xref: /freebsd/sys/netinet/in_pcb.c (revision a14a0223ae1b172e96dd2a1d849e22026a98b692)
1 /*
2  * Copyright (c) 1982, 1986, 1991, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
34  * $FreeBSD$
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/protosw.h>
42 #include <sys/socket.h>
43 #include <sys/socketvar.h>
44 #include <sys/proc.h>
45 #include <sys/jail.h>
46 #include <sys/kernel.h>
47 #include <sys/sysctl.h>
48 
49 #include <machine/limits.h>
50 
51 #include <vm/vm_zone.h>
52 
53 #include <net/if.h>
54 #include <net/route.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_pcb.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip_var.h>
60 
61 struct	in_addr zeroin_addr;
62 
63 static void	in_rtchange __P((struct inpcb *, int));
64 
65 /*
66  * These configure the range of local port addresses assigned to
67  * "unspecified" outgoing connections/packets/whatever.
68  */
69 static int ipport_lowfirstauto  = IPPORT_RESERVED - 1;	/* 1023 */
70 static int ipport_lowlastauto = IPPORT_RESERVEDSTART;	/* 600 */
71 static int ipport_firstauto = IPPORT_RESERVED;		/* 1024 */
72 static int ipport_lastauto  = IPPORT_USERRESERVED;	/* 5000 */
73 static int ipport_hifirstauto = IPPORT_HIFIRSTAUTO;	/* 49152 */
74 static int ipport_hilastauto  = IPPORT_HILASTAUTO;	/* 65535 */
75 
76 #define RANGECHK(var, min, max) \
77 	if ((var) < (min)) { (var) = (min); } \
78 	else if ((var) > (max)) { (var) = (max); }
79 
80 static int
81 sysctl_net_ipport_check SYSCTL_HANDLER_ARGS
82 {
83 	int error = sysctl_handle_int(oidp,
84 		oidp->oid_arg1, oidp->oid_arg2, req);
85 	if (!error) {
86 		RANGECHK(ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
87 		RANGECHK(ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
88 		RANGECHK(ipport_firstauto, IPPORT_RESERVED, USHRT_MAX);
89 		RANGECHK(ipport_lastauto, IPPORT_RESERVED, USHRT_MAX);
90 		RANGECHK(ipport_hifirstauto, IPPORT_RESERVED, USHRT_MAX);
91 		RANGECHK(ipport_hilastauto, IPPORT_RESERVED, USHRT_MAX);
92 	}
93 	return error;
94 }
95 
96 #undef RANGECHK
97 
98 SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports");
99 
100 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLTYPE_INT|CTLFLAG_RW,
101 	   &ipport_lowfirstauto, 0, &sysctl_net_ipport_check, "I", "");
102 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLTYPE_INT|CTLFLAG_RW,
103 	   &ipport_lowlastauto, 0, &sysctl_net_ipport_check, "I", "");
104 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLTYPE_INT|CTLFLAG_RW,
105 	   &ipport_firstauto, 0, &sysctl_net_ipport_check, "I", "");
106 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLTYPE_INT|CTLFLAG_RW,
107 	   &ipport_lastauto, 0, &sysctl_net_ipport_check, "I", "");
108 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLTYPE_INT|CTLFLAG_RW,
109 	   &ipport_hifirstauto, 0, &sysctl_net_ipport_check, "I", "");
110 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLTYPE_INT|CTLFLAG_RW,
111 	   &ipport_hilastauto, 0, &sysctl_net_ipport_check, "I", "");
112 
113 /*
114  * in_pcb.c: manage the Protocol Control Blocks.
115  *
116  * NOTE: It is assumed that most of these functions will be called at
117  * splnet(). XXX - There are, unfortunately, a few exceptions to this
118  * rule that should be fixed.
119  */
120 
121 /*
122  * Allocate a PCB and associate it with the socket.
123  */
124 int
125 in_pcballoc(so, pcbinfo, p)
126 	struct socket *so;
127 	struct inpcbinfo *pcbinfo;
128 	struct proc *p;
129 {
130 	register struct inpcb *inp;
131 
132 	inp = zalloci(pcbinfo->ipi_zone);
133 	if (inp == NULL)
134 		return (ENOBUFS);
135 	bzero((caddr_t)inp, sizeof(*inp));
136 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
137 	inp->inp_pcbinfo = pcbinfo;
138 	inp->inp_socket = so;
139 	LIST_INSERT_HEAD(pcbinfo->listhead, inp, inp_list);
140 	pcbinfo->ipi_count++;
141 	so->so_pcb = (caddr_t)inp;
142 	return (0);
143 }
144 
145 int
146 in_pcbbind(inp, nam, p)
147 	register struct inpcb *inp;
148 	struct sockaddr *nam;
149 	struct proc *p;
150 {
151 	register struct socket *so = inp->inp_socket;
152 	unsigned short *lastport;
153 	struct sockaddr_in *sin;
154 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
155 	u_short lport = 0;
156 	int wild = 0, reuseport = (so->so_options & SO_REUSEPORT);
157 	int error, prison = 0;
158 
159 	if (TAILQ_EMPTY(&in_ifaddrhead)) /* XXX broken! */
160 		return (EADDRNOTAVAIL);
161 	if (inp->inp_lport || inp->inp_laddr.s_addr != INADDR_ANY)
162 		return (EINVAL);
163 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
164 		wild = 1;
165 	if (nam) {
166 		sin = (struct sockaddr_in *)nam;
167 		if (nam->sa_len != sizeof (*sin))
168 			return (EINVAL);
169 #ifdef notdef
170 		/*
171 		 * We should check the family, but old programs
172 		 * incorrectly fail to initialize it.
173 		 */
174 		if (sin->sin_family != AF_INET)
175 			return (EAFNOSUPPORT);
176 #endif
177 		if (prison_ip(p, 0, &sin->sin_addr.s_addr))
178 			return(EINVAL);
179 		lport = sin->sin_port;
180 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
181 			/*
182 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
183 			 * allow complete duplication of binding if
184 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
185 			 * and a multicast address is bound on both
186 			 * new and duplicated sockets.
187 			 */
188 			if (so->so_options & SO_REUSEADDR)
189 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
190 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
191 			sin->sin_port = 0;		/* yech... */
192 			if (ifa_ifwithaddr((struct sockaddr *)sin) == 0)
193 				return (EADDRNOTAVAIL);
194 		}
195 		if (lport) {
196 			struct inpcb *t;
197 
198 			/* GROSS */
199 			if (ntohs(lport) < IPPORT_RESERVED && p &&
200 			    suser_xxx(0, p, PRISON_ROOT))
201 				return (EACCES);
202 			if (p && p->p_prison)
203 				prison = 1;
204 			if (so->so_cred->cr_uid != 0 &&
205 			    !IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
206 				t = in_pcblookup_local(inp->inp_pcbinfo,
207 				    sin->sin_addr, lport,
208 				    prison ? 0 :  INPLOOKUP_WILDCARD);
209 				if (t &&
210 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
211 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
212 				     (t->inp_socket->so_options &
213 					 SO_REUSEPORT) == 0) &&
214 				    (so->so_cred->cr_uid !=
215 					t->inp_socket->so_cred->cr_uid))
216 					return (EADDRINUSE);
217 			}
218 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
219 			    lport, prison ? 0 : wild);
220 			if (t && (reuseport & t->inp_socket->so_options) == 0)
221 				return (EADDRINUSE);
222 		}
223 		inp->inp_laddr = sin->sin_addr;
224 	}
225 	if (lport == 0) {
226 		ushort first, last;
227 		int count;
228 
229 		if (prison_ip(p, 0, &inp->inp_laddr.s_addr ))
230 			return (EINVAL);
231 		inp->inp_flags |= INP_ANONPORT;
232 
233 		if (inp->inp_flags & INP_HIGHPORT) {
234 			first = ipport_hifirstauto;	/* sysctl */
235 			last  = ipport_hilastauto;
236 			lastport = &pcbinfo->lasthi;
237 		} else if (inp->inp_flags & INP_LOWPORT) {
238 			if (p && (error = suser_xxx(0, p, PRISON_ROOT)))
239 				return error;
240 			first = ipport_lowfirstauto;	/* 1023 */
241 			last  = ipport_lowlastauto;	/* 600 */
242 			lastport = &pcbinfo->lastlow;
243 		} else {
244 			first = ipport_firstauto;	/* sysctl */
245 			last  = ipport_lastauto;
246 			lastport = &pcbinfo->lastport;
247 		}
248 		/*
249 		 * Simple check to ensure all ports are not used up causing
250 		 * a deadlock here.
251 		 *
252 		 * We split the two cases (up and down) so that the direction
253 		 * is not being tested on each round of the loop.
254 		 */
255 		if (first > last) {
256 			/*
257 			 * counting down
258 			 */
259 			count = first - last;
260 
261 			do {
262 				if (count-- < 0) {	/* completely used? */
263 					/*
264 					 * Undo any address bind that may have
265 					 * occurred above.
266 					 */
267 					inp->inp_laddr.s_addr = INADDR_ANY;
268 					return (EAGAIN);
269 				}
270 				--*lastport;
271 				if (*lastport > first || *lastport < last)
272 					*lastport = first;
273 				lport = htons(*lastport);
274 			} while (in_pcblookup_local(pcbinfo,
275 				 inp->inp_laddr, lport, wild));
276 		} else {
277 			/*
278 			 * counting up
279 			 */
280 			count = last - first;
281 
282 			do {
283 				if (count-- < 0) {	/* completely used? */
284 					/*
285 					 * Undo any address bind that may have
286 					 * occurred above.
287 					 */
288 					inp->inp_laddr.s_addr = INADDR_ANY;
289 					return (EAGAIN);
290 				}
291 				++*lastport;
292 				if (*lastport < first || *lastport > last)
293 					*lastport = first;
294 				lport = htons(*lastport);
295 			} while (in_pcblookup_local(pcbinfo,
296 				 inp->inp_laddr, lport, wild));
297 		}
298 	}
299 	inp->inp_lport = lport;
300 	if (in_pcbinshash(inp) != 0) {
301 		inp->inp_laddr.s_addr = INADDR_ANY;
302 		inp->inp_lport = 0;
303 		return (EAGAIN);
304 	}
305 	return (0);
306 }
307 
308 /*
309  *   Transform old in_pcbconnect() into an inner subroutine for new
310  *   in_pcbconnect(): Do some validity-checking on the remote
311  *   address (in mbuf 'nam') and then determine local host address
312  *   (i.e., which interface) to use to access that remote host.
313  *
314  *   This preserves definition of in_pcbconnect(), while supporting a
315  *   slightly different version for T/TCP.  (This is more than
316  *   a bit of a kludge, but cleaning up the internal interfaces would
317  *   have forced minor changes in every protocol).
318  */
319 
320 int
321 in_pcbladdr(inp, nam, plocal_sin)
322 	register struct inpcb *inp;
323 	struct sockaddr *nam;
324 	struct sockaddr_in **plocal_sin;
325 {
326 	struct in_ifaddr *ia;
327 	register struct sockaddr_in *sin = (struct sockaddr_in *)nam;
328 
329 	if (nam->sa_len != sizeof (*sin))
330 		return (EINVAL);
331 	if (sin->sin_family != AF_INET)
332 		return (EAFNOSUPPORT);
333 	if (sin->sin_port == 0)
334 		return (EADDRNOTAVAIL);
335 	if (!TAILQ_EMPTY(&in_ifaddrhead)) {
336 		/*
337 		 * If the destination address is INADDR_ANY,
338 		 * use the primary local address.
339 		 * If the supplied address is INADDR_BROADCAST,
340 		 * and the primary interface supports broadcast,
341 		 * choose the broadcast address for that interface.
342 		 */
343 #define	satosin(sa)	((struct sockaddr_in *)(sa))
344 #define sintosa(sin)	((struct sockaddr *)(sin))
345 #define ifatoia(ifa)	((struct in_ifaddr *)(ifa))
346 		if (sin->sin_addr.s_addr == INADDR_ANY)
347 		    sin->sin_addr = IA_SIN(in_ifaddrhead.tqh_first)->sin_addr;
348 		else if (sin->sin_addr.s_addr == (u_long)INADDR_BROADCAST &&
349 		  (in_ifaddrhead.tqh_first->ia_ifp->if_flags & IFF_BROADCAST))
350 		    sin->sin_addr = satosin(&in_ifaddrhead.tqh_first->ia_broadaddr)->sin_addr;
351 	}
352 	if (inp->inp_laddr.s_addr == INADDR_ANY) {
353 		register struct route *ro;
354 
355 		ia = (struct in_ifaddr *)0;
356 		/*
357 		 * If route is known or can be allocated now,
358 		 * our src addr is taken from the i/f, else punt.
359 		 */
360 		ro = &inp->inp_route;
361 		if (ro->ro_rt &&
362 		    (satosin(&ro->ro_dst)->sin_addr.s_addr !=
363 			sin->sin_addr.s_addr ||
364 		    inp->inp_socket->so_options & SO_DONTROUTE)) {
365 			RTFREE(ro->ro_rt);
366 			ro->ro_rt = (struct rtentry *)0;
367 		}
368 		if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0 && /*XXX*/
369 		    (ro->ro_rt == (struct rtentry *)0 ||
370 		    ro->ro_rt->rt_ifp == (struct ifnet *)0)) {
371 			/* No route yet, so try to acquire one */
372 			ro->ro_dst.sa_family = AF_INET;
373 			ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
374 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
375 				sin->sin_addr;
376 			rtalloc(ro);
377 		}
378 		/*
379 		 * If we found a route, use the address
380 		 * corresponding to the outgoing interface
381 		 * unless it is the loopback (in case a route
382 		 * to our address on another net goes to loopback).
383 		 */
384 		if (ro->ro_rt && !(ro->ro_rt->rt_ifp->if_flags & IFF_LOOPBACK))
385 			ia = ifatoia(ro->ro_rt->rt_ifa);
386 		if (ia == 0) {
387 			u_short fport = sin->sin_port;
388 
389 			sin->sin_port = 0;
390 			ia = ifatoia(ifa_ifwithdstaddr(sintosa(sin)));
391 			if (ia == 0)
392 				ia = ifatoia(ifa_ifwithnet(sintosa(sin)));
393 			sin->sin_port = fport;
394 			if (ia == 0)
395 				ia = in_ifaddrhead.tqh_first;
396 			if (ia == 0)
397 				return (EADDRNOTAVAIL);
398 		}
399 		/*
400 		 * If the destination address is multicast and an outgoing
401 		 * interface has been set as a multicast option, use the
402 		 * address of that interface as our source address.
403 		 */
404 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
405 		    inp->inp_moptions != NULL) {
406 			struct ip_moptions *imo;
407 			struct ifnet *ifp;
408 
409 			imo = inp->inp_moptions;
410 			if (imo->imo_multicast_ifp != NULL) {
411 				ifp = imo->imo_multicast_ifp;
412 				for (ia = in_ifaddrhead.tqh_first; ia;
413 				     ia = ia->ia_link.tqe_next)
414 					if (ia->ia_ifp == ifp)
415 						break;
416 				if (ia == 0)
417 					return (EADDRNOTAVAIL);
418 			}
419 		}
420 	/*
421 	 * Don't do pcblookup call here; return interface in plocal_sin
422 	 * and exit to caller, that will do the lookup.
423 	 */
424 		*plocal_sin = &ia->ia_addr;
425 
426 	}
427 	return(0);
428 }
429 
430 /*
431  * Outer subroutine:
432  * Connect from a socket to a specified address.
433  * Both address and port must be specified in argument sin.
434  * If don't have a local address for this socket yet,
435  * then pick one.
436  */
437 int
438 in_pcbconnect(inp, nam, p)
439 	register struct inpcb *inp;
440 	struct sockaddr *nam;
441 	struct proc *p;
442 {
443 	struct sockaddr_in *ifaddr;
444 	register struct sockaddr_in *sin = (struct sockaddr_in *)nam;
445 	int error;
446 
447 	/*
448 	 *   Call inner routine, to assign local interface address.
449 	 */
450 	if ((error = in_pcbladdr(inp, nam, &ifaddr)) != 0)
451 		return(error);
452 
453 	if (in_pcblookup_hash(inp->inp_pcbinfo, sin->sin_addr, sin->sin_port,
454 	    inp->inp_laddr.s_addr ? inp->inp_laddr : ifaddr->sin_addr,
455 	    inp->inp_lport, 0) != NULL) {
456 		return (EADDRINUSE);
457 	}
458 	if (inp->inp_laddr.s_addr == INADDR_ANY) {
459 		if (inp->inp_lport == 0) {
460 			error = in_pcbbind(inp, (struct sockaddr *)0, p);
461 			if (error)
462 			    return (error);
463 		}
464 		inp->inp_laddr = ifaddr->sin_addr;
465 	}
466 	inp->inp_faddr = sin->sin_addr;
467 	inp->inp_fport = sin->sin_port;
468 	in_pcbrehash(inp);
469 	return (0);
470 }
471 
472 void
473 in_pcbdisconnect(inp)
474 	struct inpcb *inp;
475 {
476 
477 	inp->inp_faddr.s_addr = INADDR_ANY;
478 	inp->inp_fport = 0;
479 	in_pcbrehash(inp);
480 	if (inp->inp_socket->so_state & SS_NOFDREF)
481 		in_pcbdetach(inp);
482 }
483 
484 void
485 in_pcbdetach(inp)
486 	struct inpcb *inp;
487 {
488 	struct socket *so = inp->inp_socket;
489 	struct inpcbinfo *ipi = inp->inp_pcbinfo;
490 
491 	inp->inp_gencnt = ++ipi->ipi_gencnt;
492 	in_pcbremlists(inp);
493 	so->so_pcb = 0;
494 	sofree(so);
495 	if (inp->inp_options)
496 		(void)m_free(inp->inp_options);
497 	if (inp->inp_route.ro_rt)
498 		rtfree(inp->inp_route.ro_rt);
499 	ip_freemoptions(inp->inp_moptions);
500 	zfreei(ipi->ipi_zone, inp);
501 }
502 
503 /*
504  * The calling convention of in_setsockaddr() and in_setpeeraddr() was
505  * modified to match the pru_sockaddr() and pru_peeraddr() entry points
506  * in struct pr_usrreqs, so that protocols can just reference then directly
507  * without the need for a wrapper function.  The socket must have a valid
508  * (i.e., non-nil) PCB, but it should be impossible to get an invalid one
509  * except through a kernel programming error, so it is acceptable to panic
510  * (or in this case trap) if the PCB is invalid.  (Actually, we don't trap
511  * because there actually /is/ a programming error somewhere... XXX)
512  */
513 int
514 in_setsockaddr(so, nam)
515 	struct socket *so;
516 	struct sockaddr **nam;
517 {
518 	int s;
519 	register struct inpcb *inp;
520 	register struct sockaddr_in *sin;
521 
522 	/*
523 	 * Do the malloc first in case it blocks.
524 	 */
525 	MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME, M_WAITOK);
526 	bzero(sin, sizeof *sin);
527 	sin->sin_family = AF_INET;
528 	sin->sin_len = sizeof(*sin);
529 
530 	s = splnet();
531 	inp = sotoinpcb(so);
532 	if (!inp) {
533 		splx(s);
534 		free(sin, M_SONAME);
535 		return EINVAL;
536 	}
537 	sin->sin_port = inp->inp_lport;
538 	sin->sin_addr = inp->inp_laddr;
539 	splx(s);
540 
541 	*nam = (struct sockaddr *)sin;
542 	return 0;
543 }
544 
545 int
546 in_setpeeraddr(so, nam)
547 	struct socket *so;
548 	struct sockaddr **nam;
549 {
550 	int s;
551 	struct inpcb *inp;
552 	register struct sockaddr_in *sin;
553 
554 	/*
555 	 * Do the malloc first in case it blocks.
556 	 */
557 	MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME, M_WAITOK);
558 	bzero((caddr_t)sin, sizeof (*sin));
559 	sin->sin_family = AF_INET;
560 	sin->sin_len = sizeof(*sin);
561 
562 	s = splnet();
563 	inp = sotoinpcb(so);
564 	if (!inp) {
565 		splx(s);
566 		free(sin, M_SONAME);
567 		return EINVAL;
568 	}
569 	sin->sin_port = inp->inp_fport;
570 	sin->sin_addr = inp->inp_faddr;
571 	splx(s);
572 
573 	*nam = (struct sockaddr *)sin;
574 	return 0;
575 }
576 
577 /*
578  * Pass some notification to all connections of a protocol
579  * associated with address dst.  The local address and/or port numbers
580  * may be specified to limit the search.  The "usual action" will be
581  * taken, depending on the ctlinput cmd.  The caller must filter any
582  * cmds that are uninteresting (e.g., no error in the map).
583  * Call the protocol specific routine (if any) to report
584  * any errors for each matching socket.
585  */
586 void
587 in_pcbnotify(head, dst, fport_arg, laddr, lport_arg, cmd, notify)
588 	struct inpcbhead *head;
589 	struct sockaddr *dst;
590 	u_int fport_arg, lport_arg;
591 	struct in_addr laddr;
592 	int cmd;
593 	void (*notify) __P((struct inpcb *, int));
594 {
595 	register struct inpcb *inp, *oinp;
596 	struct in_addr faddr;
597 	u_short fport = fport_arg, lport = lport_arg;
598 	int errno, s;
599 
600 	if ((unsigned)cmd > PRC_NCMDS || dst->sa_family != AF_INET)
601 		return;
602 	faddr = ((struct sockaddr_in *)dst)->sin_addr;
603 	if (faddr.s_addr == INADDR_ANY)
604 		return;
605 
606 	/*
607 	 * Redirects go to all references to the destination,
608 	 * and use in_rtchange to invalidate the route cache.
609 	 * Dead host indications: notify all references to the destination.
610 	 * Otherwise, if we have knowledge of the local port and address,
611 	 * deliver only to that socket.
612 	 */
613 	if (PRC_IS_REDIRECT(cmd) || cmd == PRC_HOSTDEAD) {
614 		fport = 0;
615 		lport = 0;
616 		laddr.s_addr = 0;
617 		if (cmd != PRC_HOSTDEAD)
618 			notify = in_rtchange;
619 	}
620 	errno = inetctlerrmap[cmd];
621 	s = splnet();
622 	for (inp = head->lh_first; inp != NULL;) {
623 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
624 		    inp->inp_socket == 0 ||
625 		    (lport && inp->inp_lport != lport) ||
626 		    (laddr.s_addr && inp->inp_laddr.s_addr != laddr.s_addr) ||
627 		    (fport && inp->inp_fport != fport)) {
628 			inp = inp->inp_list.le_next;
629 			continue;
630 		}
631 		oinp = inp;
632 		inp = inp->inp_list.le_next;
633 		if (notify)
634 			(*notify)(oinp, errno);
635 	}
636 	splx(s);
637 }
638 
639 /*
640  * Check for alternatives when higher level complains
641  * about service problems.  For now, invalidate cached
642  * routing information.  If the route was created dynamically
643  * (by a redirect), time to try a default gateway again.
644  */
645 void
646 in_losing(inp)
647 	struct inpcb *inp;
648 {
649 	register struct rtentry *rt;
650 	struct rt_addrinfo info;
651 
652 	if ((rt = inp->inp_route.ro_rt)) {
653 		inp->inp_route.ro_rt = 0;
654 		bzero((caddr_t)&info, sizeof(info));
655 		info.rti_info[RTAX_DST] =
656 			(struct sockaddr *)&inp->inp_route.ro_dst;
657 		info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
658 		info.rti_info[RTAX_NETMASK] = rt_mask(rt);
659 		rt_missmsg(RTM_LOSING, &info, rt->rt_flags, 0);
660 		if (rt->rt_flags & RTF_DYNAMIC)
661 			(void) rtrequest(RTM_DELETE, rt_key(rt),
662 				rt->rt_gateway, rt_mask(rt), rt->rt_flags,
663 				(struct rtentry **)0);
664 		else
665 		/*
666 		 * A new route can be allocated
667 		 * the next time output is attempted.
668 		 */
669 			rtfree(rt);
670 	}
671 }
672 
673 /*
674  * After a routing change, flush old routing
675  * and allocate a (hopefully) better one.
676  */
677 static void
678 in_rtchange(inp, errno)
679 	register struct inpcb *inp;
680 	int errno;
681 {
682 	if (inp->inp_route.ro_rt) {
683 		rtfree(inp->inp_route.ro_rt);
684 		inp->inp_route.ro_rt = 0;
685 		/*
686 		 * A new route can be allocated the next time
687 		 * output is attempted.
688 		 */
689 	}
690 }
691 
692 /*
693  * Lookup a PCB based on the local address and port.
694  */
695 struct inpcb *
696 in_pcblookup_local(pcbinfo, laddr, lport_arg, wild_okay)
697 	struct inpcbinfo *pcbinfo;
698 	struct in_addr laddr;
699 	u_int lport_arg;
700 	int wild_okay;
701 {
702 	register struct inpcb *inp;
703 	int matchwild = 3, wildcard;
704 	u_short lport = lport_arg;
705 
706 	if (!wild_okay) {
707 		struct inpcbhead *head;
708 		/*
709 		 * Look for an unconnected (wildcard foreign addr) PCB that
710 		 * matches the local address and port we're looking for.
711 		 */
712 		head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->hashmask)];
713 		for (inp = head->lh_first; inp != NULL; inp = inp->inp_hash.le_next) {
714 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
715 			    inp->inp_laddr.s_addr == laddr.s_addr &&
716 			    inp->inp_lport == lport) {
717 				/*
718 				 * Found.
719 				 */
720 				return (inp);
721 			}
722 		}
723 		/*
724 		 * Not found.
725 		 */
726 		return (NULL);
727 	} else {
728 		struct inpcbporthead *porthash;
729 		struct inpcbport *phd;
730 		struct inpcb *match = NULL;
731 		/*
732 		 * Best fit PCB lookup.
733 		 *
734 		 * First see if this local port is in use by looking on the
735 		 * port hash list.
736 		 */
737 		porthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(lport,
738 		    pcbinfo->porthashmask)];
739 		for (phd = porthash->lh_first; phd != NULL; phd = phd->phd_hash.le_next) {
740 			if (phd->phd_port == lport)
741 				break;
742 		}
743 		if (phd != NULL) {
744 			/*
745 			 * Port is in use by one or more PCBs. Look for best
746 			 * fit.
747 			 */
748 			for (inp = phd->phd_pcblist.lh_first; inp != NULL;
749 			    inp = inp->inp_portlist.le_next) {
750 				wildcard = 0;
751 				if (inp->inp_faddr.s_addr != INADDR_ANY)
752 					wildcard++;
753 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
754 					if (laddr.s_addr == INADDR_ANY)
755 						wildcard++;
756 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
757 						continue;
758 				} else {
759 					if (laddr.s_addr != INADDR_ANY)
760 						wildcard++;
761 				}
762 				if (wildcard < matchwild) {
763 					match = inp;
764 					matchwild = wildcard;
765 					if (matchwild == 0) {
766 						break;
767 					}
768 				}
769 			}
770 		}
771 		return (match);
772 	}
773 }
774 
775 /*
776  * Lookup PCB in hash list.
777  */
778 struct inpcb *
779 in_pcblookup_hash(pcbinfo, faddr, fport_arg, laddr, lport_arg, wildcard)
780 	struct inpcbinfo *pcbinfo;
781 	struct in_addr faddr, laddr;
782 	u_int fport_arg, lport_arg;
783 	int wildcard;
784 {
785 	struct inpcbhead *head;
786 	register struct inpcb *inp;
787 	u_short fport = fport_arg, lport = lport_arg;
788 
789 	/*
790 	 * First look for an exact match.
791 	 */
792 	head = &pcbinfo->hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, pcbinfo->hashmask)];
793 	for (inp = head->lh_first; inp != NULL; inp = inp->inp_hash.le_next) {
794 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
795 		    inp->inp_laddr.s_addr == laddr.s_addr &&
796 		    inp->inp_fport == fport &&
797 		    inp->inp_lport == lport) {
798 			/*
799 			 * Found.
800 			 */
801 			return (inp);
802 		}
803 	}
804 	if (wildcard) {
805 		struct inpcb *local_wild = NULL;
806 
807 		head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->hashmask)];
808 		for (inp = head->lh_first; inp != NULL; inp = inp->inp_hash.le_next) {
809 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
810 			    inp->inp_lport == lport) {
811 				if (inp->inp_laddr.s_addr == laddr.s_addr)
812 					return (inp);
813 				else if (inp->inp_laddr.s_addr == INADDR_ANY)
814 					local_wild = inp;
815 			}
816 		}
817 		return (local_wild);
818 	}
819 
820 	/*
821 	 * Not found.
822 	 */
823 	return (NULL);
824 }
825 
826 /*
827  * Insert PCB onto various hash lists.
828  */
829 int
830 in_pcbinshash(inp)
831 	struct inpcb *inp;
832 {
833 	struct inpcbhead *pcbhash;
834 	struct inpcbporthead *pcbporthash;
835 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
836 	struct inpcbport *phd;
837 
838 	pcbhash = &pcbinfo->hashbase[INP_PCBHASH(inp->inp_faddr.s_addr,
839 		 inp->inp_lport, inp->inp_fport, pcbinfo->hashmask)];
840 
841 	pcbporthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(inp->inp_lport,
842 	    pcbinfo->porthashmask)];
843 
844 	/*
845 	 * Go through port list and look for a head for this lport.
846 	 */
847 	for (phd = pcbporthash->lh_first; phd != NULL; phd = phd->phd_hash.le_next) {
848 		if (phd->phd_port == inp->inp_lport)
849 			break;
850 	}
851 	/*
852 	 * If none exists, malloc one and tack it on.
853 	 */
854 	if (phd == NULL) {
855 		MALLOC(phd, struct inpcbport *, sizeof(struct inpcbport), M_PCB, M_NOWAIT);
856 		if (phd == NULL) {
857 			return (ENOBUFS); /* XXX */
858 		}
859 		phd->phd_port = inp->inp_lport;
860 		LIST_INIT(&phd->phd_pcblist);
861 		LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
862 	}
863 	inp->inp_phd = phd;
864 	LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
865 	LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
866 	return (0);
867 }
868 
869 /*
870  * Move PCB to the proper hash bucket when { faddr, fport } have  been
871  * changed. NOTE: This does not handle the case of the lport changing (the
872  * hashed port list would have to be updated as well), so the lport must
873  * not change after in_pcbinshash() has been called.
874  */
875 void
876 in_pcbrehash(inp)
877 	struct inpcb *inp;
878 {
879 	struct inpcbhead *head;
880 
881 	head = &inp->inp_pcbinfo->hashbase[INP_PCBHASH(inp->inp_faddr.s_addr,
882 		inp->inp_lport, inp->inp_fport, inp->inp_pcbinfo->hashmask)];
883 
884 	LIST_REMOVE(inp, inp_hash);
885 	LIST_INSERT_HEAD(head, inp, inp_hash);
886 }
887 
888 /*
889  * Remove PCB from various lists.
890  */
891 void
892 in_pcbremlists(inp)
893 	struct inpcb *inp;
894 {
895 	inp->inp_gencnt = ++inp->inp_pcbinfo->ipi_gencnt;
896 	if (inp->inp_lport) {
897 		struct inpcbport *phd = inp->inp_phd;
898 
899 		LIST_REMOVE(inp, inp_hash);
900 		LIST_REMOVE(inp, inp_portlist);
901 		if (phd->phd_pcblist.lh_first == NULL) {
902 			LIST_REMOVE(phd, phd_hash);
903 			free(phd, M_PCB);
904 		}
905 	}
906 	LIST_REMOVE(inp, inp_list);
907 	inp->inp_pcbinfo->ipi_count--;
908 }
909 
910 int
911 prison_xinpcb(struct proc *p, struct inpcb *inp)
912 {
913 	if (!p->p_prison)
914 		return (0);
915 	if (ntohl(inp->inp_laddr.s_addr) == p->p_prison->pr_ip)
916 		return (0);
917 	return (1);
918 }
919