1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Robert N. M. Watson under 11 * contract to Juniper Networks, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_ddb.h" 44 #include "opt_ipsec.h" 45 #include "opt_inet.h" 46 #include "opt_inet6.h" 47 #include "opt_ratelimit.h" 48 #include "opt_pcbgroup.h" 49 #include "opt_rss.h" 50 51 #include <sys/param.h> 52 #include <sys/systm.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/mbuf.h> 56 #include <sys/callout.h> 57 #include <sys/eventhandler.h> 58 #include <sys/domain.h> 59 #include <sys/protosw.h> 60 #include <sys/rmlock.h> 61 #include <sys/smp.h> 62 #include <sys/socket.h> 63 #include <sys/socketvar.h> 64 #include <sys/sockio.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/refcount.h> 68 #include <sys/jail.h> 69 #include <sys/kernel.h> 70 #include <sys/sysctl.h> 71 72 #ifdef DDB 73 #include <ddb/ddb.h> 74 #endif 75 76 #include <vm/uma.h> 77 78 #include <net/if.h> 79 #include <net/if_var.h> 80 #include <net/if_types.h> 81 #include <net/if_llatbl.h> 82 #include <net/route.h> 83 #include <net/rss_config.h> 84 #include <net/vnet.h> 85 86 #if defined(INET) || defined(INET6) 87 #include <netinet/in.h> 88 #include <netinet/in_pcb.h> 89 #include <netinet/ip_var.h> 90 #include <netinet/tcp_var.h> 91 #ifdef TCPHPTS 92 #include <netinet/tcp_hpts.h> 93 #endif 94 #include <netinet/udp.h> 95 #include <netinet/udp_var.h> 96 #endif 97 #ifdef INET 98 #include <netinet/in_var.h> 99 #endif 100 #ifdef INET6 101 #include <netinet/ip6.h> 102 #include <netinet6/in6_pcb.h> 103 #include <netinet6/in6_var.h> 104 #include <netinet6/ip6_var.h> 105 #endif /* INET6 */ 106 107 #include <netipsec/ipsec_support.h> 108 109 #include <security/mac/mac_framework.h> 110 111 static struct callout ipport_tick_callout; 112 113 /* 114 * These configure the range of local port addresses assigned to 115 * "unspecified" outgoing connections/packets/whatever. 116 */ 117 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 118 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 119 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 120 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 121 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 122 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 123 124 /* 125 * Reserved ports accessible only to root. There are significant 126 * security considerations that must be accounted for when changing these, 127 * but the security benefits can be great. Please be careful. 128 */ 129 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 130 VNET_DEFINE(int, ipport_reservedlow); 131 132 /* Variables dealing with random ephemeral port allocation. */ 133 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 134 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 135 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 136 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 137 VNET_DEFINE(int, ipport_tcpallocs); 138 static VNET_DEFINE(int, ipport_tcplastcount); 139 140 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 141 142 static void in_pcbremlists(struct inpcb *inp); 143 #ifdef INET 144 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 145 struct in_addr faddr, u_int fport_arg, 146 struct in_addr laddr, u_int lport_arg, 147 int lookupflags, struct ifnet *ifp); 148 149 #define RANGECHK(var, min, max) \ 150 if ((var) < (min)) { (var) = (min); } \ 151 else if ((var) > (max)) { (var) = (max); } 152 153 static int 154 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 155 { 156 int error; 157 158 error = sysctl_handle_int(oidp, arg1, arg2, req); 159 if (error == 0) { 160 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 161 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 162 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 163 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 164 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 165 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 166 } 167 return (error); 168 } 169 170 #undef RANGECHK 171 172 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, 173 "IP Ports"); 174 175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 176 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 177 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", ""); 178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 179 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 180 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", ""); 181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 182 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 183 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", ""); 184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 185 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 186 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", ""); 187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 188 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 189 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", ""); 190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 191 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 192 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", ""); 193 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 194 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 195 &VNET_NAME(ipport_reservedhigh), 0, ""); 196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 197 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 198 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 199 CTLFLAG_VNET | CTLFLAG_RW, 200 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 202 CTLFLAG_VNET | CTLFLAG_RW, 203 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 204 "allocations before switching to a sequental one"); 205 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 206 CTLFLAG_VNET | CTLFLAG_RW, 207 &VNET_NAME(ipport_randomtime), 0, 208 "Minimum time to keep sequental port " 209 "allocation before switching to a random one"); 210 #endif /* INET */ 211 212 /* 213 * in_pcb.c: manage the Protocol Control Blocks. 214 * 215 * NOTE: It is assumed that most of these functions will be called with 216 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 217 * functions often modify hash chains or addresses in pcbs. 218 */ 219 220 /* 221 * Different protocols initialize their inpcbs differently - giving 222 * different name to the lock. But they all are disposed the same. 223 */ 224 static void 225 inpcb_fini(void *mem, int size) 226 { 227 struct inpcb *inp = mem; 228 229 INP_LOCK_DESTROY(inp); 230 } 231 232 /* 233 * Initialize an inpcbinfo -- we should be able to reduce the number of 234 * arguments in time. 235 */ 236 void 237 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 238 struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, 239 char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields) 240 { 241 242 INP_INFO_LOCK_INIT(pcbinfo, name); 243 INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ 244 INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist"); 245 #ifdef VIMAGE 246 pcbinfo->ipi_vnet = curvnet; 247 #endif 248 pcbinfo->ipi_listhead = listhead; 249 LIST_INIT(pcbinfo->ipi_listhead); 250 pcbinfo->ipi_count = 0; 251 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 252 &pcbinfo->ipi_hashmask); 253 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 254 &pcbinfo->ipi_porthashmask); 255 #ifdef PCBGROUP 256 in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); 257 #endif 258 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 259 NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0); 260 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 261 uma_zone_set_warning(pcbinfo->ipi_zone, 262 "kern.ipc.maxsockets limit reached"); 263 } 264 265 /* 266 * Destroy an inpcbinfo. 267 */ 268 void 269 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 270 { 271 272 KASSERT(pcbinfo->ipi_count == 0, 273 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 274 275 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 276 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 277 pcbinfo->ipi_porthashmask); 278 #ifdef PCBGROUP 279 in_pcbgroup_destroy(pcbinfo); 280 #endif 281 uma_zdestroy(pcbinfo->ipi_zone); 282 INP_LIST_LOCK_DESTROY(pcbinfo); 283 INP_HASH_LOCK_DESTROY(pcbinfo); 284 INP_INFO_LOCK_DESTROY(pcbinfo); 285 } 286 287 /* 288 * Allocate a PCB and associate it with the socket. 289 * On success return with the PCB locked. 290 */ 291 int 292 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 293 { 294 struct inpcb *inp; 295 int error; 296 297 #ifdef INVARIANTS 298 if (pcbinfo == &V_tcbinfo) { 299 INP_INFO_RLOCK_ASSERT(pcbinfo); 300 } else { 301 INP_INFO_WLOCK_ASSERT(pcbinfo); 302 } 303 #endif 304 305 error = 0; 306 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 307 if (inp == NULL) 308 return (ENOBUFS); 309 bzero(&inp->inp_start_zero, inp_zero_size); 310 inp->inp_pcbinfo = pcbinfo; 311 inp->inp_socket = so; 312 inp->inp_cred = crhold(so->so_cred); 313 inp->inp_inc.inc_fibnum = so->so_fibnum; 314 #ifdef MAC 315 error = mac_inpcb_init(inp, M_NOWAIT); 316 if (error != 0) 317 goto out; 318 mac_inpcb_create(so, inp); 319 #endif 320 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 321 error = ipsec_init_pcbpolicy(inp); 322 if (error != 0) { 323 #ifdef MAC 324 mac_inpcb_destroy(inp); 325 #endif 326 goto out; 327 } 328 #endif /*IPSEC*/ 329 #ifdef INET6 330 if (INP_SOCKAF(so) == AF_INET6) { 331 inp->inp_vflag |= INP_IPV6PROTO; 332 if (V_ip6_v6only) 333 inp->inp_flags |= IN6P_IPV6_V6ONLY; 334 } 335 #endif 336 INP_WLOCK(inp); 337 INP_LIST_WLOCK(pcbinfo); 338 LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 339 pcbinfo->ipi_count++; 340 so->so_pcb = (caddr_t)inp; 341 #ifdef INET6 342 if (V_ip6_auto_flowlabel) 343 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 344 #endif 345 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 346 refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ 347 348 /* 349 * Routes in inpcb's can cache L2 as well; they are guaranteed 350 * to be cleaned up. 351 */ 352 inp->inp_route.ro_flags = RT_LLE_CACHE; 353 INP_LIST_WUNLOCK(pcbinfo); 354 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 355 out: 356 if (error != 0) { 357 crfree(inp->inp_cred); 358 uma_zfree(pcbinfo->ipi_zone, inp); 359 } 360 #endif 361 return (error); 362 } 363 364 #ifdef INET 365 int 366 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 367 { 368 int anonport, error; 369 370 INP_WLOCK_ASSERT(inp); 371 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 372 373 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 374 return (EINVAL); 375 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 376 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 377 &inp->inp_lport, cred); 378 if (error) 379 return (error); 380 if (in_pcbinshash(inp) != 0) { 381 inp->inp_laddr.s_addr = INADDR_ANY; 382 inp->inp_lport = 0; 383 return (EAGAIN); 384 } 385 if (anonport) 386 inp->inp_flags |= INP_ANONPORT; 387 return (0); 388 } 389 #endif 390 391 /* 392 * Select a local port (number) to use. 393 */ 394 #if defined(INET) || defined(INET6) 395 int 396 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 397 struct ucred *cred, int lookupflags) 398 { 399 struct inpcbinfo *pcbinfo; 400 struct inpcb *tmpinp; 401 unsigned short *lastport; 402 int count, dorandom, error; 403 u_short aux, first, last, lport; 404 #ifdef INET 405 struct in_addr laddr; 406 #endif 407 408 pcbinfo = inp->inp_pcbinfo; 409 410 /* 411 * Because no actual state changes occur here, a global write lock on 412 * the pcbinfo isn't required. 413 */ 414 INP_LOCK_ASSERT(inp); 415 INP_HASH_LOCK_ASSERT(pcbinfo); 416 417 if (inp->inp_flags & INP_HIGHPORT) { 418 first = V_ipport_hifirstauto; /* sysctl */ 419 last = V_ipport_hilastauto; 420 lastport = &pcbinfo->ipi_lasthi; 421 } else if (inp->inp_flags & INP_LOWPORT) { 422 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0); 423 if (error) 424 return (error); 425 first = V_ipport_lowfirstauto; /* 1023 */ 426 last = V_ipport_lowlastauto; /* 600 */ 427 lastport = &pcbinfo->ipi_lastlow; 428 } else { 429 first = V_ipport_firstauto; /* sysctl */ 430 last = V_ipport_lastauto; 431 lastport = &pcbinfo->ipi_lastport; 432 } 433 /* 434 * For UDP(-Lite), use random port allocation as long as the user 435 * allows it. For TCP (and as of yet unknown) connections, 436 * use random port allocation only if the user allows it AND 437 * ipport_tick() allows it. 438 */ 439 if (V_ipport_randomized && 440 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 441 pcbinfo == &V_ulitecbinfo)) 442 dorandom = 1; 443 else 444 dorandom = 0; 445 /* 446 * It makes no sense to do random port allocation if 447 * we have the only port available. 448 */ 449 if (first == last) 450 dorandom = 0; 451 /* Make sure to not include UDP(-Lite) packets in the count. */ 452 if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) 453 V_ipport_tcpallocs++; 454 /* 455 * Instead of having two loops further down counting up or down 456 * make sure that first is always <= last and go with only one 457 * code path implementing all logic. 458 */ 459 if (first > last) { 460 aux = first; 461 first = last; 462 last = aux; 463 } 464 465 #ifdef INET 466 /* Make the compiler happy. */ 467 laddr.s_addr = 0; 468 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 469 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p", 470 __func__, inp)); 471 laddr = *laddrp; 472 } 473 #endif 474 tmpinp = NULL; /* Make compiler happy. */ 475 lport = *lportp; 476 477 if (dorandom) 478 *lastport = first + (arc4random() % (last - first)); 479 480 count = last - first; 481 482 do { 483 if (count-- < 0) /* completely used? */ 484 return (EADDRNOTAVAIL); 485 ++*lastport; 486 if (*lastport < first || *lastport > last) 487 *lastport = first; 488 lport = htons(*lastport); 489 490 #ifdef INET6 491 if ((inp->inp_vflag & INP_IPV6) != 0) 492 tmpinp = in6_pcblookup_local(pcbinfo, 493 &inp->in6p_laddr, lport, lookupflags, cred); 494 #endif 495 #if defined(INET) && defined(INET6) 496 else 497 #endif 498 #ifdef INET 499 tmpinp = in_pcblookup_local(pcbinfo, laddr, 500 lport, lookupflags, cred); 501 #endif 502 } while (tmpinp != NULL); 503 504 #ifdef INET 505 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) 506 laddrp->s_addr = laddr.s_addr; 507 #endif 508 *lportp = lport; 509 510 return (0); 511 } 512 513 /* 514 * Return cached socket options. 515 */ 516 short 517 inp_so_options(const struct inpcb *inp) 518 { 519 short so_options; 520 521 so_options = 0; 522 523 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 524 so_options |= SO_REUSEPORT; 525 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 526 so_options |= SO_REUSEADDR; 527 return (so_options); 528 } 529 #endif /* INET || INET6 */ 530 531 /* 532 * Check if a new BINDMULTI socket is allowed to be created. 533 * 534 * ni points to the new inp. 535 * oi points to the exisitng inp. 536 * 537 * This checks whether the existing inp also has BINDMULTI and 538 * whether the credentials match. 539 */ 540 int 541 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 542 { 543 /* Check permissions match */ 544 if ((ni->inp_flags2 & INP_BINDMULTI) && 545 (ni->inp_cred->cr_uid != 546 oi->inp_cred->cr_uid)) 547 return (0); 548 549 /* Check the existing inp has BINDMULTI set */ 550 if ((ni->inp_flags2 & INP_BINDMULTI) && 551 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 552 return (0); 553 554 /* 555 * We're okay - either INP_BINDMULTI isn't set on ni, or 556 * it is and it matches the checks. 557 */ 558 return (1); 559 } 560 561 #ifdef INET 562 /* 563 * Set up a bind operation on a PCB, performing port allocation 564 * as required, but do not actually modify the PCB. Callers can 565 * either complete the bind by setting inp_laddr/inp_lport and 566 * calling in_pcbinshash(), or they can just use the resulting 567 * port and address to authorise the sending of a once-off packet. 568 * 569 * On error, the values of *laddrp and *lportp are not changed. 570 */ 571 int 572 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 573 u_short *lportp, struct ucred *cred) 574 { 575 struct socket *so = inp->inp_socket; 576 struct sockaddr_in *sin; 577 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 578 struct in_addr laddr; 579 u_short lport = 0; 580 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 581 int error; 582 583 /* 584 * No state changes, so read locks are sufficient here. 585 */ 586 INP_LOCK_ASSERT(inp); 587 INP_HASH_LOCK_ASSERT(pcbinfo); 588 589 if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 590 return (EADDRNOTAVAIL); 591 laddr.s_addr = *laddrp; 592 if (nam != NULL && laddr.s_addr != INADDR_ANY) 593 return (EINVAL); 594 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) 595 lookupflags = INPLOOKUP_WILDCARD; 596 if (nam == NULL) { 597 if ((error = prison_local_ip4(cred, &laddr)) != 0) 598 return (error); 599 } else { 600 sin = (struct sockaddr_in *)nam; 601 if (nam->sa_len != sizeof (*sin)) 602 return (EINVAL); 603 #ifdef notdef 604 /* 605 * We should check the family, but old programs 606 * incorrectly fail to initialize it. 607 */ 608 if (sin->sin_family != AF_INET) 609 return (EAFNOSUPPORT); 610 #endif 611 error = prison_local_ip4(cred, &sin->sin_addr); 612 if (error) 613 return (error); 614 if (sin->sin_port != *lportp) { 615 /* Don't allow the port to change. */ 616 if (*lportp != 0) 617 return (EINVAL); 618 lport = sin->sin_port; 619 } 620 /* NB: lport is left as 0 if the port isn't being changed. */ 621 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 622 /* 623 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 624 * allow complete duplication of binding if 625 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 626 * and a multicast address is bound on both 627 * new and duplicated sockets. 628 */ 629 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 630 reuseport = SO_REUSEADDR|SO_REUSEPORT; 631 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 632 sin->sin_port = 0; /* yech... */ 633 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 634 /* 635 * Is the address a local IP address? 636 * If INP_BINDANY is set, then the socket may be bound 637 * to any endpoint address, local or not. 638 */ 639 if ((inp->inp_flags & INP_BINDANY) == 0 && 640 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 641 return (EADDRNOTAVAIL); 642 } 643 laddr = sin->sin_addr; 644 if (lport) { 645 struct inpcb *t; 646 struct tcptw *tw; 647 648 /* GROSS */ 649 if (ntohs(lport) <= V_ipport_reservedhigh && 650 ntohs(lport) >= V_ipport_reservedlow && 651 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 652 0)) 653 return (EACCES); 654 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 655 priv_check_cred(inp->inp_cred, 656 PRIV_NETINET_REUSEPORT, 0) != 0) { 657 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 658 lport, INPLOOKUP_WILDCARD, cred); 659 /* 660 * XXX 661 * This entire block sorely needs a rewrite. 662 */ 663 if (t && 664 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 665 ((t->inp_flags & INP_TIMEWAIT) == 0) && 666 (so->so_type != SOCK_STREAM || 667 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 668 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 669 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 670 (t->inp_flags2 & INP_REUSEPORT) == 0) && 671 (inp->inp_cred->cr_uid != 672 t->inp_cred->cr_uid)) 673 return (EADDRINUSE); 674 675 /* 676 * If the socket is a BINDMULTI socket, then 677 * the credentials need to match and the 678 * original socket also has to have been bound 679 * with BINDMULTI. 680 */ 681 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 682 return (EADDRINUSE); 683 } 684 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 685 lport, lookupflags, cred); 686 if (t && (t->inp_flags & INP_TIMEWAIT)) { 687 /* 688 * XXXRW: If an incpb has had its timewait 689 * state recycled, we treat the address as 690 * being in use (for now). This is better 691 * than a panic, but not desirable. 692 */ 693 tw = intotw(t); 694 if (tw == NULL || 695 (reuseport & tw->tw_so_options) == 0) 696 return (EADDRINUSE); 697 } else if (t && 698 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 699 (reuseport & inp_so_options(t)) == 0) { 700 #ifdef INET6 701 if (ntohl(sin->sin_addr.s_addr) != 702 INADDR_ANY || 703 ntohl(t->inp_laddr.s_addr) != 704 INADDR_ANY || 705 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 706 (t->inp_vflag & INP_IPV6PROTO) == 0) 707 #endif 708 return (EADDRINUSE); 709 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 710 return (EADDRINUSE); 711 } 712 } 713 } 714 if (*lportp != 0) 715 lport = *lportp; 716 if (lport == 0) { 717 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 718 if (error != 0) 719 return (error); 720 721 } 722 *laddrp = laddr.s_addr; 723 *lportp = lport; 724 return (0); 725 } 726 727 /* 728 * Connect from a socket to a specified address. 729 * Both address and port must be specified in argument sin. 730 * If don't have a local address for this socket yet, 731 * then pick one. 732 */ 733 int 734 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, 735 struct ucred *cred, struct mbuf *m) 736 { 737 u_short lport, fport; 738 in_addr_t laddr, faddr; 739 int anonport, error; 740 741 INP_WLOCK_ASSERT(inp); 742 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 743 744 lport = inp->inp_lport; 745 laddr = inp->inp_laddr.s_addr; 746 anonport = (lport == 0); 747 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 748 NULL, cred); 749 if (error) 750 return (error); 751 752 /* Do the initial binding of the local address if required. */ 753 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 754 inp->inp_lport = lport; 755 inp->inp_laddr.s_addr = laddr; 756 if (in_pcbinshash(inp) != 0) { 757 inp->inp_laddr.s_addr = INADDR_ANY; 758 inp->inp_lport = 0; 759 return (EAGAIN); 760 } 761 } 762 763 /* Commit the remaining changes. */ 764 inp->inp_lport = lport; 765 inp->inp_laddr.s_addr = laddr; 766 inp->inp_faddr.s_addr = faddr; 767 inp->inp_fport = fport; 768 in_pcbrehash_mbuf(inp, m); 769 770 if (anonport) 771 inp->inp_flags |= INP_ANONPORT; 772 return (0); 773 } 774 775 int 776 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 777 { 778 779 return (in_pcbconnect_mbuf(inp, nam, cred, NULL)); 780 } 781 782 /* 783 * Do proper source address selection on an unbound socket in case 784 * of connect. Take jails into account as well. 785 */ 786 int 787 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 788 struct ucred *cred) 789 { 790 struct ifaddr *ifa; 791 struct sockaddr *sa; 792 struct sockaddr_in *sin; 793 struct route sro; 794 int error; 795 796 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 797 798 /* 799 * Bypass source address selection and use the primary jail IP 800 * if requested. 801 */ 802 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 803 return (0); 804 805 error = 0; 806 bzero(&sro, sizeof(sro)); 807 808 sin = (struct sockaddr_in *)&sro.ro_dst; 809 sin->sin_family = AF_INET; 810 sin->sin_len = sizeof(struct sockaddr_in); 811 sin->sin_addr.s_addr = faddr->s_addr; 812 813 /* 814 * If route is known our src addr is taken from the i/f, 815 * else punt. 816 * 817 * Find out route to destination. 818 */ 819 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 820 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); 821 822 /* 823 * If we found a route, use the address corresponding to 824 * the outgoing interface. 825 * 826 * Otherwise assume faddr is reachable on a directly connected 827 * network and try to find a corresponding interface to take 828 * the source address from. 829 */ 830 if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { 831 struct in_ifaddr *ia; 832 struct ifnet *ifp; 833 834 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 835 inp->inp_socket->so_fibnum)); 836 if (ia == NULL) 837 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 838 inp->inp_socket->so_fibnum)); 839 if (ia == NULL) { 840 error = ENETUNREACH; 841 goto done; 842 } 843 844 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 845 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 846 ifa_free(&ia->ia_ifa); 847 goto done; 848 } 849 850 ifp = ia->ia_ifp; 851 ifa_free(&ia->ia_ifa); 852 ia = NULL; 853 IF_ADDR_RLOCK(ifp); 854 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 855 856 sa = ifa->ifa_addr; 857 if (sa->sa_family != AF_INET) 858 continue; 859 sin = (struct sockaddr_in *)sa; 860 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 861 ia = (struct in_ifaddr *)ifa; 862 break; 863 } 864 } 865 if (ia != NULL) { 866 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 867 IF_ADDR_RUNLOCK(ifp); 868 goto done; 869 } 870 IF_ADDR_RUNLOCK(ifp); 871 872 /* 3. As a last resort return the 'default' jail address. */ 873 error = prison_get_ip4(cred, laddr); 874 goto done; 875 } 876 877 /* 878 * If the outgoing interface on the route found is not 879 * a loopback interface, use the address from that interface. 880 * In case of jails do those three steps: 881 * 1. check if the interface address belongs to the jail. If so use it. 882 * 2. check if we have any address on the outgoing interface 883 * belonging to this jail. If so use it. 884 * 3. as a last resort return the 'default' jail address. 885 */ 886 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { 887 struct in_ifaddr *ia; 888 struct ifnet *ifp; 889 890 /* If not jailed, use the default returned. */ 891 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 892 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 893 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 894 goto done; 895 } 896 897 /* Jailed. */ 898 /* 1. Check if the iface address belongs to the jail. */ 899 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; 900 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 901 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 902 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 903 goto done; 904 } 905 906 /* 907 * 2. Check if we have any address on the outgoing interface 908 * belonging to this jail. 909 */ 910 ia = NULL; 911 ifp = sro.ro_rt->rt_ifp; 912 IF_ADDR_RLOCK(ifp); 913 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 914 sa = ifa->ifa_addr; 915 if (sa->sa_family != AF_INET) 916 continue; 917 sin = (struct sockaddr_in *)sa; 918 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 919 ia = (struct in_ifaddr *)ifa; 920 break; 921 } 922 } 923 if (ia != NULL) { 924 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 925 IF_ADDR_RUNLOCK(ifp); 926 goto done; 927 } 928 IF_ADDR_RUNLOCK(ifp); 929 930 /* 3. As a last resort return the 'default' jail address. */ 931 error = prison_get_ip4(cred, laddr); 932 goto done; 933 } 934 935 /* 936 * The outgoing interface is marked with 'loopback net', so a route 937 * to ourselves is here. 938 * Try to find the interface of the destination address and then 939 * take the address from there. That interface is not necessarily 940 * a loopback interface. 941 * In case of jails, check that it is an address of the jail 942 * and if we cannot find, fall back to the 'default' jail address. 943 */ 944 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 945 struct sockaddr_in sain; 946 struct in_ifaddr *ia; 947 948 bzero(&sain, sizeof(struct sockaddr_in)); 949 sain.sin_family = AF_INET; 950 sain.sin_len = sizeof(struct sockaddr_in); 951 sain.sin_addr.s_addr = faddr->s_addr; 952 953 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain), 954 inp->inp_socket->so_fibnum)); 955 if (ia == NULL) 956 ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0, 957 inp->inp_socket->so_fibnum)); 958 if (ia == NULL) 959 ia = ifatoia(ifa_ifwithaddr(sintosa(&sain))); 960 961 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 962 if (ia == NULL) { 963 error = ENETUNREACH; 964 goto done; 965 } 966 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 967 ifa_free(&ia->ia_ifa); 968 goto done; 969 } 970 971 /* Jailed. */ 972 if (ia != NULL) { 973 struct ifnet *ifp; 974 975 ifp = ia->ia_ifp; 976 ifa_free(&ia->ia_ifa); 977 ia = NULL; 978 IF_ADDR_RLOCK(ifp); 979 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 980 981 sa = ifa->ifa_addr; 982 if (sa->sa_family != AF_INET) 983 continue; 984 sin = (struct sockaddr_in *)sa; 985 if (prison_check_ip4(cred, 986 &sin->sin_addr) == 0) { 987 ia = (struct in_ifaddr *)ifa; 988 break; 989 } 990 } 991 if (ia != NULL) { 992 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 993 IF_ADDR_RUNLOCK(ifp); 994 goto done; 995 } 996 IF_ADDR_RUNLOCK(ifp); 997 } 998 999 /* 3. As a last resort return the 'default' jail address. */ 1000 error = prison_get_ip4(cred, laddr); 1001 goto done; 1002 } 1003 1004 done: 1005 if (sro.ro_rt != NULL) 1006 RTFREE(sro.ro_rt); 1007 return (error); 1008 } 1009 1010 /* 1011 * Set up for a connect from a socket to the specified address. 1012 * On entry, *laddrp and *lportp should contain the current local 1013 * address and port for the PCB; these are updated to the values 1014 * that should be placed in inp_laddr and inp_lport to complete 1015 * the connect. 1016 * 1017 * On success, *faddrp and *fportp will be set to the remote address 1018 * and port. These are not updated in the error case. 1019 * 1020 * If the operation fails because the connection already exists, 1021 * *oinpp will be set to the PCB of that connection so that the 1022 * caller can decide to override it. In all other cases, *oinpp 1023 * is set to NULL. 1024 */ 1025 int 1026 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1027 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1028 struct inpcb **oinpp, struct ucred *cred) 1029 { 1030 struct rm_priotracker in_ifa_tracker; 1031 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1032 struct in_ifaddr *ia; 1033 struct inpcb *oinp; 1034 struct in_addr laddr, faddr; 1035 u_short lport, fport; 1036 int error; 1037 1038 /* 1039 * Because a global state change doesn't actually occur here, a read 1040 * lock is sufficient. 1041 */ 1042 INP_LOCK_ASSERT(inp); 1043 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1044 1045 if (oinpp != NULL) 1046 *oinpp = NULL; 1047 if (nam->sa_len != sizeof (*sin)) 1048 return (EINVAL); 1049 if (sin->sin_family != AF_INET) 1050 return (EAFNOSUPPORT); 1051 if (sin->sin_port == 0) 1052 return (EADDRNOTAVAIL); 1053 laddr.s_addr = *laddrp; 1054 lport = *lportp; 1055 faddr = sin->sin_addr; 1056 fport = sin->sin_port; 1057 1058 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1059 /* 1060 * If the destination address is INADDR_ANY, 1061 * use the primary local address. 1062 * If the supplied address is INADDR_BROADCAST, 1063 * and the primary interface supports broadcast, 1064 * choose the broadcast address for that interface. 1065 */ 1066 if (faddr.s_addr == INADDR_ANY) { 1067 IN_IFADDR_RLOCK(&in_ifa_tracker); 1068 faddr = 1069 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1070 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1071 if (cred != NULL && 1072 (error = prison_get_ip4(cred, &faddr)) != 0) 1073 return (error); 1074 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1075 IN_IFADDR_RLOCK(&in_ifa_tracker); 1076 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1077 IFF_BROADCAST) 1078 faddr = satosin(&CK_STAILQ_FIRST( 1079 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1080 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1081 } 1082 } 1083 if (laddr.s_addr == INADDR_ANY) { 1084 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1085 /* 1086 * If the destination address is multicast and an outgoing 1087 * interface has been set as a multicast option, prefer the 1088 * address of that interface as our source address. 1089 */ 1090 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1091 inp->inp_moptions != NULL) { 1092 struct ip_moptions *imo; 1093 struct ifnet *ifp; 1094 1095 imo = inp->inp_moptions; 1096 if (imo->imo_multicast_ifp != NULL) { 1097 ifp = imo->imo_multicast_ifp; 1098 IN_IFADDR_RLOCK(&in_ifa_tracker); 1099 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1100 if ((ia->ia_ifp == ifp) && 1101 (cred == NULL || 1102 prison_check_ip4(cred, 1103 &ia->ia_addr.sin_addr) == 0)) 1104 break; 1105 } 1106 if (ia == NULL) 1107 error = EADDRNOTAVAIL; 1108 else { 1109 laddr = ia->ia_addr.sin_addr; 1110 error = 0; 1111 } 1112 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1113 } 1114 } 1115 if (error) 1116 return (error); 1117 } 1118 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport, 1119 laddr, lport, 0, NULL); 1120 if (oinp != NULL) { 1121 if (oinpp != NULL) 1122 *oinpp = oinp; 1123 return (EADDRINUSE); 1124 } 1125 if (lport == 0) { 1126 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 1127 cred); 1128 if (error) 1129 return (error); 1130 } 1131 *laddrp = laddr.s_addr; 1132 *lportp = lport; 1133 *faddrp = faddr.s_addr; 1134 *fportp = fport; 1135 return (0); 1136 } 1137 1138 void 1139 in_pcbdisconnect(struct inpcb *inp) 1140 { 1141 1142 INP_WLOCK_ASSERT(inp); 1143 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1144 1145 inp->inp_faddr.s_addr = INADDR_ANY; 1146 inp->inp_fport = 0; 1147 in_pcbrehash(inp); 1148 } 1149 #endif /* INET */ 1150 1151 /* 1152 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1153 * For most protocols, this will be invoked immediately prior to calling 1154 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1155 * socket, in which case in_pcbfree() is deferred. 1156 */ 1157 void 1158 in_pcbdetach(struct inpcb *inp) 1159 { 1160 1161 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1162 1163 #ifdef RATELIMIT 1164 if (inp->inp_snd_tag != NULL) 1165 in_pcbdetach_txrtlmt(inp); 1166 #endif 1167 inp->inp_socket->so_pcb = NULL; 1168 inp->inp_socket = NULL; 1169 } 1170 1171 /* 1172 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1173 * stability of an inpcb pointer despite the inpcb lock being released. This 1174 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 1175 * but where the inpcb lock may already held, or when acquiring a reference 1176 * via a pcbgroup. 1177 * 1178 * in_pcbref() should be used only to provide brief memory stability, and 1179 * must always be followed by a call to INP_WLOCK() and in_pcbrele() to 1180 * garbage collect the inpcb if it has been in_pcbfree()'d from another 1181 * context. Until in_pcbrele() has returned that the inpcb is still valid, 1182 * lock and rele are the *only* safe operations that may be performed on the 1183 * inpcb. 1184 * 1185 * While the inpcb will not be freed, releasing the inpcb lock means that the 1186 * connection's state may change, so the caller should be careful to 1187 * revalidate any cached state on reacquiring the lock. Drop the reference 1188 * using in_pcbrele(). 1189 */ 1190 void 1191 in_pcbref(struct inpcb *inp) 1192 { 1193 1194 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1195 1196 refcount_acquire(&inp->inp_refcount); 1197 } 1198 1199 /* 1200 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 1201 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 1202 * return a flag indicating whether or not the inpcb remains valid. If it is 1203 * valid, we return with the inpcb lock held. 1204 * 1205 * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a 1206 * reference on an inpcb. Historically more work was done here (actually, in 1207 * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the 1208 * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely 1209 * about memory stability (and continued use of the write lock). 1210 */ 1211 int 1212 in_pcbrele_rlocked(struct inpcb *inp) 1213 { 1214 struct inpcbinfo *pcbinfo; 1215 1216 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1217 1218 INP_RLOCK_ASSERT(inp); 1219 1220 if (refcount_release(&inp->inp_refcount) == 0) { 1221 /* 1222 * If the inpcb has been freed, let the caller know, even if 1223 * this isn't the last reference. 1224 */ 1225 if (inp->inp_flags2 & INP_FREED) { 1226 INP_RUNLOCK(inp); 1227 return (1); 1228 } 1229 return (0); 1230 } 1231 1232 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1233 #ifdef TCPHPTS 1234 if (inp->inp_in_hpts || inp->inp_in_input) { 1235 struct tcp_hpts_entry *hpts; 1236 /* 1237 * We should not be on the hpts at 1238 * this point in any form. we must 1239 * get the lock to be sure. 1240 */ 1241 hpts = tcp_hpts_lock(inp); 1242 if (inp->inp_in_hpts) 1243 panic("Hpts:%p inp:%p at free still on hpts", 1244 hpts, inp); 1245 mtx_unlock(&hpts->p_mtx); 1246 hpts = tcp_input_lock(inp); 1247 if (inp->inp_in_input) 1248 panic("Hpts:%p inp:%p at free still on input hpts", 1249 hpts, inp); 1250 mtx_unlock(&hpts->p_mtx); 1251 } 1252 #endif 1253 INP_RUNLOCK(inp); 1254 pcbinfo = inp->inp_pcbinfo; 1255 uma_zfree(pcbinfo->ipi_zone, inp); 1256 return (1); 1257 } 1258 1259 int 1260 in_pcbrele_wlocked(struct inpcb *inp) 1261 { 1262 struct inpcbinfo *pcbinfo; 1263 1264 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1265 1266 INP_WLOCK_ASSERT(inp); 1267 1268 if (refcount_release(&inp->inp_refcount) == 0) { 1269 /* 1270 * If the inpcb has been freed, let the caller know, even if 1271 * this isn't the last reference. 1272 */ 1273 if (inp->inp_flags2 & INP_FREED) { 1274 INP_WUNLOCK(inp); 1275 return (1); 1276 } 1277 return (0); 1278 } 1279 1280 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1281 #ifdef TCPHPTS 1282 if (inp->inp_in_hpts || inp->inp_in_input) { 1283 struct tcp_hpts_entry *hpts; 1284 /* 1285 * We should not be on the hpts at 1286 * this point in any form. we must 1287 * get the lock to be sure. 1288 */ 1289 hpts = tcp_hpts_lock(inp); 1290 if (inp->inp_in_hpts) 1291 panic("Hpts:%p inp:%p at free still on hpts", 1292 hpts, inp); 1293 mtx_unlock(&hpts->p_mtx); 1294 hpts = tcp_input_lock(inp); 1295 if (inp->inp_in_input) 1296 panic("Hpts:%p inp:%p at free still on input hpts", 1297 hpts, inp); 1298 mtx_unlock(&hpts->p_mtx); 1299 } 1300 #endif 1301 INP_WUNLOCK(inp); 1302 pcbinfo = inp->inp_pcbinfo; 1303 uma_zfree(pcbinfo->ipi_zone, inp); 1304 return (1); 1305 } 1306 1307 /* 1308 * Temporary wrapper. 1309 */ 1310 int 1311 in_pcbrele(struct inpcb *inp) 1312 { 1313 1314 return (in_pcbrele_wlocked(inp)); 1315 } 1316 1317 void 1318 in_pcblist_rele_rlocked(epoch_context_t ctx) 1319 { 1320 struct in_pcblist *il; 1321 struct inpcb *inp; 1322 struct inpcbinfo *pcbinfo; 1323 int i, n; 1324 1325 il = __containerof(ctx, struct in_pcblist, il_epoch_ctx); 1326 pcbinfo = il->il_pcbinfo; 1327 n = il->il_count; 1328 INP_INFO_WLOCK(pcbinfo); 1329 for (i = 0; i < n; i++) { 1330 inp = il->il_inp_list[i]; 1331 INP_RLOCK(inp); 1332 if (!in_pcbrele_rlocked(inp)) 1333 INP_RUNLOCK(inp); 1334 } 1335 INP_INFO_WUNLOCK(pcbinfo); 1336 free(il, M_TEMP); 1337 } 1338 1339 static void 1340 in_pcbfree_deferred(epoch_context_t ctx) 1341 { 1342 struct inpcb *inp; 1343 struct inpcbinfo *pcbinfo; 1344 1345 inp = __containerof(ctx, struct inpcb, inp_epoch_ctx); 1346 pcbinfo = inp->inp_pcbinfo; 1347 1348 INP_WLOCK(inp); 1349 /* XXXRW: Do as much as possible here. */ 1350 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1351 if (inp->inp_sp != NULL) 1352 ipsec_delete_pcbpolicy(inp); 1353 #endif 1354 if (inp->inp_options) 1355 (void)m_free(inp->inp_options); 1356 1357 inp->inp_vflag = 0; 1358 inp->inp_flags2 |= INP_FREED; 1359 crfree(inp->inp_cred); 1360 #ifdef MAC 1361 mac_inpcb_destroy(inp); 1362 #endif 1363 if (!in_pcbrele_wlocked(inp)) 1364 INP_WUNLOCK(inp); 1365 } 1366 1367 /* 1368 * Unconditionally schedule an inpcb to be freed by decrementing its 1369 * reference count, which should occur only after the inpcb has been detached 1370 * from its socket. If another thread holds a temporary reference (acquired 1371 * using in_pcbref()) then the free is deferred until that reference is 1372 * released using in_pcbrele(), but the inpcb is still unlocked. Almost all 1373 * work, including removal from global lists, is done in this context, where 1374 * the pcbinfo lock is held. 1375 */ 1376 void 1377 in_pcbfree(struct inpcb *inp) 1378 { 1379 #ifdef INET6 1380 struct ip6_moptions *im6o = NULL; 1381 #endif 1382 #ifdef INET 1383 struct ip_moptions *imo = NULL; 1384 #endif 1385 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1386 1387 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1388 KASSERT((inp->inp_flags2 & INP_FREED) == 0, 1389 ("%s: called twice for pcb %p", __func__, inp)); 1390 if (inp->inp_flags2 & INP_FREED) { 1391 INP_WUNLOCK(inp); 1392 return; 1393 } 1394 1395 #ifdef INVARIANTS 1396 if (pcbinfo == &V_tcbinfo) { 1397 INP_INFO_LOCK_ASSERT(pcbinfo); 1398 } else { 1399 INP_INFO_WLOCK_ASSERT(pcbinfo); 1400 } 1401 #endif 1402 INP_WLOCK_ASSERT(inp); 1403 #ifdef INET 1404 imo = inp->inp_moptions; 1405 inp->inp_moptions = NULL; 1406 inp_freemoptions(imo); 1407 #endif 1408 #ifdef INET6 1409 if (inp->inp_vflag & INP_IPV6PROTO) { 1410 ip6_freepcbopts(inp->in6p_outputopts); 1411 im6o = inp->in6p_moptions; 1412 inp->in6p_moptions = NULL; 1413 ip6_freemoptions(im6o); 1414 } 1415 #endif 1416 /* Remove first from list */ 1417 INP_LIST_WLOCK(pcbinfo); 1418 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1419 in_pcbremlists(inp); 1420 INP_LIST_WUNLOCK(pcbinfo); 1421 RO_INVALIDATE_CACHE(&inp->inp_route); 1422 INP_WUNLOCK(inp); 1423 epoch_call(net_epoch_preempt, &inp->inp_epoch_ctx, in_pcbfree_deferred); 1424 } 1425 1426 /* 1427 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1428 * port reservation, and preventing it from being returned by inpcb lookups. 1429 * 1430 * It is used by TCP to mark an inpcb as unused and avoid future packet 1431 * delivery or event notification when a socket remains open but TCP has 1432 * closed. This might occur as a result of a shutdown()-initiated TCP close 1433 * or a RST on the wire, and allows the port binding to be reused while still 1434 * maintaining the invariant that so_pcb always points to a valid inpcb until 1435 * in_pcbdetach(). 1436 * 1437 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1438 * in_pcbnotifyall() and in_pcbpurgeif0()? 1439 */ 1440 void 1441 in_pcbdrop(struct inpcb *inp) 1442 { 1443 1444 INP_WLOCK_ASSERT(inp); 1445 1446 /* 1447 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1448 * the hash lock...? 1449 */ 1450 inp->inp_flags |= INP_DROPPED; 1451 if (inp->inp_flags & INP_INHASHLIST) { 1452 struct inpcbport *phd = inp->inp_phd; 1453 1454 INP_HASH_WLOCK(inp->inp_pcbinfo); 1455 LIST_REMOVE(inp, inp_hash); 1456 LIST_REMOVE(inp, inp_portlist); 1457 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 1458 LIST_REMOVE(phd, phd_hash); 1459 free(phd, M_PCB); 1460 } 1461 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1462 inp->inp_flags &= ~INP_INHASHLIST; 1463 #ifdef PCBGROUP 1464 in_pcbgroup_remove(inp); 1465 #endif 1466 } 1467 } 1468 1469 #ifdef INET 1470 /* 1471 * Common routines to return the socket addresses associated with inpcbs. 1472 */ 1473 struct sockaddr * 1474 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1475 { 1476 struct sockaddr_in *sin; 1477 1478 sin = malloc(sizeof *sin, M_SONAME, 1479 M_WAITOK | M_ZERO); 1480 sin->sin_family = AF_INET; 1481 sin->sin_len = sizeof(*sin); 1482 sin->sin_addr = *addr_p; 1483 sin->sin_port = port; 1484 1485 return (struct sockaddr *)sin; 1486 } 1487 1488 int 1489 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1490 { 1491 struct inpcb *inp; 1492 struct in_addr addr; 1493 in_port_t port; 1494 1495 inp = sotoinpcb(so); 1496 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1497 1498 INP_RLOCK(inp); 1499 port = inp->inp_lport; 1500 addr = inp->inp_laddr; 1501 INP_RUNLOCK(inp); 1502 1503 *nam = in_sockaddr(port, &addr); 1504 return 0; 1505 } 1506 1507 int 1508 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1509 { 1510 struct inpcb *inp; 1511 struct in_addr addr; 1512 in_port_t port; 1513 1514 inp = sotoinpcb(so); 1515 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1516 1517 INP_RLOCK(inp); 1518 port = inp->inp_fport; 1519 addr = inp->inp_faddr; 1520 INP_RUNLOCK(inp); 1521 1522 *nam = in_sockaddr(port, &addr); 1523 return 0; 1524 } 1525 1526 void 1527 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1528 struct inpcb *(*notify)(struct inpcb *, int)) 1529 { 1530 struct inpcb *inp, *inp_temp; 1531 1532 INP_INFO_WLOCK(pcbinfo); 1533 LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1534 INP_WLOCK(inp); 1535 #ifdef INET6 1536 if ((inp->inp_vflag & INP_IPV4) == 0) { 1537 INP_WUNLOCK(inp); 1538 continue; 1539 } 1540 #endif 1541 if (inp->inp_faddr.s_addr != faddr.s_addr || 1542 inp->inp_socket == NULL) { 1543 INP_WUNLOCK(inp); 1544 continue; 1545 } 1546 if ((*notify)(inp, errno)) 1547 INP_WUNLOCK(inp); 1548 } 1549 INP_INFO_WUNLOCK(pcbinfo); 1550 } 1551 1552 void 1553 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1554 { 1555 struct inpcb *inp; 1556 struct ip_moptions *imo; 1557 int i, gap; 1558 1559 INP_INFO_WLOCK(pcbinfo); 1560 LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1561 INP_WLOCK(inp); 1562 imo = inp->inp_moptions; 1563 if ((inp->inp_vflag & INP_IPV4) && 1564 imo != NULL) { 1565 /* 1566 * Unselect the outgoing interface if it is being 1567 * detached. 1568 */ 1569 if (imo->imo_multicast_ifp == ifp) 1570 imo->imo_multicast_ifp = NULL; 1571 1572 /* 1573 * Drop multicast group membership if we joined 1574 * through the interface being detached. 1575 * 1576 * XXX This can all be deferred to an epoch_call 1577 */ 1578 for (i = 0, gap = 0; i < imo->imo_num_memberships; 1579 i++) { 1580 if (imo->imo_membership[i]->inm_ifp == ifp) { 1581 IN_MULTI_LOCK_ASSERT(); 1582 in_leavegroup_locked(imo->imo_membership[i], NULL); 1583 gap++; 1584 } else if (gap != 0) 1585 imo->imo_membership[i - gap] = 1586 imo->imo_membership[i]; 1587 } 1588 imo->imo_num_memberships -= gap; 1589 } 1590 INP_WUNLOCK(inp); 1591 } 1592 INP_INFO_WUNLOCK(pcbinfo); 1593 } 1594 1595 /* 1596 * Lookup a PCB based on the local address and port. Caller must hold the 1597 * hash lock. No inpcb locks or references are acquired. 1598 */ 1599 #define INP_LOOKUP_MAPPED_PCB_COST 3 1600 struct inpcb * 1601 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1602 u_short lport, int lookupflags, struct ucred *cred) 1603 { 1604 struct inpcb *inp; 1605 #ifdef INET6 1606 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1607 #else 1608 int matchwild = 3; 1609 #endif 1610 int wildcard; 1611 1612 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1613 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1614 1615 INP_HASH_LOCK_ASSERT(pcbinfo); 1616 1617 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1618 struct inpcbhead *head; 1619 /* 1620 * Look for an unconnected (wildcard foreign addr) PCB that 1621 * matches the local address and port we're looking for. 1622 */ 1623 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1624 0, pcbinfo->ipi_hashmask)]; 1625 LIST_FOREACH(inp, head, inp_hash) { 1626 #ifdef INET6 1627 /* XXX inp locking */ 1628 if ((inp->inp_vflag & INP_IPV4) == 0) 1629 continue; 1630 #endif 1631 if (inp->inp_faddr.s_addr == INADDR_ANY && 1632 inp->inp_laddr.s_addr == laddr.s_addr && 1633 inp->inp_lport == lport) { 1634 /* 1635 * Found? 1636 */ 1637 if (cred == NULL || 1638 prison_equal_ip4(cred->cr_prison, 1639 inp->inp_cred->cr_prison)) 1640 return (inp); 1641 } 1642 } 1643 /* 1644 * Not found. 1645 */ 1646 return (NULL); 1647 } else { 1648 struct inpcbporthead *porthash; 1649 struct inpcbport *phd; 1650 struct inpcb *match = NULL; 1651 /* 1652 * Best fit PCB lookup. 1653 * 1654 * First see if this local port is in use by looking on the 1655 * port hash list. 1656 */ 1657 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1658 pcbinfo->ipi_porthashmask)]; 1659 LIST_FOREACH(phd, porthash, phd_hash) { 1660 if (phd->phd_port == lport) 1661 break; 1662 } 1663 if (phd != NULL) { 1664 /* 1665 * Port is in use by one or more PCBs. Look for best 1666 * fit. 1667 */ 1668 LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1669 wildcard = 0; 1670 if (cred != NULL && 1671 !prison_equal_ip4(inp->inp_cred->cr_prison, 1672 cred->cr_prison)) 1673 continue; 1674 #ifdef INET6 1675 /* XXX inp locking */ 1676 if ((inp->inp_vflag & INP_IPV4) == 0) 1677 continue; 1678 /* 1679 * We never select the PCB that has 1680 * INP_IPV6 flag and is bound to :: if 1681 * we have another PCB which is bound 1682 * to 0.0.0.0. If a PCB has the 1683 * INP_IPV6 flag, then we set its cost 1684 * higher than IPv4 only PCBs. 1685 * 1686 * Note that the case only happens 1687 * when a socket is bound to ::, under 1688 * the condition that the use of the 1689 * mapped address is allowed. 1690 */ 1691 if ((inp->inp_vflag & INP_IPV6) != 0) 1692 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1693 #endif 1694 if (inp->inp_faddr.s_addr != INADDR_ANY) 1695 wildcard++; 1696 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1697 if (laddr.s_addr == INADDR_ANY) 1698 wildcard++; 1699 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1700 continue; 1701 } else { 1702 if (laddr.s_addr != INADDR_ANY) 1703 wildcard++; 1704 } 1705 if (wildcard < matchwild) { 1706 match = inp; 1707 matchwild = wildcard; 1708 if (matchwild == 0) 1709 break; 1710 } 1711 } 1712 } 1713 return (match); 1714 } 1715 } 1716 #undef INP_LOOKUP_MAPPED_PCB_COST 1717 1718 #ifdef PCBGROUP 1719 /* 1720 * Lookup PCB in hash list, using pcbgroup tables. 1721 */ 1722 static struct inpcb * 1723 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, 1724 struct in_addr faddr, u_int fport_arg, struct in_addr laddr, 1725 u_int lport_arg, int lookupflags, struct ifnet *ifp) 1726 { 1727 struct inpcbhead *head; 1728 struct inpcb *inp, *tmpinp; 1729 u_short fport = fport_arg, lport = lport_arg; 1730 bool locked; 1731 1732 /* 1733 * First look for an exact match. 1734 */ 1735 tmpinp = NULL; 1736 INP_GROUP_LOCK(pcbgroup); 1737 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1738 pcbgroup->ipg_hashmask)]; 1739 LIST_FOREACH(inp, head, inp_pcbgrouphash) { 1740 #ifdef INET6 1741 /* XXX inp locking */ 1742 if ((inp->inp_vflag & INP_IPV4) == 0) 1743 continue; 1744 #endif 1745 if (inp->inp_faddr.s_addr == faddr.s_addr && 1746 inp->inp_laddr.s_addr == laddr.s_addr && 1747 inp->inp_fport == fport && 1748 inp->inp_lport == lport) { 1749 /* 1750 * XXX We should be able to directly return 1751 * the inp here, without any checks. 1752 * Well unless both bound with SO_REUSEPORT? 1753 */ 1754 if (prison_flag(inp->inp_cred, PR_IP4)) 1755 goto found; 1756 if (tmpinp == NULL) 1757 tmpinp = inp; 1758 } 1759 } 1760 if (tmpinp != NULL) { 1761 inp = tmpinp; 1762 goto found; 1763 } 1764 1765 #ifdef RSS 1766 /* 1767 * For incoming connections, we may wish to do a wildcard 1768 * match for an RSS-local socket. 1769 */ 1770 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1771 struct inpcb *local_wild = NULL, *local_exact = NULL; 1772 #ifdef INET6 1773 struct inpcb *local_wild_mapped = NULL; 1774 #endif 1775 struct inpcb *jail_wild = NULL; 1776 struct inpcbhead *head; 1777 int injail; 1778 1779 /* 1780 * Order of socket selection - we always prefer jails. 1781 * 1. jailed, non-wild. 1782 * 2. jailed, wild. 1783 * 3. non-jailed, non-wild. 1784 * 4. non-jailed, wild. 1785 */ 1786 1787 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, 1788 lport, 0, pcbgroup->ipg_hashmask)]; 1789 LIST_FOREACH(inp, head, inp_pcbgrouphash) { 1790 #ifdef INET6 1791 /* XXX inp locking */ 1792 if ((inp->inp_vflag & INP_IPV4) == 0) 1793 continue; 1794 #endif 1795 if (inp->inp_faddr.s_addr != INADDR_ANY || 1796 inp->inp_lport != lport) 1797 continue; 1798 1799 injail = prison_flag(inp->inp_cred, PR_IP4); 1800 if (injail) { 1801 if (prison_check_ip4(inp->inp_cred, 1802 &laddr) != 0) 1803 continue; 1804 } else { 1805 if (local_exact != NULL) 1806 continue; 1807 } 1808 1809 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1810 if (injail) 1811 goto found; 1812 else 1813 local_exact = inp; 1814 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1815 #ifdef INET6 1816 /* XXX inp locking, NULL check */ 1817 if (inp->inp_vflag & INP_IPV6PROTO) 1818 local_wild_mapped = inp; 1819 else 1820 #endif 1821 if (injail) 1822 jail_wild = inp; 1823 else 1824 local_wild = inp; 1825 } 1826 } /* LIST_FOREACH */ 1827 1828 inp = jail_wild; 1829 if (inp == NULL) 1830 inp = local_exact; 1831 if (inp == NULL) 1832 inp = local_wild; 1833 #ifdef INET6 1834 if (inp == NULL) 1835 inp = local_wild_mapped; 1836 #endif 1837 if (inp != NULL) 1838 goto found; 1839 } 1840 #endif 1841 1842 /* 1843 * Then look for a wildcard match, if requested. 1844 */ 1845 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1846 struct inpcb *local_wild = NULL, *local_exact = NULL; 1847 #ifdef INET6 1848 struct inpcb *local_wild_mapped = NULL; 1849 #endif 1850 struct inpcb *jail_wild = NULL; 1851 struct inpcbhead *head; 1852 int injail; 1853 1854 /* 1855 * Order of socket selection - we always prefer jails. 1856 * 1. jailed, non-wild. 1857 * 2. jailed, wild. 1858 * 3. non-jailed, non-wild. 1859 * 4. non-jailed, wild. 1860 */ 1861 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 1862 0, pcbinfo->ipi_wildmask)]; 1863 LIST_FOREACH(inp, head, inp_pcbgroup_wild) { 1864 #ifdef INET6 1865 /* XXX inp locking */ 1866 if ((inp->inp_vflag & INP_IPV4) == 0) 1867 continue; 1868 #endif 1869 if (inp->inp_faddr.s_addr != INADDR_ANY || 1870 inp->inp_lport != lport) 1871 continue; 1872 1873 injail = prison_flag(inp->inp_cred, PR_IP4); 1874 if (injail) { 1875 if (prison_check_ip4(inp->inp_cred, 1876 &laddr) != 0) 1877 continue; 1878 } else { 1879 if (local_exact != NULL) 1880 continue; 1881 } 1882 1883 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1884 if (injail) 1885 goto found; 1886 else 1887 local_exact = inp; 1888 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1889 #ifdef INET6 1890 /* XXX inp locking, NULL check */ 1891 if (inp->inp_vflag & INP_IPV6PROTO) 1892 local_wild_mapped = inp; 1893 else 1894 #endif 1895 if (injail) 1896 jail_wild = inp; 1897 else 1898 local_wild = inp; 1899 } 1900 } /* LIST_FOREACH */ 1901 inp = jail_wild; 1902 if (inp == NULL) 1903 inp = local_exact; 1904 if (inp == NULL) 1905 inp = local_wild; 1906 #ifdef INET6 1907 if (inp == NULL) 1908 inp = local_wild_mapped; 1909 #endif 1910 if (inp != NULL) 1911 goto found; 1912 } /* if (lookupflags & INPLOOKUP_WILDCARD) */ 1913 INP_GROUP_UNLOCK(pcbgroup); 1914 return (NULL); 1915 1916 found: 1917 if (lookupflags & INPLOOKUP_WLOCKPCB) 1918 locked = INP_TRY_WLOCK(inp); 1919 else if (lookupflags & INPLOOKUP_RLOCKPCB) 1920 locked = INP_TRY_RLOCK(inp); 1921 else 1922 panic("%s: locking bug", __func__); 1923 if (!locked) 1924 in_pcbref(inp); 1925 INP_GROUP_UNLOCK(pcbgroup); 1926 if (!locked) { 1927 if (lookupflags & INPLOOKUP_WLOCKPCB) { 1928 INP_WLOCK(inp); 1929 if (in_pcbrele_wlocked(inp)) 1930 return (NULL); 1931 } else { 1932 INP_RLOCK(inp); 1933 if (in_pcbrele_rlocked(inp)) 1934 return (NULL); 1935 } 1936 } 1937 #ifdef INVARIANTS 1938 if (lookupflags & INPLOOKUP_WLOCKPCB) 1939 INP_WLOCK_ASSERT(inp); 1940 else 1941 INP_RLOCK_ASSERT(inp); 1942 #endif 1943 return (inp); 1944 } 1945 #endif /* PCBGROUP */ 1946 1947 /* 1948 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 1949 * that the caller has locked the hash list, and will not perform any further 1950 * locking or reference operations on either the hash list or the connection. 1951 */ 1952 static struct inpcb * 1953 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1954 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 1955 struct ifnet *ifp) 1956 { 1957 struct inpcbhead *head; 1958 struct inpcb *inp, *tmpinp; 1959 u_short fport = fport_arg, lport = lport_arg; 1960 1961 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1962 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1963 1964 INP_HASH_LOCK_ASSERT(pcbinfo); 1965 1966 /* 1967 * First look for an exact match. 1968 */ 1969 tmpinp = NULL; 1970 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1971 pcbinfo->ipi_hashmask)]; 1972 LIST_FOREACH(inp, head, inp_hash) { 1973 #ifdef INET6 1974 /* XXX inp locking */ 1975 if ((inp->inp_vflag & INP_IPV4) == 0) 1976 continue; 1977 #endif 1978 if (inp->inp_faddr.s_addr == faddr.s_addr && 1979 inp->inp_laddr.s_addr == laddr.s_addr && 1980 inp->inp_fport == fport && 1981 inp->inp_lport == lport) { 1982 /* 1983 * XXX We should be able to directly return 1984 * the inp here, without any checks. 1985 * Well unless both bound with SO_REUSEPORT? 1986 */ 1987 if (prison_flag(inp->inp_cred, PR_IP4)) 1988 return (inp); 1989 if (tmpinp == NULL) 1990 tmpinp = inp; 1991 } 1992 } 1993 if (tmpinp != NULL) 1994 return (tmpinp); 1995 1996 /* 1997 * Then look for a wildcard match, if requested. 1998 */ 1999 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2000 struct inpcb *local_wild = NULL, *local_exact = NULL; 2001 #ifdef INET6 2002 struct inpcb *local_wild_mapped = NULL; 2003 #endif 2004 struct inpcb *jail_wild = NULL; 2005 int injail; 2006 2007 /* 2008 * Order of socket selection - we always prefer jails. 2009 * 1. jailed, non-wild. 2010 * 2. jailed, wild. 2011 * 3. non-jailed, non-wild. 2012 * 4. non-jailed, wild. 2013 */ 2014 2015 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 2016 0, pcbinfo->ipi_hashmask)]; 2017 LIST_FOREACH(inp, head, inp_hash) { 2018 #ifdef INET6 2019 /* XXX inp locking */ 2020 if ((inp->inp_vflag & INP_IPV4) == 0) 2021 continue; 2022 #endif 2023 if (inp->inp_faddr.s_addr != INADDR_ANY || 2024 inp->inp_lport != lport) 2025 continue; 2026 2027 injail = prison_flag(inp->inp_cred, PR_IP4); 2028 if (injail) { 2029 if (prison_check_ip4(inp->inp_cred, 2030 &laddr) != 0) 2031 continue; 2032 } else { 2033 if (local_exact != NULL) 2034 continue; 2035 } 2036 2037 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2038 if (injail) 2039 return (inp); 2040 else 2041 local_exact = inp; 2042 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2043 #ifdef INET6 2044 /* XXX inp locking, NULL check */ 2045 if (inp->inp_vflag & INP_IPV6PROTO) 2046 local_wild_mapped = inp; 2047 else 2048 #endif 2049 if (injail) 2050 jail_wild = inp; 2051 else 2052 local_wild = inp; 2053 } 2054 } /* LIST_FOREACH */ 2055 if (jail_wild != NULL) 2056 return (jail_wild); 2057 if (local_exact != NULL) 2058 return (local_exact); 2059 if (local_wild != NULL) 2060 return (local_wild); 2061 #ifdef INET6 2062 if (local_wild_mapped != NULL) 2063 return (local_wild_mapped); 2064 #endif 2065 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 2066 2067 return (NULL); 2068 } 2069 2070 /* 2071 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 2072 * hash list lock, and will return the inpcb locked (i.e., requires 2073 * INPLOOKUP_LOCKPCB). 2074 */ 2075 static struct inpcb * 2076 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2077 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2078 struct ifnet *ifp) 2079 { 2080 struct inpcb *inp; 2081 bool locked; 2082 2083 INP_HASH_RLOCK(pcbinfo); 2084 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2085 (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp); 2086 if (inp != NULL) { 2087 if (lookupflags & INPLOOKUP_WLOCKPCB) 2088 locked = INP_TRY_WLOCK(inp); 2089 else if (lookupflags & INPLOOKUP_RLOCKPCB) 2090 locked = INP_TRY_RLOCK(inp); 2091 else 2092 panic("%s: locking bug", __func__); 2093 if (!locked) 2094 in_pcbref(inp); 2095 INP_HASH_RUNLOCK(pcbinfo); 2096 if (!locked) { 2097 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2098 INP_WLOCK(inp); 2099 if (in_pcbrele_wlocked(inp)) 2100 return (NULL); 2101 } else { 2102 INP_RLOCK(inp); 2103 if (in_pcbrele_rlocked(inp)) 2104 return (NULL); 2105 } 2106 } 2107 #ifdef INVARIANTS 2108 if (lookupflags & INPLOOKUP_WLOCKPCB) 2109 INP_WLOCK_ASSERT(inp); 2110 else 2111 INP_RLOCK_ASSERT(inp); 2112 #endif 2113 } else 2114 INP_HASH_RUNLOCK(pcbinfo); 2115 return (inp); 2116 } 2117 2118 /* 2119 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2120 * from which a pre-calculated hash value may be extracted. 2121 * 2122 * Possibly more of this logic should be in in_pcbgroup.c. 2123 */ 2124 struct inpcb * 2125 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2126 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 2127 { 2128 #if defined(PCBGROUP) && !defined(RSS) 2129 struct inpcbgroup *pcbgroup; 2130 #endif 2131 2132 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2133 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2134 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2135 ("%s: LOCKPCB not set", __func__)); 2136 2137 /* 2138 * When not using RSS, use connection groups in preference to the 2139 * reservation table when looking up 4-tuples. When using RSS, just 2140 * use the reservation table, due to the cost of the Toeplitz hash 2141 * in software. 2142 * 2143 * XXXRW: This policy belongs in the pcbgroup code, as in principle 2144 * we could be doing RSS with a non-Toeplitz hash that is affordable 2145 * in software. 2146 */ 2147 #if defined(PCBGROUP) && !defined(RSS) 2148 if (in_pcbgroup_enabled(pcbinfo)) { 2149 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2150 fport); 2151 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2152 laddr, lport, lookupflags, ifp)); 2153 } 2154 #endif 2155 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2156 lookupflags, ifp)); 2157 } 2158 2159 struct inpcb * 2160 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2161 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2162 struct ifnet *ifp, struct mbuf *m) 2163 { 2164 #ifdef PCBGROUP 2165 struct inpcbgroup *pcbgroup; 2166 #endif 2167 2168 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2169 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2170 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2171 ("%s: LOCKPCB not set", __func__)); 2172 2173 #ifdef PCBGROUP 2174 /* 2175 * If we can use a hardware-generated hash to look up the connection 2176 * group, use that connection group to find the inpcb. Otherwise 2177 * fall back on a software hash -- or the reservation table if we're 2178 * using RSS. 2179 * 2180 * XXXRW: As above, that policy belongs in the pcbgroup code. 2181 */ 2182 if (in_pcbgroup_enabled(pcbinfo) && 2183 !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { 2184 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), 2185 m->m_pkthdr.flowid); 2186 if (pcbgroup != NULL) 2187 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, 2188 fport, laddr, lport, lookupflags, ifp)); 2189 #ifndef RSS 2190 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2191 fport); 2192 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2193 laddr, lport, lookupflags, ifp)); 2194 #endif 2195 } 2196 #endif 2197 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2198 lookupflags, ifp)); 2199 } 2200 #endif /* INET */ 2201 2202 /* 2203 * Insert PCB onto various hash lists. 2204 */ 2205 static int 2206 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update) 2207 { 2208 struct inpcbhead *pcbhash; 2209 struct inpcbporthead *pcbporthash; 2210 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2211 struct inpcbport *phd; 2212 u_int32_t hashkey_faddr; 2213 2214 INP_WLOCK_ASSERT(inp); 2215 INP_HASH_WLOCK_ASSERT(pcbinfo); 2216 2217 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2218 ("in_pcbinshash: INP_INHASHLIST")); 2219 2220 #ifdef INET6 2221 if (inp->inp_vflag & INP_IPV6) 2222 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2223 else 2224 #endif 2225 hashkey_faddr = inp->inp_faddr.s_addr; 2226 2227 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2228 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2229 2230 pcbporthash = &pcbinfo->ipi_porthashbase[ 2231 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2232 2233 /* 2234 * Go through port list and look for a head for this lport. 2235 */ 2236 LIST_FOREACH(phd, pcbporthash, phd_hash) { 2237 if (phd->phd_port == inp->inp_lport) 2238 break; 2239 } 2240 /* 2241 * If none exists, malloc one and tack it on. 2242 */ 2243 if (phd == NULL) { 2244 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 2245 if (phd == NULL) { 2246 return (ENOBUFS); /* XXX */ 2247 } 2248 phd->phd_port = inp->inp_lport; 2249 LIST_INIT(&phd->phd_pcblist); 2250 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2251 } 2252 inp->inp_phd = phd; 2253 LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2254 LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2255 inp->inp_flags |= INP_INHASHLIST; 2256 #ifdef PCBGROUP 2257 if (do_pcbgroup_update) 2258 in_pcbgroup_update(inp); 2259 #endif 2260 return (0); 2261 } 2262 2263 /* 2264 * For now, there are two public interfaces to insert an inpcb into the hash 2265 * lists -- one that does update pcbgroups, and one that doesn't. The latter 2266 * is used only in the TCP syncache, where in_pcbinshash is called before the 2267 * full 4-tuple is set for the inpcb, and we don't want to install in the 2268 * pcbgroup until later. 2269 * 2270 * XXXRW: This seems like a misfeature. in_pcbinshash should always update 2271 * connection groups, and partially initialised inpcbs should not be exposed 2272 * to either reservation hash tables or pcbgroups. 2273 */ 2274 int 2275 in_pcbinshash(struct inpcb *inp) 2276 { 2277 2278 return (in_pcbinshash_internal(inp, 1)); 2279 } 2280 2281 int 2282 in_pcbinshash_nopcbgroup(struct inpcb *inp) 2283 { 2284 2285 return (in_pcbinshash_internal(inp, 0)); 2286 } 2287 2288 /* 2289 * Move PCB to the proper hash bucket when { faddr, fport } have been 2290 * changed. NOTE: This does not handle the case of the lport changing (the 2291 * hashed port list would have to be updated as well), so the lport must 2292 * not change after in_pcbinshash() has been called. 2293 */ 2294 void 2295 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) 2296 { 2297 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2298 struct inpcbhead *head; 2299 u_int32_t hashkey_faddr; 2300 2301 INP_WLOCK_ASSERT(inp); 2302 INP_HASH_WLOCK_ASSERT(pcbinfo); 2303 2304 KASSERT(inp->inp_flags & INP_INHASHLIST, 2305 ("in_pcbrehash: !INP_INHASHLIST")); 2306 2307 #ifdef INET6 2308 if (inp->inp_vflag & INP_IPV6) 2309 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2310 else 2311 #endif 2312 hashkey_faddr = inp->inp_faddr.s_addr; 2313 2314 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2315 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2316 2317 LIST_REMOVE(inp, inp_hash); 2318 LIST_INSERT_HEAD(head, inp, inp_hash); 2319 2320 #ifdef PCBGROUP 2321 if (m != NULL) 2322 in_pcbgroup_update_mbuf(inp, m); 2323 else 2324 in_pcbgroup_update(inp); 2325 #endif 2326 } 2327 2328 void 2329 in_pcbrehash(struct inpcb *inp) 2330 { 2331 2332 in_pcbrehash_mbuf(inp, NULL); 2333 } 2334 2335 /* 2336 * Remove PCB from various lists. 2337 */ 2338 static void 2339 in_pcbremlists(struct inpcb *inp) 2340 { 2341 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2342 2343 #ifdef INVARIANTS 2344 if (pcbinfo == &V_tcbinfo) { 2345 INP_INFO_RLOCK_ASSERT(pcbinfo); 2346 } else { 2347 INP_INFO_WLOCK_ASSERT(pcbinfo); 2348 } 2349 #endif 2350 2351 INP_WLOCK_ASSERT(inp); 2352 INP_LIST_WLOCK_ASSERT(pcbinfo); 2353 2354 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 2355 if (inp->inp_flags & INP_INHASHLIST) { 2356 struct inpcbport *phd = inp->inp_phd; 2357 2358 INP_HASH_WLOCK(pcbinfo); 2359 LIST_REMOVE(inp, inp_hash); 2360 LIST_REMOVE(inp, inp_portlist); 2361 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 2362 LIST_REMOVE(phd, phd_hash); 2363 free(phd, M_PCB); 2364 } 2365 INP_HASH_WUNLOCK(pcbinfo); 2366 inp->inp_flags &= ~INP_INHASHLIST; 2367 } 2368 LIST_REMOVE(inp, inp_list); 2369 pcbinfo->ipi_count--; 2370 #ifdef PCBGROUP 2371 in_pcbgroup_remove(inp); 2372 #endif 2373 } 2374 2375 /* 2376 * Check for alternatives when higher level complains 2377 * about service problems. For now, invalidate cached 2378 * routing information. If the route was created dynamically 2379 * (by a redirect), time to try a default gateway again. 2380 */ 2381 void 2382 in_losing(struct inpcb *inp) 2383 { 2384 2385 RO_INVALIDATE_CACHE(&inp->inp_route); 2386 return; 2387 } 2388 2389 /* 2390 * A set label operation has occurred at the socket layer, propagate the 2391 * label change into the in_pcb for the socket. 2392 */ 2393 void 2394 in_pcbsosetlabel(struct socket *so) 2395 { 2396 #ifdef MAC 2397 struct inpcb *inp; 2398 2399 inp = sotoinpcb(so); 2400 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2401 2402 INP_WLOCK(inp); 2403 SOCK_LOCK(so); 2404 mac_inpcb_sosetlabel(so, inp); 2405 SOCK_UNLOCK(so); 2406 INP_WUNLOCK(inp); 2407 #endif 2408 } 2409 2410 /* 2411 * ipport_tick runs once per second, determining if random port allocation 2412 * should be continued. If more than ipport_randomcps ports have been 2413 * allocated in the last second, then we return to sequential port 2414 * allocation. We return to random allocation only once we drop below 2415 * ipport_randomcps for at least ipport_randomtime seconds. 2416 */ 2417 static void 2418 ipport_tick(void *xtp) 2419 { 2420 VNET_ITERATOR_DECL(vnet_iter); 2421 2422 VNET_LIST_RLOCK_NOSLEEP(); 2423 VNET_FOREACH(vnet_iter) { 2424 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2425 if (V_ipport_tcpallocs <= 2426 V_ipport_tcplastcount + V_ipport_randomcps) { 2427 if (V_ipport_stoprandom > 0) 2428 V_ipport_stoprandom--; 2429 } else 2430 V_ipport_stoprandom = V_ipport_randomtime; 2431 V_ipport_tcplastcount = V_ipport_tcpallocs; 2432 CURVNET_RESTORE(); 2433 } 2434 VNET_LIST_RUNLOCK_NOSLEEP(); 2435 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2436 } 2437 2438 static void 2439 ip_fini(void *xtp) 2440 { 2441 2442 callout_stop(&ipport_tick_callout); 2443 } 2444 2445 /* 2446 * The ipport_callout should start running at about the time we attach the 2447 * inet or inet6 domains. 2448 */ 2449 static void 2450 ipport_tick_init(const void *unused __unused) 2451 { 2452 2453 /* Start ipport_tick. */ 2454 callout_init(&ipport_tick_callout, 1); 2455 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2456 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2457 SHUTDOWN_PRI_DEFAULT); 2458 } 2459 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2460 ipport_tick_init, NULL); 2461 2462 void 2463 inp_wlock(struct inpcb *inp) 2464 { 2465 2466 INP_WLOCK(inp); 2467 } 2468 2469 void 2470 inp_wunlock(struct inpcb *inp) 2471 { 2472 2473 INP_WUNLOCK(inp); 2474 } 2475 2476 void 2477 inp_rlock(struct inpcb *inp) 2478 { 2479 2480 INP_RLOCK(inp); 2481 } 2482 2483 void 2484 inp_runlock(struct inpcb *inp) 2485 { 2486 2487 INP_RUNLOCK(inp); 2488 } 2489 2490 #ifdef INVARIANT_SUPPORT 2491 void 2492 inp_lock_assert(struct inpcb *inp) 2493 { 2494 2495 INP_WLOCK_ASSERT(inp); 2496 } 2497 2498 void 2499 inp_unlock_assert(struct inpcb *inp) 2500 { 2501 2502 INP_UNLOCK_ASSERT(inp); 2503 } 2504 #endif 2505 2506 void 2507 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2508 { 2509 struct inpcb *inp; 2510 2511 INP_INFO_WLOCK(&V_tcbinfo); 2512 LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 2513 INP_WLOCK(inp); 2514 func(inp, arg); 2515 INP_WUNLOCK(inp); 2516 } 2517 INP_INFO_WUNLOCK(&V_tcbinfo); 2518 } 2519 2520 struct socket * 2521 inp_inpcbtosocket(struct inpcb *inp) 2522 { 2523 2524 INP_WLOCK_ASSERT(inp); 2525 return (inp->inp_socket); 2526 } 2527 2528 struct tcpcb * 2529 inp_inpcbtotcpcb(struct inpcb *inp) 2530 { 2531 2532 INP_WLOCK_ASSERT(inp); 2533 return ((struct tcpcb *)inp->inp_ppcb); 2534 } 2535 2536 int 2537 inp_ip_tos_get(const struct inpcb *inp) 2538 { 2539 2540 return (inp->inp_ip_tos); 2541 } 2542 2543 void 2544 inp_ip_tos_set(struct inpcb *inp, int val) 2545 { 2546 2547 inp->inp_ip_tos = val; 2548 } 2549 2550 void 2551 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2552 uint32_t *faddr, uint16_t *fp) 2553 { 2554 2555 INP_LOCK_ASSERT(inp); 2556 *laddr = inp->inp_laddr.s_addr; 2557 *faddr = inp->inp_faddr.s_addr; 2558 *lp = inp->inp_lport; 2559 *fp = inp->inp_fport; 2560 } 2561 2562 struct inpcb * 2563 so_sotoinpcb(struct socket *so) 2564 { 2565 2566 return (sotoinpcb(so)); 2567 } 2568 2569 struct tcpcb * 2570 so_sototcpcb(struct socket *so) 2571 { 2572 2573 return (sototcpcb(so)); 2574 } 2575 2576 /* 2577 * Create an external-format (``xinpcb'') structure using the information in 2578 * the kernel-format in_pcb structure pointed to by inp. This is done to 2579 * reduce the spew of irrelevant information over this interface, to isolate 2580 * user code from changes in the kernel structure, and potentially to provide 2581 * information-hiding if we decide that some of this information should be 2582 * hidden from users. 2583 */ 2584 void 2585 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2586 { 2587 2588 xi->xi_len = sizeof(struct xinpcb); 2589 if (inp->inp_socket) 2590 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2591 else 2592 bzero(&xi->xi_socket, sizeof(struct xsocket)); 2593 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2594 xi->inp_gencnt = inp->inp_gencnt; 2595 xi->inp_ppcb = inp->inp_ppcb; 2596 xi->inp_flow = inp->inp_flow; 2597 xi->inp_flowid = inp->inp_flowid; 2598 xi->inp_flowtype = inp->inp_flowtype; 2599 xi->inp_flags = inp->inp_flags; 2600 xi->inp_flags2 = inp->inp_flags2; 2601 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2602 xi->in6p_cksum = inp->in6p_cksum; 2603 xi->in6p_hops = inp->in6p_hops; 2604 xi->inp_ip_tos = inp->inp_ip_tos; 2605 xi->inp_vflag = inp->inp_vflag; 2606 xi->inp_ip_ttl = inp->inp_ip_ttl; 2607 xi->inp_ip_p = inp->inp_ip_p; 2608 xi->inp_ip_minttl = inp->inp_ip_minttl; 2609 } 2610 2611 #ifdef DDB 2612 static void 2613 db_print_indent(int indent) 2614 { 2615 int i; 2616 2617 for (i = 0; i < indent; i++) 2618 db_printf(" "); 2619 } 2620 2621 static void 2622 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2623 { 2624 char faddr_str[48], laddr_str[48]; 2625 2626 db_print_indent(indent); 2627 db_printf("%s at %p\n", name, inc); 2628 2629 indent += 2; 2630 2631 #ifdef INET6 2632 if (inc->inc_flags & INC_ISIPV6) { 2633 /* IPv6. */ 2634 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2635 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2636 } else 2637 #endif 2638 { 2639 /* IPv4. */ 2640 inet_ntoa_r(inc->inc_laddr, laddr_str); 2641 inet_ntoa_r(inc->inc_faddr, faddr_str); 2642 } 2643 db_print_indent(indent); 2644 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2645 ntohs(inc->inc_lport)); 2646 db_print_indent(indent); 2647 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2648 ntohs(inc->inc_fport)); 2649 } 2650 2651 static void 2652 db_print_inpflags(int inp_flags) 2653 { 2654 int comma; 2655 2656 comma = 0; 2657 if (inp_flags & INP_RECVOPTS) { 2658 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2659 comma = 1; 2660 } 2661 if (inp_flags & INP_RECVRETOPTS) { 2662 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2663 comma = 1; 2664 } 2665 if (inp_flags & INP_RECVDSTADDR) { 2666 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2667 comma = 1; 2668 } 2669 if (inp_flags & INP_ORIGDSTADDR) { 2670 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 2671 comma = 1; 2672 } 2673 if (inp_flags & INP_HDRINCL) { 2674 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2675 comma = 1; 2676 } 2677 if (inp_flags & INP_HIGHPORT) { 2678 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2679 comma = 1; 2680 } 2681 if (inp_flags & INP_LOWPORT) { 2682 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2683 comma = 1; 2684 } 2685 if (inp_flags & INP_ANONPORT) { 2686 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2687 comma = 1; 2688 } 2689 if (inp_flags & INP_RECVIF) { 2690 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2691 comma = 1; 2692 } 2693 if (inp_flags & INP_MTUDISC) { 2694 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2695 comma = 1; 2696 } 2697 if (inp_flags & INP_RECVTTL) { 2698 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 2699 comma = 1; 2700 } 2701 if (inp_flags & INP_DONTFRAG) { 2702 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 2703 comma = 1; 2704 } 2705 if (inp_flags & INP_RECVTOS) { 2706 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 2707 comma = 1; 2708 } 2709 if (inp_flags & IN6P_IPV6_V6ONLY) { 2710 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 2711 comma = 1; 2712 } 2713 if (inp_flags & IN6P_PKTINFO) { 2714 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 2715 comma = 1; 2716 } 2717 if (inp_flags & IN6P_HOPLIMIT) { 2718 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 2719 comma = 1; 2720 } 2721 if (inp_flags & IN6P_HOPOPTS) { 2722 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 2723 comma = 1; 2724 } 2725 if (inp_flags & IN6P_DSTOPTS) { 2726 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 2727 comma = 1; 2728 } 2729 if (inp_flags & IN6P_RTHDR) { 2730 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 2731 comma = 1; 2732 } 2733 if (inp_flags & IN6P_RTHDRDSTOPTS) { 2734 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 2735 comma = 1; 2736 } 2737 if (inp_flags & IN6P_TCLASS) { 2738 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 2739 comma = 1; 2740 } 2741 if (inp_flags & IN6P_AUTOFLOWLABEL) { 2742 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 2743 comma = 1; 2744 } 2745 if (inp_flags & INP_TIMEWAIT) { 2746 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 2747 comma = 1; 2748 } 2749 if (inp_flags & INP_ONESBCAST) { 2750 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 2751 comma = 1; 2752 } 2753 if (inp_flags & INP_DROPPED) { 2754 db_printf("%sINP_DROPPED", comma ? ", " : ""); 2755 comma = 1; 2756 } 2757 if (inp_flags & INP_SOCKREF) { 2758 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 2759 comma = 1; 2760 } 2761 if (inp_flags & IN6P_RFC2292) { 2762 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 2763 comma = 1; 2764 } 2765 if (inp_flags & IN6P_MTU) { 2766 db_printf("IN6P_MTU%s", comma ? ", " : ""); 2767 comma = 1; 2768 } 2769 } 2770 2771 static void 2772 db_print_inpvflag(u_char inp_vflag) 2773 { 2774 int comma; 2775 2776 comma = 0; 2777 if (inp_vflag & INP_IPV4) { 2778 db_printf("%sINP_IPV4", comma ? ", " : ""); 2779 comma = 1; 2780 } 2781 if (inp_vflag & INP_IPV6) { 2782 db_printf("%sINP_IPV6", comma ? ", " : ""); 2783 comma = 1; 2784 } 2785 if (inp_vflag & INP_IPV6PROTO) { 2786 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 2787 comma = 1; 2788 } 2789 } 2790 2791 static void 2792 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 2793 { 2794 2795 db_print_indent(indent); 2796 db_printf("%s at %p\n", name, inp); 2797 2798 indent += 2; 2799 2800 db_print_indent(indent); 2801 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 2802 2803 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 2804 2805 db_print_indent(indent); 2806 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 2807 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 2808 2809 db_print_indent(indent); 2810 db_printf("inp_label: %p inp_flags: 0x%x (", 2811 inp->inp_label, inp->inp_flags); 2812 db_print_inpflags(inp->inp_flags); 2813 db_printf(")\n"); 2814 2815 db_print_indent(indent); 2816 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 2817 inp->inp_vflag); 2818 db_print_inpvflag(inp->inp_vflag); 2819 db_printf(")\n"); 2820 2821 db_print_indent(indent); 2822 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 2823 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 2824 2825 db_print_indent(indent); 2826 #ifdef INET6 2827 if (inp->inp_vflag & INP_IPV6) { 2828 db_printf("in6p_options: %p in6p_outputopts: %p " 2829 "in6p_moptions: %p\n", inp->in6p_options, 2830 inp->in6p_outputopts, inp->in6p_moptions); 2831 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 2832 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 2833 inp->in6p_hops); 2834 } else 2835 #endif 2836 { 2837 db_printf("inp_ip_tos: %d inp_ip_options: %p " 2838 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 2839 inp->inp_options, inp->inp_moptions); 2840 } 2841 2842 db_print_indent(indent); 2843 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 2844 (uintmax_t)inp->inp_gencnt); 2845 } 2846 2847 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 2848 { 2849 struct inpcb *inp; 2850 2851 if (!have_addr) { 2852 db_printf("usage: show inpcb <addr>\n"); 2853 return; 2854 } 2855 inp = (struct inpcb *)addr; 2856 2857 db_print_inpcb(inp, "inpcb", 0); 2858 } 2859 #endif /* DDB */ 2860 2861 #ifdef RATELIMIT 2862 /* 2863 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 2864 * if any. 2865 */ 2866 int 2867 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 2868 { 2869 union if_snd_tag_modify_params params = { 2870 .rate_limit.max_rate = max_pacing_rate, 2871 }; 2872 struct m_snd_tag *mst; 2873 struct ifnet *ifp; 2874 int error; 2875 2876 mst = inp->inp_snd_tag; 2877 if (mst == NULL) 2878 return (EINVAL); 2879 2880 ifp = mst->ifp; 2881 if (ifp == NULL) 2882 return (EINVAL); 2883 2884 if (ifp->if_snd_tag_modify == NULL) { 2885 error = EOPNOTSUPP; 2886 } else { 2887 error = ifp->if_snd_tag_modify(mst, ¶ms); 2888 } 2889 return (error); 2890 } 2891 2892 /* 2893 * Query existing TX rate limit based on the existing 2894 * "inp->inp_snd_tag", if any. 2895 */ 2896 int 2897 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 2898 { 2899 union if_snd_tag_query_params params = { }; 2900 struct m_snd_tag *mst; 2901 struct ifnet *ifp; 2902 int error; 2903 2904 mst = inp->inp_snd_tag; 2905 if (mst == NULL) 2906 return (EINVAL); 2907 2908 ifp = mst->ifp; 2909 if (ifp == NULL) 2910 return (EINVAL); 2911 2912 if (ifp->if_snd_tag_query == NULL) { 2913 error = EOPNOTSUPP; 2914 } else { 2915 error = ifp->if_snd_tag_query(mst, ¶ms); 2916 if (error == 0 && p_max_pacing_rate != NULL) 2917 *p_max_pacing_rate = params.rate_limit.max_rate; 2918 } 2919 return (error); 2920 } 2921 2922 /* 2923 * Query existing TX queue level based on the existing 2924 * "inp->inp_snd_tag", if any. 2925 */ 2926 int 2927 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 2928 { 2929 union if_snd_tag_query_params params = { }; 2930 struct m_snd_tag *mst; 2931 struct ifnet *ifp; 2932 int error; 2933 2934 mst = inp->inp_snd_tag; 2935 if (mst == NULL) 2936 return (EINVAL); 2937 2938 ifp = mst->ifp; 2939 if (ifp == NULL) 2940 return (EINVAL); 2941 2942 if (ifp->if_snd_tag_query == NULL) 2943 return (EOPNOTSUPP); 2944 2945 error = ifp->if_snd_tag_query(mst, ¶ms); 2946 if (error == 0 && p_txqueue_level != NULL) 2947 *p_txqueue_level = params.rate_limit.queue_level; 2948 return (error); 2949 } 2950 2951 /* 2952 * Allocate a new TX rate limit send tag from the network interface 2953 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 2954 */ 2955 int 2956 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 2957 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate) 2958 { 2959 union if_snd_tag_alloc_params params = { 2960 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 2961 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 2962 .rate_limit.hdr.flowid = flowid, 2963 .rate_limit.hdr.flowtype = flowtype, 2964 .rate_limit.max_rate = max_pacing_rate, 2965 }; 2966 int error; 2967 2968 INP_WLOCK_ASSERT(inp); 2969 2970 if (inp->inp_snd_tag != NULL) 2971 return (EINVAL); 2972 2973 if (ifp->if_snd_tag_alloc == NULL) { 2974 error = EOPNOTSUPP; 2975 } else { 2976 error = ifp->if_snd_tag_alloc(ifp, ¶ms, &inp->inp_snd_tag); 2977 2978 /* 2979 * At success increment the refcount on 2980 * the send tag's network interface: 2981 */ 2982 if (error == 0) 2983 if_ref(inp->inp_snd_tag->ifp); 2984 } 2985 return (error); 2986 } 2987 2988 /* 2989 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 2990 * if any: 2991 */ 2992 void 2993 in_pcbdetach_txrtlmt(struct inpcb *inp) 2994 { 2995 struct m_snd_tag *mst; 2996 struct ifnet *ifp; 2997 2998 INP_WLOCK_ASSERT(inp); 2999 3000 mst = inp->inp_snd_tag; 3001 inp->inp_snd_tag = NULL; 3002 3003 if (mst == NULL) 3004 return; 3005 3006 ifp = mst->ifp; 3007 if (ifp == NULL) 3008 return; 3009 3010 /* 3011 * If the device was detached while we still had reference(s) 3012 * on the ifp, we assume if_snd_tag_free() was replaced with 3013 * stubs. 3014 */ 3015 ifp->if_snd_tag_free(mst); 3016 3017 /* release reference count on network interface */ 3018 if_rele(ifp); 3019 } 3020 3021 /* 3022 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3023 * is set in the fast path and will attach/detach/modify the TX rate 3024 * limit send tag based on the socket's so_max_pacing_rate value. 3025 */ 3026 void 3027 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3028 { 3029 struct socket *socket; 3030 uint32_t max_pacing_rate; 3031 bool did_upgrade; 3032 int error; 3033 3034 if (inp == NULL) 3035 return; 3036 3037 socket = inp->inp_socket; 3038 if (socket == NULL) 3039 return; 3040 3041 if (!INP_WLOCKED(inp)) { 3042 /* 3043 * NOTE: If the write locking fails, we need to bail 3044 * out and use the non-ratelimited ring for the 3045 * transmit until there is a new chance to get the 3046 * write lock. 3047 */ 3048 if (!INP_TRY_UPGRADE(inp)) 3049 return; 3050 did_upgrade = 1; 3051 } else { 3052 did_upgrade = 0; 3053 } 3054 3055 /* 3056 * NOTE: The so_max_pacing_rate value is read unlocked, 3057 * because atomic updates are not required since the variable 3058 * is checked at every mbuf we send. It is assumed that the 3059 * variable read itself will be atomic. 3060 */ 3061 max_pacing_rate = socket->so_max_pacing_rate; 3062 3063 /* 3064 * NOTE: When attaching to a network interface a reference is 3065 * made to ensure the network interface doesn't go away until 3066 * all ratelimit connections are gone. The network interface 3067 * pointers compared below represent valid network interfaces, 3068 * except when comparing towards NULL. 3069 */ 3070 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3071 error = 0; 3072 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3073 if (inp->inp_snd_tag != NULL) 3074 in_pcbdetach_txrtlmt(inp); 3075 error = 0; 3076 } else if (inp->inp_snd_tag == NULL) { 3077 /* 3078 * In order to utilize packet pacing with RSS, we need 3079 * to wait until there is a valid RSS hash before we 3080 * can proceed: 3081 */ 3082 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3083 error = EAGAIN; 3084 } else { 3085 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3086 mb->m_pkthdr.flowid, max_pacing_rate); 3087 } 3088 } else { 3089 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3090 } 3091 if (error == 0 || error == EOPNOTSUPP) 3092 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3093 if (did_upgrade) 3094 INP_DOWNGRADE(inp); 3095 } 3096 3097 /* 3098 * Track route changes for TX rate limiting. 3099 */ 3100 void 3101 in_pcboutput_eagain(struct inpcb *inp) 3102 { 3103 struct socket *socket; 3104 bool did_upgrade; 3105 3106 if (inp == NULL) 3107 return; 3108 3109 socket = inp->inp_socket; 3110 if (socket == NULL) 3111 return; 3112 3113 if (inp->inp_snd_tag == NULL) 3114 return; 3115 3116 if (!INP_WLOCKED(inp)) { 3117 /* 3118 * NOTE: If the write locking fails, we need to bail 3119 * out and use the non-ratelimited ring for the 3120 * transmit until there is a new chance to get the 3121 * write lock. 3122 */ 3123 if (!INP_TRY_UPGRADE(inp)) 3124 return; 3125 did_upgrade = 1; 3126 } else { 3127 did_upgrade = 0; 3128 } 3129 3130 /* detach rate limiting */ 3131 in_pcbdetach_txrtlmt(inp); 3132 3133 /* make sure new mbuf send tag allocation is made */ 3134 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3135 3136 if (did_upgrade) 3137 INP_DOWNGRADE(inp); 3138 } 3139 #endif /* RATELIMIT */ 3140