TCP to mark an inpcb as unused and avoid future packet
1824  * delivery or event notification when a socket remains open but TCP has
1825  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1826  * or a RST on the wire, and allows the port binding to be reused while still
1827  * maintaining the invariant that so_pcb always points to a valid inpcb until
1828  * in_pcbdetach().
1829  *
1830  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1831  * in_pcbpurgeif0()?
1832  */
1833 void
1834 in_pcbdrop(struct inpcb *inp)
1835 {
1836 
1837 	INP_WLOCK_ASSERT(inp);
1838 
1839 	inp->inp_flags |= INP_DROPPED;
1840 	if (inp->inp_flags & INP_INHASHLIST)
1841 		in_pcbremhash(inp);
1842 }
1843 
1844 #ifdef INET
1845 /*
1846  * Common routines to return the socket addresses associated with inpcbs.
1847  */
1848 int
1849 in_getsockaddr(struct socket *so, struct sockaddr *sa)
1850 {
1851 	struct inpcb *inp;
1852 
1853 	inp = sotoinpcb(so);
1854 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1855 
1856 	*(struct sockaddr_in *)sa = (struct sockaddr_in ){
1857 		.sin_len = sizeof(struct sockaddr_in),
1858 		.sin_family = AF_INET,
1859 		.sin_port = inp->inp_lport,
1860 		.sin_addr = inp->inp_laddr,
1861 	};
1862 
1863 	return (0);
1864 }
1865 
1866 int
1867 in_getpeeraddr(struct socket *so, struct sockaddr *sa)
1868 {
1869 	struct inpcb *inp;
1870 
1871 	inp = sotoinpcb(so);
1872 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1873 
1874 	*(struct sockaddr_in *)sa = (struct sockaddr_in ){
1875 		.sin_len = sizeof(struct sockaddr_in),
1876 		.sin_family = AF_INET,
1877 		.sin_port = inp->inp_fport,
1878 		.sin_addr = inp->inp_faddr,
1879 	};
1880 
1881 	return (0);
1882 }
1883 
1884 static bool
1885 inp_v4_multi_match(const struct inpcb *inp, void *v __unused)
1886 {
1887 
1888 	if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL)
1889 		return (true);
1890 	else
1891 		return (false);
1892 }
1893 
1894 void
1895 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1896 {
1897 	struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB,
1898 	    inp_v4_multi_match, NULL);
1899 	struct inpcb *inp;
1900 	struct in_multi *inm;
1901 	struct in_mfilter *imf;
1902 	struct ip_moptions *imo;
1903 
1904 	IN_MULTI_LOCK_ASSERT();
1905 
1906 	while ((inp = inp_next(&inpi)) != NULL) {
1907 		INP_WLOCK_ASSERT(inp);
1908 
1909 		imo = inp->inp_moptions;
1910 		/*
1911 		 * Unselect the outgoing interface if it is being
1912 		 * detached.
1913 		 */
1914 		if (imo->imo_multicast_ifp == ifp)
1915 			imo->imo_multicast_ifp = NULL;
1916 
1917 		/*
1918 		 * Drop multicast group membership if we joined
1919 		 * through the interface being detached.
1920 		 *
1921 		 * XXX This can all be deferred to an epoch_call
1922 		 */
1923 restart:
1924 		IP_MFILTER_FOREACH(imf, &imo->imo_head) {
1925 			if ((inm = imf->imf_inm) == NULL)
1926 				continue;
1927 			if (inm->inm_ifp != ifp)
1928 				continue;
1929 			ip_mfilter_remove(&imo->imo_head, imf);
1930 			in_leavegroup_locked(inm, NULL);
1931 			ip_mfilter_free(imf);
1932 			goto restart;
1933 		}
1934 	}
1935 }
1936 
1937 /*
1938  * Lookup a PCB based on the local address and port.  Caller must hold the
1939  * hash lock.  No inpcb locks or references are acquired.
1940  */
1941 #define INP_LOOKUP_MAPPED_PCB_COST	3
1942 struct inpcb *
1943 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1944     u_short lport, int lookupflags, struct ucred *cred)
1945 {
1946 	struct inpcb *inp;
1947 #ifdef INET6
1948 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1949 #else
1950 	int matchwild = 3;
1951 #endif
1952 	int wildcard;
1953 
1954 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1955 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1956 	INP_HASH_LOCK_ASSERT(pcbinfo);
1957 
1958 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1959 		struct inpcbhead *head;
1960 		/*
1961 		 * Look for an unconnected (wildcard foreign addr) PCB that
1962 		 * matches the local address and port we're looking for.
1963 		 */
1964 		head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport,
1965 		    pcbinfo->ipi_hashmask)];
1966 		CK_LIST_FOREACH(inp, head, inp_hash_wild) {
1967 #ifdef INET6
1968 			/* XXX inp locking */
1969 			if ((inp->inp_vflag & INP_IPV4) == 0)
1970 				continue;
1971 #endif
1972 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1973 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1974 			    inp->inp_lport == lport) {
1975 				/*
1976 				 * Found?
1977 				 */
1978 				if (prison_equal_ip4(cred->cr_prison,
1979 				    inp->inp_cred->cr_prison))
1980 					return (inp);
1981 			}
1982 		}
1983 		/*
1984 		 * Not found.
1985 		 */
1986 		return (NULL);
1987 	} else {
1988 		struct inpcbporthead *porthash;
1989 		struct inpcbport *phd;
1990 		struct inpcb *match = NULL;
1991 		/*
1992 		 * Best fit PCB lookup.
1993 		 *
1994 		 * First see if this local port is in use by looking on the
1995 		 * port hash list.
1996 		 */
1997 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1998 		    pcbinfo->ipi_porthashmask)];
1999 		CK_LIST_FOREACH(phd, porthash, phd_hash) {
2000 			if (phd->phd_port == lport)
2001 				break;
2002 		}
2003 		if (phd != NULL) {
2004 			/*
2005 			 * Port is in use by one or more PCBs. Look for best
2006 			 * fit.
2007 			 */
2008 			CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
2009 				wildcard = 0;
2010 				if (!prison_equal_ip4(inp->inp_cred->cr_prison,
2011 				    cred->cr_prison))
2012 					continue;
2013 #ifdef INET6
2014 				/* XXX inp locking */
2015 				if ((inp->inp_vflag & INP_IPV4) == 0)
2016 					continue;
2017 				/*
2018 				 * We never select the PCB that has
2019 				 * INP_IPV6 flag and is bound to :: if
2020 				 * we have another PCB which is bound
2021 				 * to 0.0.0.0.  If a PCB has the
2022 				 * INP_IPV6 flag, then we set its cost
2023 				 * higher than IPv4 only PCBs.
2024 				 *
2025 				 * Note that the case only happens
2026 				 * when a socket is bound to ::, under
2027 				 * the condition that the use of the
2028 				 * mapped address is allowed.
2029 				 */
2030 				if ((inp->inp_vflag & INP_IPV6) != 0)
2031 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
2032 #endif
2033 				if (inp->inp_faddr.s_addr != INADDR_ANY)
2034 					wildcard++;
2035 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
2036 					if (laddr.s_addr == INADDR_ANY)
2037 						wildcard++;
2038 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
2039 						continue;
2040 				} else {
2041 					if (laddr.s_addr != INADDR_ANY)
2042 						wildcard++;
2043 				}
2044 				if (wildcard < matchwild) {
2045 					match = inp;
2046 					matchwild = wildcard;
2047 					if (matchwild == 0)
2048 						break;
2049 				}
2050 			}
2051 		}
2052 		return (match);
2053 	}
2054 }
2055 #undef INP_LOOKUP_MAPPED_PCB_COST
2056 
2057 static bool
2058 in_pcblookup_lb_numa_match(const struct inpcblbgroup *grp, int domain)
2059 {
2060 	return (domain == M_NODOM || domain == grp->il_numa_domain);
2061 }
2062 
2063 static struct inpcb *
2064 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo,
2065     const struct in_addr *faddr, uint16_t fport, const struct in_addr *laddr,
2066     uint16_t lport, int domain)
2067 {
2068 	const struct inpcblbgrouphead *hdr;
2069 	struct inpcblbgroup *grp;
2070 	struct inpcblbgroup *jail_exact, *jail_wild, *local_exact, *local_wild;
2071 
2072 	INP_HASH_LOCK_ASSERT(pcbinfo);
2073 
2074 	hdr = &pcbinfo->ipi_lbgrouphashbase[
2075 	    INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)];
2076 
2077 	/*
2078 	 * Search for an LB group match based on the following criteria:
2079 	 * - prefer jailed groups to non-jailed groups
2080 	 * - prefer exact source address matches to wildcard matches
2081 	 * - prefer groups bound to the specified NUMA domain
2082 	 */
2083 	jail_exact = jail_wild = local_exact = local_wild = NULL;
2084 	CK_LIST_FOREACH(grp, hdr, il_list) {
2085 		bool injail;
2086 
2087 #ifdef INET6
2088 		if (!(grp->il_vflag & INP_IPV4))
2089 			continue;
2090 #endif
2091 		if (grp->il_lport != lport)
2092 			continue;
2093 
2094 		injail = prison_flag(grp->il_cred, PR_IP4) != 0;
2095 		if (injail && prison_check_ip4_locked(grp->il_cred->cr_prison,
2096 		    laddr) != 0)
2097 			continue;
2098 
2099 		if (grp->il_laddr.s_addr == laddr->s_addr) {
2100 			if (injail) {
2101 				jail_exact = grp;
2102 				if (in_pcblookup_lb_numa_match(grp, domain))
2103 					/* This is a perfect match. */
2104 					goto out;
2105 			} else if (local_exact == NULL ||
2106 			    in_pcblookup_lb_numa_match(grp, domain)) {
2107 				local_exact = grp;
2108 			}
2109 		} else if (grp->il_laddr.s_addr == INADDR_ANY) {
2110 			if (injail) {
2111 				if (jail_wild == NULL ||
2112 				    in_pcblookup_lb_numa_match(grp, domain))
2113 					jail_wild = grp;
2114 			} else if (local_wild == NULL ||
2115 			    in_pcblookup_lb_numa_match(grp, domain)) {
2116 				local_wild = grp;
2117 			}
2118 		}
2119 	}
2120 
2121 	if (jail_exact != NULL)
2122 		grp = jail_exact;
2123 	else if (jail_wild != NULL)
2124 		grp = jail_wild;
2125 	else if (local_exact != NULL)
2126 		grp = local_exact;
2127 	else
2128 		grp = local_wild;
2129 	if (grp == NULL)
2130 		return (NULL);
2131 out:
2132 	return (grp->il_inp[INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) %
2133 	    grp->il_inpcnt]);
2134 }
2135 
2136 static bool
2137 in_pcblookup_exact_match(const struct inpcb *inp, struct in_addr faddr,
2138     u_short fport, struct in_addr laddr, u_short lport)
2139 {
2140 #ifdef INET6
2141 	/* XXX inp locking */
2142 	if ((inp->inp_vflag & INP_IPV4) == 0)
2143 		return (false);
2144 #endif
2145 	if (inp->inp_faddr.s_addr == faddr.s_addr &&
2146 	    inp->inp_laddr.s_addr == laddr.s_addr &&
2147 	    inp->inp_fport == fport &&
2148 	    inp->inp_lport == lport)
2149 		return (true);
2150 	return (false);
2151 }
2152 
2153 static struct inpcb *
2154 in_pcblookup_hash_exact(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2155     u_short fport, struct in_addr laddr, u_short lport)
2156 {
2157 	struct inpcbhead *head;
2158 	struct inpcb *inp;
2159 
2160 	INP_HASH_LOCK_ASSERT(pcbinfo);
2161 
2162 	head = &pcbinfo->ipi_hash_exact[INP_PCBHASH(&faddr, lport, fport,
2163 	    pcbinfo->ipi_hashmask)];
2164 	CK_LIST_FOREACH(inp, head, inp_hash_exact) {
2165 		if (in_pcblookup_exact_match(inp, faddr, fport, laddr, lport))
2166 			return (inp);
2167 	}
2168 	return (NULL);
2169 }
2170 
2171 typedef enum {
2172 	INPLOOKUP_MATCH_NONE = 0,
2173 	INPLOOKUP_MATCH_WILD = 1,
2174 	INPLOOKUP_MATCH_LADDR = 2,
2175 } inp_lookup_match_t;
2176 
2177 static inp_lookup_match_t
2178 in_pcblookup_wild_match(const struct inpcb *inp, struct in_addr laddr,
2179     u_short lport)
2180 {
2181 #ifdef INET6
2182 	/* XXX inp locking */
2183 	if ((inp->inp_vflag & INP_IPV4) == 0)
2184 		return (INPLOOKUP_MATCH_NONE);
2185 #endif
2186 	if (inp->inp_faddr.s_addr != INADDR_ANY || inp->inp_lport != lport)
2187 		return (INPLOOKUP_MATCH_NONE);
2188 	if (inp->inp_laddr.s_addr == INADDR_ANY)
2189 		return (INPLOOKUP_MATCH_WILD);
2190 	if (inp->inp_laddr.s_addr == laddr.s_addr)
2191 		return (INPLOOKUP_MATCH_LADDR);
2192 	return (INPLOOKUP_MATCH_NONE);
2193 }
2194 
2195 #define	INP_LOOKUP_AGAIN	((struct inpcb *)(uintptr_t)-1)
2196 
2197 static struct inpcb *
2198 in_pcblookup_hash_wild_smr(struct inpcbinfo *pcbinfo, struct in_addr laddr,
2199     u_short lport, const inp_lookup_t lockflags)
2200 {
2201 	struct inpcbhead *head;
2202 	struct inpcb *inp;
2203 
2204 	KASSERT(SMR_ENTERED(pcbinfo->ipi_smr),
2205 	    ("%s: not in SMR read section", __func__));
2206 
2207 	head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport,
2208 	    pcbinfo->ipi_hashmask)];
2209 	CK_LIST_FOREACH(inp, head, inp_hash_wild) {
2210 		inp_lookup_match_t match;
2211 
2212 		match = in_pcblookup_wild_match(inp, laddr, lport);
2213 		if (match == INPLOOKUP_MATCH_NONE)
2214 			continue;
2215 
2216 		if (__predict_true(inp_smr_lock(inp, lockflags))) {
2217 			match = in_pcblookup_wild_match(inp, laddr, lport);
2218 			if (match != INPLOOKUP_MATCH_NONE &&
2219 			    prison_check_ip4_locked(inp->inp_cred->cr_prison,
2220 			    &laddr) == 0)
2221 				return (inp);
2222 			inp_unlock(inp, lockflags);
2223 		}
2224 
2225 		/*
2226 		 * The matching socket disappeared out from under us.  Fall back
2227 		 * to a serialized lookup.
2228 		 */
2229 		return (INP_LOOKUP_AGAIN);
2230 	}
2231 	return (NULL);
2232 }
2233 
2234 static struct inpcb *
2235 in_pcblookup_hash_wild_locked(struct inpcbinfo *pcbinfo, struct in_addr laddr,
2236     u_short lport)
2237 {
2238 	struct inpcbhead *head;
2239 	struct inpcb *inp, *local_wild, *local_exact, *jail_wild;
2240 #ifdef INET6
2241 	struct inpcb *local_wild_mapped;
2242 #endif
2243 
2244 	INP_HASH_LOCK_ASSERT(pcbinfo);
2245 
2246 	/*
2247 	 * Order of socket selection - we always prefer jails.
2248 	 *      1. jailed, non-wild.
2249 	 *      2. jailed, wild.
2250 	 *      3. non-jailed, non-wild.
2251 	 *      4. non-jailed, wild.
2252 	 */
2253 	head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport,
2254 	    pcbinfo->ipi_hashmask)];
2255 	local_wild = local_exact = jail_wild = NULL;
2256 #ifdef INET6
2257 	local_wild_mapped = NULL;
2258 #endif
2259 	CK_LIST_FOREACH(inp, head, inp_hash_wild) {
2260 		inp_lookup_match_t match;
2261 		bool injail;
2262 
2263 		match = in_pcblookup_wild_match(inp, laddr, lport);
2264 		if (match == INPLOOKUP_MATCH_NONE)
2265 			continue;
2266 
2267 		injail = prison_flag(inp->inp_cred, PR_IP4) != 0;
2268 		if (injail) {
2269 			if (prison_check_ip4_locked(inp->inp_cred->cr_prison,
2270 			    &laddr) != 0)
2271 				continue;
2272 		} else {
2273 			if (local_exact != NULL)
2274 				continue;
2275 		}
2276 
2277 		if (match == INPLOOKUP_MATCH_LADDR) {
2278 			if (injail)
2279 				return (inp);
2280 			local_exact = inp;
2281 		} else {
2282 #ifdef INET6
2283 			/* XXX inp locking, NULL check */
2284 			if (inp->inp_vflag & INP_IPV6PROTO)
2285 				local_wild_mapped = inp;
2286 			else
2287 #endif
2288 				if (injail)
2289 					jail_wild = inp;
2290 				else
2291 					local_wild = inp;
2292 		}
2293 	}
2294 	if (jail_wild != NULL)
2295 		return (jail_wild);
2296 	if (local_exact != NULL)
2297 		return (local_exact);
2298 	if (local_wild != NULL)
2299 		return (local_wild);
2300 #ifdef INET6
2301 	if (local_wild_mapped != NULL)
2302 		return (local_wild_mapped);
2303 #endif
2304 	return (NULL);
2305 }
2306 
2307 /*
2308  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
2309  * that the caller has either locked the hash list, which usually happens
2310  * for bind(2) operations, or is in SMR section, which happens when sorting
2311  * out incoming packets.
2312  */
2313 static struct inpcb *
2314 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2315     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2316     uint8_t numa_domain)
2317 {
2318 	struct inpcb *inp;
2319 	const u_short fport = fport_arg, lport = lport_arg;
2320 
2321 	KASSERT((lookupflags & ~INPLOOKUP_WILDCARD) == 0,
2322 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2323 	KASSERT(faddr.s_addr != INADDR_ANY,
2324 	    ("%s: invalid foreign address", __func__));
2325 	KASSERT(laddr.s_addr != INADDR_ANY,
2326 	    ("%s: invalid local address", __func__));
2327 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2328 
2329 	inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport);
2330 	if (inp != NULL)
2331 		return (inp);
2332 
2333 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2334 		inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport,
2335 		    &laddr, lport, numa_domain);
2336 		if (inp == NULL) {
2337 			inp = in_pcblookup_hash_wild_locked(pcbinfo, laddr,
2338 			    lport);
2339 		}
2340 	}
2341 
2342 	return (inp);
2343 }
2344 
2345 static struct inpcb *
2346 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2347     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2348     uint8_t numa_domain)
2349 {
2350 	struct inpcb *inp;
2351 	const inp_lookup_t lockflags = lookupflags & INPLOOKUP_LOCKMASK;
2352 
2353 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2354 	    ("%s: LOCKPCB not set", __func__));
2355 
2356 	INP_HASH_WLOCK(pcbinfo);
2357 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2358 	    lookupflags & ~INPLOOKUP_LOCKMASK, numa_domain);
2359 	if (inp != NULL && !inp_trylock(inp, lockflags)) {
2360 		in_pcbref(inp);
2361 		INP_HASH_WUNLOCK(pcbinfo);
2362 		inp_lock(inp, lockflags);
2363 		if (in_pcbrele(inp, lockflags))
2364 			/* XXX-MJ or retry until we get a negative match? */
2365 			inp = NULL;
2366 	} else {
2367 		INP_HASH_WUNLOCK(pcbinfo);
2368 	}
2369 	return (inp);
2370 }
2371 
2372 static struct inpcb *
2373 in_pcblookup_hash_smr(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2374     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2375     uint8_t numa_domain)
2376 {
2377 	struct inpcb *inp;
2378 	const inp_lookup_t lockflags = lookupflags & INPLOOKUP_LOCKMASK;
2379 	const u_short fport = fport_arg, lport = lport_arg;
2380 
2381 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2382 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2383 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2384 	    ("%s: LOCKPCB not set", __func__));
2385 
2386 	smr_enter(pcbinfo->ipi_smr);
2387 	inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport);
2388 	if (inp != NULL) {
2389 		if (__predict_true(inp_smr_lock(inp, lockflags))) {
2390 			/*
2391 			 * Revalidate the 4-tuple, the socket could have been
2392 			 * disconnected.
2393 			 */
2394 			if (__predict_true(in_pcblookup_exact_match(inp,
2395 			    faddr, fport, laddr, lport)))
2396 				return (inp);
2397 			inp_unlock(inp, lockflags);
2398 		}
2399 
2400 		/*
2401 		 * We failed to lock the inpcb, or its connection state changed
2402 		 * out from under us.  Fall back to a precise search.
2403 		 */
2404 		return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2405 		    lookupflags, numa_domain));
2406 	}
2407 
2408 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2409 		inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport,
2410 		    &laddr, lport, numa_domain);
2411 		if (inp != NULL) {
2412 			if (__predict_true(inp_smr_lock(inp, lockflags))) {
2413 				if (__predict_true(in_pcblookup_wild_match(inp,
2414 				    laddr, lport) != INPLOOKUP_MATCH_NONE))
2415 					return (inp);
2416 				inp_unlock(inp, lockflags);
2417 			}
2418 			inp = INP_LOOKUP_AGAIN;
2419 		} else {
2420 			inp = in_pcblookup_hash_wild_smr(pcbinfo, laddr, lport,
2421 			    lockflags);
2422 		}
2423 		if (inp == INP_LOOKUP_AGAIN) {
2424 			return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr,
2425 			    lport, lookupflags, numa_domain));
2426 		}
2427 	}
2428 
2429 	if (inp == NULL)
2430 		smr_exit(pcbinfo->ipi_smr);
2431 
2432 	return (inp);
2433 }
2434 
2435 /*
2436  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2437  * from which a pre-calculated hash value may be extracted.
2438  */
2439 struct inpcb *
2440 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2441     struct in_addr laddr, u_int lport, int lookupflags,
2442     struct ifnet *ifp __unused)
2443 {
2444 	return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport,
2445 	    lookupflags, M_NODOM));
2446 }
2447 
2448 struct inpcb *
2449 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2450     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2451     struct ifnet *ifp __unused, struct mbuf *m)
2452 {
2453 	return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport,
2454 	    lookupflags, m->m_pkthdr.numa_domain));
2455 }
2456 #endif /* INET */
2457 
2458 static bool
2459 in_pcbjailed(const struct inpcb *inp, unsigned int flag)
2460 {
2461 	return (prison_flag(inp->inp_cred, flag) != 0);
2462 }
2463 
2464 /*
2465  * Insert the PCB into a hash chain using ordering rules which ensure that
2466  * in_pcblookup_hash_wild_*() always encounter the highest-ranking PCB first.
2467  *
2468  * Specifically, keep jailed PCBs in front of non-jailed PCBs, and keep PCBs
2469  * with exact local addresses ahead of wildcard PCBs.  Unbound v4-mapped v6 PCBs
2470  * always appear last no matter whether they are jailed.
2471  */
2472 static void
2473 _in_pcbinshash_wild(struct inpcbhead *pcbhash, struct inpcb *inp)
2474 {
2475 	struct inpcb *last;
2476 	bool bound, injail;
2477 
2478 	INP_LOCK_ASSERT(inp);
2479 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
2480 
2481 	last = NULL;
2482 	bound = inp->inp_laddr.s_addr != INADDR_ANY;
2483 	if (!bound && (inp->inp_vflag & INP_IPV6PROTO) != 0) {
2484 		CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) {
2485 			if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2486 				CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2487 				return;
2488 			}
2489 		}
2490 		CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2491 		return;
2492 	}
2493 
2494 	injail = in_pcbjailed(inp, PR_IP4);
2495 	if (!injail) {
2496 		CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) {
2497 			if (!in_pcbjailed(last, PR_IP4))
2498 				break;
2499 			if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2500 				CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2501 				return;
2502 			}
2503 		}
2504 	} else if (!CK_LIST_EMPTY(pcbhash) &&
2505 	    !in_pcbjailed(CK_LIST_FIRST(pcbhash), PR_IP4)) {
2506 		CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2507 		return;
2508 	}
2509 	if (!bound) {
2510 		CK_LIST_FOREACH_FROM(last, pcbhash, inp_hash_wild) {
2511 			if (last->inp_laddr.s_addr == INADDR_ANY)
2512 				break;
2513 			if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2514 				CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2515 				return;
2516 			}
2517 		}
2518 	}
2519 	if (last == NULL)
2520 		CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2521 	else
2522 		CK_LIST_INSERT_BEFORE(last, inp, inp_hash_wild);
2523 }
2524 
2525 #ifdef INET6
2526 /*
2527  * See the comment above _in_pcbinshash_wild().
2528  */
2529 static void
2530 _in6_pcbinshash_wild(struct inpcbhead *pcbhash, struct inpcb *inp)
2531 {
2532 	struct inpcb *last;
2533 	bool bound, injail;
2534 
2535 	INP_LOCK_ASSERT(inp);
2536 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
2537 
2538 	last = NULL;
2539 	bound = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr);
2540 	injail = in_pcbjailed(inp, PR_IP6);
2541 	if (!injail) {
2542 		CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) {
2543 			if (!in_pcbjailed(last, PR_IP6))
2544 				break;
2545 			if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2546 				CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2547 				return;
2548 			}
2549 		}
2550 	} else if (!CK_LIST_EMPTY(pcbhash) &&
2551 	    !in_pcbjailed(CK_LIST_FIRST(pcbhash), PR_IP6)) {
2552 		CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2553 		return;
2554 	}
2555 	if (!bound) {
2556 		CK_LIST_FOREACH_FROM(last, pcbhash, inp_hash_wild) {
2557 			if (IN6_IS_ADDR_UNSPECIFIED(&last->in6p_laddr))
2558 				break;
2559 			if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2560 				CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2561 				return;
2562 			}
2563 		}
2564 	}
2565 	if (last == NULL)
2566 		CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2567 	else
2568 		CK_LIST_INSERT_BEFORE(last, inp, inp_hash_wild);
2569 }
2570 #endif
2571 
2572 /*
2573  * Insert PCB onto various hash lists.
2574  */
2575 int
2576 in_pcbinshash(struct inpcb *inp)
2577 {
2578 	struct inpcbhead *pcbhash;
2579 	struct inpcbporthead *pcbporthash;
2580 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2581 	struct inpcbport *phd;
2582 	uint32_t hash;
2583 	bool connected;
2584 
2585 	INP_WLOCK_ASSERT(inp);
2586 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2587 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2588 	    ("in_pcbinshash: INP_INHASHLIST"));
2589 
2590 #ifdef INET6
2591 	if (inp->inp_vflag & INP_IPV6) {
2592 		hash = INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport,
2593 		    inp->inp_fport, pcbinfo->ipi_hashmask);
2594 		connected = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr);
2595 	} else
2596 #endif
2597 	{
2598 		hash = INP_PCBHASH(&inp->inp_faddr, inp->inp_lport,
2599 		    inp->inp_fport, pcbinfo->ipi_hashmask);
2600 		connected = !in_nullhost(inp->inp_faddr);
2601 	}
2602 
2603 	if (connected)
2604 		pcbhash = &pcbinfo->ipi_hash_exact[hash];
2605 	else
2606 		pcbhash = &pcbinfo->ipi_hash_wild[hash];
2607 
2608 	pcbporthash = &pcbinfo->ipi_porthashbase[
2609 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2610 
2611 	/*
2612 	 * Add entry to load balance group.
2613 	 * Only do this if SO_REUSEPORT_LB is set.
2614 	 */
2615 	if ((inp->inp_socket->so_options & SO_REUSEPORT_LB) != 0) {
2616 		int error = in_pcbinslbgrouphash(inp, M_NODOM);
2617 		if (error != 0)
2618 			return (error);
2619 	}
2620 
2621 	/*
2622 	 * Go through port list and look for a head for this lport.
2623 	 */
2624 	CK_LIST_FOREACH(phd, pcbporthash, phd_hash) {
2625 		if (phd->phd_port == inp->inp_lport)
2626 			break;
2627 	}
2628 
2629 	/*
2630 	 * If none exists, malloc one and tack it on.
2631 	 */
2632 	if (phd == NULL) {
2633 		phd = uma_zalloc_smr(pcbinfo->ipi_portzone, M_NOWAIT);
2634 		if (phd == NULL) {
2635 			if ((inp->inp_flags & INP_INLBGROUP) != 0)
2636 				in_pcbremlbgrouphash(inp);
2637 			return (ENOMEM);
2638 		}
2639 		phd->phd_port = inp->inp_lport;
2640 		CK_LIST_INIT(&phd->phd_pcblist);
2641 		CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2642 	}
2643 	inp->inp_phd = phd;
2644 	CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2645 
2646 	/*
2647 	 * The PCB may have been disconnected in the past.  Before we can safely
2648 	 * make it visible in the hash table, we must wait for all readers which
2649 	 * may be traversing this PCB to finish.
2650 	 */
2651 	if (inp->inp_smr != SMR_SEQ_INVALID) {
2652 		smr_wait(pcbinfo->ipi_smr, inp->inp_smr);
2653 		inp->inp_smr = SMR_SEQ_INVALID;
2654 	}
2655 
2656 	if (connected)
2657 		CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_exact);
2658 	else {
2659 #ifdef INET6
2660 		if ((inp->inp_vflag & INP_IPV6) != 0)
2661 			_in6_pcbinshash_wild(pcbhash, inp);
2662 		else
2663 #endif
2664 			_in_pcbinshash_wild(pcbhash, inp);
2665 	}
2666 	inp->inp_flags |= INP_INHASHLIST;
2667 
2668 	return (0);
2669 }
2670 
2671 void
2672 in_pcbremhash_locked(struct inpcb *inp)
2673 {
2674 	struct inpcbport *phd = inp->inp_phd;
2675 
2676 	INP_WLOCK_ASSERT(inp);
2677 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
2678 	MPASS(inp->inp_flags & INP_INHASHLIST);
2679 
2680 	if ((inp->inp_flags & INP_INLBGROUP) != 0)
2681 		in_pcbremlbgrouphash(inp);
2682 #ifdef INET6
2683 	if (inp->inp_vflag & INP_IPV6) {
2684 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr))
2685 			CK_LIST_REMOVE(inp, inp_hash_wild);
2686 		else
2687 			CK_LIST_REMOVE(inp, inp_hash_exact);
2688 	} else
2689 #endif
2690 	{
2691 		if (in_nullhost(inp->inp_faddr))
2692 			CK_LIST_REMOVE(inp, inp_hash_wild);
2693 		else
2694 			CK_LIST_REMOVE(inp, inp_hash_exact);
2695 	}
2696 	CK_LIST_REMOVE(inp, inp_portlist);
2697 	if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
2698 		CK_LIST_REMOVE(phd, phd_hash);
2699 		uma_zfree_smr(inp->inp_pcbinfo->ipi_portzone, phd);
2700 	}
2701 	inp->inp_flags &= ~INP_INHASHLIST;
2702 }
2703 
2704 static void
2705 in_pcbremhash(struct inpcb *inp)
2706 {
2707 	INP_HASH_WLOCK(inp->inp_pcbinfo);
2708 	in_pcbremhash_locked(inp);
2709 	INP_HASH_WUNLOCK(inp->inp_pcbinfo);
2710 }
2711 
2712 /*
2713  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2714  * changed. NOTE: This does not handle the case of the lport changing (the
2715  * hashed port list would have to be updated as well), so the lport must
2716  * not change after in_pcbinshash() has been called.
2717  */
2718 void
2719 in_pcbrehash(struct inpcb *inp)
2720 {
2721 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2722 	struct inpcbhead *head;
2723 	uint32_t hash;
2724 	bool connected;
2725 
2726 	INP_WLOCK_ASSERT(inp);
2727 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2728 	KASSERT(inp->inp_flags & INP_INHASHLIST,
2729 	    ("%s: !INP_INHASHLIST", __func__));
2730 	KASSERT(inp->inp_smr == SMR_SEQ_INVALID,
2731 	    ("%s: inp was disconnected", __func__));
2732 
2733 #ifdef INET6
2734 	if (inp->inp_vflag & INP_IPV6) {
2735 		hash = INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport,
2736 		    inp->inp_fport, pcbinfo->ipi_hashmask);
2737 		connected = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr);
2738 	} else
2739 #endif
2740 	{
2741 		hash = INP_PCBHASH(&inp->inp_faddr, inp->inp_lport,
2742 		    inp->inp_fport, pcbinfo->ipi_hashmask);
2743 		connected = !in_nullhost(inp->inp_faddr);
2744 	}
2745 
2746 	/*
2747 	 * When rehashing, the caller must ensure that either the new or the old
2748 	 * foreign address was unspecified.
2749 	 */
2750 	if (connected)
2751 		CK_LIST_REMOVE(inp, inp_hash_wild);
2752 	else
2753 		CK_LIST_REMOVE(inp, inp_hash_exact);
2754 
2755 	if (connected) {
2756 		head = &pcbinfo->ipi_hash_exact[hash];
2757 		CK_LIST_INSERT_HEAD(head, inp, inp_hash_exact);
2758 	} else {
2759 		head = &pcbinfo->ipi_hash_wild[hash];
2760 		CK_LIST_INSERT_HEAD(head, inp, inp_hash_wild);
2761 	}
2762 }
2763 
2764 /*
2765  * Check for alternatives when higher level complains
2766  * about service problems.  For now, invalidate cached
2767  * routing information.  If the route was created dynamically
2768  * (by a redirect), time to try a default gateway again.
2769  */
2770 void
2771 in_losing(struct inpcb *inp)
2772 {
2773 
2774 	RO_INVALIDATE_CACHE(&inp->inp_route);
2775 	return;
2776 }
2777 
2778 /*
2779  * A set label operation has occurred at the socket layer, propagate the
2780  * label change into the in_pcb for the socket.
2781  */
2782 void
2783 in_pcbsosetlabel(struct socket *so)
2784 {
2785 #ifdef MAC
2786 	struct inpcb *inp;
2787 
2788 	inp = sotoinpcb(so);
2789 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2790 
2791 	INP_WLOCK(inp);
2792 	SOCK_LOCK(so);
2793 	mac_inpcb_sosetlabel(so, inp);
2794 	SOCK_UNLOCK(so);
2795 	INP_WUNLOCK(inp);
2796 #endif
2797 }
2798 
2799 void
2800 inp_wlock(struct inpcb *inp)
2801 {
2802 
2803 	INP_WLOCK(inp);
2804 }
2805 
2806 void
2807 inp_wunlock(struct inpcb *inp)
2808 {
2809 
2810 	INP_WUNLOCK(inp);
2811 }
2812 
2813 void
2814 inp_rlock(struct inpcb *inp)
2815 {
2816 
2817 	INP_RLOCK(inp);
2818 }
2819 
2820 void
2821 inp_runlock(struct inpcb *inp)
2822 {
2823 
2824 	INP_RUNLOCK(inp);
2825 }
2826 
2827 #ifdef INVARIANT_SUPPORT
2828 void
2829 inp_lock_assert(struct inpcb *inp)
2830 {
2831 
2832 	INP_WLOCK_ASSERT(inp);
2833 }
2834 
2835 void
2836 inp_unlock_assert(struct inpcb *inp)
2837 {
2838 
2839 	INP_UNLOCK_ASSERT(inp);
2840 }
2841 #endif
2842 
2843 void
2844 inp_apply_all(struct inpcbinfo *pcbinfo,
2845     void (*func)(struct inpcb *, void *), void *arg)
2846 {
2847 	struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo,
2848 	    INPLOOKUP_WLOCKPCB);
2849 	struct inpcb *inp;
2850 
2851 	while ((inp = inp_next(&inpi)) != NULL)
2852 		func(inp, arg);
2853 }
2854 
2855 struct socket *
2856 inp_inpcbtosocket(struct inpcb *inp)
2857 {
2858 
2859 	INP_WLOCK_ASSERT(inp);
2860 	return (inp->inp_socket);
2861 }
2862 
2863 void
2864 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2865     uint32_t *faddr, uint16_t *fp)
2866 {
2867 
2868 	INP_LOCK_ASSERT(inp);
2869 	*laddr = inp->inp_laddr.s_addr;
2870 	*faddr = inp->inp_faddr.s_addr;
2871 	*lp = inp->inp_lport;
2872 	*fp = inp->inp_fport;
2873 }
2874 
2875 /*
2876  * Create an external-format (``xinpcb'') structure using the information in
2877  * the kernel-format in_pcb structure pointed to by inp.  This is done to
2878  * reduce the spew of irrelevant information over this interface, to isolate
2879  * user code from changes in the kernel structure, and potentially to provide
2880  * information-hiding if we decide that some of this information should be
2881  * hidden from users.
2882  */
2883 void
2884 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2885 {
2886 
2887 	bzero(xi, sizeof(*xi));
2888 	xi->xi_len = sizeof(struct xinpcb);
2889 	if (inp->inp_socket)
2890 		sotoxsocket(inp->inp_socket, &xi->xi_socket);
2891 	bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2892 	xi->inp_gencnt = inp->inp_gencnt;
2893 	xi->inp_flow = inp->inp_flow;
2894 	xi->inp_flowid = inp->inp_flowid;
2895 	xi->inp_flowtype = inp->inp_flowtype;
2896 	xi->inp_flags = inp->inp_flags;
2897 	xi->inp_flags2 = inp->inp_flags2;
2898 	xi->in6p_cksum = inp->in6p_cksum;
2899 	xi->in6p_hops = inp->in6p_hops;
2900 	xi->inp_ip_tos = inp->inp_ip_tos;
2901 	xi->inp_vflag = inp->inp_vflag;
2902 	xi->inp_ip_ttl = inp->inp_ip_ttl;
2903 	xi->inp_ip_p = inp->inp_ip_p;
2904 	xi->inp_ip_minttl = inp->inp_ip_minttl;
2905 }
2906 
2907 int
2908 sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo,
2909     int (*ctloutput_set)(struct inpcb *, struct sockopt *))
2910 {
2911 	struct sockopt sopt;
2912 	struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo,
2913 	    INPLOOKUP_WLOCKPCB);
2914 	struct inpcb *inp;
2915 	struct sockopt_parameters *params;
2916 	struct socket *so;
2917 	int error;
2918 	char buf[1024];
2919 
2920 	if (req->oldptr != NULL || req->oldlen != 0)
2921 		return (EINVAL);
2922 	if (req->newptr == NULL)
2923 		return (EPERM);
2924 	if (req->newlen > sizeof(buf))
2925 		return (ENOMEM);
2926 	error = SYSCTL_IN(req, buf, req->newlen);
2927 	if (error != 0)
2928 		return (error);
2929 	if (req->newlen < sizeof(struct sockopt_parameters))
2930 		return (EINVAL);
2931 	params = (struct sockopt_parameters *)buf;
2932 	sopt.sopt_level = params->sop_level;
2933 	sopt.sopt_name = params->sop_optname;
2934 	sopt.sopt_dir = SOPT_SET;
2935 	sopt.sopt_val = params->sop_optval;
2936 	sopt.sopt_valsize = req->newlen - sizeof(struct sockopt_parameters);
2937 	sopt.sopt_td = NULL;
2938 #ifdef INET6
2939 	if (params->sop_inc.inc_flags & INC_ISIPV6) {
2940 		if (IN6_IS_SCOPE_LINKLOCAL(&params->sop_inc.inc6_laddr))
2941 			params->sop_inc.inc6_laddr.s6_addr16[1] =
2942 			    htons(params->sop_inc.inc6_zoneid & 0xffff);
2943 		if (IN6_IS_SCOPE_LINKLOCAL(&params->sop_inc.inc6_faddr))
2944 			params->sop_inc.inc6_faddr.s6_addr16[1] =
2945 			    htons(params->sop_inc.inc6_zoneid & 0xffff);
2946 	}
2947 #endif
2948 	if (params->sop_inc.inc_lport != htons(0) &&
2949 	    params->sop_inc.inc_fport != htons(0)) {
2950 #ifdef INET6
2951 		if (params->sop_inc.inc_flags & INC_ISIPV6)
2952 			inpi.hash = INP6_PCBHASH(
2953 			    &params->sop_inc.inc6_faddr,
2954 			    params->sop_inc.inc_lport,
2955 			    params->sop_inc.inc_fport,
2956 			    pcbinfo->ipi_hashmask);
2957 		else
2958 #endif
2959 			inpi.hash = INP_PCBHASH(
2960 			    &params->sop_inc.inc_faddr,
2961 			    params->sop_inc.inc_lport,
2962 			    params->sop_inc.inc_fport,
2963 			    pcbinfo->ipi_hashmask);
2964 	}
2965 	while ((inp = inp_next(&inpi)) != NULL)
2966 		if (inp->inp_gencnt == params->sop_id) {
2967 			if (inp->inp_flags & INP_DROPPED) {
2968 				INP_WUNLOCK(inp);
2969 				return (ECONNRESET);
2970 			}
2971 			so = inp->inp_socket;
2972 			KASSERT(so != NULL, ("inp_socket == NULL"));
2973 			soref(so);
2974 			if (params->sop_level == SOL_SOCKET) {
2975 				INP_WUNLOCK(inp);
2976 				error = sosetopt(so, &sopt);
2977 			} else
2978 				error = (*ctloutput_set)(inp, &sopt);
2979 			sorele(so);
2980 			break;
2981 		}
2982 	if (inp == NULL)
2983 		error = ESRCH;
2984 	return (error);
2985 }
2986 
2987 #ifdef DDB
2988 static void
2989 db_print_indent(int indent)
2990 {
2991 	int i;
2992 
2993 	for (i = 0; i < indent; i++)
2994 		db_printf(" ");
2995 }
2996 
2997 static void
2998 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2999 {
3000 	char faddr_str[48], laddr_str[48];
3001 
3002 	db_print_indent(indent);
3003 	db_printf("%s at %p\n", name, inc);
3004 
3005 	indent += 2;
3006 
3007 #ifdef INET6
3008 	if (inc->inc_flags & INC_ISIPV6) {
3009 		/* IPv6. */
3010 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
3011 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
3012 	} else
3013 #endif
3014 	{
3015 		/* IPv4. */
3016 		inet_ntoa_r(inc->inc_laddr, laddr_str);
3017 		inet_ntoa_r(inc->inc_faddr, faddr_str);
3018 	}
3019 	db_print_indent(indent);
3020 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
3021 	    ntohs(inc->inc_lport));
3022 	db_print_indent(indent);
3023 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
3024 	    ntohs(inc->inc_fport));
3025 }
3026 
3027 static void
3028 db_print_inpflags(int inp_flags)
3029 {
3030 	int comma;
3031 
3032 	comma = 0;
3033 	if (inp_flags & INP_RECVOPTS) {
3034 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
3035 		comma = 1;
3036 	}
3037 	if (inp_flags & INP_RECVRETOPTS) {
3038 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
3039 		comma = 1;
3040 	}
3041 	if (inp_flags & INP_RECVDSTADDR) {
3042 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
3043 		comma = 1;
3044 	}
3045 	if (inp_flags & INP_ORIGDSTADDR) {
3046 		db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
3047 		comma = 1;
3048 	}
3049 	if (inp_flags & INP_HDRINCL) {
3050 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
3051 		comma = 1;
3052 	}
3053 	if (inp_flags & INP_HIGHPORT) {
3054 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
3055 		comma = 1;
3056 	}
3057 	if (inp_flags & INP_LOWPORT) {
3058 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
3059 		comma = 1;
3060 	}
3061 	if (inp_flags & INP_ANONPORT) {
3062 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
3063 		comma = 1;
3064 	}
3065 	if (inp_flags & INP_RECVIF) {
3066 		db_printf("%sINP_RECVIF", comma ? ", " : "");
3067 		comma = 1;
3068 	}
3069 	if (inp_flags & INP_MTUDISC) {
3070 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
3071 		comma = 1;
3072 	}
3073 	if (inp_flags & INP_RECVTTL) {
3074 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
3075 		comma = 1;
3076 	}
3077 	if (inp_flags & INP_DONTFRAG) {
3078 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
3079 		comma = 1;
3080 	}
3081 	if (inp_flags & INP_RECVTOS) {
3082 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
3083 		comma = 1;
3084 	}
3085 	if (inp_flags & IN6P_IPV6_V6ONLY) {
3086 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
3087 		comma = 1;
3088 	}
3089 	if (inp_flags & IN6P_PKTINFO) {
3090 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
3091 		comma = 1;
3092 	}
3093 	if (inp_flags & IN6P_HOPLIMIT) {
3094 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
3095 		comma = 1;
3096 	}
3097 	if (inp_flags & IN6P_HOPOPTS) {
3098 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
3099 		comma = 1;
3100 	}
3101 	if (inp_flags & IN6P_DSTOPTS) {
3102 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
3103 		comma = 1;
3104 	}
3105 	if (inp_flags & IN6P_RTHDR) {
3106 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
3107 		comma = 1;
3108 	}
3109 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
3110 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
3111 		comma = 1;
3112 	}
3113 	if (inp_flags & IN6P_TCLASS) {
3114 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
3115 		comma = 1;
3116 	}
3117 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
3118 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
3119 		comma = 1;
3120 	}
3121 	if (inp_flags & INP_ONESBCAST) {
3122 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
3123 		comma  = 1;
3124 	}
3125 	if (inp_flags & INP_DROPPED) {
3126 		db_printf("%sINP_DROPPED", comma ? ", " : "");
3127 		comma  = 1;
3128 	}
3129 	if (inp_flags & INP_SOCKREF) {
3130 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
3131 		comma  = 1;
3132 	}
3133 	if (inp_flags & IN6P_RFC2292) {
3134 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
3135 		comma = 1;
3136 	}
3137 	if (inp_flags & IN6P_MTU) {
3138 		db_printf("IN6P_MTU%s", comma ? ", " : "");
3139 		comma = 1;
3140 	}
3141 }
3142 
3143 static void
3144 db_print_inpvflag(u_char inp_vflag)
3145 {
3146 	int comma;
3147 
3148 	comma = 0;
3149 	if (inp_vflag & INP_IPV4) {
3150 		db_printf("%sINP_IPV4", comma ? ", " : "");
3151 		comma  = 1;
3152 	}
3153 	if (inp_vflag & INP_IPV6) {
3154 		db_printf("%sINP_IPV6", comma ? ", " : "");
3155 		comma  = 1;
3156 	}
3157 	if (inp_vflag & INP_IPV6PROTO) {
3158 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
3159 		comma  = 1;
3160 	}
3161 }
3162 
3163 static void
3164 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
3165 {
3166 
3167 	db_print_indent(indent);
3168 	db_printf("%s at %p\n", name, inp);
3169 
3170 	indent += 2;
3171 
3172 	db_print_indent(indent);
3173 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
3174 
3175 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
3176 
3177 	db_print_indent(indent);
3178 	db_printf("inp_label: %p   inp_flags: 0x%x (",
3179 	   inp->inp_label, inp->inp_flags);
3180 	db_print_inpflags(inp->inp_flags);
3181 	db_printf(")\n");
3182 
3183 	db_print_indent(indent);
3184 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
3185 	    inp->inp_vflag);
3186 	db_print_inpvflag(inp->inp_vflag);
3187 	db_printf(")\n");
3188 
3189 	db_print_indent(indent);
3190 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
3191 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
3192 
3193 	db_print_indent(indent);
3194 #ifdef INET6
3195 	if (inp->inp_vflag & INP_IPV6) {
3196 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
3197 		    "in6p_moptions: %p\n", inp->in6p_options,
3198 		    inp->in6p_outputopts, inp->in6p_moptions);
3199 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
3200 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
3201 		    inp->in6p_hops);
3202 	} else
3203 #endif
3204 	{
3205 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
3206 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
3207 		    inp->inp_options, inp->inp_moptions);
3208 	}
3209 
3210 	db_print_indent(indent);
3211 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
3212 	    (uintmax_t)inp->inp_gencnt);
3213 }
3214 
3215 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
3216 {
3217 	struct inpcb *inp;
3218 
3219 	if (!have_addr) {
3220 		db_printf("usage: show inpcb <addr>\n");
3221 		return;
3222 	}
3223 	inp = (struct inpcb *)addr;
3224 
3225 	db_print_inpcb(inp, "inpcb", 0);
3226 }
3227 #endif /* DDB */
3228 
3229 #ifdef RATELIMIT
3230 /*
3231  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
3232  * if any.
3233  */
3234 int
3235 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
3236 {
3237 	union if_snd_tag_modify_params params = {
3238 		.rate_limit.max_rate = max_pacing_rate,
3239 		.rate_limit.flags = M_NOWAIT,
3240 	};
3241 	struct m_snd_tag *mst;
3242 	int error;
3243 
3244 	mst = inp->inp_snd_tag;
3245 	if (mst == NULL)
3246 		return (EINVAL);
3247 
3248 	if (mst->sw->snd_tag_modify == NULL) {
3249 		error = EOPNOTSUPP;
3250 	} else {
3251 		error = mst->sw->snd_tag_modify(mst, &params);
3252 	}
3253 	return (error);
3254 }
3255 
3256 /*
3257  * Query existing TX rate limit based on the existing
3258  * "inp->inp_snd_tag", if any.
3259  */
3260 int
3261 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
3262 {
3263 	union if_snd_tag_query_params params = { };
3264 	struct m_snd_tag *mst;
3265 	int error;
3266 
3267 	mst = inp->inp_snd_tag;
3268 	if (mst == NULL)
3269 		return (EINVAL);
3270 
3271 	if (mst->sw->snd_tag_query == NULL) {
3272 		error = EOPNOTSUPP;
3273 	} else {
3274 		error = mst->sw->snd_tag_query(mst, &params);
3275 		if (error == 0 && p_max_pacing_rate != NULL)
3276 			*p_max_pacing_rate = params.rate_limit.max_rate;
3277 	}
3278 	return (error);
3279 }
3280 
3281 /*
3282  * Query existing TX queue level based on the existing
3283  * "inp->inp_snd_tag", if any.
3284  */
3285 int
3286 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
3287 {
3288 	union if_snd_tag_query_params params = { };
3289 	struct m_snd_tag *mst;
3290 	int error;
3291 
3292 	mst = inp->inp_snd_tag;
3293 	if (mst == NULL)
3294 		return (EINVAL);
3295 
3296 	if (mst->sw->snd_tag_query == NULL)
3297 		return (EOPNOTSUPP);
3298 
3299 	error = mst->sw->snd_tag_query(mst, &params);
3300 	if (error == 0 && p_txqueue_level != NULL)
3301 		*p_txqueue_level = params.rate_limit.queue_level;
3302 	return (error);
3303 }
3304 
3305 /*
3306  * Allocate a new TX rate limit send tag from the network interface
3307  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
3308  */
3309 int
3310 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
3311     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st)
3312 
3313 {
3314 	union if_snd_tag_alloc_params params = {
3315 		.rate_limit.hdr.type = (max_pacing_rate == -1U) ?
3316 		    IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
3317 		.rate_limit.hdr.flowid = flowid,
3318 		.rate_limit.hdr.flowtype = flowtype,
3319 		.rate_limit.hdr.numa_domain = inp->inp_numa_domain,
3320 		.rate_limit.max_rate = max_pacing_rate,
3321 		.rate_limit.flags = M_NOWAIT,
3322 	};
3323 	int error;
3324 
3325 	INP_WLOCK_ASSERT(inp);
3326 
3327 	/*
3328 	 * If there is already a send tag, or the INP is being torn
3329 	 * down, allocating a new send tag is not allowed. Else send
3330 	 * tags may leak.
3331 	 */
3332 	if (*st != NULL || (inp->inp_flags & INP_DROPPED) != 0)
3333 		return (EINVAL);
3334 
3335 	error = m_snd_tag_alloc(ifp, &params, st);
3336 #ifdef INET
3337 	if (error == 0) {
3338 		counter_u64_add(rate_limit_set_ok, 1);
3339 		counter_u64_add(rate_limit_active, 1);
3340 	} else if (error != EOPNOTSUPP)
3341 		  counter_u64_add(rate_limit_alloc_fail, 1);
3342 #endif
3343 	return (error);
3344 }
3345 
3346 void
3347 in_pcbdetach_tag(struct m_snd_tag *mst)
3348 {
3349 
3350 	m_snd_tag_rele(mst);
3351 #ifdef INET
3352 	counter_u64_add(rate_limit_active, -1);
3353 #endif
3354 }
3355 
3356 /*
3357  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
3358  * if any:
3359  */
3360 void
3361 in_pcbdetach_txrtlmt(struct inpcb *inp)
3362 {
3363 	struct m_snd_tag *mst;
3364 
3365 	INP_WLOCK_ASSERT(inp);
3366 
3367 	mst = inp->inp_snd_tag;
3368 	inp->inp_snd_tag = NULL;
3369 
3370 	if (mst == NULL)
3371 		return;
3372 
3373 	m_snd_tag_rele(mst);
3374 #ifdef INET
3375 	counter_u64_add(rate_limit_active, -1);
3376 #endif
3377 }
3378 
3379 int
3380 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate)
3381 {
3382 	int error;
3383 
3384 	/*
3385 	 * If the existing send tag is for the wrong interface due to
3386 	 * a route change, first drop the existing tag.  Set the
3387 	 * CHANGED flag so that we will keep trying to allocate a new
3388 	 * tag if we fail to allocate one this time.
3389 	 */
3390 	if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) {
3391 		in_pcbdetach_txrtlmt(inp);
3392 		inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3393 	}
3394 
3395 	/*
3396 	 * NOTE: When attaching to a network interface a reference is
3397 	 * made to ensure the network interface doesn't go away until
3398 	 * all ratelimit connections are gone. The network interface
3399 	 * pointers compared below represent valid network interfaces,
3400 	 * except when comparing towards NULL.
3401 	 */
3402 	if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3403 		error = 0;
3404 	} else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3405 		if (inp->inp_snd_tag != NULL)
3406 			in_pcbdetach_txrtlmt(inp);
3407 		error = 0;
3408 	} else if (inp->inp_snd_tag == NULL) {
3409 		/*
3410 		 * In order to utilize packet pacing with RSS, we need
3411 		 * to wait until there is a valid RSS hash before we
3412 		 * can proceed:
3413 		 */
3414 		if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3415 			error = EAGAIN;
3416 		} else {
3417 			error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3418 			    mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag);
3419 		}
3420 	} else {
3421 		error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3422 	}
3423 	if (error == 0 || error == EOPNOTSUPP)
3424 		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3425 
3426 	return (error);
3427 }
3428 
3429 /*
3430  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
3431  * is set in the fast path and will attach/detach/modify the TX rate
3432  * limit send tag based on the socket's so_max_pacing_rate value.
3433  */
3434 void
3435 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
3436 {
3437 	struct socket *socket;
3438 	uint32_t max_pacing_rate;
3439 	bool did_upgrade;
3440 
3441 	if (inp == NULL)
3442 		return;
3443 
3444 	socket = inp->inp_socket;
3445 	if (socket == NULL)
3446 		return;
3447 
3448 	if (!INP_WLOCKED(inp)) {
3449 		/*
3450 		 * NOTE: If the write locking fails, we need to bail
3451 		 * out and use the non-ratelimited ring for the
3452 		 * transmit until there is a new chance to get the
3453 		 * write lock.
3454 		 */
3455 		if (!INP_TRY_UPGRADE(inp))
3456 			return;
3457 		did_upgrade = 1;
3458 	} else {
3459 		did_upgrade = 0;
3460 	}
3461 
3462 	/*
3463 	 * NOTE: The so_max_pacing_rate value is read unlocked,
3464 	 * because atomic updates are not required since the variable
3465 	 * is checked at every mbuf we send. It is assumed that the
3466 	 * variable read itself will be atomic.
3467 	 */
3468 	max_pacing_rate = socket->so_max_pacing_rate;
3469 
3470 	in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate);
3471 
3472 	if (did_upgrade)
3473 		INP_DOWNGRADE(inp);
3474 }
3475 
3476 /*
3477  * Track route changes for TX rate limiting.
3478  */
3479 void
3480 in_pcboutput_eagain(struct inpcb *inp)
3481 {
3482 	bool did_upgrade;
3483 
3484 	if (inp == NULL)
3485 		return;
3486 
3487 	if (inp->inp_snd_tag == NULL)
3488 		return;
3489 
3490 	if (!INP_WLOCKED(inp)) {
3491 		/*
3492 		 * NOTE: If the write locking fails, we need to bail
3493 		 * out and use the non-ratelimited ring for the
3494 		 * transmit until there is a new chance to get the
3495 		 * write lock.
3496 		 */
3497 		if (!INP_TRY_UPGRADE(inp))
3498 			return;
3499 		did_upgrade = 1;
3500 	} else {
3501 		did_upgrade = 0;
3502 	}
3503 
3504 	/* detach rate limiting */
3505 	in_pcbdetach_txrtlmt(inp);
3506 
3507 	/* make sure new mbuf send tag allocation is made */
3508 	inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3509 
3510 	if (did_upgrade)
3511 		INP_DOWNGRADE(inp);
3512 }
3513 
3514 #ifdef INET
3515 static void
3516 rl_init(void *st)
3517 {
3518 	rate_limit_new = counter_u64_alloc(M_WAITOK);
3519 	rate_limit_chg = counter_u64_alloc(M_WAITOK);
3520 	rate_limit_active = counter_u64_alloc(M_WAITOK);
3521 	rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK);
3522 	rate_limit_set_ok = counter_u64_alloc(M_WAITOK);
3523 }
3524 
3525 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL);
3526 #endif
3527 #endif /* RATELIMIT */
3528