xref: /freebsd/sys/netinet/in_pcb.c (revision a0409676120c1e558d0ade943019934e0f15118d)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2007-2009 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * All rights reserved.
9  *
10  * Portions of this software were developed by Robert N. M. Watson under
11  * contract to Juniper Networks, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include "opt_ddb.h"
44 #include "opt_ipsec.h"
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 #include "opt_ratelimit.h"
48 #include "opt_pcbgroup.h"
49 #include "opt_route.h"
50 #include "opt_rss.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/lock.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/callout.h>
58 #include <sys/eventhandler.h>
59 #include <sys/domain.h>
60 #include <sys/protosw.h>
61 #include <sys/rmlock.h>
62 #include <sys/smp.h>
63 #include <sys/socket.h>
64 #include <sys/socketvar.h>
65 #include <sys/sockio.h>
66 #include <sys/priv.h>
67 #include <sys/proc.h>
68 #include <sys/refcount.h>
69 #include <sys/jail.h>
70 #include <sys/kernel.h>
71 #include <sys/sysctl.h>
72 
73 #ifdef DDB
74 #include <ddb/ddb.h>
75 #endif
76 
77 #include <vm/uma.h>
78 #include <vm/vm.h>
79 
80 #include <net/if.h>
81 #include <net/if_var.h>
82 #include <net/if_types.h>
83 #include <net/if_llatbl.h>
84 #include <net/route.h>
85 #include <net/rss_config.h>
86 #include <net/vnet.h>
87 
88 #if defined(INET) || defined(INET6)
89 #include <netinet/in.h>
90 #include <netinet/in_pcb.h>
91 #ifdef INET
92 #include <netinet/in_var.h>
93 #include <netinet/in_fib.h>
94 #endif
95 #include <netinet/ip_var.h>
96 #include <netinet/tcp_var.h>
97 #ifdef TCPHPTS
98 #include <netinet/tcp_hpts.h>
99 #endif
100 #include <netinet/udp.h>
101 #include <netinet/udp_var.h>
102 #ifdef INET6
103 #include <netinet/ip6.h>
104 #include <netinet6/in6_pcb.h>
105 #include <netinet6/in6_var.h>
106 #include <netinet6/ip6_var.h>
107 #endif /* INET6 */
108 #include <net/route/nhop.h>
109 #endif
110 
111 #include <netipsec/ipsec_support.h>
112 
113 #include <security/mac/mac_framework.h>
114 
115 #define	INPCBLBGROUP_SIZMIN	8
116 #define	INPCBLBGROUP_SIZMAX	256
117 
118 static struct callout	ipport_tick_callout;
119 
120 /*
121  * These configure the range of local port addresses assigned to
122  * "unspecified" outgoing connections/packets/whatever.
123  */
124 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
125 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
126 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
127 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
128 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
129 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
130 
131 /*
132  * Reserved ports accessible only to root. There are significant
133  * security considerations that must be accounted for when changing these,
134  * but the security benefits can be great. Please be careful.
135  */
136 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
137 VNET_DEFINE(int, ipport_reservedlow);
138 
139 /* Variables dealing with random ephemeral port allocation. */
140 VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
141 VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
142 VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
143 VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
144 VNET_DEFINE(int, ipport_tcpallocs);
145 VNET_DEFINE_STATIC(int, ipport_tcplastcount);
146 
147 #define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
148 
149 static void	in_pcbremlists(struct inpcb *inp);
150 #ifdef INET
151 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
152 			    struct in_addr faddr, u_int fport_arg,
153 			    struct in_addr laddr, u_int lport_arg,
154 			    int lookupflags, struct ifnet *ifp,
155 			    uint8_t numa_domain);
156 
157 #define RANGECHK(var, min, max) \
158 	if ((var) < (min)) { (var) = (min); } \
159 	else if ((var) > (max)) { (var) = (max); }
160 
161 static int
162 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
163 {
164 	int error;
165 
166 	error = sysctl_handle_int(oidp, arg1, arg2, req);
167 	if (error == 0) {
168 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
169 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
170 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
171 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
172 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
173 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
174 	}
175 	return (error);
176 }
177 
178 #undef RANGECHK
179 
180 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange,
181     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
182     "IP Ports");
183 
184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
185     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
186     &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I",
187     "");
188 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
189     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
190     &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I",
191     "");
192 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
193     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
194     &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I",
195     "");
196 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
197     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
198     &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I",
199     "");
200 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
201     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
202     &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I",
203     "");
204 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
205     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
206     &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I",
207     "");
208 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
209 	CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
210 	&VNET_NAME(ipport_reservedhigh), 0, "");
211 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
212 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
213 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
214 	CTLFLAG_VNET | CTLFLAG_RW,
215 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
216 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
217 	CTLFLAG_VNET | CTLFLAG_RW,
218 	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
219 	"allocations before switching to a sequental one");
220 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
221 	CTLFLAG_VNET | CTLFLAG_RW,
222 	&VNET_NAME(ipport_randomtime), 0,
223 	"Minimum time to keep sequental port "
224 	"allocation before switching to a random one");
225 
226 #ifdef RATELIMIT
227 counter_u64_t rate_limit_new;
228 counter_u64_t rate_limit_chg;
229 counter_u64_t rate_limit_active;
230 counter_u64_t rate_limit_alloc_fail;
231 counter_u64_t rate_limit_set_ok;
232 
233 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
234     "IP Rate Limiting");
235 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD,
236     &rate_limit_active, "Active rate limited connections");
237 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD,
238    &rate_limit_alloc_fail, "Rate limited connection failures");
239 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD,
240    &rate_limit_set_ok, "Rate limited setting succeeded");
241 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD,
242    &rate_limit_new, "Total Rate limit new attempts");
243 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD,
244    &rate_limit_chg, "Total Rate limited change attempts");
245 
246 #endif /* RATELIMIT */
247 
248 #endif /* INET */
249 
250 /*
251  * in_pcb.c: manage the Protocol Control Blocks.
252  *
253  * NOTE: It is assumed that most of these functions will be called with
254  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
255  * functions often modify hash chains or addresses in pcbs.
256  */
257 
258 static struct inpcblbgroup *
259 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag,
260     uint16_t port, const union in_dependaddr *addr, int size,
261     uint8_t numa_domain)
262 {
263 	struct inpcblbgroup *grp;
264 	size_t bytes;
265 
266 	bytes = __offsetof(struct inpcblbgroup, il_inp[size]);
267 	grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT);
268 	if (!grp)
269 		return (NULL);
270 	grp->il_vflag = vflag;
271 	grp->il_lport = port;
272 	grp->il_numa_domain = numa_domain;
273 	grp->il_dependladdr = *addr;
274 	grp->il_inpsiz = size;
275 	CK_LIST_INSERT_HEAD(hdr, grp, il_list);
276 	return (grp);
277 }
278 
279 static void
280 in_pcblbgroup_free_deferred(epoch_context_t ctx)
281 {
282 	struct inpcblbgroup *grp;
283 
284 	grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx);
285 	free(grp, M_PCB);
286 }
287 
288 static void
289 in_pcblbgroup_free(struct inpcblbgroup *grp)
290 {
291 
292 	CK_LIST_REMOVE(grp, il_list);
293 	NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx);
294 }
295 
296 static struct inpcblbgroup *
297 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr,
298     struct inpcblbgroup *old_grp, int size)
299 {
300 	struct inpcblbgroup *grp;
301 	int i;
302 
303 	grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag,
304 	    old_grp->il_lport, &old_grp->il_dependladdr, size,
305 	    old_grp->il_numa_domain);
306 	if (grp == NULL)
307 		return (NULL);
308 
309 	KASSERT(old_grp->il_inpcnt < grp->il_inpsiz,
310 	    ("invalid new local group size %d and old local group count %d",
311 	     grp->il_inpsiz, old_grp->il_inpcnt));
312 
313 	for (i = 0; i < old_grp->il_inpcnt; ++i)
314 		grp->il_inp[i] = old_grp->il_inp[i];
315 	grp->il_inpcnt = old_grp->il_inpcnt;
316 	in_pcblbgroup_free(old_grp);
317 	return (grp);
318 }
319 
320 /*
321  * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i]
322  * and shrink group if possible.
323  */
324 static void
325 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp,
326     int i)
327 {
328 	struct inpcblbgroup *grp, *new_grp;
329 
330 	grp = *grpp;
331 	for (; i + 1 < grp->il_inpcnt; ++i)
332 		grp->il_inp[i] = grp->il_inp[i + 1];
333 	grp->il_inpcnt--;
334 
335 	if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN &&
336 	    grp->il_inpcnt <= grp->il_inpsiz / 4) {
337 		/* Shrink this group. */
338 		new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2);
339 		if (new_grp != NULL)
340 			*grpp = new_grp;
341 	}
342 }
343 
344 /*
345  * Add PCB to load balance group for SO_REUSEPORT_LB option.
346  */
347 static int
348 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain)
349 {
350 	const static struct timeval interval = { 60, 0 };
351 	static struct timeval lastprint;
352 	struct inpcbinfo *pcbinfo;
353 	struct inpcblbgrouphead *hdr;
354 	struct inpcblbgroup *grp;
355 	uint32_t idx;
356 
357 	pcbinfo = inp->inp_pcbinfo;
358 
359 	INP_WLOCK_ASSERT(inp);
360 	INP_HASH_WLOCK_ASSERT(pcbinfo);
361 
362 	/*
363 	 * Don't allow jailed socket to join local group.
364 	 */
365 	if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred))
366 		return (0);
367 
368 #ifdef INET6
369 	/*
370 	 * Don't allow IPv4 mapped INET6 wild socket.
371 	 */
372 	if ((inp->inp_vflag & INP_IPV4) &&
373 	    inp->inp_laddr.s_addr == INADDR_ANY &&
374 	    INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) {
375 		return (0);
376 	}
377 #endif
378 
379 	idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask);
380 	hdr = &pcbinfo->ipi_lbgrouphashbase[idx];
381 	CK_LIST_FOREACH(grp, hdr, il_list) {
382 		if (grp->il_vflag == inp->inp_vflag &&
383 		    grp->il_lport == inp->inp_lport &&
384 		    grp->il_numa_domain == numa_domain &&
385 		    memcmp(&grp->il_dependladdr,
386 		    &inp->inp_inc.inc_ie.ie_dependladdr,
387 		    sizeof(grp->il_dependladdr)) == 0)
388 			break;
389 	}
390 	if (grp == NULL) {
391 		/* Create new load balance group. */
392 		grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag,
393 		    inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr,
394 		    INPCBLBGROUP_SIZMIN, numa_domain);
395 		if (grp == NULL)
396 			return (ENOBUFS);
397 	} else if (grp->il_inpcnt == grp->il_inpsiz) {
398 		if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) {
399 			if (ratecheck(&lastprint, &interval))
400 				printf("lb group port %d, limit reached\n",
401 				    ntohs(grp->il_lport));
402 			return (0);
403 		}
404 
405 		/* Expand this local group. */
406 		grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2);
407 		if (grp == NULL)
408 			return (ENOBUFS);
409 	}
410 
411 	KASSERT(grp->il_inpcnt < grp->il_inpsiz,
412 	    ("invalid local group size %d and count %d", grp->il_inpsiz,
413 	    grp->il_inpcnt));
414 
415 	grp->il_inp[grp->il_inpcnt] = inp;
416 	grp->il_inpcnt++;
417 	return (0);
418 }
419 
420 /*
421  * Remove PCB from load balance group.
422  */
423 static void
424 in_pcbremlbgrouphash(struct inpcb *inp)
425 {
426 	struct inpcbinfo *pcbinfo;
427 	struct inpcblbgrouphead *hdr;
428 	struct inpcblbgroup *grp;
429 	int i;
430 
431 	pcbinfo = inp->inp_pcbinfo;
432 
433 	INP_WLOCK_ASSERT(inp);
434 	INP_HASH_WLOCK_ASSERT(pcbinfo);
435 
436 	hdr = &pcbinfo->ipi_lbgrouphashbase[
437 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
438 	CK_LIST_FOREACH(grp, hdr, il_list) {
439 		for (i = 0; i < grp->il_inpcnt; ++i) {
440 			if (grp->il_inp[i] != inp)
441 				continue;
442 
443 			if (grp->il_inpcnt == 1) {
444 				/* We are the last, free this local group. */
445 				in_pcblbgroup_free(grp);
446 			} else {
447 				/* Pull up inpcbs, shrink group if possible. */
448 				in_pcblbgroup_reorder(hdr, &grp, i);
449 			}
450 			return;
451 		}
452 	}
453 }
454 
455 int
456 in_pcblbgroup_numa(struct inpcb *inp, int arg)
457 {
458 	struct inpcbinfo *pcbinfo;
459 	struct inpcblbgrouphead *hdr;
460 	struct inpcblbgroup *grp;
461 	int err, i;
462 	uint8_t numa_domain;
463 
464 	switch (arg) {
465 	case TCP_REUSPORT_LB_NUMA_NODOM:
466 		numa_domain = M_NODOM;
467 		break;
468 	case TCP_REUSPORT_LB_NUMA_CURDOM:
469 		numa_domain = PCPU_GET(domain);
470 		break;
471 	default:
472 		if (arg < 0 || arg >= vm_ndomains)
473 			return (EINVAL);
474 		numa_domain = arg;
475 	}
476 
477 	err = 0;
478 	pcbinfo = inp->inp_pcbinfo;
479 	INP_WLOCK_ASSERT(inp);
480 	INP_HASH_WLOCK(pcbinfo);
481 	hdr = &pcbinfo->ipi_lbgrouphashbase[
482 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
483 	CK_LIST_FOREACH(grp, hdr, il_list) {
484 		for (i = 0; i < grp->il_inpcnt; ++i) {
485 			if (grp->il_inp[i] != inp)
486 				continue;
487 
488 			if (grp->il_numa_domain == numa_domain) {
489 				goto abort_with_hash_wlock;
490 			}
491 
492 			/* Remove it from the old group. */
493 			in_pcbremlbgrouphash(inp);
494 
495 			/* Add it to the new group based on numa domain. */
496 			in_pcbinslbgrouphash(inp, numa_domain);
497 			goto abort_with_hash_wlock;
498 		}
499 	}
500 	err = ENOENT;
501 abort_with_hash_wlock:
502 	INP_HASH_WUNLOCK(pcbinfo);
503 	return (err);
504 }
505 
506 /*
507  * Different protocols initialize their inpcbs differently - giving
508  * different name to the lock.  But they all are disposed the same.
509  */
510 static void
511 inpcb_fini(void *mem, int size)
512 {
513 	struct inpcb *inp = mem;
514 
515 	INP_LOCK_DESTROY(inp);
516 }
517 
518 /*
519  * Initialize an inpcbinfo -- we should be able to reduce the number of
520  * arguments in time.
521  */
522 void
523 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
524     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
525     char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields)
526 {
527 
528 	porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1);
529 
530 	INP_INFO_LOCK_INIT(pcbinfo, name);
531 	INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");	/* XXXRW: argument? */
532 	INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist");
533 #ifdef VIMAGE
534 	pcbinfo->ipi_vnet = curvnet;
535 #endif
536 	pcbinfo->ipi_listhead = listhead;
537 	CK_LIST_INIT(pcbinfo->ipi_listhead);
538 	pcbinfo->ipi_count = 0;
539 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
540 	    &pcbinfo->ipi_hashmask);
541 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
542 	    &pcbinfo->ipi_porthashmask);
543 	pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB,
544 	    &pcbinfo->ipi_lbgrouphashmask);
545 #ifdef PCBGROUP
546 	in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
547 #endif
548 	pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
549 	    NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0);
550 	uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
551 	uma_zone_set_warning(pcbinfo->ipi_zone,
552 	    "kern.ipc.maxsockets limit reached");
553 }
554 
555 /*
556  * Destroy an inpcbinfo.
557  */
558 void
559 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
560 {
561 
562 	KASSERT(pcbinfo->ipi_count == 0,
563 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
564 
565 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
566 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
567 	    pcbinfo->ipi_porthashmask);
568 	hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB,
569 	    pcbinfo->ipi_lbgrouphashmask);
570 #ifdef PCBGROUP
571 	in_pcbgroup_destroy(pcbinfo);
572 #endif
573 	uma_zdestroy(pcbinfo->ipi_zone);
574 	INP_LIST_LOCK_DESTROY(pcbinfo);
575 	INP_HASH_LOCK_DESTROY(pcbinfo);
576 	INP_INFO_LOCK_DESTROY(pcbinfo);
577 }
578 
579 /*
580  * Allocate a PCB and associate it with the socket.
581  * On success return with the PCB locked.
582  */
583 int
584 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
585 {
586 	struct inpcb *inp;
587 	int error;
588 
589 	error = 0;
590 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
591 	if (inp == NULL)
592 		return (ENOBUFS);
593 	bzero(&inp->inp_start_zero, inp_zero_size);
594 #ifdef NUMA
595 	inp->inp_numa_domain = M_NODOM;
596 #endif
597 	inp->inp_pcbinfo = pcbinfo;
598 	inp->inp_socket = so;
599 	inp->inp_cred = crhold(so->so_cred);
600 	inp->inp_inc.inc_fibnum = so->so_fibnum;
601 #ifdef MAC
602 	error = mac_inpcb_init(inp, M_NOWAIT);
603 	if (error != 0)
604 		goto out;
605 	mac_inpcb_create(so, inp);
606 #endif
607 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
608 	error = ipsec_init_pcbpolicy(inp);
609 	if (error != 0) {
610 #ifdef MAC
611 		mac_inpcb_destroy(inp);
612 #endif
613 		goto out;
614 	}
615 #endif /*IPSEC*/
616 #ifdef INET6
617 	if (INP_SOCKAF(so) == AF_INET6) {
618 		inp->inp_vflag |= INP_IPV6PROTO;
619 		if (V_ip6_v6only)
620 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
621 	}
622 #endif
623 	INP_WLOCK(inp);
624 	INP_LIST_WLOCK(pcbinfo);
625 	CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
626 	pcbinfo->ipi_count++;
627 	so->so_pcb = (caddr_t)inp;
628 #ifdef INET6
629 	if (V_ip6_auto_flowlabel)
630 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
631 #endif
632 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
633 	refcount_init(&inp->inp_refcount, 1);	/* Reference from inpcbinfo */
634 
635 	/*
636 	 * Routes in inpcb's can cache L2 as well; they are guaranteed
637 	 * to be cleaned up.
638 	 */
639 	inp->inp_route.ro_flags = RT_LLE_CACHE;
640 	INP_LIST_WUNLOCK(pcbinfo);
641 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
642 out:
643 	if (error != 0) {
644 		crfree(inp->inp_cred);
645 		uma_zfree(pcbinfo->ipi_zone, inp);
646 	}
647 #endif
648 	return (error);
649 }
650 
651 #ifdef INET
652 int
653 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
654 {
655 	int anonport, error;
656 
657 	INP_WLOCK_ASSERT(inp);
658 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
659 
660 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
661 		return (EINVAL);
662 	anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
663 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
664 	    &inp->inp_lport, cred);
665 	if (error)
666 		return (error);
667 	if (in_pcbinshash(inp) != 0) {
668 		inp->inp_laddr.s_addr = INADDR_ANY;
669 		inp->inp_lport = 0;
670 		return (EAGAIN);
671 	}
672 	if (anonport)
673 		inp->inp_flags |= INP_ANONPORT;
674 	return (0);
675 }
676 #endif
677 
678 #if defined(INET) || defined(INET6)
679 /*
680  * Assign a local port like in_pcb_lport(), but also used with connect()
681  * and a foreign address and port.  If fsa is non-NULL, choose a local port
682  * that is unused with those, otherwise one that is completely unused.
683  * lsa can be NULL for IPv6.
684  */
685 int
686 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp,
687     struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags)
688 {
689 	struct inpcbinfo *pcbinfo;
690 	struct inpcb *tmpinp;
691 	unsigned short *lastport;
692 	int count, dorandom, error;
693 	u_short aux, first, last, lport;
694 #ifdef INET
695 	struct in_addr laddr, faddr;
696 #endif
697 #ifdef INET6
698 	struct in6_addr *laddr6, *faddr6;
699 #endif
700 
701 	pcbinfo = inp->inp_pcbinfo;
702 
703 	/*
704 	 * Because no actual state changes occur here, a global write lock on
705 	 * the pcbinfo isn't required.
706 	 */
707 	INP_LOCK_ASSERT(inp);
708 	INP_HASH_LOCK_ASSERT(pcbinfo);
709 
710 	if (inp->inp_flags & INP_HIGHPORT) {
711 		first = V_ipport_hifirstauto;	/* sysctl */
712 		last  = V_ipport_hilastauto;
713 		lastport = &pcbinfo->ipi_lasthi;
714 	} else if (inp->inp_flags & INP_LOWPORT) {
715 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT);
716 		if (error)
717 			return (error);
718 		first = V_ipport_lowfirstauto;	/* 1023 */
719 		last  = V_ipport_lowlastauto;	/* 600 */
720 		lastport = &pcbinfo->ipi_lastlow;
721 	} else {
722 		first = V_ipport_firstauto;	/* sysctl */
723 		last  = V_ipport_lastauto;
724 		lastport = &pcbinfo->ipi_lastport;
725 	}
726 	/*
727 	 * For UDP(-Lite), use random port allocation as long as the user
728 	 * allows it.  For TCP (and as of yet unknown) connections,
729 	 * use random port allocation only if the user allows it AND
730 	 * ipport_tick() allows it.
731 	 */
732 	if (V_ipport_randomized &&
733 		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
734 		pcbinfo == &V_ulitecbinfo))
735 		dorandom = 1;
736 	else
737 		dorandom = 0;
738 	/*
739 	 * It makes no sense to do random port allocation if
740 	 * we have the only port available.
741 	 */
742 	if (first == last)
743 		dorandom = 0;
744 	/* Make sure to not include UDP(-Lite) packets in the count. */
745 	if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
746 		V_ipport_tcpallocs++;
747 	/*
748 	 * Instead of having two loops further down counting up or down
749 	 * make sure that first is always <= last and go with only one
750 	 * code path implementing all logic.
751 	 */
752 	if (first > last) {
753 		aux = first;
754 		first = last;
755 		last = aux;
756 	}
757 
758 #ifdef INET
759 	laddr.s_addr = INADDR_ANY;
760 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
761 		if (lsa != NULL)
762 			laddr = ((struct sockaddr_in *)lsa)->sin_addr;
763 		if (fsa != NULL)
764 			faddr = ((struct sockaddr_in *)fsa)->sin_addr;
765 	}
766 #endif
767 #ifdef INET6
768 	laddr6 = NULL;
769 	if ((inp->inp_vflag & INP_IPV6) != 0) {
770 		if (lsa != NULL)
771 			laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr;
772 		if (fsa != NULL)
773 			faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr;
774 	}
775 #endif
776 
777 	tmpinp = NULL;
778 	lport = *lportp;
779 
780 	if (dorandom)
781 		*lastport = first + (arc4random() % (last - first));
782 
783 	count = last - first;
784 
785 	do {
786 		if (count-- < 0)	/* completely used? */
787 			return (EADDRNOTAVAIL);
788 		++*lastport;
789 		if (*lastport < first || *lastport > last)
790 			*lastport = first;
791 		lport = htons(*lastport);
792 
793 		if (fsa != NULL) {
794 #ifdef INET
795 			if (lsa->sa_family == AF_INET) {
796 				tmpinp = in_pcblookup_hash_locked(pcbinfo,
797 				    faddr, fport, laddr, lport, lookupflags,
798 				    NULL, M_NODOM);
799 			}
800 #endif
801 #ifdef INET6
802 			if (lsa->sa_family == AF_INET6) {
803 				tmpinp = in6_pcblookup_hash_locked(pcbinfo,
804 				    faddr6, fport, laddr6, lport, lookupflags,
805 				    NULL, M_NODOM);
806 			}
807 #endif
808 		} else {
809 #ifdef INET6
810 			if ((inp->inp_vflag & INP_IPV6) != 0)
811 				tmpinp = in6_pcblookup_local(pcbinfo,
812 				    &inp->in6p_laddr, lport, lookupflags, cred);
813 #endif
814 #if defined(INET) && defined(INET6)
815 			else
816 #endif
817 #ifdef INET
818 				tmpinp = in_pcblookup_local(pcbinfo, laddr,
819 				    lport, lookupflags, cred);
820 #endif
821 		}
822 	} while (tmpinp != NULL);
823 
824 	*lportp = lport;
825 
826 	return (0);
827 }
828 
829 /*
830  * Select a local port (number) to use.
831  */
832 int
833 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
834     struct ucred *cred, int lookupflags)
835 {
836 	struct sockaddr_in laddr;
837 
838 	if (laddrp) {
839 		bzero(&laddr, sizeof(laddr));
840 		laddr.sin_family = AF_INET;
841 		laddr.sin_addr = *laddrp;
842 	}
843 	return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr :
844 	    NULL, lportp, NULL, 0, cred, lookupflags));
845 }
846 
847 /*
848  * Return cached socket options.
849  */
850 int
851 inp_so_options(const struct inpcb *inp)
852 {
853 	int so_options;
854 
855 	so_options = 0;
856 
857 	if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0)
858 		so_options |= SO_REUSEPORT_LB;
859 	if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
860 		so_options |= SO_REUSEPORT;
861 	if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
862 		so_options |= SO_REUSEADDR;
863 	return (so_options);
864 }
865 #endif /* INET || INET6 */
866 
867 /*
868  * Check if a new BINDMULTI socket is allowed to be created.
869  *
870  * ni points to the new inp.
871  * oi points to the exisitng inp.
872  *
873  * This checks whether the existing inp also has BINDMULTI and
874  * whether the credentials match.
875  */
876 int
877 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
878 {
879 	/* Check permissions match */
880 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
881 	    (ni->inp_cred->cr_uid !=
882 	    oi->inp_cred->cr_uid))
883 		return (0);
884 
885 	/* Check the existing inp has BINDMULTI set */
886 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
887 	    ((oi->inp_flags2 & INP_BINDMULTI) == 0))
888 		return (0);
889 
890 	/*
891 	 * We're okay - either INP_BINDMULTI isn't set on ni, or
892 	 * it is and it matches the checks.
893 	 */
894 	return (1);
895 }
896 
897 #ifdef INET
898 /*
899  * Set up a bind operation on a PCB, performing port allocation
900  * as required, but do not actually modify the PCB. Callers can
901  * either complete the bind by setting inp_laddr/inp_lport and
902  * calling in_pcbinshash(), or they can just use the resulting
903  * port and address to authorise the sending of a once-off packet.
904  *
905  * On error, the values of *laddrp and *lportp are not changed.
906  */
907 int
908 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
909     u_short *lportp, struct ucred *cred)
910 {
911 	struct socket *so = inp->inp_socket;
912 	struct sockaddr_in *sin;
913 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
914 	struct in_addr laddr;
915 	u_short lport = 0;
916 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
917 	int error;
918 
919 	/*
920 	 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here
921 	 * so that we don't have to add to the (already messy) code below.
922 	 */
923 	int reuseport_lb = (so->so_options & SO_REUSEPORT_LB);
924 
925 	/*
926 	 * No state changes, so read locks are sufficient here.
927 	 */
928 	INP_LOCK_ASSERT(inp);
929 	INP_HASH_LOCK_ASSERT(pcbinfo);
930 
931 	if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
932 		return (EADDRNOTAVAIL);
933 	laddr.s_addr = *laddrp;
934 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
935 		return (EINVAL);
936 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0)
937 		lookupflags = INPLOOKUP_WILDCARD;
938 	if (nam == NULL) {
939 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
940 			return (error);
941 	} else {
942 		sin = (struct sockaddr_in *)nam;
943 		if (nam->sa_len != sizeof (*sin))
944 			return (EINVAL);
945 #ifdef notdef
946 		/*
947 		 * We should check the family, but old programs
948 		 * incorrectly fail to initialize it.
949 		 */
950 		if (sin->sin_family != AF_INET)
951 			return (EAFNOSUPPORT);
952 #endif
953 		error = prison_local_ip4(cred, &sin->sin_addr);
954 		if (error)
955 			return (error);
956 		if (sin->sin_port != *lportp) {
957 			/* Don't allow the port to change. */
958 			if (*lportp != 0)
959 				return (EINVAL);
960 			lport = sin->sin_port;
961 		}
962 		/* NB: lport is left as 0 if the port isn't being changed. */
963 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
964 			/*
965 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
966 			 * allow complete duplication of binding if
967 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
968 			 * and a multicast address is bound on both
969 			 * new and duplicated sockets.
970 			 */
971 			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
972 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
973 			/*
974 			 * XXX: How to deal with SO_REUSEPORT_LB here?
975 			 * Treat same as SO_REUSEPORT for now.
976 			 */
977 			if ((so->so_options &
978 			    (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0)
979 				reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB;
980 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
981 			sin->sin_port = 0;		/* yech... */
982 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
983 			/*
984 			 * Is the address a local IP address?
985 			 * If INP_BINDANY is set, then the socket may be bound
986 			 * to any endpoint address, local or not.
987 			 */
988 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
989 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
990 				return (EADDRNOTAVAIL);
991 		}
992 		laddr = sin->sin_addr;
993 		if (lport) {
994 			struct inpcb *t;
995 			struct tcptw *tw;
996 
997 			/* GROSS */
998 			if (ntohs(lport) <= V_ipport_reservedhigh &&
999 			    ntohs(lport) >= V_ipport_reservedlow &&
1000 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT))
1001 				return (EACCES);
1002 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
1003 			    priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) {
1004 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
1005 				    lport, INPLOOKUP_WILDCARD, cred);
1006 	/*
1007 	 * XXX
1008 	 * This entire block sorely needs a rewrite.
1009 	 */
1010 				if (t &&
1011 				    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
1012 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
1013 				    (so->so_type != SOCK_STREAM ||
1014 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
1015 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
1016 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
1017 				     (t->inp_flags2 & INP_REUSEPORT) ||
1018 				     (t->inp_flags2 & INP_REUSEPORT_LB) == 0) &&
1019 				    (inp->inp_cred->cr_uid !=
1020 				     t->inp_cred->cr_uid))
1021 					return (EADDRINUSE);
1022 
1023 				/*
1024 				 * If the socket is a BINDMULTI socket, then
1025 				 * the credentials need to match and the
1026 				 * original socket also has to have been bound
1027 				 * with BINDMULTI.
1028 				 */
1029 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
1030 					return (EADDRINUSE);
1031 			}
1032 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
1033 			    lport, lookupflags, cred);
1034 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
1035 				/*
1036 				 * XXXRW: If an incpb has had its timewait
1037 				 * state recycled, we treat the address as
1038 				 * being in use (for now).  This is better
1039 				 * than a panic, but not desirable.
1040 				 */
1041 				tw = intotw(t);
1042 				if (tw == NULL ||
1043 				    ((reuseport & tw->tw_so_options) == 0 &&
1044 					(reuseport_lb &
1045 				            tw->tw_so_options) == 0)) {
1046 					return (EADDRINUSE);
1047 				}
1048 			} else if (t &&
1049 				   ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
1050 				   (reuseport & inp_so_options(t)) == 0 &&
1051 				   (reuseport_lb & inp_so_options(t)) == 0) {
1052 #ifdef INET6
1053 				if (ntohl(sin->sin_addr.s_addr) !=
1054 				    INADDR_ANY ||
1055 				    ntohl(t->inp_laddr.s_addr) !=
1056 				    INADDR_ANY ||
1057 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
1058 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
1059 #endif
1060 						return (EADDRINUSE);
1061 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
1062 					return (EADDRINUSE);
1063 			}
1064 		}
1065 	}
1066 	if (*lportp != 0)
1067 		lport = *lportp;
1068 	if (lport == 0) {
1069 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
1070 		if (error != 0)
1071 			return (error);
1072 	}
1073 	*laddrp = laddr.s_addr;
1074 	*lportp = lport;
1075 	return (0);
1076 }
1077 
1078 /*
1079  * Connect from a socket to a specified address.
1080  * Both address and port must be specified in argument sin.
1081  * If don't have a local address for this socket yet,
1082  * then pick one.
1083  */
1084 int
1085 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
1086     struct ucred *cred, struct mbuf *m, bool rehash)
1087 {
1088 	u_short lport, fport;
1089 	in_addr_t laddr, faddr;
1090 	int anonport, error;
1091 
1092 	INP_WLOCK_ASSERT(inp);
1093 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1094 
1095 	lport = inp->inp_lport;
1096 	laddr = inp->inp_laddr.s_addr;
1097 	anonport = (lport == 0);
1098 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
1099 	    NULL, cred);
1100 	if (error)
1101 		return (error);
1102 
1103 	/* Do the initial binding of the local address if required. */
1104 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
1105 		KASSERT(rehash == true,
1106 		    ("Rehashing required for unbound inps"));
1107 		inp->inp_lport = lport;
1108 		inp->inp_laddr.s_addr = laddr;
1109 		if (in_pcbinshash(inp) != 0) {
1110 			inp->inp_laddr.s_addr = INADDR_ANY;
1111 			inp->inp_lport = 0;
1112 			return (EAGAIN);
1113 		}
1114 	}
1115 
1116 	/* Commit the remaining changes. */
1117 	inp->inp_lport = lport;
1118 	inp->inp_laddr.s_addr = laddr;
1119 	inp->inp_faddr.s_addr = faddr;
1120 	inp->inp_fport = fport;
1121 	if (rehash) {
1122 		in_pcbrehash_mbuf(inp, m);
1123 	} else {
1124 		in_pcbinshash_mbuf(inp, m);
1125 	}
1126 
1127 	if (anonport)
1128 		inp->inp_flags |= INP_ANONPORT;
1129 	return (0);
1130 }
1131 
1132 int
1133 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
1134 {
1135 
1136 	return (in_pcbconnect_mbuf(inp, nam, cred, NULL, true));
1137 }
1138 
1139 /*
1140  * Do proper source address selection on an unbound socket in case
1141  * of connect. Take jails into account as well.
1142  */
1143 int
1144 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
1145     struct ucred *cred)
1146 {
1147 	struct ifaddr *ifa;
1148 	struct sockaddr *sa;
1149 	struct sockaddr_in *sin, dst;
1150 	struct nhop_object *nh;
1151 	int error;
1152 
1153 	NET_EPOCH_ASSERT();
1154 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
1155 	/*
1156 	 * Bypass source address selection and use the primary jail IP
1157 	 * if requested.
1158 	 */
1159 	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
1160 		return (0);
1161 
1162 	error = 0;
1163 
1164 	nh = NULL;
1165 	bzero(&dst, sizeof(dst));
1166 	sin = &dst;
1167 	sin->sin_family = AF_INET;
1168 	sin->sin_len = sizeof(struct sockaddr_in);
1169 	sin->sin_addr.s_addr = faddr->s_addr;
1170 
1171 	/*
1172 	 * If route is known our src addr is taken from the i/f,
1173 	 * else punt.
1174 	 *
1175 	 * Find out route to destination.
1176 	 */
1177 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
1178 		nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr,
1179 		    0, NHR_NONE, 0);
1180 
1181 	/*
1182 	 * If we found a route, use the address corresponding to
1183 	 * the outgoing interface.
1184 	 *
1185 	 * Otherwise assume faddr is reachable on a directly connected
1186 	 * network and try to find a corresponding interface to take
1187 	 * the source address from.
1188 	 */
1189 	if (nh == NULL || nh->nh_ifp == NULL) {
1190 		struct in_ifaddr *ia;
1191 		struct ifnet *ifp;
1192 
1193 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
1194 					inp->inp_socket->so_fibnum));
1195 		if (ia == NULL) {
1196 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
1197 						inp->inp_socket->so_fibnum));
1198 		}
1199 		if (ia == NULL) {
1200 			error = ENETUNREACH;
1201 			goto done;
1202 		}
1203 
1204 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1205 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1206 			goto done;
1207 		}
1208 
1209 		ifp = ia->ia_ifp;
1210 		ia = NULL;
1211 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1212 			sa = ifa->ifa_addr;
1213 			if (sa->sa_family != AF_INET)
1214 				continue;
1215 			sin = (struct sockaddr_in *)sa;
1216 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1217 				ia = (struct in_ifaddr *)ifa;
1218 				break;
1219 			}
1220 		}
1221 		if (ia != NULL) {
1222 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1223 			goto done;
1224 		}
1225 
1226 		/* 3. As a last resort return the 'default' jail address. */
1227 		error = prison_get_ip4(cred, laddr);
1228 		goto done;
1229 	}
1230 
1231 	/*
1232 	 * If the outgoing interface on the route found is not
1233 	 * a loopback interface, use the address from that interface.
1234 	 * In case of jails do those three steps:
1235 	 * 1. check if the interface address belongs to the jail. If so use it.
1236 	 * 2. check if we have any address on the outgoing interface
1237 	 *    belonging to this jail. If so use it.
1238 	 * 3. as a last resort return the 'default' jail address.
1239 	 */
1240 	if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) {
1241 		struct in_ifaddr *ia;
1242 		struct ifnet *ifp;
1243 
1244 		/* If not jailed, use the default returned. */
1245 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1246 			ia = (struct in_ifaddr *)nh->nh_ifa;
1247 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1248 			goto done;
1249 		}
1250 
1251 		/* Jailed. */
1252 		/* 1. Check if the iface address belongs to the jail. */
1253 		sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr;
1254 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1255 			ia = (struct in_ifaddr *)nh->nh_ifa;
1256 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1257 			goto done;
1258 		}
1259 
1260 		/*
1261 		 * 2. Check if we have any address on the outgoing interface
1262 		 *    belonging to this jail.
1263 		 */
1264 		ia = NULL;
1265 		ifp = nh->nh_ifp;
1266 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1267 			sa = ifa->ifa_addr;
1268 			if (sa->sa_family != AF_INET)
1269 				continue;
1270 			sin = (struct sockaddr_in *)sa;
1271 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1272 				ia = (struct in_ifaddr *)ifa;
1273 				break;
1274 			}
1275 		}
1276 		if (ia != NULL) {
1277 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1278 			goto done;
1279 		}
1280 
1281 		/* 3. As a last resort return the 'default' jail address. */
1282 		error = prison_get_ip4(cred, laddr);
1283 		goto done;
1284 	}
1285 
1286 	/*
1287 	 * The outgoing interface is marked with 'loopback net', so a route
1288 	 * to ourselves is here.
1289 	 * Try to find the interface of the destination address and then
1290 	 * take the address from there. That interface is not necessarily
1291 	 * a loopback interface.
1292 	 * In case of jails, check that it is an address of the jail
1293 	 * and if we cannot find, fall back to the 'default' jail address.
1294 	 */
1295 	if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) {
1296 		struct in_ifaddr *ia;
1297 
1298 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst),
1299 					inp->inp_socket->so_fibnum));
1300 		if (ia == NULL)
1301 			ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0,
1302 						inp->inp_socket->so_fibnum));
1303 		if (ia == NULL)
1304 			ia = ifatoia(ifa_ifwithaddr(sintosa(&dst)));
1305 
1306 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1307 			if (ia == NULL) {
1308 				error = ENETUNREACH;
1309 				goto done;
1310 			}
1311 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1312 			goto done;
1313 		}
1314 
1315 		/* Jailed. */
1316 		if (ia != NULL) {
1317 			struct ifnet *ifp;
1318 
1319 			ifp = ia->ia_ifp;
1320 			ia = NULL;
1321 			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1322 				sa = ifa->ifa_addr;
1323 				if (sa->sa_family != AF_INET)
1324 					continue;
1325 				sin = (struct sockaddr_in *)sa;
1326 				if (prison_check_ip4(cred,
1327 				    &sin->sin_addr) == 0) {
1328 					ia = (struct in_ifaddr *)ifa;
1329 					break;
1330 				}
1331 			}
1332 			if (ia != NULL) {
1333 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1334 				goto done;
1335 			}
1336 		}
1337 
1338 		/* 3. As a last resort return the 'default' jail address. */
1339 		error = prison_get_ip4(cred, laddr);
1340 		goto done;
1341 	}
1342 
1343 done:
1344 	return (error);
1345 }
1346 
1347 /*
1348  * Set up for a connect from a socket to the specified address.
1349  * On entry, *laddrp and *lportp should contain the current local
1350  * address and port for the PCB; these are updated to the values
1351  * that should be placed in inp_laddr and inp_lport to complete
1352  * the connect.
1353  *
1354  * On success, *faddrp and *fportp will be set to the remote address
1355  * and port. These are not updated in the error case.
1356  *
1357  * If the operation fails because the connection already exists,
1358  * *oinpp will be set to the PCB of that connection so that the
1359  * caller can decide to override it. In all other cases, *oinpp
1360  * is set to NULL.
1361  */
1362 int
1363 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
1364     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1365     struct inpcb **oinpp, struct ucred *cred)
1366 {
1367 	struct rm_priotracker in_ifa_tracker;
1368 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1369 	struct in_ifaddr *ia;
1370 	struct inpcb *oinp;
1371 	struct in_addr laddr, faddr;
1372 	u_short lport, fport;
1373 	int error;
1374 
1375 	/*
1376 	 * Because a global state change doesn't actually occur here, a read
1377 	 * lock is sufficient.
1378 	 */
1379 	NET_EPOCH_ASSERT();
1380 	INP_LOCK_ASSERT(inp);
1381 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1382 
1383 	if (oinpp != NULL)
1384 		*oinpp = NULL;
1385 	if (nam->sa_len != sizeof (*sin))
1386 		return (EINVAL);
1387 	if (sin->sin_family != AF_INET)
1388 		return (EAFNOSUPPORT);
1389 	if (sin->sin_port == 0)
1390 		return (EADDRNOTAVAIL);
1391 	laddr.s_addr = *laddrp;
1392 	lport = *lportp;
1393 	faddr = sin->sin_addr;
1394 	fport = sin->sin_port;
1395 #ifdef ROUTE_MPATH
1396 	if (CALC_FLOWID_OUTBOUND) {
1397 		uint32_t hash_val, hash_type;
1398 
1399 		hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport,
1400 		    inp->inp_socket->so_proto->pr_protocol, &hash_type);
1401 
1402 		inp->inp_flowid = hash_val;
1403 		inp->inp_flowtype = hash_type;
1404 	}
1405 #endif
1406 	if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) {
1407 		/*
1408 		 * If the destination address is INADDR_ANY,
1409 		 * use the primary local address.
1410 		 * If the supplied address is INADDR_BROADCAST,
1411 		 * and the primary interface supports broadcast,
1412 		 * choose the broadcast address for that interface.
1413 		 */
1414 		if (faddr.s_addr == INADDR_ANY) {
1415 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1416 			faddr =
1417 			    IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1418 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1419 			if (cred != NULL &&
1420 			    (error = prison_get_ip4(cred, &faddr)) != 0)
1421 				return (error);
1422 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1423 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1424 			if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1425 			    IFF_BROADCAST)
1426 				faddr = satosin(&CK_STAILQ_FIRST(
1427 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1428 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1429 		}
1430 	}
1431 	if (laddr.s_addr == INADDR_ANY) {
1432 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
1433 		/*
1434 		 * If the destination address is multicast and an outgoing
1435 		 * interface has been set as a multicast option, prefer the
1436 		 * address of that interface as our source address.
1437 		 */
1438 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1439 		    inp->inp_moptions != NULL) {
1440 			struct ip_moptions *imo;
1441 			struct ifnet *ifp;
1442 
1443 			imo = inp->inp_moptions;
1444 			if (imo->imo_multicast_ifp != NULL) {
1445 				ifp = imo->imo_multicast_ifp;
1446 				IN_IFADDR_RLOCK(&in_ifa_tracker);
1447 				CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1448 					if ((ia->ia_ifp == ifp) &&
1449 					    (cred == NULL ||
1450 					    prison_check_ip4(cred,
1451 					    &ia->ia_addr.sin_addr) == 0))
1452 						break;
1453 				}
1454 				if (ia == NULL)
1455 					error = EADDRNOTAVAIL;
1456 				else {
1457 					laddr = ia->ia_addr.sin_addr;
1458 					error = 0;
1459 				}
1460 				IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1461 			}
1462 		}
1463 		if (error)
1464 			return (error);
1465 	}
1466 
1467 	if (lport != 0) {
1468 		oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr,
1469 		    fport, laddr, lport, 0, NULL, M_NODOM);
1470 		if (oinp != NULL) {
1471 			if (oinpp != NULL)
1472 				*oinpp = oinp;
1473 			return (EADDRINUSE);
1474 		}
1475 	} else {
1476 		struct sockaddr_in lsin, fsin;
1477 
1478 		bzero(&lsin, sizeof(lsin));
1479 		bzero(&fsin, sizeof(fsin));
1480 		lsin.sin_family = AF_INET;
1481 		lsin.sin_addr = laddr;
1482 		fsin.sin_family = AF_INET;
1483 		fsin.sin_addr = faddr;
1484 		error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin,
1485 		    &lport, (struct sockaddr *)& fsin, fport, cred,
1486 		    INPLOOKUP_WILDCARD);
1487 		if (error)
1488 			return (error);
1489 	}
1490 	*laddrp = laddr.s_addr;
1491 	*lportp = lport;
1492 	*faddrp = faddr.s_addr;
1493 	*fportp = fport;
1494 	return (0);
1495 }
1496 
1497 void
1498 in_pcbdisconnect(struct inpcb *inp)
1499 {
1500 
1501 	INP_WLOCK_ASSERT(inp);
1502 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1503 
1504 	inp->inp_faddr.s_addr = INADDR_ANY;
1505 	inp->inp_fport = 0;
1506 	in_pcbrehash(inp);
1507 }
1508 #endif /* INET */
1509 
1510 /*
1511  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1512  * For most protocols, this will be invoked immediately prior to calling
1513  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1514  * socket, in which case in_pcbfree() is deferred.
1515  */
1516 void
1517 in_pcbdetach(struct inpcb *inp)
1518 {
1519 
1520 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1521 
1522 #ifdef RATELIMIT
1523 	if (inp->inp_snd_tag != NULL)
1524 		in_pcbdetach_txrtlmt(inp);
1525 #endif
1526 	inp->inp_socket->so_pcb = NULL;
1527 	inp->inp_socket = NULL;
1528 }
1529 
1530 /*
1531  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1532  * stability of an inpcb pointer despite the inpcb lock being released.  This
1533  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1534  * but where the inpcb lock may already held, or when acquiring a reference
1535  * via a pcbgroup.
1536  *
1537  * in_pcbref() should be used only to provide brief memory stability, and
1538  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1539  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1540  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1541  * lock and rele are the *only* safe operations that may be performed on the
1542  * inpcb.
1543  *
1544  * While the inpcb will not be freed, releasing the inpcb lock means that the
1545  * connection's state may change, so the caller should be careful to
1546  * revalidate any cached state on reacquiring the lock.  Drop the reference
1547  * using in_pcbrele().
1548  */
1549 void
1550 in_pcbref(struct inpcb *inp)
1551 {
1552 
1553 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1554 
1555 	refcount_acquire(&inp->inp_refcount);
1556 }
1557 
1558 /*
1559  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1560  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1561  * return a flag indicating whether or not the inpcb remains valid.  If it is
1562  * valid, we return with the inpcb lock held.
1563  *
1564  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1565  * reference on an inpcb.  Historically more work was done here (actually, in
1566  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1567  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1568  * about memory stability (and continued use of the write lock).
1569  */
1570 int
1571 in_pcbrele_rlocked(struct inpcb *inp)
1572 {
1573 	struct inpcbinfo *pcbinfo;
1574 
1575 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1576 
1577 	INP_RLOCK_ASSERT(inp);
1578 
1579 	if (refcount_release(&inp->inp_refcount) == 0) {
1580 		/*
1581 		 * If the inpcb has been freed, let the caller know, even if
1582 		 * this isn't the last reference.
1583 		 */
1584 		if (inp->inp_flags2 & INP_FREED) {
1585 			INP_RUNLOCK(inp);
1586 			return (1);
1587 		}
1588 		return (0);
1589 	}
1590 
1591 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1592 #ifdef TCPHPTS
1593 	if (inp->inp_in_hpts || inp->inp_in_input) {
1594 		struct tcp_hpts_entry *hpts;
1595 		/*
1596 		 * We should not be on the hpts at
1597 		 * this point in any form. we must
1598 		 * get the lock to be sure.
1599 		 */
1600 		hpts = tcp_hpts_lock(inp);
1601 		if (inp->inp_in_hpts)
1602 			panic("Hpts:%p inp:%p at free still on hpts",
1603 			      hpts, inp);
1604 		mtx_unlock(&hpts->p_mtx);
1605 		hpts = tcp_input_lock(inp);
1606 		if (inp->inp_in_input)
1607 			panic("Hpts:%p inp:%p at free still on input hpts",
1608 			      hpts, inp);
1609 		mtx_unlock(&hpts->p_mtx);
1610 	}
1611 #endif
1612 	INP_RUNLOCK(inp);
1613 	pcbinfo = inp->inp_pcbinfo;
1614 	uma_zfree(pcbinfo->ipi_zone, inp);
1615 	return (1);
1616 }
1617 
1618 int
1619 in_pcbrele_wlocked(struct inpcb *inp)
1620 {
1621 	struct inpcbinfo *pcbinfo;
1622 
1623 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1624 
1625 	INP_WLOCK_ASSERT(inp);
1626 
1627 	if (refcount_release(&inp->inp_refcount) == 0) {
1628 		/*
1629 		 * If the inpcb has been freed, let the caller know, even if
1630 		 * this isn't the last reference.
1631 		 */
1632 		if (inp->inp_flags2 & INP_FREED) {
1633 			INP_WUNLOCK(inp);
1634 			return (1);
1635 		}
1636 		return (0);
1637 	}
1638 
1639 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1640 #ifdef TCPHPTS
1641 	if (inp->inp_in_hpts || inp->inp_in_input) {
1642 		struct tcp_hpts_entry *hpts;
1643 		/*
1644 		 * We should not be on the hpts at
1645 		 * this point in any form. we must
1646 		 * get the lock to be sure.
1647 		 */
1648 		hpts = tcp_hpts_lock(inp);
1649 		if (inp->inp_in_hpts)
1650 			panic("Hpts:%p inp:%p at free still on hpts",
1651 			      hpts, inp);
1652 		mtx_unlock(&hpts->p_mtx);
1653 		hpts = tcp_input_lock(inp);
1654 		if (inp->inp_in_input)
1655 			panic("Hpts:%p inp:%p at free still on input hpts",
1656 			      hpts, inp);
1657 		mtx_unlock(&hpts->p_mtx);
1658 	}
1659 #endif
1660 	INP_WUNLOCK(inp);
1661 	pcbinfo = inp->inp_pcbinfo;
1662 	uma_zfree(pcbinfo->ipi_zone, inp);
1663 	return (1);
1664 }
1665 
1666 /*
1667  * Temporary wrapper.
1668  */
1669 int
1670 in_pcbrele(struct inpcb *inp)
1671 {
1672 
1673 	return (in_pcbrele_wlocked(inp));
1674 }
1675 
1676 void
1677 in_pcblist_rele_rlocked(epoch_context_t ctx)
1678 {
1679 	struct in_pcblist *il;
1680 	struct inpcb *inp;
1681 	struct inpcbinfo *pcbinfo;
1682 	int i, n;
1683 
1684 	il = __containerof(ctx, struct in_pcblist, il_epoch_ctx);
1685 	pcbinfo = il->il_pcbinfo;
1686 	n = il->il_count;
1687 	INP_INFO_WLOCK(pcbinfo);
1688 	for (i = 0; i < n; i++) {
1689 		inp = il->il_inp_list[i];
1690 		INP_RLOCK(inp);
1691 		if (!in_pcbrele_rlocked(inp))
1692 			INP_RUNLOCK(inp);
1693 	}
1694 	INP_INFO_WUNLOCK(pcbinfo);
1695 	free(il, M_TEMP);
1696 }
1697 
1698 static void
1699 inpcbport_free(epoch_context_t ctx)
1700 {
1701 	struct inpcbport *phd;
1702 
1703 	phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx);
1704 	free(phd, M_PCB);
1705 }
1706 
1707 static void
1708 in_pcbfree_deferred(epoch_context_t ctx)
1709 {
1710 	struct inpcb *inp;
1711 	int released __unused;
1712 
1713 	inp = __containerof(ctx, struct inpcb, inp_epoch_ctx);
1714 
1715 	INP_WLOCK(inp);
1716 	CURVNET_SET(inp->inp_vnet);
1717 #ifdef INET
1718 	struct ip_moptions *imo = inp->inp_moptions;
1719 	inp->inp_moptions = NULL;
1720 #endif
1721 	/* XXXRW: Do as much as possible here. */
1722 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1723 	if (inp->inp_sp != NULL)
1724 		ipsec_delete_pcbpolicy(inp);
1725 #endif
1726 #ifdef INET6
1727 	struct ip6_moptions *im6o = NULL;
1728 	if (inp->inp_vflag & INP_IPV6PROTO) {
1729 		ip6_freepcbopts(inp->in6p_outputopts);
1730 		im6o = inp->in6p_moptions;
1731 		inp->in6p_moptions = NULL;
1732 	}
1733 #endif
1734 	if (inp->inp_options)
1735 		(void)m_free(inp->inp_options);
1736 	inp->inp_vflag = 0;
1737 	crfree(inp->inp_cred);
1738 #ifdef MAC
1739 	mac_inpcb_destroy(inp);
1740 #endif
1741 	released = in_pcbrele_wlocked(inp);
1742 	MPASS(released);
1743 #ifdef INET6
1744 	ip6_freemoptions(im6o);
1745 #endif
1746 #ifdef INET
1747 	inp_freemoptions(imo);
1748 #endif
1749 	CURVNET_RESTORE();
1750 }
1751 
1752 /*
1753  * Unconditionally schedule an inpcb to be freed by decrementing its
1754  * reference count, which should occur only after the inpcb has been detached
1755  * from its socket.  If another thread holds a temporary reference (acquired
1756  * using in_pcbref()) then the free is deferred until that reference is
1757  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1758  * work, including removal from global lists, is done in this context, where
1759  * the pcbinfo lock is held.
1760  */
1761 void
1762 in_pcbfree(struct inpcb *inp)
1763 {
1764 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1765 
1766 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1767 	KASSERT((inp->inp_flags2 & INP_FREED) == 0,
1768 	    ("%s: called twice for pcb %p", __func__, inp));
1769 	if (inp->inp_flags2 & INP_FREED) {
1770 		INP_WUNLOCK(inp);
1771 		return;
1772 	}
1773 
1774 	INP_WLOCK_ASSERT(inp);
1775 	INP_LIST_WLOCK(pcbinfo);
1776 	in_pcbremlists(inp);
1777 	INP_LIST_WUNLOCK(pcbinfo);
1778 	RO_INVALIDATE_CACHE(&inp->inp_route);
1779 	/* mark as destruction in progress */
1780 	inp->inp_flags2 |= INP_FREED;
1781 	INP_WUNLOCK(inp);
1782 	NET_EPOCH_CALL(in_pcbfree_deferred, &inp->inp_epoch_ctx);
1783 }
1784 
1785 /*
1786  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1787  * port reservation, and preventing it from being returned by inpcb lookups.
1788  *
1789  * It is used by TCP to mark an inpcb as unused and avoid future packet
1790  * delivery or event notification when a socket remains open but TCP has
1791  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1792  * or a RST on the wire, and allows the port binding to be reused while still
1793  * maintaining the invariant that so_pcb always points to a valid inpcb until
1794  * in_pcbdetach().
1795  *
1796  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1797  * in_pcbnotifyall() and in_pcbpurgeif0()?
1798  */
1799 void
1800 in_pcbdrop(struct inpcb *inp)
1801 {
1802 
1803 	INP_WLOCK_ASSERT(inp);
1804 #ifdef INVARIANTS
1805 	if (inp->inp_socket != NULL && inp->inp_ppcb != NULL)
1806 		MPASS(inp->inp_refcount > 1);
1807 #endif
1808 
1809 	/*
1810 	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1811 	 * the hash lock...?
1812 	 */
1813 	inp->inp_flags |= INP_DROPPED;
1814 	if (inp->inp_flags & INP_INHASHLIST) {
1815 		struct inpcbport *phd = inp->inp_phd;
1816 
1817 		INP_HASH_WLOCK(inp->inp_pcbinfo);
1818 		in_pcbremlbgrouphash(inp);
1819 		CK_LIST_REMOVE(inp, inp_hash);
1820 		CK_LIST_REMOVE(inp, inp_portlist);
1821 		if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
1822 			CK_LIST_REMOVE(phd, phd_hash);
1823 			NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx);
1824 		}
1825 		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1826 		inp->inp_flags &= ~INP_INHASHLIST;
1827 #ifdef PCBGROUP
1828 		in_pcbgroup_remove(inp);
1829 #endif
1830 	}
1831 }
1832 
1833 #ifdef INET
1834 /*
1835  * Common routines to return the socket addresses associated with inpcbs.
1836  */
1837 struct sockaddr *
1838 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1839 {
1840 	struct sockaddr_in *sin;
1841 
1842 	sin = malloc(sizeof *sin, M_SONAME,
1843 		M_WAITOK | M_ZERO);
1844 	sin->sin_family = AF_INET;
1845 	sin->sin_len = sizeof(*sin);
1846 	sin->sin_addr = *addr_p;
1847 	sin->sin_port = port;
1848 
1849 	return (struct sockaddr *)sin;
1850 }
1851 
1852 int
1853 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1854 {
1855 	struct inpcb *inp;
1856 	struct in_addr addr;
1857 	in_port_t port;
1858 
1859 	inp = sotoinpcb(so);
1860 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1861 
1862 	INP_RLOCK(inp);
1863 	port = inp->inp_lport;
1864 	addr = inp->inp_laddr;
1865 	INP_RUNLOCK(inp);
1866 
1867 	*nam = in_sockaddr(port, &addr);
1868 	return 0;
1869 }
1870 
1871 int
1872 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1873 {
1874 	struct inpcb *inp;
1875 	struct in_addr addr;
1876 	in_port_t port;
1877 
1878 	inp = sotoinpcb(so);
1879 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1880 
1881 	INP_RLOCK(inp);
1882 	port = inp->inp_fport;
1883 	addr = inp->inp_faddr;
1884 	INP_RUNLOCK(inp);
1885 
1886 	*nam = in_sockaddr(port, &addr);
1887 	return 0;
1888 }
1889 
1890 void
1891 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1892     struct inpcb *(*notify)(struct inpcb *, int))
1893 {
1894 	struct inpcb *inp, *inp_temp;
1895 
1896 	INP_INFO_WLOCK(pcbinfo);
1897 	CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1898 		INP_WLOCK(inp);
1899 #ifdef INET6
1900 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1901 			INP_WUNLOCK(inp);
1902 			continue;
1903 		}
1904 #endif
1905 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1906 		    inp->inp_socket == NULL) {
1907 			INP_WUNLOCK(inp);
1908 			continue;
1909 		}
1910 		if ((*notify)(inp, errno))
1911 			INP_WUNLOCK(inp);
1912 	}
1913 	INP_INFO_WUNLOCK(pcbinfo);
1914 }
1915 
1916 void
1917 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1918 {
1919 	struct inpcb *inp;
1920 	struct in_multi *inm;
1921 	struct in_mfilter *imf;
1922 	struct ip_moptions *imo;
1923 
1924 	INP_INFO_WLOCK(pcbinfo);
1925 	CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1926 		INP_WLOCK(inp);
1927 		imo = inp->inp_moptions;
1928 		if ((inp->inp_vflag & INP_IPV4) &&
1929 		    imo != NULL) {
1930 			/*
1931 			 * Unselect the outgoing interface if it is being
1932 			 * detached.
1933 			 */
1934 			if (imo->imo_multicast_ifp == ifp)
1935 				imo->imo_multicast_ifp = NULL;
1936 
1937 			/*
1938 			 * Drop multicast group membership if we joined
1939 			 * through the interface being detached.
1940 			 *
1941 			 * XXX This can all be deferred to an epoch_call
1942 			 */
1943 restart:
1944 			IP_MFILTER_FOREACH(imf, &imo->imo_head) {
1945 				if ((inm = imf->imf_inm) == NULL)
1946 					continue;
1947 				if (inm->inm_ifp != ifp)
1948 					continue;
1949 				ip_mfilter_remove(&imo->imo_head, imf);
1950 				IN_MULTI_LOCK_ASSERT();
1951 				in_leavegroup_locked(inm, NULL);
1952 				ip_mfilter_free(imf);
1953 				goto restart;
1954 			}
1955 		}
1956 		INP_WUNLOCK(inp);
1957 	}
1958 	INP_INFO_WUNLOCK(pcbinfo);
1959 }
1960 
1961 /*
1962  * Lookup a PCB based on the local address and port.  Caller must hold the
1963  * hash lock.  No inpcb locks or references are acquired.
1964  */
1965 #define INP_LOOKUP_MAPPED_PCB_COST	3
1966 struct inpcb *
1967 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1968     u_short lport, int lookupflags, struct ucred *cred)
1969 {
1970 	struct inpcb *inp;
1971 #ifdef INET6
1972 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1973 #else
1974 	int matchwild = 3;
1975 #endif
1976 	int wildcard;
1977 
1978 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1979 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1980 
1981 	INP_HASH_LOCK_ASSERT(pcbinfo);
1982 
1983 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1984 		struct inpcbhead *head;
1985 		/*
1986 		 * Look for an unconnected (wildcard foreign addr) PCB that
1987 		 * matches the local address and port we're looking for.
1988 		 */
1989 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1990 		    0, pcbinfo->ipi_hashmask)];
1991 		CK_LIST_FOREACH(inp, head, inp_hash) {
1992 #ifdef INET6
1993 			/* XXX inp locking */
1994 			if ((inp->inp_vflag & INP_IPV4) == 0)
1995 				continue;
1996 #endif
1997 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1998 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1999 			    inp->inp_lport == lport) {
2000 				/*
2001 				 * Found?
2002 				 */
2003 				if (cred == NULL ||
2004 				    prison_equal_ip4(cred->cr_prison,
2005 					inp->inp_cred->cr_prison))
2006 					return (inp);
2007 			}
2008 		}
2009 		/*
2010 		 * Not found.
2011 		 */
2012 		return (NULL);
2013 	} else {
2014 		struct inpcbporthead *porthash;
2015 		struct inpcbport *phd;
2016 		struct inpcb *match = NULL;
2017 		/*
2018 		 * Best fit PCB lookup.
2019 		 *
2020 		 * First see if this local port is in use by looking on the
2021 		 * port hash list.
2022 		 */
2023 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
2024 		    pcbinfo->ipi_porthashmask)];
2025 		CK_LIST_FOREACH(phd, porthash, phd_hash) {
2026 			if (phd->phd_port == lport)
2027 				break;
2028 		}
2029 		if (phd != NULL) {
2030 			/*
2031 			 * Port is in use by one or more PCBs. Look for best
2032 			 * fit.
2033 			 */
2034 			CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
2035 				wildcard = 0;
2036 				if (cred != NULL &&
2037 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
2038 					cred->cr_prison))
2039 					continue;
2040 #ifdef INET6
2041 				/* XXX inp locking */
2042 				if ((inp->inp_vflag & INP_IPV4) == 0)
2043 					continue;
2044 				/*
2045 				 * We never select the PCB that has
2046 				 * INP_IPV6 flag and is bound to :: if
2047 				 * we have another PCB which is bound
2048 				 * to 0.0.0.0.  If a PCB has the
2049 				 * INP_IPV6 flag, then we set its cost
2050 				 * higher than IPv4 only PCBs.
2051 				 *
2052 				 * Note that the case only happens
2053 				 * when a socket is bound to ::, under
2054 				 * the condition that the use of the
2055 				 * mapped address is allowed.
2056 				 */
2057 				if ((inp->inp_vflag & INP_IPV6) != 0)
2058 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
2059 #endif
2060 				if (inp->inp_faddr.s_addr != INADDR_ANY)
2061 					wildcard++;
2062 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
2063 					if (laddr.s_addr == INADDR_ANY)
2064 						wildcard++;
2065 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
2066 						continue;
2067 				} else {
2068 					if (laddr.s_addr != INADDR_ANY)
2069 						wildcard++;
2070 				}
2071 				if (wildcard < matchwild) {
2072 					match = inp;
2073 					matchwild = wildcard;
2074 					if (matchwild == 0)
2075 						break;
2076 				}
2077 			}
2078 		}
2079 		return (match);
2080 	}
2081 }
2082 #undef INP_LOOKUP_MAPPED_PCB_COST
2083 
2084 static struct inpcb *
2085 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo,
2086     const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr,
2087     uint16_t fport, int lookupflags, int numa_domain)
2088 {
2089 	struct inpcb *local_wild, *numa_wild;
2090 	const struct inpcblbgrouphead *hdr;
2091 	struct inpcblbgroup *grp;
2092 	uint32_t idx;
2093 
2094 	INP_HASH_LOCK_ASSERT(pcbinfo);
2095 
2096 	hdr = &pcbinfo->ipi_lbgrouphashbase[
2097 	    INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)];
2098 
2099 	/*
2100 	 * Order of socket selection:
2101 	 * 1. non-wild.
2102 	 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD).
2103 	 *
2104 	 * NOTE:
2105 	 * - Load balanced group does not contain jailed sockets
2106 	 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets
2107 	 */
2108 	local_wild = NULL;
2109 	numa_wild = NULL;
2110 	CK_LIST_FOREACH(grp, hdr, il_list) {
2111 #ifdef INET6
2112 		if (!(grp->il_vflag & INP_IPV4))
2113 			continue;
2114 #endif
2115 		if (grp->il_lport != lport)
2116 			continue;
2117 
2118 		idx = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport) %
2119 		    grp->il_inpcnt;
2120 		if (grp->il_laddr.s_addr == laddr->s_addr) {
2121 			if (numa_domain == M_NODOM ||
2122 			    grp->il_numa_domain == numa_domain) {
2123 				return (grp->il_inp[idx]);
2124 			} else {
2125 				numa_wild = grp->il_inp[idx];
2126 			}
2127 		}
2128 		if (grp->il_laddr.s_addr == INADDR_ANY &&
2129 		    (lookupflags & INPLOOKUP_WILDCARD) != 0 &&
2130 		    (local_wild == NULL || numa_domain == M_NODOM ||
2131 			grp->il_numa_domain == numa_domain)) {
2132 			local_wild = grp->il_inp[idx];
2133 		}
2134 	}
2135 	if (numa_wild != NULL)
2136 		return (numa_wild);
2137 
2138 	return (local_wild);
2139 }
2140 
2141 #ifdef PCBGROUP
2142 /*
2143  * Lookup PCB in hash list, using pcbgroup tables.
2144  */
2145 static struct inpcb *
2146 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
2147     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
2148     u_int lport_arg, int lookupflags, struct ifnet *ifp)
2149 {
2150 	struct inpcbhead *head;
2151 	struct inpcb *inp, *tmpinp;
2152 	u_short fport = fport_arg, lport = lport_arg;
2153 	bool locked;
2154 
2155 	/*
2156 	 * First look for an exact match.
2157 	 */
2158 	tmpinp = NULL;
2159 	INP_GROUP_LOCK(pcbgroup);
2160 	head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
2161 	    pcbgroup->ipg_hashmask)];
2162 	CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
2163 #ifdef INET6
2164 		/* XXX inp locking */
2165 		if ((inp->inp_vflag & INP_IPV4) == 0)
2166 			continue;
2167 #endif
2168 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
2169 		    inp->inp_laddr.s_addr == laddr.s_addr &&
2170 		    inp->inp_fport == fport &&
2171 		    inp->inp_lport == lport) {
2172 			/*
2173 			 * XXX We should be able to directly return
2174 			 * the inp here, without any checks.
2175 			 * Well unless both bound with SO_REUSEPORT?
2176 			 */
2177 			if (prison_flag(inp->inp_cred, PR_IP4))
2178 				goto found;
2179 			if (tmpinp == NULL)
2180 				tmpinp = inp;
2181 		}
2182 	}
2183 	if (tmpinp != NULL) {
2184 		inp = tmpinp;
2185 		goto found;
2186 	}
2187 
2188 #ifdef	RSS
2189 	/*
2190 	 * For incoming connections, we may wish to do a wildcard
2191 	 * match for an RSS-local socket.
2192 	 */
2193 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2194 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2195 #ifdef INET6
2196 		struct inpcb *local_wild_mapped = NULL;
2197 #endif
2198 		struct inpcb *jail_wild = NULL;
2199 		struct inpcbhead *head;
2200 		int injail;
2201 
2202 		/*
2203 		 * Order of socket selection - we always prefer jails.
2204 		 *      1. jailed, non-wild.
2205 		 *      2. jailed, wild.
2206 		 *      3. non-jailed, non-wild.
2207 		 *      4. non-jailed, wild.
2208 		 */
2209 
2210 		head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
2211 		    lport, 0, pcbgroup->ipg_hashmask)];
2212 		CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
2213 #ifdef INET6
2214 			/* XXX inp locking */
2215 			if ((inp->inp_vflag & INP_IPV4) == 0)
2216 				continue;
2217 #endif
2218 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2219 			    inp->inp_lport != lport)
2220 				continue;
2221 
2222 			injail = prison_flag(inp->inp_cred, PR_IP4);
2223 			if (injail) {
2224 				if (prison_check_ip4(inp->inp_cred,
2225 				    &laddr) != 0)
2226 					continue;
2227 			} else {
2228 				if (local_exact != NULL)
2229 					continue;
2230 			}
2231 
2232 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2233 				if (injail)
2234 					goto found;
2235 				else
2236 					local_exact = inp;
2237 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2238 #ifdef INET6
2239 				/* XXX inp locking, NULL check */
2240 				if (inp->inp_vflag & INP_IPV6PROTO)
2241 					local_wild_mapped = inp;
2242 				else
2243 #endif
2244 					if (injail)
2245 						jail_wild = inp;
2246 					else
2247 						local_wild = inp;
2248 			}
2249 		} /* LIST_FOREACH */
2250 
2251 		inp = jail_wild;
2252 		if (inp == NULL)
2253 			inp = local_exact;
2254 		if (inp == NULL)
2255 			inp = local_wild;
2256 #ifdef INET6
2257 		if (inp == NULL)
2258 			inp = local_wild_mapped;
2259 #endif
2260 		if (inp != NULL)
2261 			goto found;
2262 	}
2263 #endif
2264 
2265 	/*
2266 	 * Then look for a wildcard match, if requested.
2267 	 */
2268 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2269 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2270 #ifdef INET6
2271 		struct inpcb *local_wild_mapped = NULL;
2272 #endif
2273 		struct inpcb *jail_wild = NULL;
2274 		struct inpcbhead *head;
2275 		int injail;
2276 
2277 		/*
2278 		 * Order of socket selection - we always prefer jails.
2279 		 *      1. jailed, non-wild.
2280 		 *      2. jailed, wild.
2281 		 *      3. non-jailed, non-wild.
2282 		 *      4. non-jailed, wild.
2283 		 */
2284 		head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
2285 		    0, pcbinfo->ipi_wildmask)];
2286 		CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
2287 #ifdef INET6
2288 			/* XXX inp locking */
2289 			if ((inp->inp_vflag & INP_IPV4) == 0)
2290 				continue;
2291 #endif
2292 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2293 			    inp->inp_lport != lport)
2294 				continue;
2295 
2296 			injail = prison_flag(inp->inp_cred, PR_IP4);
2297 			if (injail) {
2298 				if (prison_check_ip4(inp->inp_cred,
2299 				    &laddr) != 0)
2300 					continue;
2301 			} else {
2302 				if (local_exact != NULL)
2303 					continue;
2304 			}
2305 
2306 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2307 				if (injail)
2308 					goto found;
2309 				else
2310 					local_exact = inp;
2311 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2312 #ifdef INET6
2313 				/* XXX inp locking, NULL check */
2314 				if (inp->inp_vflag & INP_IPV6PROTO)
2315 					local_wild_mapped = inp;
2316 				else
2317 #endif
2318 					if (injail)
2319 						jail_wild = inp;
2320 					else
2321 						local_wild = inp;
2322 			}
2323 		} /* LIST_FOREACH */
2324 		inp = jail_wild;
2325 		if (inp == NULL)
2326 			inp = local_exact;
2327 		if (inp == NULL)
2328 			inp = local_wild;
2329 #ifdef INET6
2330 		if (inp == NULL)
2331 			inp = local_wild_mapped;
2332 #endif
2333 		if (inp != NULL)
2334 			goto found;
2335 	} /* if (lookupflags & INPLOOKUP_WILDCARD) */
2336 	INP_GROUP_UNLOCK(pcbgroup);
2337 	return (NULL);
2338 
2339 found:
2340 	if (lookupflags & INPLOOKUP_WLOCKPCB)
2341 		locked = INP_TRY_WLOCK(inp);
2342 	else if (lookupflags & INPLOOKUP_RLOCKPCB)
2343 		locked = INP_TRY_RLOCK(inp);
2344 	else
2345 		panic("%s: locking bug", __func__);
2346 	if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) {
2347 		if (lookupflags & INPLOOKUP_WLOCKPCB)
2348 			INP_WUNLOCK(inp);
2349 		else
2350 			INP_RUNLOCK(inp);
2351 		return (NULL);
2352 	} else if (!locked)
2353 		in_pcbref(inp);
2354 	INP_GROUP_UNLOCK(pcbgroup);
2355 	if (!locked) {
2356 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
2357 			INP_WLOCK(inp);
2358 			if (in_pcbrele_wlocked(inp))
2359 				return (NULL);
2360 		} else {
2361 			INP_RLOCK(inp);
2362 			if (in_pcbrele_rlocked(inp))
2363 				return (NULL);
2364 		}
2365 	}
2366 #ifdef INVARIANTS
2367 	if (lookupflags & INPLOOKUP_WLOCKPCB)
2368 		INP_WLOCK_ASSERT(inp);
2369 	else
2370 		INP_RLOCK_ASSERT(inp);
2371 #endif
2372 	return (inp);
2373 }
2374 #endif /* PCBGROUP */
2375 
2376 /*
2377  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
2378  * that the caller has locked the hash list, and will not perform any further
2379  * locking or reference operations on either the hash list or the connection.
2380  */
2381 static struct inpcb *
2382 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2383     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2384     struct ifnet *ifp, uint8_t numa_domain)
2385 {
2386 	struct inpcbhead *head;
2387 	struct inpcb *inp, *tmpinp;
2388 	u_short fport = fport_arg, lport = lport_arg;
2389 
2390 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
2391 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2392 	INP_HASH_LOCK_ASSERT(pcbinfo);
2393 
2394 	/*
2395 	 * First look for an exact match.
2396 	 */
2397 	tmpinp = NULL;
2398 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
2399 	    pcbinfo->ipi_hashmask)];
2400 	CK_LIST_FOREACH(inp, head, inp_hash) {
2401 #ifdef INET6
2402 		/* XXX inp locking */
2403 		if ((inp->inp_vflag & INP_IPV4) == 0)
2404 			continue;
2405 #endif
2406 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
2407 		    inp->inp_laddr.s_addr == laddr.s_addr &&
2408 		    inp->inp_fport == fport &&
2409 		    inp->inp_lport == lport) {
2410 			/*
2411 			 * XXX We should be able to directly return
2412 			 * the inp here, without any checks.
2413 			 * Well unless both bound with SO_REUSEPORT?
2414 			 */
2415 			if (prison_flag(inp->inp_cred, PR_IP4))
2416 				return (inp);
2417 			if (tmpinp == NULL)
2418 				tmpinp = inp;
2419 		}
2420 	}
2421 	if (tmpinp != NULL)
2422 		return (tmpinp);
2423 
2424 	/*
2425 	 * Then look in lb group (for wildcard match).
2426 	 */
2427 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2428 		inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr,
2429 		    fport, lookupflags, numa_domain);
2430 		if (inp != NULL)
2431 			return (inp);
2432 	}
2433 
2434 	/*
2435 	 * Then look for a wildcard match, if requested.
2436 	 */
2437 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2438 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2439 #ifdef INET6
2440 		struct inpcb *local_wild_mapped = NULL;
2441 #endif
2442 		struct inpcb *jail_wild = NULL;
2443 		int injail;
2444 
2445 		/*
2446 		 * Order of socket selection - we always prefer jails.
2447 		 *      1. jailed, non-wild.
2448 		 *      2. jailed, wild.
2449 		 *      3. non-jailed, non-wild.
2450 		 *      4. non-jailed, wild.
2451 		 */
2452 
2453 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
2454 		    0, pcbinfo->ipi_hashmask)];
2455 		CK_LIST_FOREACH(inp, head, inp_hash) {
2456 #ifdef INET6
2457 			/* XXX inp locking */
2458 			if ((inp->inp_vflag & INP_IPV4) == 0)
2459 				continue;
2460 #endif
2461 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2462 			    inp->inp_lport != lport)
2463 				continue;
2464 
2465 			injail = prison_flag(inp->inp_cred, PR_IP4);
2466 			if (injail) {
2467 				if (prison_check_ip4(inp->inp_cred,
2468 				    &laddr) != 0)
2469 					continue;
2470 			} else {
2471 				if (local_exact != NULL)
2472 					continue;
2473 			}
2474 
2475 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2476 				if (injail)
2477 					return (inp);
2478 				else
2479 					local_exact = inp;
2480 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2481 #ifdef INET6
2482 				/* XXX inp locking, NULL check */
2483 				if (inp->inp_vflag & INP_IPV6PROTO)
2484 					local_wild_mapped = inp;
2485 				else
2486 #endif
2487 					if (injail)
2488 						jail_wild = inp;
2489 					else
2490 						local_wild = inp;
2491 			}
2492 		} /* LIST_FOREACH */
2493 		if (jail_wild != NULL)
2494 			return (jail_wild);
2495 		if (local_exact != NULL)
2496 			return (local_exact);
2497 		if (local_wild != NULL)
2498 			return (local_wild);
2499 #ifdef INET6
2500 		if (local_wild_mapped != NULL)
2501 			return (local_wild_mapped);
2502 #endif
2503 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
2504 
2505 	return (NULL);
2506 }
2507 
2508 /*
2509  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
2510  * hash list lock, and will return the inpcb locked (i.e., requires
2511  * INPLOOKUP_LOCKPCB).
2512  */
2513 static struct inpcb *
2514 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2515     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2516     struct ifnet *ifp, uint8_t numa_domain)
2517 {
2518 	struct inpcb *inp;
2519 
2520 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2521 	    (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp,
2522 	    numa_domain);
2523 	if (inp != NULL) {
2524 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
2525 			INP_WLOCK(inp);
2526 			if (__predict_false(inp->inp_flags2 & INP_FREED)) {
2527 				INP_WUNLOCK(inp);
2528 				inp = NULL;
2529 			}
2530 		} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
2531 			INP_RLOCK(inp);
2532 			if (__predict_false(inp->inp_flags2 & INP_FREED)) {
2533 				INP_RUNLOCK(inp);
2534 				inp = NULL;
2535 			}
2536 		} else
2537 			panic("%s: locking bug", __func__);
2538 #ifdef INVARIANTS
2539 		if (inp != NULL) {
2540 			if (lookupflags & INPLOOKUP_WLOCKPCB)
2541 				INP_WLOCK_ASSERT(inp);
2542 			else
2543 				INP_RLOCK_ASSERT(inp);
2544 		}
2545 #endif
2546 	}
2547 
2548 	return (inp);
2549 }
2550 
2551 /*
2552  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2553  * from which a pre-calculated hash value may be extracted.
2554  *
2555  * Possibly more of this logic should be in in_pcbgroup.c.
2556  */
2557 struct inpcb *
2558 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2559     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
2560 {
2561 #if defined(PCBGROUP) && !defined(RSS)
2562 	struct inpcbgroup *pcbgroup;
2563 #endif
2564 
2565 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2566 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2567 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2568 	    ("%s: LOCKPCB not set", __func__));
2569 
2570 	/*
2571 	 * When not using RSS, use connection groups in preference to the
2572 	 * reservation table when looking up 4-tuples.  When using RSS, just
2573 	 * use the reservation table, due to the cost of the Toeplitz hash
2574 	 * in software.
2575 	 *
2576 	 * XXXRW: This policy belongs in the pcbgroup code, as in principle
2577 	 * we could be doing RSS with a non-Toeplitz hash that is affordable
2578 	 * in software.
2579 	 */
2580 #if defined(PCBGROUP) && !defined(RSS)
2581 	if (in_pcbgroup_enabled(pcbinfo)) {
2582 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2583 		    fport);
2584 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2585 		    laddr, lport, lookupflags, ifp));
2586 	}
2587 #endif
2588 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2589 	    lookupflags, ifp, M_NODOM));
2590 }
2591 
2592 struct inpcb *
2593 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2594     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2595     struct ifnet *ifp, struct mbuf *m)
2596 {
2597 #ifdef PCBGROUP
2598 	struct inpcbgroup *pcbgroup;
2599 #endif
2600 
2601 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2602 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2603 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2604 	    ("%s: LOCKPCB not set", __func__));
2605 
2606 #ifdef PCBGROUP
2607 	/*
2608 	 * If we can use a hardware-generated hash to look up the connection
2609 	 * group, use that connection group to find the inpcb.  Otherwise
2610 	 * fall back on a software hash -- or the reservation table if we're
2611 	 * using RSS.
2612 	 *
2613 	 * XXXRW: As above, that policy belongs in the pcbgroup code.
2614 	 */
2615 	if (in_pcbgroup_enabled(pcbinfo) &&
2616 	    !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
2617 		pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
2618 		    m->m_pkthdr.flowid);
2619 		if (pcbgroup != NULL)
2620 			return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
2621 			    fport, laddr, lport, lookupflags, ifp));
2622 #ifndef RSS
2623 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2624 		    fport);
2625 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2626 		    laddr, lport, lookupflags, ifp));
2627 #endif
2628 	}
2629 #endif
2630 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2631 	    lookupflags, ifp, m->m_pkthdr.numa_domain));
2632 }
2633 #endif /* INET */
2634 
2635 /*
2636  * Insert PCB onto various hash lists.
2637  */
2638 static int
2639 in_pcbinshash_internal(struct inpcb *inp, struct mbuf *m)
2640 {
2641 	struct inpcbhead *pcbhash;
2642 	struct inpcbporthead *pcbporthash;
2643 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2644 	struct inpcbport *phd;
2645 	u_int32_t hashkey_faddr;
2646 	int so_options;
2647 
2648 	INP_WLOCK_ASSERT(inp);
2649 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2650 
2651 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2652 	    ("in_pcbinshash: INP_INHASHLIST"));
2653 
2654 #ifdef INET6
2655 	if (inp->inp_vflag & INP_IPV6)
2656 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2657 	else
2658 #endif
2659 	hashkey_faddr = inp->inp_faddr.s_addr;
2660 
2661 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2662 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2663 
2664 	pcbporthash = &pcbinfo->ipi_porthashbase[
2665 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2666 
2667 	/*
2668 	 * Add entry to load balance group.
2669 	 * Only do this if SO_REUSEPORT_LB is set.
2670 	 */
2671 	so_options = inp_so_options(inp);
2672 	if (so_options & SO_REUSEPORT_LB) {
2673 		int ret = in_pcbinslbgrouphash(inp, M_NODOM);
2674 		if (ret) {
2675 			/* pcb lb group malloc fail (ret=ENOBUFS). */
2676 			return (ret);
2677 		}
2678 	}
2679 
2680 	/*
2681 	 * Go through port list and look for a head for this lport.
2682 	 */
2683 	CK_LIST_FOREACH(phd, pcbporthash, phd_hash) {
2684 		if (phd->phd_port == inp->inp_lport)
2685 			break;
2686 	}
2687 	/*
2688 	 * If none exists, malloc one and tack it on.
2689 	 */
2690 	if (phd == NULL) {
2691 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
2692 		if (phd == NULL) {
2693 			return (ENOBUFS); /* XXX */
2694 		}
2695 		bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context));
2696 		phd->phd_port = inp->inp_lport;
2697 		CK_LIST_INIT(&phd->phd_pcblist);
2698 		CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2699 	}
2700 	inp->inp_phd = phd;
2701 	CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2702 	CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2703 	inp->inp_flags |= INP_INHASHLIST;
2704 #ifdef PCBGROUP
2705 	if (m != NULL) {
2706 		in_pcbgroup_update_mbuf(inp, m);
2707 	} else {
2708 		in_pcbgroup_update(inp);
2709 	}
2710 #endif
2711 	return (0);
2712 }
2713 
2714 int
2715 in_pcbinshash(struct inpcb *inp)
2716 {
2717 
2718 	return (in_pcbinshash_internal(inp, NULL));
2719 }
2720 
2721 int
2722 in_pcbinshash_mbuf(struct inpcb *inp, struct mbuf *m)
2723 {
2724 
2725 	return (in_pcbinshash_internal(inp, m));
2726 }
2727 
2728 /*
2729  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2730  * changed. NOTE: This does not handle the case of the lport changing (the
2731  * hashed port list would have to be updated as well), so the lport must
2732  * not change after in_pcbinshash() has been called.
2733  */
2734 void
2735 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
2736 {
2737 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2738 	struct inpcbhead *head;
2739 	u_int32_t hashkey_faddr;
2740 
2741 	INP_WLOCK_ASSERT(inp);
2742 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2743 
2744 	KASSERT(inp->inp_flags & INP_INHASHLIST,
2745 	    ("in_pcbrehash: !INP_INHASHLIST"));
2746 
2747 #ifdef INET6
2748 	if (inp->inp_vflag & INP_IPV6)
2749 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2750 	else
2751 #endif
2752 	hashkey_faddr = inp->inp_faddr.s_addr;
2753 
2754 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2755 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2756 
2757 	CK_LIST_REMOVE(inp, inp_hash);
2758 	CK_LIST_INSERT_HEAD(head, inp, inp_hash);
2759 
2760 #ifdef PCBGROUP
2761 	if (m != NULL)
2762 		in_pcbgroup_update_mbuf(inp, m);
2763 	else
2764 		in_pcbgroup_update(inp);
2765 #endif
2766 }
2767 
2768 void
2769 in_pcbrehash(struct inpcb *inp)
2770 {
2771 
2772 	in_pcbrehash_mbuf(inp, NULL);
2773 }
2774 
2775 /*
2776  * Remove PCB from various lists.
2777  */
2778 static void
2779 in_pcbremlists(struct inpcb *inp)
2780 {
2781 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2782 
2783 	INP_WLOCK_ASSERT(inp);
2784 	INP_LIST_WLOCK_ASSERT(pcbinfo);
2785 
2786 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2787 	if (inp->inp_flags & INP_INHASHLIST) {
2788 		struct inpcbport *phd = inp->inp_phd;
2789 
2790 		INP_HASH_WLOCK(pcbinfo);
2791 
2792 		/* XXX: Only do if SO_REUSEPORT_LB set? */
2793 		in_pcbremlbgrouphash(inp);
2794 
2795 		CK_LIST_REMOVE(inp, inp_hash);
2796 		CK_LIST_REMOVE(inp, inp_portlist);
2797 		if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
2798 			CK_LIST_REMOVE(phd, phd_hash);
2799 			NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx);
2800 		}
2801 		INP_HASH_WUNLOCK(pcbinfo);
2802 		inp->inp_flags &= ~INP_INHASHLIST;
2803 	}
2804 	CK_LIST_REMOVE(inp, inp_list);
2805 	pcbinfo->ipi_count--;
2806 #ifdef PCBGROUP
2807 	in_pcbgroup_remove(inp);
2808 #endif
2809 }
2810 
2811 /*
2812  * Check for alternatives when higher level complains
2813  * about service problems.  For now, invalidate cached
2814  * routing information.  If the route was created dynamically
2815  * (by a redirect), time to try a default gateway again.
2816  */
2817 void
2818 in_losing(struct inpcb *inp)
2819 {
2820 
2821 	RO_INVALIDATE_CACHE(&inp->inp_route);
2822 	return;
2823 }
2824 
2825 /*
2826  * A set label operation has occurred at the socket layer, propagate the
2827  * label change into the in_pcb for the socket.
2828  */
2829 void
2830 in_pcbsosetlabel(struct socket *so)
2831 {
2832 #ifdef MAC
2833 	struct inpcb *inp;
2834 
2835 	inp = sotoinpcb(so);
2836 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2837 
2838 	INP_WLOCK(inp);
2839 	SOCK_LOCK(so);
2840 	mac_inpcb_sosetlabel(so, inp);
2841 	SOCK_UNLOCK(so);
2842 	INP_WUNLOCK(inp);
2843 #endif
2844 }
2845 
2846 /*
2847  * ipport_tick runs once per second, determining if random port allocation
2848  * should be continued.  If more than ipport_randomcps ports have been
2849  * allocated in the last second, then we return to sequential port
2850  * allocation. We return to random allocation only once we drop below
2851  * ipport_randomcps for at least ipport_randomtime seconds.
2852  */
2853 static void
2854 ipport_tick(void *xtp)
2855 {
2856 	VNET_ITERATOR_DECL(vnet_iter);
2857 
2858 	VNET_LIST_RLOCK_NOSLEEP();
2859 	VNET_FOREACH(vnet_iter) {
2860 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
2861 		if (V_ipport_tcpallocs <=
2862 		    V_ipport_tcplastcount + V_ipport_randomcps) {
2863 			if (V_ipport_stoprandom > 0)
2864 				V_ipport_stoprandom--;
2865 		} else
2866 			V_ipport_stoprandom = V_ipport_randomtime;
2867 		V_ipport_tcplastcount = V_ipport_tcpallocs;
2868 		CURVNET_RESTORE();
2869 	}
2870 	VNET_LIST_RUNLOCK_NOSLEEP();
2871 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2872 }
2873 
2874 static void
2875 ip_fini(void *xtp)
2876 {
2877 
2878 	callout_stop(&ipport_tick_callout);
2879 }
2880 
2881 /*
2882  * The ipport_callout should start running at about the time we attach the
2883  * inet or inet6 domains.
2884  */
2885 static void
2886 ipport_tick_init(const void *unused __unused)
2887 {
2888 
2889 	/* Start ipport_tick. */
2890 	callout_init(&ipport_tick_callout, 1);
2891 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2892 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2893 		SHUTDOWN_PRI_DEFAULT);
2894 }
2895 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
2896     ipport_tick_init, NULL);
2897 
2898 void
2899 inp_wlock(struct inpcb *inp)
2900 {
2901 
2902 	INP_WLOCK(inp);
2903 }
2904 
2905 void
2906 inp_wunlock(struct inpcb *inp)
2907 {
2908 
2909 	INP_WUNLOCK(inp);
2910 }
2911 
2912 void
2913 inp_rlock(struct inpcb *inp)
2914 {
2915 
2916 	INP_RLOCK(inp);
2917 }
2918 
2919 void
2920 inp_runlock(struct inpcb *inp)
2921 {
2922 
2923 	INP_RUNLOCK(inp);
2924 }
2925 
2926 #ifdef INVARIANT_SUPPORT
2927 void
2928 inp_lock_assert(struct inpcb *inp)
2929 {
2930 
2931 	INP_WLOCK_ASSERT(inp);
2932 }
2933 
2934 void
2935 inp_unlock_assert(struct inpcb *inp)
2936 {
2937 
2938 	INP_UNLOCK_ASSERT(inp);
2939 }
2940 #endif
2941 
2942 void
2943 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2944 {
2945 	struct inpcb *inp;
2946 
2947 	INP_INFO_WLOCK(&V_tcbinfo);
2948 	CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2949 		INP_WLOCK(inp);
2950 		func(inp, arg);
2951 		INP_WUNLOCK(inp);
2952 	}
2953 	INP_INFO_WUNLOCK(&V_tcbinfo);
2954 }
2955 
2956 struct socket *
2957 inp_inpcbtosocket(struct inpcb *inp)
2958 {
2959 
2960 	INP_WLOCK_ASSERT(inp);
2961 	return (inp->inp_socket);
2962 }
2963 
2964 struct tcpcb *
2965 inp_inpcbtotcpcb(struct inpcb *inp)
2966 {
2967 
2968 	INP_WLOCK_ASSERT(inp);
2969 	return ((struct tcpcb *)inp->inp_ppcb);
2970 }
2971 
2972 int
2973 inp_ip_tos_get(const struct inpcb *inp)
2974 {
2975 
2976 	return (inp->inp_ip_tos);
2977 }
2978 
2979 void
2980 inp_ip_tos_set(struct inpcb *inp, int val)
2981 {
2982 
2983 	inp->inp_ip_tos = val;
2984 }
2985 
2986 void
2987 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2988     uint32_t *faddr, uint16_t *fp)
2989 {
2990 
2991 	INP_LOCK_ASSERT(inp);
2992 	*laddr = inp->inp_laddr.s_addr;
2993 	*faddr = inp->inp_faddr.s_addr;
2994 	*lp = inp->inp_lport;
2995 	*fp = inp->inp_fport;
2996 }
2997 
2998 struct inpcb *
2999 so_sotoinpcb(struct socket *so)
3000 {
3001 
3002 	return (sotoinpcb(so));
3003 }
3004 
3005 struct tcpcb *
3006 so_sototcpcb(struct socket *so)
3007 {
3008 
3009 	return (sototcpcb(so));
3010 }
3011 
3012 /*
3013  * Create an external-format (``xinpcb'') structure using the information in
3014  * the kernel-format in_pcb structure pointed to by inp.  This is done to
3015  * reduce the spew of irrelevant information over this interface, to isolate
3016  * user code from changes in the kernel structure, and potentially to provide
3017  * information-hiding if we decide that some of this information should be
3018  * hidden from users.
3019  */
3020 void
3021 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
3022 {
3023 
3024 	bzero(xi, sizeof(*xi));
3025 	xi->xi_len = sizeof(struct xinpcb);
3026 	if (inp->inp_socket)
3027 		sotoxsocket(inp->inp_socket, &xi->xi_socket);
3028 	bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
3029 	xi->inp_gencnt = inp->inp_gencnt;
3030 	xi->inp_ppcb = (uintptr_t)inp->inp_ppcb;
3031 	xi->inp_flow = inp->inp_flow;
3032 	xi->inp_flowid = inp->inp_flowid;
3033 	xi->inp_flowtype = inp->inp_flowtype;
3034 	xi->inp_flags = inp->inp_flags;
3035 	xi->inp_flags2 = inp->inp_flags2;
3036 	xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket;
3037 	xi->in6p_cksum = inp->in6p_cksum;
3038 	xi->in6p_hops = inp->in6p_hops;
3039 	xi->inp_ip_tos = inp->inp_ip_tos;
3040 	xi->inp_vflag = inp->inp_vflag;
3041 	xi->inp_ip_ttl = inp->inp_ip_ttl;
3042 	xi->inp_ip_p = inp->inp_ip_p;
3043 	xi->inp_ip_minttl = inp->inp_ip_minttl;
3044 }
3045 
3046 #ifdef DDB
3047 static void
3048 db_print_indent(int indent)
3049 {
3050 	int i;
3051 
3052 	for (i = 0; i < indent; i++)
3053 		db_printf(" ");
3054 }
3055 
3056 static void
3057 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
3058 {
3059 	char faddr_str[48], laddr_str[48];
3060 
3061 	db_print_indent(indent);
3062 	db_printf("%s at %p\n", name, inc);
3063 
3064 	indent += 2;
3065 
3066 #ifdef INET6
3067 	if (inc->inc_flags & INC_ISIPV6) {
3068 		/* IPv6. */
3069 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
3070 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
3071 	} else
3072 #endif
3073 	{
3074 		/* IPv4. */
3075 		inet_ntoa_r(inc->inc_laddr, laddr_str);
3076 		inet_ntoa_r(inc->inc_faddr, faddr_str);
3077 	}
3078 	db_print_indent(indent);
3079 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
3080 	    ntohs(inc->inc_lport));
3081 	db_print_indent(indent);
3082 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
3083 	    ntohs(inc->inc_fport));
3084 }
3085 
3086 static void
3087 db_print_inpflags(int inp_flags)
3088 {
3089 	int comma;
3090 
3091 	comma = 0;
3092 	if (inp_flags & INP_RECVOPTS) {
3093 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
3094 		comma = 1;
3095 	}
3096 	if (inp_flags & INP_RECVRETOPTS) {
3097 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
3098 		comma = 1;
3099 	}
3100 	if (inp_flags & INP_RECVDSTADDR) {
3101 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
3102 		comma = 1;
3103 	}
3104 	if (inp_flags & INP_ORIGDSTADDR) {
3105 		db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
3106 		comma = 1;
3107 	}
3108 	if (inp_flags & INP_HDRINCL) {
3109 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
3110 		comma = 1;
3111 	}
3112 	if (inp_flags & INP_HIGHPORT) {
3113 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
3114 		comma = 1;
3115 	}
3116 	if (inp_flags & INP_LOWPORT) {
3117 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
3118 		comma = 1;
3119 	}
3120 	if (inp_flags & INP_ANONPORT) {
3121 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
3122 		comma = 1;
3123 	}
3124 	if (inp_flags & INP_RECVIF) {
3125 		db_printf("%sINP_RECVIF", comma ? ", " : "");
3126 		comma = 1;
3127 	}
3128 	if (inp_flags & INP_MTUDISC) {
3129 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
3130 		comma = 1;
3131 	}
3132 	if (inp_flags & INP_RECVTTL) {
3133 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
3134 		comma = 1;
3135 	}
3136 	if (inp_flags & INP_DONTFRAG) {
3137 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
3138 		comma = 1;
3139 	}
3140 	if (inp_flags & INP_RECVTOS) {
3141 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
3142 		comma = 1;
3143 	}
3144 	if (inp_flags & IN6P_IPV6_V6ONLY) {
3145 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
3146 		comma = 1;
3147 	}
3148 	if (inp_flags & IN6P_PKTINFO) {
3149 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
3150 		comma = 1;
3151 	}
3152 	if (inp_flags & IN6P_HOPLIMIT) {
3153 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
3154 		comma = 1;
3155 	}
3156 	if (inp_flags & IN6P_HOPOPTS) {
3157 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
3158 		comma = 1;
3159 	}
3160 	if (inp_flags & IN6P_DSTOPTS) {
3161 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
3162 		comma = 1;
3163 	}
3164 	if (inp_flags & IN6P_RTHDR) {
3165 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
3166 		comma = 1;
3167 	}
3168 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
3169 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
3170 		comma = 1;
3171 	}
3172 	if (inp_flags & IN6P_TCLASS) {
3173 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
3174 		comma = 1;
3175 	}
3176 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
3177 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
3178 		comma = 1;
3179 	}
3180 	if (inp_flags & INP_TIMEWAIT) {
3181 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
3182 		comma  = 1;
3183 	}
3184 	if (inp_flags & INP_ONESBCAST) {
3185 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
3186 		comma  = 1;
3187 	}
3188 	if (inp_flags & INP_DROPPED) {
3189 		db_printf("%sINP_DROPPED", comma ? ", " : "");
3190 		comma  = 1;
3191 	}
3192 	if (inp_flags & INP_SOCKREF) {
3193 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
3194 		comma  = 1;
3195 	}
3196 	if (inp_flags & IN6P_RFC2292) {
3197 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
3198 		comma = 1;
3199 	}
3200 	if (inp_flags & IN6P_MTU) {
3201 		db_printf("IN6P_MTU%s", comma ? ", " : "");
3202 		comma = 1;
3203 	}
3204 }
3205 
3206 static void
3207 db_print_inpvflag(u_char inp_vflag)
3208 {
3209 	int comma;
3210 
3211 	comma = 0;
3212 	if (inp_vflag & INP_IPV4) {
3213 		db_printf("%sINP_IPV4", comma ? ", " : "");
3214 		comma  = 1;
3215 	}
3216 	if (inp_vflag & INP_IPV6) {
3217 		db_printf("%sINP_IPV6", comma ? ", " : "");
3218 		comma  = 1;
3219 	}
3220 	if (inp_vflag & INP_IPV6PROTO) {
3221 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
3222 		comma  = 1;
3223 	}
3224 }
3225 
3226 static void
3227 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
3228 {
3229 
3230 	db_print_indent(indent);
3231 	db_printf("%s at %p\n", name, inp);
3232 
3233 	indent += 2;
3234 
3235 	db_print_indent(indent);
3236 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
3237 
3238 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
3239 
3240 	db_print_indent(indent);
3241 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
3242 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
3243 
3244 	db_print_indent(indent);
3245 	db_printf("inp_label: %p   inp_flags: 0x%x (",
3246 	   inp->inp_label, inp->inp_flags);
3247 	db_print_inpflags(inp->inp_flags);
3248 	db_printf(")\n");
3249 
3250 	db_print_indent(indent);
3251 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
3252 	    inp->inp_vflag);
3253 	db_print_inpvflag(inp->inp_vflag);
3254 	db_printf(")\n");
3255 
3256 	db_print_indent(indent);
3257 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
3258 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
3259 
3260 	db_print_indent(indent);
3261 #ifdef INET6
3262 	if (inp->inp_vflag & INP_IPV6) {
3263 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
3264 		    "in6p_moptions: %p\n", inp->in6p_options,
3265 		    inp->in6p_outputopts, inp->in6p_moptions);
3266 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
3267 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
3268 		    inp->in6p_hops);
3269 	} else
3270 #endif
3271 	{
3272 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
3273 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
3274 		    inp->inp_options, inp->inp_moptions);
3275 	}
3276 
3277 	db_print_indent(indent);
3278 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
3279 	    (uintmax_t)inp->inp_gencnt);
3280 }
3281 
3282 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
3283 {
3284 	struct inpcb *inp;
3285 
3286 	if (!have_addr) {
3287 		db_printf("usage: show inpcb <addr>\n");
3288 		return;
3289 	}
3290 	inp = (struct inpcb *)addr;
3291 
3292 	db_print_inpcb(inp, "inpcb", 0);
3293 }
3294 #endif /* DDB */
3295 
3296 #ifdef RATELIMIT
3297 /*
3298  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
3299  * if any.
3300  */
3301 int
3302 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
3303 {
3304 	union if_snd_tag_modify_params params = {
3305 		.rate_limit.max_rate = max_pacing_rate,
3306 		.rate_limit.flags = M_NOWAIT,
3307 	};
3308 	struct m_snd_tag *mst;
3309 	struct ifnet *ifp;
3310 	int error;
3311 
3312 	mst = inp->inp_snd_tag;
3313 	if (mst == NULL)
3314 		return (EINVAL);
3315 
3316 	ifp = mst->ifp;
3317 	if (ifp == NULL)
3318 		return (EINVAL);
3319 
3320 	if (ifp->if_snd_tag_modify == NULL) {
3321 		error = EOPNOTSUPP;
3322 	} else {
3323 		error = ifp->if_snd_tag_modify(mst, &params);
3324 	}
3325 	return (error);
3326 }
3327 
3328 /*
3329  * Query existing TX rate limit based on the existing
3330  * "inp->inp_snd_tag", if any.
3331  */
3332 int
3333 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
3334 {
3335 	union if_snd_tag_query_params params = { };
3336 	struct m_snd_tag *mst;
3337 	struct ifnet *ifp;
3338 	int error;
3339 
3340 	mst = inp->inp_snd_tag;
3341 	if (mst == NULL)
3342 		return (EINVAL);
3343 
3344 	ifp = mst->ifp;
3345 	if (ifp == NULL)
3346 		return (EINVAL);
3347 
3348 	if (ifp->if_snd_tag_query == NULL) {
3349 		error = EOPNOTSUPP;
3350 	} else {
3351 		error = ifp->if_snd_tag_query(mst, &params);
3352 		if (error == 0 &&  p_max_pacing_rate != NULL)
3353 			*p_max_pacing_rate = params.rate_limit.max_rate;
3354 	}
3355 	return (error);
3356 }
3357 
3358 /*
3359  * Query existing TX queue level based on the existing
3360  * "inp->inp_snd_tag", if any.
3361  */
3362 int
3363 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
3364 {
3365 	union if_snd_tag_query_params params = { };
3366 	struct m_snd_tag *mst;
3367 	struct ifnet *ifp;
3368 	int error;
3369 
3370 	mst = inp->inp_snd_tag;
3371 	if (mst == NULL)
3372 		return (EINVAL);
3373 
3374 	ifp = mst->ifp;
3375 	if (ifp == NULL)
3376 		return (EINVAL);
3377 
3378 	if (ifp->if_snd_tag_query == NULL)
3379 		return (EOPNOTSUPP);
3380 
3381 	error = ifp->if_snd_tag_query(mst, &params);
3382 	if (error == 0 &&  p_txqueue_level != NULL)
3383 		*p_txqueue_level = params.rate_limit.queue_level;
3384 	return (error);
3385 }
3386 
3387 /*
3388  * Allocate a new TX rate limit send tag from the network interface
3389  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
3390  */
3391 int
3392 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
3393     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st)
3394 
3395 {
3396 	union if_snd_tag_alloc_params params = {
3397 		.rate_limit.hdr.type = (max_pacing_rate == -1U) ?
3398 		    IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
3399 		.rate_limit.hdr.flowid = flowid,
3400 		.rate_limit.hdr.flowtype = flowtype,
3401 		.rate_limit.hdr.numa_domain = inp->inp_numa_domain,
3402 		.rate_limit.max_rate = max_pacing_rate,
3403 		.rate_limit.flags = M_NOWAIT,
3404 	};
3405 	int error;
3406 
3407 	INP_WLOCK_ASSERT(inp);
3408 
3409 	/*
3410 	 * If there is already a send tag, or the INP is being torn
3411 	 * down, allocating a new send tag is not allowed. Else send
3412 	 * tags may leak.
3413 	 */
3414 	if (*st != NULL || (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) != 0)
3415 		return (EINVAL);
3416 
3417 	error = m_snd_tag_alloc(ifp, &params, st);
3418 #ifdef INET
3419 	if (error == 0) {
3420 		counter_u64_add(rate_limit_set_ok, 1);
3421 		counter_u64_add(rate_limit_active, 1);
3422 	} else if (error != EOPNOTSUPP)
3423 		  counter_u64_add(rate_limit_alloc_fail, 1);
3424 #endif
3425 	return (error);
3426 }
3427 
3428 void
3429 in_pcbdetach_tag(struct m_snd_tag *mst)
3430 {
3431 
3432 	m_snd_tag_rele(mst);
3433 #ifdef INET
3434 	counter_u64_add(rate_limit_active, -1);
3435 #endif
3436 }
3437 
3438 /*
3439  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
3440  * if any:
3441  */
3442 void
3443 in_pcbdetach_txrtlmt(struct inpcb *inp)
3444 {
3445 	struct m_snd_tag *mst;
3446 
3447 	INP_WLOCK_ASSERT(inp);
3448 
3449 	mst = inp->inp_snd_tag;
3450 	inp->inp_snd_tag = NULL;
3451 
3452 	if (mst == NULL)
3453 		return;
3454 
3455 	m_snd_tag_rele(mst);
3456 #ifdef INET
3457 	counter_u64_add(rate_limit_active, -1);
3458 #endif
3459 }
3460 
3461 int
3462 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate)
3463 {
3464 	int error;
3465 
3466 	/*
3467 	 * If the existing send tag is for the wrong interface due to
3468 	 * a route change, first drop the existing tag.  Set the
3469 	 * CHANGED flag so that we will keep trying to allocate a new
3470 	 * tag if we fail to allocate one this time.
3471 	 */
3472 	if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) {
3473 		in_pcbdetach_txrtlmt(inp);
3474 		inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3475 	}
3476 
3477 	/*
3478 	 * NOTE: When attaching to a network interface a reference is
3479 	 * made to ensure the network interface doesn't go away until
3480 	 * all ratelimit connections are gone. The network interface
3481 	 * pointers compared below represent valid network interfaces,
3482 	 * except when comparing towards NULL.
3483 	 */
3484 	if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3485 		error = 0;
3486 	} else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3487 		if (inp->inp_snd_tag != NULL)
3488 			in_pcbdetach_txrtlmt(inp);
3489 		error = 0;
3490 	} else if (inp->inp_snd_tag == NULL) {
3491 		/*
3492 		 * In order to utilize packet pacing with RSS, we need
3493 		 * to wait until there is a valid RSS hash before we
3494 		 * can proceed:
3495 		 */
3496 		if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3497 			error = EAGAIN;
3498 		} else {
3499 			error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3500 			    mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag);
3501 		}
3502 	} else {
3503 		error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3504 	}
3505 	if (error == 0 || error == EOPNOTSUPP)
3506 		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3507 
3508 	return (error);
3509 }
3510 
3511 /*
3512  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
3513  * is set in the fast path and will attach/detach/modify the TX rate
3514  * limit send tag based on the socket's so_max_pacing_rate value.
3515  */
3516 void
3517 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
3518 {
3519 	struct socket *socket;
3520 	uint32_t max_pacing_rate;
3521 	bool did_upgrade;
3522 	int error;
3523 
3524 	if (inp == NULL)
3525 		return;
3526 
3527 	socket = inp->inp_socket;
3528 	if (socket == NULL)
3529 		return;
3530 
3531 	if (!INP_WLOCKED(inp)) {
3532 		/*
3533 		 * NOTE: If the write locking fails, we need to bail
3534 		 * out and use the non-ratelimited ring for the
3535 		 * transmit until there is a new chance to get the
3536 		 * write lock.
3537 		 */
3538 		if (!INP_TRY_UPGRADE(inp))
3539 			return;
3540 		did_upgrade = 1;
3541 	} else {
3542 		did_upgrade = 0;
3543 	}
3544 
3545 	/*
3546 	 * NOTE: The so_max_pacing_rate value is read unlocked,
3547 	 * because atomic updates are not required since the variable
3548 	 * is checked at every mbuf we send. It is assumed that the
3549 	 * variable read itself will be atomic.
3550 	 */
3551 	max_pacing_rate = socket->so_max_pacing_rate;
3552 
3553 	error = in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate);
3554 
3555 	if (did_upgrade)
3556 		INP_DOWNGRADE(inp);
3557 }
3558 
3559 /*
3560  * Track route changes for TX rate limiting.
3561  */
3562 void
3563 in_pcboutput_eagain(struct inpcb *inp)
3564 {
3565 	bool did_upgrade;
3566 
3567 	if (inp == NULL)
3568 		return;
3569 
3570 	if (inp->inp_snd_tag == NULL)
3571 		return;
3572 
3573 	if (!INP_WLOCKED(inp)) {
3574 		/*
3575 		 * NOTE: If the write locking fails, we need to bail
3576 		 * out and use the non-ratelimited ring for the
3577 		 * transmit until there is a new chance to get the
3578 		 * write lock.
3579 		 */
3580 		if (!INP_TRY_UPGRADE(inp))
3581 			return;
3582 		did_upgrade = 1;
3583 	} else {
3584 		did_upgrade = 0;
3585 	}
3586 
3587 	/* detach rate limiting */
3588 	in_pcbdetach_txrtlmt(inp);
3589 
3590 	/* make sure new mbuf send tag allocation is made */
3591 	inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3592 
3593 	if (did_upgrade)
3594 		INP_DOWNGRADE(inp);
3595 }
3596 
3597 #ifdef INET
3598 static void
3599 rl_init(void *st)
3600 {
3601 	rate_limit_new = counter_u64_alloc(M_WAITOK);
3602 	rate_limit_chg = counter_u64_alloc(M_WAITOK);
3603 	rate_limit_active = counter_u64_alloc(M_WAITOK);
3604 	rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK);
3605 	rate_limit_set_ok = counter_u64_alloc(M_WAITOK);
3606 }
3607 
3608 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL);
3609 #endif
3610 #endif /* RATELIMIT */
3611