1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993, 1995 3 * The Regents of the University of California. 4 * Copyright (c) 2007-2009 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 4. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_ddb.h" 38 #include "opt_ipsec.h" 39 #include "opt_inet.h" 40 #include "opt_inet6.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/domain.h> 47 #include <sys/protosw.h> 48 #include <sys/socket.h> 49 #include <sys/socketvar.h> 50 #include <sys/priv.h> 51 #include <sys/proc.h> 52 #include <sys/jail.h> 53 #include <sys/kernel.h> 54 #include <sys/sysctl.h> 55 56 #ifdef DDB 57 #include <ddb/ddb.h> 58 #endif 59 60 #include <vm/uma.h> 61 62 #include <net/if.h> 63 #include <net/if_types.h> 64 #include <net/route.h> 65 #include <net/vnet.h> 66 67 #include <netinet/in.h> 68 #include <netinet/in_pcb.h> 69 #include <netinet/in_var.h> 70 #include <netinet/ip_var.h> 71 #include <netinet/tcp_var.h> 72 #include <netinet/udp.h> 73 #include <netinet/udp_var.h> 74 #ifdef INET6 75 #include <netinet/ip6.h> 76 #include <netinet6/ip6_var.h> 77 #include <netinet6/in6_pcb.h> 78 #endif /* INET6 */ 79 80 81 #ifdef IPSEC 82 #include <netipsec/ipsec.h> 83 #include <netipsec/key.h> 84 #endif /* IPSEC */ 85 86 #include <security/mac/mac_framework.h> 87 88 /* 89 * These configure the range of local port addresses assigned to 90 * "unspecified" outgoing connections/packets/whatever. 91 */ 92 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 93 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 94 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 95 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 96 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 97 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 98 99 /* 100 * Reserved ports accessible only to root. There are significant 101 * security considerations that must be accounted for when changing these, 102 * but the security benefits can be great. Please be careful. 103 */ 104 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 105 VNET_DEFINE(int, ipport_reservedlow); 106 107 /* Variables dealing with random ephemeral port allocation. */ 108 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 109 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 110 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 111 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 112 VNET_DEFINE(int, ipport_tcpallocs); 113 static VNET_DEFINE(int, ipport_tcplastcount); 114 115 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 116 117 #define RANGECHK(var, min, max) \ 118 if ((var) < (min)) { (var) = (min); } \ 119 else if ((var) > (max)) { (var) = (max); } 120 121 static void in_pcbremlists(struct inpcb *inp); 122 123 static int 124 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 125 { 126 int error; 127 128 #ifdef VIMAGE 129 error = vnet_sysctl_handle_int(oidp, arg1, arg2, req); 130 #else 131 error = sysctl_handle_int(oidp, arg1, arg2, req); 132 #endif 133 if (error == 0) { 134 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 135 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 136 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 137 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 138 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 139 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 140 } 141 return (error); 142 } 143 144 #undef RANGECHK 145 146 SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports"); 147 148 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 149 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowfirstauto), 0, 150 &sysctl_net_ipport_check, "I", ""); 151 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 152 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowlastauto), 0, 153 &sysctl_net_ipport_check, "I", ""); 154 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, first, 155 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_firstauto), 0, 156 &sysctl_net_ipport_check, "I", ""); 157 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, last, 158 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lastauto), 0, 159 &sysctl_net_ipport_check, "I", ""); 160 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 161 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hifirstauto), 0, 162 &sysctl_net_ipport_check, "I", ""); 163 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 164 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hilastauto), 0, 165 &sysctl_net_ipport_check, "I", ""); 166 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 167 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedhigh), 0, ""); 168 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 169 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 170 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW, 171 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 172 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW, 173 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 174 "allocations before switching to a sequental one"); 175 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW, 176 &VNET_NAME(ipport_randomtime), 0, 177 "Minimum time to keep sequental port " 178 "allocation before switching to a random one"); 179 180 /* 181 * in_pcb.c: manage the Protocol Control Blocks. 182 * 183 * NOTE: It is assumed that most of these functions will be called with 184 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 185 * functions often modify hash chains or addresses in pcbs. 186 */ 187 188 /* 189 * Initialize an inpcbinfo -- we should be able to reduce the number of 190 * arguments in time. 191 */ 192 void 193 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 194 struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, 195 char *inpcbzone_name, uma_init inpcbzone_init, uma_fini inpcbzone_fini, 196 uint32_t inpcbzone_flags) 197 { 198 199 INP_INFO_LOCK_INIT(pcbinfo, name); 200 #ifdef VIMAGE 201 pcbinfo->ipi_vnet = curvnet; 202 #endif 203 pcbinfo->ipi_listhead = listhead; 204 LIST_INIT(pcbinfo->ipi_listhead); 205 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 206 &pcbinfo->ipi_hashmask); 207 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 208 &pcbinfo->ipi_porthashmask); 209 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 210 NULL, NULL, inpcbzone_init, inpcbzone_fini, UMA_ALIGN_PTR, 211 inpcbzone_flags); 212 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 213 } 214 215 /* 216 * Destroy an inpcbinfo. 217 */ 218 void 219 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 220 { 221 222 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 223 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 224 pcbinfo->ipi_porthashmask); 225 uma_zdestroy(pcbinfo->ipi_zone); 226 INP_INFO_LOCK_DESTROY(pcbinfo); 227 } 228 229 /* 230 * Allocate a PCB and associate it with the socket. 231 * On success return with the PCB locked. 232 */ 233 int 234 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 235 { 236 struct inpcb *inp; 237 int error; 238 239 INP_INFO_WLOCK_ASSERT(pcbinfo); 240 error = 0; 241 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 242 if (inp == NULL) 243 return (ENOBUFS); 244 bzero(inp, inp_zero_size); 245 inp->inp_pcbinfo = pcbinfo; 246 inp->inp_socket = so; 247 inp->inp_cred = crhold(so->so_cred); 248 inp->inp_inc.inc_fibnum = so->so_fibnum; 249 #ifdef MAC 250 error = mac_inpcb_init(inp, M_NOWAIT); 251 if (error != 0) 252 goto out; 253 mac_inpcb_create(so, inp); 254 #endif 255 #ifdef IPSEC 256 error = ipsec_init_policy(so, &inp->inp_sp); 257 if (error != 0) { 258 #ifdef MAC 259 mac_inpcb_destroy(inp); 260 #endif 261 goto out; 262 } 263 #endif /*IPSEC*/ 264 #ifdef INET6 265 if (INP_SOCKAF(so) == AF_INET6) { 266 inp->inp_vflag |= INP_IPV6PROTO; 267 if (V_ip6_v6only) 268 inp->inp_flags |= IN6P_IPV6_V6ONLY; 269 } 270 #endif 271 LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 272 pcbinfo->ipi_count++; 273 so->so_pcb = (caddr_t)inp; 274 #ifdef INET6 275 if (V_ip6_auto_flowlabel) 276 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 277 #endif 278 INP_WLOCK(inp); 279 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 280 inp->inp_refcount = 1; /* Reference from the inpcbinfo */ 281 #if defined(IPSEC) || defined(MAC) 282 out: 283 if (error != 0) { 284 crfree(inp->inp_cred); 285 uma_zfree(pcbinfo->ipi_zone, inp); 286 } 287 #endif 288 return (error); 289 } 290 291 int 292 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 293 { 294 int anonport, error; 295 296 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 297 INP_WLOCK_ASSERT(inp); 298 299 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 300 return (EINVAL); 301 anonport = inp->inp_lport == 0 && (nam == NULL || 302 ((struct sockaddr_in *)nam)->sin_port == 0); 303 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 304 &inp->inp_lport, cred); 305 if (error) 306 return (error); 307 if (in_pcbinshash(inp) != 0) { 308 inp->inp_laddr.s_addr = INADDR_ANY; 309 inp->inp_lport = 0; 310 return (EAGAIN); 311 } 312 if (anonport) 313 inp->inp_flags |= INP_ANONPORT; 314 return (0); 315 } 316 317 #if defined(INET) || defined(INET6) 318 int 319 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 320 struct ucred *cred, int wild) 321 { 322 struct inpcbinfo *pcbinfo; 323 struct inpcb *tmpinp; 324 unsigned short *lastport; 325 int count, dorandom, error; 326 u_short aux, first, last, lport; 327 #ifdef INET 328 struct in_addr laddr; 329 #endif 330 331 pcbinfo = inp->inp_pcbinfo; 332 333 /* 334 * Because no actual state changes occur here, a global write lock on 335 * the pcbinfo isn't required. 336 */ 337 INP_INFO_LOCK_ASSERT(pcbinfo); 338 INP_LOCK_ASSERT(inp); 339 340 if (inp->inp_flags & INP_HIGHPORT) { 341 first = V_ipport_hifirstauto; /* sysctl */ 342 last = V_ipport_hilastauto; 343 lastport = &pcbinfo->ipi_lasthi; 344 } else if (inp->inp_flags & INP_LOWPORT) { 345 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0); 346 if (error) 347 return (error); 348 first = V_ipport_lowfirstauto; /* 1023 */ 349 last = V_ipport_lowlastauto; /* 600 */ 350 lastport = &pcbinfo->ipi_lastlow; 351 } else { 352 first = V_ipport_firstauto; /* sysctl */ 353 last = V_ipport_lastauto; 354 lastport = &pcbinfo->ipi_lastport; 355 } 356 /* 357 * For UDP, use random port allocation as long as the user 358 * allows it. For TCP (and as of yet unknown) connections, 359 * use random port allocation only if the user allows it AND 360 * ipport_tick() allows it. 361 */ 362 if (V_ipport_randomized && 363 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo)) 364 dorandom = 1; 365 else 366 dorandom = 0; 367 /* 368 * It makes no sense to do random port allocation if 369 * we have the only port available. 370 */ 371 if (first == last) 372 dorandom = 0; 373 /* Make sure to not include UDP packets in the count. */ 374 if (pcbinfo != &V_udbinfo) 375 V_ipport_tcpallocs++; 376 /* 377 * Instead of having two loops further down counting up or down 378 * make sure that first is always <= last and go with only one 379 * code path implementing all logic. 380 */ 381 if (first > last) { 382 aux = first; 383 first = last; 384 last = aux; 385 } 386 387 #ifdef INET 388 /* Make the compiler happy. */ 389 laddr.s_addr = 0; 390 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 391 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p", 392 __func__, inp)); 393 laddr = *laddrp; 394 } 395 #endif 396 lport = *lportp; 397 398 if (dorandom) 399 *lastport = first + (arc4random() % (last - first)); 400 401 count = last - first; 402 403 do { 404 if (count-- < 0) /* completely used? */ 405 return (EADDRNOTAVAIL); 406 ++*lastport; 407 if (*lastport < first || *lastport > last) 408 *lastport = first; 409 lport = htons(*lastport); 410 411 #ifdef INET6 412 if ((inp->inp_vflag & INP_IPV6) != 0) 413 tmpinp = in6_pcblookup_local(pcbinfo, 414 &inp->in6p_laddr, lport, wild, cred); 415 #endif 416 #if defined(INET) && defined(INET6) 417 else 418 #endif 419 #ifdef INET 420 tmpinp = in_pcblookup_local(pcbinfo, laddr, 421 lport, wild, cred); 422 #endif 423 } while (tmpinp != NULL); 424 425 #ifdef INET 426 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) 427 laddrp->s_addr = laddr.s_addr; 428 #endif 429 *lportp = lport; 430 431 return (0); 432 } 433 #endif /* INET || INET6 */ 434 435 /* 436 * Set up a bind operation on a PCB, performing port allocation 437 * as required, but do not actually modify the PCB. Callers can 438 * either complete the bind by setting inp_laddr/inp_lport and 439 * calling in_pcbinshash(), or they can just use the resulting 440 * port and address to authorise the sending of a once-off packet. 441 * 442 * On error, the values of *laddrp and *lportp are not changed. 443 */ 444 int 445 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 446 u_short *lportp, struct ucred *cred) 447 { 448 struct socket *so = inp->inp_socket; 449 struct sockaddr_in *sin; 450 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 451 struct in_addr laddr; 452 u_short lport = 0; 453 int wild = 0, reuseport = (so->so_options & SO_REUSEPORT); 454 int error; 455 456 /* 457 * Because no actual state changes occur here, a global write lock on 458 * the pcbinfo isn't required. 459 */ 460 INP_INFO_LOCK_ASSERT(pcbinfo); 461 INP_LOCK_ASSERT(inp); 462 463 if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 464 return (EADDRNOTAVAIL); 465 laddr.s_addr = *laddrp; 466 if (nam != NULL && laddr.s_addr != INADDR_ANY) 467 return (EINVAL); 468 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) 469 wild = INPLOOKUP_WILDCARD; 470 if (nam == NULL) { 471 if ((error = prison_local_ip4(cred, &laddr)) != 0) 472 return (error); 473 } else { 474 sin = (struct sockaddr_in *)nam; 475 if (nam->sa_len != sizeof (*sin)) 476 return (EINVAL); 477 #ifdef notdef 478 /* 479 * We should check the family, but old programs 480 * incorrectly fail to initialize it. 481 */ 482 if (sin->sin_family != AF_INET) 483 return (EAFNOSUPPORT); 484 #endif 485 error = prison_local_ip4(cred, &sin->sin_addr); 486 if (error) 487 return (error); 488 if (sin->sin_port != *lportp) { 489 /* Don't allow the port to change. */ 490 if (*lportp != 0) 491 return (EINVAL); 492 lport = sin->sin_port; 493 } 494 /* NB: lport is left as 0 if the port isn't being changed. */ 495 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 496 /* 497 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 498 * allow complete duplication of binding if 499 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 500 * and a multicast address is bound on both 501 * new and duplicated sockets. 502 */ 503 if (so->so_options & SO_REUSEADDR) 504 reuseport = SO_REUSEADDR|SO_REUSEPORT; 505 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 506 sin->sin_port = 0; /* yech... */ 507 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 508 /* 509 * Is the address a local IP address? 510 * If INP_BINDANY is set, then the socket may be bound 511 * to any endpoint address, local or not. 512 */ 513 if ((inp->inp_flags & INP_BINDANY) == 0 && 514 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 515 return (EADDRNOTAVAIL); 516 } 517 laddr = sin->sin_addr; 518 if (lport) { 519 struct inpcb *t; 520 struct tcptw *tw; 521 522 /* GROSS */ 523 if (ntohs(lport) <= V_ipport_reservedhigh && 524 ntohs(lport) >= V_ipport_reservedlow && 525 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 526 0)) 527 return (EACCES); 528 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 529 priv_check_cred(inp->inp_cred, 530 PRIV_NETINET_REUSEPORT, 0) != 0) { 531 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 532 lport, INPLOOKUP_WILDCARD, cred); 533 /* 534 * XXX 535 * This entire block sorely needs a rewrite. 536 */ 537 if (t && 538 ((t->inp_flags & INP_TIMEWAIT) == 0) && 539 (so->so_type != SOCK_STREAM || 540 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 541 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 542 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 543 (t->inp_socket->so_options & 544 SO_REUSEPORT) == 0) && 545 (inp->inp_cred->cr_uid != 546 t->inp_cred->cr_uid)) 547 return (EADDRINUSE); 548 } 549 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 550 lport, wild, cred); 551 if (t && (t->inp_flags & INP_TIMEWAIT)) { 552 /* 553 * XXXRW: If an incpb has had its timewait 554 * state recycled, we treat the address as 555 * being in use (for now). This is better 556 * than a panic, but not desirable. 557 */ 558 tw = intotw(inp); 559 if (tw == NULL || 560 (reuseport & tw->tw_so_options) == 0) 561 return (EADDRINUSE); 562 } else if (t && 563 (reuseport & t->inp_socket->so_options) == 0) { 564 #ifdef INET6 565 if (ntohl(sin->sin_addr.s_addr) != 566 INADDR_ANY || 567 ntohl(t->inp_laddr.s_addr) != 568 INADDR_ANY || 569 INP_SOCKAF(so) == 570 INP_SOCKAF(t->inp_socket)) 571 #endif 572 return (EADDRINUSE); 573 } 574 } 575 } 576 if (*lportp != 0) 577 lport = *lportp; 578 if (lport == 0) { 579 error = in_pcb_lport(inp, &laddr, &lport, cred, wild); 580 if (error != 0) 581 return (error); 582 583 } 584 *laddrp = laddr.s_addr; 585 *lportp = lport; 586 return (0); 587 } 588 589 /* 590 * Connect from a socket to a specified address. 591 * Both address and port must be specified in argument sin. 592 * If don't have a local address for this socket yet, 593 * then pick one. 594 */ 595 int 596 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 597 { 598 u_short lport, fport; 599 in_addr_t laddr, faddr; 600 int anonport, error; 601 602 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 603 INP_WLOCK_ASSERT(inp); 604 605 lport = inp->inp_lport; 606 laddr = inp->inp_laddr.s_addr; 607 anonport = (lport == 0); 608 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 609 NULL, cred); 610 if (error) 611 return (error); 612 613 /* Do the initial binding of the local address if required. */ 614 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 615 inp->inp_lport = lport; 616 inp->inp_laddr.s_addr = laddr; 617 if (in_pcbinshash(inp) != 0) { 618 inp->inp_laddr.s_addr = INADDR_ANY; 619 inp->inp_lport = 0; 620 return (EAGAIN); 621 } 622 } 623 624 /* Commit the remaining changes. */ 625 inp->inp_lport = lport; 626 inp->inp_laddr.s_addr = laddr; 627 inp->inp_faddr.s_addr = faddr; 628 inp->inp_fport = fport; 629 in_pcbrehash(inp); 630 631 if (anonport) 632 inp->inp_flags |= INP_ANONPORT; 633 return (0); 634 } 635 636 /* 637 * Do proper source address selection on an unbound socket in case 638 * of connect. Take jails into account as well. 639 */ 640 static int 641 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 642 struct ucred *cred) 643 { 644 struct ifaddr *ifa; 645 struct sockaddr *sa; 646 struct sockaddr_in *sin; 647 struct route sro; 648 int error; 649 650 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 651 652 /* 653 * Bypass source address selection and use the primary jail IP 654 * if requested. 655 */ 656 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 657 return (0); 658 659 error = 0; 660 bzero(&sro, sizeof(sro)); 661 662 sin = (struct sockaddr_in *)&sro.ro_dst; 663 sin->sin_family = AF_INET; 664 sin->sin_len = sizeof(struct sockaddr_in); 665 sin->sin_addr.s_addr = faddr->s_addr; 666 667 /* 668 * If route is known our src addr is taken from the i/f, 669 * else punt. 670 * 671 * Find out route to destination. 672 */ 673 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 674 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); 675 676 /* 677 * If we found a route, use the address corresponding to 678 * the outgoing interface. 679 * 680 * Otherwise assume faddr is reachable on a directly connected 681 * network and try to find a corresponding interface to take 682 * the source address from. 683 */ 684 if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { 685 struct in_ifaddr *ia; 686 struct ifnet *ifp; 687 688 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin)); 689 if (ia == NULL) 690 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0)); 691 if (ia == NULL) { 692 error = ENETUNREACH; 693 goto done; 694 } 695 696 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 697 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 698 ifa_free(&ia->ia_ifa); 699 goto done; 700 } 701 702 ifp = ia->ia_ifp; 703 ifa_free(&ia->ia_ifa); 704 ia = NULL; 705 IF_ADDR_LOCK(ifp); 706 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 707 708 sa = ifa->ifa_addr; 709 if (sa->sa_family != AF_INET) 710 continue; 711 sin = (struct sockaddr_in *)sa; 712 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 713 ia = (struct in_ifaddr *)ifa; 714 break; 715 } 716 } 717 if (ia != NULL) { 718 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 719 IF_ADDR_UNLOCK(ifp); 720 goto done; 721 } 722 IF_ADDR_UNLOCK(ifp); 723 724 /* 3. As a last resort return the 'default' jail address. */ 725 error = prison_get_ip4(cred, laddr); 726 goto done; 727 } 728 729 /* 730 * If the outgoing interface on the route found is not 731 * a loopback interface, use the address from that interface. 732 * In case of jails do those three steps: 733 * 1. check if the interface address belongs to the jail. If so use it. 734 * 2. check if we have any address on the outgoing interface 735 * belonging to this jail. If so use it. 736 * 3. as a last resort return the 'default' jail address. 737 */ 738 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { 739 struct in_ifaddr *ia; 740 struct ifnet *ifp; 741 742 /* If not jailed, use the default returned. */ 743 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 744 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 745 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 746 goto done; 747 } 748 749 /* Jailed. */ 750 /* 1. Check if the iface address belongs to the jail. */ 751 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; 752 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 753 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 754 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 755 goto done; 756 } 757 758 /* 759 * 2. Check if we have any address on the outgoing interface 760 * belonging to this jail. 761 */ 762 ia = NULL; 763 ifp = sro.ro_rt->rt_ifp; 764 IF_ADDR_LOCK(ifp); 765 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 766 sa = ifa->ifa_addr; 767 if (sa->sa_family != AF_INET) 768 continue; 769 sin = (struct sockaddr_in *)sa; 770 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 771 ia = (struct in_ifaddr *)ifa; 772 break; 773 } 774 } 775 if (ia != NULL) { 776 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 777 IF_ADDR_UNLOCK(ifp); 778 goto done; 779 } 780 IF_ADDR_UNLOCK(ifp); 781 782 /* 3. As a last resort return the 'default' jail address. */ 783 error = prison_get_ip4(cred, laddr); 784 goto done; 785 } 786 787 /* 788 * The outgoing interface is marked with 'loopback net', so a route 789 * to ourselves is here. 790 * Try to find the interface of the destination address and then 791 * take the address from there. That interface is not necessarily 792 * a loopback interface. 793 * In case of jails, check that it is an address of the jail 794 * and if we cannot find, fall back to the 'default' jail address. 795 */ 796 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 797 struct sockaddr_in sain; 798 struct in_ifaddr *ia; 799 800 bzero(&sain, sizeof(struct sockaddr_in)); 801 sain.sin_family = AF_INET; 802 sain.sin_len = sizeof(struct sockaddr_in); 803 sain.sin_addr.s_addr = faddr->s_addr; 804 805 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain))); 806 if (ia == NULL) 807 ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0)); 808 if (ia == NULL) 809 ia = ifatoia(ifa_ifwithaddr(sintosa(&sain))); 810 811 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 812 if (ia == NULL) { 813 error = ENETUNREACH; 814 goto done; 815 } 816 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 817 ifa_free(&ia->ia_ifa); 818 goto done; 819 } 820 821 /* Jailed. */ 822 if (ia != NULL) { 823 struct ifnet *ifp; 824 825 ifp = ia->ia_ifp; 826 ifa_free(&ia->ia_ifa); 827 ia = NULL; 828 IF_ADDR_LOCK(ifp); 829 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 830 831 sa = ifa->ifa_addr; 832 if (sa->sa_family != AF_INET) 833 continue; 834 sin = (struct sockaddr_in *)sa; 835 if (prison_check_ip4(cred, 836 &sin->sin_addr) == 0) { 837 ia = (struct in_ifaddr *)ifa; 838 break; 839 } 840 } 841 if (ia != NULL) { 842 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 843 IF_ADDR_UNLOCK(ifp); 844 goto done; 845 } 846 IF_ADDR_UNLOCK(ifp); 847 } 848 849 /* 3. As a last resort return the 'default' jail address. */ 850 error = prison_get_ip4(cred, laddr); 851 goto done; 852 } 853 854 done: 855 if (sro.ro_rt != NULL) 856 RTFREE(sro.ro_rt); 857 return (error); 858 } 859 860 /* 861 * Set up for a connect from a socket to the specified address. 862 * On entry, *laddrp and *lportp should contain the current local 863 * address and port for the PCB; these are updated to the values 864 * that should be placed in inp_laddr and inp_lport to complete 865 * the connect. 866 * 867 * On success, *faddrp and *fportp will be set to the remote address 868 * and port. These are not updated in the error case. 869 * 870 * If the operation fails because the connection already exists, 871 * *oinpp will be set to the PCB of that connection so that the 872 * caller can decide to override it. In all other cases, *oinpp 873 * is set to NULL. 874 */ 875 int 876 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 877 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 878 struct inpcb **oinpp, struct ucred *cred) 879 { 880 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 881 struct in_ifaddr *ia; 882 struct inpcb *oinp; 883 struct in_addr laddr, faddr; 884 u_short lport, fport; 885 int error; 886 887 /* 888 * Because a global state change doesn't actually occur here, a read 889 * lock is sufficient. 890 */ 891 INP_INFO_LOCK_ASSERT(inp->inp_pcbinfo); 892 INP_LOCK_ASSERT(inp); 893 894 if (oinpp != NULL) 895 *oinpp = NULL; 896 if (nam->sa_len != sizeof (*sin)) 897 return (EINVAL); 898 if (sin->sin_family != AF_INET) 899 return (EAFNOSUPPORT); 900 if (sin->sin_port == 0) 901 return (EADDRNOTAVAIL); 902 laddr.s_addr = *laddrp; 903 lport = *lportp; 904 faddr = sin->sin_addr; 905 fport = sin->sin_port; 906 907 if (!TAILQ_EMPTY(&V_in_ifaddrhead)) { 908 /* 909 * If the destination address is INADDR_ANY, 910 * use the primary local address. 911 * If the supplied address is INADDR_BROADCAST, 912 * and the primary interface supports broadcast, 913 * choose the broadcast address for that interface. 914 */ 915 if (faddr.s_addr == INADDR_ANY) { 916 IN_IFADDR_RLOCK(); 917 faddr = 918 IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 919 IN_IFADDR_RUNLOCK(); 920 if (cred != NULL && 921 (error = prison_get_ip4(cred, &faddr)) != 0) 922 return (error); 923 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 924 IN_IFADDR_RLOCK(); 925 if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 926 IFF_BROADCAST) 927 faddr = satosin(&TAILQ_FIRST( 928 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 929 IN_IFADDR_RUNLOCK(); 930 } 931 } 932 if (laddr.s_addr == INADDR_ANY) { 933 error = in_pcbladdr(inp, &faddr, &laddr, cred); 934 /* 935 * If the destination address is multicast and an outgoing 936 * interface has been set as a multicast option, prefer the 937 * address of that interface as our source address. 938 */ 939 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 940 inp->inp_moptions != NULL) { 941 struct ip_moptions *imo; 942 struct ifnet *ifp; 943 944 imo = inp->inp_moptions; 945 if (imo->imo_multicast_ifp != NULL) { 946 ifp = imo->imo_multicast_ifp; 947 IN_IFADDR_RLOCK(); 948 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 949 if ((ia->ia_ifp == ifp) && 950 (cred == NULL || 951 prison_check_ip4(cred, 952 &ia->ia_addr.sin_addr) == 0)) 953 break; 954 } 955 if (ia == NULL) 956 error = EADDRNOTAVAIL; 957 else { 958 laddr = ia->ia_addr.sin_addr; 959 error = 0; 960 } 961 IN_IFADDR_RUNLOCK(); 962 } 963 } 964 if (error) 965 return (error); 966 } 967 oinp = in_pcblookup_hash(inp->inp_pcbinfo, faddr, fport, laddr, lport, 968 0, NULL); 969 if (oinp != NULL) { 970 if (oinpp != NULL) 971 *oinpp = oinp; 972 return (EADDRINUSE); 973 } 974 if (lport == 0) { 975 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 976 cred); 977 if (error) 978 return (error); 979 } 980 *laddrp = laddr.s_addr; 981 *lportp = lport; 982 *faddrp = faddr.s_addr; 983 *fportp = fport; 984 return (0); 985 } 986 987 void 988 in_pcbdisconnect(struct inpcb *inp) 989 { 990 991 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 992 INP_WLOCK_ASSERT(inp); 993 994 inp->inp_faddr.s_addr = INADDR_ANY; 995 inp->inp_fport = 0; 996 in_pcbrehash(inp); 997 } 998 999 /* 1000 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1001 * For most protocols, this will be invoked immediately prior to calling 1002 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1003 * socket, in which case in_pcbfree() is deferred. 1004 */ 1005 void 1006 in_pcbdetach(struct inpcb *inp) 1007 { 1008 1009 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1010 1011 inp->inp_socket->so_pcb = NULL; 1012 inp->inp_socket = NULL; 1013 } 1014 1015 /* 1016 * in_pcbfree_internal() frees an inpcb that has been detached from its 1017 * socket, and whose reference count has reached 0. It will also remove the 1018 * inpcb from any global lists it might remain on. 1019 */ 1020 static void 1021 in_pcbfree_internal(struct inpcb *inp) 1022 { 1023 struct inpcbinfo *ipi = inp->inp_pcbinfo; 1024 1025 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1026 KASSERT(inp->inp_refcount == 0, ("%s: refcount !0", __func__)); 1027 1028 INP_INFO_WLOCK_ASSERT(ipi); 1029 INP_WLOCK_ASSERT(inp); 1030 1031 #ifdef IPSEC 1032 if (inp->inp_sp != NULL) 1033 ipsec_delete_pcbpolicy(inp); 1034 #endif /* IPSEC */ 1035 inp->inp_gencnt = ++ipi->ipi_gencnt; 1036 in_pcbremlists(inp); 1037 #ifdef INET6 1038 if (inp->inp_vflag & INP_IPV6PROTO) { 1039 ip6_freepcbopts(inp->in6p_outputopts); 1040 if (inp->in6p_moptions != NULL) 1041 ip6_freemoptions(inp->in6p_moptions); 1042 } 1043 #endif 1044 if (inp->inp_options) 1045 (void)m_free(inp->inp_options); 1046 if (inp->inp_moptions != NULL) 1047 inp_freemoptions(inp->inp_moptions); 1048 inp->inp_vflag = 0; 1049 crfree(inp->inp_cred); 1050 1051 #ifdef MAC 1052 mac_inpcb_destroy(inp); 1053 #endif 1054 INP_WUNLOCK(inp); 1055 uma_zfree(ipi->ipi_zone, inp); 1056 } 1057 1058 /* 1059 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1060 * stability of an inpcb pointer despite the inpcb lock being released. This 1061 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 1062 * but where the inpcb lock is already held. 1063 * 1064 * While the inpcb will not be freed, releasing the inpcb lock means that the 1065 * connection's state may change, so the caller should be careful to 1066 * revalidate any cached state on reacquiring the lock. Drop the reference 1067 * using in_pcbrele(). 1068 */ 1069 void 1070 in_pcbref(struct inpcb *inp) 1071 { 1072 1073 INP_WLOCK_ASSERT(inp); 1074 1075 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1076 1077 inp->inp_refcount++; 1078 } 1079 1080 /* 1081 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 1082 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 1083 * return a flag indicating whether or not the inpcb remains valid. If it is 1084 * valid, we return with the inpcb lock held. 1085 */ 1086 int 1087 in_pcbrele(struct inpcb *inp) 1088 { 1089 #ifdef INVARIANTS 1090 struct inpcbinfo *ipi = inp->inp_pcbinfo; 1091 #endif 1092 1093 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1094 1095 INP_INFO_WLOCK_ASSERT(ipi); 1096 INP_WLOCK_ASSERT(inp); 1097 1098 inp->inp_refcount--; 1099 if (inp->inp_refcount > 0) 1100 return (0); 1101 in_pcbfree_internal(inp); 1102 return (1); 1103 } 1104 1105 /* 1106 * Unconditionally schedule an inpcb to be freed by decrementing its 1107 * reference count, which should occur only after the inpcb has been detached 1108 * from its socket. If another thread holds a temporary reference (acquired 1109 * using in_pcbref()) then the free is deferred until that reference is 1110 * released using in_pcbrele(), but the inpcb is still unlocked. 1111 */ 1112 void 1113 in_pcbfree(struct inpcb *inp) 1114 { 1115 #ifdef INVARIANTS 1116 struct inpcbinfo *ipi = inp->inp_pcbinfo; 1117 #endif 1118 1119 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", 1120 __func__)); 1121 1122 INP_INFO_WLOCK_ASSERT(ipi); 1123 INP_WLOCK_ASSERT(inp); 1124 1125 if (!in_pcbrele(inp)) 1126 INP_WUNLOCK(inp); 1127 } 1128 1129 /* 1130 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1131 * port reservation, and preventing it from being returned by inpcb lookups. 1132 * 1133 * It is used by TCP to mark an inpcb as unused and avoid future packet 1134 * delivery or event notification when a socket remains open but TCP has 1135 * closed. This might occur as a result of a shutdown()-initiated TCP close 1136 * or a RST on the wire, and allows the port binding to be reused while still 1137 * maintaining the invariant that so_pcb always points to a valid inpcb until 1138 * in_pcbdetach(). 1139 * 1140 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1141 * in_pcbnotifyall() and in_pcbpurgeif0()? 1142 */ 1143 void 1144 in_pcbdrop(struct inpcb *inp) 1145 { 1146 1147 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 1148 INP_WLOCK_ASSERT(inp); 1149 1150 inp->inp_flags |= INP_DROPPED; 1151 if (inp->inp_flags & INP_INHASHLIST) { 1152 struct inpcbport *phd = inp->inp_phd; 1153 1154 LIST_REMOVE(inp, inp_hash); 1155 LIST_REMOVE(inp, inp_portlist); 1156 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 1157 LIST_REMOVE(phd, phd_hash); 1158 free(phd, M_PCB); 1159 } 1160 inp->inp_flags &= ~INP_INHASHLIST; 1161 } 1162 } 1163 1164 /* 1165 * Common routines to return the socket addresses associated with inpcbs. 1166 */ 1167 struct sockaddr * 1168 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1169 { 1170 struct sockaddr_in *sin; 1171 1172 sin = malloc(sizeof *sin, M_SONAME, 1173 M_WAITOK | M_ZERO); 1174 sin->sin_family = AF_INET; 1175 sin->sin_len = sizeof(*sin); 1176 sin->sin_addr = *addr_p; 1177 sin->sin_port = port; 1178 1179 return (struct sockaddr *)sin; 1180 } 1181 1182 int 1183 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1184 { 1185 struct inpcb *inp; 1186 struct in_addr addr; 1187 in_port_t port; 1188 1189 inp = sotoinpcb(so); 1190 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1191 1192 INP_RLOCK(inp); 1193 port = inp->inp_lport; 1194 addr = inp->inp_laddr; 1195 INP_RUNLOCK(inp); 1196 1197 *nam = in_sockaddr(port, &addr); 1198 return 0; 1199 } 1200 1201 int 1202 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1203 { 1204 struct inpcb *inp; 1205 struct in_addr addr; 1206 in_port_t port; 1207 1208 inp = sotoinpcb(so); 1209 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1210 1211 INP_RLOCK(inp); 1212 port = inp->inp_fport; 1213 addr = inp->inp_faddr; 1214 INP_RUNLOCK(inp); 1215 1216 *nam = in_sockaddr(port, &addr); 1217 return 0; 1218 } 1219 1220 void 1221 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1222 struct inpcb *(*notify)(struct inpcb *, int)) 1223 { 1224 struct inpcb *inp, *inp_temp; 1225 1226 INP_INFO_WLOCK(pcbinfo); 1227 LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1228 INP_WLOCK(inp); 1229 #ifdef INET6 1230 if ((inp->inp_vflag & INP_IPV4) == 0) { 1231 INP_WUNLOCK(inp); 1232 continue; 1233 } 1234 #endif 1235 if (inp->inp_faddr.s_addr != faddr.s_addr || 1236 inp->inp_socket == NULL) { 1237 INP_WUNLOCK(inp); 1238 continue; 1239 } 1240 if ((*notify)(inp, errno)) 1241 INP_WUNLOCK(inp); 1242 } 1243 INP_INFO_WUNLOCK(pcbinfo); 1244 } 1245 1246 void 1247 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1248 { 1249 struct inpcb *inp; 1250 struct ip_moptions *imo; 1251 int i, gap; 1252 1253 INP_INFO_RLOCK(pcbinfo); 1254 LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1255 INP_WLOCK(inp); 1256 imo = inp->inp_moptions; 1257 if ((inp->inp_vflag & INP_IPV4) && 1258 imo != NULL) { 1259 /* 1260 * Unselect the outgoing interface if it is being 1261 * detached. 1262 */ 1263 if (imo->imo_multicast_ifp == ifp) 1264 imo->imo_multicast_ifp = NULL; 1265 1266 /* 1267 * Drop multicast group membership if we joined 1268 * through the interface being detached. 1269 */ 1270 for (i = 0, gap = 0; i < imo->imo_num_memberships; 1271 i++) { 1272 if (imo->imo_membership[i]->inm_ifp == ifp) { 1273 in_delmulti(imo->imo_membership[i]); 1274 gap++; 1275 } else if (gap != 0) 1276 imo->imo_membership[i - gap] = 1277 imo->imo_membership[i]; 1278 } 1279 imo->imo_num_memberships -= gap; 1280 } 1281 INP_WUNLOCK(inp); 1282 } 1283 INP_INFO_RUNLOCK(pcbinfo); 1284 } 1285 1286 /* 1287 * Lookup a PCB based on the local address and port. 1288 */ 1289 #define INP_LOOKUP_MAPPED_PCB_COST 3 1290 struct inpcb * 1291 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1292 u_short lport, int wild_okay, struct ucred *cred) 1293 { 1294 struct inpcb *inp; 1295 #ifdef INET6 1296 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1297 #else 1298 int matchwild = 3; 1299 #endif 1300 int wildcard; 1301 1302 INP_INFO_LOCK_ASSERT(pcbinfo); 1303 1304 if (!wild_okay) { 1305 struct inpcbhead *head; 1306 /* 1307 * Look for an unconnected (wildcard foreign addr) PCB that 1308 * matches the local address and port we're looking for. 1309 */ 1310 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1311 0, pcbinfo->ipi_hashmask)]; 1312 LIST_FOREACH(inp, head, inp_hash) { 1313 #ifdef INET6 1314 /* XXX inp locking */ 1315 if ((inp->inp_vflag & INP_IPV4) == 0) 1316 continue; 1317 #endif 1318 if (inp->inp_faddr.s_addr == INADDR_ANY && 1319 inp->inp_laddr.s_addr == laddr.s_addr && 1320 inp->inp_lport == lport) { 1321 /* 1322 * Found? 1323 */ 1324 if (cred == NULL || 1325 prison_equal_ip4(cred->cr_prison, 1326 inp->inp_cred->cr_prison)) 1327 return (inp); 1328 } 1329 } 1330 /* 1331 * Not found. 1332 */ 1333 return (NULL); 1334 } else { 1335 struct inpcbporthead *porthash; 1336 struct inpcbport *phd; 1337 struct inpcb *match = NULL; 1338 /* 1339 * Best fit PCB lookup. 1340 * 1341 * First see if this local port is in use by looking on the 1342 * port hash list. 1343 */ 1344 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1345 pcbinfo->ipi_porthashmask)]; 1346 LIST_FOREACH(phd, porthash, phd_hash) { 1347 if (phd->phd_port == lport) 1348 break; 1349 } 1350 if (phd != NULL) { 1351 /* 1352 * Port is in use by one or more PCBs. Look for best 1353 * fit. 1354 */ 1355 LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1356 wildcard = 0; 1357 if (cred != NULL && 1358 !prison_equal_ip4(inp->inp_cred->cr_prison, 1359 cred->cr_prison)) 1360 continue; 1361 #ifdef INET6 1362 /* XXX inp locking */ 1363 if ((inp->inp_vflag & INP_IPV4) == 0) 1364 continue; 1365 /* 1366 * We never select the PCB that has 1367 * INP_IPV6 flag and is bound to :: if 1368 * we have another PCB which is bound 1369 * to 0.0.0.0. If a PCB has the 1370 * INP_IPV6 flag, then we set its cost 1371 * higher than IPv4 only PCBs. 1372 * 1373 * Note that the case only happens 1374 * when a socket is bound to ::, under 1375 * the condition that the use of the 1376 * mapped address is allowed. 1377 */ 1378 if ((inp->inp_vflag & INP_IPV6) != 0) 1379 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1380 #endif 1381 if (inp->inp_faddr.s_addr != INADDR_ANY) 1382 wildcard++; 1383 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1384 if (laddr.s_addr == INADDR_ANY) 1385 wildcard++; 1386 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1387 continue; 1388 } else { 1389 if (laddr.s_addr != INADDR_ANY) 1390 wildcard++; 1391 } 1392 if (wildcard < matchwild) { 1393 match = inp; 1394 matchwild = wildcard; 1395 if (matchwild == 0) 1396 break; 1397 } 1398 } 1399 } 1400 return (match); 1401 } 1402 } 1403 #undef INP_LOOKUP_MAPPED_PCB_COST 1404 1405 /* 1406 * Lookup PCB in hash list. 1407 */ 1408 struct inpcb * 1409 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1410 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard, 1411 struct ifnet *ifp) 1412 { 1413 struct inpcbhead *head; 1414 struct inpcb *inp, *tmpinp; 1415 u_short fport = fport_arg, lport = lport_arg; 1416 1417 INP_INFO_LOCK_ASSERT(pcbinfo); 1418 1419 /* 1420 * First look for an exact match. 1421 */ 1422 tmpinp = NULL; 1423 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1424 pcbinfo->ipi_hashmask)]; 1425 LIST_FOREACH(inp, head, inp_hash) { 1426 #ifdef INET6 1427 /* XXX inp locking */ 1428 if ((inp->inp_vflag & INP_IPV4) == 0) 1429 continue; 1430 #endif 1431 if (inp->inp_faddr.s_addr == faddr.s_addr && 1432 inp->inp_laddr.s_addr == laddr.s_addr && 1433 inp->inp_fport == fport && 1434 inp->inp_lport == lport) { 1435 /* 1436 * XXX We should be able to directly return 1437 * the inp here, without any checks. 1438 * Well unless both bound with SO_REUSEPORT? 1439 */ 1440 if (prison_flag(inp->inp_cred, PR_IP4)) 1441 return (inp); 1442 if (tmpinp == NULL) 1443 tmpinp = inp; 1444 } 1445 } 1446 if (tmpinp != NULL) 1447 return (tmpinp); 1448 1449 /* 1450 * Then look for a wildcard match, if requested. 1451 */ 1452 if (wildcard == INPLOOKUP_WILDCARD) { 1453 struct inpcb *local_wild = NULL, *local_exact = NULL; 1454 #ifdef INET6 1455 struct inpcb *local_wild_mapped = NULL; 1456 #endif 1457 struct inpcb *jail_wild = NULL; 1458 int injail; 1459 1460 /* 1461 * Order of socket selection - we always prefer jails. 1462 * 1. jailed, non-wild. 1463 * 2. jailed, wild. 1464 * 3. non-jailed, non-wild. 1465 * 4. non-jailed, wild. 1466 */ 1467 1468 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1469 0, pcbinfo->ipi_hashmask)]; 1470 LIST_FOREACH(inp, head, inp_hash) { 1471 #ifdef INET6 1472 /* XXX inp locking */ 1473 if ((inp->inp_vflag & INP_IPV4) == 0) 1474 continue; 1475 #endif 1476 if (inp->inp_faddr.s_addr != INADDR_ANY || 1477 inp->inp_lport != lport) 1478 continue; 1479 1480 /* XXX inp locking */ 1481 if (ifp && ifp->if_type == IFT_FAITH && 1482 (inp->inp_flags & INP_FAITH) == 0) 1483 continue; 1484 1485 injail = prison_flag(inp->inp_cred, PR_IP4); 1486 if (injail) { 1487 if (prison_check_ip4(inp->inp_cred, 1488 &laddr) != 0) 1489 continue; 1490 } else { 1491 if (local_exact != NULL) 1492 continue; 1493 } 1494 1495 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1496 if (injail) 1497 return (inp); 1498 else 1499 local_exact = inp; 1500 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1501 #ifdef INET6 1502 /* XXX inp locking, NULL check */ 1503 if (inp->inp_vflag & INP_IPV6PROTO) 1504 local_wild_mapped = inp; 1505 else 1506 #endif /* INET6 */ 1507 if (injail) 1508 jail_wild = inp; 1509 else 1510 local_wild = inp; 1511 } 1512 } /* LIST_FOREACH */ 1513 if (jail_wild != NULL) 1514 return (jail_wild); 1515 if (local_exact != NULL) 1516 return (local_exact); 1517 if (local_wild != NULL) 1518 return (local_wild); 1519 #ifdef INET6 1520 if (local_wild_mapped != NULL) 1521 return (local_wild_mapped); 1522 #endif /* defined(INET6) */ 1523 } /* if (wildcard == INPLOOKUP_WILDCARD) */ 1524 1525 return (NULL); 1526 } 1527 1528 /* 1529 * Insert PCB onto various hash lists. 1530 */ 1531 int 1532 in_pcbinshash(struct inpcb *inp) 1533 { 1534 struct inpcbhead *pcbhash; 1535 struct inpcbporthead *pcbporthash; 1536 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1537 struct inpcbport *phd; 1538 u_int32_t hashkey_faddr; 1539 1540 INP_INFO_WLOCK_ASSERT(pcbinfo); 1541 INP_WLOCK_ASSERT(inp); 1542 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 1543 ("in_pcbinshash: INP_INHASHLIST")); 1544 1545 #ifdef INET6 1546 if (inp->inp_vflag & INP_IPV6) 1547 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; 1548 else 1549 #endif /* INET6 */ 1550 hashkey_faddr = inp->inp_faddr.s_addr; 1551 1552 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 1553 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 1554 1555 pcbporthash = &pcbinfo->ipi_porthashbase[ 1556 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 1557 1558 /* 1559 * Go through port list and look for a head for this lport. 1560 */ 1561 LIST_FOREACH(phd, pcbporthash, phd_hash) { 1562 if (phd->phd_port == inp->inp_lport) 1563 break; 1564 } 1565 /* 1566 * If none exists, malloc one and tack it on. 1567 */ 1568 if (phd == NULL) { 1569 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 1570 if (phd == NULL) { 1571 return (ENOBUFS); /* XXX */ 1572 } 1573 phd->phd_port = inp->inp_lport; 1574 LIST_INIT(&phd->phd_pcblist); 1575 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 1576 } 1577 inp->inp_phd = phd; 1578 LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 1579 LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 1580 inp->inp_flags |= INP_INHASHLIST; 1581 return (0); 1582 } 1583 1584 /* 1585 * Move PCB to the proper hash bucket when { faddr, fport } have been 1586 * changed. NOTE: This does not handle the case of the lport changing (the 1587 * hashed port list would have to be updated as well), so the lport must 1588 * not change after in_pcbinshash() has been called. 1589 */ 1590 void 1591 in_pcbrehash(struct inpcb *inp) 1592 { 1593 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1594 struct inpcbhead *head; 1595 u_int32_t hashkey_faddr; 1596 1597 INP_INFO_WLOCK_ASSERT(pcbinfo); 1598 INP_WLOCK_ASSERT(inp); 1599 KASSERT(inp->inp_flags & INP_INHASHLIST, 1600 ("in_pcbrehash: !INP_INHASHLIST")); 1601 1602 #ifdef INET6 1603 if (inp->inp_vflag & INP_IPV6) 1604 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; 1605 else 1606 #endif /* INET6 */ 1607 hashkey_faddr = inp->inp_faddr.s_addr; 1608 1609 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 1610 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 1611 1612 LIST_REMOVE(inp, inp_hash); 1613 LIST_INSERT_HEAD(head, inp, inp_hash); 1614 } 1615 1616 /* 1617 * Remove PCB from various lists. 1618 */ 1619 static void 1620 in_pcbremlists(struct inpcb *inp) 1621 { 1622 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1623 1624 INP_INFO_WLOCK_ASSERT(pcbinfo); 1625 INP_WLOCK_ASSERT(inp); 1626 1627 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1628 if (inp->inp_flags & INP_INHASHLIST) { 1629 struct inpcbport *phd = inp->inp_phd; 1630 1631 LIST_REMOVE(inp, inp_hash); 1632 LIST_REMOVE(inp, inp_portlist); 1633 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 1634 LIST_REMOVE(phd, phd_hash); 1635 free(phd, M_PCB); 1636 } 1637 inp->inp_flags &= ~INP_INHASHLIST; 1638 } 1639 LIST_REMOVE(inp, inp_list); 1640 pcbinfo->ipi_count--; 1641 } 1642 1643 /* 1644 * A set label operation has occurred at the socket layer, propagate the 1645 * label change into the in_pcb for the socket. 1646 */ 1647 void 1648 in_pcbsosetlabel(struct socket *so) 1649 { 1650 #ifdef MAC 1651 struct inpcb *inp; 1652 1653 inp = sotoinpcb(so); 1654 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 1655 1656 INP_WLOCK(inp); 1657 SOCK_LOCK(so); 1658 mac_inpcb_sosetlabel(so, inp); 1659 SOCK_UNLOCK(so); 1660 INP_WUNLOCK(inp); 1661 #endif 1662 } 1663 1664 /* 1665 * ipport_tick runs once per second, determining if random port allocation 1666 * should be continued. If more than ipport_randomcps ports have been 1667 * allocated in the last second, then we return to sequential port 1668 * allocation. We return to random allocation only once we drop below 1669 * ipport_randomcps for at least ipport_randomtime seconds. 1670 */ 1671 void 1672 ipport_tick(void *xtp) 1673 { 1674 VNET_ITERATOR_DECL(vnet_iter); 1675 1676 VNET_LIST_RLOCK_NOSLEEP(); 1677 VNET_FOREACH(vnet_iter) { 1678 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 1679 if (V_ipport_tcpallocs <= 1680 V_ipport_tcplastcount + V_ipport_randomcps) { 1681 if (V_ipport_stoprandom > 0) 1682 V_ipport_stoprandom--; 1683 } else 1684 V_ipport_stoprandom = V_ipport_randomtime; 1685 V_ipport_tcplastcount = V_ipport_tcpallocs; 1686 CURVNET_RESTORE(); 1687 } 1688 VNET_LIST_RUNLOCK_NOSLEEP(); 1689 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 1690 } 1691 1692 void 1693 inp_wlock(struct inpcb *inp) 1694 { 1695 1696 INP_WLOCK(inp); 1697 } 1698 1699 void 1700 inp_wunlock(struct inpcb *inp) 1701 { 1702 1703 INP_WUNLOCK(inp); 1704 } 1705 1706 void 1707 inp_rlock(struct inpcb *inp) 1708 { 1709 1710 INP_RLOCK(inp); 1711 } 1712 1713 void 1714 inp_runlock(struct inpcb *inp) 1715 { 1716 1717 INP_RUNLOCK(inp); 1718 } 1719 1720 #ifdef INVARIANTS 1721 void 1722 inp_lock_assert(struct inpcb *inp) 1723 { 1724 1725 INP_WLOCK_ASSERT(inp); 1726 } 1727 1728 void 1729 inp_unlock_assert(struct inpcb *inp) 1730 { 1731 1732 INP_UNLOCK_ASSERT(inp); 1733 } 1734 #endif 1735 1736 void 1737 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 1738 { 1739 struct inpcb *inp; 1740 1741 INP_INFO_RLOCK(&V_tcbinfo); 1742 LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 1743 INP_WLOCK(inp); 1744 func(inp, arg); 1745 INP_WUNLOCK(inp); 1746 } 1747 INP_INFO_RUNLOCK(&V_tcbinfo); 1748 } 1749 1750 struct socket * 1751 inp_inpcbtosocket(struct inpcb *inp) 1752 { 1753 1754 INP_WLOCK_ASSERT(inp); 1755 return (inp->inp_socket); 1756 } 1757 1758 struct tcpcb * 1759 inp_inpcbtotcpcb(struct inpcb *inp) 1760 { 1761 1762 INP_WLOCK_ASSERT(inp); 1763 return ((struct tcpcb *)inp->inp_ppcb); 1764 } 1765 1766 int 1767 inp_ip_tos_get(const struct inpcb *inp) 1768 { 1769 1770 return (inp->inp_ip_tos); 1771 } 1772 1773 void 1774 inp_ip_tos_set(struct inpcb *inp, int val) 1775 { 1776 1777 inp->inp_ip_tos = val; 1778 } 1779 1780 void 1781 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 1782 uint32_t *faddr, uint16_t *fp) 1783 { 1784 1785 INP_LOCK_ASSERT(inp); 1786 *laddr = inp->inp_laddr.s_addr; 1787 *faddr = inp->inp_faddr.s_addr; 1788 *lp = inp->inp_lport; 1789 *fp = inp->inp_fport; 1790 } 1791 1792 struct inpcb * 1793 so_sotoinpcb(struct socket *so) 1794 { 1795 1796 return (sotoinpcb(so)); 1797 } 1798 1799 struct tcpcb * 1800 so_sototcpcb(struct socket *so) 1801 { 1802 1803 return (sototcpcb(so)); 1804 } 1805 1806 #ifdef DDB 1807 static void 1808 db_print_indent(int indent) 1809 { 1810 int i; 1811 1812 for (i = 0; i < indent; i++) 1813 db_printf(" "); 1814 } 1815 1816 static void 1817 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 1818 { 1819 char faddr_str[48], laddr_str[48]; 1820 1821 db_print_indent(indent); 1822 db_printf("%s at %p\n", name, inc); 1823 1824 indent += 2; 1825 1826 #ifdef INET6 1827 if (inc->inc_flags & INC_ISIPV6) { 1828 /* IPv6. */ 1829 ip6_sprintf(laddr_str, &inc->inc6_laddr); 1830 ip6_sprintf(faddr_str, &inc->inc6_faddr); 1831 } else { 1832 #endif 1833 /* IPv4. */ 1834 inet_ntoa_r(inc->inc_laddr, laddr_str); 1835 inet_ntoa_r(inc->inc_faddr, faddr_str); 1836 #ifdef INET6 1837 } 1838 #endif 1839 db_print_indent(indent); 1840 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 1841 ntohs(inc->inc_lport)); 1842 db_print_indent(indent); 1843 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 1844 ntohs(inc->inc_fport)); 1845 } 1846 1847 static void 1848 db_print_inpflags(int inp_flags) 1849 { 1850 int comma; 1851 1852 comma = 0; 1853 if (inp_flags & INP_RECVOPTS) { 1854 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 1855 comma = 1; 1856 } 1857 if (inp_flags & INP_RECVRETOPTS) { 1858 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 1859 comma = 1; 1860 } 1861 if (inp_flags & INP_RECVDSTADDR) { 1862 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 1863 comma = 1; 1864 } 1865 if (inp_flags & INP_HDRINCL) { 1866 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 1867 comma = 1; 1868 } 1869 if (inp_flags & INP_HIGHPORT) { 1870 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 1871 comma = 1; 1872 } 1873 if (inp_flags & INP_LOWPORT) { 1874 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 1875 comma = 1; 1876 } 1877 if (inp_flags & INP_ANONPORT) { 1878 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 1879 comma = 1; 1880 } 1881 if (inp_flags & INP_RECVIF) { 1882 db_printf("%sINP_RECVIF", comma ? ", " : ""); 1883 comma = 1; 1884 } 1885 if (inp_flags & INP_MTUDISC) { 1886 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 1887 comma = 1; 1888 } 1889 if (inp_flags & INP_FAITH) { 1890 db_printf("%sINP_FAITH", comma ? ", " : ""); 1891 comma = 1; 1892 } 1893 if (inp_flags & INP_RECVTTL) { 1894 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 1895 comma = 1; 1896 } 1897 if (inp_flags & INP_DONTFRAG) { 1898 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 1899 comma = 1; 1900 } 1901 if (inp_flags & IN6P_IPV6_V6ONLY) { 1902 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 1903 comma = 1; 1904 } 1905 if (inp_flags & IN6P_PKTINFO) { 1906 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 1907 comma = 1; 1908 } 1909 if (inp_flags & IN6P_HOPLIMIT) { 1910 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 1911 comma = 1; 1912 } 1913 if (inp_flags & IN6P_HOPOPTS) { 1914 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 1915 comma = 1; 1916 } 1917 if (inp_flags & IN6P_DSTOPTS) { 1918 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 1919 comma = 1; 1920 } 1921 if (inp_flags & IN6P_RTHDR) { 1922 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 1923 comma = 1; 1924 } 1925 if (inp_flags & IN6P_RTHDRDSTOPTS) { 1926 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 1927 comma = 1; 1928 } 1929 if (inp_flags & IN6P_TCLASS) { 1930 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 1931 comma = 1; 1932 } 1933 if (inp_flags & IN6P_AUTOFLOWLABEL) { 1934 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 1935 comma = 1; 1936 } 1937 if (inp_flags & INP_TIMEWAIT) { 1938 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 1939 comma = 1; 1940 } 1941 if (inp_flags & INP_ONESBCAST) { 1942 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 1943 comma = 1; 1944 } 1945 if (inp_flags & INP_DROPPED) { 1946 db_printf("%sINP_DROPPED", comma ? ", " : ""); 1947 comma = 1; 1948 } 1949 if (inp_flags & INP_SOCKREF) { 1950 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 1951 comma = 1; 1952 } 1953 if (inp_flags & IN6P_RFC2292) { 1954 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 1955 comma = 1; 1956 } 1957 if (inp_flags & IN6P_MTU) { 1958 db_printf("IN6P_MTU%s", comma ? ", " : ""); 1959 comma = 1; 1960 } 1961 } 1962 1963 static void 1964 db_print_inpvflag(u_char inp_vflag) 1965 { 1966 int comma; 1967 1968 comma = 0; 1969 if (inp_vflag & INP_IPV4) { 1970 db_printf("%sINP_IPV4", comma ? ", " : ""); 1971 comma = 1; 1972 } 1973 if (inp_vflag & INP_IPV6) { 1974 db_printf("%sINP_IPV6", comma ? ", " : ""); 1975 comma = 1; 1976 } 1977 if (inp_vflag & INP_IPV6PROTO) { 1978 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 1979 comma = 1; 1980 } 1981 } 1982 1983 static void 1984 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 1985 { 1986 1987 db_print_indent(indent); 1988 db_printf("%s at %p\n", name, inp); 1989 1990 indent += 2; 1991 1992 db_print_indent(indent); 1993 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 1994 1995 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 1996 1997 db_print_indent(indent); 1998 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 1999 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 2000 2001 db_print_indent(indent); 2002 db_printf("inp_label: %p inp_flags: 0x%x (", 2003 inp->inp_label, inp->inp_flags); 2004 db_print_inpflags(inp->inp_flags); 2005 db_printf(")\n"); 2006 2007 db_print_indent(indent); 2008 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 2009 inp->inp_vflag); 2010 db_print_inpvflag(inp->inp_vflag); 2011 db_printf(")\n"); 2012 2013 db_print_indent(indent); 2014 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 2015 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 2016 2017 db_print_indent(indent); 2018 #ifdef INET6 2019 if (inp->inp_vflag & INP_IPV6) { 2020 db_printf("in6p_options: %p in6p_outputopts: %p " 2021 "in6p_moptions: %p\n", inp->in6p_options, 2022 inp->in6p_outputopts, inp->in6p_moptions); 2023 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 2024 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 2025 inp->in6p_hops); 2026 } else 2027 #endif 2028 { 2029 db_printf("inp_ip_tos: %d inp_ip_options: %p " 2030 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 2031 inp->inp_options, inp->inp_moptions); 2032 } 2033 2034 db_print_indent(indent); 2035 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 2036 (uintmax_t)inp->inp_gencnt); 2037 } 2038 2039 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 2040 { 2041 struct inpcb *inp; 2042 2043 if (!have_addr) { 2044 db_printf("usage: show inpcb <addr>\n"); 2045 return; 2046 } 2047 inp = (struct inpcb *)addr; 2048 2049 db_print_inpcb(inp, "inpcb", 0); 2050 } 2051 #endif 2052