1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Robert N. M. Watson under 11 * contract to Juniper Networks, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_ddb.h" 44 #include "opt_ipsec.h" 45 #include "opt_inet.h" 46 #include "opt_inet6.h" 47 #include "opt_ratelimit.h" 48 #include "opt_pcbgroup.h" 49 #include "opt_rss.h" 50 51 #include <sys/param.h> 52 #include <sys/systm.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/mbuf.h> 56 #include <sys/callout.h> 57 #include <sys/eventhandler.h> 58 #include <sys/domain.h> 59 #include <sys/protosw.h> 60 #include <sys/rmlock.h> 61 #include <sys/socket.h> 62 #include <sys/socketvar.h> 63 #include <sys/sockio.h> 64 #include <sys/priv.h> 65 #include <sys/proc.h> 66 #include <sys/refcount.h> 67 #include <sys/jail.h> 68 #include <sys/kernel.h> 69 #include <sys/sysctl.h> 70 71 #ifdef DDB 72 #include <ddb/ddb.h> 73 #endif 74 75 #include <vm/uma.h> 76 77 #include <net/if.h> 78 #include <net/if_var.h> 79 #include <net/if_types.h> 80 #include <net/if_llatbl.h> 81 #include <net/route.h> 82 #include <net/rss_config.h> 83 #include <net/vnet.h> 84 85 #if defined(INET) || defined(INET6) 86 #include <netinet/in.h> 87 #include <netinet/in_pcb.h> 88 #include <netinet/ip_var.h> 89 #include <netinet/tcp_var.h> 90 #include <netinet/udp.h> 91 #include <netinet/udp_var.h> 92 #endif 93 #ifdef INET 94 #include <netinet/in_var.h> 95 #endif 96 #ifdef INET6 97 #include <netinet/ip6.h> 98 #include <netinet6/in6_pcb.h> 99 #include <netinet6/in6_var.h> 100 #include <netinet6/ip6_var.h> 101 #endif /* INET6 */ 102 103 #include <netipsec/ipsec_support.h> 104 105 #include <security/mac/mac_framework.h> 106 107 static struct callout ipport_tick_callout; 108 109 /* 110 * These configure the range of local port addresses assigned to 111 * "unspecified" outgoing connections/packets/whatever. 112 */ 113 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 114 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 115 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 116 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 117 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 118 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 119 120 /* 121 * Reserved ports accessible only to root. There are significant 122 * security considerations that must be accounted for when changing these, 123 * but the security benefits can be great. Please be careful. 124 */ 125 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 126 VNET_DEFINE(int, ipport_reservedlow); 127 128 /* Variables dealing with random ephemeral port allocation. */ 129 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 130 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 131 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 132 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 133 VNET_DEFINE(int, ipport_tcpallocs); 134 static VNET_DEFINE(int, ipport_tcplastcount); 135 136 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 137 138 static void in_pcbremlists(struct inpcb *inp); 139 #ifdef INET 140 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 141 struct in_addr faddr, u_int fport_arg, 142 struct in_addr laddr, u_int lport_arg, 143 int lookupflags, struct ifnet *ifp); 144 145 #define RANGECHK(var, min, max) \ 146 if ((var) < (min)) { (var) = (min); } \ 147 else if ((var) > (max)) { (var) = (max); } 148 149 static int 150 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 151 { 152 int error; 153 154 error = sysctl_handle_int(oidp, arg1, arg2, req); 155 if (error == 0) { 156 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 157 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 158 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 159 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 160 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 161 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 162 } 163 return (error); 164 } 165 166 #undef RANGECHK 167 168 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, 169 "IP Ports"); 170 171 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 172 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 173 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", ""); 174 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 175 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 176 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", ""); 177 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 178 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 179 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", ""); 180 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 181 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 182 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", ""); 183 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 184 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 185 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", ""); 186 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 187 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 188 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", ""); 189 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 190 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 191 &VNET_NAME(ipport_reservedhigh), 0, ""); 192 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 193 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 194 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 195 CTLFLAG_VNET | CTLFLAG_RW, 196 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 197 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 198 CTLFLAG_VNET | CTLFLAG_RW, 199 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 200 "allocations before switching to a sequental one"); 201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 202 CTLFLAG_VNET | CTLFLAG_RW, 203 &VNET_NAME(ipport_randomtime), 0, 204 "Minimum time to keep sequental port " 205 "allocation before switching to a random one"); 206 #endif /* INET */ 207 208 /* 209 * in_pcb.c: manage the Protocol Control Blocks. 210 * 211 * NOTE: It is assumed that most of these functions will be called with 212 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 213 * functions often modify hash chains or addresses in pcbs. 214 */ 215 216 /* 217 * Different protocols initialize their inpcbs differently - giving 218 * different name to the lock. But they all are disposed the same. 219 */ 220 static void 221 inpcb_fini(void *mem, int size) 222 { 223 struct inpcb *inp = mem; 224 225 INP_LOCK_DESTROY(inp); 226 } 227 228 /* 229 * Initialize an inpcbinfo -- we should be able to reduce the number of 230 * arguments in time. 231 */ 232 void 233 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 234 struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, 235 char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields) 236 { 237 238 INP_INFO_LOCK_INIT(pcbinfo, name); 239 INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ 240 INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist"); 241 #ifdef VIMAGE 242 pcbinfo->ipi_vnet = curvnet; 243 #endif 244 pcbinfo->ipi_listhead = listhead; 245 LIST_INIT(pcbinfo->ipi_listhead); 246 pcbinfo->ipi_count = 0; 247 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 248 &pcbinfo->ipi_hashmask); 249 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 250 &pcbinfo->ipi_porthashmask); 251 #ifdef PCBGROUP 252 in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); 253 #endif 254 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 255 NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0); 256 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 257 uma_zone_set_warning(pcbinfo->ipi_zone, 258 "kern.ipc.maxsockets limit reached"); 259 } 260 261 /* 262 * Destroy an inpcbinfo. 263 */ 264 void 265 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 266 { 267 268 KASSERT(pcbinfo->ipi_count == 0, 269 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 270 271 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 272 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 273 pcbinfo->ipi_porthashmask); 274 #ifdef PCBGROUP 275 in_pcbgroup_destroy(pcbinfo); 276 #endif 277 uma_zdestroy(pcbinfo->ipi_zone); 278 INP_LIST_LOCK_DESTROY(pcbinfo); 279 INP_HASH_LOCK_DESTROY(pcbinfo); 280 INP_INFO_LOCK_DESTROY(pcbinfo); 281 } 282 283 /* 284 * Allocate a PCB and associate it with the socket. 285 * On success return with the PCB locked. 286 */ 287 int 288 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 289 { 290 struct inpcb *inp; 291 int error; 292 293 #ifdef INVARIANTS 294 if (pcbinfo == &V_tcbinfo) { 295 INP_INFO_RLOCK_ASSERT(pcbinfo); 296 } else { 297 INP_INFO_WLOCK_ASSERT(pcbinfo); 298 } 299 #endif 300 301 error = 0; 302 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 303 if (inp == NULL) 304 return (ENOBUFS); 305 bzero(&inp->inp_start_zero, inp_zero_size); 306 inp->inp_pcbinfo = pcbinfo; 307 inp->inp_socket = so; 308 inp->inp_cred = crhold(so->so_cred); 309 inp->inp_inc.inc_fibnum = so->so_fibnum; 310 #ifdef MAC 311 error = mac_inpcb_init(inp, M_NOWAIT); 312 if (error != 0) 313 goto out; 314 mac_inpcb_create(so, inp); 315 #endif 316 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 317 error = ipsec_init_pcbpolicy(inp); 318 if (error != 0) { 319 #ifdef MAC 320 mac_inpcb_destroy(inp); 321 #endif 322 goto out; 323 } 324 #endif /*IPSEC*/ 325 #ifdef INET6 326 if (INP_SOCKAF(so) == AF_INET6) { 327 inp->inp_vflag |= INP_IPV6PROTO; 328 if (V_ip6_v6only) 329 inp->inp_flags |= IN6P_IPV6_V6ONLY; 330 } 331 #endif 332 INP_WLOCK(inp); 333 INP_LIST_WLOCK(pcbinfo); 334 LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 335 pcbinfo->ipi_count++; 336 so->so_pcb = (caddr_t)inp; 337 #ifdef INET6 338 if (V_ip6_auto_flowlabel) 339 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 340 #endif 341 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 342 refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ 343 344 /* 345 * Routes in inpcb's can cache L2 as well; they are guaranteed 346 * to be cleaned up. 347 */ 348 inp->inp_route.ro_flags = RT_LLE_CACHE; 349 INP_LIST_WUNLOCK(pcbinfo); 350 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 351 out: 352 if (error != 0) { 353 crfree(inp->inp_cred); 354 uma_zfree(pcbinfo->ipi_zone, inp); 355 } 356 #endif 357 return (error); 358 } 359 360 #ifdef INET 361 int 362 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 363 { 364 int anonport, error; 365 366 INP_WLOCK_ASSERT(inp); 367 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 368 369 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 370 return (EINVAL); 371 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 372 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 373 &inp->inp_lport, cred); 374 if (error) 375 return (error); 376 if (in_pcbinshash(inp) != 0) { 377 inp->inp_laddr.s_addr = INADDR_ANY; 378 inp->inp_lport = 0; 379 return (EAGAIN); 380 } 381 if (anonport) 382 inp->inp_flags |= INP_ANONPORT; 383 return (0); 384 } 385 #endif 386 387 /* 388 * Select a local port (number) to use. 389 */ 390 #if defined(INET) || defined(INET6) 391 int 392 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 393 struct ucred *cred, int lookupflags) 394 { 395 struct inpcbinfo *pcbinfo; 396 struct inpcb *tmpinp; 397 unsigned short *lastport; 398 int count, dorandom, error; 399 u_short aux, first, last, lport; 400 #ifdef INET 401 struct in_addr laddr; 402 #endif 403 404 pcbinfo = inp->inp_pcbinfo; 405 406 /* 407 * Because no actual state changes occur here, a global write lock on 408 * the pcbinfo isn't required. 409 */ 410 INP_LOCK_ASSERT(inp); 411 INP_HASH_LOCK_ASSERT(pcbinfo); 412 413 if (inp->inp_flags & INP_HIGHPORT) { 414 first = V_ipport_hifirstauto; /* sysctl */ 415 last = V_ipport_hilastauto; 416 lastport = &pcbinfo->ipi_lasthi; 417 } else if (inp->inp_flags & INP_LOWPORT) { 418 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0); 419 if (error) 420 return (error); 421 first = V_ipport_lowfirstauto; /* 1023 */ 422 last = V_ipport_lowlastauto; /* 600 */ 423 lastport = &pcbinfo->ipi_lastlow; 424 } else { 425 first = V_ipport_firstauto; /* sysctl */ 426 last = V_ipport_lastauto; 427 lastport = &pcbinfo->ipi_lastport; 428 } 429 /* 430 * For UDP(-Lite), use random port allocation as long as the user 431 * allows it. For TCP (and as of yet unknown) connections, 432 * use random port allocation only if the user allows it AND 433 * ipport_tick() allows it. 434 */ 435 if (V_ipport_randomized && 436 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 437 pcbinfo == &V_ulitecbinfo)) 438 dorandom = 1; 439 else 440 dorandom = 0; 441 /* 442 * It makes no sense to do random port allocation if 443 * we have the only port available. 444 */ 445 if (first == last) 446 dorandom = 0; 447 /* Make sure to not include UDP(-Lite) packets in the count. */ 448 if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) 449 V_ipport_tcpallocs++; 450 /* 451 * Instead of having two loops further down counting up or down 452 * make sure that first is always <= last and go with only one 453 * code path implementing all logic. 454 */ 455 if (first > last) { 456 aux = first; 457 first = last; 458 last = aux; 459 } 460 461 #ifdef INET 462 /* Make the compiler happy. */ 463 laddr.s_addr = 0; 464 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 465 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p", 466 __func__, inp)); 467 laddr = *laddrp; 468 } 469 #endif 470 tmpinp = NULL; /* Make compiler happy. */ 471 lport = *lportp; 472 473 if (dorandom) 474 *lastport = first + (arc4random() % (last - first)); 475 476 count = last - first; 477 478 do { 479 if (count-- < 0) /* completely used? */ 480 return (EADDRNOTAVAIL); 481 ++*lastport; 482 if (*lastport < first || *lastport > last) 483 *lastport = first; 484 lport = htons(*lastport); 485 486 #ifdef INET6 487 if ((inp->inp_vflag & INP_IPV6) != 0) 488 tmpinp = in6_pcblookup_local(pcbinfo, 489 &inp->in6p_laddr, lport, lookupflags, cred); 490 #endif 491 #if defined(INET) && defined(INET6) 492 else 493 #endif 494 #ifdef INET 495 tmpinp = in_pcblookup_local(pcbinfo, laddr, 496 lport, lookupflags, cred); 497 #endif 498 } while (tmpinp != NULL); 499 500 #ifdef INET 501 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) 502 laddrp->s_addr = laddr.s_addr; 503 #endif 504 *lportp = lport; 505 506 return (0); 507 } 508 509 /* 510 * Return cached socket options. 511 */ 512 short 513 inp_so_options(const struct inpcb *inp) 514 { 515 short so_options; 516 517 so_options = 0; 518 519 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 520 so_options |= SO_REUSEPORT; 521 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 522 so_options |= SO_REUSEADDR; 523 return (so_options); 524 } 525 #endif /* INET || INET6 */ 526 527 /* 528 * Check if a new BINDMULTI socket is allowed to be created. 529 * 530 * ni points to the new inp. 531 * oi points to the exisitng inp. 532 * 533 * This checks whether the existing inp also has BINDMULTI and 534 * whether the credentials match. 535 */ 536 int 537 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 538 { 539 /* Check permissions match */ 540 if ((ni->inp_flags2 & INP_BINDMULTI) && 541 (ni->inp_cred->cr_uid != 542 oi->inp_cred->cr_uid)) 543 return (0); 544 545 /* Check the existing inp has BINDMULTI set */ 546 if ((ni->inp_flags2 & INP_BINDMULTI) && 547 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 548 return (0); 549 550 /* 551 * We're okay - either INP_BINDMULTI isn't set on ni, or 552 * it is and it matches the checks. 553 */ 554 return (1); 555 } 556 557 #ifdef INET 558 /* 559 * Set up a bind operation on a PCB, performing port allocation 560 * as required, but do not actually modify the PCB. Callers can 561 * either complete the bind by setting inp_laddr/inp_lport and 562 * calling in_pcbinshash(), or they can just use the resulting 563 * port and address to authorise the sending of a once-off packet. 564 * 565 * On error, the values of *laddrp and *lportp are not changed. 566 */ 567 int 568 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 569 u_short *lportp, struct ucred *cred) 570 { 571 struct socket *so = inp->inp_socket; 572 struct sockaddr_in *sin; 573 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 574 struct in_addr laddr; 575 u_short lport = 0; 576 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 577 int error; 578 579 /* 580 * No state changes, so read locks are sufficient here. 581 */ 582 INP_LOCK_ASSERT(inp); 583 INP_HASH_LOCK_ASSERT(pcbinfo); 584 585 if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 586 return (EADDRNOTAVAIL); 587 laddr.s_addr = *laddrp; 588 if (nam != NULL && laddr.s_addr != INADDR_ANY) 589 return (EINVAL); 590 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) 591 lookupflags = INPLOOKUP_WILDCARD; 592 if (nam == NULL) { 593 if ((error = prison_local_ip4(cred, &laddr)) != 0) 594 return (error); 595 } else { 596 sin = (struct sockaddr_in *)nam; 597 if (nam->sa_len != sizeof (*sin)) 598 return (EINVAL); 599 #ifdef notdef 600 /* 601 * We should check the family, but old programs 602 * incorrectly fail to initialize it. 603 */ 604 if (sin->sin_family != AF_INET) 605 return (EAFNOSUPPORT); 606 #endif 607 error = prison_local_ip4(cred, &sin->sin_addr); 608 if (error) 609 return (error); 610 if (sin->sin_port != *lportp) { 611 /* Don't allow the port to change. */ 612 if (*lportp != 0) 613 return (EINVAL); 614 lport = sin->sin_port; 615 } 616 /* NB: lport is left as 0 if the port isn't being changed. */ 617 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 618 /* 619 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 620 * allow complete duplication of binding if 621 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 622 * and a multicast address is bound on both 623 * new and duplicated sockets. 624 */ 625 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 626 reuseport = SO_REUSEADDR|SO_REUSEPORT; 627 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 628 sin->sin_port = 0; /* yech... */ 629 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 630 /* 631 * Is the address a local IP address? 632 * If INP_BINDANY is set, then the socket may be bound 633 * to any endpoint address, local or not. 634 */ 635 if ((inp->inp_flags & INP_BINDANY) == 0 && 636 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 637 return (EADDRNOTAVAIL); 638 } 639 laddr = sin->sin_addr; 640 if (lport) { 641 struct inpcb *t; 642 struct tcptw *tw; 643 644 /* GROSS */ 645 if (ntohs(lport) <= V_ipport_reservedhigh && 646 ntohs(lport) >= V_ipport_reservedlow && 647 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 648 0)) 649 return (EACCES); 650 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 651 priv_check_cred(inp->inp_cred, 652 PRIV_NETINET_REUSEPORT, 0) != 0) { 653 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 654 lport, INPLOOKUP_WILDCARD, cred); 655 /* 656 * XXX 657 * This entire block sorely needs a rewrite. 658 */ 659 if (t && 660 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 661 ((t->inp_flags & INP_TIMEWAIT) == 0) && 662 (so->so_type != SOCK_STREAM || 663 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 664 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 665 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 666 (t->inp_flags2 & INP_REUSEPORT) == 0) && 667 (inp->inp_cred->cr_uid != 668 t->inp_cred->cr_uid)) 669 return (EADDRINUSE); 670 671 /* 672 * If the socket is a BINDMULTI socket, then 673 * the credentials need to match and the 674 * original socket also has to have been bound 675 * with BINDMULTI. 676 */ 677 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 678 return (EADDRINUSE); 679 } 680 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 681 lport, lookupflags, cred); 682 if (t && (t->inp_flags & INP_TIMEWAIT)) { 683 /* 684 * XXXRW: If an incpb has had its timewait 685 * state recycled, we treat the address as 686 * being in use (for now). This is better 687 * than a panic, but not desirable. 688 */ 689 tw = intotw(t); 690 if (tw == NULL || 691 (reuseport & tw->tw_so_options) == 0) 692 return (EADDRINUSE); 693 } else if (t && 694 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 695 (reuseport & inp_so_options(t)) == 0) { 696 #ifdef INET6 697 if (ntohl(sin->sin_addr.s_addr) != 698 INADDR_ANY || 699 ntohl(t->inp_laddr.s_addr) != 700 INADDR_ANY || 701 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 702 (t->inp_vflag & INP_IPV6PROTO) == 0) 703 #endif 704 return (EADDRINUSE); 705 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 706 return (EADDRINUSE); 707 } 708 } 709 } 710 if (*lportp != 0) 711 lport = *lportp; 712 if (lport == 0) { 713 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 714 if (error != 0) 715 return (error); 716 717 } 718 *laddrp = laddr.s_addr; 719 *lportp = lport; 720 return (0); 721 } 722 723 /* 724 * Connect from a socket to a specified address. 725 * Both address and port must be specified in argument sin. 726 * If don't have a local address for this socket yet, 727 * then pick one. 728 */ 729 int 730 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, 731 struct ucred *cred, struct mbuf *m) 732 { 733 u_short lport, fport; 734 in_addr_t laddr, faddr; 735 int anonport, error; 736 737 INP_WLOCK_ASSERT(inp); 738 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 739 740 lport = inp->inp_lport; 741 laddr = inp->inp_laddr.s_addr; 742 anonport = (lport == 0); 743 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 744 NULL, cred); 745 if (error) 746 return (error); 747 748 /* Do the initial binding of the local address if required. */ 749 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 750 inp->inp_lport = lport; 751 inp->inp_laddr.s_addr = laddr; 752 if (in_pcbinshash(inp) != 0) { 753 inp->inp_laddr.s_addr = INADDR_ANY; 754 inp->inp_lport = 0; 755 return (EAGAIN); 756 } 757 } 758 759 /* Commit the remaining changes. */ 760 inp->inp_lport = lport; 761 inp->inp_laddr.s_addr = laddr; 762 inp->inp_faddr.s_addr = faddr; 763 inp->inp_fport = fport; 764 in_pcbrehash_mbuf(inp, m); 765 766 if (anonport) 767 inp->inp_flags |= INP_ANONPORT; 768 return (0); 769 } 770 771 int 772 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 773 { 774 775 return (in_pcbconnect_mbuf(inp, nam, cred, NULL)); 776 } 777 778 /* 779 * Do proper source address selection on an unbound socket in case 780 * of connect. Take jails into account as well. 781 */ 782 int 783 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 784 struct ucred *cred) 785 { 786 struct ifaddr *ifa; 787 struct sockaddr *sa; 788 struct sockaddr_in *sin; 789 struct route sro; 790 int error; 791 792 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 793 794 /* 795 * Bypass source address selection and use the primary jail IP 796 * if requested. 797 */ 798 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 799 return (0); 800 801 error = 0; 802 bzero(&sro, sizeof(sro)); 803 804 sin = (struct sockaddr_in *)&sro.ro_dst; 805 sin->sin_family = AF_INET; 806 sin->sin_len = sizeof(struct sockaddr_in); 807 sin->sin_addr.s_addr = faddr->s_addr; 808 809 /* 810 * If route is known our src addr is taken from the i/f, 811 * else punt. 812 * 813 * Find out route to destination. 814 */ 815 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 816 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); 817 818 /* 819 * If we found a route, use the address corresponding to 820 * the outgoing interface. 821 * 822 * Otherwise assume faddr is reachable on a directly connected 823 * network and try to find a corresponding interface to take 824 * the source address from. 825 */ 826 if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { 827 struct in_ifaddr *ia; 828 struct ifnet *ifp; 829 830 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 831 inp->inp_socket->so_fibnum)); 832 if (ia == NULL) 833 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 834 inp->inp_socket->so_fibnum)); 835 if (ia == NULL) { 836 error = ENETUNREACH; 837 goto done; 838 } 839 840 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 841 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 842 ifa_free(&ia->ia_ifa); 843 goto done; 844 } 845 846 ifp = ia->ia_ifp; 847 ifa_free(&ia->ia_ifa); 848 ia = NULL; 849 IF_ADDR_RLOCK(ifp); 850 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 851 852 sa = ifa->ifa_addr; 853 if (sa->sa_family != AF_INET) 854 continue; 855 sin = (struct sockaddr_in *)sa; 856 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 857 ia = (struct in_ifaddr *)ifa; 858 break; 859 } 860 } 861 if (ia != NULL) { 862 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 863 IF_ADDR_RUNLOCK(ifp); 864 goto done; 865 } 866 IF_ADDR_RUNLOCK(ifp); 867 868 /* 3. As a last resort return the 'default' jail address. */ 869 error = prison_get_ip4(cred, laddr); 870 goto done; 871 } 872 873 /* 874 * If the outgoing interface on the route found is not 875 * a loopback interface, use the address from that interface. 876 * In case of jails do those three steps: 877 * 1. check if the interface address belongs to the jail. If so use it. 878 * 2. check if we have any address on the outgoing interface 879 * belonging to this jail. If so use it. 880 * 3. as a last resort return the 'default' jail address. 881 */ 882 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { 883 struct in_ifaddr *ia; 884 struct ifnet *ifp; 885 886 /* If not jailed, use the default returned. */ 887 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 888 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 889 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 890 goto done; 891 } 892 893 /* Jailed. */ 894 /* 1. Check if the iface address belongs to the jail. */ 895 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; 896 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 897 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 898 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 899 goto done; 900 } 901 902 /* 903 * 2. Check if we have any address on the outgoing interface 904 * belonging to this jail. 905 */ 906 ia = NULL; 907 ifp = sro.ro_rt->rt_ifp; 908 IF_ADDR_RLOCK(ifp); 909 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 910 sa = ifa->ifa_addr; 911 if (sa->sa_family != AF_INET) 912 continue; 913 sin = (struct sockaddr_in *)sa; 914 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 915 ia = (struct in_ifaddr *)ifa; 916 break; 917 } 918 } 919 if (ia != NULL) { 920 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 921 IF_ADDR_RUNLOCK(ifp); 922 goto done; 923 } 924 IF_ADDR_RUNLOCK(ifp); 925 926 /* 3. As a last resort return the 'default' jail address. */ 927 error = prison_get_ip4(cred, laddr); 928 goto done; 929 } 930 931 /* 932 * The outgoing interface is marked with 'loopback net', so a route 933 * to ourselves is here. 934 * Try to find the interface of the destination address and then 935 * take the address from there. That interface is not necessarily 936 * a loopback interface. 937 * In case of jails, check that it is an address of the jail 938 * and if we cannot find, fall back to the 'default' jail address. 939 */ 940 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 941 struct sockaddr_in sain; 942 struct in_ifaddr *ia; 943 944 bzero(&sain, sizeof(struct sockaddr_in)); 945 sain.sin_family = AF_INET; 946 sain.sin_len = sizeof(struct sockaddr_in); 947 sain.sin_addr.s_addr = faddr->s_addr; 948 949 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain), 950 inp->inp_socket->so_fibnum)); 951 if (ia == NULL) 952 ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0, 953 inp->inp_socket->so_fibnum)); 954 if (ia == NULL) 955 ia = ifatoia(ifa_ifwithaddr(sintosa(&sain))); 956 957 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 958 if (ia == NULL) { 959 error = ENETUNREACH; 960 goto done; 961 } 962 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 963 ifa_free(&ia->ia_ifa); 964 goto done; 965 } 966 967 /* Jailed. */ 968 if (ia != NULL) { 969 struct ifnet *ifp; 970 971 ifp = ia->ia_ifp; 972 ifa_free(&ia->ia_ifa); 973 ia = NULL; 974 IF_ADDR_RLOCK(ifp); 975 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 976 977 sa = ifa->ifa_addr; 978 if (sa->sa_family != AF_INET) 979 continue; 980 sin = (struct sockaddr_in *)sa; 981 if (prison_check_ip4(cred, 982 &sin->sin_addr) == 0) { 983 ia = (struct in_ifaddr *)ifa; 984 break; 985 } 986 } 987 if (ia != NULL) { 988 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 989 IF_ADDR_RUNLOCK(ifp); 990 goto done; 991 } 992 IF_ADDR_RUNLOCK(ifp); 993 } 994 995 /* 3. As a last resort return the 'default' jail address. */ 996 error = prison_get_ip4(cred, laddr); 997 goto done; 998 } 999 1000 done: 1001 if (sro.ro_rt != NULL) 1002 RTFREE(sro.ro_rt); 1003 return (error); 1004 } 1005 1006 /* 1007 * Set up for a connect from a socket to the specified address. 1008 * On entry, *laddrp and *lportp should contain the current local 1009 * address and port for the PCB; these are updated to the values 1010 * that should be placed in inp_laddr and inp_lport to complete 1011 * the connect. 1012 * 1013 * On success, *faddrp and *fportp will be set to the remote address 1014 * and port. These are not updated in the error case. 1015 * 1016 * If the operation fails because the connection already exists, 1017 * *oinpp will be set to the PCB of that connection so that the 1018 * caller can decide to override it. In all other cases, *oinpp 1019 * is set to NULL. 1020 */ 1021 int 1022 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1023 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1024 struct inpcb **oinpp, struct ucred *cred) 1025 { 1026 struct rm_priotracker in_ifa_tracker; 1027 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1028 struct in_ifaddr *ia; 1029 struct inpcb *oinp; 1030 struct in_addr laddr, faddr; 1031 u_short lport, fport; 1032 int error; 1033 1034 /* 1035 * Because a global state change doesn't actually occur here, a read 1036 * lock is sufficient. 1037 */ 1038 INP_LOCK_ASSERT(inp); 1039 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1040 1041 if (oinpp != NULL) 1042 *oinpp = NULL; 1043 if (nam->sa_len != sizeof (*sin)) 1044 return (EINVAL); 1045 if (sin->sin_family != AF_INET) 1046 return (EAFNOSUPPORT); 1047 if (sin->sin_port == 0) 1048 return (EADDRNOTAVAIL); 1049 laddr.s_addr = *laddrp; 1050 lport = *lportp; 1051 faddr = sin->sin_addr; 1052 fport = sin->sin_port; 1053 1054 if (!TAILQ_EMPTY(&V_in_ifaddrhead)) { 1055 /* 1056 * If the destination address is INADDR_ANY, 1057 * use the primary local address. 1058 * If the supplied address is INADDR_BROADCAST, 1059 * and the primary interface supports broadcast, 1060 * choose the broadcast address for that interface. 1061 */ 1062 if (faddr.s_addr == INADDR_ANY) { 1063 IN_IFADDR_RLOCK(&in_ifa_tracker); 1064 faddr = 1065 IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1066 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1067 if (cred != NULL && 1068 (error = prison_get_ip4(cred, &faddr)) != 0) 1069 return (error); 1070 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1071 IN_IFADDR_RLOCK(&in_ifa_tracker); 1072 if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1073 IFF_BROADCAST) 1074 faddr = satosin(&TAILQ_FIRST( 1075 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1076 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1077 } 1078 } 1079 if (laddr.s_addr == INADDR_ANY) { 1080 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1081 /* 1082 * If the destination address is multicast and an outgoing 1083 * interface has been set as a multicast option, prefer the 1084 * address of that interface as our source address. 1085 */ 1086 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1087 inp->inp_moptions != NULL) { 1088 struct ip_moptions *imo; 1089 struct ifnet *ifp; 1090 1091 imo = inp->inp_moptions; 1092 if (imo->imo_multicast_ifp != NULL) { 1093 ifp = imo->imo_multicast_ifp; 1094 IN_IFADDR_RLOCK(&in_ifa_tracker); 1095 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1096 if ((ia->ia_ifp == ifp) && 1097 (cred == NULL || 1098 prison_check_ip4(cred, 1099 &ia->ia_addr.sin_addr) == 0)) 1100 break; 1101 } 1102 if (ia == NULL) 1103 error = EADDRNOTAVAIL; 1104 else { 1105 laddr = ia->ia_addr.sin_addr; 1106 error = 0; 1107 } 1108 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1109 } 1110 } 1111 if (error) 1112 return (error); 1113 } 1114 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport, 1115 laddr, lport, 0, NULL); 1116 if (oinp != NULL) { 1117 if (oinpp != NULL) 1118 *oinpp = oinp; 1119 return (EADDRINUSE); 1120 } 1121 if (lport == 0) { 1122 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 1123 cred); 1124 if (error) 1125 return (error); 1126 } 1127 *laddrp = laddr.s_addr; 1128 *lportp = lport; 1129 *faddrp = faddr.s_addr; 1130 *fportp = fport; 1131 return (0); 1132 } 1133 1134 void 1135 in_pcbdisconnect(struct inpcb *inp) 1136 { 1137 1138 INP_WLOCK_ASSERT(inp); 1139 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1140 1141 inp->inp_faddr.s_addr = INADDR_ANY; 1142 inp->inp_fport = 0; 1143 in_pcbrehash(inp); 1144 } 1145 #endif /* INET */ 1146 1147 /* 1148 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1149 * For most protocols, this will be invoked immediately prior to calling 1150 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1151 * socket, in which case in_pcbfree() is deferred. 1152 */ 1153 void 1154 in_pcbdetach(struct inpcb *inp) 1155 { 1156 1157 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1158 1159 #ifdef RATELIMIT 1160 if (inp->inp_snd_tag != NULL) 1161 in_pcbdetach_txrtlmt(inp); 1162 #endif 1163 inp->inp_socket->so_pcb = NULL; 1164 inp->inp_socket = NULL; 1165 } 1166 1167 /* 1168 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1169 * stability of an inpcb pointer despite the inpcb lock being released. This 1170 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 1171 * but where the inpcb lock may already held, or when acquiring a reference 1172 * via a pcbgroup. 1173 * 1174 * in_pcbref() should be used only to provide brief memory stability, and 1175 * must always be followed by a call to INP_WLOCK() and in_pcbrele() to 1176 * garbage collect the inpcb if it has been in_pcbfree()'d from another 1177 * context. Until in_pcbrele() has returned that the inpcb is still valid, 1178 * lock and rele are the *only* safe operations that may be performed on the 1179 * inpcb. 1180 * 1181 * While the inpcb will not be freed, releasing the inpcb lock means that the 1182 * connection's state may change, so the caller should be careful to 1183 * revalidate any cached state on reacquiring the lock. Drop the reference 1184 * using in_pcbrele(). 1185 */ 1186 void 1187 in_pcbref(struct inpcb *inp) 1188 { 1189 1190 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1191 1192 refcount_acquire(&inp->inp_refcount); 1193 } 1194 1195 /* 1196 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 1197 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 1198 * return a flag indicating whether or not the inpcb remains valid. If it is 1199 * valid, we return with the inpcb lock held. 1200 * 1201 * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a 1202 * reference on an inpcb. Historically more work was done here (actually, in 1203 * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the 1204 * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely 1205 * about memory stability (and continued use of the write lock). 1206 */ 1207 int 1208 in_pcbrele_rlocked(struct inpcb *inp) 1209 { 1210 struct inpcbinfo *pcbinfo; 1211 1212 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1213 1214 INP_RLOCK_ASSERT(inp); 1215 1216 if (refcount_release(&inp->inp_refcount) == 0) { 1217 /* 1218 * If the inpcb has been freed, let the caller know, even if 1219 * this isn't the last reference. 1220 */ 1221 if (inp->inp_flags2 & INP_FREED) { 1222 INP_RUNLOCK(inp); 1223 return (1); 1224 } 1225 return (0); 1226 } 1227 1228 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1229 1230 INP_RUNLOCK(inp); 1231 pcbinfo = inp->inp_pcbinfo; 1232 uma_zfree(pcbinfo->ipi_zone, inp); 1233 return (1); 1234 } 1235 1236 int 1237 in_pcbrele_wlocked(struct inpcb *inp) 1238 { 1239 struct inpcbinfo *pcbinfo; 1240 1241 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1242 1243 INP_WLOCK_ASSERT(inp); 1244 1245 if (refcount_release(&inp->inp_refcount) == 0) { 1246 /* 1247 * If the inpcb has been freed, let the caller know, even if 1248 * this isn't the last reference. 1249 */ 1250 if (inp->inp_flags2 & INP_FREED) { 1251 INP_WUNLOCK(inp); 1252 return (1); 1253 } 1254 return (0); 1255 } 1256 1257 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1258 1259 INP_WUNLOCK(inp); 1260 pcbinfo = inp->inp_pcbinfo; 1261 uma_zfree(pcbinfo->ipi_zone, inp); 1262 return (1); 1263 } 1264 1265 /* 1266 * Temporary wrapper. 1267 */ 1268 int 1269 in_pcbrele(struct inpcb *inp) 1270 { 1271 1272 return (in_pcbrele_wlocked(inp)); 1273 } 1274 1275 /* 1276 * Unconditionally schedule an inpcb to be freed by decrementing its 1277 * reference count, which should occur only after the inpcb has been detached 1278 * from its socket. If another thread holds a temporary reference (acquired 1279 * using in_pcbref()) then the free is deferred until that reference is 1280 * released using in_pcbrele(), but the inpcb is still unlocked. Almost all 1281 * work, including removal from global lists, is done in this context, where 1282 * the pcbinfo lock is held. 1283 */ 1284 void 1285 in_pcbfree(struct inpcb *inp) 1286 { 1287 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1288 1289 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1290 1291 #ifdef INVARIANTS 1292 if (pcbinfo == &V_tcbinfo) { 1293 INP_INFO_LOCK_ASSERT(pcbinfo); 1294 } else { 1295 INP_INFO_WLOCK_ASSERT(pcbinfo); 1296 } 1297 #endif 1298 INP_WLOCK_ASSERT(inp); 1299 1300 /* XXXRW: Do as much as possible here. */ 1301 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1302 if (inp->inp_sp != NULL) 1303 ipsec_delete_pcbpolicy(inp); 1304 #endif 1305 INP_LIST_WLOCK(pcbinfo); 1306 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1307 in_pcbremlists(inp); 1308 INP_LIST_WUNLOCK(pcbinfo); 1309 #ifdef INET6 1310 if (inp->inp_vflag & INP_IPV6PROTO) { 1311 ip6_freepcbopts(inp->in6p_outputopts); 1312 if (inp->in6p_moptions != NULL) 1313 ip6_freemoptions(inp->in6p_moptions); 1314 } 1315 #endif 1316 if (inp->inp_options) 1317 (void)m_free(inp->inp_options); 1318 #ifdef INET 1319 if (inp->inp_moptions != NULL) 1320 inp_freemoptions(inp->inp_moptions); 1321 #endif 1322 RO_INVALIDATE_CACHE(&inp->inp_route); 1323 1324 inp->inp_vflag = 0; 1325 inp->inp_flags2 |= INP_FREED; 1326 crfree(inp->inp_cred); 1327 #ifdef MAC 1328 mac_inpcb_destroy(inp); 1329 #endif 1330 if (!in_pcbrele_wlocked(inp)) 1331 INP_WUNLOCK(inp); 1332 } 1333 1334 /* 1335 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1336 * port reservation, and preventing it from being returned by inpcb lookups. 1337 * 1338 * It is used by TCP to mark an inpcb as unused and avoid future packet 1339 * delivery or event notification when a socket remains open but TCP has 1340 * closed. This might occur as a result of a shutdown()-initiated TCP close 1341 * or a RST on the wire, and allows the port binding to be reused while still 1342 * maintaining the invariant that so_pcb always points to a valid inpcb until 1343 * in_pcbdetach(). 1344 * 1345 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1346 * in_pcbnotifyall() and in_pcbpurgeif0()? 1347 */ 1348 void 1349 in_pcbdrop(struct inpcb *inp) 1350 { 1351 1352 INP_WLOCK_ASSERT(inp); 1353 1354 /* 1355 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1356 * the hash lock...? 1357 */ 1358 inp->inp_flags |= INP_DROPPED; 1359 if (inp->inp_flags & INP_INHASHLIST) { 1360 struct inpcbport *phd = inp->inp_phd; 1361 1362 INP_HASH_WLOCK(inp->inp_pcbinfo); 1363 LIST_REMOVE(inp, inp_hash); 1364 LIST_REMOVE(inp, inp_portlist); 1365 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 1366 LIST_REMOVE(phd, phd_hash); 1367 free(phd, M_PCB); 1368 } 1369 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1370 inp->inp_flags &= ~INP_INHASHLIST; 1371 #ifdef PCBGROUP 1372 in_pcbgroup_remove(inp); 1373 #endif 1374 } 1375 } 1376 1377 #ifdef INET 1378 /* 1379 * Common routines to return the socket addresses associated with inpcbs. 1380 */ 1381 struct sockaddr * 1382 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1383 { 1384 struct sockaddr_in *sin; 1385 1386 sin = malloc(sizeof *sin, M_SONAME, 1387 M_WAITOK | M_ZERO); 1388 sin->sin_family = AF_INET; 1389 sin->sin_len = sizeof(*sin); 1390 sin->sin_addr = *addr_p; 1391 sin->sin_port = port; 1392 1393 return (struct sockaddr *)sin; 1394 } 1395 1396 int 1397 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1398 { 1399 struct inpcb *inp; 1400 struct in_addr addr; 1401 in_port_t port; 1402 1403 inp = sotoinpcb(so); 1404 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1405 1406 INP_RLOCK(inp); 1407 port = inp->inp_lport; 1408 addr = inp->inp_laddr; 1409 INP_RUNLOCK(inp); 1410 1411 *nam = in_sockaddr(port, &addr); 1412 return 0; 1413 } 1414 1415 int 1416 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1417 { 1418 struct inpcb *inp; 1419 struct in_addr addr; 1420 in_port_t port; 1421 1422 inp = sotoinpcb(so); 1423 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1424 1425 INP_RLOCK(inp); 1426 port = inp->inp_fport; 1427 addr = inp->inp_faddr; 1428 INP_RUNLOCK(inp); 1429 1430 *nam = in_sockaddr(port, &addr); 1431 return 0; 1432 } 1433 1434 void 1435 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1436 struct inpcb *(*notify)(struct inpcb *, int)) 1437 { 1438 struct inpcb *inp, *inp_temp; 1439 1440 INP_INFO_WLOCK(pcbinfo); 1441 LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1442 INP_WLOCK(inp); 1443 #ifdef INET6 1444 if ((inp->inp_vflag & INP_IPV4) == 0) { 1445 INP_WUNLOCK(inp); 1446 continue; 1447 } 1448 #endif 1449 if (inp->inp_faddr.s_addr != faddr.s_addr || 1450 inp->inp_socket == NULL) { 1451 INP_WUNLOCK(inp); 1452 continue; 1453 } 1454 if ((*notify)(inp, errno)) 1455 INP_WUNLOCK(inp); 1456 } 1457 INP_INFO_WUNLOCK(pcbinfo); 1458 } 1459 1460 void 1461 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1462 { 1463 struct inpcb *inp; 1464 struct ip_moptions *imo; 1465 int i, gap; 1466 1467 INP_INFO_WLOCK(pcbinfo); 1468 LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1469 INP_WLOCK(inp); 1470 imo = inp->inp_moptions; 1471 if ((inp->inp_vflag & INP_IPV4) && 1472 imo != NULL) { 1473 /* 1474 * Unselect the outgoing interface if it is being 1475 * detached. 1476 */ 1477 if (imo->imo_multicast_ifp == ifp) 1478 imo->imo_multicast_ifp = NULL; 1479 1480 /* 1481 * Drop multicast group membership if we joined 1482 * through the interface being detached. 1483 */ 1484 for (i = 0, gap = 0; i < imo->imo_num_memberships; 1485 i++) { 1486 if (imo->imo_membership[i]->inm_ifp == ifp) { 1487 in_delmulti(imo->imo_membership[i]); 1488 gap++; 1489 } else if (gap != 0) 1490 imo->imo_membership[i - gap] = 1491 imo->imo_membership[i]; 1492 } 1493 imo->imo_num_memberships -= gap; 1494 } 1495 INP_WUNLOCK(inp); 1496 } 1497 INP_INFO_WUNLOCK(pcbinfo); 1498 } 1499 1500 /* 1501 * Lookup a PCB based on the local address and port. Caller must hold the 1502 * hash lock. No inpcb locks or references are acquired. 1503 */ 1504 #define INP_LOOKUP_MAPPED_PCB_COST 3 1505 struct inpcb * 1506 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1507 u_short lport, int lookupflags, struct ucred *cred) 1508 { 1509 struct inpcb *inp; 1510 #ifdef INET6 1511 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1512 #else 1513 int matchwild = 3; 1514 #endif 1515 int wildcard; 1516 1517 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1518 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1519 1520 INP_HASH_LOCK_ASSERT(pcbinfo); 1521 1522 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1523 struct inpcbhead *head; 1524 /* 1525 * Look for an unconnected (wildcard foreign addr) PCB that 1526 * matches the local address and port we're looking for. 1527 */ 1528 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1529 0, pcbinfo->ipi_hashmask)]; 1530 LIST_FOREACH(inp, head, inp_hash) { 1531 #ifdef INET6 1532 /* XXX inp locking */ 1533 if ((inp->inp_vflag & INP_IPV4) == 0) 1534 continue; 1535 #endif 1536 if (inp->inp_faddr.s_addr == INADDR_ANY && 1537 inp->inp_laddr.s_addr == laddr.s_addr && 1538 inp->inp_lport == lport) { 1539 /* 1540 * Found? 1541 */ 1542 if (cred == NULL || 1543 prison_equal_ip4(cred->cr_prison, 1544 inp->inp_cred->cr_prison)) 1545 return (inp); 1546 } 1547 } 1548 /* 1549 * Not found. 1550 */ 1551 return (NULL); 1552 } else { 1553 struct inpcbporthead *porthash; 1554 struct inpcbport *phd; 1555 struct inpcb *match = NULL; 1556 /* 1557 * Best fit PCB lookup. 1558 * 1559 * First see if this local port is in use by looking on the 1560 * port hash list. 1561 */ 1562 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1563 pcbinfo->ipi_porthashmask)]; 1564 LIST_FOREACH(phd, porthash, phd_hash) { 1565 if (phd->phd_port == lport) 1566 break; 1567 } 1568 if (phd != NULL) { 1569 /* 1570 * Port is in use by one or more PCBs. Look for best 1571 * fit. 1572 */ 1573 LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1574 wildcard = 0; 1575 if (cred != NULL && 1576 !prison_equal_ip4(inp->inp_cred->cr_prison, 1577 cred->cr_prison)) 1578 continue; 1579 #ifdef INET6 1580 /* XXX inp locking */ 1581 if ((inp->inp_vflag & INP_IPV4) == 0) 1582 continue; 1583 /* 1584 * We never select the PCB that has 1585 * INP_IPV6 flag and is bound to :: if 1586 * we have another PCB which is bound 1587 * to 0.0.0.0. If a PCB has the 1588 * INP_IPV6 flag, then we set its cost 1589 * higher than IPv4 only PCBs. 1590 * 1591 * Note that the case only happens 1592 * when a socket is bound to ::, under 1593 * the condition that the use of the 1594 * mapped address is allowed. 1595 */ 1596 if ((inp->inp_vflag & INP_IPV6) != 0) 1597 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1598 #endif 1599 if (inp->inp_faddr.s_addr != INADDR_ANY) 1600 wildcard++; 1601 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1602 if (laddr.s_addr == INADDR_ANY) 1603 wildcard++; 1604 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1605 continue; 1606 } else { 1607 if (laddr.s_addr != INADDR_ANY) 1608 wildcard++; 1609 } 1610 if (wildcard < matchwild) { 1611 match = inp; 1612 matchwild = wildcard; 1613 if (matchwild == 0) 1614 break; 1615 } 1616 } 1617 } 1618 return (match); 1619 } 1620 } 1621 #undef INP_LOOKUP_MAPPED_PCB_COST 1622 1623 #ifdef PCBGROUP 1624 /* 1625 * Lookup PCB in hash list, using pcbgroup tables. 1626 */ 1627 static struct inpcb * 1628 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, 1629 struct in_addr faddr, u_int fport_arg, struct in_addr laddr, 1630 u_int lport_arg, int lookupflags, struct ifnet *ifp) 1631 { 1632 struct inpcbhead *head; 1633 struct inpcb *inp, *tmpinp; 1634 u_short fport = fport_arg, lport = lport_arg; 1635 1636 /* 1637 * First look for an exact match. 1638 */ 1639 tmpinp = NULL; 1640 INP_GROUP_LOCK(pcbgroup); 1641 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1642 pcbgroup->ipg_hashmask)]; 1643 LIST_FOREACH(inp, head, inp_pcbgrouphash) { 1644 #ifdef INET6 1645 /* XXX inp locking */ 1646 if ((inp->inp_vflag & INP_IPV4) == 0) 1647 continue; 1648 #endif 1649 if (inp->inp_faddr.s_addr == faddr.s_addr && 1650 inp->inp_laddr.s_addr == laddr.s_addr && 1651 inp->inp_fport == fport && 1652 inp->inp_lport == lport) { 1653 /* 1654 * XXX We should be able to directly return 1655 * the inp here, without any checks. 1656 * Well unless both bound with SO_REUSEPORT? 1657 */ 1658 if (prison_flag(inp->inp_cred, PR_IP4)) 1659 goto found; 1660 if (tmpinp == NULL) 1661 tmpinp = inp; 1662 } 1663 } 1664 if (tmpinp != NULL) { 1665 inp = tmpinp; 1666 goto found; 1667 } 1668 1669 #ifdef RSS 1670 /* 1671 * For incoming connections, we may wish to do a wildcard 1672 * match for an RSS-local socket. 1673 */ 1674 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1675 struct inpcb *local_wild = NULL, *local_exact = NULL; 1676 #ifdef INET6 1677 struct inpcb *local_wild_mapped = NULL; 1678 #endif 1679 struct inpcb *jail_wild = NULL; 1680 struct inpcbhead *head; 1681 int injail; 1682 1683 /* 1684 * Order of socket selection - we always prefer jails. 1685 * 1. jailed, non-wild. 1686 * 2. jailed, wild. 1687 * 3. non-jailed, non-wild. 1688 * 4. non-jailed, wild. 1689 */ 1690 1691 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, 1692 lport, 0, pcbgroup->ipg_hashmask)]; 1693 LIST_FOREACH(inp, head, inp_pcbgrouphash) { 1694 #ifdef INET6 1695 /* XXX inp locking */ 1696 if ((inp->inp_vflag & INP_IPV4) == 0) 1697 continue; 1698 #endif 1699 if (inp->inp_faddr.s_addr != INADDR_ANY || 1700 inp->inp_lport != lport) 1701 continue; 1702 1703 injail = prison_flag(inp->inp_cred, PR_IP4); 1704 if (injail) { 1705 if (prison_check_ip4(inp->inp_cred, 1706 &laddr) != 0) 1707 continue; 1708 } else { 1709 if (local_exact != NULL) 1710 continue; 1711 } 1712 1713 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1714 if (injail) 1715 goto found; 1716 else 1717 local_exact = inp; 1718 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1719 #ifdef INET6 1720 /* XXX inp locking, NULL check */ 1721 if (inp->inp_vflag & INP_IPV6PROTO) 1722 local_wild_mapped = inp; 1723 else 1724 #endif 1725 if (injail) 1726 jail_wild = inp; 1727 else 1728 local_wild = inp; 1729 } 1730 } /* LIST_FOREACH */ 1731 1732 inp = jail_wild; 1733 if (inp == NULL) 1734 inp = local_exact; 1735 if (inp == NULL) 1736 inp = local_wild; 1737 #ifdef INET6 1738 if (inp == NULL) 1739 inp = local_wild_mapped; 1740 #endif 1741 if (inp != NULL) 1742 goto found; 1743 } 1744 #endif 1745 1746 /* 1747 * Then look for a wildcard match, if requested. 1748 */ 1749 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1750 struct inpcb *local_wild = NULL, *local_exact = NULL; 1751 #ifdef INET6 1752 struct inpcb *local_wild_mapped = NULL; 1753 #endif 1754 struct inpcb *jail_wild = NULL; 1755 struct inpcbhead *head; 1756 int injail; 1757 1758 /* 1759 * Order of socket selection - we always prefer jails. 1760 * 1. jailed, non-wild. 1761 * 2. jailed, wild. 1762 * 3. non-jailed, non-wild. 1763 * 4. non-jailed, wild. 1764 */ 1765 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 1766 0, pcbinfo->ipi_wildmask)]; 1767 LIST_FOREACH(inp, head, inp_pcbgroup_wild) { 1768 #ifdef INET6 1769 /* XXX inp locking */ 1770 if ((inp->inp_vflag & INP_IPV4) == 0) 1771 continue; 1772 #endif 1773 if (inp->inp_faddr.s_addr != INADDR_ANY || 1774 inp->inp_lport != lport) 1775 continue; 1776 1777 injail = prison_flag(inp->inp_cred, PR_IP4); 1778 if (injail) { 1779 if (prison_check_ip4(inp->inp_cred, 1780 &laddr) != 0) 1781 continue; 1782 } else { 1783 if (local_exact != NULL) 1784 continue; 1785 } 1786 1787 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1788 if (injail) 1789 goto found; 1790 else 1791 local_exact = inp; 1792 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1793 #ifdef INET6 1794 /* XXX inp locking, NULL check */ 1795 if (inp->inp_vflag & INP_IPV6PROTO) 1796 local_wild_mapped = inp; 1797 else 1798 #endif 1799 if (injail) 1800 jail_wild = inp; 1801 else 1802 local_wild = inp; 1803 } 1804 } /* LIST_FOREACH */ 1805 inp = jail_wild; 1806 if (inp == NULL) 1807 inp = local_exact; 1808 if (inp == NULL) 1809 inp = local_wild; 1810 #ifdef INET6 1811 if (inp == NULL) 1812 inp = local_wild_mapped; 1813 #endif 1814 if (inp != NULL) 1815 goto found; 1816 } /* if (lookupflags & INPLOOKUP_WILDCARD) */ 1817 INP_GROUP_UNLOCK(pcbgroup); 1818 return (NULL); 1819 1820 found: 1821 in_pcbref(inp); 1822 INP_GROUP_UNLOCK(pcbgroup); 1823 if (lookupflags & INPLOOKUP_WLOCKPCB) { 1824 INP_WLOCK(inp); 1825 if (in_pcbrele_wlocked(inp)) 1826 return (NULL); 1827 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 1828 INP_RLOCK(inp); 1829 if (in_pcbrele_rlocked(inp)) 1830 return (NULL); 1831 } else 1832 panic("%s: locking bug", __func__); 1833 return (inp); 1834 } 1835 #endif /* PCBGROUP */ 1836 1837 /* 1838 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 1839 * that the caller has locked the hash list, and will not perform any further 1840 * locking or reference operations on either the hash list or the connection. 1841 */ 1842 static struct inpcb * 1843 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1844 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 1845 struct ifnet *ifp) 1846 { 1847 struct inpcbhead *head; 1848 struct inpcb *inp, *tmpinp; 1849 u_short fport = fport_arg, lport = lport_arg; 1850 1851 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1852 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1853 1854 INP_HASH_LOCK_ASSERT(pcbinfo); 1855 1856 /* 1857 * First look for an exact match. 1858 */ 1859 tmpinp = NULL; 1860 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1861 pcbinfo->ipi_hashmask)]; 1862 LIST_FOREACH(inp, head, inp_hash) { 1863 #ifdef INET6 1864 /* XXX inp locking */ 1865 if ((inp->inp_vflag & INP_IPV4) == 0) 1866 continue; 1867 #endif 1868 if (inp->inp_faddr.s_addr == faddr.s_addr && 1869 inp->inp_laddr.s_addr == laddr.s_addr && 1870 inp->inp_fport == fport && 1871 inp->inp_lport == lport) { 1872 /* 1873 * XXX We should be able to directly return 1874 * the inp here, without any checks. 1875 * Well unless both bound with SO_REUSEPORT? 1876 */ 1877 if (prison_flag(inp->inp_cred, PR_IP4)) 1878 return (inp); 1879 if (tmpinp == NULL) 1880 tmpinp = inp; 1881 } 1882 } 1883 if (tmpinp != NULL) 1884 return (tmpinp); 1885 1886 /* 1887 * Then look for a wildcard match, if requested. 1888 */ 1889 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1890 struct inpcb *local_wild = NULL, *local_exact = NULL; 1891 #ifdef INET6 1892 struct inpcb *local_wild_mapped = NULL; 1893 #endif 1894 struct inpcb *jail_wild = NULL; 1895 int injail; 1896 1897 /* 1898 * Order of socket selection - we always prefer jails. 1899 * 1. jailed, non-wild. 1900 * 2. jailed, wild. 1901 * 3. non-jailed, non-wild. 1902 * 4. non-jailed, wild. 1903 */ 1904 1905 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1906 0, pcbinfo->ipi_hashmask)]; 1907 LIST_FOREACH(inp, head, inp_hash) { 1908 #ifdef INET6 1909 /* XXX inp locking */ 1910 if ((inp->inp_vflag & INP_IPV4) == 0) 1911 continue; 1912 #endif 1913 if (inp->inp_faddr.s_addr != INADDR_ANY || 1914 inp->inp_lport != lport) 1915 continue; 1916 1917 injail = prison_flag(inp->inp_cred, PR_IP4); 1918 if (injail) { 1919 if (prison_check_ip4(inp->inp_cred, 1920 &laddr) != 0) 1921 continue; 1922 } else { 1923 if (local_exact != NULL) 1924 continue; 1925 } 1926 1927 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1928 if (injail) 1929 return (inp); 1930 else 1931 local_exact = inp; 1932 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1933 #ifdef INET6 1934 /* XXX inp locking, NULL check */ 1935 if (inp->inp_vflag & INP_IPV6PROTO) 1936 local_wild_mapped = inp; 1937 else 1938 #endif 1939 if (injail) 1940 jail_wild = inp; 1941 else 1942 local_wild = inp; 1943 } 1944 } /* LIST_FOREACH */ 1945 if (jail_wild != NULL) 1946 return (jail_wild); 1947 if (local_exact != NULL) 1948 return (local_exact); 1949 if (local_wild != NULL) 1950 return (local_wild); 1951 #ifdef INET6 1952 if (local_wild_mapped != NULL) 1953 return (local_wild_mapped); 1954 #endif 1955 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 1956 1957 return (NULL); 1958 } 1959 1960 /* 1961 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 1962 * hash list lock, and will return the inpcb locked (i.e., requires 1963 * INPLOOKUP_LOCKPCB). 1964 */ 1965 static struct inpcb * 1966 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1967 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 1968 struct ifnet *ifp) 1969 { 1970 struct inpcb *inp; 1971 1972 INP_HASH_RLOCK(pcbinfo); 1973 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 1974 (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp); 1975 if (inp != NULL) { 1976 in_pcbref(inp); 1977 INP_HASH_RUNLOCK(pcbinfo); 1978 if (lookupflags & INPLOOKUP_WLOCKPCB) { 1979 INP_WLOCK(inp); 1980 if (in_pcbrele_wlocked(inp)) 1981 return (NULL); 1982 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 1983 INP_RLOCK(inp); 1984 if (in_pcbrele_rlocked(inp)) 1985 return (NULL); 1986 } else 1987 panic("%s: locking bug", __func__); 1988 } else 1989 INP_HASH_RUNLOCK(pcbinfo); 1990 return (inp); 1991 } 1992 1993 /* 1994 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 1995 * from which a pre-calculated hash value may be extracted. 1996 * 1997 * Possibly more of this logic should be in in_pcbgroup.c. 1998 */ 1999 struct inpcb * 2000 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2001 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 2002 { 2003 #if defined(PCBGROUP) && !defined(RSS) 2004 struct inpcbgroup *pcbgroup; 2005 #endif 2006 2007 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2008 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2009 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2010 ("%s: LOCKPCB not set", __func__)); 2011 2012 /* 2013 * When not using RSS, use connection groups in preference to the 2014 * reservation table when looking up 4-tuples. When using RSS, just 2015 * use the reservation table, due to the cost of the Toeplitz hash 2016 * in software. 2017 * 2018 * XXXRW: This policy belongs in the pcbgroup code, as in principle 2019 * we could be doing RSS with a non-Toeplitz hash that is affordable 2020 * in software. 2021 */ 2022 #if defined(PCBGROUP) && !defined(RSS) 2023 if (in_pcbgroup_enabled(pcbinfo)) { 2024 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2025 fport); 2026 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2027 laddr, lport, lookupflags, ifp)); 2028 } 2029 #endif 2030 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2031 lookupflags, ifp)); 2032 } 2033 2034 struct inpcb * 2035 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2036 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2037 struct ifnet *ifp, struct mbuf *m) 2038 { 2039 #ifdef PCBGROUP 2040 struct inpcbgroup *pcbgroup; 2041 #endif 2042 2043 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2044 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2045 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2046 ("%s: LOCKPCB not set", __func__)); 2047 2048 #ifdef PCBGROUP 2049 /* 2050 * If we can use a hardware-generated hash to look up the connection 2051 * group, use that connection group to find the inpcb. Otherwise 2052 * fall back on a software hash -- or the reservation table if we're 2053 * using RSS. 2054 * 2055 * XXXRW: As above, that policy belongs in the pcbgroup code. 2056 */ 2057 if (in_pcbgroup_enabled(pcbinfo) && 2058 !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { 2059 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), 2060 m->m_pkthdr.flowid); 2061 if (pcbgroup != NULL) 2062 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, 2063 fport, laddr, lport, lookupflags, ifp)); 2064 #ifndef RSS 2065 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2066 fport); 2067 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2068 laddr, lport, lookupflags, ifp)); 2069 #endif 2070 } 2071 #endif 2072 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2073 lookupflags, ifp)); 2074 } 2075 #endif /* INET */ 2076 2077 /* 2078 * Insert PCB onto various hash lists. 2079 */ 2080 static int 2081 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update) 2082 { 2083 struct inpcbhead *pcbhash; 2084 struct inpcbporthead *pcbporthash; 2085 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2086 struct inpcbport *phd; 2087 u_int32_t hashkey_faddr; 2088 2089 INP_WLOCK_ASSERT(inp); 2090 INP_HASH_WLOCK_ASSERT(pcbinfo); 2091 2092 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2093 ("in_pcbinshash: INP_INHASHLIST")); 2094 2095 #ifdef INET6 2096 if (inp->inp_vflag & INP_IPV6) 2097 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2098 else 2099 #endif 2100 hashkey_faddr = inp->inp_faddr.s_addr; 2101 2102 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2103 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2104 2105 pcbporthash = &pcbinfo->ipi_porthashbase[ 2106 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2107 2108 /* 2109 * Go through port list and look for a head for this lport. 2110 */ 2111 LIST_FOREACH(phd, pcbporthash, phd_hash) { 2112 if (phd->phd_port == inp->inp_lport) 2113 break; 2114 } 2115 /* 2116 * If none exists, malloc one and tack it on. 2117 */ 2118 if (phd == NULL) { 2119 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 2120 if (phd == NULL) { 2121 return (ENOBUFS); /* XXX */ 2122 } 2123 phd->phd_port = inp->inp_lport; 2124 LIST_INIT(&phd->phd_pcblist); 2125 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2126 } 2127 inp->inp_phd = phd; 2128 LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2129 LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2130 inp->inp_flags |= INP_INHASHLIST; 2131 #ifdef PCBGROUP 2132 if (do_pcbgroup_update) 2133 in_pcbgroup_update(inp); 2134 #endif 2135 return (0); 2136 } 2137 2138 /* 2139 * For now, there are two public interfaces to insert an inpcb into the hash 2140 * lists -- one that does update pcbgroups, and one that doesn't. The latter 2141 * is used only in the TCP syncache, where in_pcbinshash is called before the 2142 * full 4-tuple is set for the inpcb, and we don't want to install in the 2143 * pcbgroup until later. 2144 * 2145 * XXXRW: This seems like a misfeature. in_pcbinshash should always update 2146 * connection groups, and partially initialised inpcbs should not be exposed 2147 * to either reservation hash tables or pcbgroups. 2148 */ 2149 int 2150 in_pcbinshash(struct inpcb *inp) 2151 { 2152 2153 return (in_pcbinshash_internal(inp, 1)); 2154 } 2155 2156 int 2157 in_pcbinshash_nopcbgroup(struct inpcb *inp) 2158 { 2159 2160 return (in_pcbinshash_internal(inp, 0)); 2161 } 2162 2163 /* 2164 * Move PCB to the proper hash bucket when { faddr, fport } have been 2165 * changed. NOTE: This does not handle the case of the lport changing (the 2166 * hashed port list would have to be updated as well), so the lport must 2167 * not change after in_pcbinshash() has been called. 2168 */ 2169 void 2170 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) 2171 { 2172 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2173 struct inpcbhead *head; 2174 u_int32_t hashkey_faddr; 2175 2176 INP_WLOCK_ASSERT(inp); 2177 INP_HASH_WLOCK_ASSERT(pcbinfo); 2178 2179 KASSERT(inp->inp_flags & INP_INHASHLIST, 2180 ("in_pcbrehash: !INP_INHASHLIST")); 2181 2182 #ifdef INET6 2183 if (inp->inp_vflag & INP_IPV6) 2184 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2185 else 2186 #endif 2187 hashkey_faddr = inp->inp_faddr.s_addr; 2188 2189 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2190 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2191 2192 LIST_REMOVE(inp, inp_hash); 2193 LIST_INSERT_HEAD(head, inp, inp_hash); 2194 2195 #ifdef PCBGROUP 2196 if (m != NULL) 2197 in_pcbgroup_update_mbuf(inp, m); 2198 else 2199 in_pcbgroup_update(inp); 2200 #endif 2201 } 2202 2203 void 2204 in_pcbrehash(struct inpcb *inp) 2205 { 2206 2207 in_pcbrehash_mbuf(inp, NULL); 2208 } 2209 2210 /* 2211 * Remove PCB from various lists. 2212 */ 2213 static void 2214 in_pcbremlists(struct inpcb *inp) 2215 { 2216 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2217 2218 #ifdef INVARIANTS 2219 if (pcbinfo == &V_tcbinfo) { 2220 INP_INFO_RLOCK_ASSERT(pcbinfo); 2221 } else { 2222 INP_INFO_WLOCK_ASSERT(pcbinfo); 2223 } 2224 #endif 2225 2226 INP_WLOCK_ASSERT(inp); 2227 INP_LIST_WLOCK_ASSERT(pcbinfo); 2228 2229 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 2230 if (inp->inp_flags & INP_INHASHLIST) { 2231 struct inpcbport *phd = inp->inp_phd; 2232 2233 INP_HASH_WLOCK(pcbinfo); 2234 LIST_REMOVE(inp, inp_hash); 2235 LIST_REMOVE(inp, inp_portlist); 2236 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 2237 LIST_REMOVE(phd, phd_hash); 2238 free(phd, M_PCB); 2239 } 2240 INP_HASH_WUNLOCK(pcbinfo); 2241 inp->inp_flags &= ~INP_INHASHLIST; 2242 } 2243 LIST_REMOVE(inp, inp_list); 2244 pcbinfo->ipi_count--; 2245 #ifdef PCBGROUP 2246 in_pcbgroup_remove(inp); 2247 #endif 2248 } 2249 2250 /* 2251 * Check for alternatives when higher level complains 2252 * about service problems. For now, invalidate cached 2253 * routing information. If the route was created dynamically 2254 * (by a redirect), time to try a default gateway again. 2255 */ 2256 void 2257 in_losing(struct inpcb *inp) 2258 { 2259 2260 RO_INVALIDATE_CACHE(&inp->inp_route); 2261 return; 2262 } 2263 2264 /* 2265 * A set label operation has occurred at the socket layer, propagate the 2266 * label change into the in_pcb for the socket. 2267 */ 2268 void 2269 in_pcbsosetlabel(struct socket *so) 2270 { 2271 #ifdef MAC 2272 struct inpcb *inp; 2273 2274 inp = sotoinpcb(so); 2275 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2276 2277 INP_WLOCK(inp); 2278 SOCK_LOCK(so); 2279 mac_inpcb_sosetlabel(so, inp); 2280 SOCK_UNLOCK(so); 2281 INP_WUNLOCK(inp); 2282 #endif 2283 } 2284 2285 /* 2286 * ipport_tick runs once per second, determining if random port allocation 2287 * should be continued. If more than ipport_randomcps ports have been 2288 * allocated in the last second, then we return to sequential port 2289 * allocation. We return to random allocation only once we drop below 2290 * ipport_randomcps for at least ipport_randomtime seconds. 2291 */ 2292 static void 2293 ipport_tick(void *xtp) 2294 { 2295 VNET_ITERATOR_DECL(vnet_iter); 2296 2297 VNET_LIST_RLOCK_NOSLEEP(); 2298 VNET_FOREACH(vnet_iter) { 2299 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2300 if (V_ipport_tcpallocs <= 2301 V_ipport_tcplastcount + V_ipport_randomcps) { 2302 if (V_ipport_stoprandom > 0) 2303 V_ipport_stoprandom--; 2304 } else 2305 V_ipport_stoprandom = V_ipport_randomtime; 2306 V_ipport_tcplastcount = V_ipport_tcpallocs; 2307 CURVNET_RESTORE(); 2308 } 2309 VNET_LIST_RUNLOCK_NOSLEEP(); 2310 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2311 } 2312 2313 static void 2314 ip_fini(void *xtp) 2315 { 2316 2317 callout_stop(&ipport_tick_callout); 2318 } 2319 2320 /* 2321 * The ipport_callout should start running at about the time we attach the 2322 * inet or inet6 domains. 2323 */ 2324 static void 2325 ipport_tick_init(const void *unused __unused) 2326 { 2327 2328 /* Start ipport_tick. */ 2329 callout_init(&ipport_tick_callout, 1); 2330 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2331 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2332 SHUTDOWN_PRI_DEFAULT); 2333 } 2334 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2335 ipport_tick_init, NULL); 2336 2337 void 2338 inp_wlock(struct inpcb *inp) 2339 { 2340 2341 INP_WLOCK(inp); 2342 } 2343 2344 void 2345 inp_wunlock(struct inpcb *inp) 2346 { 2347 2348 INP_WUNLOCK(inp); 2349 } 2350 2351 void 2352 inp_rlock(struct inpcb *inp) 2353 { 2354 2355 INP_RLOCK(inp); 2356 } 2357 2358 void 2359 inp_runlock(struct inpcb *inp) 2360 { 2361 2362 INP_RUNLOCK(inp); 2363 } 2364 2365 #ifdef INVARIANT_SUPPORT 2366 void 2367 inp_lock_assert(struct inpcb *inp) 2368 { 2369 2370 INP_WLOCK_ASSERT(inp); 2371 } 2372 2373 void 2374 inp_unlock_assert(struct inpcb *inp) 2375 { 2376 2377 INP_UNLOCK_ASSERT(inp); 2378 } 2379 #endif 2380 2381 void 2382 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2383 { 2384 struct inpcb *inp; 2385 2386 INP_INFO_WLOCK(&V_tcbinfo); 2387 LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 2388 INP_WLOCK(inp); 2389 func(inp, arg); 2390 INP_WUNLOCK(inp); 2391 } 2392 INP_INFO_WUNLOCK(&V_tcbinfo); 2393 } 2394 2395 struct socket * 2396 inp_inpcbtosocket(struct inpcb *inp) 2397 { 2398 2399 INP_WLOCK_ASSERT(inp); 2400 return (inp->inp_socket); 2401 } 2402 2403 struct tcpcb * 2404 inp_inpcbtotcpcb(struct inpcb *inp) 2405 { 2406 2407 INP_WLOCK_ASSERT(inp); 2408 return ((struct tcpcb *)inp->inp_ppcb); 2409 } 2410 2411 int 2412 inp_ip_tos_get(const struct inpcb *inp) 2413 { 2414 2415 return (inp->inp_ip_tos); 2416 } 2417 2418 void 2419 inp_ip_tos_set(struct inpcb *inp, int val) 2420 { 2421 2422 inp->inp_ip_tos = val; 2423 } 2424 2425 void 2426 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2427 uint32_t *faddr, uint16_t *fp) 2428 { 2429 2430 INP_LOCK_ASSERT(inp); 2431 *laddr = inp->inp_laddr.s_addr; 2432 *faddr = inp->inp_faddr.s_addr; 2433 *lp = inp->inp_lport; 2434 *fp = inp->inp_fport; 2435 } 2436 2437 struct inpcb * 2438 so_sotoinpcb(struct socket *so) 2439 { 2440 2441 return (sotoinpcb(so)); 2442 } 2443 2444 struct tcpcb * 2445 so_sototcpcb(struct socket *so) 2446 { 2447 2448 return (sototcpcb(so)); 2449 } 2450 2451 /* 2452 * Create an external-format (``xinpcb'') structure using the information in 2453 * the kernel-format in_pcb structure pointed to by inp. This is done to 2454 * reduce the spew of irrelevant information over this interface, to isolate 2455 * user code from changes in the kernel structure, and potentially to provide 2456 * information-hiding if we decide that some of this information should be 2457 * hidden from users. 2458 */ 2459 void 2460 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2461 { 2462 2463 xi->xi_len = sizeof(struct xinpcb); 2464 if (inp->inp_socket) 2465 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2466 else 2467 bzero(&xi->xi_socket, sizeof(struct xsocket)); 2468 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2469 xi->inp_gencnt = inp->inp_gencnt; 2470 xi->inp_ppcb = inp->inp_ppcb; 2471 xi->inp_flow = inp->inp_flow; 2472 xi->inp_flowid = inp->inp_flowid; 2473 xi->inp_flowtype = inp->inp_flowtype; 2474 xi->inp_flags = inp->inp_flags; 2475 xi->inp_flags2 = inp->inp_flags2; 2476 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2477 xi->in6p_cksum = inp->in6p_cksum; 2478 xi->in6p_hops = inp->in6p_hops; 2479 xi->inp_ip_tos = inp->inp_ip_tos; 2480 xi->inp_vflag = inp->inp_vflag; 2481 xi->inp_ip_ttl = inp->inp_ip_ttl; 2482 xi->inp_ip_p = inp->inp_ip_p; 2483 xi->inp_ip_minttl = inp->inp_ip_minttl; 2484 } 2485 2486 #ifdef DDB 2487 static void 2488 db_print_indent(int indent) 2489 { 2490 int i; 2491 2492 for (i = 0; i < indent; i++) 2493 db_printf(" "); 2494 } 2495 2496 static void 2497 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2498 { 2499 char faddr_str[48], laddr_str[48]; 2500 2501 db_print_indent(indent); 2502 db_printf("%s at %p\n", name, inc); 2503 2504 indent += 2; 2505 2506 #ifdef INET6 2507 if (inc->inc_flags & INC_ISIPV6) { 2508 /* IPv6. */ 2509 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2510 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2511 } else 2512 #endif 2513 { 2514 /* IPv4. */ 2515 inet_ntoa_r(inc->inc_laddr, laddr_str); 2516 inet_ntoa_r(inc->inc_faddr, faddr_str); 2517 } 2518 db_print_indent(indent); 2519 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2520 ntohs(inc->inc_lport)); 2521 db_print_indent(indent); 2522 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2523 ntohs(inc->inc_fport)); 2524 } 2525 2526 static void 2527 db_print_inpflags(int inp_flags) 2528 { 2529 int comma; 2530 2531 comma = 0; 2532 if (inp_flags & INP_RECVOPTS) { 2533 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2534 comma = 1; 2535 } 2536 if (inp_flags & INP_RECVRETOPTS) { 2537 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2538 comma = 1; 2539 } 2540 if (inp_flags & INP_RECVDSTADDR) { 2541 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2542 comma = 1; 2543 } 2544 if (inp_flags & INP_ORIGDSTADDR) { 2545 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 2546 comma = 1; 2547 } 2548 if (inp_flags & INP_HDRINCL) { 2549 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2550 comma = 1; 2551 } 2552 if (inp_flags & INP_HIGHPORT) { 2553 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2554 comma = 1; 2555 } 2556 if (inp_flags & INP_LOWPORT) { 2557 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2558 comma = 1; 2559 } 2560 if (inp_flags & INP_ANONPORT) { 2561 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2562 comma = 1; 2563 } 2564 if (inp_flags & INP_RECVIF) { 2565 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2566 comma = 1; 2567 } 2568 if (inp_flags & INP_MTUDISC) { 2569 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2570 comma = 1; 2571 } 2572 if (inp_flags & INP_RECVTTL) { 2573 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 2574 comma = 1; 2575 } 2576 if (inp_flags & INP_DONTFRAG) { 2577 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 2578 comma = 1; 2579 } 2580 if (inp_flags & INP_RECVTOS) { 2581 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 2582 comma = 1; 2583 } 2584 if (inp_flags & IN6P_IPV6_V6ONLY) { 2585 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 2586 comma = 1; 2587 } 2588 if (inp_flags & IN6P_PKTINFO) { 2589 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 2590 comma = 1; 2591 } 2592 if (inp_flags & IN6P_HOPLIMIT) { 2593 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 2594 comma = 1; 2595 } 2596 if (inp_flags & IN6P_HOPOPTS) { 2597 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 2598 comma = 1; 2599 } 2600 if (inp_flags & IN6P_DSTOPTS) { 2601 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 2602 comma = 1; 2603 } 2604 if (inp_flags & IN6P_RTHDR) { 2605 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 2606 comma = 1; 2607 } 2608 if (inp_flags & IN6P_RTHDRDSTOPTS) { 2609 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 2610 comma = 1; 2611 } 2612 if (inp_flags & IN6P_TCLASS) { 2613 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 2614 comma = 1; 2615 } 2616 if (inp_flags & IN6P_AUTOFLOWLABEL) { 2617 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 2618 comma = 1; 2619 } 2620 if (inp_flags & INP_TIMEWAIT) { 2621 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 2622 comma = 1; 2623 } 2624 if (inp_flags & INP_ONESBCAST) { 2625 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 2626 comma = 1; 2627 } 2628 if (inp_flags & INP_DROPPED) { 2629 db_printf("%sINP_DROPPED", comma ? ", " : ""); 2630 comma = 1; 2631 } 2632 if (inp_flags & INP_SOCKREF) { 2633 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 2634 comma = 1; 2635 } 2636 if (inp_flags & IN6P_RFC2292) { 2637 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 2638 comma = 1; 2639 } 2640 if (inp_flags & IN6P_MTU) { 2641 db_printf("IN6P_MTU%s", comma ? ", " : ""); 2642 comma = 1; 2643 } 2644 } 2645 2646 static void 2647 db_print_inpvflag(u_char inp_vflag) 2648 { 2649 int comma; 2650 2651 comma = 0; 2652 if (inp_vflag & INP_IPV4) { 2653 db_printf("%sINP_IPV4", comma ? ", " : ""); 2654 comma = 1; 2655 } 2656 if (inp_vflag & INP_IPV6) { 2657 db_printf("%sINP_IPV6", comma ? ", " : ""); 2658 comma = 1; 2659 } 2660 if (inp_vflag & INP_IPV6PROTO) { 2661 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 2662 comma = 1; 2663 } 2664 } 2665 2666 static void 2667 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 2668 { 2669 2670 db_print_indent(indent); 2671 db_printf("%s at %p\n", name, inp); 2672 2673 indent += 2; 2674 2675 db_print_indent(indent); 2676 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 2677 2678 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 2679 2680 db_print_indent(indent); 2681 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 2682 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 2683 2684 db_print_indent(indent); 2685 db_printf("inp_label: %p inp_flags: 0x%x (", 2686 inp->inp_label, inp->inp_flags); 2687 db_print_inpflags(inp->inp_flags); 2688 db_printf(")\n"); 2689 2690 db_print_indent(indent); 2691 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 2692 inp->inp_vflag); 2693 db_print_inpvflag(inp->inp_vflag); 2694 db_printf(")\n"); 2695 2696 db_print_indent(indent); 2697 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 2698 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 2699 2700 db_print_indent(indent); 2701 #ifdef INET6 2702 if (inp->inp_vflag & INP_IPV6) { 2703 db_printf("in6p_options: %p in6p_outputopts: %p " 2704 "in6p_moptions: %p\n", inp->in6p_options, 2705 inp->in6p_outputopts, inp->in6p_moptions); 2706 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 2707 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 2708 inp->in6p_hops); 2709 } else 2710 #endif 2711 { 2712 db_printf("inp_ip_tos: %d inp_ip_options: %p " 2713 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 2714 inp->inp_options, inp->inp_moptions); 2715 } 2716 2717 db_print_indent(indent); 2718 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 2719 (uintmax_t)inp->inp_gencnt); 2720 } 2721 2722 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 2723 { 2724 struct inpcb *inp; 2725 2726 if (!have_addr) { 2727 db_printf("usage: show inpcb <addr>\n"); 2728 return; 2729 } 2730 inp = (struct inpcb *)addr; 2731 2732 db_print_inpcb(inp, "inpcb", 0); 2733 } 2734 #endif /* DDB */ 2735 2736 #ifdef RATELIMIT 2737 /* 2738 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 2739 * if any. 2740 */ 2741 int 2742 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 2743 { 2744 union if_snd_tag_modify_params params = { 2745 .rate_limit.max_rate = max_pacing_rate, 2746 }; 2747 struct m_snd_tag *mst; 2748 struct ifnet *ifp; 2749 int error; 2750 2751 mst = inp->inp_snd_tag; 2752 if (mst == NULL) 2753 return (EINVAL); 2754 2755 ifp = mst->ifp; 2756 if (ifp == NULL) 2757 return (EINVAL); 2758 2759 if (ifp->if_snd_tag_modify == NULL) { 2760 error = EOPNOTSUPP; 2761 } else { 2762 error = ifp->if_snd_tag_modify(mst, ¶ms); 2763 } 2764 return (error); 2765 } 2766 2767 /* 2768 * Query existing TX rate limit based on the existing 2769 * "inp->inp_snd_tag", if any. 2770 */ 2771 int 2772 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 2773 { 2774 union if_snd_tag_query_params params = { }; 2775 struct m_snd_tag *mst; 2776 struct ifnet *ifp; 2777 int error; 2778 2779 mst = inp->inp_snd_tag; 2780 if (mst == NULL) 2781 return (EINVAL); 2782 2783 ifp = mst->ifp; 2784 if (ifp == NULL) 2785 return (EINVAL); 2786 2787 if (ifp->if_snd_tag_query == NULL) { 2788 error = EOPNOTSUPP; 2789 } else { 2790 error = ifp->if_snd_tag_query(mst, ¶ms); 2791 if (error == 0 && p_max_pacing_rate != NULL) 2792 *p_max_pacing_rate = params.rate_limit.max_rate; 2793 } 2794 return (error); 2795 } 2796 2797 /* 2798 * Query existing TX queue level based on the existing 2799 * "inp->inp_snd_tag", if any. 2800 */ 2801 int 2802 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 2803 { 2804 union if_snd_tag_query_params params = { }; 2805 struct m_snd_tag *mst; 2806 struct ifnet *ifp; 2807 int error; 2808 2809 mst = inp->inp_snd_tag; 2810 if (mst == NULL) 2811 return (EINVAL); 2812 2813 ifp = mst->ifp; 2814 if (ifp == NULL) 2815 return (EINVAL); 2816 2817 if (ifp->if_snd_tag_query == NULL) 2818 return (EOPNOTSUPP); 2819 2820 error = ifp->if_snd_tag_query(mst, ¶ms); 2821 if (error == 0 && p_txqueue_level != NULL) 2822 *p_txqueue_level = params.rate_limit.queue_level; 2823 return (error); 2824 } 2825 2826 /* 2827 * Allocate a new TX rate limit send tag from the network interface 2828 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 2829 */ 2830 int 2831 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 2832 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate) 2833 { 2834 union if_snd_tag_alloc_params params = { 2835 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 2836 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 2837 .rate_limit.hdr.flowid = flowid, 2838 .rate_limit.hdr.flowtype = flowtype, 2839 .rate_limit.max_rate = max_pacing_rate, 2840 }; 2841 int error; 2842 2843 INP_WLOCK_ASSERT(inp); 2844 2845 if (inp->inp_snd_tag != NULL) 2846 return (EINVAL); 2847 2848 if (ifp->if_snd_tag_alloc == NULL) { 2849 error = EOPNOTSUPP; 2850 } else { 2851 error = ifp->if_snd_tag_alloc(ifp, ¶ms, &inp->inp_snd_tag); 2852 2853 /* 2854 * At success increment the refcount on 2855 * the send tag's network interface: 2856 */ 2857 if (error == 0) 2858 if_ref(inp->inp_snd_tag->ifp); 2859 } 2860 return (error); 2861 } 2862 2863 /* 2864 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 2865 * if any: 2866 */ 2867 void 2868 in_pcbdetach_txrtlmt(struct inpcb *inp) 2869 { 2870 struct m_snd_tag *mst; 2871 struct ifnet *ifp; 2872 2873 INP_WLOCK_ASSERT(inp); 2874 2875 mst = inp->inp_snd_tag; 2876 inp->inp_snd_tag = NULL; 2877 2878 if (mst == NULL) 2879 return; 2880 2881 ifp = mst->ifp; 2882 if (ifp == NULL) 2883 return; 2884 2885 /* 2886 * If the device was detached while we still had reference(s) 2887 * on the ifp, we assume if_snd_tag_free() was replaced with 2888 * stubs. 2889 */ 2890 ifp->if_snd_tag_free(mst); 2891 2892 /* release reference count on network interface */ 2893 if_rele(ifp); 2894 } 2895 2896 /* 2897 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 2898 * is set in the fast path and will attach/detach/modify the TX rate 2899 * limit send tag based on the socket's so_max_pacing_rate value. 2900 */ 2901 void 2902 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 2903 { 2904 struct socket *socket; 2905 uint32_t max_pacing_rate; 2906 bool did_upgrade; 2907 int error; 2908 2909 if (inp == NULL) 2910 return; 2911 2912 socket = inp->inp_socket; 2913 if (socket == NULL) 2914 return; 2915 2916 if (!INP_WLOCKED(inp)) { 2917 /* 2918 * NOTE: If the write locking fails, we need to bail 2919 * out and use the non-ratelimited ring for the 2920 * transmit until there is a new chance to get the 2921 * write lock. 2922 */ 2923 if (!INP_TRY_UPGRADE(inp)) 2924 return; 2925 did_upgrade = 1; 2926 } else { 2927 did_upgrade = 0; 2928 } 2929 2930 /* 2931 * NOTE: The so_max_pacing_rate value is read unlocked, 2932 * because atomic updates are not required since the variable 2933 * is checked at every mbuf we send. It is assumed that the 2934 * variable read itself will be atomic. 2935 */ 2936 max_pacing_rate = socket->so_max_pacing_rate; 2937 2938 /* 2939 * NOTE: When attaching to a network interface a reference is 2940 * made to ensure the network interface doesn't go away until 2941 * all ratelimit connections are gone. The network interface 2942 * pointers compared below represent valid network interfaces, 2943 * except when comparing towards NULL. 2944 */ 2945 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 2946 error = 0; 2947 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 2948 if (inp->inp_snd_tag != NULL) 2949 in_pcbdetach_txrtlmt(inp); 2950 error = 0; 2951 } else if (inp->inp_snd_tag == NULL) { 2952 /* 2953 * In order to utilize packet pacing with RSS, we need 2954 * to wait until there is a valid RSS hash before we 2955 * can proceed: 2956 */ 2957 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 2958 error = EAGAIN; 2959 } else { 2960 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 2961 mb->m_pkthdr.flowid, max_pacing_rate); 2962 } 2963 } else { 2964 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 2965 } 2966 if (error == 0 || error == EOPNOTSUPP) 2967 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 2968 if (did_upgrade) 2969 INP_DOWNGRADE(inp); 2970 } 2971 2972 /* 2973 * Track route changes for TX rate limiting. 2974 */ 2975 void 2976 in_pcboutput_eagain(struct inpcb *inp) 2977 { 2978 struct socket *socket; 2979 bool did_upgrade; 2980 2981 if (inp == NULL) 2982 return; 2983 2984 socket = inp->inp_socket; 2985 if (socket == NULL) 2986 return; 2987 2988 if (inp->inp_snd_tag == NULL) 2989 return; 2990 2991 if (!INP_WLOCKED(inp)) { 2992 /* 2993 * NOTE: If the write locking fails, we need to bail 2994 * out and use the non-ratelimited ring for the 2995 * transmit until there is a new chance to get the 2996 * write lock. 2997 */ 2998 if (!INP_TRY_UPGRADE(inp)) 2999 return; 3000 did_upgrade = 1; 3001 } else { 3002 did_upgrade = 0; 3003 } 3004 3005 /* detach rate limiting */ 3006 in_pcbdetach_txrtlmt(inp); 3007 3008 /* make sure new mbuf send tag allocation is made */ 3009 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3010 3011 if (did_upgrade) 3012 INP_DOWNGRADE(inp); 3013 } 3014 #endif /* RATELIMIT */ 3015