xref: /freebsd/sys/netinet/in_pcb.c (revision a743df5c964d81a7c920cf257e87cb42ab993d58)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
30  * $FreeBSD$
31  */
32 
33 #include "opt_ipsec.h"
34 #include "opt_inet6.h"
35 #include "opt_mac.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/mac.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/domain.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <sys/proc.h>
47 #include <sys/jail.h>
48 #include <sys/kernel.h>
49 #include <sys/sysctl.h>
50 
51 #include <vm/uma.h>
52 
53 #include <net/if.h>
54 #include <net/if_types.h>
55 #include <net/route.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_pcb.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip_var.h>
61 #include <netinet/tcp_var.h>
62 #include <netinet/udp.h>
63 #include <netinet/udp_var.h>
64 #ifdef INET6
65 #include <netinet/ip6.h>
66 #include <netinet6/ip6_var.h>
67 #endif /* INET6 */
68 
69 #ifdef IPSEC
70 #include <netinet6/ipsec.h>
71 #include <netkey/key.h>
72 #endif /* IPSEC */
73 
74 #ifdef FAST_IPSEC
75 #if defined(IPSEC) || defined(IPSEC_ESP)
76 #error "Bad idea: don't compile with both IPSEC and FAST_IPSEC!"
77 #endif
78 
79 #include <netipsec/ipsec.h>
80 #include <netipsec/key.h>
81 #endif /* FAST_IPSEC */
82 
83 /*
84  * These configure the range of local port addresses assigned to
85  * "unspecified" outgoing connections/packets/whatever.
86  */
87 int	ipport_lowfirstauto  = IPPORT_RESERVED - 1;	/* 1023 */
88 int	ipport_lowlastauto = IPPORT_RESERVEDSTART;	/* 600 */
89 int	ipport_firstauto = IPPORT_HIFIRSTAUTO;		/* 49152 */
90 int	ipport_lastauto  = IPPORT_HILASTAUTO;		/* 65535 */
91 int	ipport_hifirstauto = IPPORT_HIFIRSTAUTO;	/* 49152 */
92 int	ipport_hilastauto  = IPPORT_HILASTAUTO;		/* 65535 */
93 
94 /*
95  * Reserved ports accessible only to root. There are significant
96  * security considerations that must be accounted for when changing these,
97  * but the security benefits can be great. Please be careful.
98  */
99 int	ipport_reservedhigh = IPPORT_RESERVED - 1;	/* 1023 */
100 int	ipport_reservedlow = 0;
101 
102 /* Variables dealing with random ephemeral port allocation. */
103 int	ipport_randomized = 1;	/* user controlled via sysctl */
104 int	ipport_randomcps = 10;	/* user controlled via sysctl */
105 int	ipport_randomtime = 45;	/* user controlled via sysctl */
106 int	ipport_stoprandom = 0;	/* toggled by ipport_tick */
107 int	ipport_tcpallocs;
108 int	ipport_tcplastcount;
109 
110 #define RANGECHK(var, min, max) \
111 	if ((var) < (min)) { (var) = (min); } \
112 	else if ((var) > (max)) { (var) = (max); }
113 
114 static int
115 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
116 {
117 	int error;
118 
119 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
120 	if (error == 0) {
121 		RANGECHK(ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
122 		RANGECHK(ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
123 		RANGECHK(ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
124 		RANGECHK(ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
125 		RANGECHK(ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
126 		RANGECHK(ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
127 	}
128 	return (error);
129 }
130 
131 #undef RANGECHK
132 
133 SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports");
134 
135 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLTYPE_INT|CTLFLAG_RW,
136 	   &ipport_lowfirstauto, 0, &sysctl_net_ipport_check, "I", "");
137 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLTYPE_INT|CTLFLAG_RW,
138 	   &ipport_lowlastauto, 0, &sysctl_net_ipport_check, "I", "");
139 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLTYPE_INT|CTLFLAG_RW,
140 	   &ipport_firstauto, 0, &sysctl_net_ipport_check, "I", "");
141 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLTYPE_INT|CTLFLAG_RW,
142 	   &ipport_lastauto, 0, &sysctl_net_ipport_check, "I", "");
143 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLTYPE_INT|CTLFLAG_RW,
144 	   &ipport_hifirstauto, 0, &sysctl_net_ipport_check, "I", "");
145 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLTYPE_INT|CTLFLAG_RW,
146 	   &ipport_hilastauto, 0, &sysctl_net_ipport_check, "I", "");
147 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
148 	   CTLFLAG_RW|CTLFLAG_SECURE, &ipport_reservedhigh, 0, "");
149 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
150 	   CTLFLAG_RW|CTLFLAG_SECURE, &ipport_reservedlow, 0, "");
151 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW,
152 	   &ipport_randomized, 0, "Enable random port allocation");
153 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW,
154 	   &ipport_randomcps, 0, "Maximum number of random port "
155 	   "allocations before switching to a sequental one");
156 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW,
157 	   &ipport_randomtime, 0, "Minimum time to keep sequental port "
158 	   "allocation before switching to a random one");
159 
160 /*
161  * in_pcb.c: manage the Protocol Control Blocks.
162  *
163  * NOTE: It is assumed that most of these functions will be called with
164  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
165  * functions often modify hash chains or addresses in pcbs.
166  */
167 
168 /*
169  * Allocate a PCB and associate it with the socket.
170  */
171 int
172 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo, const char *type)
173 {
174 	struct inpcb *inp;
175 	int error;
176 
177 	INP_INFO_WLOCK_ASSERT(pcbinfo);
178 	error = 0;
179 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT | M_ZERO);
180 	if (inp == NULL)
181 		return (ENOBUFS);
182 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
183 	inp->inp_pcbinfo = pcbinfo;
184 	inp->inp_socket = so;
185 #ifdef MAC
186 	error = mac_init_inpcb(inp, M_NOWAIT);
187 	if (error != 0)
188 		goto out;
189 	SOCK_LOCK(so);
190 	mac_create_inpcb_from_socket(so, inp);
191 	SOCK_UNLOCK(so);
192 #endif
193 #if defined(IPSEC) || defined(FAST_IPSEC)
194 #ifdef FAST_IPSEC
195 	error = ipsec_init_policy(so, &inp->inp_sp);
196 #else
197 	error = ipsec_init_pcbpolicy(so, &inp->inp_sp);
198 #endif
199 	if (error != 0)
200 		goto out;
201 #endif /*IPSEC*/
202 #if defined(INET6)
203 	if (INP_SOCKAF(so) == AF_INET6) {
204 		inp->inp_vflag |= INP_IPV6PROTO;
205 		if (ip6_v6only)
206 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
207 	}
208 #endif
209 	LIST_INSERT_HEAD(pcbinfo->listhead, inp, inp_list);
210 	pcbinfo->ipi_count++;
211 	so->so_pcb = (caddr_t)inp;
212 	INP_LOCK_INIT(inp, "inp", type);
213 #ifdef INET6
214 	if (ip6_auto_flowlabel)
215 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
216 #endif
217 #if defined(IPSEC) || defined(FAST_IPSEC) || defined(MAC)
218 out:
219 	if (error != 0)
220 		uma_zfree(pcbinfo->ipi_zone, inp);
221 #endif
222 	return (error);
223 }
224 
225 int
226 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
227 {
228 	int anonport, error;
229 
230 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
231 	INP_LOCK_ASSERT(inp);
232 
233 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
234 		return (EINVAL);
235 	anonport = inp->inp_lport == 0 && (nam == NULL ||
236 	    ((struct sockaddr_in *)nam)->sin_port == 0);
237 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
238 	    &inp->inp_lport, cred);
239 	if (error)
240 		return (error);
241 	if (in_pcbinshash(inp) != 0) {
242 		inp->inp_laddr.s_addr = INADDR_ANY;
243 		inp->inp_lport = 0;
244 		return (EAGAIN);
245 	}
246 	if (anonport)
247 		inp->inp_flags |= INP_ANONPORT;
248 	return (0);
249 }
250 
251 /*
252  * Set up a bind operation on a PCB, performing port allocation
253  * as required, but do not actually modify the PCB. Callers can
254  * either complete the bind by setting inp_laddr/inp_lport and
255  * calling in_pcbinshash(), or they can just use the resulting
256  * port and address to authorise the sending of a once-off packet.
257  *
258  * On error, the values of *laddrp and *lportp are not changed.
259  */
260 int
261 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
262     u_short *lportp, struct ucred *cred)
263 {
264 	struct socket *so = inp->inp_socket;
265 	unsigned short *lastport;
266 	struct sockaddr_in *sin;
267 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
268 	struct in_addr laddr;
269 	u_short lport = 0;
270 	int wild = 0, reuseport = (so->so_options & SO_REUSEPORT);
271 	int error, prison = 0;
272 	int dorandom;
273 
274 	INP_INFO_WLOCK_ASSERT(pcbinfo);
275 	INP_LOCK_ASSERT(inp);
276 
277 	if (TAILQ_EMPTY(&in_ifaddrhead)) /* XXX broken! */
278 		return (EADDRNOTAVAIL);
279 	laddr.s_addr = *laddrp;
280 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
281 		return (EINVAL);
282 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
283 		wild = 1;
284 	if (nam) {
285 		sin = (struct sockaddr_in *)nam;
286 		if (nam->sa_len != sizeof (*sin))
287 			return (EINVAL);
288 #ifdef notdef
289 		/*
290 		 * We should check the family, but old programs
291 		 * incorrectly fail to initialize it.
292 		 */
293 		if (sin->sin_family != AF_INET)
294 			return (EAFNOSUPPORT);
295 #endif
296 		if (sin->sin_addr.s_addr != INADDR_ANY)
297 			if (prison_ip(cred, 0, &sin->sin_addr.s_addr))
298 				return(EINVAL);
299 		if (sin->sin_port != *lportp) {
300 			/* Don't allow the port to change. */
301 			if (*lportp != 0)
302 				return (EINVAL);
303 			lport = sin->sin_port;
304 		}
305 		/* NB: lport is left as 0 if the port isn't being changed. */
306 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
307 			/*
308 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
309 			 * allow complete duplication of binding if
310 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
311 			 * and a multicast address is bound on both
312 			 * new and duplicated sockets.
313 			 */
314 			if (so->so_options & SO_REUSEADDR)
315 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
316 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
317 			sin->sin_port = 0;		/* yech... */
318 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
319 			if (ifa_ifwithaddr((struct sockaddr *)sin) == 0)
320 				return (EADDRNOTAVAIL);
321 		}
322 		laddr = sin->sin_addr;
323 		if (lport) {
324 			struct inpcb *t;
325 			struct tcptw *tw;
326 
327 			/* GROSS */
328 			if (ntohs(lport) <= ipport_reservedhigh &&
329 			    ntohs(lport) >= ipport_reservedlow &&
330 			    suser_cred(cred, SUSER_ALLOWJAIL))
331 				return (EACCES);
332 			if (jailed(cred))
333 				prison = 1;
334 			if (so->so_cred->cr_uid != 0 &&
335 			    !IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
336 				t = in_pcblookup_local(inp->inp_pcbinfo,
337 				    sin->sin_addr, lport,
338 				    prison ? 0 :  INPLOOKUP_WILDCARD);
339 	/*
340 	 * XXX
341 	 * This entire block sorely needs a rewrite.
342 	 */
343 				if (t &&
344 				    ((t->inp_vflag & INP_TIMEWAIT) == 0) &&
345 				    (so->so_type != SOCK_STREAM ||
346 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
347 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
348 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
349 				     (t->inp_socket->so_options &
350 					 SO_REUSEPORT) == 0) &&
351 				    (so->so_cred->cr_uid !=
352 				     t->inp_socket->so_cred->cr_uid))
353 					return (EADDRINUSE);
354 			}
355 			if (prison && prison_ip(cred, 0, &sin->sin_addr.s_addr))
356 				return (EADDRNOTAVAIL);
357 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
358 			    lport, prison ? 0 : wild);
359 			if (t && (t->inp_vflag & INP_TIMEWAIT)) {
360 				/*
361 				 * XXXRW: If an incpb has had its timewait
362 				 * state recycled, we treat the address as
363 				 * being in use (for now).  This is better
364 				 * than a panic, but not desirable.
365 				 */
366 				tw = intotw(inp);
367 				if (tw == NULL ||
368 				    (reuseport & tw->tw_so_options) == 0)
369 					return (EADDRINUSE);
370 			} else if (t &&
371 			    (reuseport & t->inp_socket->so_options) == 0) {
372 #if defined(INET6)
373 				if (ntohl(sin->sin_addr.s_addr) !=
374 				    INADDR_ANY ||
375 				    ntohl(t->inp_laddr.s_addr) !=
376 				    INADDR_ANY ||
377 				    INP_SOCKAF(so) ==
378 				    INP_SOCKAF(t->inp_socket))
379 #endif /* defined(INET6) */
380 				return (EADDRINUSE);
381 			}
382 		}
383 	}
384 	if (*lportp != 0)
385 		lport = *lportp;
386 	if (lport == 0) {
387 		u_short first, last;
388 		int count;
389 
390 		if (laddr.s_addr != INADDR_ANY)
391 			if (prison_ip(cred, 0, &laddr.s_addr))
392 				return (EINVAL);
393 
394 		if (inp->inp_flags & INP_HIGHPORT) {
395 			first = ipport_hifirstauto;	/* sysctl */
396 			last  = ipport_hilastauto;
397 			lastport = &pcbinfo->lasthi;
398 		} else if (inp->inp_flags & INP_LOWPORT) {
399 			if ((error = suser_cred(cred, SUSER_ALLOWJAIL)) != 0)
400 				return error;
401 			first = ipport_lowfirstauto;	/* 1023 */
402 			last  = ipport_lowlastauto;	/* 600 */
403 			lastport = &pcbinfo->lastlow;
404 		} else {
405 			first = ipport_firstauto;	/* sysctl */
406 			last  = ipport_lastauto;
407 			lastport = &pcbinfo->lastport;
408 		}
409 		/*
410 		 * For UDP, use random port allocation as long as the user
411 		 * allows it.  For TCP (and as of yet unknown) connections,
412 		 * use random port allocation only if the user allows it AND
413 		 * ipport_tick() allows it.
414 		 */
415 		if (ipport_randomized &&
416 			(!ipport_stoprandom || pcbinfo == &udbinfo))
417 			dorandom = 1;
418 		else
419 			dorandom = 0;
420 		/*
421 		 * It makes no sense to do random port allocation if
422 		 * we have the only port available.
423 		 */
424 		if (first == last)
425 			dorandom = 0;
426 		/* Make sure to not include UDP packets in the count. */
427 		if (pcbinfo != &udbinfo)
428 			ipport_tcpallocs++;
429 		/*
430 		 * Simple check to ensure all ports are not used up causing
431 		 * a deadlock here.
432 		 *
433 		 * We split the two cases (up and down) so that the direction
434 		 * is not being tested on each round of the loop.
435 		 */
436 		if (first > last) {
437 			/*
438 			 * counting down
439 			 */
440 			if (dorandom)
441 				*lastport = first -
442 					    (arc4random() % (first - last));
443 			count = first - last;
444 
445 			do {
446 				if (count-- < 0)	/* completely used? */
447 					return (EADDRNOTAVAIL);
448 				--*lastport;
449 				if (*lastport > first || *lastport < last)
450 					*lastport = first;
451 				lport = htons(*lastport);
452 			} while (in_pcblookup_local(pcbinfo, laddr, lport,
453 			    wild));
454 		} else {
455 			/*
456 			 * counting up
457 			 */
458 			if (dorandom)
459 				*lastport = first +
460 					    (arc4random() % (last - first));
461 			count = last - first;
462 
463 			do {
464 				if (count-- < 0)	/* completely used? */
465 					return (EADDRNOTAVAIL);
466 				++*lastport;
467 				if (*lastport < first || *lastport > last)
468 					*lastport = first;
469 				lport = htons(*lastport);
470 			} while (in_pcblookup_local(pcbinfo, laddr, lport,
471 			    wild));
472 		}
473 	}
474 	if (prison_ip(cred, 0, &laddr.s_addr))
475 		return (EINVAL);
476 	*laddrp = laddr.s_addr;
477 	*lportp = lport;
478 	return (0);
479 }
480 
481 /*
482  * Connect from a socket to a specified address.
483  * Both address and port must be specified in argument sin.
484  * If don't have a local address for this socket yet,
485  * then pick one.
486  */
487 int
488 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
489 {
490 	u_short lport, fport;
491 	in_addr_t laddr, faddr;
492 	int anonport, error;
493 
494 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
495 	INP_LOCK_ASSERT(inp);
496 
497 	lport = inp->inp_lport;
498 	laddr = inp->inp_laddr.s_addr;
499 	anonport = (lport == 0);
500 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
501 	    NULL, cred);
502 	if (error)
503 		return (error);
504 
505 	/* Do the initial binding of the local address if required. */
506 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
507 		inp->inp_lport = lport;
508 		inp->inp_laddr.s_addr = laddr;
509 		if (in_pcbinshash(inp) != 0) {
510 			inp->inp_laddr.s_addr = INADDR_ANY;
511 			inp->inp_lport = 0;
512 			return (EAGAIN);
513 		}
514 	}
515 
516 	/* Commit the remaining changes. */
517 	inp->inp_lport = lport;
518 	inp->inp_laddr.s_addr = laddr;
519 	inp->inp_faddr.s_addr = faddr;
520 	inp->inp_fport = fport;
521 	in_pcbrehash(inp);
522 #ifdef IPSEC
523 	if (inp->inp_socket->so_type == SOCK_STREAM)
524 		ipsec_pcbconn(inp->inp_sp);
525 #endif
526 	if (anonport)
527 		inp->inp_flags |= INP_ANONPORT;
528 	return (0);
529 }
530 
531 /*
532  * Set up for a connect from a socket to the specified address.
533  * On entry, *laddrp and *lportp should contain the current local
534  * address and port for the PCB; these are updated to the values
535  * that should be placed in inp_laddr and inp_lport to complete
536  * the connect.
537  *
538  * On success, *faddrp and *fportp will be set to the remote address
539  * and port. These are not updated in the error case.
540  *
541  * If the operation fails because the connection already exists,
542  * *oinpp will be set to the PCB of that connection so that the
543  * caller can decide to override it. In all other cases, *oinpp
544  * is set to NULL.
545  */
546 int
547 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
548     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
549     struct inpcb **oinpp, struct ucred *cred)
550 {
551 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
552 	struct in_ifaddr *ia;
553 	struct sockaddr_in sa;
554 	struct ucred *socred;
555 	struct inpcb *oinp;
556 	struct in_addr laddr, faddr;
557 	u_short lport, fport;
558 	int error;
559 
560 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
561 	INP_LOCK_ASSERT(inp);
562 
563 	if (oinpp != NULL)
564 		*oinpp = NULL;
565 	if (nam->sa_len != sizeof (*sin))
566 		return (EINVAL);
567 	if (sin->sin_family != AF_INET)
568 		return (EAFNOSUPPORT);
569 	if (sin->sin_port == 0)
570 		return (EADDRNOTAVAIL);
571 	laddr.s_addr = *laddrp;
572 	lport = *lportp;
573 	faddr = sin->sin_addr;
574 	fport = sin->sin_port;
575 	socred = inp->inp_socket->so_cred;
576 	if (laddr.s_addr == INADDR_ANY && jailed(socred)) {
577 		bzero(&sa, sizeof(sa));
578 		sa.sin_addr.s_addr = htonl(prison_getip(socred));
579 		sa.sin_len = sizeof(sa);
580 		sa.sin_family = AF_INET;
581 		error = in_pcbbind_setup(inp, (struct sockaddr *)&sa,
582 		    &laddr.s_addr, &lport, cred);
583 		if (error)
584 			return (error);
585 	}
586 	if (!TAILQ_EMPTY(&in_ifaddrhead)) {
587 		/*
588 		 * If the destination address is INADDR_ANY,
589 		 * use the primary local address.
590 		 * If the supplied address is INADDR_BROADCAST,
591 		 * and the primary interface supports broadcast,
592 		 * choose the broadcast address for that interface.
593 		 */
594 		if (faddr.s_addr == INADDR_ANY)
595 			faddr = IA_SIN(TAILQ_FIRST(&in_ifaddrhead))->sin_addr;
596 		else if (faddr.s_addr == (u_long)INADDR_BROADCAST &&
597 		    (TAILQ_FIRST(&in_ifaddrhead)->ia_ifp->if_flags &
598 		    IFF_BROADCAST))
599 			faddr = satosin(&TAILQ_FIRST(
600 			    &in_ifaddrhead)->ia_broadaddr)->sin_addr;
601 	}
602 	if (laddr.s_addr == INADDR_ANY) {
603 		ia = (struct in_ifaddr *)0;
604 		/*
605 		 * If route is known our src addr is taken from the i/f,
606 		 * else punt.
607 		 *
608 		 * Find out route to destination
609 		 */
610 		if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
611 			ia = ip_rtaddr(faddr);
612 		/*
613 		 * If we found a route, use the address corresponding to
614 		 * the outgoing interface.
615 		 *
616 		 * Otherwise assume faddr is reachable on a directly connected
617 		 * network and try to find a corresponding interface to take
618 		 * the source address from.
619 		 */
620 		if (ia == 0) {
621 			bzero(&sa, sizeof(sa));
622 			sa.sin_addr = faddr;
623 			sa.sin_len = sizeof(sa);
624 			sa.sin_family = AF_INET;
625 
626 			ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sa)));
627 			if (ia == 0)
628 				ia = ifatoia(ifa_ifwithnet(sintosa(&sa)));
629 			if (ia == 0)
630 				return (ENETUNREACH);
631 		}
632 		/*
633 		 * If the destination address is multicast and an outgoing
634 		 * interface has been set as a multicast option, use the
635 		 * address of that interface as our source address.
636 		 */
637 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
638 		    inp->inp_moptions != NULL) {
639 			struct ip_moptions *imo;
640 			struct ifnet *ifp;
641 
642 			imo = inp->inp_moptions;
643 			if (imo->imo_multicast_ifp != NULL) {
644 				ifp = imo->imo_multicast_ifp;
645 				TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link)
646 					if (ia->ia_ifp == ifp)
647 						break;
648 				if (ia == 0)
649 					return (EADDRNOTAVAIL);
650 			}
651 		}
652 		laddr = ia->ia_addr.sin_addr;
653 	}
654 
655 	oinp = in_pcblookup_hash(inp->inp_pcbinfo, faddr, fport, laddr, lport,
656 	    0, NULL);
657 	if (oinp != NULL) {
658 		if (oinpp != NULL)
659 			*oinpp = oinp;
660 		return (EADDRINUSE);
661 	}
662 	if (lport == 0) {
663 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
664 		    cred);
665 		if (error)
666 			return (error);
667 	}
668 	*laddrp = laddr.s_addr;
669 	*lportp = lport;
670 	*faddrp = faddr.s_addr;
671 	*fportp = fport;
672 	return (0);
673 }
674 
675 void
676 in_pcbdisconnect(struct inpcb *inp)
677 {
678 
679 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
680 	INP_LOCK_ASSERT(inp);
681 
682 	inp->inp_faddr.s_addr = INADDR_ANY;
683 	inp->inp_fport = 0;
684 	in_pcbrehash(inp);
685 #ifdef IPSEC
686 	ipsec_pcbdisconn(inp->inp_sp);
687 #endif
688 }
689 
690 /*
691  * In the old world order, in_pcbdetach() served two functions: to detach the
692  * pcb from the socket/potentially free the socket, and to free the pcb
693  * itself.  In the new world order, the protocol code is responsible for
694  * managing the relationship with the socket, and this code simply frees the
695  * pcb.
696  */
697 void
698 in_pcbdetach(struct inpcb *inp)
699 {
700 
701 	KASSERT(inp->inp_socket != NULL, ("in_pcbdetach: inp_socket == NULL"));
702 	inp->inp_socket->so_pcb = NULL;
703 	inp->inp_socket = NULL;
704 }
705 
706 void
707 in_pcbfree(struct inpcb *inp)
708 {
709 	struct inpcbinfo *ipi = inp->inp_pcbinfo;
710 
711 	KASSERT(inp->inp_socket == NULL, ("in_pcbfree: inp_socket != NULL"));
712 	INP_INFO_WLOCK_ASSERT(ipi);
713 	INP_LOCK_ASSERT(inp);
714 
715 #if defined(IPSEC) || defined(FAST_IPSEC)
716 	ipsec4_delete_pcbpolicy(inp);
717 #endif /*IPSEC*/
718 	inp->inp_gencnt = ++ipi->ipi_gencnt;
719 	in_pcbremlists(inp);
720 	if (inp->inp_options)
721 		(void)m_free(inp->inp_options);
722 	ip_freemoptions(inp->inp_moptions);
723 	inp->inp_vflag = 0;
724 	INP_LOCK_DESTROY(inp);
725 #ifdef MAC
726 	mac_destroy_inpcb(inp);
727 #endif
728 	uma_zfree(ipi->ipi_zone, inp);
729 }
730 
731 /*
732  * TCP needs to maintain its inpcb structure after the TCP connection has
733  * been torn down.  However, it must be disconnected from the inpcb hashes as
734  * it must not prevent binding of future connections to the same port/ip
735  * combination by other inpcbs.
736  */
737 void
738 in_pcbdrop(struct inpcb *inp)
739 {
740 
741 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
742 	INP_LOCK_ASSERT(inp);
743 
744 	inp->inp_vflag |= INP_DROPPED;
745 	if (inp->inp_lport) {
746 		struct inpcbport *phd = inp->inp_phd;
747 
748 		LIST_REMOVE(inp, inp_hash);
749 		LIST_REMOVE(inp, inp_portlist);
750 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
751 			LIST_REMOVE(phd, phd_hash);
752 			free(phd, M_PCB);
753 		}
754 		inp->inp_lport = 0;
755 	}
756 }
757 
758 struct sockaddr *
759 in_sockaddr(in_port_t port, struct in_addr *addr_p)
760 {
761 	struct sockaddr_in *sin;
762 
763 	MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME,
764 		M_WAITOK | M_ZERO);
765 	sin->sin_family = AF_INET;
766 	sin->sin_len = sizeof(*sin);
767 	sin->sin_addr = *addr_p;
768 	sin->sin_port = port;
769 
770 	return (struct sockaddr *)sin;
771 }
772 
773 /*
774  * The wrapper function will pass down the pcbinfo for this function to lock.
775  * The socket must have a valid
776  * (i.e., non-nil) PCB, but it should be impossible to get an invalid one
777  * except through a kernel programming error, so it is acceptable to panic
778  * (or in this case trap) if the PCB is invalid.  (Actually, we don't trap
779  * because there actually /is/ a programming error somewhere... XXX)
780  */
781 int
782 in_setsockaddr(struct socket *so, struct sockaddr **nam,
783     struct inpcbinfo *pcbinfo)
784 {
785 	struct inpcb *inp;
786 	struct in_addr addr;
787 	in_port_t port;
788 
789 	inp = sotoinpcb(so);
790 	KASSERT(inp != NULL, ("in_setsockaddr: inp == NULL"));
791 
792 	INP_LOCK(inp);
793 	port = inp->inp_lport;
794 	addr = inp->inp_laddr;
795 	INP_UNLOCK(inp);
796 
797 	*nam = in_sockaddr(port, &addr);
798 	return 0;
799 }
800 
801 /*
802  * The wrapper function will pass down the pcbinfo for this function to lock.
803  */
804 int
805 in_setpeeraddr(struct socket *so, struct sockaddr **nam,
806     struct inpcbinfo *pcbinfo)
807 {
808 	struct inpcb *inp;
809 	struct in_addr addr;
810 	in_port_t port;
811 
812 	inp = sotoinpcb(so);
813 	KASSERT(inp != NULL, ("in_setpeeraddr: inp == NULL"));
814 
815 	INP_LOCK(inp);
816 	port = inp->inp_fport;
817 	addr = inp->inp_faddr;
818 	INP_UNLOCK(inp);
819 
820 	*nam = in_sockaddr(port, &addr);
821 	return 0;
822 }
823 
824 void
825 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
826     struct inpcb *(*notify)(struct inpcb *, int))
827 {
828 	struct inpcb *inp, *ninp;
829 	struct inpcbhead *head;
830 
831 	INP_INFO_WLOCK(pcbinfo);
832 	head = pcbinfo->listhead;
833 	for (inp = LIST_FIRST(head); inp != NULL; inp = ninp) {
834 		INP_LOCK(inp);
835 		ninp = LIST_NEXT(inp, inp_list);
836 #ifdef INET6
837 		if ((inp->inp_vflag & INP_IPV4) == 0) {
838 			INP_UNLOCK(inp);
839 			continue;
840 		}
841 #endif
842 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
843 		    inp->inp_socket == NULL) {
844 			INP_UNLOCK(inp);
845 			continue;
846 		}
847 		if ((*notify)(inp, errno))
848 			INP_UNLOCK(inp);
849 	}
850 	INP_INFO_WUNLOCK(pcbinfo);
851 }
852 
853 void
854 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
855 {
856 	struct inpcb *inp;
857 	struct ip_moptions *imo;
858 	int i, gap;
859 
860 	INP_INFO_RLOCK(pcbinfo);
861 	LIST_FOREACH(inp, pcbinfo->listhead, inp_list) {
862 		INP_LOCK(inp);
863 		imo = inp->inp_moptions;
864 		if ((inp->inp_vflag & INP_IPV4) &&
865 		    imo != NULL) {
866 			/*
867 			 * Unselect the outgoing interface if it is being
868 			 * detached.
869 			 */
870 			if (imo->imo_multicast_ifp == ifp)
871 				imo->imo_multicast_ifp = NULL;
872 
873 			/*
874 			 * Drop multicast group membership if we joined
875 			 * through the interface being detached.
876 			 */
877 			for (i = 0, gap = 0; i < imo->imo_num_memberships;
878 			    i++) {
879 				if (imo->imo_membership[i]->inm_ifp == ifp) {
880 					in_delmulti(imo->imo_membership[i]);
881 					gap++;
882 				} else if (gap != 0)
883 					imo->imo_membership[i - gap] =
884 					    imo->imo_membership[i];
885 			}
886 			imo->imo_num_memberships -= gap;
887 		}
888 		INP_UNLOCK(inp);
889 	}
890 	INP_INFO_RUNLOCK(pcbinfo);
891 }
892 
893 /*
894  * Lookup a PCB based on the local address and port.
895  */
896 #define INP_LOOKUP_MAPPED_PCB_COST	3
897 struct inpcb *
898 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
899     u_int lport_arg, int wild_okay)
900 {
901 	struct inpcb *inp;
902 	struct tcptw *tw;
903 #ifdef INET6
904 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
905 #else
906 	int matchwild = 3;
907 #endif
908 	int wildcard;
909 	u_short lport = lport_arg;
910 
911 	INP_INFO_WLOCK_ASSERT(pcbinfo);
912 
913 	if (!wild_okay) {
914 		struct inpcbhead *head;
915 		/*
916 		 * Look for an unconnected (wildcard foreign addr) PCB that
917 		 * matches the local address and port we're looking for.
918 		 */
919 		head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->hashmask)];
920 		LIST_FOREACH(inp, head, inp_hash) {
921 #ifdef INET6
922 			if ((inp->inp_vflag & INP_IPV4) == 0)
923 				continue;
924 #endif
925 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
926 			    inp->inp_laddr.s_addr == laddr.s_addr &&
927 			    inp->inp_lport == lport) {
928 				/*
929 				 * Found.
930 				 */
931 				return (inp);
932 			}
933 		}
934 		/*
935 		 * Not found.
936 		 */
937 		return (NULL);
938 	} else {
939 		struct inpcbporthead *porthash;
940 		struct inpcbport *phd;
941 		struct inpcb *match = NULL;
942 		/*
943 		 * Best fit PCB lookup.
944 		 *
945 		 * First see if this local port is in use by looking on the
946 		 * port hash list.
947 		 */
948 		retrylookup:
949 		porthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(lport,
950 		    pcbinfo->porthashmask)];
951 		LIST_FOREACH(phd, porthash, phd_hash) {
952 			if (phd->phd_port == lport)
953 				break;
954 		}
955 		if (phd != NULL) {
956 			/*
957 			 * Port is in use by one or more PCBs. Look for best
958 			 * fit.
959 			 */
960 			LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
961 				wildcard = 0;
962 #ifdef INET6
963 				if ((inp->inp_vflag & INP_IPV4) == 0)
964 					continue;
965 				/*
966 				 * We never select the PCB that has
967 				 * INP_IPV6 flag and is bound to :: if
968 				 * we have another PCB which is bound
969 				 * to 0.0.0.0.  If a PCB has the
970 				 * INP_IPV6 flag, then we set its cost
971 				 * higher than IPv4 only PCBs.
972 				 *
973 				 * Note that the case only happens
974 				 * when a socket is bound to ::, under
975 				 * the condition that the use of the
976 				 * mapped address is allowed.
977 				 */
978 				if ((inp->inp_vflag & INP_IPV6) != 0)
979 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
980 #endif
981 				/*
982 				 * Clean out old time_wait sockets if they
983 				 * are clogging up needed local ports.
984 				 */
985 				if ((inp->inp_vflag & INP_TIMEWAIT) != 0) {
986 					tw = intotw(inp);
987 					if (tw != NULL &&
988 					    tcp_twrecycleable(tw)) {
989 						INP_LOCK(inp);
990 						tcp_twclose(tw, 0);
991 						match = NULL;
992 						goto retrylookup;
993 					}
994 				}
995 				if (inp->inp_faddr.s_addr != INADDR_ANY)
996 					wildcard++;
997 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
998 					if (laddr.s_addr == INADDR_ANY)
999 						wildcard++;
1000 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
1001 						continue;
1002 				} else {
1003 					if (laddr.s_addr != INADDR_ANY)
1004 						wildcard++;
1005 				}
1006 				if (wildcard < matchwild) {
1007 					match = inp;
1008 					matchwild = wildcard;
1009 					if (matchwild == 0) {
1010 						break;
1011 					}
1012 				}
1013 			}
1014 		}
1015 		return (match);
1016 	}
1017 }
1018 #undef INP_LOOKUP_MAPPED_PCB_COST
1019 
1020 /*
1021  * Lookup PCB in hash list.
1022  */
1023 struct inpcb *
1024 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1025     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard,
1026     struct ifnet *ifp)
1027 {
1028 	struct inpcbhead *head;
1029 	struct inpcb *inp;
1030 	u_short fport = fport_arg, lport = lport_arg;
1031 
1032 	INP_INFO_RLOCK_ASSERT(pcbinfo);
1033 
1034 	/*
1035 	 * First look for an exact match.
1036 	 */
1037 	head = &pcbinfo->hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, pcbinfo->hashmask)];
1038 	LIST_FOREACH(inp, head, inp_hash) {
1039 #ifdef INET6
1040 		if ((inp->inp_vflag & INP_IPV4) == 0)
1041 			continue;
1042 #endif
1043 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1044 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1045 		    inp->inp_fport == fport &&
1046 		    inp->inp_lport == lport) {
1047 			/*
1048 			 * Found.
1049 			 */
1050 			return (inp);
1051 		}
1052 	}
1053 	if (wildcard) {
1054 		struct inpcb *local_wild = NULL;
1055 #if defined(INET6)
1056 		struct inpcb *local_wild_mapped = NULL;
1057 #endif /* defined(INET6) */
1058 
1059 		head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->hashmask)];
1060 		LIST_FOREACH(inp, head, inp_hash) {
1061 #ifdef INET6
1062 			if ((inp->inp_vflag & INP_IPV4) == 0)
1063 				continue;
1064 #endif
1065 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1066 			    inp->inp_lport == lport) {
1067 				if (ifp && ifp->if_type == IFT_FAITH &&
1068 				    (inp->inp_flags & INP_FAITH) == 0)
1069 					continue;
1070 				if (inp->inp_laddr.s_addr == laddr.s_addr)
1071 					return (inp);
1072 				else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1073 #if defined(INET6)
1074 					if (INP_CHECK_SOCKAF(inp->inp_socket,
1075 							     AF_INET6))
1076 						local_wild_mapped = inp;
1077 					else
1078 #endif /* defined(INET6) */
1079 					local_wild = inp;
1080 				}
1081 			}
1082 		}
1083 #if defined(INET6)
1084 		if (local_wild == NULL)
1085 			return (local_wild_mapped);
1086 #endif /* defined(INET6) */
1087 		return (local_wild);
1088 	}
1089 
1090 	/*
1091 	 * Not found.
1092 	 */
1093 	return (NULL);
1094 }
1095 
1096 /*
1097  * Insert PCB onto various hash lists.
1098  */
1099 int
1100 in_pcbinshash(struct inpcb *inp)
1101 {
1102 	struct inpcbhead *pcbhash;
1103 	struct inpcbporthead *pcbporthash;
1104 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1105 	struct inpcbport *phd;
1106 	u_int32_t hashkey_faddr;
1107 
1108 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1109 	INP_LOCK_ASSERT(inp);
1110 
1111 #ifdef INET6
1112 	if (inp->inp_vflag & INP_IPV6)
1113 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1114 	else
1115 #endif /* INET6 */
1116 	hashkey_faddr = inp->inp_faddr.s_addr;
1117 
1118 	pcbhash = &pcbinfo->hashbase[INP_PCBHASH(hashkey_faddr,
1119 		 inp->inp_lport, inp->inp_fport, pcbinfo->hashmask)];
1120 
1121 	pcbporthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(inp->inp_lport,
1122 	    pcbinfo->porthashmask)];
1123 
1124 	/*
1125 	 * Go through port list and look for a head for this lport.
1126 	 */
1127 	LIST_FOREACH(phd, pcbporthash, phd_hash) {
1128 		if (phd->phd_port == inp->inp_lport)
1129 			break;
1130 	}
1131 	/*
1132 	 * If none exists, malloc one and tack it on.
1133 	 */
1134 	if (phd == NULL) {
1135 		MALLOC(phd, struct inpcbport *, sizeof(struct inpcbport), M_PCB, M_NOWAIT);
1136 		if (phd == NULL) {
1137 			return (ENOBUFS); /* XXX */
1138 		}
1139 		phd->phd_port = inp->inp_lport;
1140 		LIST_INIT(&phd->phd_pcblist);
1141 		LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
1142 	}
1143 	inp->inp_phd = phd;
1144 	LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
1145 	LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
1146 	return (0);
1147 }
1148 
1149 /*
1150  * Move PCB to the proper hash bucket when { faddr, fport } have  been
1151  * changed. NOTE: This does not handle the case of the lport changing (the
1152  * hashed port list would have to be updated as well), so the lport must
1153  * not change after in_pcbinshash() has been called.
1154  */
1155 void
1156 in_pcbrehash(struct inpcb *inp)
1157 {
1158 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1159 	struct inpcbhead *head;
1160 	u_int32_t hashkey_faddr;
1161 
1162 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1163 	INP_LOCK_ASSERT(inp);
1164 
1165 #ifdef INET6
1166 	if (inp->inp_vflag & INP_IPV6)
1167 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1168 	else
1169 #endif /* INET6 */
1170 	hashkey_faddr = inp->inp_faddr.s_addr;
1171 
1172 	head = &pcbinfo->hashbase[INP_PCBHASH(hashkey_faddr,
1173 		inp->inp_lport, inp->inp_fport, pcbinfo->hashmask)];
1174 
1175 	LIST_REMOVE(inp, inp_hash);
1176 	LIST_INSERT_HEAD(head, inp, inp_hash);
1177 }
1178 
1179 /*
1180  * Remove PCB from various lists.
1181  */
1182 void
1183 in_pcbremlists(struct inpcb *inp)
1184 {
1185 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1186 
1187 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1188 	INP_LOCK_ASSERT(inp);
1189 
1190 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1191 	if (inp->inp_lport) {
1192 		struct inpcbport *phd = inp->inp_phd;
1193 
1194 		LIST_REMOVE(inp, inp_hash);
1195 		LIST_REMOVE(inp, inp_portlist);
1196 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1197 			LIST_REMOVE(phd, phd_hash);
1198 			free(phd, M_PCB);
1199 		}
1200 	}
1201 	LIST_REMOVE(inp, inp_list);
1202 	pcbinfo->ipi_count--;
1203 }
1204 
1205 /*
1206  * A set label operation has occurred at the socket layer, propagate the
1207  * label change into the in_pcb for the socket.
1208  */
1209 void
1210 in_pcbsosetlabel(struct socket *so)
1211 {
1212 #ifdef MAC
1213 	struct inpcb *inp;
1214 
1215 	inp = sotoinpcb(so);
1216 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
1217 
1218 	INP_LOCK(inp);
1219 	SOCK_LOCK(so);
1220 	mac_inpcb_sosetlabel(so, inp);
1221 	SOCK_UNLOCK(so);
1222 	INP_UNLOCK(inp);
1223 #endif
1224 }
1225 
1226 /*
1227  * ipport_tick runs once per second, determining if random port allocation
1228  * should be continued.  If more than ipport_randomcps ports have been
1229  * allocated in the last second, then we return to sequential port
1230  * allocation. We return to random allocation only once we drop below
1231  * ipport_randomcps for at least ipport_randomtime seconds.
1232  */
1233 void
1234 ipport_tick(void *xtp)
1235 {
1236 
1237 	if (ipport_tcpallocs <= ipport_tcplastcount + ipport_randomcps) {
1238 		if (ipport_stoprandom > 0)
1239 			ipport_stoprandom--;
1240 	} else
1241 		ipport_stoprandom = ipport_randomtime;
1242 	ipport_tcplastcount = ipport_tcpallocs;
1243 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
1244 }
1245