1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993, 1995 3 * The Regents of the University of California. 4 * Copyright (c) 2007-2009 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 4. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_ddb.h" 38 #include "opt_ipsec.h" 39 #include "opt_inet6.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/domain.h> 46 #include <sys/protosw.h> 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/priv.h> 50 #include <sys/proc.h> 51 #include <sys/jail.h> 52 #include <sys/kernel.h> 53 #include <sys/sysctl.h> 54 55 #ifdef DDB 56 #include <ddb/ddb.h> 57 #endif 58 59 #include <vm/uma.h> 60 61 #include <net/if.h> 62 #include <net/if_types.h> 63 #include <net/route.h> 64 #include <net/vnet.h> 65 66 #include <netinet/in.h> 67 #include <netinet/in_pcb.h> 68 #include <netinet/in_var.h> 69 #include <netinet/ip_var.h> 70 #include <netinet/tcp_var.h> 71 #include <netinet/udp.h> 72 #include <netinet/udp_var.h> 73 #ifdef INET6 74 #include <netinet/ip6.h> 75 #include <netinet6/ip6_var.h> 76 #endif /* INET6 */ 77 78 79 #ifdef IPSEC 80 #include <netipsec/ipsec.h> 81 #include <netipsec/key.h> 82 #endif /* IPSEC */ 83 84 #include <security/mac/mac_framework.h> 85 86 /* 87 * These configure the range of local port addresses assigned to 88 * "unspecified" outgoing connections/packets/whatever. 89 */ 90 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 91 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 92 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 93 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 94 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 95 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 96 97 /* 98 * Reserved ports accessible only to root. There are significant 99 * security considerations that must be accounted for when changing these, 100 * but the security benefits can be great. Please be careful. 101 */ 102 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 103 VNET_DEFINE(int, ipport_reservedlow); 104 105 /* Variables dealing with random ephemeral port allocation. */ 106 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 107 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 108 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 109 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 110 VNET_DEFINE(int, ipport_tcpallocs); 111 static VNET_DEFINE(int, ipport_tcplastcount); 112 113 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 114 115 #define RANGECHK(var, min, max) \ 116 if ((var) < (min)) { (var) = (min); } \ 117 else if ((var) > (max)) { (var) = (max); } 118 119 static void in_pcbremlists(struct inpcb *inp); 120 121 static int 122 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 123 { 124 int error; 125 126 #ifdef VIMAGE 127 error = vnet_sysctl_handle_int(oidp, arg1, arg2, req); 128 #else 129 error = sysctl_handle_int(oidp, arg1, arg2, req); 130 #endif 131 if (error == 0) { 132 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 133 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 134 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 135 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 136 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 137 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 138 } 139 return (error); 140 } 141 142 #undef RANGECHK 143 144 SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports"); 145 146 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 147 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowfirstauto), 0, 148 &sysctl_net_ipport_check, "I", ""); 149 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 150 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowlastauto), 0, 151 &sysctl_net_ipport_check, "I", ""); 152 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, first, 153 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_firstauto), 0, 154 &sysctl_net_ipport_check, "I", ""); 155 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, last, 156 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lastauto), 0, 157 &sysctl_net_ipport_check, "I", ""); 158 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 159 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hifirstauto), 0, 160 &sysctl_net_ipport_check, "I", ""); 161 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 162 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hilastauto), 0, 163 &sysctl_net_ipport_check, "I", ""); 164 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 165 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedhigh), 0, ""); 166 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 167 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 168 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW, 169 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 170 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW, 171 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 172 "allocations before switching to a sequental one"); 173 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW, 174 &VNET_NAME(ipport_randomtime), 0, 175 "Minimum time to keep sequental port " 176 "allocation before switching to a random one"); 177 178 /* 179 * in_pcb.c: manage the Protocol Control Blocks. 180 * 181 * NOTE: It is assumed that most of these functions will be called with 182 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 183 * functions often modify hash chains or addresses in pcbs. 184 */ 185 186 /* 187 * Initialize an inpcbinfo -- we should be able to reduce the number of 188 * arguments in time. 189 */ 190 void 191 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 192 struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, 193 char *inpcbzone_name, uma_init inpcbzone_init, uma_fini inpcbzone_fini, 194 uint32_t inpcbzone_flags) 195 { 196 197 INP_INFO_LOCK_INIT(pcbinfo, name); 198 #ifdef VIMAGE 199 pcbinfo->ipi_vnet = curvnet; 200 #endif 201 pcbinfo->ipi_listhead = listhead; 202 LIST_INIT(pcbinfo->ipi_listhead); 203 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 204 &pcbinfo->ipi_hashmask); 205 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 206 &pcbinfo->ipi_porthashmask); 207 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 208 NULL, NULL, inpcbzone_init, inpcbzone_fini, UMA_ALIGN_PTR, 209 inpcbzone_flags); 210 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 211 } 212 213 /* 214 * Destroy an inpcbinfo. 215 */ 216 void 217 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 218 { 219 220 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 221 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 222 pcbinfo->ipi_porthashmask); 223 uma_zdestroy(pcbinfo->ipi_zone); 224 INP_INFO_LOCK_DESTROY(pcbinfo); 225 } 226 227 /* 228 * Allocate a PCB and associate it with the socket. 229 * On success return with the PCB locked. 230 */ 231 int 232 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 233 { 234 struct inpcb *inp; 235 int error; 236 237 INP_INFO_WLOCK_ASSERT(pcbinfo); 238 error = 0; 239 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 240 if (inp == NULL) 241 return (ENOBUFS); 242 bzero(inp, inp_zero_size); 243 inp->inp_pcbinfo = pcbinfo; 244 inp->inp_socket = so; 245 inp->inp_cred = crhold(so->so_cred); 246 inp->inp_inc.inc_fibnum = so->so_fibnum; 247 #ifdef MAC 248 error = mac_inpcb_init(inp, M_NOWAIT); 249 if (error != 0) 250 goto out; 251 mac_inpcb_create(so, inp); 252 #endif 253 #ifdef IPSEC 254 error = ipsec_init_policy(so, &inp->inp_sp); 255 if (error != 0) { 256 #ifdef MAC 257 mac_inpcb_destroy(inp); 258 #endif 259 goto out; 260 } 261 #endif /*IPSEC*/ 262 #ifdef INET6 263 if (INP_SOCKAF(so) == AF_INET6) { 264 inp->inp_vflag |= INP_IPV6PROTO; 265 if (V_ip6_v6only) 266 inp->inp_flags |= IN6P_IPV6_V6ONLY; 267 } 268 #endif 269 LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 270 pcbinfo->ipi_count++; 271 so->so_pcb = (caddr_t)inp; 272 #ifdef INET6 273 if (V_ip6_auto_flowlabel) 274 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 275 #endif 276 INP_WLOCK(inp); 277 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 278 inp->inp_refcount = 1; /* Reference from the inpcbinfo */ 279 #if defined(IPSEC) || defined(MAC) 280 out: 281 if (error != 0) { 282 crfree(inp->inp_cred); 283 uma_zfree(pcbinfo->ipi_zone, inp); 284 } 285 #endif 286 return (error); 287 } 288 289 int 290 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 291 { 292 int anonport, error; 293 294 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 295 INP_WLOCK_ASSERT(inp); 296 297 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 298 return (EINVAL); 299 anonport = inp->inp_lport == 0 && (nam == NULL || 300 ((struct sockaddr_in *)nam)->sin_port == 0); 301 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 302 &inp->inp_lport, cred); 303 if (error) 304 return (error); 305 if (in_pcbinshash(inp) != 0) { 306 inp->inp_laddr.s_addr = INADDR_ANY; 307 inp->inp_lport = 0; 308 return (EAGAIN); 309 } 310 if (anonport) 311 inp->inp_flags |= INP_ANONPORT; 312 return (0); 313 } 314 315 /* 316 * Set up a bind operation on a PCB, performing port allocation 317 * as required, but do not actually modify the PCB. Callers can 318 * either complete the bind by setting inp_laddr/inp_lport and 319 * calling in_pcbinshash(), or they can just use the resulting 320 * port and address to authorise the sending of a once-off packet. 321 * 322 * On error, the values of *laddrp and *lportp are not changed. 323 */ 324 int 325 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 326 u_short *lportp, struct ucred *cred) 327 { 328 struct socket *so = inp->inp_socket; 329 unsigned short *lastport; 330 struct sockaddr_in *sin; 331 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 332 struct in_addr laddr; 333 u_short lport = 0; 334 int wild = 0, reuseport = (so->so_options & SO_REUSEPORT); 335 int error; 336 int dorandom; 337 338 /* 339 * Because no actual state changes occur here, a global write lock on 340 * the pcbinfo isn't required. 341 */ 342 INP_INFO_LOCK_ASSERT(pcbinfo); 343 INP_LOCK_ASSERT(inp); 344 345 if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 346 return (EADDRNOTAVAIL); 347 laddr.s_addr = *laddrp; 348 if (nam != NULL && laddr.s_addr != INADDR_ANY) 349 return (EINVAL); 350 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) 351 wild = INPLOOKUP_WILDCARD; 352 if (nam == NULL) { 353 if ((error = prison_local_ip4(cred, &laddr)) != 0) 354 return (error); 355 } else { 356 sin = (struct sockaddr_in *)nam; 357 if (nam->sa_len != sizeof (*sin)) 358 return (EINVAL); 359 #ifdef notdef 360 /* 361 * We should check the family, but old programs 362 * incorrectly fail to initialize it. 363 */ 364 if (sin->sin_family != AF_INET) 365 return (EAFNOSUPPORT); 366 #endif 367 error = prison_local_ip4(cred, &sin->sin_addr); 368 if (error) 369 return (error); 370 if (sin->sin_port != *lportp) { 371 /* Don't allow the port to change. */ 372 if (*lportp != 0) 373 return (EINVAL); 374 lport = sin->sin_port; 375 } 376 /* NB: lport is left as 0 if the port isn't being changed. */ 377 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 378 /* 379 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 380 * allow complete duplication of binding if 381 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 382 * and a multicast address is bound on both 383 * new and duplicated sockets. 384 */ 385 if (so->so_options & SO_REUSEADDR) 386 reuseport = SO_REUSEADDR|SO_REUSEPORT; 387 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 388 sin->sin_port = 0; /* yech... */ 389 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 390 /* 391 * Is the address a local IP address? 392 * If INP_BINDANY is set, then the socket may be bound 393 * to any endpoint address, local or not. 394 */ 395 if ((inp->inp_flags & INP_BINDANY) == 0 && 396 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 397 return (EADDRNOTAVAIL); 398 } 399 laddr = sin->sin_addr; 400 if (lport) { 401 struct inpcb *t; 402 struct tcptw *tw; 403 404 /* GROSS */ 405 if (ntohs(lport) <= V_ipport_reservedhigh && 406 ntohs(lport) >= V_ipport_reservedlow && 407 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 408 0)) 409 return (EACCES); 410 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 411 priv_check_cred(inp->inp_cred, 412 PRIV_NETINET_REUSEPORT, 0) != 0) { 413 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 414 lport, INPLOOKUP_WILDCARD, cred); 415 /* 416 * XXX 417 * This entire block sorely needs a rewrite. 418 */ 419 if (t && 420 ((t->inp_flags & INP_TIMEWAIT) == 0) && 421 (so->so_type != SOCK_STREAM || 422 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 423 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 424 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 425 (t->inp_socket->so_options & 426 SO_REUSEPORT) == 0) && 427 (inp->inp_cred->cr_uid != 428 t->inp_cred->cr_uid)) 429 return (EADDRINUSE); 430 } 431 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 432 lport, wild, cred); 433 if (t && (t->inp_flags & INP_TIMEWAIT)) { 434 /* 435 * XXXRW: If an incpb has had its timewait 436 * state recycled, we treat the address as 437 * being in use (for now). This is better 438 * than a panic, but not desirable. 439 */ 440 tw = intotw(inp); 441 if (tw == NULL || 442 (reuseport & tw->tw_so_options) == 0) 443 return (EADDRINUSE); 444 } else if (t && 445 (reuseport & t->inp_socket->so_options) == 0) { 446 #ifdef INET6 447 if (ntohl(sin->sin_addr.s_addr) != 448 INADDR_ANY || 449 ntohl(t->inp_laddr.s_addr) != 450 INADDR_ANY || 451 INP_SOCKAF(so) == 452 INP_SOCKAF(t->inp_socket)) 453 #endif 454 return (EADDRINUSE); 455 } 456 } 457 } 458 if (*lportp != 0) 459 lport = *lportp; 460 if (lport == 0) { 461 u_short first, last, aux; 462 int count; 463 464 if (inp->inp_flags & INP_HIGHPORT) { 465 first = V_ipport_hifirstauto; /* sysctl */ 466 last = V_ipport_hilastauto; 467 lastport = &pcbinfo->ipi_lasthi; 468 } else if (inp->inp_flags & INP_LOWPORT) { 469 error = priv_check_cred(cred, 470 PRIV_NETINET_RESERVEDPORT, 0); 471 if (error) 472 return error; 473 first = V_ipport_lowfirstauto; /* 1023 */ 474 last = V_ipport_lowlastauto; /* 600 */ 475 lastport = &pcbinfo->ipi_lastlow; 476 } else { 477 first = V_ipport_firstauto; /* sysctl */ 478 last = V_ipport_lastauto; 479 lastport = &pcbinfo->ipi_lastport; 480 } 481 /* 482 * For UDP, use random port allocation as long as the user 483 * allows it. For TCP (and as of yet unknown) connections, 484 * use random port allocation only if the user allows it AND 485 * ipport_tick() allows it. 486 */ 487 if (V_ipport_randomized && 488 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo)) 489 dorandom = 1; 490 else 491 dorandom = 0; 492 /* 493 * It makes no sense to do random port allocation if 494 * we have the only port available. 495 */ 496 if (first == last) 497 dorandom = 0; 498 /* Make sure to not include UDP packets in the count. */ 499 if (pcbinfo != &V_udbinfo) 500 V_ipport_tcpallocs++; 501 /* 502 * Instead of having two loops further down counting up or down 503 * make sure that first is always <= last and go with only one 504 * code path implementing all logic. 505 */ 506 if (first > last) { 507 aux = first; 508 first = last; 509 last = aux; 510 } 511 512 if (dorandom) 513 *lastport = first + 514 (arc4random() % (last - first)); 515 516 count = last - first; 517 518 do { 519 if (count-- < 0) /* completely used? */ 520 return (EADDRNOTAVAIL); 521 ++*lastport; 522 if (*lastport < first || *lastport > last) 523 *lastport = first; 524 lport = htons(*lastport); 525 } while (in_pcblookup_local(pcbinfo, laddr, 526 lport, wild, cred)); 527 } 528 *laddrp = laddr.s_addr; 529 *lportp = lport; 530 return (0); 531 } 532 533 /* 534 * Connect from a socket to a specified address. 535 * Both address and port must be specified in argument sin. 536 * If don't have a local address for this socket yet, 537 * then pick one. 538 */ 539 int 540 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 541 { 542 u_short lport, fport; 543 in_addr_t laddr, faddr; 544 int anonport, error; 545 546 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 547 INP_WLOCK_ASSERT(inp); 548 549 lport = inp->inp_lport; 550 laddr = inp->inp_laddr.s_addr; 551 anonport = (lport == 0); 552 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 553 NULL, cred); 554 if (error) 555 return (error); 556 557 /* Do the initial binding of the local address if required. */ 558 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 559 inp->inp_lport = lport; 560 inp->inp_laddr.s_addr = laddr; 561 if (in_pcbinshash(inp) != 0) { 562 inp->inp_laddr.s_addr = INADDR_ANY; 563 inp->inp_lport = 0; 564 return (EAGAIN); 565 } 566 } 567 568 /* Commit the remaining changes. */ 569 inp->inp_lport = lport; 570 inp->inp_laddr.s_addr = laddr; 571 inp->inp_faddr.s_addr = faddr; 572 inp->inp_fport = fport; 573 in_pcbrehash(inp); 574 575 if (anonport) 576 inp->inp_flags |= INP_ANONPORT; 577 return (0); 578 } 579 580 /* 581 * Do proper source address selection on an unbound socket in case 582 * of connect. Take jails into account as well. 583 */ 584 static int 585 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 586 struct ucred *cred) 587 { 588 struct ifaddr *ifa; 589 struct sockaddr *sa; 590 struct sockaddr_in *sin; 591 struct route sro; 592 int error; 593 594 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 595 596 /* 597 * Bypass source address selection and use the primary jail IP 598 * if requested. 599 */ 600 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 601 return (0); 602 603 error = 0; 604 bzero(&sro, sizeof(sro)); 605 606 sin = (struct sockaddr_in *)&sro.ro_dst; 607 sin->sin_family = AF_INET; 608 sin->sin_len = sizeof(struct sockaddr_in); 609 sin->sin_addr.s_addr = faddr->s_addr; 610 611 /* 612 * If route is known our src addr is taken from the i/f, 613 * else punt. 614 * 615 * Find out route to destination. 616 */ 617 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 618 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); 619 620 /* 621 * If we found a route, use the address corresponding to 622 * the outgoing interface. 623 * 624 * Otherwise assume faddr is reachable on a directly connected 625 * network and try to find a corresponding interface to take 626 * the source address from. 627 */ 628 if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { 629 struct in_ifaddr *ia; 630 struct ifnet *ifp; 631 632 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin)); 633 if (ia == NULL) 634 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0)); 635 if (ia == NULL) { 636 error = ENETUNREACH; 637 goto done; 638 } 639 640 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 641 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 642 ifa_free(&ia->ia_ifa); 643 goto done; 644 } 645 646 ifp = ia->ia_ifp; 647 ifa_free(&ia->ia_ifa); 648 ia = NULL; 649 IF_ADDR_LOCK(ifp); 650 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 651 652 sa = ifa->ifa_addr; 653 if (sa->sa_family != AF_INET) 654 continue; 655 sin = (struct sockaddr_in *)sa; 656 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 657 ia = (struct in_ifaddr *)ifa; 658 break; 659 } 660 } 661 if (ia != NULL) { 662 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 663 IF_ADDR_UNLOCK(ifp); 664 goto done; 665 } 666 IF_ADDR_UNLOCK(ifp); 667 668 /* 3. As a last resort return the 'default' jail address. */ 669 error = prison_get_ip4(cred, laddr); 670 goto done; 671 } 672 673 /* 674 * If the outgoing interface on the route found is not 675 * a loopback interface, use the address from that interface. 676 * In case of jails do those three steps: 677 * 1. check if the interface address belongs to the jail. If so use it. 678 * 2. check if we have any address on the outgoing interface 679 * belonging to this jail. If so use it. 680 * 3. as a last resort return the 'default' jail address. 681 */ 682 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { 683 struct in_ifaddr *ia; 684 struct ifnet *ifp; 685 686 /* If not jailed, use the default returned. */ 687 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 688 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 689 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 690 goto done; 691 } 692 693 /* Jailed. */ 694 /* 1. Check if the iface address belongs to the jail. */ 695 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; 696 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 697 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 698 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 699 goto done; 700 } 701 702 /* 703 * 2. Check if we have any address on the outgoing interface 704 * belonging to this jail. 705 */ 706 ia = NULL; 707 ifp = sro.ro_rt->rt_ifp; 708 IF_ADDR_LOCK(ifp); 709 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 710 sa = ifa->ifa_addr; 711 if (sa->sa_family != AF_INET) 712 continue; 713 sin = (struct sockaddr_in *)sa; 714 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 715 ia = (struct in_ifaddr *)ifa; 716 break; 717 } 718 } 719 if (ia != NULL) { 720 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 721 IF_ADDR_UNLOCK(ifp); 722 goto done; 723 } 724 IF_ADDR_UNLOCK(ifp); 725 726 /* 3. As a last resort return the 'default' jail address. */ 727 error = prison_get_ip4(cred, laddr); 728 goto done; 729 } 730 731 /* 732 * The outgoing interface is marked with 'loopback net', so a route 733 * to ourselves is here. 734 * Try to find the interface of the destination address and then 735 * take the address from there. That interface is not necessarily 736 * a loopback interface. 737 * In case of jails, check that it is an address of the jail 738 * and if we cannot find, fall back to the 'default' jail address. 739 */ 740 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 741 struct sockaddr_in sain; 742 struct in_ifaddr *ia; 743 744 bzero(&sain, sizeof(struct sockaddr_in)); 745 sain.sin_family = AF_INET; 746 sain.sin_len = sizeof(struct sockaddr_in); 747 sain.sin_addr.s_addr = faddr->s_addr; 748 749 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain))); 750 if (ia == NULL) 751 ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0)); 752 if (ia == NULL) 753 ia = ifatoia(ifa_ifwithaddr(sintosa(&sain))); 754 755 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 756 if (ia == NULL) { 757 error = ENETUNREACH; 758 goto done; 759 } 760 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 761 ifa_free(&ia->ia_ifa); 762 goto done; 763 } 764 765 /* Jailed. */ 766 if (ia != NULL) { 767 struct ifnet *ifp; 768 769 ifp = ia->ia_ifp; 770 ifa_free(&ia->ia_ifa); 771 ia = NULL; 772 IF_ADDR_LOCK(ifp); 773 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 774 775 sa = ifa->ifa_addr; 776 if (sa->sa_family != AF_INET) 777 continue; 778 sin = (struct sockaddr_in *)sa; 779 if (prison_check_ip4(cred, 780 &sin->sin_addr) == 0) { 781 ia = (struct in_ifaddr *)ifa; 782 break; 783 } 784 } 785 if (ia != NULL) { 786 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 787 IF_ADDR_UNLOCK(ifp); 788 goto done; 789 } 790 IF_ADDR_UNLOCK(ifp); 791 } 792 793 /* 3. As a last resort return the 'default' jail address. */ 794 error = prison_get_ip4(cred, laddr); 795 goto done; 796 } 797 798 done: 799 if (sro.ro_rt != NULL) 800 RTFREE(sro.ro_rt); 801 return (error); 802 } 803 804 /* 805 * Set up for a connect from a socket to the specified address. 806 * On entry, *laddrp and *lportp should contain the current local 807 * address and port for the PCB; these are updated to the values 808 * that should be placed in inp_laddr and inp_lport to complete 809 * the connect. 810 * 811 * On success, *faddrp and *fportp will be set to the remote address 812 * and port. These are not updated in the error case. 813 * 814 * If the operation fails because the connection already exists, 815 * *oinpp will be set to the PCB of that connection so that the 816 * caller can decide to override it. In all other cases, *oinpp 817 * is set to NULL. 818 */ 819 int 820 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 821 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 822 struct inpcb **oinpp, struct ucred *cred) 823 { 824 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 825 struct in_ifaddr *ia; 826 struct inpcb *oinp; 827 struct in_addr laddr, faddr; 828 u_short lport, fport; 829 int error; 830 831 /* 832 * Because a global state change doesn't actually occur here, a read 833 * lock is sufficient. 834 */ 835 INP_INFO_LOCK_ASSERT(inp->inp_pcbinfo); 836 INP_LOCK_ASSERT(inp); 837 838 if (oinpp != NULL) 839 *oinpp = NULL; 840 if (nam->sa_len != sizeof (*sin)) 841 return (EINVAL); 842 if (sin->sin_family != AF_INET) 843 return (EAFNOSUPPORT); 844 if (sin->sin_port == 0) 845 return (EADDRNOTAVAIL); 846 laddr.s_addr = *laddrp; 847 lport = *lportp; 848 faddr = sin->sin_addr; 849 fport = sin->sin_port; 850 851 if (!TAILQ_EMPTY(&V_in_ifaddrhead)) { 852 /* 853 * If the destination address is INADDR_ANY, 854 * use the primary local address. 855 * If the supplied address is INADDR_BROADCAST, 856 * and the primary interface supports broadcast, 857 * choose the broadcast address for that interface. 858 */ 859 if (faddr.s_addr == INADDR_ANY) { 860 IN_IFADDR_RLOCK(); 861 faddr = 862 IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 863 IN_IFADDR_RUNLOCK(); 864 if (cred != NULL && 865 (error = prison_get_ip4(cred, &faddr)) != 0) 866 return (error); 867 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 868 IN_IFADDR_RLOCK(); 869 if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 870 IFF_BROADCAST) 871 faddr = satosin(&TAILQ_FIRST( 872 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 873 IN_IFADDR_RUNLOCK(); 874 } 875 } 876 if (laddr.s_addr == INADDR_ANY) { 877 /* 878 * If the destination address is multicast and an outgoing 879 * interface has been set as a multicast option, use the 880 * address of that interface as our source address. 881 */ 882 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 883 inp->inp_moptions != NULL) { 884 struct ip_moptions *imo; 885 struct ifnet *ifp; 886 887 imo = inp->inp_moptions; 888 if (imo->imo_multicast_ifp != NULL) { 889 ifp = imo->imo_multicast_ifp; 890 IN_IFADDR_RLOCK(); 891 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) 892 if (ia->ia_ifp == ifp) 893 break; 894 if (ia == NULL) { 895 IN_IFADDR_RUNLOCK(); 896 return (EADDRNOTAVAIL); 897 } 898 laddr = ia->ia_addr.sin_addr; 899 IN_IFADDR_RUNLOCK(); 900 } 901 } else { 902 error = in_pcbladdr(inp, &faddr, &laddr, cred); 903 if (error) 904 return (error); 905 } 906 } 907 oinp = in_pcblookup_hash(inp->inp_pcbinfo, faddr, fport, laddr, lport, 908 0, NULL); 909 if (oinp != NULL) { 910 if (oinpp != NULL) 911 *oinpp = oinp; 912 return (EADDRINUSE); 913 } 914 if (lport == 0) { 915 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 916 cred); 917 if (error) 918 return (error); 919 } 920 *laddrp = laddr.s_addr; 921 *lportp = lport; 922 *faddrp = faddr.s_addr; 923 *fportp = fport; 924 return (0); 925 } 926 927 void 928 in_pcbdisconnect(struct inpcb *inp) 929 { 930 931 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 932 INP_WLOCK_ASSERT(inp); 933 934 inp->inp_faddr.s_addr = INADDR_ANY; 935 inp->inp_fport = 0; 936 in_pcbrehash(inp); 937 } 938 939 /* 940 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 941 * For most protocols, this will be invoked immediately prior to calling 942 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 943 * socket, in which case in_pcbfree() is deferred. 944 */ 945 void 946 in_pcbdetach(struct inpcb *inp) 947 { 948 949 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 950 951 inp->inp_socket->so_pcb = NULL; 952 inp->inp_socket = NULL; 953 } 954 955 /* 956 * in_pcbfree_internal() frees an inpcb that has been detached from its 957 * socket, and whose reference count has reached 0. It will also remove the 958 * inpcb from any global lists it might remain on. 959 */ 960 static void 961 in_pcbfree_internal(struct inpcb *inp) 962 { 963 struct inpcbinfo *ipi = inp->inp_pcbinfo; 964 965 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 966 KASSERT(inp->inp_refcount == 0, ("%s: refcount !0", __func__)); 967 968 INP_INFO_WLOCK_ASSERT(ipi); 969 INP_WLOCK_ASSERT(inp); 970 971 #ifdef IPSEC 972 if (inp->inp_sp != NULL) 973 ipsec_delete_pcbpolicy(inp); 974 #endif /* IPSEC */ 975 inp->inp_gencnt = ++ipi->ipi_gencnt; 976 in_pcbremlists(inp); 977 #ifdef INET6 978 if (inp->inp_vflag & INP_IPV6PROTO) { 979 ip6_freepcbopts(inp->in6p_outputopts); 980 if (inp->in6p_moptions != NULL) 981 ip6_freemoptions(inp->in6p_moptions); 982 } 983 #endif 984 if (inp->inp_options) 985 (void)m_free(inp->inp_options); 986 if (inp->inp_moptions != NULL) 987 inp_freemoptions(inp->inp_moptions); 988 inp->inp_vflag = 0; 989 crfree(inp->inp_cred); 990 991 #ifdef MAC 992 mac_inpcb_destroy(inp); 993 #endif 994 INP_WUNLOCK(inp); 995 uma_zfree(ipi->ipi_zone, inp); 996 } 997 998 /* 999 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1000 * stability of an inpcb pointer despite the inpcb lock being released. This 1001 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 1002 * but where the inpcb lock is already held. 1003 * 1004 * While the inpcb will not be freed, releasing the inpcb lock means that the 1005 * connection's state may change, so the caller should be careful to 1006 * revalidate any cached state on reacquiring the lock. Drop the reference 1007 * using in_pcbrele(). 1008 */ 1009 void 1010 in_pcbref(struct inpcb *inp) 1011 { 1012 1013 INP_WLOCK_ASSERT(inp); 1014 1015 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1016 1017 inp->inp_refcount++; 1018 } 1019 1020 /* 1021 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 1022 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 1023 * return a flag indicating whether or not the inpcb remains valid. If it is 1024 * valid, we return with the inpcb lock held. 1025 */ 1026 int 1027 in_pcbrele(struct inpcb *inp) 1028 { 1029 #ifdef INVARIANTS 1030 struct inpcbinfo *ipi = inp->inp_pcbinfo; 1031 #endif 1032 1033 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1034 1035 INP_INFO_WLOCK_ASSERT(ipi); 1036 INP_WLOCK_ASSERT(inp); 1037 1038 inp->inp_refcount--; 1039 if (inp->inp_refcount > 0) 1040 return (0); 1041 in_pcbfree_internal(inp); 1042 return (1); 1043 } 1044 1045 /* 1046 * Unconditionally schedule an inpcb to be freed by decrementing its 1047 * reference count, which should occur only after the inpcb has been detached 1048 * from its socket. If another thread holds a temporary reference (acquired 1049 * using in_pcbref()) then the free is deferred until that reference is 1050 * released using in_pcbrele(), but the inpcb is still unlocked. 1051 */ 1052 void 1053 in_pcbfree(struct inpcb *inp) 1054 { 1055 #ifdef INVARIANTS 1056 struct inpcbinfo *ipi = inp->inp_pcbinfo; 1057 #endif 1058 1059 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", 1060 __func__)); 1061 1062 INP_INFO_WLOCK_ASSERT(ipi); 1063 INP_WLOCK_ASSERT(inp); 1064 1065 if (!in_pcbrele(inp)) 1066 INP_WUNLOCK(inp); 1067 } 1068 1069 /* 1070 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1071 * port reservation, and preventing it from being returned by inpcb lookups. 1072 * 1073 * It is used by TCP to mark an inpcb as unused and avoid future packet 1074 * delivery or event notification when a socket remains open but TCP has 1075 * closed. This might occur as a result of a shutdown()-initiated TCP close 1076 * or a RST on the wire, and allows the port binding to be reused while still 1077 * maintaining the invariant that so_pcb always points to a valid inpcb until 1078 * in_pcbdetach(). 1079 * 1080 * XXXRW: An inp_lport of 0 is used to indicate that the inpcb is not on hash 1081 * lists, but can lead to confusing netstat output, as open sockets with 1082 * closed TCP connections will no longer appear to have their bound port 1083 * number. An explicit flag would be better, as it would allow us to leave 1084 * the port number intact after the connection is dropped. 1085 * 1086 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1087 * in_pcbnotifyall() and in_pcbpurgeif0()? 1088 */ 1089 void 1090 in_pcbdrop(struct inpcb *inp) 1091 { 1092 1093 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 1094 INP_WLOCK_ASSERT(inp); 1095 1096 inp->inp_flags |= INP_DROPPED; 1097 if (inp->inp_flags & INP_INHASHLIST) { 1098 struct inpcbport *phd = inp->inp_phd; 1099 1100 LIST_REMOVE(inp, inp_hash); 1101 LIST_REMOVE(inp, inp_portlist); 1102 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 1103 LIST_REMOVE(phd, phd_hash); 1104 free(phd, M_PCB); 1105 } 1106 inp->inp_flags &= ~INP_INHASHLIST; 1107 } 1108 } 1109 1110 /* 1111 * Common routines to return the socket addresses associated with inpcbs. 1112 */ 1113 struct sockaddr * 1114 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1115 { 1116 struct sockaddr_in *sin; 1117 1118 sin = malloc(sizeof *sin, M_SONAME, 1119 M_WAITOK | M_ZERO); 1120 sin->sin_family = AF_INET; 1121 sin->sin_len = sizeof(*sin); 1122 sin->sin_addr = *addr_p; 1123 sin->sin_port = port; 1124 1125 return (struct sockaddr *)sin; 1126 } 1127 1128 int 1129 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1130 { 1131 struct inpcb *inp; 1132 struct in_addr addr; 1133 in_port_t port; 1134 1135 inp = sotoinpcb(so); 1136 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1137 1138 INP_RLOCK(inp); 1139 port = inp->inp_lport; 1140 addr = inp->inp_laddr; 1141 INP_RUNLOCK(inp); 1142 1143 *nam = in_sockaddr(port, &addr); 1144 return 0; 1145 } 1146 1147 int 1148 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1149 { 1150 struct inpcb *inp; 1151 struct in_addr addr; 1152 in_port_t port; 1153 1154 inp = sotoinpcb(so); 1155 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1156 1157 INP_RLOCK(inp); 1158 port = inp->inp_fport; 1159 addr = inp->inp_faddr; 1160 INP_RUNLOCK(inp); 1161 1162 *nam = in_sockaddr(port, &addr); 1163 return 0; 1164 } 1165 1166 void 1167 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1168 struct inpcb *(*notify)(struct inpcb *, int)) 1169 { 1170 struct inpcb *inp, *inp_temp; 1171 1172 INP_INFO_WLOCK(pcbinfo); 1173 LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1174 INP_WLOCK(inp); 1175 #ifdef INET6 1176 if ((inp->inp_vflag & INP_IPV4) == 0) { 1177 INP_WUNLOCK(inp); 1178 continue; 1179 } 1180 #endif 1181 if (inp->inp_faddr.s_addr != faddr.s_addr || 1182 inp->inp_socket == NULL) { 1183 INP_WUNLOCK(inp); 1184 continue; 1185 } 1186 if ((*notify)(inp, errno)) 1187 INP_WUNLOCK(inp); 1188 } 1189 INP_INFO_WUNLOCK(pcbinfo); 1190 } 1191 1192 void 1193 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1194 { 1195 struct inpcb *inp; 1196 struct ip_moptions *imo; 1197 int i, gap; 1198 1199 INP_INFO_RLOCK(pcbinfo); 1200 LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1201 INP_WLOCK(inp); 1202 imo = inp->inp_moptions; 1203 if ((inp->inp_vflag & INP_IPV4) && 1204 imo != NULL) { 1205 /* 1206 * Unselect the outgoing interface if it is being 1207 * detached. 1208 */ 1209 if (imo->imo_multicast_ifp == ifp) 1210 imo->imo_multicast_ifp = NULL; 1211 1212 /* 1213 * Drop multicast group membership if we joined 1214 * through the interface being detached. 1215 */ 1216 for (i = 0, gap = 0; i < imo->imo_num_memberships; 1217 i++) { 1218 if (imo->imo_membership[i]->inm_ifp == ifp) { 1219 in_delmulti(imo->imo_membership[i]); 1220 gap++; 1221 } else if (gap != 0) 1222 imo->imo_membership[i - gap] = 1223 imo->imo_membership[i]; 1224 } 1225 imo->imo_num_memberships -= gap; 1226 } 1227 INP_WUNLOCK(inp); 1228 } 1229 INP_INFO_RUNLOCK(pcbinfo); 1230 } 1231 1232 /* 1233 * Lookup a PCB based on the local address and port. 1234 */ 1235 #define INP_LOOKUP_MAPPED_PCB_COST 3 1236 struct inpcb * 1237 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1238 u_short lport, int wild_okay, struct ucred *cred) 1239 { 1240 struct inpcb *inp; 1241 #ifdef INET6 1242 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1243 #else 1244 int matchwild = 3; 1245 #endif 1246 int wildcard; 1247 1248 INP_INFO_LOCK_ASSERT(pcbinfo); 1249 1250 if (!wild_okay) { 1251 struct inpcbhead *head; 1252 /* 1253 * Look for an unconnected (wildcard foreign addr) PCB that 1254 * matches the local address and port we're looking for. 1255 */ 1256 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1257 0, pcbinfo->ipi_hashmask)]; 1258 LIST_FOREACH(inp, head, inp_hash) { 1259 #ifdef INET6 1260 /* XXX inp locking */ 1261 if ((inp->inp_vflag & INP_IPV4) == 0) 1262 continue; 1263 #endif 1264 if (inp->inp_faddr.s_addr == INADDR_ANY && 1265 inp->inp_laddr.s_addr == laddr.s_addr && 1266 inp->inp_lport == lport) { 1267 /* 1268 * Found? 1269 */ 1270 if (cred == NULL || 1271 prison_equal_ip4(cred->cr_prison, 1272 inp->inp_cred->cr_prison)) 1273 return (inp); 1274 } 1275 } 1276 /* 1277 * Not found. 1278 */ 1279 return (NULL); 1280 } else { 1281 struct inpcbporthead *porthash; 1282 struct inpcbport *phd; 1283 struct inpcb *match = NULL; 1284 /* 1285 * Best fit PCB lookup. 1286 * 1287 * First see if this local port is in use by looking on the 1288 * port hash list. 1289 */ 1290 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1291 pcbinfo->ipi_porthashmask)]; 1292 LIST_FOREACH(phd, porthash, phd_hash) { 1293 if (phd->phd_port == lport) 1294 break; 1295 } 1296 if (phd != NULL) { 1297 /* 1298 * Port is in use by one or more PCBs. Look for best 1299 * fit. 1300 */ 1301 LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1302 wildcard = 0; 1303 if (cred != NULL && 1304 !prison_equal_ip4(inp->inp_cred->cr_prison, 1305 cred->cr_prison)) 1306 continue; 1307 #ifdef INET6 1308 /* XXX inp locking */ 1309 if ((inp->inp_vflag & INP_IPV4) == 0) 1310 continue; 1311 /* 1312 * We never select the PCB that has 1313 * INP_IPV6 flag and is bound to :: if 1314 * we have another PCB which is bound 1315 * to 0.0.0.0. If a PCB has the 1316 * INP_IPV6 flag, then we set its cost 1317 * higher than IPv4 only PCBs. 1318 * 1319 * Note that the case only happens 1320 * when a socket is bound to ::, under 1321 * the condition that the use of the 1322 * mapped address is allowed. 1323 */ 1324 if ((inp->inp_vflag & INP_IPV6) != 0) 1325 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1326 #endif 1327 if (inp->inp_faddr.s_addr != INADDR_ANY) 1328 wildcard++; 1329 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1330 if (laddr.s_addr == INADDR_ANY) 1331 wildcard++; 1332 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1333 continue; 1334 } else { 1335 if (laddr.s_addr != INADDR_ANY) 1336 wildcard++; 1337 } 1338 if (wildcard < matchwild) { 1339 match = inp; 1340 matchwild = wildcard; 1341 if (matchwild == 0) 1342 break; 1343 } 1344 } 1345 } 1346 return (match); 1347 } 1348 } 1349 #undef INP_LOOKUP_MAPPED_PCB_COST 1350 1351 /* 1352 * Lookup PCB in hash list. 1353 */ 1354 struct inpcb * 1355 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1356 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard, 1357 struct ifnet *ifp) 1358 { 1359 struct inpcbhead *head; 1360 struct inpcb *inp, *tmpinp; 1361 u_short fport = fport_arg, lport = lport_arg; 1362 1363 INP_INFO_LOCK_ASSERT(pcbinfo); 1364 1365 /* 1366 * First look for an exact match. 1367 */ 1368 tmpinp = NULL; 1369 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1370 pcbinfo->ipi_hashmask)]; 1371 LIST_FOREACH(inp, head, inp_hash) { 1372 #ifdef INET6 1373 /* XXX inp locking */ 1374 if ((inp->inp_vflag & INP_IPV4) == 0) 1375 continue; 1376 #endif 1377 if (inp->inp_faddr.s_addr == faddr.s_addr && 1378 inp->inp_laddr.s_addr == laddr.s_addr && 1379 inp->inp_fport == fport && 1380 inp->inp_lport == lport) { 1381 /* 1382 * XXX We should be able to directly return 1383 * the inp here, without any checks. 1384 * Well unless both bound with SO_REUSEPORT? 1385 */ 1386 if (prison_flag(inp->inp_cred, PR_IP4)) 1387 return (inp); 1388 if (tmpinp == NULL) 1389 tmpinp = inp; 1390 } 1391 } 1392 if (tmpinp != NULL) 1393 return (tmpinp); 1394 1395 /* 1396 * Then look for a wildcard match, if requested. 1397 */ 1398 if (wildcard == INPLOOKUP_WILDCARD) { 1399 struct inpcb *local_wild = NULL, *local_exact = NULL; 1400 #ifdef INET6 1401 struct inpcb *local_wild_mapped = NULL; 1402 #endif 1403 struct inpcb *jail_wild = NULL; 1404 int injail; 1405 1406 /* 1407 * Order of socket selection - we always prefer jails. 1408 * 1. jailed, non-wild. 1409 * 2. jailed, wild. 1410 * 3. non-jailed, non-wild. 1411 * 4. non-jailed, wild. 1412 */ 1413 1414 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1415 0, pcbinfo->ipi_hashmask)]; 1416 LIST_FOREACH(inp, head, inp_hash) { 1417 #ifdef INET6 1418 /* XXX inp locking */ 1419 if ((inp->inp_vflag & INP_IPV4) == 0) 1420 continue; 1421 #endif 1422 if (inp->inp_faddr.s_addr != INADDR_ANY || 1423 inp->inp_lport != lport) 1424 continue; 1425 1426 /* XXX inp locking */ 1427 if (ifp && ifp->if_type == IFT_FAITH && 1428 (inp->inp_flags & INP_FAITH) == 0) 1429 continue; 1430 1431 injail = prison_flag(inp->inp_cred, PR_IP4); 1432 if (injail) { 1433 if (prison_check_ip4(inp->inp_cred, 1434 &laddr) != 0) 1435 continue; 1436 } else { 1437 if (local_exact != NULL) 1438 continue; 1439 } 1440 1441 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1442 if (injail) 1443 return (inp); 1444 else 1445 local_exact = inp; 1446 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1447 #ifdef INET6 1448 /* XXX inp locking, NULL check */ 1449 if (inp->inp_vflag & INP_IPV6PROTO) 1450 local_wild_mapped = inp; 1451 else 1452 #endif /* INET6 */ 1453 if (injail) 1454 jail_wild = inp; 1455 else 1456 local_wild = inp; 1457 } 1458 } /* LIST_FOREACH */ 1459 if (jail_wild != NULL) 1460 return (jail_wild); 1461 if (local_exact != NULL) 1462 return (local_exact); 1463 if (local_wild != NULL) 1464 return (local_wild); 1465 #ifdef INET6 1466 if (local_wild_mapped != NULL) 1467 return (local_wild_mapped); 1468 #endif /* defined(INET6) */ 1469 } /* if (wildcard == INPLOOKUP_WILDCARD) */ 1470 1471 return (NULL); 1472 } 1473 1474 /* 1475 * Insert PCB onto various hash lists. 1476 */ 1477 int 1478 in_pcbinshash(struct inpcb *inp) 1479 { 1480 struct inpcbhead *pcbhash; 1481 struct inpcbporthead *pcbporthash; 1482 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1483 struct inpcbport *phd; 1484 u_int32_t hashkey_faddr; 1485 1486 INP_INFO_WLOCK_ASSERT(pcbinfo); 1487 INP_WLOCK_ASSERT(inp); 1488 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 1489 ("in_pcbinshash: INP_INHASHLIST")); 1490 1491 #ifdef INET6 1492 if (inp->inp_vflag & INP_IPV6) 1493 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; 1494 else 1495 #endif /* INET6 */ 1496 hashkey_faddr = inp->inp_faddr.s_addr; 1497 1498 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 1499 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 1500 1501 pcbporthash = &pcbinfo->ipi_porthashbase[ 1502 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 1503 1504 /* 1505 * Go through port list and look for a head for this lport. 1506 */ 1507 LIST_FOREACH(phd, pcbporthash, phd_hash) { 1508 if (phd->phd_port == inp->inp_lport) 1509 break; 1510 } 1511 /* 1512 * If none exists, malloc one and tack it on. 1513 */ 1514 if (phd == NULL) { 1515 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 1516 if (phd == NULL) { 1517 return (ENOBUFS); /* XXX */ 1518 } 1519 phd->phd_port = inp->inp_lport; 1520 LIST_INIT(&phd->phd_pcblist); 1521 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 1522 } 1523 inp->inp_phd = phd; 1524 LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 1525 LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 1526 inp->inp_flags |= INP_INHASHLIST; 1527 return (0); 1528 } 1529 1530 /* 1531 * Move PCB to the proper hash bucket when { faddr, fport } have been 1532 * changed. NOTE: This does not handle the case of the lport changing (the 1533 * hashed port list would have to be updated as well), so the lport must 1534 * not change after in_pcbinshash() has been called. 1535 */ 1536 void 1537 in_pcbrehash(struct inpcb *inp) 1538 { 1539 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1540 struct inpcbhead *head; 1541 u_int32_t hashkey_faddr; 1542 1543 INP_INFO_WLOCK_ASSERT(pcbinfo); 1544 INP_WLOCK_ASSERT(inp); 1545 KASSERT(inp->inp_flags & INP_INHASHLIST, 1546 ("in_pcbrehash: !INP_INHASHLIST")); 1547 1548 #ifdef INET6 1549 if (inp->inp_vflag & INP_IPV6) 1550 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; 1551 else 1552 #endif /* INET6 */ 1553 hashkey_faddr = inp->inp_faddr.s_addr; 1554 1555 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 1556 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 1557 1558 LIST_REMOVE(inp, inp_hash); 1559 LIST_INSERT_HEAD(head, inp, inp_hash); 1560 } 1561 1562 /* 1563 * Remove PCB from various lists. 1564 */ 1565 static void 1566 in_pcbremlists(struct inpcb *inp) 1567 { 1568 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1569 1570 INP_INFO_WLOCK_ASSERT(pcbinfo); 1571 INP_WLOCK_ASSERT(inp); 1572 1573 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1574 if (inp->inp_flags & INP_INHASHLIST) { 1575 struct inpcbport *phd = inp->inp_phd; 1576 1577 LIST_REMOVE(inp, inp_hash); 1578 LIST_REMOVE(inp, inp_portlist); 1579 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 1580 LIST_REMOVE(phd, phd_hash); 1581 free(phd, M_PCB); 1582 } 1583 inp->inp_flags &= ~INP_INHASHLIST; 1584 } 1585 LIST_REMOVE(inp, inp_list); 1586 pcbinfo->ipi_count--; 1587 } 1588 1589 /* 1590 * A set label operation has occurred at the socket layer, propagate the 1591 * label change into the in_pcb for the socket. 1592 */ 1593 void 1594 in_pcbsosetlabel(struct socket *so) 1595 { 1596 #ifdef MAC 1597 struct inpcb *inp; 1598 1599 inp = sotoinpcb(so); 1600 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 1601 1602 INP_WLOCK(inp); 1603 SOCK_LOCK(so); 1604 mac_inpcb_sosetlabel(so, inp); 1605 SOCK_UNLOCK(so); 1606 INP_WUNLOCK(inp); 1607 #endif 1608 } 1609 1610 /* 1611 * ipport_tick runs once per second, determining if random port allocation 1612 * should be continued. If more than ipport_randomcps ports have been 1613 * allocated in the last second, then we return to sequential port 1614 * allocation. We return to random allocation only once we drop below 1615 * ipport_randomcps for at least ipport_randomtime seconds. 1616 */ 1617 void 1618 ipport_tick(void *xtp) 1619 { 1620 VNET_ITERATOR_DECL(vnet_iter); 1621 1622 VNET_LIST_RLOCK_NOSLEEP(); 1623 VNET_FOREACH(vnet_iter) { 1624 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 1625 if (V_ipport_tcpallocs <= 1626 V_ipport_tcplastcount + V_ipport_randomcps) { 1627 if (V_ipport_stoprandom > 0) 1628 V_ipport_stoprandom--; 1629 } else 1630 V_ipport_stoprandom = V_ipport_randomtime; 1631 V_ipport_tcplastcount = V_ipport_tcpallocs; 1632 CURVNET_RESTORE(); 1633 } 1634 VNET_LIST_RUNLOCK_NOSLEEP(); 1635 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 1636 } 1637 1638 void 1639 inp_wlock(struct inpcb *inp) 1640 { 1641 1642 INP_WLOCK(inp); 1643 } 1644 1645 void 1646 inp_wunlock(struct inpcb *inp) 1647 { 1648 1649 INP_WUNLOCK(inp); 1650 } 1651 1652 void 1653 inp_rlock(struct inpcb *inp) 1654 { 1655 1656 INP_RLOCK(inp); 1657 } 1658 1659 void 1660 inp_runlock(struct inpcb *inp) 1661 { 1662 1663 INP_RUNLOCK(inp); 1664 } 1665 1666 #ifdef INVARIANTS 1667 void 1668 inp_lock_assert(struct inpcb *inp) 1669 { 1670 1671 INP_WLOCK_ASSERT(inp); 1672 } 1673 1674 void 1675 inp_unlock_assert(struct inpcb *inp) 1676 { 1677 1678 INP_UNLOCK_ASSERT(inp); 1679 } 1680 #endif 1681 1682 void 1683 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 1684 { 1685 struct inpcb *inp; 1686 1687 INP_INFO_RLOCK(&V_tcbinfo); 1688 LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 1689 INP_WLOCK(inp); 1690 func(inp, arg); 1691 INP_WUNLOCK(inp); 1692 } 1693 INP_INFO_RUNLOCK(&V_tcbinfo); 1694 } 1695 1696 struct socket * 1697 inp_inpcbtosocket(struct inpcb *inp) 1698 { 1699 1700 INP_WLOCK_ASSERT(inp); 1701 return (inp->inp_socket); 1702 } 1703 1704 struct tcpcb * 1705 inp_inpcbtotcpcb(struct inpcb *inp) 1706 { 1707 1708 INP_WLOCK_ASSERT(inp); 1709 return ((struct tcpcb *)inp->inp_ppcb); 1710 } 1711 1712 int 1713 inp_ip_tos_get(const struct inpcb *inp) 1714 { 1715 1716 return (inp->inp_ip_tos); 1717 } 1718 1719 void 1720 inp_ip_tos_set(struct inpcb *inp, int val) 1721 { 1722 1723 inp->inp_ip_tos = val; 1724 } 1725 1726 void 1727 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 1728 uint32_t *faddr, uint16_t *fp) 1729 { 1730 1731 INP_LOCK_ASSERT(inp); 1732 *laddr = inp->inp_laddr.s_addr; 1733 *faddr = inp->inp_faddr.s_addr; 1734 *lp = inp->inp_lport; 1735 *fp = inp->inp_fport; 1736 } 1737 1738 struct inpcb * 1739 so_sotoinpcb(struct socket *so) 1740 { 1741 1742 return (sotoinpcb(so)); 1743 } 1744 1745 struct tcpcb * 1746 so_sototcpcb(struct socket *so) 1747 { 1748 1749 return (sototcpcb(so)); 1750 } 1751 1752 #ifdef DDB 1753 static void 1754 db_print_indent(int indent) 1755 { 1756 int i; 1757 1758 for (i = 0; i < indent; i++) 1759 db_printf(" "); 1760 } 1761 1762 static void 1763 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 1764 { 1765 char faddr_str[48], laddr_str[48]; 1766 1767 db_print_indent(indent); 1768 db_printf("%s at %p\n", name, inc); 1769 1770 indent += 2; 1771 1772 #ifdef INET6 1773 if (inc->inc_flags & INC_ISIPV6) { 1774 /* IPv6. */ 1775 ip6_sprintf(laddr_str, &inc->inc6_laddr); 1776 ip6_sprintf(faddr_str, &inc->inc6_faddr); 1777 } else { 1778 #endif 1779 /* IPv4. */ 1780 inet_ntoa_r(inc->inc_laddr, laddr_str); 1781 inet_ntoa_r(inc->inc_faddr, faddr_str); 1782 #ifdef INET6 1783 } 1784 #endif 1785 db_print_indent(indent); 1786 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 1787 ntohs(inc->inc_lport)); 1788 db_print_indent(indent); 1789 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 1790 ntohs(inc->inc_fport)); 1791 } 1792 1793 static void 1794 db_print_inpflags(int inp_flags) 1795 { 1796 int comma; 1797 1798 comma = 0; 1799 if (inp_flags & INP_RECVOPTS) { 1800 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 1801 comma = 1; 1802 } 1803 if (inp_flags & INP_RECVRETOPTS) { 1804 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 1805 comma = 1; 1806 } 1807 if (inp_flags & INP_RECVDSTADDR) { 1808 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 1809 comma = 1; 1810 } 1811 if (inp_flags & INP_HDRINCL) { 1812 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 1813 comma = 1; 1814 } 1815 if (inp_flags & INP_HIGHPORT) { 1816 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 1817 comma = 1; 1818 } 1819 if (inp_flags & INP_LOWPORT) { 1820 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 1821 comma = 1; 1822 } 1823 if (inp_flags & INP_ANONPORT) { 1824 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 1825 comma = 1; 1826 } 1827 if (inp_flags & INP_RECVIF) { 1828 db_printf("%sINP_RECVIF", comma ? ", " : ""); 1829 comma = 1; 1830 } 1831 if (inp_flags & INP_MTUDISC) { 1832 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 1833 comma = 1; 1834 } 1835 if (inp_flags & INP_FAITH) { 1836 db_printf("%sINP_FAITH", comma ? ", " : ""); 1837 comma = 1; 1838 } 1839 if (inp_flags & INP_RECVTTL) { 1840 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 1841 comma = 1; 1842 } 1843 if (inp_flags & INP_DONTFRAG) { 1844 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 1845 comma = 1; 1846 } 1847 if (inp_flags & IN6P_IPV6_V6ONLY) { 1848 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 1849 comma = 1; 1850 } 1851 if (inp_flags & IN6P_PKTINFO) { 1852 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 1853 comma = 1; 1854 } 1855 if (inp_flags & IN6P_HOPLIMIT) { 1856 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 1857 comma = 1; 1858 } 1859 if (inp_flags & IN6P_HOPOPTS) { 1860 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 1861 comma = 1; 1862 } 1863 if (inp_flags & IN6P_DSTOPTS) { 1864 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 1865 comma = 1; 1866 } 1867 if (inp_flags & IN6P_RTHDR) { 1868 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 1869 comma = 1; 1870 } 1871 if (inp_flags & IN6P_RTHDRDSTOPTS) { 1872 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 1873 comma = 1; 1874 } 1875 if (inp_flags & IN6P_TCLASS) { 1876 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 1877 comma = 1; 1878 } 1879 if (inp_flags & IN6P_AUTOFLOWLABEL) { 1880 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 1881 comma = 1; 1882 } 1883 if (inp_flags & INP_TIMEWAIT) { 1884 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 1885 comma = 1; 1886 } 1887 if (inp_flags & INP_ONESBCAST) { 1888 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 1889 comma = 1; 1890 } 1891 if (inp_flags & INP_DROPPED) { 1892 db_printf("%sINP_DROPPED", comma ? ", " : ""); 1893 comma = 1; 1894 } 1895 if (inp_flags & INP_SOCKREF) { 1896 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 1897 comma = 1; 1898 } 1899 if (inp_flags & IN6P_RFC2292) { 1900 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 1901 comma = 1; 1902 } 1903 if (inp_flags & IN6P_MTU) { 1904 db_printf("IN6P_MTU%s", comma ? ", " : ""); 1905 comma = 1; 1906 } 1907 } 1908 1909 static void 1910 db_print_inpvflag(u_char inp_vflag) 1911 { 1912 int comma; 1913 1914 comma = 0; 1915 if (inp_vflag & INP_IPV4) { 1916 db_printf("%sINP_IPV4", comma ? ", " : ""); 1917 comma = 1; 1918 } 1919 if (inp_vflag & INP_IPV6) { 1920 db_printf("%sINP_IPV6", comma ? ", " : ""); 1921 comma = 1; 1922 } 1923 if (inp_vflag & INP_IPV6PROTO) { 1924 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 1925 comma = 1; 1926 } 1927 } 1928 1929 static void 1930 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 1931 { 1932 1933 db_print_indent(indent); 1934 db_printf("%s at %p\n", name, inp); 1935 1936 indent += 2; 1937 1938 db_print_indent(indent); 1939 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 1940 1941 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 1942 1943 db_print_indent(indent); 1944 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 1945 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 1946 1947 db_print_indent(indent); 1948 db_printf("inp_label: %p inp_flags: 0x%x (", 1949 inp->inp_label, inp->inp_flags); 1950 db_print_inpflags(inp->inp_flags); 1951 db_printf(")\n"); 1952 1953 db_print_indent(indent); 1954 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 1955 inp->inp_vflag); 1956 db_print_inpvflag(inp->inp_vflag); 1957 db_printf(")\n"); 1958 1959 db_print_indent(indent); 1960 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 1961 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 1962 1963 db_print_indent(indent); 1964 #ifdef INET6 1965 if (inp->inp_vflag & INP_IPV6) { 1966 db_printf("in6p_options: %p in6p_outputopts: %p " 1967 "in6p_moptions: %p\n", inp->in6p_options, 1968 inp->in6p_outputopts, inp->in6p_moptions); 1969 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 1970 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 1971 inp->in6p_hops); 1972 } else 1973 #endif 1974 { 1975 db_printf("inp_ip_tos: %d inp_ip_options: %p " 1976 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 1977 inp->inp_options, inp->inp_moptions); 1978 } 1979 1980 db_print_indent(indent); 1981 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 1982 (uintmax_t)inp->inp_gencnt); 1983 } 1984 1985 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 1986 { 1987 struct inpcb *inp; 1988 1989 if (!have_addr) { 1990 db_printf("usage: show inpcb <addr>\n"); 1991 return; 1992 } 1993 inp = (struct inpcb *)addr; 1994 1995 db_print_inpcb(inp, "inpcb", 0); 1996 } 1997 #endif 1998