xref: /freebsd/sys/netinet/in_pcb.c (revision a665699823a2099a451e1c9c1505ef1cbf29c914)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2007-2009 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * All rights reserved.
9  *
10  * Portions of this software were developed by Robert N. M. Watson under
11  * contract to Juniper Networks, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include "opt_ddb.h"
44 #include "opt_ipsec.h"
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 #include "opt_ratelimit.h"
48 #include "opt_pcbgroup.h"
49 #include "opt_rss.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/callout.h>
57 #include <sys/eventhandler.h>
58 #include <sys/domain.h>
59 #include <sys/protosw.h>
60 #include <sys/rmlock.h>
61 #include <sys/smp.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/sockio.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/refcount.h>
68 #include <sys/jail.h>
69 #include <sys/kernel.h>
70 #include <sys/sysctl.h>
71 
72 #ifdef DDB
73 #include <ddb/ddb.h>
74 #endif
75 
76 #include <vm/uma.h>
77 
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/if_types.h>
81 #include <net/if_llatbl.h>
82 #include <net/route.h>
83 #include <net/rss_config.h>
84 #include <net/vnet.h>
85 
86 #if defined(INET) || defined(INET6)
87 #include <netinet/in.h>
88 #include <netinet/in_pcb.h>
89 #include <netinet/ip_var.h>
90 #include <netinet/tcp_var.h>
91 #ifdef TCPHPTS
92 #include <netinet/tcp_hpts.h>
93 #endif
94 #include <netinet/udp.h>
95 #include <netinet/udp_var.h>
96 #endif
97 #ifdef INET
98 #include <netinet/in_var.h>
99 #endif
100 #ifdef INET6
101 #include <netinet/ip6.h>
102 #include <netinet6/in6_pcb.h>
103 #include <netinet6/in6_var.h>
104 #include <netinet6/ip6_var.h>
105 #endif /* INET6 */
106 
107 #include <netipsec/ipsec_support.h>
108 
109 #include <security/mac/mac_framework.h>
110 
111 static struct callout	ipport_tick_callout;
112 
113 /*
114  * These configure the range of local port addresses assigned to
115  * "unspecified" outgoing connections/packets/whatever.
116  */
117 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
118 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
119 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
120 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
121 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
122 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
123 
124 /*
125  * Reserved ports accessible only to root. There are significant
126  * security considerations that must be accounted for when changing these,
127  * but the security benefits can be great. Please be careful.
128  */
129 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
130 VNET_DEFINE(int, ipport_reservedlow);
131 
132 /* Variables dealing with random ephemeral port allocation. */
133 VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
134 VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
135 VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
136 VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
137 VNET_DEFINE(int, ipport_tcpallocs);
138 static VNET_DEFINE(int, ipport_tcplastcount);
139 
140 #define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
141 
142 static void	in_pcbremlists(struct inpcb *inp);
143 #ifdef INET
144 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
145 			    struct in_addr faddr, u_int fport_arg,
146 			    struct in_addr laddr, u_int lport_arg,
147 			    int lookupflags, struct ifnet *ifp);
148 
149 #define RANGECHK(var, min, max) \
150 	if ((var) < (min)) { (var) = (min); } \
151 	else if ((var) > (max)) { (var) = (max); }
152 
153 static int
154 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
155 {
156 	int error;
157 
158 	error = sysctl_handle_int(oidp, arg1, arg2, req);
159 	if (error == 0) {
160 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
161 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
162 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
163 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
164 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
165 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
166 	}
167 	return (error);
168 }
169 
170 #undef RANGECHK
171 
172 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
173     "IP Ports");
174 
175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
176 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
177 	&VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", "");
178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
179 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
180 	&VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", "");
181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
182 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
183 	&VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", "");
184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
185 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
186 	&VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", "");
187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
188 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
189 	&VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", "");
190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
191 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
192 	&VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", "");
193 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
194 	CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
195 	&VNET_NAME(ipport_reservedhigh), 0, "");
196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
197 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
198 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
199 	CTLFLAG_VNET | CTLFLAG_RW,
200 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
202 	CTLFLAG_VNET | CTLFLAG_RW,
203 	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
204 	"allocations before switching to a sequental one");
205 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
206 	CTLFLAG_VNET | CTLFLAG_RW,
207 	&VNET_NAME(ipport_randomtime), 0,
208 	"Minimum time to keep sequental port "
209 	"allocation before switching to a random one");
210 #endif /* INET */
211 
212 /*
213  * in_pcb.c: manage the Protocol Control Blocks.
214  *
215  * NOTE: It is assumed that most of these functions will be called with
216  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
217  * functions often modify hash chains or addresses in pcbs.
218  */
219 
220 /*
221  * Different protocols initialize their inpcbs differently - giving
222  * different name to the lock.  But they all are disposed the same.
223  */
224 static void
225 inpcb_fini(void *mem, int size)
226 {
227 	struct inpcb *inp = mem;
228 
229 	INP_LOCK_DESTROY(inp);
230 }
231 
232 /*
233  * Initialize an inpcbinfo -- we should be able to reduce the number of
234  * arguments in time.
235  */
236 void
237 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
238     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
239     char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields)
240 {
241 
242 	INP_INFO_LOCK_INIT(pcbinfo, name);
243 	INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");	/* XXXRW: argument? */
244 	INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist");
245 #ifdef VIMAGE
246 	pcbinfo->ipi_vnet = curvnet;
247 #endif
248 	pcbinfo->ipi_listhead = listhead;
249 	LIST_INIT(pcbinfo->ipi_listhead);
250 	pcbinfo->ipi_count = 0;
251 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
252 	    &pcbinfo->ipi_hashmask);
253 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
254 	    &pcbinfo->ipi_porthashmask);
255 #ifdef PCBGROUP
256 	in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
257 #endif
258 	pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
259 	    NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0);
260 	uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
261 	uma_zone_set_warning(pcbinfo->ipi_zone,
262 	    "kern.ipc.maxsockets limit reached");
263 }
264 
265 /*
266  * Destroy an inpcbinfo.
267  */
268 void
269 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
270 {
271 
272 	KASSERT(pcbinfo->ipi_count == 0,
273 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
274 
275 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
276 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
277 	    pcbinfo->ipi_porthashmask);
278 #ifdef PCBGROUP
279 	in_pcbgroup_destroy(pcbinfo);
280 #endif
281 	uma_zdestroy(pcbinfo->ipi_zone);
282 	INP_LIST_LOCK_DESTROY(pcbinfo);
283 	INP_HASH_LOCK_DESTROY(pcbinfo);
284 	INP_INFO_LOCK_DESTROY(pcbinfo);
285 }
286 
287 /*
288  * Allocate a PCB and associate it with the socket.
289  * On success return with the PCB locked.
290  */
291 int
292 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
293 {
294 	struct inpcb *inp;
295 	int error;
296 
297 #ifdef INVARIANTS
298 	if (pcbinfo == &V_tcbinfo) {
299 		INP_INFO_RLOCK_ASSERT(pcbinfo);
300 	} else {
301 		INP_INFO_WLOCK_ASSERT(pcbinfo);
302 	}
303 #endif
304 
305 	error = 0;
306 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
307 	if (inp == NULL)
308 		return (ENOBUFS);
309 	bzero(&inp->inp_start_zero, inp_zero_size);
310 	inp->inp_pcbinfo = pcbinfo;
311 	inp->inp_socket = so;
312 	inp->inp_cred = crhold(so->so_cred);
313 	inp->inp_inc.inc_fibnum = so->so_fibnum;
314 #ifdef MAC
315 	error = mac_inpcb_init(inp, M_NOWAIT);
316 	if (error != 0)
317 		goto out;
318 	mac_inpcb_create(so, inp);
319 #endif
320 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
321 	error = ipsec_init_pcbpolicy(inp);
322 	if (error != 0) {
323 #ifdef MAC
324 		mac_inpcb_destroy(inp);
325 #endif
326 		goto out;
327 	}
328 #endif /*IPSEC*/
329 #ifdef INET6
330 	if (INP_SOCKAF(so) == AF_INET6) {
331 		inp->inp_vflag |= INP_IPV6PROTO;
332 		if (V_ip6_v6only)
333 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
334 	}
335 #endif
336 	INP_WLOCK(inp);
337 	INP_LIST_WLOCK(pcbinfo);
338 	LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
339 	pcbinfo->ipi_count++;
340 	so->so_pcb = (caddr_t)inp;
341 #ifdef INET6
342 	if (V_ip6_auto_flowlabel)
343 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
344 #endif
345 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
346 	refcount_init(&inp->inp_refcount, 1);	/* Reference from inpcbinfo */
347 
348 	/*
349 	 * Routes in inpcb's can cache L2 as well; they are guaranteed
350 	 * to be cleaned up.
351 	 */
352 	inp->inp_route.ro_flags = RT_LLE_CACHE;
353 	INP_LIST_WUNLOCK(pcbinfo);
354 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
355 out:
356 	if (error != 0) {
357 		crfree(inp->inp_cred);
358 		uma_zfree(pcbinfo->ipi_zone, inp);
359 	}
360 #endif
361 	return (error);
362 }
363 
364 #ifdef INET
365 int
366 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
367 {
368 	int anonport, error;
369 
370 	INP_WLOCK_ASSERT(inp);
371 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
372 
373 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
374 		return (EINVAL);
375 	anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
376 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
377 	    &inp->inp_lport, cred);
378 	if (error)
379 		return (error);
380 	if (in_pcbinshash(inp) != 0) {
381 		inp->inp_laddr.s_addr = INADDR_ANY;
382 		inp->inp_lport = 0;
383 		return (EAGAIN);
384 	}
385 	if (anonport)
386 		inp->inp_flags |= INP_ANONPORT;
387 	return (0);
388 }
389 #endif
390 
391 /*
392  * Select a local port (number) to use.
393  */
394 #if defined(INET) || defined(INET6)
395 int
396 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
397     struct ucred *cred, int lookupflags)
398 {
399 	struct inpcbinfo *pcbinfo;
400 	struct inpcb *tmpinp;
401 	unsigned short *lastport;
402 	int count, dorandom, error;
403 	u_short aux, first, last, lport;
404 #ifdef INET
405 	struct in_addr laddr;
406 #endif
407 
408 	pcbinfo = inp->inp_pcbinfo;
409 
410 	/*
411 	 * Because no actual state changes occur here, a global write lock on
412 	 * the pcbinfo isn't required.
413 	 */
414 	INP_LOCK_ASSERT(inp);
415 	INP_HASH_LOCK_ASSERT(pcbinfo);
416 
417 	if (inp->inp_flags & INP_HIGHPORT) {
418 		first = V_ipport_hifirstauto;	/* sysctl */
419 		last  = V_ipport_hilastauto;
420 		lastport = &pcbinfo->ipi_lasthi;
421 	} else if (inp->inp_flags & INP_LOWPORT) {
422 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
423 		if (error)
424 			return (error);
425 		first = V_ipport_lowfirstauto;	/* 1023 */
426 		last  = V_ipport_lowlastauto;	/* 600 */
427 		lastport = &pcbinfo->ipi_lastlow;
428 	} else {
429 		first = V_ipport_firstauto;	/* sysctl */
430 		last  = V_ipport_lastauto;
431 		lastport = &pcbinfo->ipi_lastport;
432 	}
433 	/*
434 	 * For UDP(-Lite), use random port allocation as long as the user
435 	 * allows it.  For TCP (and as of yet unknown) connections,
436 	 * use random port allocation only if the user allows it AND
437 	 * ipport_tick() allows it.
438 	 */
439 	if (V_ipport_randomized &&
440 		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
441 		pcbinfo == &V_ulitecbinfo))
442 		dorandom = 1;
443 	else
444 		dorandom = 0;
445 	/*
446 	 * It makes no sense to do random port allocation if
447 	 * we have the only port available.
448 	 */
449 	if (first == last)
450 		dorandom = 0;
451 	/* Make sure to not include UDP(-Lite) packets in the count. */
452 	if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
453 		V_ipport_tcpallocs++;
454 	/*
455 	 * Instead of having two loops further down counting up or down
456 	 * make sure that first is always <= last and go with only one
457 	 * code path implementing all logic.
458 	 */
459 	if (first > last) {
460 		aux = first;
461 		first = last;
462 		last = aux;
463 	}
464 
465 #ifdef INET
466 	/* Make the compiler happy. */
467 	laddr.s_addr = 0;
468 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
469 		KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
470 		    __func__, inp));
471 		laddr = *laddrp;
472 	}
473 #endif
474 	tmpinp = NULL;	/* Make compiler happy. */
475 	lport = *lportp;
476 
477 	if (dorandom)
478 		*lastport = first + (arc4random() % (last - first));
479 
480 	count = last - first;
481 
482 	do {
483 		if (count-- < 0)	/* completely used? */
484 			return (EADDRNOTAVAIL);
485 		++*lastport;
486 		if (*lastport < first || *lastport > last)
487 			*lastport = first;
488 		lport = htons(*lastport);
489 
490 #ifdef INET6
491 		if ((inp->inp_vflag & INP_IPV6) != 0)
492 			tmpinp = in6_pcblookup_local(pcbinfo,
493 			    &inp->in6p_laddr, lport, lookupflags, cred);
494 #endif
495 #if defined(INET) && defined(INET6)
496 		else
497 #endif
498 #ifdef INET
499 			tmpinp = in_pcblookup_local(pcbinfo, laddr,
500 			    lport, lookupflags, cred);
501 #endif
502 	} while (tmpinp != NULL);
503 
504 #ifdef INET
505 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
506 		laddrp->s_addr = laddr.s_addr;
507 #endif
508 	*lportp = lport;
509 
510 	return (0);
511 }
512 
513 /*
514  * Return cached socket options.
515  */
516 short
517 inp_so_options(const struct inpcb *inp)
518 {
519    short so_options;
520 
521    so_options = 0;
522 
523    if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
524 	   so_options |= SO_REUSEPORT;
525    if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
526 	   so_options |= SO_REUSEADDR;
527    return (so_options);
528 }
529 #endif /* INET || INET6 */
530 
531 /*
532  * Check if a new BINDMULTI socket is allowed to be created.
533  *
534  * ni points to the new inp.
535  * oi points to the exisitng inp.
536  *
537  * This checks whether the existing inp also has BINDMULTI and
538  * whether the credentials match.
539  */
540 int
541 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
542 {
543 	/* Check permissions match */
544 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
545 	    (ni->inp_cred->cr_uid !=
546 	    oi->inp_cred->cr_uid))
547 		return (0);
548 
549 	/* Check the existing inp has BINDMULTI set */
550 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
551 	    ((oi->inp_flags2 & INP_BINDMULTI) == 0))
552 		return (0);
553 
554 	/*
555 	 * We're okay - either INP_BINDMULTI isn't set on ni, or
556 	 * it is and it matches the checks.
557 	 */
558 	return (1);
559 }
560 
561 #ifdef INET
562 /*
563  * Set up a bind operation on a PCB, performing port allocation
564  * as required, but do not actually modify the PCB. Callers can
565  * either complete the bind by setting inp_laddr/inp_lport and
566  * calling in_pcbinshash(), or they can just use the resulting
567  * port and address to authorise the sending of a once-off packet.
568  *
569  * On error, the values of *laddrp and *lportp are not changed.
570  */
571 int
572 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
573     u_short *lportp, struct ucred *cred)
574 {
575 	struct socket *so = inp->inp_socket;
576 	struct sockaddr_in *sin;
577 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
578 	struct in_addr laddr;
579 	u_short lport = 0;
580 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
581 	int error;
582 
583 	/*
584 	 * No state changes, so read locks are sufficient here.
585 	 */
586 	INP_LOCK_ASSERT(inp);
587 	INP_HASH_LOCK_ASSERT(pcbinfo);
588 
589 	if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
590 		return (EADDRNOTAVAIL);
591 	laddr.s_addr = *laddrp;
592 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
593 		return (EINVAL);
594 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
595 		lookupflags = INPLOOKUP_WILDCARD;
596 	if (nam == NULL) {
597 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
598 			return (error);
599 	} else {
600 		sin = (struct sockaddr_in *)nam;
601 		if (nam->sa_len != sizeof (*sin))
602 			return (EINVAL);
603 #ifdef notdef
604 		/*
605 		 * We should check the family, but old programs
606 		 * incorrectly fail to initialize it.
607 		 */
608 		if (sin->sin_family != AF_INET)
609 			return (EAFNOSUPPORT);
610 #endif
611 		error = prison_local_ip4(cred, &sin->sin_addr);
612 		if (error)
613 			return (error);
614 		if (sin->sin_port != *lportp) {
615 			/* Don't allow the port to change. */
616 			if (*lportp != 0)
617 				return (EINVAL);
618 			lport = sin->sin_port;
619 		}
620 		/* NB: lport is left as 0 if the port isn't being changed. */
621 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
622 			/*
623 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
624 			 * allow complete duplication of binding if
625 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
626 			 * and a multicast address is bound on both
627 			 * new and duplicated sockets.
628 			 */
629 			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
630 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
631 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
632 			sin->sin_port = 0;		/* yech... */
633 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
634 			/*
635 			 * Is the address a local IP address?
636 			 * If INP_BINDANY is set, then the socket may be bound
637 			 * to any endpoint address, local or not.
638 			 */
639 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
640 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
641 				return (EADDRNOTAVAIL);
642 		}
643 		laddr = sin->sin_addr;
644 		if (lport) {
645 			struct inpcb *t;
646 			struct tcptw *tw;
647 
648 			/* GROSS */
649 			if (ntohs(lport) <= V_ipport_reservedhigh &&
650 			    ntohs(lport) >= V_ipport_reservedlow &&
651 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
652 			    0))
653 				return (EACCES);
654 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
655 			    priv_check_cred(inp->inp_cred,
656 			    PRIV_NETINET_REUSEPORT, 0) != 0) {
657 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
658 				    lport, INPLOOKUP_WILDCARD, cred);
659 	/*
660 	 * XXX
661 	 * This entire block sorely needs a rewrite.
662 	 */
663 				if (t &&
664 				    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
665 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
666 				    (so->so_type != SOCK_STREAM ||
667 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
668 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
669 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
670 				     (t->inp_flags2 & INP_REUSEPORT) == 0) &&
671 				    (inp->inp_cred->cr_uid !=
672 				     t->inp_cred->cr_uid))
673 					return (EADDRINUSE);
674 
675 				/*
676 				 * If the socket is a BINDMULTI socket, then
677 				 * the credentials need to match and the
678 				 * original socket also has to have been bound
679 				 * with BINDMULTI.
680 				 */
681 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
682 					return (EADDRINUSE);
683 			}
684 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
685 			    lport, lookupflags, cred);
686 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
687 				/*
688 				 * XXXRW: If an incpb has had its timewait
689 				 * state recycled, we treat the address as
690 				 * being in use (for now).  This is better
691 				 * than a panic, but not desirable.
692 				 */
693 				tw = intotw(t);
694 				if (tw == NULL ||
695 				    (reuseport & tw->tw_so_options) == 0)
696 					return (EADDRINUSE);
697 			} else if (t &&
698 			    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
699 			    (reuseport & inp_so_options(t)) == 0) {
700 #ifdef INET6
701 				if (ntohl(sin->sin_addr.s_addr) !=
702 				    INADDR_ANY ||
703 				    ntohl(t->inp_laddr.s_addr) !=
704 				    INADDR_ANY ||
705 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
706 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
707 #endif
708 				return (EADDRINUSE);
709 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
710 					return (EADDRINUSE);
711 			}
712 		}
713 	}
714 	if (*lportp != 0)
715 		lport = *lportp;
716 	if (lport == 0) {
717 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
718 		if (error != 0)
719 			return (error);
720 
721 	}
722 	*laddrp = laddr.s_addr;
723 	*lportp = lport;
724 	return (0);
725 }
726 
727 /*
728  * Connect from a socket to a specified address.
729  * Both address and port must be specified in argument sin.
730  * If don't have a local address for this socket yet,
731  * then pick one.
732  */
733 int
734 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
735     struct ucred *cred, struct mbuf *m)
736 {
737 	u_short lport, fport;
738 	in_addr_t laddr, faddr;
739 	int anonport, error;
740 
741 	INP_WLOCK_ASSERT(inp);
742 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
743 
744 	lport = inp->inp_lport;
745 	laddr = inp->inp_laddr.s_addr;
746 	anonport = (lport == 0);
747 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
748 	    NULL, cred);
749 	if (error)
750 		return (error);
751 
752 	/* Do the initial binding of the local address if required. */
753 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
754 		inp->inp_lport = lport;
755 		inp->inp_laddr.s_addr = laddr;
756 		if (in_pcbinshash(inp) != 0) {
757 			inp->inp_laddr.s_addr = INADDR_ANY;
758 			inp->inp_lport = 0;
759 			return (EAGAIN);
760 		}
761 	}
762 
763 	/* Commit the remaining changes. */
764 	inp->inp_lport = lport;
765 	inp->inp_laddr.s_addr = laddr;
766 	inp->inp_faddr.s_addr = faddr;
767 	inp->inp_fport = fport;
768 	in_pcbrehash_mbuf(inp, m);
769 
770 	if (anonport)
771 		inp->inp_flags |= INP_ANONPORT;
772 	return (0);
773 }
774 
775 int
776 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
777 {
778 
779 	return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
780 }
781 
782 /*
783  * Do proper source address selection on an unbound socket in case
784  * of connect. Take jails into account as well.
785  */
786 int
787 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
788     struct ucred *cred)
789 {
790 	struct ifaddr *ifa;
791 	struct sockaddr *sa;
792 	struct sockaddr_in *sin;
793 	struct route sro;
794 	int error;
795 
796 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
797 
798 	/*
799 	 * Bypass source address selection and use the primary jail IP
800 	 * if requested.
801 	 */
802 	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
803 		return (0);
804 
805 	error = 0;
806 	bzero(&sro, sizeof(sro));
807 
808 	sin = (struct sockaddr_in *)&sro.ro_dst;
809 	sin->sin_family = AF_INET;
810 	sin->sin_len = sizeof(struct sockaddr_in);
811 	sin->sin_addr.s_addr = faddr->s_addr;
812 
813 	/*
814 	 * If route is known our src addr is taken from the i/f,
815 	 * else punt.
816 	 *
817 	 * Find out route to destination.
818 	 */
819 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
820 		in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
821 
822 	/*
823 	 * If we found a route, use the address corresponding to
824 	 * the outgoing interface.
825 	 *
826 	 * Otherwise assume faddr is reachable on a directly connected
827 	 * network and try to find a corresponding interface to take
828 	 * the source address from.
829 	 */
830 	if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
831 		struct in_ifaddr *ia;
832 		struct ifnet *ifp;
833 
834 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
835 					inp->inp_socket->so_fibnum));
836 		if (ia == NULL)
837 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
838 						inp->inp_socket->so_fibnum));
839 		if (ia == NULL) {
840 			error = ENETUNREACH;
841 			goto done;
842 		}
843 
844 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
845 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
846 			ifa_free(&ia->ia_ifa);
847 			goto done;
848 		}
849 
850 		ifp = ia->ia_ifp;
851 		ifa_free(&ia->ia_ifa);
852 		ia = NULL;
853 		IF_ADDR_RLOCK(ifp);
854 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
855 
856 			sa = ifa->ifa_addr;
857 			if (sa->sa_family != AF_INET)
858 				continue;
859 			sin = (struct sockaddr_in *)sa;
860 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
861 				ia = (struct in_ifaddr *)ifa;
862 				break;
863 			}
864 		}
865 		if (ia != NULL) {
866 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
867 			IF_ADDR_RUNLOCK(ifp);
868 			goto done;
869 		}
870 		IF_ADDR_RUNLOCK(ifp);
871 
872 		/* 3. As a last resort return the 'default' jail address. */
873 		error = prison_get_ip4(cred, laddr);
874 		goto done;
875 	}
876 
877 	/*
878 	 * If the outgoing interface on the route found is not
879 	 * a loopback interface, use the address from that interface.
880 	 * In case of jails do those three steps:
881 	 * 1. check if the interface address belongs to the jail. If so use it.
882 	 * 2. check if we have any address on the outgoing interface
883 	 *    belonging to this jail. If so use it.
884 	 * 3. as a last resort return the 'default' jail address.
885 	 */
886 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
887 		struct in_ifaddr *ia;
888 		struct ifnet *ifp;
889 
890 		/* If not jailed, use the default returned. */
891 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
892 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
893 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
894 			goto done;
895 		}
896 
897 		/* Jailed. */
898 		/* 1. Check if the iface address belongs to the jail. */
899 		sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
900 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
901 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
902 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
903 			goto done;
904 		}
905 
906 		/*
907 		 * 2. Check if we have any address on the outgoing interface
908 		 *    belonging to this jail.
909 		 */
910 		ia = NULL;
911 		ifp = sro.ro_rt->rt_ifp;
912 		IF_ADDR_RLOCK(ifp);
913 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
914 			sa = ifa->ifa_addr;
915 			if (sa->sa_family != AF_INET)
916 				continue;
917 			sin = (struct sockaddr_in *)sa;
918 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
919 				ia = (struct in_ifaddr *)ifa;
920 				break;
921 			}
922 		}
923 		if (ia != NULL) {
924 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
925 			IF_ADDR_RUNLOCK(ifp);
926 			goto done;
927 		}
928 		IF_ADDR_RUNLOCK(ifp);
929 
930 		/* 3. As a last resort return the 'default' jail address. */
931 		error = prison_get_ip4(cred, laddr);
932 		goto done;
933 	}
934 
935 	/*
936 	 * The outgoing interface is marked with 'loopback net', so a route
937 	 * to ourselves is here.
938 	 * Try to find the interface of the destination address and then
939 	 * take the address from there. That interface is not necessarily
940 	 * a loopback interface.
941 	 * In case of jails, check that it is an address of the jail
942 	 * and if we cannot find, fall back to the 'default' jail address.
943 	 */
944 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
945 		struct sockaddr_in sain;
946 		struct in_ifaddr *ia;
947 
948 		bzero(&sain, sizeof(struct sockaddr_in));
949 		sain.sin_family = AF_INET;
950 		sain.sin_len = sizeof(struct sockaddr_in);
951 		sain.sin_addr.s_addr = faddr->s_addr;
952 
953 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain),
954 					inp->inp_socket->so_fibnum));
955 		if (ia == NULL)
956 			ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0,
957 						inp->inp_socket->so_fibnum));
958 		if (ia == NULL)
959 			ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
960 
961 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
962 			if (ia == NULL) {
963 				error = ENETUNREACH;
964 				goto done;
965 			}
966 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
967 			ifa_free(&ia->ia_ifa);
968 			goto done;
969 		}
970 
971 		/* Jailed. */
972 		if (ia != NULL) {
973 			struct ifnet *ifp;
974 
975 			ifp = ia->ia_ifp;
976 			ifa_free(&ia->ia_ifa);
977 			ia = NULL;
978 			IF_ADDR_RLOCK(ifp);
979 			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
980 
981 				sa = ifa->ifa_addr;
982 				if (sa->sa_family != AF_INET)
983 					continue;
984 				sin = (struct sockaddr_in *)sa;
985 				if (prison_check_ip4(cred,
986 				    &sin->sin_addr) == 0) {
987 					ia = (struct in_ifaddr *)ifa;
988 					break;
989 				}
990 			}
991 			if (ia != NULL) {
992 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
993 				IF_ADDR_RUNLOCK(ifp);
994 				goto done;
995 			}
996 			IF_ADDR_RUNLOCK(ifp);
997 		}
998 
999 		/* 3. As a last resort return the 'default' jail address. */
1000 		error = prison_get_ip4(cred, laddr);
1001 		goto done;
1002 	}
1003 
1004 done:
1005 	if (sro.ro_rt != NULL)
1006 		RTFREE(sro.ro_rt);
1007 	return (error);
1008 }
1009 
1010 /*
1011  * Set up for a connect from a socket to the specified address.
1012  * On entry, *laddrp and *lportp should contain the current local
1013  * address and port for the PCB; these are updated to the values
1014  * that should be placed in inp_laddr and inp_lport to complete
1015  * the connect.
1016  *
1017  * On success, *faddrp and *fportp will be set to the remote address
1018  * and port. These are not updated in the error case.
1019  *
1020  * If the operation fails because the connection already exists,
1021  * *oinpp will be set to the PCB of that connection so that the
1022  * caller can decide to override it. In all other cases, *oinpp
1023  * is set to NULL.
1024  */
1025 int
1026 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
1027     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1028     struct inpcb **oinpp, struct ucred *cred)
1029 {
1030 	struct rm_priotracker in_ifa_tracker;
1031 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1032 	struct in_ifaddr *ia;
1033 	struct inpcb *oinp;
1034 	struct in_addr laddr, faddr;
1035 	u_short lport, fport;
1036 	int error;
1037 
1038 	/*
1039 	 * Because a global state change doesn't actually occur here, a read
1040 	 * lock is sufficient.
1041 	 */
1042 	INP_LOCK_ASSERT(inp);
1043 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1044 
1045 	if (oinpp != NULL)
1046 		*oinpp = NULL;
1047 	if (nam->sa_len != sizeof (*sin))
1048 		return (EINVAL);
1049 	if (sin->sin_family != AF_INET)
1050 		return (EAFNOSUPPORT);
1051 	if (sin->sin_port == 0)
1052 		return (EADDRNOTAVAIL);
1053 	laddr.s_addr = *laddrp;
1054 	lport = *lportp;
1055 	faddr = sin->sin_addr;
1056 	fport = sin->sin_port;
1057 
1058 	if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) {
1059 		/*
1060 		 * If the destination address is INADDR_ANY,
1061 		 * use the primary local address.
1062 		 * If the supplied address is INADDR_BROADCAST,
1063 		 * and the primary interface supports broadcast,
1064 		 * choose the broadcast address for that interface.
1065 		 */
1066 		if (faddr.s_addr == INADDR_ANY) {
1067 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1068 			faddr =
1069 			    IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1070 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1071 			if (cred != NULL &&
1072 			    (error = prison_get_ip4(cred, &faddr)) != 0)
1073 				return (error);
1074 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1075 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1076 			if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1077 			    IFF_BROADCAST)
1078 				faddr = satosin(&CK_STAILQ_FIRST(
1079 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1080 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1081 		}
1082 	}
1083 	if (laddr.s_addr == INADDR_ANY) {
1084 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
1085 		/*
1086 		 * If the destination address is multicast and an outgoing
1087 		 * interface has been set as a multicast option, prefer the
1088 		 * address of that interface as our source address.
1089 		 */
1090 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1091 		    inp->inp_moptions != NULL) {
1092 			struct ip_moptions *imo;
1093 			struct ifnet *ifp;
1094 
1095 			imo = inp->inp_moptions;
1096 			if (imo->imo_multicast_ifp != NULL) {
1097 				ifp = imo->imo_multicast_ifp;
1098 				IN_IFADDR_RLOCK(&in_ifa_tracker);
1099 				CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1100 					if ((ia->ia_ifp == ifp) &&
1101 					    (cred == NULL ||
1102 					    prison_check_ip4(cred,
1103 					    &ia->ia_addr.sin_addr) == 0))
1104 						break;
1105 				}
1106 				if (ia == NULL)
1107 					error = EADDRNOTAVAIL;
1108 				else {
1109 					laddr = ia->ia_addr.sin_addr;
1110 					error = 0;
1111 				}
1112 				IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1113 			}
1114 		}
1115 		if (error)
1116 			return (error);
1117 	}
1118 	oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1119 	    laddr, lport, 0, NULL);
1120 	if (oinp != NULL) {
1121 		if (oinpp != NULL)
1122 			*oinpp = oinp;
1123 		return (EADDRINUSE);
1124 	}
1125 	if (lport == 0) {
1126 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1127 		    cred);
1128 		if (error)
1129 			return (error);
1130 	}
1131 	*laddrp = laddr.s_addr;
1132 	*lportp = lport;
1133 	*faddrp = faddr.s_addr;
1134 	*fportp = fport;
1135 	return (0);
1136 }
1137 
1138 void
1139 in_pcbdisconnect(struct inpcb *inp)
1140 {
1141 
1142 	INP_WLOCK_ASSERT(inp);
1143 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1144 
1145 	inp->inp_faddr.s_addr = INADDR_ANY;
1146 	inp->inp_fport = 0;
1147 	in_pcbrehash(inp);
1148 }
1149 #endif /* INET */
1150 
1151 /*
1152  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1153  * For most protocols, this will be invoked immediately prior to calling
1154  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1155  * socket, in which case in_pcbfree() is deferred.
1156  */
1157 void
1158 in_pcbdetach(struct inpcb *inp)
1159 {
1160 
1161 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1162 
1163 #ifdef RATELIMIT
1164 	if (inp->inp_snd_tag != NULL)
1165 		in_pcbdetach_txrtlmt(inp);
1166 #endif
1167 	inp->inp_socket->so_pcb = NULL;
1168 	inp->inp_socket = NULL;
1169 }
1170 
1171 /*
1172  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1173  * stability of an inpcb pointer despite the inpcb lock being released.  This
1174  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1175  * but where the inpcb lock may already held, or when acquiring a reference
1176  * via a pcbgroup.
1177  *
1178  * in_pcbref() should be used only to provide brief memory stability, and
1179  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1180  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1181  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1182  * lock and rele are the *only* safe operations that may be performed on the
1183  * inpcb.
1184  *
1185  * While the inpcb will not be freed, releasing the inpcb lock means that the
1186  * connection's state may change, so the caller should be careful to
1187  * revalidate any cached state on reacquiring the lock.  Drop the reference
1188  * using in_pcbrele().
1189  */
1190 void
1191 in_pcbref(struct inpcb *inp)
1192 {
1193 
1194 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1195 
1196 	refcount_acquire(&inp->inp_refcount);
1197 }
1198 
1199 /*
1200  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1201  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1202  * return a flag indicating whether or not the inpcb remains valid.  If it is
1203  * valid, we return with the inpcb lock held.
1204  *
1205  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1206  * reference on an inpcb.  Historically more work was done here (actually, in
1207  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1208  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1209  * about memory stability (and continued use of the write lock).
1210  */
1211 int
1212 in_pcbrele_rlocked(struct inpcb *inp)
1213 {
1214 	struct inpcbinfo *pcbinfo;
1215 
1216 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1217 
1218 	INP_RLOCK_ASSERT(inp);
1219 
1220 	if (refcount_release(&inp->inp_refcount) == 0) {
1221 		/*
1222 		 * If the inpcb has been freed, let the caller know, even if
1223 		 * this isn't the last reference.
1224 		 */
1225 		if (inp->inp_flags2 & INP_FREED) {
1226 			INP_RUNLOCK(inp);
1227 			return (1);
1228 		}
1229 		return (0);
1230 	}
1231 
1232 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1233 #ifdef TCPHPTS
1234 	if (inp->inp_in_hpts || inp->inp_in_input) {
1235 		struct tcp_hpts_entry *hpts;
1236 		/*
1237 		 * We should not be on the hpts at
1238 		 * this point in any form. we must
1239 		 * get the lock to be sure.
1240 		 */
1241 		hpts = tcp_hpts_lock(inp);
1242 		if (inp->inp_in_hpts)
1243 			panic("Hpts:%p inp:%p at free still on hpts",
1244 			      hpts, inp);
1245 		mtx_unlock(&hpts->p_mtx);
1246 		hpts = tcp_input_lock(inp);
1247 		if (inp->inp_in_input)
1248 			panic("Hpts:%p inp:%p at free still on input hpts",
1249 			      hpts, inp);
1250 		mtx_unlock(&hpts->p_mtx);
1251 	}
1252 #endif
1253 	INP_RUNLOCK(inp);
1254 	pcbinfo = inp->inp_pcbinfo;
1255 	uma_zfree(pcbinfo->ipi_zone, inp);
1256 	return (1);
1257 }
1258 
1259 int
1260 in_pcbrele_wlocked(struct inpcb *inp)
1261 {
1262 	struct inpcbinfo *pcbinfo;
1263 
1264 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1265 
1266 	INP_WLOCK_ASSERT(inp);
1267 
1268 	if (refcount_release(&inp->inp_refcount) == 0) {
1269 		/*
1270 		 * If the inpcb has been freed, let the caller know, even if
1271 		 * this isn't the last reference.
1272 		 */
1273 		if (inp->inp_flags2 & INP_FREED) {
1274 			INP_WUNLOCK(inp);
1275 			return (1);
1276 		}
1277 		return (0);
1278 	}
1279 
1280 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1281 #ifdef TCPHPTS
1282 	if (inp->inp_in_hpts || inp->inp_in_input) {
1283 		struct tcp_hpts_entry *hpts;
1284 		/*
1285 		 * We should not be on the hpts at
1286 		 * this point in any form. we must
1287 		 * get the lock to be sure.
1288 		 */
1289 		hpts = tcp_hpts_lock(inp);
1290 		if (inp->inp_in_hpts)
1291 			panic("Hpts:%p inp:%p at free still on hpts",
1292 			      hpts, inp);
1293 		mtx_unlock(&hpts->p_mtx);
1294 		hpts = tcp_input_lock(inp);
1295 		if (inp->inp_in_input)
1296 			panic("Hpts:%p inp:%p at free still on input hpts",
1297 			      hpts, inp);
1298 		mtx_unlock(&hpts->p_mtx);
1299 	}
1300 #endif
1301 	INP_WUNLOCK(inp);
1302 	pcbinfo = inp->inp_pcbinfo;
1303 	uma_zfree(pcbinfo->ipi_zone, inp);
1304 	return (1);
1305 }
1306 
1307 /*
1308  * Temporary wrapper.
1309  */
1310 int
1311 in_pcbrele(struct inpcb *inp)
1312 {
1313 
1314 	return (in_pcbrele_wlocked(inp));
1315 }
1316 
1317 void
1318 in_pcblist_rele_rlocked(epoch_context_t ctx)
1319 {
1320 	struct in_pcblist *il;
1321 	struct inpcb *inp;
1322 	struct inpcbinfo *pcbinfo;
1323 	int i, n;
1324 
1325 	il = __containerof(ctx, struct in_pcblist, il_epoch_ctx);
1326 	pcbinfo = il->il_pcbinfo;
1327 	n = il->il_count;
1328 	INP_INFO_WLOCK(pcbinfo);
1329 	for (i = 0; i < n; i++) {
1330 		inp = il->il_inp_list[i];
1331 		INP_RLOCK(inp);
1332 		if (!in_pcbrele_rlocked(inp))
1333 			INP_RUNLOCK(inp);
1334 	}
1335 	INP_INFO_WUNLOCK(pcbinfo);
1336 	free(il, M_TEMP);
1337 }
1338 
1339 static void
1340 in_pcbfree_deferred(epoch_context_t ctx)
1341 {
1342 	struct inpcb *inp;
1343 	struct inpcbinfo *pcbinfo;
1344 
1345 	inp = __containerof(ctx, struct inpcb, inp_epoch_ctx);
1346 	pcbinfo = inp->inp_pcbinfo;
1347 
1348 	INP_WLOCK(inp);
1349 	/* XXXRW: Do as much as possible here. */
1350 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1351 	if (inp->inp_sp != NULL)
1352 		ipsec_delete_pcbpolicy(inp);
1353 #endif
1354 	if (inp->inp_options)
1355 		(void)m_free(inp->inp_options);
1356 
1357 	inp->inp_vflag = 0;
1358 	inp->inp_flags2 |= INP_FREED;
1359 	crfree(inp->inp_cred);
1360 #ifdef MAC
1361 	mac_inpcb_destroy(inp);
1362 #endif
1363 	if (!in_pcbrele_wlocked(inp))
1364 		INP_WUNLOCK(inp);
1365 }
1366 
1367 /*
1368  * Unconditionally schedule an inpcb to be freed by decrementing its
1369  * reference count, which should occur only after the inpcb has been detached
1370  * from its socket.  If another thread holds a temporary reference (acquired
1371  * using in_pcbref()) then the free is deferred until that reference is
1372  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1373  * work, including removal from global lists, is done in this context, where
1374  * the pcbinfo lock is held.
1375  */
1376 void
1377 in_pcbfree(struct inpcb *inp)
1378 {
1379 #ifdef INET6
1380 	struct ip6_moptions *im6o = NULL;
1381 #endif
1382 #ifdef INET
1383 	struct ip_moptions *imo = NULL;
1384 #endif
1385 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1386 
1387 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1388 	KASSERT((inp->inp_flags2 & INP_FREED) == 0,
1389 	    ("%s: called twice for pcb %p", __func__, inp));
1390 	if (inp->inp_flags2 & INP_FREED) {
1391 		INP_WUNLOCK(inp);
1392 		return;
1393 	}
1394 
1395 #ifdef INVARIANTS
1396 	if (pcbinfo == &V_tcbinfo) {
1397 		INP_INFO_LOCK_ASSERT(pcbinfo);
1398 	} else {
1399 		INP_INFO_WLOCK_ASSERT(pcbinfo);
1400 	}
1401 #endif
1402 	INP_WLOCK_ASSERT(inp);
1403 #ifdef INET
1404 	imo = inp->inp_moptions;
1405 	inp->inp_moptions = NULL;
1406 	inp_freemoptions(imo);
1407 #endif
1408 #ifdef INET6
1409 	if (inp->inp_vflag & INP_IPV6PROTO) {
1410 		ip6_freepcbopts(inp->in6p_outputopts);
1411 		im6o = inp->in6p_moptions;
1412 		inp->in6p_moptions = NULL;
1413 		ip6_freemoptions(im6o);
1414 	}
1415 #endif
1416 	/* Remove first from list */
1417 	INP_LIST_WLOCK(pcbinfo);
1418 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1419 	in_pcbremlists(inp);
1420 	INP_LIST_WUNLOCK(pcbinfo);
1421 	RO_INVALIDATE_CACHE(&inp->inp_route);
1422 	INP_WUNLOCK(inp);
1423 	epoch_call(net_epoch_preempt, &inp->inp_epoch_ctx, in_pcbfree_deferred);
1424 }
1425 
1426 /*
1427  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1428  * port reservation, and preventing it from being returned by inpcb lookups.
1429  *
1430  * It is used by TCP to mark an inpcb as unused and avoid future packet
1431  * delivery or event notification when a socket remains open but TCP has
1432  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1433  * or a RST on the wire, and allows the port binding to be reused while still
1434  * maintaining the invariant that so_pcb always points to a valid inpcb until
1435  * in_pcbdetach().
1436  *
1437  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1438  * in_pcbnotifyall() and in_pcbpurgeif0()?
1439  */
1440 void
1441 in_pcbdrop(struct inpcb *inp)
1442 {
1443 
1444 	INP_WLOCK_ASSERT(inp);
1445 
1446 	/*
1447 	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1448 	 * the hash lock...?
1449 	 */
1450 	inp->inp_flags |= INP_DROPPED;
1451 	if (inp->inp_flags & INP_INHASHLIST) {
1452 		struct inpcbport *phd = inp->inp_phd;
1453 
1454 		INP_HASH_WLOCK(inp->inp_pcbinfo);
1455 		LIST_REMOVE(inp, inp_hash);
1456 		LIST_REMOVE(inp, inp_portlist);
1457 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1458 			LIST_REMOVE(phd, phd_hash);
1459 			free(phd, M_PCB);
1460 		}
1461 		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1462 		inp->inp_flags &= ~INP_INHASHLIST;
1463 #ifdef PCBGROUP
1464 		in_pcbgroup_remove(inp);
1465 #endif
1466 	}
1467 }
1468 
1469 #ifdef INET
1470 /*
1471  * Common routines to return the socket addresses associated with inpcbs.
1472  */
1473 struct sockaddr *
1474 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1475 {
1476 	struct sockaddr_in *sin;
1477 
1478 	sin = malloc(sizeof *sin, M_SONAME,
1479 		M_WAITOK | M_ZERO);
1480 	sin->sin_family = AF_INET;
1481 	sin->sin_len = sizeof(*sin);
1482 	sin->sin_addr = *addr_p;
1483 	sin->sin_port = port;
1484 
1485 	return (struct sockaddr *)sin;
1486 }
1487 
1488 int
1489 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1490 {
1491 	struct inpcb *inp;
1492 	struct in_addr addr;
1493 	in_port_t port;
1494 
1495 	inp = sotoinpcb(so);
1496 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1497 
1498 	INP_RLOCK(inp);
1499 	port = inp->inp_lport;
1500 	addr = inp->inp_laddr;
1501 	INP_RUNLOCK(inp);
1502 
1503 	*nam = in_sockaddr(port, &addr);
1504 	return 0;
1505 }
1506 
1507 int
1508 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1509 {
1510 	struct inpcb *inp;
1511 	struct in_addr addr;
1512 	in_port_t port;
1513 
1514 	inp = sotoinpcb(so);
1515 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1516 
1517 	INP_RLOCK(inp);
1518 	port = inp->inp_fport;
1519 	addr = inp->inp_faddr;
1520 	INP_RUNLOCK(inp);
1521 
1522 	*nam = in_sockaddr(port, &addr);
1523 	return 0;
1524 }
1525 
1526 void
1527 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1528     struct inpcb *(*notify)(struct inpcb *, int))
1529 {
1530 	struct inpcb *inp, *inp_temp;
1531 
1532 	INP_INFO_WLOCK(pcbinfo);
1533 	LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1534 		INP_WLOCK(inp);
1535 #ifdef INET6
1536 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1537 			INP_WUNLOCK(inp);
1538 			continue;
1539 		}
1540 #endif
1541 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1542 		    inp->inp_socket == NULL) {
1543 			INP_WUNLOCK(inp);
1544 			continue;
1545 		}
1546 		if ((*notify)(inp, errno))
1547 			INP_WUNLOCK(inp);
1548 	}
1549 	INP_INFO_WUNLOCK(pcbinfo);
1550 }
1551 
1552 void
1553 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1554 {
1555 	struct inpcb *inp;
1556 	struct ip_moptions *imo;
1557 	int i, gap;
1558 
1559 	INP_INFO_WLOCK(pcbinfo);
1560 	LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1561 		INP_WLOCK(inp);
1562 		imo = inp->inp_moptions;
1563 		if ((inp->inp_vflag & INP_IPV4) &&
1564 		    imo != NULL) {
1565 			/*
1566 			 * Unselect the outgoing interface if it is being
1567 			 * detached.
1568 			 */
1569 			if (imo->imo_multicast_ifp == ifp)
1570 				imo->imo_multicast_ifp = NULL;
1571 
1572 			/*
1573 			 * Drop multicast group membership if we joined
1574 			 * through the interface being detached.
1575 			 *
1576 			 * XXX This can all be deferred to an epoch_call
1577 			 */
1578 			for (i = 0, gap = 0; i < imo->imo_num_memberships;
1579 			    i++) {
1580 				if (imo->imo_membership[i]->inm_ifp == ifp) {
1581 					IN_MULTI_LOCK_ASSERT();
1582 					in_leavegroup_locked(imo->imo_membership[i], NULL);
1583 					gap++;
1584 				} else if (gap != 0)
1585 					imo->imo_membership[i - gap] =
1586 					    imo->imo_membership[i];
1587 			}
1588 			imo->imo_num_memberships -= gap;
1589 		}
1590 		INP_WUNLOCK(inp);
1591 	}
1592 	INP_INFO_WUNLOCK(pcbinfo);
1593 }
1594 
1595 /*
1596  * Lookup a PCB based on the local address and port.  Caller must hold the
1597  * hash lock.  No inpcb locks or references are acquired.
1598  */
1599 #define INP_LOOKUP_MAPPED_PCB_COST	3
1600 struct inpcb *
1601 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1602     u_short lport, int lookupflags, struct ucred *cred)
1603 {
1604 	struct inpcb *inp;
1605 #ifdef INET6
1606 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1607 #else
1608 	int matchwild = 3;
1609 #endif
1610 	int wildcard;
1611 
1612 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1613 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1614 
1615 	INP_HASH_LOCK_ASSERT(pcbinfo);
1616 
1617 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1618 		struct inpcbhead *head;
1619 		/*
1620 		 * Look for an unconnected (wildcard foreign addr) PCB that
1621 		 * matches the local address and port we're looking for.
1622 		 */
1623 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1624 		    0, pcbinfo->ipi_hashmask)];
1625 		LIST_FOREACH(inp, head, inp_hash) {
1626 #ifdef INET6
1627 			/* XXX inp locking */
1628 			if ((inp->inp_vflag & INP_IPV4) == 0)
1629 				continue;
1630 #endif
1631 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1632 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1633 			    inp->inp_lport == lport) {
1634 				/*
1635 				 * Found?
1636 				 */
1637 				if (cred == NULL ||
1638 				    prison_equal_ip4(cred->cr_prison,
1639 					inp->inp_cred->cr_prison))
1640 					return (inp);
1641 			}
1642 		}
1643 		/*
1644 		 * Not found.
1645 		 */
1646 		return (NULL);
1647 	} else {
1648 		struct inpcbporthead *porthash;
1649 		struct inpcbport *phd;
1650 		struct inpcb *match = NULL;
1651 		/*
1652 		 * Best fit PCB lookup.
1653 		 *
1654 		 * First see if this local port is in use by looking on the
1655 		 * port hash list.
1656 		 */
1657 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1658 		    pcbinfo->ipi_porthashmask)];
1659 		LIST_FOREACH(phd, porthash, phd_hash) {
1660 			if (phd->phd_port == lport)
1661 				break;
1662 		}
1663 		if (phd != NULL) {
1664 			/*
1665 			 * Port is in use by one or more PCBs. Look for best
1666 			 * fit.
1667 			 */
1668 			LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1669 				wildcard = 0;
1670 				if (cred != NULL &&
1671 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
1672 					cred->cr_prison))
1673 					continue;
1674 #ifdef INET6
1675 				/* XXX inp locking */
1676 				if ((inp->inp_vflag & INP_IPV4) == 0)
1677 					continue;
1678 				/*
1679 				 * We never select the PCB that has
1680 				 * INP_IPV6 flag and is bound to :: if
1681 				 * we have another PCB which is bound
1682 				 * to 0.0.0.0.  If a PCB has the
1683 				 * INP_IPV6 flag, then we set its cost
1684 				 * higher than IPv4 only PCBs.
1685 				 *
1686 				 * Note that the case only happens
1687 				 * when a socket is bound to ::, under
1688 				 * the condition that the use of the
1689 				 * mapped address is allowed.
1690 				 */
1691 				if ((inp->inp_vflag & INP_IPV6) != 0)
1692 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1693 #endif
1694 				if (inp->inp_faddr.s_addr != INADDR_ANY)
1695 					wildcard++;
1696 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
1697 					if (laddr.s_addr == INADDR_ANY)
1698 						wildcard++;
1699 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
1700 						continue;
1701 				} else {
1702 					if (laddr.s_addr != INADDR_ANY)
1703 						wildcard++;
1704 				}
1705 				if (wildcard < matchwild) {
1706 					match = inp;
1707 					matchwild = wildcard;
1708 					if (matchwild == 0)
1709 						break;
1710 				}
1711 			}
1712 		}
1713 		return (match);
1714 	}
1715 }
1716 #undef INP_LOOKUP_MAPPED_PCB_COST
1717 
1718 #ifdef PCBGROUP
1719 /*
1720  * Lookup PCB in hash list, using pcbgroup tables.
1721  */
1722 static struct inpcb *
1723 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
1724     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
1725     u_int lport_arg, int lookupflags, struct ifnet *ifp)
1726 {
1727 	struct inpcbhead *head;
1728 	struct inpcb *inp, *tmpinp;
1729 	u_short fport = fport_arg, lport = lport_arg;
1730 	bool locked;
1731 
1732 	/*
1733 	 * First look for an exact match.
1734 	 */
1735 	tmpinp = NULL;
1736 	INP_GROUP_LOCK(pcbgroup);
1737 	head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1738 	    pcbgroup->ipg_hashmask)];
1739 	LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1740 #ifdef INET6
1741 		/* XXX inp locking */
1742 		if ((inp->inp_vflag & INP_IPV4) == 0)
1743 			continue;
1744 #endif
1745 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1746 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1747 		    inp->inp_fport == fport &&
1748 		    inp->inp_lport == lport) {
1749 			/*
1750 			 * XXX We should be able to directly return
1751 			 * the inp here, without any checks.
1752 			 * Well unless both bound with SO_REUSEPORT?
1753 			 */
1754 			if (prison_flag(inp->inp_cred, PR_IP4))
1755 				goto found;
1756 			if (tmpinp == NULL)
1757 				tmpinp = inp;
1758 		}
1759 	}
1760 	if (tmpinp != NULL) {
1761 		inp = tmpinp;
1762 		goto found;
1763 	}
1764 
1765 #ifdef	RSS
1766 	/*
1767 	 * For incoming connections, we may wish to do a wildcard
1768 	 * match for an RSS-local socket.
1769 	 */
1770 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1771 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1772 #ifdef INET6
1773 		struct inpcb *local_wild_mapped = NULL;
1774 #endif
1775 		struct inpcb *jail_wild = NULL;
1776 		struct inpcbhead *head;
1777 		int injail;
1778 
1779 		/*
1780 		 * Order of socket selection - we always prefer jails.
1781 		 *      1. jailed, non-wild.
1782 		 *      2. jailed, wild.
1783 		 *      3. non-jailed, non-wild.
1784 		 *      4. non-jailed, wild.
1785 		 */
1786 
1787 		head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
1788 		    lport, 0, pcbgroup->ipg_hashmask)];
1789 		LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1790 #ifdef INET6
1791 			/* XXX inp locking */
1792 			if ((inp->inp_vflag & INP_IPV4) == 0)
1793 				continue;
1794 #endif
1795 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1796 			    inp->inp_lport != lport)
1797 				continue;
1798 
1799 			injail = prison_flag(inp->inp_cred, PR_IP4);
1800 			if (injail) {
1801 				if (prison_check_ip4(inp->inp_cred,
1802 				    &laddr) != 0)
1803 					continue;
1804 			} else {
1805 				if (local_exact != NULL)
1806 					continue;
1807 			}
1808 
1809 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1810 				if (injail)
1811 					goto found;
1812 				else
1813 					local_exact = inp;
1814 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1815 #ifdef INET6
1816 				/* XXX inp locking, NULL check */
1817 				if (inp->inp_vflag & INP_IPV6PROTO)
1818 					local_wild_mapped = inp;
1819 				else
1820 #endif
1821 					if (injail)
1822 						jail_wild = inp;
1823 					else
1824 						local_wild = inp;
1825 			}
1826 		} /* LIST_FOREACH */
1827 
1828 		inp = jail_wild;
1829 		if (inp == NULL)
1830 			inp = local_exact;
1831 		if (inp == NULL)
1832 			inp = local_wild;
1833 #ifdef INET6
1834 		if (inp == NULL)
1835 			inp = local_wild_mapped;
1836 #endif
1837 		if (inp != NULL)
1838 			goto found;
1839 	}
1840 #endif
1841 
1842 	/*
1843 	 * Then look for a wildcard match, if requested.
1844 	 */
1845 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1846 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1847 #ifdef INET6
1848 		struct inpcb *local_wild_mapped = NULL;
1849 #endif
1850 		struct inpcb *jail_wild = NULL;
1851 		struct inpcbhead *head;
1852 		int injail;
1853 
1854 		/*
1855 		 * Order of socket selection - we always prefer jails.
1856 		 *      1. jailed, non-wild.
1857 		 *      2. jailed, wild.
1858 		 *      3. non-jailed, non-wild.
1859 		 *      4. non-jailed, wild.
1860 		 */
1861 		head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
1862 		    0, pcbinfo->ipi_wildmask)];
1863 		LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
1864 #ifdef INET6
1865 			/* XXX inp locking */
1866 			if ((inp->inp_vflag & INP_IPV4) == 0)
1867 				continue;
1868 #endif
1869 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1870 			    inp->inp_lport != lport)
1871 				continue;
1872 
1873 			injail = prison_flag(inp->inp_cred, PR_IP4);
1874 			if (injail) {
1875 				if (prison_check_ip4(inp->inp_cred,
1876 				    &laddr) != 0)
1877 					continue;
1878 			} else {
1879 				if (local_exact != NULL)
1880 					continue;
1881 			}
1882 
1883 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1884 				if (injail)
1885 					goto found;
1886 				else
1887 					local_exact = inp;
1888 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1889 #ifdef INET6
1890 				/* XXX inp locking, NULL check */
1891 				if (inp->inp_vflag & INP_IPV6PROTO)
1892 					local_wild_mapped = inp;
1893 				else
1894 #endif
1895 					if (injail)
1896 						jail_wild = inp;
1897 					else
1898 						local_wild = inp;
1899 			}
1900 		} /* LIST_FOREACH */
1901 		inp = jail_wild;
1902 		if (inp == NULL)
1903 			inp = local_exact;
1904 		if (inp == NULL)
1905 			inp = local_wild;
1906 #ifdef INET6
1907 		if (inp == NULL)
1908 			inp = local_wild_mapped;
1909 #endif
1910 		if (inp != NULL)
1911 			goto found;
1912 	} /* if (lookupflags & INPLOOKUP_WILDCARD) */
1913 	INP_GROUP_UNLOCK(pcbgroup);
1914 	return (NULL);
1915 
1916 found:
1917 	if (lookupflags & INPLOOKUP_WLOCKPCB)
1918 		locked = INP_TRY_WLOCK(inp);
1919 	else if (lookupflags & INPLOOKUP_RLOCKPCB)
1920 		locked = INP_TRY_RLOCK(inp);
1921 	else
1922 		panic("%s: locking bug", __func__);
1923 	if (!locked)
1924 		in_pcbref(inp);
1925 	INP_GROUP_UNLOCK(pcbgroup);
1926 	if (!locked) {
1927 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
1928 			INP_WLOCK(inp);
1929 			if (in_pcbrele_wlocked(inp))
1930 				return (NULL);
1931 		} else {
1932 			INP_RLOCK(inp);
1933 			if (in_pcbrele_rlocked(inp))
1934 				return (NULL);
1935 		}
1936 	}
1937 #ifdef INVARIANTS
1938 	if (lookupflags & INPLOOKUP_WLOCKPCB)
1939 		INP_WLOCK_ASSERT(inp);
1940 	else
1941 		INP_RLOCK_ASSERT(inp);
1942 #endif
1943 	return (inp);
1944 }
1945 #endif /* PCBGROUP */
1946 
1947 /*
1948  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
1949  * that the caller has locked the hash list, and will not perform any further
1950  * locking or reference operations on either the hash list or the connection.
1951  */
1952 static struct inpcb *
1953 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1954     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
1955     struct ifnet *ifp)
1956 {
1957 	struct inpcbhead *head;
1958 	struct inpcb *inp, *tmpinp;
1959 	u_short fport = fport_arg, lport = lport_arg;
1960 
1961 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1962 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1963 
1964 	INP_HASH_LOCK_ASSERT(pcbinfo);
1965 
1966 	/*
1967 	 * First look for an exact match.
1968 	 */
1969 	tmpinp = NULL;
1970 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1971 	    pcbinfo->ipi_hashmask)];
1972 	LIST_FOREACH(inp, head, inp_hash) {
1973 #ifdef INET6
1974 		/* XXX inp locking */
1975 		if ((inp->inp_vflag & INP_IPV4) == 0)
1976 			continue;
1977 #endif
1978 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1979 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1980 		    inp->inp_fport == fport &&
1981 		    inp->inp_lport == lport) {
1982 			/*
1983 			 * XXX We should be able to directly return
1984 			 * the inp here, without any checks.
1985 			 * Well unless both bound with SO_REUSEPORT?
1986 			 */
1987 			if (prison_flag(inp->inp_cred, PR_IP4))
1988 				return (inp);
1989 			if (tmpinp == NULL)
1990 				tmpinp = inp;
1991 		}
1992 	}
1993 	if (tmpinp != NULL)
1994 		return (tmpinp);
1995 
1996 	/*
1997 	 * Then look for a wildcard match, if requested.
1998 	 */
1999 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2000 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2001 #ifdef INET6
2002 		struct inpcb *local_wild_mapped = NULL;
2003 #endif
2004 		struct inpcb *jail_wild = NULL;
2005 		int injail;
2006 
2007 		/*
2008 		 * Order of socket selection - we always prefer jails.
2009 		 *      1. jailed, non-wild.
2010 		 *      2. jailed, wild.
2011 		 *      3. non-jailed, non-wild.
2012 		 *      4. non-jailed, wild.
2013 		 */
2014 
2015 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
2016 		    0, pcbinfo->ipi_hashmask)];
2017 		LIST_FOREACH(inp, head, inp_hash) {
2018 #ifdef INET6
2019 			/* XXX inp locking */
2020 			if ((inp->inp_vflag & INP_IPV4) == 0)
2021 				continue;
2022 #endif
2023 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2024 			    inp->inp_lport != lport)
2025 				continue;
2026 
2027 			injail = prison_flag(inp->inp_cred, PR_IP4);
2028 			if (injail) {
2029 				if (prison_check_ip4(inp->inp_cred,
2030 				    &laddr) != 0)
2031 					continue;
2032 			} else {
2033 				if (local_exact != NULL)
2034 					continue;
2035 			}
2036 
2037 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2038 				if (injail)
2039 					return (inp);
2040 				else
2041 					local_exact = inp;
2042 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2043 #ifdef INET6
2044 				/* XXX inp locking, NULL check */
2045 				if (inp->inp_vflag & INP_IPV6PROTO)
2046 					local_wild_mapped = inp;
2047 				else
2048 #endif
2049 					if (injail)
2050 						jail_wild = inp;
2051 					else
2052 						local_wild = inp;
2053 			}
2054 		} /* LIST_FOREACH */
2055 		if (jail_wild != NULL)
2056 			return (jail_wild);
2057 		if (local_exact != NULL)
2058 			return (local_exact);
2059 		if (local_wild != NULL)
2060 			return (local_wild);
2061 #ifdef INET6
2062 		if (local_wild_mapped != NULL)
2063 			return (local_wild_mapped);
2064 #endif
2065 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
2066 
2067 	return (NULL);
2068 }
2069 
2070 /*
2071  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
2072  * hash list lock, and will return the inpcb locked (i.e., requires
2073  * INPLOOKUP_LOCKPCB).
2074  */
2075 static struct inpcb *
2076 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2077     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2078     struct ifnet *ifp)
2079 {
2080 	struct inpcb *inp;
2081 	bool locked;
2082 
2083 	INP_HASH_RLOCK(pcbinfo);
2084 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2085 	    (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
2086 	if (inp != NULL) {
2087 		if (lookupflags & INPLOOKUP_WLOCKPCB)
2088 			locked = INP_TRY_WLOCK(inp);
2089 		else if (lookupflags & INPLOOKUP_RLOCKPCB)
2090 			locked = INP_TRY_RLOCK(inp);
2091 		else
2092 			panic("%s: locking bug", __func__);
2093 		if (!locked)
2094 			in_pcbref(inp);
2095 		INP_HASH_RUNLOCK(pcbinfo);
2096 		if (!locked) {
2097 			if (lookupflags & INPLOOKUP_WLOCKPCB) {
2098 				INP_WLOCK(inp);
2099 				if (in_pcbrele_wlocked(inp))
2100 					return (NULL);
2101 			} else {
2102 				INP_RLOCK(inp);
2103 				if (in_pcbrele_rlocked(inp))
2104 					return (NULL);
2105 			}
2106 		}
2107 #ifdef INVARIANTS
2108 		if (lookupflags & INPLOOKUP_WLOCKPCB)
2109 			INP_WLOCK_ASSERT(inp);
2110 		else
2111 			INP_RLOCK_ASSERT(inp);
2112 #endif
2113 	} else
2114 		INP_HASH_RUNLOCK(pcbinfo);
2115 	return (inp);
2116 }
2117 
2118 /*
2119  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2120  * from which a pre-calculated hash value may be extracted.
2121  *
2122  * Possibly more of this logic should be in in_pcbgroup.c.
2123  */
2124 struct inpcb *
2125 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2126     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
2127 {
2128 #if defined(PCBGROUP) && !defined(RSS)
2129 	struct inpcbgroup *pcbgroup;
2130 #endif
2131 
2132 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2133 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2134 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2135 	    ("%s: LOCKPCB not set", __func__));
2136 
2137 	/*
2138 	 * When not using RSS, use connection groups in preference to the
2139 	 * reservation table when looking up 4-tuples.  When using RSS, just
2140 	 * use the reservation table, due to the cost of the Toeplitz hash
2141 	 * in software.
2142 	 *
2143 	 * XXXRW: This policy belongs in the pcbgroup code, as in principle
2144 	 * we could be doing RSS with a non-Toeplitz hash that is affordable
2145 	 * in software.
2146 	 */
2147 #if defined(PCBGROUP) && !defined(RSS)
2148 	if (in_pcbgroup_enabled(pcbinfo)) {
2149 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2150 		    fport);
2151 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2152 		    laddr, lport, lookupflags, ifp));
2153 	}
2154 #endif
2155 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2156 	    lookupflags, ifp));
2157 }
2158 
2159 struct inpcb *
2160 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2161     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2162     struct ifnet *ifp, struct mbuf *m)
2163 {
2164 #ifdef PCBGROUP
2165 	struct inpcbgroup *pcbgroup;
2166 #endif
2167 
2168 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2169 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2170 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2171 	    ("%s: LOCKPCB not set", __func__));
2172 
2173 #ifdef PCBGROUP
2174 	/*
2175 	 * If we can use a hardware-generated hash to look up the connection
2176 	 * group, use that connection group to find the inpcb.  Otherwise
2177 	 * fall back on a software hash -- or the reservation table if we're
2178 	 * using RSS.
2179 	 *
2180 	 * XXXRW: As above, that policy belongs in the pcbgroup code.
2181 	 */
2182 	if (in_pcbgroup_enabled(pcbinfo) &&
2183 	    !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
2184 		pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
2185 		    m->m_pkthdr.flowid);
2186 		if (pcbgroup != NULL)
2187 			return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
2188 			    fport, laddr, lport, lookupflags, ifp));
2189 #ifndef RSS
2190 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2191 		    fport);
2192 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2193 		    laddr, lport, lookupflags, ifp));
2194 #endif
2195 	}
2196 #endif
2197 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2198 	    lookupflags, ifp));
2199 }
2200 #endif /* INET */
2201 
2202 /*
2203  * Insert PCB onto various hash lists.
2204  */
2205 static int
2206 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
2207 {
2208 	struct inpcbhead *pcbhash;
2209 	struct inpcbporthead *pcbporthash;
2210 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2211 	struct inpcbport *phd;
2212 	u_int32_t hashkey_faddr;
2213 
2214 	INP_WLOCK_ASSERT(inp);
2215 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2216 
2217 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2218 	    ("in_pcbinshash: INP_INHASHLIST"));
2219 
2220 #ifdef INET6
2221 	if (inp->inp_vflag & INP_IPV6)
2222 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2223 	else
2224 #endif
2225 	hashkey_faddr = inp->inp_faddr.s_addr;
2226 
2227 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2228 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2229 
2230 	pcbporthash = &pcbinfo->ipi_porthashbase[
2231 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2232 
2233 	/*
2234 	 * Go through port list and look for a head for this lport.
2235 	 */
2236 	LIST_FOREACH(phd, pcbporthash, phd_hash) {
2237 		if (phd->phd_port == inp->inp_lport)
2238 			break;
2239 	}
2240 	/*
2241 	 * If none exists, malloc one and tack it on.
2242 	 */
2243 	if (phd == NULL) {
2244 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
2245 		if (phd == NULL) {
2246 			return (ENOBUFS); /* XXX */
2247 		}
2248 		phd->phd_port = inp->inp_lport;
2249 		LIST_INIT(&phd->phd_pcblist);
2250 		LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2251 	}
2252 	inp->inp_phd = phd;
2253 	LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2254 	LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2255 	inp->inp_flags |= INP_INHASHLIST;
2256 #ifdef PCBGROUP
2257 	if (do_pcbgroup_update)
2258 		in_pcbgroup_update(inp);
2259 #endif
2260 	return (0);
2261 }
2262 
2263 /*
2264  * For now, there are two public interfaces to insert an inpcb into the hash
2265  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
2266  * is used only in the TCP syncache, where in_pcbinshash is called before the
2267  * full 4-tuple is set for the inpcb, and we don't want to install in the
2268  * pcbgroup until later.
2269  *
2270  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
2271  * connection groups, and partially initialised inpcbs should not be exposed
2272  * to either reservation hash tables or pcbgroups.
2273  */
2274 int
2275 in_pcbinshash(struct inpcb *inp)
2276 {
2277 
2278 	return (in_pcbinshash_internal(inp, 1));
2279 }
2280 
2281 int
2282 in_pcbinshash_nopcbgroup(struct inpcb *inp)
2283 {
2284 
2285 	return (in_pcbinshash_internal(inp, 0));
2286 }
2287 
2288 /*
2289  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2290  * changed. NOTE: This does not handle the case of the lport changing (the
2291  * hashed port list would have to be updated as well), so the lport must
2292  * not change after in_pcbinshash() has been called.
2293  */
2294 void
2295 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
2296 {
2297 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2298 	struct inpcbhead *head;
2299 	u_int32_t hashkey_faddr;
2300 
2301 	INP_WLOCK_ASSERT(inp);
2302 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2303 
2304 	KASSERT(inp->inp_flags & INP_INHASHLIST,
2305 	    ("in_pcbrehash: !INP_INHASHLIST"));
2306 
2307 #ifdef INET6
2308 	if (inp->inp_vflag & INP_IPV6)
2309 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2310 	else
2311 #endif
2312 	hashkey_faddr = inp->inp_faddr.s_addr;
2313 
2314 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2315 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2316 
2317 	LIST_REMOVE(inp, inp_hash);
2318 	LIST_INSERT_HEAD(head, inp, inp_hash);
2319 
2320 #ifdef PCBGROUP
2321 	if (m != NULL)
2322 		in_pcbgroup_update_mbuf(inp, m);
2323 	else
2324 		in_pcbgroup_update(inp);
2325 #endif
2326 }
2327 
2328 void
2329 in_pcbrehash(struct inpcb *inp)
2330 {
2331 
2332 	in_pcbrehash_mbuf(inp, NULL);
2333 }
2334 
2335 /*
2336  * Remove PCB from various lists.
2337  */
2338 static void
2339 in_pcbremlists(struct inpcb *inp)
2340 {
2341 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2342 
2343 #ifdef INVARIANTS
2344 	if (pcbinfo == &V_tcbinfo) {
2345 		INP_INFO_RLOCK_ASSERT(pcbinfo);
2346 	} else {
2347 		INP_INFO_WLOCK_ASSERT(pcbinfo);
2348 	}
2349 #endif
2350 
2351 	INP_WLOCK_ASSERT(inp);
2352 	INP_LIST_WLOCK_ASSERT(pcbinfo);
2353 
2354 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2355 	if (inp->inp_flags & INP_INHASHLIST) {
2356 		struct inpcbport *phd = inp->inp_phd;
2357 
2358 		INP_HASH_WLOCK(pcbinfo);
2359 		LIST_REMOVE(inp, inp_hash);
2360 		LIST_REMOVE(inp, inp_portlist);
2361 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
2362 			LIST_REMOVE(phd, phd_hash);
2363 			free(phd, M_PCB);
2364 		}
2365 		INP_HASH_WUNLOCK(pcbinfo);
2366 		inp->inp_flags &= ~INP_INHASHLIST;
2367 	}
2368 	LIST_REMOVE(inp, inp_list);
2369 	pcbinfo->ipi_count--;
2370 #ifdef PCBGROUP
2371 	in_pcbgroup_remove(inp);
2372 #endif
2373 }
2374 
2375 /*
2376  * Check for alternatives when higher level complains
2377  * about service problems.  For now, invalidate cached
2378  * routing information.  If the route was created dynamically
2379  * (by a redirect), time to try a default gateway again.
2380  */
2381 void
2382 in_losing(struct inpcb *inp)
2383 {
2384 
2385 	RO_INVALIDATE_CACHE(&inp->inp_route);
2386 	return;
2387 }
2388 
2389 /*
2390  * A set label operation has occurred at the socket layer, propagate the
2391  * label change into the in_pcb for the socket.
2392  */
2393 void
2394 in_pcbsosetlabel(struct socket *so)
2395 {
2396 #ifdef MAC
2397 	struct inpcb *inp;
2398 
2399 	inp = sotoinpcb(so);
2400 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2401 
2402 	INP_WLOCK(inp);
2403 	SOCK_LOCK(so);
2404 	mac_inpcb_sosetlabel(so, inp);
2405 	SOCK_UNLOCK(so);
2406 	INP_WUNLOCK(inp);
2407 #endif
2408 }
2409 
2410 /*
2411  * ipport_tick runs once per second, determining if random port allocation
2412  * should be continued.  If more than ipport_randomcps ports have been
2413  * allocated in the last second, then we return to sequential port
2414  * allocation. We return to random allocation only once we drop below
2415  * ipport_randomcps for at least ipport_randomtime seconds.
2416  */
2417 static void
2418 ipport_tick(void *xtp)
2419 {
2420 	VNET_ITERATOR_DECL(vnet_iter);
2421 
2422 	VNET_LIST_RLOCK_NOSLEEP();
2423 	VNET_FOREACH(vnet_iter) {
2424 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
2425 		if (V_ipport_tcpallocs <=
2426 		    V_ipport_tcplastcount + V_ipport_randomcps) {
2427 			if (V_ipport_stoprandom > 0)
2428 				V_ipport_stoprandom--;
2429 		} else
2430 			V_ipport_stoprandom = V_ipport_randomtime;
2431 		V_ipport_tcplastcount = V_ipport_tcpallocs;
2432 		CURVNET_RESTORE();
2433 	}
2434 	VNET_LIST_RUNLOCK_NOSLEEP();
2435 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2436 }
2437 
2438 static void
2439 ip_fini(void *xtp)
2440 {
2441 
2442 	callout_stop(&ipport_tick_callout);
2443 }
2444 
2445 /*
2446  * The ipport_callout should start running at about the time we attach the
2447  * inet or inet6 domains.
2448  */
2449 static void
2450 ipport_tick_init(const void *unused __unused)
2451 {
2452 
2453 	/* Start ipport_tick. */
2454 	callout_init(&ipport_tick_callout, 1);
2455 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2456 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2457 		SHUTDOWN_PRI_DEFAULT);
2458 }
2459 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
2460     ipport_tick_init, NULL);
2461 
2462 void
2463 inp_wlock(struct inpcb *inp)
2464 {
2465 
2466 	INP_WLOCK(inp);
2467 }
2468 
2469 void
2470 inp_wunlock(struct inpcb *inp)
2471 {
2472 
2473 	INP_WUNLOCK(inp);
2474 }
2475 
2476 void
2477 inp_rlock(struct inpcb *inp)
2478 {
2479 
2480 	INP_RLOCK(inp);
2481 }
2482 
2483 void
2484 inp_runlock(struct inpcb *inp)
2485 {
2486 
2487 	INP_RUNLOCK(inp);
2488 }
2489 
2490 #ifdef INVARIANT_SUPPORT
2491 void
2492 inp_lock_assert(struct inpcb *inp)
2493 {
2494 
2495 	INP_WLOCK_ASSERT(inp);
2496 }
2497 
2498 void
2499 inp_unlock_assert(struct inpcb *inp)
2500 {
2501 
2502 	INP_UNLOCK_ASSERT(inp);
2503 }
2504 #endif
2505 
2506 void
2507 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2508 {
2509 	struct inpcb *inp;
2510 
2511 	INP_INFO_WLOCK(&V_tcbinfo);
2512 	LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2513 		INP_WLOCK(inp);
2514 		func(inp, arg);
2515 		INP_WUNLOCK(inp);
2516 	}
2517 	INP_INFO_WUNLOCK(&V_tcbinfo);
2518 }
2519 
2520 struct socket *
2521 inp_inpcbtosocket(struct inpcb *inp)
2522 {
2523 
2524 	INP_WLOCK_ASSERT(inp);
2525 	return (inp->inp_socket);
2526 }
2527 
2528 struct tcpcb *
2529 inp_inpcbtotcpcb(struct inpcb *inp)
2530 {
2531 
2532 	INP_WLOCK_ASSERT(inp);
2533 	return ((struct tcpcb *)inp->inp_ppcb);
2534 }
2535 
2536 int
2537 inp_ip_tos_get(const struct inpcb *inp)
2538 {
2539 
2540 	return (inp->inp_ip_tos);
2541 }
2542 
2543 void
2544 inp_ip_tos_set(struct inpcb *inp, int val)
2545 {
2546 
2547 	inp->inp_ip_tos = val;
2548 }
2549 
2550 void
2551 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2552     uint32_t *faddr, uint16_t *fp)
2553 {
2554 
2555 	INP_LOCK_ASSERT(inp);
2556 	*laddr = inp->inp_laddr.s_addr;
2557 	*faddr = inp->inp_faddr.s_addr;
2558 	*lp = inp->inp_lport;
2559 	*fp = inp->inp_fport;
2560 }
2561 
2562 struct inpcb *
2563 so_sotoinpcb(struct socket *so)
2564 {
2565 
2566 	return (sotoinpcb(so));
2567 }
2568 
2569 struct tcpcb *
2570 so_sototcpcb(struct socket *so)
2571 {
2572 
2573 	return (sototcpcb(so));
2574 }
2575 
2576 /*
2577  * Create an external-format (``xinpcb'') structure using the information in
2578  * the kernel-format in_pcb structure pointed to by inp.  This is done to
2579  * reduce the spew of irrelevant information over this interface, to isolate
2580  * user code from changes in the kernel structure, and potentially to provide
2581  * information-hiding if we decide that some of this information should be
2582  * hidden from users.
2583  */
2584 void
2585 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2586 {
2587 
2588 	xi->xi_len = sizeof(struct xinpcb);
2589 	if (inp->inp_socket)
2590 		sotoxsocket(inp->inp_socket, &xi->xi_socket);
2591 	else
2592 		bzero(&xi->xi_socket, sizeof(struct xsocket));
2593 	bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2594 	xi->inp_gencnt = inp->inp_gencnt;
2595 	xi->inp_ppcb = inp->inp_ppcb;
2596 	xi->inp_flow = inp->inp_flow;
2597 	xi->inp_flowid = inp->inp_flowid;
2598 	xi->inp_flowtype = inp->inp_flowtype;
2599 	xi->inp_flags = inp->inp_flags;
2600 	xi->inp_flags2 = inp->inp_flags2;
2601 	xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket;
2602 	xi->in6p_cksum = inp->in6p_cksum;
2603 	xi->in6p_hops = inp->in6p_hops;
2604 	xi->inp_ip_tos = inp->inp_ip_tos;
2605 	xi->inp_vflag = inp->inp_vflag;
2606 	xi->inp_ip_ttl = inp->inp_ip_ttl;
2607 	xi->inp_ip_p = inp->inp_ip_p;
2608 	xi->inp_ip_minttl = inp->inp_ip_minttl;
2609 }
2610 
2611 #ifdef DDB
2612 static void
2613 db_print_indent(int indent)
2614 {
2615 	int i;
2616 
2617 	for (i = 0; i < indent; i++)
2618 		db_printf(" ");
2619 }
2620 
2621 static void
2622 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2623 {
2624 	char faddr_str[48], laddr_str[48];
2625 
2626 	db_print_indent(indent);
2627 	db_printf("%s at %p\n", name, inc);
2628 
2629 	indent += 2;
2630 
2631 #ifdef INET6
2632 	if (inc->inc_flags & INC_ISIPV6) {
2633 		/* IPv6. */
2634 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
2635 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
2636 	} else
2637 #endif
2638 	{
2639 		/* IPv4. */
2640 		inet_ntoa_r(inc->inc_laddr, laddr_str);
2641 		inet_ntoa_r(inc->inc_faddr, faddr_str);
2642 	}
2643 	db_print_indent(indent);
2644 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2645 	    ntohs(inc->inc_lport));
2646 	db_print_indent(indent);
2647 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2648 	    ntohs(inc->inc_fport));
2649 }
2650 
2651 static void
2652 db_print_inpflags(int inp_flags)
2653 {
2654 	int comma;
2655 
2656 	comma = 0;
2657 	if (inp_flags & INP_RECVOPTS) {
2658 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2659 		comma = 1;
2660 	}
2661 	if (inp_flags & INP_RECVRETOPTS) {
2662 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2663 		comma = 1;
2664 	}
2665 	if (inp_flags & INP_RECVDSTADDR) {
2666 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2667 		comma = 1;
2668 	}
2669 	if (inp_flags & INP_ORIGDSTADDR) {
2670 		db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
2671 		comma = 1;
2672 	}
2673 	if (inp_flags & INP_HDRINCL) {
2674 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
2675 		comma = 1;
2676 	}
2677 	if (inp_flags & INP_HIGHPORT) {
2678 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2679 		comma = 1;
2680 	}
2681 	if (inp_flags & INP_LOWPORT) {
2682 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
2683 		comma = 1;
2684 	}
2685 	if (inp_flags & INP_ANONPORT) {
2686 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
2687 		comma = 1;
2688 	}
2689 	if (inp_flags & INP_RECVIF) {
2690 		db_printf("%sINP_RECVIF", comma ? ", " : "");
2691 		comma = 1;
2692 	}
2693 	if (inp_flags & INP_MTUDISC) {
2694 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
2695 		comma = 1;
2696 	}
2697 	if (inp_flags & INP_RECVTTL) {
2698 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
2699 		comma = 1;
2700 	}
2701 	if (inp_flags & INP_DONTFRAG) {
2702 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2703 		comma = 1;
2704 	}
2705 	if (inp_flags & INP_RECVTOS) {
2706 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
2707 		comma = 1;
2708 	}
2709 	if (inp_flags & IN6P_IPV6_V6ONLY) {
2710 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
2711 		comma = 1;
2712 	}
2713 	if (inp_flags & IN6P_PKTINFO) {
2714 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
2715 		comma = 1;
2716 	}
2717 	if (inp_flags & IN6P_HOPLIMIT) {
2718 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
2719 		comma = 1;
2720 	}
2721 	if (inp_flags & IN6P_HOPOPTS) {
2722 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
2723 		comma = 1;
2724 	}
2725 	if (inp_flags & IN6P_DSTOPTS) {
2726 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
2727 		comma = 1;
2728 	}
2729 	if (inp_flags & IN6P_RTHDR) {
2730 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
2731 		comma = 1;
2732 	}
2733 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
2734 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
2735 		comma = 1;
2736 	}
2737 	if (inp_flags & IN6P_TCLASS) {
2738 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
2739 		comma = 1;
2740 	}
2741 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
2742 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
2743 		comma = 1;
2744 	}
2745 	if (inp_flags & INP_TIMEWAIT) {
2746 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
2747 		comma  = 1;
2748 	}
2749 	if (inp_flags & INP_ONESBCAST) {
2750 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
2751 		comma  = 1;
2752 	}
2753 	if (inp_flags & INP_DROPPED) {
2754 		db_printf("%sINP_DROPPED", comma ? ", " : "");
2755 		comma  = 1;
2756 	}
2757 	if (inp_flags & INP_SOCKREF) {
2758 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
2759 		comma  = 1;
2760 	}
2761 	if (inp_flags & IN6P_RFC2292) {
2762 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
2763 		comma = 1;
2764 	}
2765 	if (inp_flags & IN6P_MTU) {
2766 		db_printf("IN6P_MTU%s", comma ? ", " : "");
2767 		comma = 1;
2768 	}
2769 }
2770 
2771 static void
2772 db_print_inpvflag(u_char inp_vflag)
2773 {
2774 	int comma;
2775 
2776 	comma = 0;
2777 	if (inp_vflag & INP_IPV4) {
2778 		db_printf("%sINP_IPV4", comma ? ", " : "");
2779 		comma  = 1;
2780 	}
2781 	if (inp_vflag & INP_IPV6) {
2782 		db_printf("%sINP_IPV6", comma ? ", " : "");
2783 		comma  = 1;
2784 	}
2785 	if (inp_vflag & INP_IPV6PROTO) {
2786 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
2787 		comma  = 1;
2788 	}
2789 }
2790 
2791 static void
2792 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
2793 {
2794 
2795 	db_print_indent(indent);
2796 	db_printf("%s at %p\n", name, inp);
2797 
2798 	indent += 2;
2799 
2800 	db_print_indent(indent);
2801 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
2802 
2803 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
2804 
2805 	db_print_indent(indent);
2806 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
2807 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
2808 
2809 	db_print_indent(indent);
2810 	db_printf("inp_label: %p   inp_flags: 0x%x (",
2811 	   inp->inp_label, inp->inp_flags);
2812 	db_print_inpflags(inp->inp_flags);
2813 	db_printf(")\n");
2814 
2815 	db_print_indent(indent);
2816 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
2817 	    inp->inp_vflag);
2818 	db_print_inpvflag(inp->inp_vflag);
2819 	db_printf(")\n");
2820 
2821 	db_print_indent(indent);
2822 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
2823 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
2824 
2825 	db_print_indent(indent);
2826 #ifdef INET6
2827 	if (inp->inp_vflag & INP_IPV6) {
2828 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
2829 		    "in6p_moptions: %p\n", inp->in6p_options,
2830 		    inp->in6p_outputopts, inp->in6p_moptions);
2831 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
2832 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
2833 		    inp->in6p_hops);
2834 	} else
2835 #endif
2836 	{
2837 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
2838 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
2839 		    inp->inp_options, inp->inp_moptions);
2840 	}
2841 
2842 	db_print_indent(indent);
2843 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
2844 	    (uintmax_t)inp->inp_gencnt);
2845 }
2846 
2847 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
2848 {
2849 	struct inpcb *inp;
2850 
2851 	if (!have_addr) {
2852 		db_printf("usage: show inpcb <addr>\n");
2853 		return;
2854 	}
2855 	inp = (struct inpcb *)addr;
2856 
2857 	db_print_inpcb(inp, "inpcb", 0);
2858 }
2859 #endif /* DDB */
2860 
2861 #ifdef RATELIMIT
2862 /*
2863  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
2864  * if any.
2865  */
2866 int
2867 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
2868 {
2869 	union if_snd_tag_modify_params params = {
2870 		.rate_limit.max_rate = max_pacing_rate,
2871 	};
2872 	struct m_snd_tag *mst;
2873 	struct ifnet *ifp;
2874 	int error;
2875 
2876 	mst = inp->inp_snd_tag;
2877 	if (mst == NULL)
2878 		return (EINVAL);
2879 
2880 	ifp = mst->ifp;
2881 	if (ifp == NULL)
2882 		return (EINVAL);
2883 
2884 	if (ifp->if_snd_tag_modify == NULL) {
2885 		error = EOPNOTSUPP;
2886 	} else {
2887 		error = ifp->if_snd_tag_modify(mst, &params);
2888 	}
2889 	return (error);
2890 }
2891 
2892 /*
2893  * Query existing TX rate limit based on the existing
2894  * "inp->inp_snd_tag", if any.
2895  */
2896 int
2897 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
2898 {
2899 	union if_snd_tag_query_params params = { };
2900 	struct m_snd_tag *mst;
2901 	struct ifnet *ifp;
2902 	int error;
2903 
2904 	mst = inp->inp_snd_tag;
2905 	if (mst == NULL)
2906 		return (EINVAL);
2907 
2908 	ifp = mst->ifp;
2909 	if (ifp == NULL)
2910 		return (EINVAL);
2911 
2912 	if (ifp->if_snd_tag_query == NULL) {
2913 		error = EOPNOTSUPP;
2914 	} else {
2915 		error = ifp->if_snd_tag_query(mst, &params);
2916 		if (error == 0 &&  p_max_pacing_rate != NULL)
2917 			*p_max_pacing_rate = params.rate_limit.max_rate;
2918 	}
2919 	return (error);
2920 }
2921 
2922 /*
2923  * Query existing TX queue level based on the existing
2924  * "inp->inp_snd_tag", if any.
2925  */
2926 int
2927 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
2928 {
2929 	union if_snd_tag_query_params params = { };
2930 	struct m_snd_tag *mst;
2931 	struct ifnet *ifp;
2932 	int error;
2933 
2934 	mst = inp->inp_snd_tag;
2935 	if (mst == NULL)
2936 		return (EINVAL);
2937 
2938 	ifp = mst->ifp;
2939 	if (ifp == NULL)
2940 		return (EINVAL);
2941 
2942 	if (ifp->if_snd_tag_query == NULL)
2943 		return (EOPNOTSUPP);
2944 
2945 	error = ifp->if_snd_tag_query(mst, &params);
2946 	if (error == 0 &&  p_txqueue_level != NULL)
2947 		*p_txqueue_level = params.rate_limit.queue_level;
2948 	return (error);
2949 }
2950 
2951 /*
2952  * Allocate a new TX rate limit send tag from the network interface
2953  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
2954  */
2955 int
2956 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
2957     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate)
2958 {
2959 	union if_snd_tag_alloc_params params = {
2960 		.rate_limit.hdr.type = (max_pacing_rate == -1U) ?
2961 		    IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
2962 		.rate_limit.hdr.flowid = flowid,
2963 		.rate_limit.hdr.flowtype = flowtype,
2964 		.rate_limit.max_rate = max_pacing_rate,
2965 	};
2966 	int error;
2967 
2968 	INP_WLOCK_ASSERT(inp);
2969 
2970 	if (inp->inp_snd_tag != NULL)
2971 		return (EINVAL);
2972 
2973 	if (ifp->if_snd_tag_alloc == NULL) {
2974 		error = EOPNOTSUPP;
2975 	} else {
2976 		error = ifp->if_snd_tag_alloc(ifp, &params, &inp->inp_snd_tag);
2977 
2978 		/*
2979 		 * At success increment the refcount on
2980 		 * the send tag's network interface:
2981 		 */
2982 		if (error == 0)
2983 			if_ref(inp->inp_snd_tag->ifp);
2984 	}
2985 	return (error);
2986 }
2987 
2988 /*
2989  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
2990  * if any:
2991  */
2992 void
2993 in_pcbdetach_txrtlmt(struct inpcb *inp)
2994 {
2995 	struct m_snd_tag *mst;
2996 	struct ifnet *ifp;
2997 
2998 	INP_WLOCK_ASSERT(inp);
2999 
3000 	mst = inp->inp_snd_tag;
3001 	inp->inp_snd_tag = NULL;
3002 
3003 	if (mst == NULL)
3004 		return;
3005 
3006 	ifp = mst->ifp;
3007 	if (ifp == NULL)
3008 		return;
3009 
3010 	/*
3011 	 * If the device was detached while we still had reference(s)
3012 	 * on the ifp, we assume if_snd_tag_free() was replaced with
3013 	 * stubs.
3014 	 */
3015 	ifp->if_snd_tag_free(mst);
3016 
3017 	/* release reference count on network interface */
3018 	if_rele(ifp);
3019 }
3020 
3021 /*
3022  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
3023  * is set in the fast path and will attach/detach/modify the TX rate
3024  * limit send tag based on the socket's so_max_pacing_rate value.
3025  */
3026 void
3027 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
3028 {
3029 	struct socket *socket;
3030 	uint32_t max_pacing_rate;
3031 	bool did_upgrade;
3032 	int error;
3033 
3034 	if (inp == NULL)
3035 		return;
3036 
3037 	socket = inp->inp_socket;
3038 	if (socket == NULL)
3039 		return;
3040 
3041 	if (!INP_WLOCKED(inp)) {
3042 		/*
3043 		 * NOTE: If the write locking fails, we need to bail
3044 		 * out and use the non-ratelimited ring for the
3045 		 * transmit until there is a new chance to get the
3046 		 * write lock.
3047 		 */
3048 		if (!INP_TRY_UPGRADE(inp))
3049 			return;
3050 		did_upgrade = 1;
3051 	} else {
3052 		did_upgrade = 0;
3053 	}
3054 
3055 	/*
3056 	 * NOTE: The so_max_pacing_rate value is read unlocked,
3057 	 * because atomic updates are not required since the variable
3058 	 * is checked at every mbuf we send. It is assumed that the
3059 	 * variable read itself will be atomic.
3060 	 */
3061 	max_pacing_rate = socket->so_max_pacing_rate;
3062 
3063 	/*
3064 	 * NOTE: When attaching to a network interface a reference is
3065 	 * made to ensure the network interface doesn't go away until
3066 	 * all ratelimit connections are gone. The network interface
3067 	 * pointers compared below represent valid network interfaces,
3068 	 * except when comparing towards NULL.
3069 	 */
3070 	if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3071 		error = 0;
3072 	} else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3073 		if (inp->inp_snd_tag != NULL)
3074 			in_pcbdetach_txrtlmt(inp);
3075 		error = 0;
3076 	} else if (inp->inp_snd_tag == NULL) {
3077 		/*
3078 		 * In order to utilize packet pacing with RSS, we need
3079 		 * to wait until there is a valid RSS hash before we
3080 		 * can proceed:
3081 		 */
3082 		if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3083 			error = EAGAIN;
3084 		} else {
3085 			error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3086 			    mb->m_pkthdr.flowid, max_pacing_rate);
3087 		}
3088 	} else {
3089 		error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3090 	}
3091 	if (error == 0 || error == EOPNOTSUPP)
3092 		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3093 	if (did_upgrade)
3094 		INP_DOWNGRADE(inp);
3095 }
3096 
3097 /*
3098  * Track route changes for TX rate limiting.
3099  */
3100 void
3101 in_pcboutput_eagain(struct inpcb *inp)
3102 {
3103 	struct socket *socket;
3104 	bool did_upgrade;
3105 
3106 	if (inp == NULL)
3107 		return;
3108 
3109 	socket = inp->inp_socket;
3110 	if (socket == NULL)
3111 		return;
3112 
3113 	if (inp->inp_snd_tag == NULL)
3114 		return;
3115 
3116 	if (!INP_WLOCKED(inp)) {
3117 		/*
3118 		 * NOTE: If the write locking fails, we need to bail
3119 		 * out and use the non-ratelimited ring for the
3120 		 * transmit until there is a new chance to get the
3121 		 * write lock.
3122 		 */
3123 		if (!INP_TRY_UPGRADE(inp))
3124 			return;
3125 		did_upgrade = 1;
3126 	} else {
3127 		did_upgrade = 0;
3128 	}
3129 
3130 	/* detach rate limiting */
3131 	in_pcbdetach_txrtlmt(inp);
3132 
3133 	/* make sure new mbuf send tag allocation is made */
3134 	inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3135 
3136 	if (did_upgrade)
3137 		INP_DOWNGRADE(inp);
3138 }
3139 #endif /* RATELIMIT */
3140