1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993, 1995 3 * The Regents of the University of California. 4 * Copyright (c) 2007 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 4. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_ddb.h" 38 #include "opt_ipsec.h" 39 #include "opt_inet6.h" 40 #include "opt_mac.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/domain.h> 47 #include <sys/protosw.h> 48 #include <sys/socket.h> 49 #include <sys/socketvar.h> 50 #include <sys/priv.h> 51 #include <sys/proc.h> 52 #include <sys/jail.h> 53 #include <sys/kernel.h> 54 #include <sys/sysctl.h> 55 #include <sys/vimage.h> 56 57 #ifdef DDB 58 #include <ddb/ddb.h> 59 #endif 60 61 #include <vm/uma.h> 62 63 #include <net/if.h> 64 #include <net/if_types.h> 65 #include <net/route.h> 66 67 #include <netinet/in.h> 68 #include <netinet/in_pcb.h> 69 #include <netinet/in_var.h> 70 #include <netinet/ip_var.h> 71 #include <netinet/tcp_var.h> 72 #include <netinet/udp.h> 73 #include <netinet/udp_var.h> 74 #ifdef INET6 75 #include <netinet/ip6.h> 76 #include <netinet6/ip6_var.h> 77 #endif /* INET6 */ 78 79 80 #ifdef IPSEC 81 #include <netipsec/ipsec.h> 82 #include <netipsec/key.h> 83 #endif /* IPSEC */ 84 85 #include <security/mac/mac_framework.h> 86 87 /* 88 * These configure the range of local port addresses assigned to 89 * "unspecified" outgoing connections/packets/whatever. 90 */ 91 int ipport_lowfirstauto = IPPORT_RESERVED - 1; /* 1023 */ 92 int ipport_lowlastauto = IPPORT_RESERVEDSTART; /* 600 */ 93 int ipport_firstauto = IPPORT_EPHEMERALFIRST; /* 10000 */ 94 int ipport_lastauto = IPPORT_EPHEMERALLAST; /* 65535 */ 95 int ipport_hifirstauto = IPPORT_HIFIRSTAUTO; /* 49152 */ 96 int ipport_hilastauto = IPPORT_HILASTAUTO; /* 65535 */ 97 98 /* 99 * Reserved ports accessible only to root. There are significant 100 * security considerations that must be accounted for when changing these, 101 * but the security benefits can be great. Please be careful. 102 */ 103 int ipport_reservedhigh = IPPORT_RESERVED - 1; /* 1023 */ 104 int ipport_reservedlow = 0; 105 106 /* Variables dealing with random ephemeral port allocation. */ 107 int ipport_randomized = 1; /* user controlled via sysctl */ 108 int ipport_randomcps = 10; /* user controlled via sysctl */ 109 int ipport_randomtime = 45; /* user controlled via sysctl */ 110 int ipport_stoprandom = 0; /* toggled by ipport_tick */ 111 int ipport_tcpallocs; 112 int ipport_tcplastcount; 113 114 #define RANGECHK(var, min, max) \ 115 if ((var) < (min)) { (var) = (min); } \ 116 else if ((var) > (max)) { (var) = (max); } 117 118 static int 119 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 120 { 121 int error; 122 123 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req); 124 if (error == 0) { 125 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 126 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 127 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 128 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 129 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 130 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 131 } 132 return (error); 133 } 134 135 #undef RANGECHK 136 137 SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports"); 138 139 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, 140 lowfirst, CTLTYPE_INT|CTLFLAG_RW, ipport_lowfirstauto, 0, 141 &sysctl_net_ipport_check, "I", ""); 142 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, 143 lowlast, CTLTYPE_INT|CTLFLAG_RW, ipport_lowlastauto, 0, 144 &sysctl_net_ipport_check, "I", ""); 145 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, 146 first, CTLTYPE_INT|CTLFLAG_RW, ipport_firstauto, 0, 147 &sysctl_net_ipport_check, "I", ""); 148 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, 149 last, CTLTYPE_INT|CTLFLAG_RW, ipport_lastauto, 0, 150 &sysctl_net_ipport_check, "I", ""); 151 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, 152 hifirst, CTLTYPE_INT|CTLFLAG_RW, ipport_hifirstauto, 0, 153 &sysctl_net_ipport_check, "I", ""); 154 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, 155 hilast, CTLTYPE_INT|CTLFLAG_RW, ipport_hilastauto, 0, 156 &sysctl_net_ipport_check, "I", ""); 157 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, 158 reservedhigh, CTLFLAG_RW|CTLFLAG_SECURE, ipport_reservedhigh, 0, ""); 159 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, reservedlow, 160 CTLFLAG_RW|CTLFLAG_SECURE, ipport_reservedlow, 0, ""); 161 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, randomized, 162 CTLFLAG_RW, ipport_randomized, 0, "Enable random port allocation"); 163 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, randomcps, 164 CTLFLAG_RW, ipport_randomcps, 0, "Maximum number of random port " 165 "allocations before switching to a sequental one"); 166 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, randomtime, 167 CTLFLAG_RW, ipport_randomtime, 0, 168 "Minimum time to keep sequental port " 169 "allocation before switching to a random one"); 170 171 /* 172 * in_pcb.c: manage the Protocol Control Blocks. 173 * 174 * NOTE: It is assumed that most of these functions will be called with 175 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 176 * functions often modify hash chains or addresses in pcbs. 177 */ 178 179 /* 180 * Allocate a PCB and associate it with the socket. 181 * On success return with the PCB locked. 182 */ 183 int 184 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 185 { 186 #ifdef INET6 187 INIT_VNET_INET6(curvnet); 188 #endif 189 struct inpcb *inp; 190 int error; 191 192 INP_INFO_WLOCK_ASSERT(pcbinfo); 193 error = 0; 194 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 195 if (inp == NULL) 196 return (ENOBUFS); 197 bzero(inp, inp_zero_size); 198 inp->inp_pcbinfo = pcbinfo; 199 inp->inp_socket = so; 200 inp->inp_cred = crhold(so->so_cred); 201 inp->inp_inc.inc_fibnum = so->so_fibnum; 202 #ifdef MAC 203 error = mac_inpcb_init(inp, M_NOWAIT); 204 if (error != 0) 205 goto out; 206 SOCK_LOCK(so); 207 mac_inpcb_create(so, inp); 208 SOCK_UNLOCK(so); 209 #endif 210 211 #ifdef IPSEC 212 error = ipsec_init_policy(so, &inp->inp_sp); 213 if (error != 0) { 214 #ifdef MAC 215 mac_inpcb_destroy(inp); 216 #endif 217 goto out; 218 } 219 #endif /*IPSEC*/ 220 #ifdef INET6 221 if (INP_SOCKAF(so) == AF_INET6) { 222 inp->inp_vflag |= INP_IPV6PROTO; 223 if (V_ip6_v6only) 224 inp->inp_flags |= IN6P_IPV6_V6ONLY; 225 } 226 #endif 227 LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 228 pcbinfo->ipi_count++; 229 so->so_pcb = (caddr_t)inp; 230 #ifdef INET6 231 if (V_ip6_auto_flowlabel) 232 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 233 #endif 234 INP_WLOCK(inp); 235 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 236 237 #if defined(IPSEC) || defined(MAC) 238 out: 239 if (error != 0) { 240 crfree(inp->inp_cred); 241 uma_zfree(pcbinfo->ipi_zone, inp); 242 } 243 #endif 244 return (error); 245 } 246 247 int 248 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 249 { 250 int anonport, error; 251 252 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 253 INP_WLOCK_ASSERT(inp); 254 255 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 256 return (EINVAL); 257 anonport = inp->inp_lport == 0 && (nam == NULL || 258 ((struct sockaddr_in *)nam)->sin_port == 0); 259 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 260 &inp->inp_lport, cred); 261 if (error) 262 return (error); 263 if (in_pcbinshash(inp) != 0) { 264 inp->inp_laddr.s_addr = INADDR_ANY; 265 inp->inp_lport = 0; 266 return (EAGAIN); 267 } 268 if (anonport) 269 inp->inp_flags |= INP_ANONPORT; 270 return (0); 271 } 272 273 /* 274 * Set up a bind operation on a PCB, performing port allocation 275 * as required, but do not actually modify the PCB. Callers can 276 * either complete the bind by setting inp_laddr/inp_lport and 277 * calling in_pcbinshash(), or they can just use the resulting 278 * port and address to authorise the sending of a once-off packet. 279 * 280 * On error, the values of *laddrp and *lportp are not changed. 281 */ 282 int 283 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 284 u_short *lportp, struct ucred *cred) 285 { 286 INIT_VNET_INET(inp->inp_vnet); 287 struct socket *so = inp->inp_socket; 288 unsigned short *lastport; 289 struct sockaddr_in *sin; 290 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 291 struct in_addr laddr; 292 u_short lport = 0; 293 int wild = 0, reuseport = (so->so_options & SO_REUSEPORT); 294 int error, prison = 0; 295 int dorandom; 296 297 /* 298 * Because no actual state changes occur here, a global write lock on 299 * the pcbinfo isn't required. 300 */ 301 INP_INFO_LOCK_ASSERT(pcbinfo); 302 INP_LOCK_ASSERT(inp); 303 304 if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 305 return (EADDRNOTAVAIL); 306 laddr.s_addr = *laddrp; 307 if (nam != NULL && laddr.s_addr != INADDR_ANY) 308 return (EINVAL); 309 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) 310 wild = INPLOOKUP_WILDCARD; 311 if (nam) { 312 sin = (struct sockaddr_in *)nam; 313 if (nam->sa_len != sizeof (*sin)) 314 return (EINVAL); 315 #ifdef notdef 316 /* 317 * We should check the family, but old programs 318 * incorrectly fail to initialize it. 319 */ 320 if (sin->sin_family != AF_INET) 321 return (EAFNOSUPPORT); 322 #endif 323 if (sin->sin_addr.s_addr != INADDR_ANY) 324 if (prison_ip(cred, 0, &sin->sin_addr.s_addr)) 325 return(EINVAL); 326 if (sin->sin_port != *lportp) { 327 /* Don't allow the port to change. */ 328 if (*lportp != 0) 329 return (EINVAL); 330 lport = sin->sin_port; 331 } 332 /* NB: lport is left as 0 if the port isn't being changed. */ 333 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 334 /* 335 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 336 * allow complete duplication of binding if 337 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 338 * and a multicast address is bound on both 339 * new and duplicated sockets. 340 */ 341 if (so->so_options & SO_REUSEADDR) 342 reuseport = SO_REUSEADDR|SO_REUSEPORT; 343 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 344 sin->sin_port = 0; /* yech... */ 345 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 346 if (ifa_ifwithaddr((struct sockaddr *)sin) == 0) 347 return (EADDRNOTAVAIL); 348 } 349 laddr = sin->sin_addr; 350 if (lport) { 351 struct inpcb *t; 352 struct tcptw *tw; 353 354 /* GROSS */ 355 if (ntohs(lport) <= V_ipport_reservedhigh && 356 ntohs(lport) >= V_ipport_reservedlow && 357 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 358 0)) 359 return (EACCES); 360 if (jailed(cred)) 361 prison = 1; 362 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 363 priv_check_cred(inp->inp_cred, 364 PRIV_NETINET_REUSEPORT, 0) != 0) { 365 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 366 lport, prison ? 0 : INPLOOKUP_WILDCARD, 367 cred); 368 /* 369 * XXX 370 * This entire block sorely needs a rewrite. 371 */ 372 if (t && 373 ((t->inp_vflag & INP_TIMEWAIT) == 0) && 374 (so->so_type != SOCK_STREAM || 375 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 376 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 377 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 378 (t->inp_socket->so_options & 379 SO_REUSEPORT) == 0) && 380 (inp->inp_cred->cr_uid != 381 t->inp_cred->cr_uid)) 382 return (EADDRINUSE); 383 } 384 if (prison && prison_ip(cred, 0, &sin->sin_addr.s_addr)) 385 return (EADDRNOTAVAIL); 386 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 387 lport, prison ? 0 : wild, cred); 388 if (t && (t->inp_vflag & INP_TIMEWAIT)) { 389 /* 390 * XXXRW: If an incpb has had its timewait 391 * state recycled, we treat the address as 392 * being in use (for now). This is better 393 * than a panic, but not desirable. 394 */ 395 tw = intotw(inp); 396 if (tw == NULL || 397 (reuseport & tw->tw_so_options) == 0) 398 return (EADDRINUSE); 399 } else if (t && 400 (reuseport & t->inp_socket->so_options) == 0) { 401 #ifdef INET6 402 if (ntohl(sin->sin_addr.s_addr) != 403 INADDR_ANY || 404 ntohl(t->inp_laddr.s_addr) != 405 INADDR_ANY || 406 INP_SOCKAF(so) == 407 INP_SOCKAF(t->inp_socket)) 408 #endif 409 return (EADDRINUSE); 410 } 411 } 412 } 413 if (*lportp != 0) 414 lport = *lportp; 415 if (lport == 0) { 416 u_short first, last, aux; 417 int count; 418 419 if (laddr.s_addr != INADDR_ANY) 420 if (prison_ip(cred, 0, &laddr.s_addr)) 421 return (EINVAL); 422 423 if (inp->inp_flags & INP_HIGHPORT) { 424 first = V_ipport_hifirstauto; /* sysctl */ 425 last = V_ipport_hilastauto; 426 lastport = &pcbinfo->ipi_lasthi; 427 } else if (inp->inp_flags & INP_LOWPORT) { 428 error = priv_check_cred(cred, 429 PRIV_NETINET_RESERVEDPORT, 0); 430 if (error) 431 return error; 432 first = V_ipport_lowfirstauto; /* 1023 */ 433 last = V_ipport_lowlastauto; /* 600 */ 434 lastport = &pcbinfo->ipi_lastlow; 435 } else { 436 first = V_ipport_firstauto; /* sysctl */ 437 last = V_ipport_lastauto; 438 lastport = &pcbinfo->ipi_lastport; 439 } 440 /* 441 * For UDP, use random port allocation as long as the user 442 * allows it. For TCP (and as of yet unknown) connections, 443 * use random port allocation only if the user allows it AND 444 * ipport_tick() allows it. 445 */ 446 if (V_ipport_randomized && 447 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo)) 448 dorandom = 1; 449 else 450 dorandom = 0; 451 /* 452 * It makes no sense to do random port allocation if 453 * we have the only port available. 454 */ 455 if (first == last) 456 dorandom = 0; 457 /* Make sure to not include UDP packets in the count. */ 458 if (pcbinfo != &V_udbinfo) 459 V_ipport_tcpallocs++; 460 /* 461 * Instead of having two loops further down counting up or down 462 * make sure that first is always <= last and go with only one 463 * code path implementing all logic. 464 */ 465 if (first > last) { 466 aux = first; 467 first = last; 468 last = aux; 469 } 470 471 if (dorandom) 472 *lastport = first + 473 (arc4random() % (last - first)); 474 475 count = last - first; 476 477 do { 478 if (count-- < 0) /* completely used? */ 479 return (EADDRNOTAVAIL); 480 ++*lastport; 481 if (*lastport < first || *lastport > last) 482 *lastport = first; 483 lport = htons(*lastport); 484 } while (in_pcblookup_local(pcbinfo, laddr, 485 lport, wild, cred)); 486 } 487 if (prison_ip(cred, 0, &laddr.s_addr)) 488 return (EINVAL); 489 *laddrp = laddr.s_addr; 490 *lportp = lport; 491 return (0); 492 } 493 494 /* 495 * Connect from a socket to a specified address. 496 * Both address and port must be specified in argument sin. 497 * If don't have a local address for this socket yet, 498 * then pick one. 499 */ 500 int 501 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 502 { 503 u_short lport, fport; 504 in_addr_t laddr, faddr; 505 int anonport, error; 506 507 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 508 INP_WLOCK_ASSERT(inp); 509 510 lport = inp->inp_lport; 511 laddr = inp->inp_laddr.s_addr; 512 anonport = (lport == 0); 513 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 514 NULL, cred); 515 if (error) 516 return (error); 517 518 /* Do the initial binding of the local address if required. */ 519 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 520 inp->inp_lport = lport; 521 inp->inp_laddr.s_addr = laddr; 522 if (in_pcbinshash(inp) != 0) { 523 inp->inp_laddr.s_addr = INADDR_ANY; 524 inp->inp_lport = 0; 525 return (EAGAIN); 526 } 527 } 528 529 /* Commit the remaining changes. */ 530 inp->inp_lport = lport; 531 inp->inp_laddr.s_addr = laddr; 532 inp->inp_faddr.s_addr = faddr; 533 inp->inp_fport = fport; 534 in_pcbrehash(inp); 535 536 if (anonport) 537 inp->inp_flags |= INP_ANONPORT; 538 return (0); 539 } 540 541 /* 542 * Do proper source address selection on an unbound socket in case 543 * of connect. Take jails into account as well. 544 */ 545 static int 546 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 547 struct ucred *cred) 548 { 549 struct in_ifaddr *ia; 550 struct ifaddr *ifa; 551 struct sockaddr *sa; 552 struct sockaddr_in *sin; 553 struct route sro; 554 int error; 555 556 KASSERT(laddr != NULL, ("%s: null laddr", __func__)); 557 558 error = 0; 559 ia = NULL; 560 bzero(&sro, sizeof(sro)); 561 562 sin = (struct sockaddr_in *)&sro.ro_dst; 563 sin->sin_family = AF_INET; 564 sin->sin_len = sizeof(struct sockaddr_in); 565 sin->sin_addr.s_addr = faddr->s_addr; 566 567 /* 568 * If route is known our src addr is taken from the i/f, 569 * else punt. 570 * 571 * Find out route to destination. 572 */ 573 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 574 in_rtalloc_ign(&sro, RTF_CLONING, inp->inp_inc.inc_fibnum); 575 576 /* 577 * If we found a route, use the address corresponding to 578 * the outgoing interface. 579 * 580 * Otherwise assume faddr is reachable on a directly connected 581 * network and try to find a corresponding interface to take 582 * the source address from. 583 */ 584 if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { 585 struct ifnet *ifp; 586 587 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin)); 588 if (ia == NULL) 589 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin)); 590 if (ia == NULL) { 591 error = ENETUNREACH; 592 goto done; 593 } 594 595 if (cred == NULL || !jailed(cred)) { 596 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 597 goto done; 598 } 599 600 ifp = ia->ia_ifp; 601 ia = NULL; 602 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 603 604 sa = ifa->ifa_addr; 605 if (sa->sa_family != AF_INET) 606 continue; 607 sin = (struct sockaddr_in *)sa; 608 if (htonl(prison_getip(cred)) == sin->sin_addr.s_addr) { 609 ia = (struct in_ifaddr *)ifa; 610 break; 611 } 612 } 613 if (ia != NULL) { 614 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 615 goto done; 616 } 617 618 /* 3. As a last resort return the 'default' jail address. */ 619 laddr->s_addr = htonl(prison_getip(cred)); 620 goto done; 621 } 622 623 /* 624 * If the outgoing interface on the route found is not 625 * a loopback interface, use the address from that interface. 626 * In case of jails do those three steps: 627 * 1. check if the interface address belongs to the jail. If so use it. 628 * 2. check if we have any address on the outgoing interface 629 * belonging to this jail. If so use it. 630 * 3. as a last resort return the 'default' jail address. 631 */ 632 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { 633 634 /* If not jailed, use the default returned. */ 635 if (cred == NULL || !jailed(cred)) { 636 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 637 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 638 goto done; 639 } 640 641 /* Jailed. */ 642 /* 1. Check if the iface address belongs to the jail. */ 643 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; 644 if (htonl(prison_getip(cred)) == sin->sin_addr.s_addr) { 645 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 646 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 647 goto done; 648 } 649 650 /* 651 * 2. Check if we have any address on the outgoing interface 652 * belonging to this jail. 653 */ 654 TAILQ_FOREACH(ifa, &sro.ro_rt->rt_ifp->if_addrhead, ifa_link) { 655 656 sa = ifa->ifa_addr; 657 if (sa->sa_family != AF_INET) 658 continue; 659 sin = (struct sockaddr_in *)sa; 660 if (htonl(prison_getip(cred)) == sin->sin_addr.s_addr) { 661 ia = (struct in_ifaddr *)ifa; 662 break; 663 } 664 } 665 if (ia != NULL) { 666 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 667 goto done; 668 } 669 670 /* 3. As a last resort return the 'default' jail address. */ 671 laddr->s_addr = htonl(prison_getip(cred)); 672 goto done; 673 } 674 675 /* 676 * The outgoing interface is marked with 'loopback net', so a route 677 * to ourselves is here. 678 * Try to find the interface of the destination address and then 679 * take the address from there. That interface is not necessarily 680 * a loopback interface. 681 * In case of jails, check that it is an address of the jail 682 * and if we cannot find, fall back to the 'default' jail address. 683 */ 684 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 685 struct sockaddr_in sain; 686 687 bzero(&sain, sizeof(struct sockaddr_in)); 688 sain.sin_family = AF_INET; 689 sain.sin_len = sizeof(struct sockaddr_in); 690 sain.sin_addr.s_addr = faddr->s_addr; 691 692 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain))); 693 if (ia == NULL) 694 ia = ifatoia(ifa_ifwithnet(sintosa(&sain))); 695 696 if (cred == NULL || !jailed(cred)) { 697 if (ia == NULL) { 698 error = ENETUNREACH; 699 goto done; 700 } 701 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 702 goto done; 703 } 704 705 /* Jailed. */ 706 if (ia != NULL) { 707 struct ifnet *ifp; 708 709 ifp = ia->ia_ifp; 710 ia = NULL; 711 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 712 713 sa = ifa->ifa_addr; 714 if (sa->sa_family != AF_INET) 715 continue; 716 sin = (struct sockaddr_in *)sa; 717 if (htonl(prison_getip(cred)) == 718 sin->sin_addr.s_addr) { 719 ia = (struct in_ifaddr *)ifa; 720 break; 721 } 722 } 723 if (ia != NULL) { 724 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 725 goto done; 726 } 727 } 728 729 /* 3. As a last resort return the 'default' jail address. */ 730 laddr->s_addr = htonl(prison_getip(cred)); 731 goto done; 732 } 733 734 done: 735 if (sro.ro_rt != NULL) 736 RTFREE(sro.ro_rt); 737 return (error); 738 } 739 740 /* 741 * Set up for a connect from a socket to the specified address. 742 * On entry, *laddrp and *lportp should contain the current local 743 * address and port for the PCB; these are updated to the values 744 * that should be placed in inp_laddr and inp_lport to complete 745 * the connect. 746 * 747 * On success, *faddrp and *fportp will be set to the remote address 748 * and port. These are not updated in the error case. 749 * 750 * If the operation fails because the connection already exists, 751 * *oinpp will be set to the PCB of that connection so that the 752 * caller can decide to override it. In all other cases, *oinpp 753 * is set to NULL. 754 */ 755 int 756 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 757 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 758 struct inpcb **oinpp, struct ucred *cred) 759 { 760 INIT_VNET_INET(inp->inp_vnet); 761 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 762 struct in_ifaddr *ia; 763 struct inpcb *oinp; 764 struct in_addr laddr, faddr; 765 u_short lport, fport; 766 int error; 767 768 /* 769 * Because a global state change doesn't actually occur here, a read 770 * lock is sufficient. 771 */ 772 INP_INFO_LOCK_ASSERT(inp->inp_pcbinfo); 773 INP_LOCK_ASSERT(inp); 774 775 if (oinpp != NULL) 776 *oinpp = NULL; 777 if (nam->sa_len != sizeof (*sin)) 778 return (EINVAL); 779 if (sin->sin_family != AF_INET) 780 return (EAFNOSUPPORT); 781 if (sin->sin_port == 0) 782 return (EADDRNOTAVAIL); 783 laddr.s_addr = *laddrp; 784 lport = *lportp; 785 faddr = sin->sin_addr; 786 fport = sin->sin_port; 787 788 if (!TAILQ_EMPTY(&V_in_ifaddrhead)) { 789 /* 790 * If the destination address is INADDR_ANY, 791 * use the primary local address. 792 * If the supplied address is INADDR_BROADCAST, 793 * and the primary interface supports broadcast, 794 * choose the broadcast address for that interface. 795 */ 796 if (faddr.s_addr == INADDR_ANY) 797 faddr = IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 798 else if (faddr.s_addr == (u_long)INADDR_BROADCAST && 799 (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 800 IFF_BROADCAST)) 801 faddr = satosin(&TAILQ_FIRST( 802 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 803 } 804 if (laddr.s_addr == INADDR_ANY) { 805 error = in_pcbladdr(inp, &faddr, &laddr, cred); 806 if (error) 807 return (error); 808 809 /* 810 * If the destination address is multicast and an outgoing 811 * interface has been set as a multicast option, use the 812 * address of that interface as our source address. 813 */ 814 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 815 inp->inp_moptions != NULL) { 816 struct ip_moptions *imo; 817 struct ifnet *ifp; 818 819 imo = inp->inp_moptions; 820 if (imo->imo_multicast_ifp != NULL) { 821 ifp = imo->imo_multicast_ifp; 822 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) 823 if (ia->ia_ifp == ifp) 824 break; 825 if (ia == NULL) 826 return (EADDRNOTAVAIL); 827 laddr = ia->ia_addr.sin_addr; 828 } 829 } 830 } 831 832 oinp = in_pcblookup_hash(inp->inp_pcbinfo, faddr, fport, laddr, lport, 833 0, NULL); 834 if (oinp != NULL) { 835 if (oinpp != NULL) 836 *oinpp = oinp; 837 return (EADDRINUSE); 838 } 839 if (lport == 0) { 840 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 841 cred); 842 if (error) 843 return (error); 844 } 845 *laddrp = laddr.s_addr; 846 *lportp = lport; 847 *faddrp = faddr.s_addr; 848 *fportp = fport; 849 return (0); 850 } 851 852 void 853 in_pcbdisconnect(struct inpcb *inp) 854 { 855 856 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 857 INP_WLOCK_ASSERT(inp); 858 859 inp->inp_faddr.s_addr = INADDR_ANY; 860 inp->inp_fport = 0; 861 in_pcbrehash(inp); 862 } 863 864 /* 865 * Historically, in_pcbdetach() included the functionality now found in 866 * in_pcbfree() and in_pcbdrop(). They are now broken out to reflect the 867 * more complex life cycle of TCP. 868 * 869 * in_pcbdetach() is responsibe for disconnecting the socket from an inpcb. 870 * For most protocols, this will be invoked immediately prior to calling 871 * in_pcbfree(). However, for TCP the inpcb may significantly outlive the 872 * socket, in which case in_pcbfree() may be deferred. 873 */ 874 void 875 in_pcbdetach(struct inpcb *inp) 876 { 877 878 KASSERT(inp->inp_socket != NULL, ("in_pcbdetach: inp_socket == NULL")); 879 880 inp->inp_socket->so_pcb = NULL; 881 inp->inp_socket = NULL; 882 } 883 884 /* 885 * in_pcbfree() is responsible for freeing an already-detached inpcb, as well 886 * as removing it from any global inpcb lists it might be on. 887 */ 888 void 889 in_pcbfree(struct inpcb *inp) 890 { 891 struct inpcbinfo *ipi = inp->inp_pcbinfo; 892 893 KASSERT(inp->inp_socket == NULL, ("in_pcbfree: inp_socket != NULL")); 894 895 INP_INFO_WLOCK_ASSERT(ipi); 896 INP_WLOCK_ASSERT(inp); 897 898 #ifdef IPSEC 899 ipsec4_delete_pcbpolicy(inp); 900 #endif /*IPSEC*/ 901 inp->inp_gencnt = ++ipi->ipi_gencnt; 902 in_pcbremlists(inp); 903 if (inp->inp_options) 904 (void)m_free(inp->inp_options); 905 if (inp->inp_moptions != NULL) 906 inp_freemoptions(inp->inp_moptions); 907 inp->inp_vflag = 0; 908 crfree(inp->inp_cred); 909 910 #ifdef MAC 911 mac_inpcb_destroy(inp); 912 #endif 913 INP_WUNLOCK(inp); 914 uma_zfree(ipi->ipi_zone, inp); 915 } 916 917 /* 918 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 919 * port reservation, and preventing it from being returned by inpcb lookups. 920 * 921 * It is used by TCP to mark an inpcb as unused and avoid future packet 922 * delivery or event notification when a socket remains open but TCP has 923 * closed. This might occur as a result of a shutdown()-initiated TCP close 924 * or a RST on the wire, and allows the port binding to be reused while still 925 * maintaining the invariant that so_pcb always points to a valid inpcb until 926 * in_pcbdetach(). 927 * 928 * XXXRW: An inp_lport of 0 is used to indicate that the inpcb is not on hash 929 * lists, but can lead to confusing netstat output, as open sockets with 930 * closed TCP connections will no longer appear to have their bound port 931 * number. An explicit flag would be better, as it would allow us to leave 932 * the port number intact after the connection is dropped. 933 * 934 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 935 * in_pcbnotifyall() and in_pcbpurgeif0()? 936 */ 937 void 938 in_pcbdrop(struct inpcb *inp) 939 { 940 941 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 942 INP_WLOCK_ASSERT(inp); 943 944 inp->inp_vflag |= INP_DROPPED; 945 if (inp->inp_lport) { 946 struct inpcbport *phd = inp->inp_phd; 947 948 LIST_REMOVE(inp, inp_hash); 949 LIST_REMOVE(inp, inp_portlist); 950 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 951 LIST_REMOVE(phd, phd_hash); 952 free(phd, M_PCB); 953 } 954 inp->inp_lport = 0; 955 } 956 } 957 958 /* 959 * Common routines to return the socket addresses associated with inpcbs. 960 */ 961 struct sockaddr * 962 in_sockaddr(in_port_t port, struct in_addr *addr_p) 963 { 964 struct sockaddr_in *sin; 965 966 sin = malloc(sizeof *sin, M_SONAME, 967 M_WAITOK | M_ZERO); 968 sin->sin_family = AF_INET; 969 sin->sin_len = sizeof(*sin); 970 sin->sin_addr = *addr_p; 971 sin->sin_port = port; 972 973 return (struct sockaddr *)sin; 974 } 975 976 int 977 in_getsockaddr(struct socket *so, struct sockaddr **nam) 978 { 979 struct inpcb *inp; 980 struct in_addr addr; 981 in_port_t port; 982 983 inp = sotoinpcb(so); 984 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 985 986 INP_RLOCK(inp); 987 port = inp->inp_lport; 988 addr = inp->inp_laddr; 989 INP_RUNLOCK(inp); 990 991 *nam = in_sockaddr(port, &addr); 992 return 0; 993 } 994 995 int 996 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 997 { 998 struct inpcb *inp; 999 struct in_addr addr; 1000 in_port_t port; 1001 1002 inp = sotoinpcb(so); 1003 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1004 1005 INP_RLOCK(inp); 1006 port = inp->inp_fport; 1007 addr = inp->inp_faddr; 1008 INP_RUNLOCK(inp); 1009 1010 *nam = in_sockaddr(port, &addr); 1011 return 0; 1012 } 1013 1014 void 1015 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1016 struct inpcb *(*notify)(struct inpcb *, int)) 1017 { 1018 struct inpcb *inp, *inp_temp; 1019 1020 INP_INFO_WLOCK(pcbinfo); 1021 LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1022 INP_WLOCK(inp); 1023 #ifdef INET6 1024 if ((inp->inp_vflag & INP_IPV4) == 0) { 1025 INP_WUNLOCK(inp); 1026 continue; 1027 } 1028 #endif 1029 if (inp->inp_faddr.s_addr != faddr.s_addr || 1030 inp->inp_socket == NULL) { 1031 INP_WUNLOCK(inp); 1032 continue; 1033 } 1034 if ((*notify)(inp, errno)) 1035 INP_WUNLOCK(inp); 1036 } 1037 INP_INFO_WUNLOCK(pcbinfo); 1038 } 1039 1040 void 1041 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1042 { 1043 struct inpcb *inp; 1044 struct ip_moptions *imo; 1045 int i, gap; 1046 1047 INP_INFO_RLOCK(pcbinfo); 1048 LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1049 INP_WLOCK(inp); 1050 imo = inp->inp_moptions; 1051 if ((inp->inp_vflag & INP_IPV4) && 1052 imo != NULL) { 1053 /* 1054 * Unselect the outgoing interface if it is being 1055 * detached. 1056 */ 1057 if (imo->imo_multicast_ifp == ifp) 1058 imo->imo_multicast_ifp = NULL; 1059 1060 /* 1061 * Drop multicast group membership if we joined 1062 * through the interface being detached. 1063 */ 1064 for (i = 0, gap = 0; i < imo->imo_num_memberships; 1065 i++) { 1066 if (imo->imo_membership[i]->inm_ifp == ifp) { 1067 in_delmulti(imo->imo_membership[i]); 1068 gap++; 1069 } else if (gap != 0) 1070 imo->imo_membership[i - gap] = 1071 imo->imo_membership[i]; 1072 } 1073 imo->imo_num_memberships -= gap; 1074 } 1075 INP_WUNLOCK(inp); 1076 } 1077 INP_INFO_RUNLOCK(pcbinfo); 1078 } 1079 1080 /* 1081 * Lookup a PCB based on the local address and port. 1082 */ 1083 #define INP_LOOKUP_MAPPED_PCB_COST 3 1084 struct inpcb * 1085 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1086 u_short lport, int wild_okay, struct ucred *cred) 1087 { 1088 struct inpcb *inp; 1089 #ifdef INET6 1090 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1091 #else 1092 int matchwild = 3; 1093 #endif 1094 int wildcard; 1095 1096 INP_INFO_LOCK_ASSERT(pcbinfo); 1097 1098 if (!wild_okay) { 1099 struct inpcbhead *head; 1100 /* 1101 * Look for an unconnected (wildcard foreign addr) PCB that 1102 * matches the local address and port we're looking for. 1103 */ 1104 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1105 0, pcbinfo->ipi_hashmask)]; 1106 LIST_FOREACH(inp, head, inp_hash) { 1107 #ifdef INET6 1108 if ((inp->inp_vflag & INP_IPV4) == 0) 1109 continue; 1110 #endif 1111 if (inp->inp_faddr.s_addr == INADDR_ANY && 1112 inp->inp_laddr.s_addr == laddr.s_addr && 1113 inp->inp_lport == lport) { 1114 /* 1115 * Found. 1116 */ 1117 return (inp); 1118 } 1119 } 1120 /* 1121 * Not found. 1122 */ 1123 return (NULL); 1124 } else { 1125 struct inpcbporthead *porthash; 1126 struct inpcbport *phd; 1127 struct inpcb *match = NULL; 1128 /* 1129 * Best fit PCB lookup. 1130 * 1131 * First see if this local port is in use by looking on the 1132 * port hash list. 1133 */ 1134 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1135 pcbinfo->ipi_porthashmask)]; 1136 LIST_FOREACH(phd, porthash, phd_hash) { 1137 if (phd->phd_port == lport) 1138 break; 1139 } 1140 if (phd != NULL) { 1141 /* 1142 * Port is in use by one or more PCBs. Look for best 1143 * fit. 1144 */ 1145 LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1146 wildcard = 0; 1147 #ifdef INET6 1148 if ((inp->inp_vflag & INP_IPV4) == 0) 1149 continue; 1150 /* 1151 * We never select the PCB that has 1152 * INP_IPV6 flag and is bound to :: if 1153 * we have another PCB which is bound 1154 * to 0.0.0.0. If a PCB has the 1155 * INP_IPV6 flag, then we set its cost 1156 * higher than IPv4 only PCBs. 1157 * 1158 * Note that the case only happens 1159 * when a socket is bound to ::, under 1160 * the condition that the use of the 1161 * mapped address is allowed. 1162 */ 1163 if ((inp->inp_vflag & INP_IPV6) != 0) 1164 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1165 #endif 1166 if (inp->inp_faddr.s_addr != INADDR_ANY) 1167 wildcard++; 1168 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1169 if (laddr.s_addr == INADDR_ANY) 1170 wildcard++; 1171 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1172 continue; 1173 } else { 1174 if (laddr.s_addr != INADDR_ANY) 1175 wildcard++; 1176 } 1177 if (wildcard < matchwild) { 1178 match = inp; 1179 matchwild = wildcard; 1180 if (matchwild == 0) { 1181 break; 1182 } 1183 } 1184 } 1185 } 1186 return (match); 1187 } 1188 } 1189 #undef INP_LOOKUP_MAPPED_PCB_COST 1190 1191 /* 1192 * Lookup PCB in hash list. 1193 */ 1194 struct inpcb * 1195 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1196 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard, 1197 struct ifnet *ifp) 1198 { 1199 struct inpcbhead *head; 1200 struct inpcb *inp; 1201 u_short fport = fport_arg, lport = lport_arg; 1202 1203 INP_INFO_LOCK_ASSERT(pcbinfo); 1204 1205 /* 1206 * First look for an exact match. 1207 */ 1208 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1209 pcbinfo->ipi_hashmask)]; 1210 LIST_FOREACH(inp, head, inp_hash) { 1211 #ifdef INET6 1212 if ((inp->inp_vflag & INP_IPV4) == 0) 1213 continue; 1214 #endif 1215 if (inp->inp_faddr.s_addr == faddr.s_addr && 1216 inp->inp_laddr.s_addr == laddr.s_addr && 1217 inp->inp_fport == fport && 1218 inp->inp_lport == lport) 1219 return (inp); 1220 } 1221 1222 /* 1223 * Then look for a wildcard match, if requested. 1224 */ 1225 if (wildcard) { 1226 struct inpcb *local_wild = NULL; 1227 #ifdef INET6 1228 struct inpcb *local_wild_mapped = NULL; 1229 #endif 1230 1231 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1232 0, pcbinfo->ipi_hashmask)]; 1233 LIST_FOREACH(inp, head, inp_hash) { 1234 #ifdef INET6 1235 if ((inp->inp_vflag & INP_IPV4) == 0) 1236 continue; 1237 #endif 1238 if (inp->inp_faddr.s_addr == INADDR_ANY && 1239 inp->inp_lport == lport) { 1240 if (ifp && ifp->if_type == IFT_FAITH && 1241 (inp->inp_flags & INP_FAITH) == 0) 1242 continue; 1243 if (inp->inp_laddr.s_addr == laddr.s_addr) 1244 return (inp); 1245 else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1246 #ifdef INET6 1247 if (INP_CHECK_SOCKAF(inp->inp_socket, 1248 AF_INET6)) 1249 local_wild_mapped = inp; 1250 else 1251 #endif 1252 local_wild = inp; 1253 } 1254 } 1255 } 1256 #ifdef INET6 1257 if (local_wild == NULL) 1258 return (local_wild_mapped); 1259 #endif 1260 return (local_wild); 1261 } 1262 return (NULL); 1263 } 1264 1265 /* 1266 * Insert PCB onto various hash lists. 1267 */ 1268 int 1269 in_pcbinshash(struct inpcb *inp) 1270 { 1271 struct inpcbhead *pcbhash; 1272 struct inpcbporthead *pcbporthash; 1273 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1274 struct inpcbport *phd; 1275 u_int32_t hashkey_faddr; 1276 1277 INP_INFO_WLOCK_ASSERT(pcbinfo); 1278 INP_WLOCK_ASSERT(inp); 1279 1280 #ifdef INET6 1281 if (inp->inp_vflag & INP_IPV6) 1282 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; 1283 else 1284 #endif /* INET6 */ 1285 hashkey_faddr = inp->inp_faddr.s_addr; 1286 1287 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 1288 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 1289 1290 pcbporthash = &pcbinfo->ipi_porthashbase[ 1291 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 1292 1293 /* 1294 * Go through port list and look for a head for this lport. 1295 */ 1296 LIST_FOREACH(phd, pcbporthash, phd_hash) { 1297 if (phd->phd_port == inp->inp_lport) 1298 break; 1299 } 1300 /* 1301 * If none exists, malloc one and tack it on. 1302 */ 1303 if (phd == NULL) { 1304 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 1305 if (phd == NULL) { 1306 return (ENOBUFS); /* XXX */ 1307 } 1308 phd->phd_port = inp->inp_lport; 1309 LIST_INIT(&phd->phd_pcblist); 1310 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 1311 } 1312 inp->inp_phd = phd; 1313 LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 1314 LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 1315 return (0); 1316 } 1317 1318 /* 1319 * Move PCB to the proper hash bucket when { faddr, fport } have been 1320 * changed. NOTE: This does not handle the case of the lport changing (the 1321 * hashed port list would have to be updated as well), so the lport must 1322 * not change after in_pcbinshash() has been called. 1323 */ 1324 void 1325 in_pcbrehash(struct inpcb *inp) 1326 { 1327 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1328 struct inpcbhead *head; 1329 u_int32_t hashkey_faddr; 1330 1331 INP_INFO_WLOCK_ASSERT(pcbinfo); 1332 INP_WLOCK_ASSERT(inp); 1333 1334 #ifdef INET6 1335 if (inp->inp_vflag & INP_IPV6) 1336 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; 1337 else 1338 #endif /* INET6 */ 1339 hashkey_faddr = inp->inp_faddr.s_addr; 1340 1341 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 1342 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 1343 1344 LIST_REMOVE(inp, inp_hash); 1345 LIST_INSERT_HEAD(head, inp, inp_hash); 1346 } 1347 1348 /* 1349 * Remove PCB from various lists. 1350 */ 1351 void 1352 in_pcbremlists(struct inpcb *inp) 1353 { 1354 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1355 1356 INP_INFO_WLOCK_ASSERT(pcbinfo); 1357 INP_WLOCK_ASSERT(inp); 1358 1359 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1360 if (inp->inp_lport) { 1361 struct inpcbport *phd = inp->inp_phd; 1362 1363 LIST_REMOVE(inp, inp_hash); 1364 LIST_REMOVE(inp, inp_portlist); 1365 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 1366 LIST_REMOVE(phd, phd_hash); 1367 free(phd, M_PCB); 1368 } 1369 } 1370 LIST_REMOVE(inp, inp_list); 1371 pcbinfo->ipi_count--; 1372 } 1373 1374 /* 1375 * A set label operation has occurred at the socket layer, propagate the 1376 * label change into the in_pcb for the socket. 1377 */ 1378 void 1379 in_pcbsosetlabel(struct socket *so) 1380 { 1381 #ifdef MAC 1382 struct inpcb *inp; 1383 1384 inp = sotoinpcb(so); 1385 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 1386 1387 INP_WLOCK(inp); 1388 SOCK_LOCK(so); 1389 mac_inpcb_sosetlabel(so, inp); 1390 SOCK_UNLOCK(so); 1391 INP_WUNLOCK(inp); 1392 #endif 1393 } 1394 1395 /* 1396 * ipport_tick runs once per second, determining if random port allocation 1397 * should be continued. If more than ipport_randomcps ports have been 1398 * allocated in the last second, then we return to sequential port 1399 * allocation. We return to random allocation only once we drop below 1400 * ipport_randomcps for at least ipport_randomtime seconds. 1401 */ 1402 void 1403 ipport_tick(void *xtp) 1404 { 1405 VNET_ITERATOR_DECL(vnet_iter); 1406 1407 VNET_LIST_RLOCK(); 1408 VNET_FOREACH(vnet_iter) { 1409 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 1410 INIT_VNET_INET(vnet_iter); 1411 if (V_ipport_tcpallocs <= 1412 V_ipport_tcplastcount + V_ipport_randomcps) { 1413 if (V_ipport_stoprandom > 0) 1414 V_ipport_stoprandom--; 1415 } else 1416 V_ipport_stoprandom = V_ipport_randomtime; 1417 V_ipport_tcplastcount = V_ipport_tcpallocs; 1418 CURVNET_RESTORE(); 1419 } 1420 VNET_LIST_RUNLOCK(); 1421 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 1422 } 1423 1424 void 1425 inp_wlock(struct inpcb *inp) 1426 { 1427 1428 INP_WLOCK(inp); 1429 } 1430 1431 void 1432 inp_wunlock(struct inpcb *inp) 1433 { 1434 1435 INP_WUNLOCK(inp); 1436 } 1437 1438 void 1439 inp_rlock(struct inpcb *inp) 1440 { 1441 1442 INP_RLOCK(inp); 1443 } 1444 1445 void 1446 inp_runlock(struct inpcb *inp) 1447 { 1448 1449 INP_RUNLOCK(inp); 1450 } 1451 1452 #ifdef INVARIANTS 1453 void 1454 inp_lock_assert(struct inpcb *inp) 1455 { 1456 1457 INP_WLOCK_ASSERT(inp); 1458 } 1459 1460 void 1461 inp_unlock_assert(struct inpcb *inp) 1462 { 1463 1464 INP_UNLOCK_ASSERT(inp); 1465 } 1466 #endif 1467 1468 void 1469 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 1470 { 1471 INIT_VNET_INET(curvnet); 1472 struct inpcb *inp; 1473 1474 INP_INFO_RLOCK(&V_tcbinfo); 1475 LIST_FOREACH(inp, tcbinfo.ipi_listhead, inp_list) { 1476 INP_WLOCK(inp); 1477 func(inp, arg); 1478 INP_WUNLOCK(inp); 1479 } 1480 INP_INFO_RUNLOCK(&V_tcbinfo); 1481 } 1482 1483 struct socket * 1484 inp_inpcbtosocket(struct inpcb *inp) 1485 { 1486 1487 INP_WLOCK_ASSERT(inp); 1488 return (inp->inp_socket); 1489 } 1490 1491 struct tcpcb * 1492 inp_inpcbtotcpcb(struct inpcb *inp) 1493 { 1494 1495 INP_WLOCK_ASSERT(inp); 1496 return ((struct tcpcb *)inp->inp_ppcb); 1497 } 1498 1499 int 1500 inp_ip_tos_get(const struct inpcb *inp) 1501 { 1502 1503 return (inp->inp_ip_tos); 1504 } 1505 1506 void 1507 inp_ip_tos_set(struct inpcb *inp, int val) 1508 { 1509 1510 inp->inp_ip_tos = val; 1511 } 1512 1513 void 1514 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 1515 uint32_t *faddr, uint16_t *fp) 1516 { 1517 1518 INP_LOCK_ASSERT(inp); 1519 *laddr = inp->inp_laddr.s_addr; 1520 *faddr = inp->inp_faddr.s_addr; 1521 *lp = inp->inp_lport; 1522 *fp = inp->inp_fport; 1523 } 1524 1525 struct inpcb * 1526 so_sotoinpcb(struct socket *so) 1527 { 1528 1529 return (sotoinpcb(so)); 1530 } 1531 1532 struct tcpcb * 1533 so_sototcpcb(struct socket *so) 1534 { 1535 1536 return (sototcpcb(so)); 1537 } 1538 1539 #ifdef DDB 1540 static void 1541 db_print_indent(int indent) 1542 { 1543 int i; 1544 1545 for (i = 0; i < indent; i++) 1546 db_printf(" "); 1547 } 1548 1549 static void 1550 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 1551 { 1552 char faddr_str[48], laddr_str[48]; 1553 1554 db_print_indent(indent); 1555 db_printf("%s at %p\n", name, inc); 1556 1557 indent += 2; 1558 1559 #ifdef INET6 1560 if (inc->inc_flags == 1) { 1561 /* IPv6. */ 1562 ip6_sprintf(laddr_str, &inc->inc6_laddr); 1563 ip6_sprintf(faddr_str, &inc->inc6_faddr); 1564 } else { 1565 #endif 1566 /* IPv4. */ 1567 inet_ntoa_r(inc->inc_laddr, laddr_str); 1568 inet_ntoa_r(inc->inc_faddr, faddr_str); 1569 #ifdef INET6 1570 } 1571 #endif 1572 db_print_indent(indent); 1573 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 1574 ntohs(inc->inc_lport)); 1575 db_print_indent(indent); 1576 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 1577 ntohs(inc->inc_fport)); 1578 } 1579 1580 static void 1581 db_print_inpflags(int inp_flags) 1582 { 1583 int comma; 1584 1585 comma = 0; 1586 if (inp_flags & INP_RECVOPTS) { 1587 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 1588 comma = 1; 1589 } 1590 if (inp_flags & INP_RECVRETOPTS) { 1591 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 1592 comma = 1; 1593 } 1594 if (inp_flags & INP_RECVDSTADDR) { 1595 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 1596 comma = 1; 1597 } 1598 if (inp_flags & INP_HDRINCL) { 1599 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 1600 comma = 1; 1601 } 1602 if (inp_flags & INP_HIGHPORT) { 1603 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 1604 comma = 1; 1605 } 1606 if (inp_flags & INP_LOWPORT) { 1607 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 1608 comma = 1; 1609 } 1610 if (inp_flags & INP_ANONPORT) { 1611 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 1612 comma = 1; 1613 } 1614 if (inp_flags & INP_RECVIF) { 1615 db_printf("%sINP_RECVIF", comma ? ", " : ""); 1616 comma = 1; 1617 } 1618 if (inp_flags & INP_MTUDISC) { 1619 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 1620 comma = 1; 1621 } 1622 if (inp_flags & INP_FAITH) { 1623 db_printf("%sINP_FAITH", comma ? ", " : ""); 1624 comma = 1; 1625 } 1626 if (inp_flags & INP_RECVTTL) { 1627 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 1628 comma = 1; 1629 } 1630 if (inp_flags & INP_DONTFRAG) { 1631 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 1632 comma = 1; 1633 } 1634 if (inp_flags & IN6P_IPV6_V6ONLY) { 1635 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 1636 comma = 1; 1637 } 1638 if (inp_flags & IN6P_PKTINFO) { 1639 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 1640 comma = 1; 1641 } 1642 if (inp_flags & IN6P_HOPLIMIT) { 1643 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 1644 comma = 1; 1645 } 1646 if (inp_flags & IN6P_HOPOPTS) { 1647 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 1648 comma = 1; 1649 } 1650 if (inp_flags & IN6P_DSTOPTS) { 1651 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 1652 comma = 1; 1653 } 1654 if (inp_flags & IN6P_RTHDR) { 1655 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 1656 comma = 1; 1657 } 1658 if (inp_flags & IN6P_RTHDRDSTOPTS) { 1659 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 1660 comma = 1; 1661 } 1662 if (inp_flags & IN6P_TCLASS) { 1663 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 1664 comma = 1; 1665 } 1666 if (inp_flags & IN6P_AUTOFLOWLABEL) { 1667 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 1668 comma = 1; 1669 } 1670 if (inp_flags & IN6P_RFC2292) { 1671 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 1672 comma = 1; 1673 } 1674 if (inp_flags & IN6P_MTU) { 1675 db_printf("IN6P_MTU%s", comma ? ", " : ""); 1676 comma = 1; 1677 } 1678 } 1679 1680 static void 1681 db_print_inpvflag(u_char inp_vflag) 1682 { 1683 int comma; 1684 1685 comma = 0; 1686 if (inp_vflag & INP_IPV4) { 1687 db_printf("%sINP_IPV4", comma ? ", " : ""); 1688 comma = 1; 1689 } 1690 if (inp_vflag & INP_IPV6) { 1691 db_printf("%sINP_IPV6", comma ? ", " : ""); 1692 comma = 1; 1693 } 1694 if (inp_vflag & INP_IPV6PROTO) { 1695 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 1696 comma = 1; 1697 } 1698 if (inp_vflag & INP_TIMEWAIT) { 1699 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 1700 comma = 1; 1701 } 1702 if (inp_vflag & INP_ONESBCAST) { 1703 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 1704 comma = 1; 1705 } 1706 if (inp_vflag & INP_DROPPED) { 1707 db_printf("%sINP_DROPPED", comma ? ", " : ""); 1708 comma = 1; 1709 } 1710 if (inp_vflag & INP_SOCKREF) { 1711 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 1712 comma = 1; 1713 } 1714 } 1715 1716 void 1717 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 1718 { 1719 1720 db_print_indent(indent); 1721 db_printf("%s at %p\n", name, inp); 1722 1723 indent += 2; 1724 1725 db_print_indent(indent); 1726 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 1727 1728 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 1729 1730 db_print_indent(indent); 1731 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 1732 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 1733 1734 db_print_indent(indent); 1735 db_printf("inp_label: %p inp_flags: 0x%x (", 1736 inp->inp_label, inp->inp_flags); 1737 db_print_inpflags(inp->inp_flags); 1738 db_printf(")\n"); 1739 1740 db_print_indent(indent); 1741 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 1742 inp->inp_vflag); 1743 db_print_inpvflag(inp->inp_vflag); 1744 db_printf(")\n"); 1745 1746 db_print_indent(indent); 1747 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 1748 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 1749 1750 db_print_indent(indent); 1751 #ifdef INET6 1752 if (inp->inp_vflag & INP_IPV6) { 1753 db_printf("in6p_options: %p in6p_outputopts: %p " 1754 "in6p_moptions: %p\n", inp->in6p_options, 1755 inp->in6p_outputopts, inp->in6p_moptions); 1756 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 1757 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 1758 inp->in6p_hops); 1759 } else 1760 #endif 1761 { 1762 db_printf("inp_ip_tos: %d inp_ip_options: %p " 1763 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 1764 inp->inp_options, inp->inp_moptions); 1765 } 1766 1767 db_print_indent(indent); 1768 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 1769 (uintmax_t)inp->inp_gencnt); 1770 } 1771 1772 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 1773 { 1774 struct inpcb *inp; 1775 1776 if (!have_addr) { 1777 db_printf("usage: show inpcb <addr>\n"); 1778 return; 1779 } 1780 inp = (struct inpcb *)addr; 1781 1782 db_print_inpcb(inp, "inpcb", 0); 1783 } 1784 #endif 1785