1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993, 1995 3 * The Regents of the University of California. 4 * Copyright (c) 2007-2009 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 4. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_ddb.h" 38 #include "opt_ipsec.h" 39 #include "opt_inet6.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/malloc.h> 44 #include <sys/mbuf.h> 45 #include <sys/domain.h> 46 #include <sys/protosw.h> 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/priv.h> 50 #include <sys/proc.h> 51 #include <sys/jail.h> 52 #include <sys/kernel.h> 53 #include <sys/sysctl.h> 54 55 #ifdef DDB 56 #include <ddb/ddb.h> 57 #endif 58 59 #include <vm/uma.h> 60 61 #include <net/if.h> 62 #include <net/if_types.h> 63 #include <net/route.h> 64 #include <net/vnet.h> 65 66 #include <netinet/in.h> 67 #include <netinet/in_pcb.h> 68 #include <netinet/in_var.h> 69 #include <netinet/ip_var.h> 70 #include <netinet/tcp_var.h> 71 #include <netinet/udp.h> 72 #include <netinet/udp_var.h> 73 #ifdef INET6 74 #include <netinet/ip6.h> 75 #include <netinet6/ip6_var.h> 76 #endif /* INET6 */ 77 78 79 #ifdef IPSEC 80 #include <netipsec/ipsec.h> 81 #include <netipsec/key.h> 82 #endif /* IPSEC */ 83 84 #include <security/mac/mac_framework.h> 85 86 /* 87 * These configure the range of local port addresses assigned to 88 * "unspecified" outgoing connections/packets/whatever. 89 */ 90 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 91 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 92 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 93 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 94 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 95 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 96 97 /* 98 * Reserved ports accessible only to root. There are significant 99 * security considerations that must be accounted for when changing these, 100 * but the security benefits can be great. Please be careful. 101 */ 102 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 103 VNET_DEFINE(int, ipport_reservedlow); 104 105 /* Variables dealing with random ephemeral port allocation. */ 106 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 107 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 108 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 109 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 110 VNET_DEFINE(int, ipport_tcpallocs); 111 static VNET_DEFINE(int, ipport_tcplastcount); 112 113 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 114 115 #define RANGECHK(var, min, max) \ 116 if ((var) < (min)) { (var) = (min); } \ 117 else if ((var) > (max)) { (var) = (max); } 118 119 static void in_pcbremlists(struct inpcb *inp); 120 121 static int 122 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 123 { 124 int error; 125 126 #ifdef VIMAGE 127 error = vnet_sysctl_handle_int(oidp, arg1, arg2, req); 128 #else 129 error = sysctl_handle_int(oidp, arg1, arg2, req); 130 #endif 131 if (error == 0) { 132 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 133 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 134 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 135 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 136 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 137 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 138 } 139 return (error); 140 } 141 142 #undef RANGECHK 143 144 SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports"); 145 146 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 147 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowfirstauto), 0, 148 &sysctl_net_ipport_check, "I", ""); 149 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 150 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowlastauto), 0, 151 &sysctl_net_ipport_check, "I", ""); 152 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, first, 153 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_firstauto), 0, 154 &sysctl_net_ipport_check, "I", ""); 155 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, last, 156 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lastauto), 0, 157 &sysctl_net_ipport_check, "I", ""); 158 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 159 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hifirstauto), 0, 160 &sysctl_net_ipport_check, "I", ""); 161 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 162 CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hilastauto), 0, 163 &sysctl_net_ipport_check, "I", ""); 164 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 165 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedhigh), 0, ""); 166 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 167 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 168 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW, 169 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 170 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW, 171 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 172 "allocations before switching to a sequental one"); 173 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW, 174 &VNET_NAME(ipport_randomtime), 0, 175 "Minimum time to keep sequental port " 176 "allocation before switching to a random one"); 177 178 /* 179 * in_pcb.c: manage the Protocol Control Blocks. 180 * 181 * NOTE: It is assumed that most of these functions will be called with 182 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 183 * functions often modify hash chains or addresses in pcbs. 184 */ 185 186 /* 187 * Allocate a PCB and associate it with the socket. 188 * On success return with the PCB locked. 189 */ 190 int 191 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 192 { 193 struct inpcb *inp; 194 int error; 195 196 INP_INFO_WLOCK_ASSERT(pcbinfo); 197 error = 0; 198 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 199 if (inp == NULL) 200 return (ENOBUFS); 201 bzero(inp, inp_zero_size); 202 inp->inp_pcbinfo = pcbinfo; 203 inp->inp_socket = so; 204 inp->inp_cred = crhold(so->so_cred); 205 inp->inp_inc.inc_fibnum = so->so_fibnum; 206 #ifdef MAC 207 error = mac_inpcb_init(inp, M_NOWAIT); 208 if (error != 0) 209 goto out; 210 mac_inpcb_create(so, inp); 211 #endif 212 #ifdef IPSEC 213 error = ipsec_init_policy(so, &inp->inp_sp); 214 if (error != 0) { 215 #ifdef MAC 216 mac_inpcb_destroy(inp); 217 #endif 218 goto out; 219 } 220 #endif /*IPSEC*/ 221 #ifdef INET6 222 if (INP_SOCKAF(so) == AF_INET6) { 223 inp->inp_vflag |= INP_IPV6PROTO; 224 if (V_ip6_v6only) 225 inp->inp_flags |= IN6P_IPV6_V6ONLY; 226 } 227 #endif 228 LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 229 pcbinfo->ipi_count++; 230 so->so_pcb = (caddr_t)inp; 231 #ifdef INET6 232 if (V_ip6_auto_flowlabel) 233 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 234 #endif 235 INP_WLOCK(inp); 236 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 237 inp->inp_refcount = 1; /* Reference from the inpcbinfo */ 238 #if defined(IPSEC) || defined(MAC) 239 out: 240 if (error != 0) { 241 crfree(inp->inp_cred); 242 uma_zfree(pcbinfo->ipi_zone, inp); 243 } 244 #endif 245 return (error); 246 } 247 248 int 249 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 250 { 251 int anonport, error; 252 253 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 254 INP_WLOCK_ASSERT(inp); 255 256 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 257 return (EINVAL); 258 anonport = inp->inp_lport == 0 && (nam == NULL || 259 ((struct sockaddr_in *)nam)->sin_port == 0); 260 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 261 &inp->inp_lport, cred); 262 if (error) 263 return (error); 264 if (in_pcbinshash(inp) != 0) { 265 inp->inp_laddr.s_addr = INADDR_ANY; 266 inp->inp_lport = 0; 267 return (EAGAIN); 268 } 269 if (anonport) 270 inp->inp_flags |= INP_ANONPORT; 271 return (0); 272 } 273 274 /* 275 * Set up a bind operation on a PCB, performing port allocation 276 * as required, but do not actually modify the PCB. Callers can 277 * either complete the bind by setting inp_laddr/inp_lport and 278 * calling in_pcbinshash(), or they can just use the resulting 279 * port and address to authorise the sending of a once-off packet. 280 * 281 * On error, the values of *laddrp and *lportp are not changed. 282 */ 283 int 284 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 285 u_short *lportp, struct ucred *cred) 286 { 287 struct socket *so = inp->inp_socket; 288 unsigned short *lastport; 289 struct sockaddr_in *sin; 290 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 291 struct in_addr laddr; 292 u_short lport = 0; 293 int wild = 0, reuseport = (so->so_options & SO_REUSEPORT); 294 int error; 295 int dorandom; 296 297 /* 298 * Because no actual state changes occur here, a global write lock on 299 * the pcbinfo isn't required. 300 */ 301 INP_INFO_LOCK_ASSERT(pcbinfo); 302 INP_LOCK_ASSERT(inp); 303 304 if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 305 return (EADDRNOTAVAIL); 306 laddr.s_addr = *laddrp; 307 if (nam != NULL && laddr.s_addr != INADDR_ANY) 308 return (EINVAL); 309 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) 310 wild = INPLOOKUP_WILDCARD; 311 if (nam == NULL) { 312 if ((error = prison_local_ip4(cred, &laddr)) != 0) 313 return (error); 314 } else { 315 sin = (struct sockaddr_in *)nam; 316 if (nam->sa_len != sizeof (*sin)) 317 return (EINVAL); 318 #ifdef notdef 319 /* 320 * We should check the family, but old programs 321 * incorrectly fail to initialize it. 322 */ 323 if (sin->sin_family != AF_INET) 324 return (EAFNOSUPPORT); 325 #endif 326 error = prison_local_ip4(cred, &sin->sin_addr); 327 if (error) 328 return (error); 329 if (sin->sin_port != *lportp) { 330 /* Don't allow the port to change. */ 331 if (*lportp != 0) 332 return (EINVAL); 333 lport = sin->sin_port; 334 } 335 /* NB: lport is left as 0 if the port isn't being changed. */ 336 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 337 /* 338 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 339 * allow complete duplication of binding if 340 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 341 * and a multicast address is bound on both 342 * new and duplicated sockets. 343 */ 344 if (so->so_options & SO_REUSEADDR) 345 reuseport = SO_REUSEADDR|SO_REUSEPORT; 346 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 347 sin->sin_port = 0; /* yech... */ 348 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 349 /* 350 * Is the address a local IP address? 351 * If INP_BINDANY is set, then the socket may be bound 352 * to any endpoint address, local or not. 353 */ 354 if ((inp->inp_flags & INP_BINDANY) == 0 && 355 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 356 return (EADDRNOTAVAIL); 357 } 358 laddr = sin->sin_addr; 359 if (lport) { 360 struct inpcb *t; 361 struct tcptw *tw; 362 363 /* GROSS */ 364 if (ntohs(lport) <= V_ipport_reservedhigh && 365 ntohs(lport) >= V_ipport_reservedlow && 366 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 367 0)) 368 return (EACCES); 369 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 370 priv_check_cred(inp->inp_cred, 371 PRIV_NETINET_REUSEPORT, 0) != 0) { 372 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 373 lport, INPLOOKUP_WILDCARD, cred); 374 /* 375 * XXX 376 * This entire block sorely needs a rewrite. 377 */ 378 if (t && 379 ((t->inp_flags & INP_TIMEWAIT) == 0) && 380 (so->so_type != SOCK_STREAM || 381 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 382 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 383 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 384 (t->inp_socket->so_options & 385 SO_REUSEPORT) == 0) && 386 (inp->inp_cred->cr_uid != 387 t->inp_cred->cr_uid)) 388 return (EADDRINUSE); 389 } 390 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 391 lport, wild, cred); 392 if (t && (t->inp_flags & INP_TIMEWAIT)) { 393 /* 394 * XXXRW: If an incpb has had its timewait 395 * state recycled, we treat the address as 396 * being in use (for now). This is better 397 * than a panic, but not desirable. 398 */ 399 tw = intotw(inp); 400 if (tw == NULL || 401 (reuseport & tw->tw_so_options) == 0) 402 return (EADDRINUSE); 403 } else if (t && 404 (reuseport & t->inp_socket->so_options) == 0) { 405 #ifdef INET6 406 if (ntohl(sin->sin_addr.s_addr) != 407 INADDR_ANY || 408 ntohl(t->inp_laddr.s_addr) != 409 INADDR_ANY || 410 INP_SOCKAF(so) == 411 INP_SOCKAF(t->inp_socket)) 412 #endif 413 return (EADDRINUSE); 414 } 415 } 416 } 417 if (*lportp != 0) 418 lport = *lportp; 419 if (lport == 0) { 420 u_short first, last, aux; 421 int count; 422 423 if (inp->inp_flags & INP_HIGHPORT) { 424 first = V_ipport_hifirstauto; /* sysctl */ 425 last = V_ipport_hilastauto; 426 lastport = &pcbinfo->ipi_lasthi; 427 } else if (inp->inp_flags & INP_LOWPORT) { 428 error = priv_check_cred(cred, 429 PRIV_NETINET_RESERVEDPORT, 0); 430 if (error) 431 return error; 432 first = V_ipport_lowfirstauto; /* 1023 */ 433 last = V_ipport_lowlastauto; /* 600 */ 434 lastport = &pcbinfo->ipi_lastlow; 435 } else { 436 first = V_ipport_firstauto; /* sysctl */ 437 last = V_ipport_lastauto; 438 lastport = &pcbinfo->ipi_lastport; 439 } 440 /* 441 * For UDP, use random port allocation as long as the user 442 * allows it. For TCP (and as of yet unknown) connections, 443 * use random port allocation only if the user allows it AND 444 * ipport_tick() allows it. 445 */ 446 if (V_ipport_randomized && 447 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo)) 448 dorandom = 1; 449 else 450 dorandom = 0; 451 /* 452 * It makes no sense to do random port allocation if 453 * we have the only port available. 454 */ 455 if (first == last) 456 dorandom = 0; 457 /* Make sure to not include UDP packets in the count. */ 458 if (pcbinfo != &V_udbinfo) 459 V_ipport_tcpallocs++; 460 /* 461 * Instead of having two loops further down counting up or down 462 * make sure that first is always <= last and go with only one 463 * code path implementing all logic. 464 */ 465 if (first > last) { 466 aux = first; 467 first = last; 468 last = aux; 469 } 470 471 if (dorandom) 472 *lastport = first + 473 (arc4random() % (last - first)); 474 475 count = last - first; 476 477 do { 478 if (count-- < 0) /* completely used? */ 479 return (EADDRNOTAVAIL); 480 ++*lastport; 481 if (*lastport < first || *lastport > last) 482 *lastport = first; 483 lport = htons(*lastport); 484 } while (in_pcblookup_local(pcbinfo, laddr, 485 lport, wild, cred)); 486 } 487 *laddrp = laddr.s_addr; 488 *lportp = lport; 489 return (0); 490 } 491 492 /* 493 * Connect from a socket to a specified address. 494 * Both address and port must be specified in argument sin. 495 * If don't have a local address for this socket yet, 496 * then pick one. 497 */ 498 int 499 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 500 { 501 u_short lport, fport; 502 in_addr_t laddr, faddr; 503 int anonport, error; 504 505 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 506 INP_WLOCK_ASSERT(inp); 507 508 lport = inp->inp_lport; 509 laddr = inp->inp_laddr.s_addr; 510 anonport = (lport == 0); 511 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 512 NULL, cred); 513 if (error) 514 return (error); 515 516 /* Do the initial binding of the local address if required. */ 517 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 518 inp->inp_lport = lport; 519 inp->inp_laddr.s_addr = laddr; 520 if (in_pcbinshash(inp) != 0) { 521 inp->inp_laddr.s_addr = INADDR_ANY; 522 inp->inp_lport = 0; 523 return (EAGAIN); 524 } 525 } 526 527 /* Commit the remaining changes. */ 528 inp->inp_lport = lport; 529 inp->inp_laddr.s_addr = laddr; 530 inp->inp_faddr.s_addr = faddr; 531 inp->inp_fport = fport; 532 in_pcbrehash(inp); 533 534 if (anonport) 535 inp->inp_flags |= INP_ANONPORT; 536 return (0); 537 } 538 539 /* 540 * Do proper source address selection on an unbound socket in case 541 * of connect. Take jails into account as well. 542 */ 543 static int 544 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 545 struct ucred *cred) 546 { 547 struct ifaddr *ifa; 548 struct sockaddr *sa; 549 struct sockaddr_in *sin; 550 struct route sro; 551 int error; 552 553 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 554 555 /* 556 * Bypass source address selection and use the primary jail IP 557 * if requested. 558 */ 559 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 560 return (0); 561 562 error = 0; 563 bzero(&sro, sizeof(sro)); 564 565 sin = (struct sockaddr_in *)&sro.ro_dst; 566 sin->sin_family = AF_INET; 567 sin->sin_len = sizeof(struct sockaddr_in); 568 sin->sin_addr.s_addr = faddr->s_addr; 569 570 /* 571 * If route is known our src addr is taken from the i/f, 572 * else punt. 573 * 574 * Find out route to destination. 575 */ 576 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 577 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); 578 579 /* 580 * If we found a route, use the address corresponding to 581 * the outgoing interface. 582 * 583 * Otherwise assume faddr is reachable on a directly connected 584 * network and try to find a corresponding interface to take 585 * the source address from. 586 */ 587 if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { 588 struct in_ifaddr *ia; 589 struct ifnet *ifp; 590 591 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin)); 592 if (ia == NULL) 593 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin)); 594 if (ia == NULL) { 595 error = ENETUNREACH; 596 goto done; 597 } 598 599 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 600 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 601 ifa_free(&ia->ia_ifa); 602 goto done; 603 } 604 605 ifp = ia->ia_ifp; 606 ifa_free(&ia->ia_ifa); 607 ia = NULL; 608 IF_ADDR_LOCK(ifp); 609 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 610 611 sa = ifa->ifa_addr; 612 if (sa->sa_family != AF_INET) 613 continue; 614 sin = (struct sockaddr_in *)sa; 615 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 616 ia = (struct in_ifaddr *)ifa; 617 break; 618 } 619 } 620 if (ia != NULL) { 621 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 622 IF_ADDR_UNLOCK(ifp); 623 goto done; 624 } 625 IF_ADDR_UNLOCK(ifp); 626 627 /* 3. As a last resort return the 'default' jail address. */ 628 error = prison_get_ip4(cred, laddr); 629 goto done; 630 } 631 632 /* 633 * If the outgoing interface on the route found is not 634 * a loopback interface, use the address from that interface. 635 * In case of jails do those three steps: 636 * 1. check if the interface address belongs to the jail. If so use it. 637 * 2. check if we have any address on the outgoing interface 638 * belonging to this jail. If so use it. 639 * 3. as a last resort return the 'default' jail address. 640 */ 641 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { 642 struct in_ifaddr *ia; 643 struct ifnet *ifp; 644 645 /* If not jailed, use the default returned. */ 646 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 647 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 648 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 649 goto done; 650 } 651 652 /* Jailed. */ 653 /* 1. Check if the iface address belongs to the jail. */ 654 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; 655 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 656 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 657 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 658 goto done; 659 } 660 661 /* 662 * 2. Check if we have any address on the outgoing interface 663 * belonging to this jail. 664 */ 665 ia = NULL; 666 ifp = sro.ro_rt->rt_ifp; 667 IF_ADDR_LOCK(ifp); 668 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 669 sa = ifa->ifa_addr; 670 if (sa->sa_family != AF_INET) 671 continue; 672 sin = (struct sockaddr_in *)sa; 673 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 674 ia = (struct in_ifaddr *)ifa; 675 break; 676 } 677 } 678 if (ia != NULL) { 679 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 680 IF_ADDR_UNLOCK(ifp); 681 goto done; 682 } 683 IF_ADDR_UNLOCK(ifp); 684 685 /* 3. As a last resort return the 'default' jail address. */ 686 error = prison_get_ip4(cred, laddr); 687 goto done; 688 } 689 690 /* 691 * The outgoing interface is marked with 'loopback net', so a route 692 * to ourselves is here. 693 * Try to find the interface of the destination address and then 694 * take the address from there. That interface is not necessarily 695 * a loopback interface. 696 * In case of jails, check that it is an address of the jail 697 * and if we cannot find, fall back to the 'default' jail address. 698 */ 699 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 700 struct sockaddr_in sain; 701 struct in_ifaddr *ia; 702 703 bzero(&sain, sizeof(struct sockaddr_in)); 704 sain.sin_family = AF_INET; 705 sain.sin_len = sizeof(struct sockaddr_in); 706 sain.sin_addr.s_addr = faddr->s_addr; 707 708 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain))); 709 if (ia == NULL) 710 ia = ifatoia(ifa_ifwithnet(sintosa(&sain))); 711 if (ia == NULL) 712 ia = ifatoia(ifa_ifwithaddr(sintosa(&sain))); 713 714 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 715 if (ia == NULL) { 716 error = ENETUNREACH; 717 goto done; 718 } 719 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 720 ifa_free(&ia->ia_ifa); 721 goto done; 722 } 723 724 /* Jailed. */ 725 if (ia != NULL) { 726 struct ifnet *ifp; 727 728 ifp = ia->ia_ifp; 729 ifa_free(&ia->ia_ifa); 730 ia = NULL; 731 IF_ADDR_LOCK(ifp); 732 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 733 734 sa = ifa->ifa_addr; 735 if (sa->sa_family != AF_INET) 736 continue; 737 sin = (struct sockaddr_in *)sa; 738 if (prison_check_ip4(cred, 739 &sin->sin_addr) == 0) { 740 ia = (struct in_ifaddr *)ifa; 741 break; 742 } 743 } 744 if (ia != NULL) { 745 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 746 IF_ADDR_UNLOCK(ifp); 747 goto done; 748 } 749 IF_ADDR_UNLOCK(ifp); 750 } 751 752 /* 3. As a last resort return the 'default' jail address. */ 753 error = prison_get_ip4(cred, laddr); 754 goto done; 755 } 756 757 done: 758 if (sro.ro_rt != NULL) 759 RTFREE(sro.ro_rt); 760 return (error); 761 } 762 763 /* 764 * Set up for a connect from a socket to the specified address. 765 * On entry, *laddrp and *lportp should contain the current local 766 * address and port for the PCB; these are updated to the values 767 * that should be placed in inp_laddr and inp_lport to complete 768 * the connect. 769 * 770 * On success, *faddrp and *fportp will be set to the remote address 771 * and port. These are not updated in the error case. 772 * 773 * If the operation fails because the connection already exists, 774 * *oinpp will be set to the PCB of that connection so that the 775 * caller can decide to override it. In all other cases, *oinpp 776 * is set to NULL. 777 */ 778 int 779 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 780 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 781 struct inpcb **oinpp, struct ucred *cred) 782 { 783 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 784 struct in_ifaddr *ia; 785 struct inpcb *oinp; 786 struct in_addr laddr, faddr; 787 u_short lport, fport; 788 int error; 789 790 /* 791 * Because a global state change doesn't actually occur here, a read 792 * lock is sufficient. 793 */ 794 INP_INFO_LOCK_ASSERT(inp->inp_pcbinfo); 795 INP_LOCK_ASSERT(inp); 796 797 if (oinpp != NULL) 798 *oinpp = NULL; 799 if (nam->sa_len != sizeof (*sin)) 800 return (EINVAL); 801 if (sin->sin_family != AF_INET) 802 return (EAFNOSUPPORT); 803 if (sin->sin_port == 0) 804 return (EADDRNOTAVAIL); 805 laddr.s_addr = *laddrp; 806 lport = *lportp; 807 faddr = sin->sin_addr; 808 fport = sin->sin_port; 809 810 if (!TAILQ_EMPTY(&V_in_ifaddrhead)) { 811 /* 812 * If the destination address is INADDR_ANY, 813 * use the primary local address. 814 * If the supplied address is INADDR_BROADCAST, 815 * and the primary interface supports broadcast, 816 * choose the broadcast address for that interface. 817 */ 818 if (faddr.s_addr == INADDR_ANY) { 819 IN_IFADDR_RLOCK(); 820 faddr = 821 IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 822 IN_IFADDR_RUNLOCK(); 823 if (cred != NULL && 824 (error = prison_get_ip4(cred, &faddr)) != 0) 825 return (error); 826 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 827 IN_IFADDR_RLOCK(); 828 if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 829 IFF_BROADCAST) 830 faddr = satosin(&TAILQ_FIRST( 831 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 832 IN_IFADDR_RUNLOCK(); 833 } 834 } 835 if (laddr.s_addr == INADDR_ANY) { 836 error = in_pcbladdr(inp, &faddr, &laddr, cred); 837 if (error) 838 return (error); 839 840 /* 841 * If the destination address is multicast and an outgoing 842 * interface has been set as a multicast option, use the 843 * address of that interface as our source address. 844 */ 845 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 846 inp->inp_moptions != NULL) { 847 struct ip_moptions *imo; 848 struct ifnet *ifp; 849 850 imo = inp->inp_moptions; 851 if (imo->imo_multicast_ifp != NULL) { 852 ifp = imo->imo_multicast_ifp; 853 IN_IFADDR_RLOCK(); 854 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) 855 if (ia->ia_ifp == ifp) 856 break; 857 if (ia == NULL) { 858 IN_IFADDR_RUNLOCK(); 859 return (EADDRNOTAVAIL); 860 } 861 laddr = ia->ia_addr.sin_addr; 862 IN_IFADDR_RUNLOCK(); 863 } 864 } 865 } 866 867 oinp = in_pcblookup_hash(inp->inp_pcbinfo, faddr, fport, laddr, lport, 868 0, NULL); 869 if (oinp != NULL) { 870 if (oinpp != NULL) 871 *oinpp = oinp; 872 return (EADDRINUSE); 873 } 874 if (lport == 0) { 875 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 876 cred); 877 if (error) 878 return (error); 879 } 880 *laddrp = laddr.s_addr; 881 *lportp = lport; 882 *faddrp = faddr.s_addr; 883 *fportp = fport; 884 return (0); 885 } 886 887 void 888 in_pcbdisconnect(struct inpcb *inp) 889 { 890 891 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 892 INP_WLOCK_ASSERT(inp); 893 894 inp->inp_faddr.s_addr = INADDR_ANY; 895 inp->inp_fport = 0; 896 in_pcbrehash(inp); 897 } 898 899 /* 900 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 901 * For most protocols, this will be invoked immediately prior to calling 902 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 903 * socket, in which case in_pcbfree() is deferred. 904 */ 905 void 906 in_pcbdetach(struct inpcb *inp) 907 { 908 909 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 910 911 inp->inp_socket->so_pcb = NULL; 912 inp->inp_socket = NULL; 913 } 914 915 /* 916 * in_pcbfree_internal() frees an inpcb that has been detached from its 917 * socket, and whose reference count has reached 0. It will also remove the 918 * inpcb from any global lists it might remain on. 919 */ 920 static void 921 in_pcbfree_internal(struct inpcb *inp) 922 { 923 struct inpcbinfo *ipi = inp->inp_pcbinfo; 924 925 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 926 KASSERT(inp->inp_refcount == 0, ("%s: refcount !0", __func__)); 927 928 INP_INFO_WLOCK_ASSERT(ipi); 929 INP_WLOCK_ASSERT(inp); 930 931 #ifdef IPSEC 932 if (inp->inp_sp != NULL) 933 ipsec_delete_pcbpolicy(inp); 934 #endif /* IPSEC */ 935 inp->inp_gencnt = ++ipi->ipi_gencnt; 936 in_pcbremlists(inp); 937 #ifdef INET6 938 if (inp->inp_vflag & INP_IPV6PROTO) { 939 ip6_freepcbopts(inp->in6p_outputopts); 940 if (inp->in6p_moptions != NULL) 941 ip6_freemoptions(inp->in6p_moptions); 942 } 943 #endif 944 if (inp->inp_options) 945 (void)m_free(inp->inp_options); 946 if (inp->inp_moptions != NULL) 947 inp_freemoptions(inp->inp_moptions); 948 inp->inp_vflag = 0; 949 crfree(inp->inp_cred); 950 951 #ifdef MAC 952 mac_inpcb_destroy(inp); 953 #endif 954 INP_WUNLOCK(inp); 955 uma_zfree(ipi->ipi_zone, inp); 956 } 957 958 /* 959 * in_pcbref() bumps the reference count on an inpcb in order to maintain 960 * stability of an inpcb pointer despite the inpcb lock being released. This 961 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 962 * but where the inpcb lock is already held. 963 * 964 * While the inpcb will not be freed, releasing the inpcb lock means that the 965 * connection's state may change, so the caller should be careful to 966 * revalidate any cached state on reacquiring the lock. Drop the reference 967 * using in_pcbrele(). 968 */ 969 void 970 in_pcbref(struct inpcb *inp) 971 { 972 973 INP_WLOCK_ASSERT(inp); 974 975 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 976 977 inp->inp_refcount++; 978 } 979 980 /* 981 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 982 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 983 * return a flag indicating whether or not the inpcb remains valid. If it is 984 * valid, we return with the inpcb lock held. 985 */ 986 int 987 in_pcbrele(struct inpcb *inp) 988 { 989 #ifdef INVARIANTS 990 struct inpcbinfo *ipi = inp->inp_pcbinfo; 991 #endif 992 993 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 994 995 INP_INFO_WLOCK_ASSERT(ipi); 996 INP_WLOCK_ASSERT(inp); 997 998 inp->inp_refcount--; 999 if (inp->inp_refcount > 0) 1000 return (0); 1001 in_pcbfree_internal(inp); 1002 return (1); 1003 } 1004 1005 /* 1006 * Unconditionally schedule an inpcb to be freed by decrementing its 1007 * reference count, which should occur only after the inpcb has been detached 1008 * from its socket. If another thread holds a temporary reference (acquired 1009 * using in_pcbref()) then the free is deferred until that reference is 1010 * released using in_pcbrele(), but the inpcb is still unlocked. 1011 */ 1012 void 1013 in_pcbfree(struct inpcb *inp) 1014 { 1015 #ifdef INVARIANTS 1016 struct inpcbinfo *ipi = inp->inp_pcbinfo; 1017 #endif 1018 1019 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", 1020 __func__)); 1021 1022 INP_INFO_WLOCK_ASSERT(ipi); 1023 INP_WLOCK_ASSERT(inp); 1024 1025 if (!in_pcbrele(inp)) 1026 INP_WUNLOCK(inp); 1027 } 1028 1029 /* 1030 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1031 * port reservation, and preventing it from being returned by inpcb lookups. 1032 * 1033 * It is used by TCP to mark an inpcb as unused and avoid future packet 1034 * delivery or event notification when a socket remains open but TCP has 1035 * closed. This might occur as a result of a shutdown()-initiated TCP close 1036 * or a RST on the wire, and allows the port binding to be reused while still 1037 * maintaining the invariant that so_pcb always points to a valid inpcb until 1038 * in_pcbdetach(). 1039 * 1040 * XXXRW: An inp_lport of 0 is used to indicate that the inpcb is not on hash 1041 * lists, but can lead to confusing netstat output, as open sockets with 1042 * closed TCP connections will no longer appear to have their bound port 1043 * number. An explicit flag would be better, as it would allow us to leave 1044 * the port number intact after the connection is dropped. 1045 * 1046 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1047 * in_pcbnotifyall() and in_pcbpurgeif0()? 1048 */ 1049 void 1050 in_pcbdrop(struct inpcb *inp) 1051 { 1052 1053 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 1054 INP_WLOCK_ASSERT(inp); 1055 1056 inp->inp_flags |= INP_DROPPED; 1057 if (inp->inp_flags & INP_INHASHLIST) { 1058 struct inpcbport *phd = inp->inp_phd; 1059 1060 LIST_REMOVE(inp, inp_hash); 1061 LIST_REMOVE(inp, inp_portlist); 1062 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 1063 LIST_REMOVE(phd, phd_hash); 1064 free(phd, M_PCB); 1065 } 1066 inp->inp_flags &= ~INP_INHASHLIST; 1067 } 1068 } 1069 1070 /* 1071 * Common routines to return the socket addresses associated with inpcbs. 1072 */ 1073 struct sockaddr * 1074 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1075 { 1076 struct sockaddr_in *sin; 1077 1078 sin = malloc(sizeof *sin, M_SONAME, 1079 M_WAITOK | M_ZERO); 1080 sin->sin_family = AF_INET; 1081 sin->sin_len = sizeof(*sin); 1082 sin->sin_addr = *addr_p; 1083 sin->sin_port = port; 1084 1085 return (struct sockaddr *)sin; 1086 } 1087 1088 int 1089 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1090 { 1091 struct inpcb *inp; 1092 struct in_addr addr; 1093 in_port_t port; 1094 1095 inp = sotoinpcb(so); 1096 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1097 1098 INP_RLOCK(inp); 1099 port = inp->inp_lport; 1100 addr = inp->inp_laddr; 1101 INP_RUNLOCK(inp); 1102 1103 *nam = in_sockaddr(port, &addr); 1104 return 0; 1105 } 1106 1107 int 1108 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1109 { 1110 struct inpcb *inp; 1111 struct in_addr addr; 1112 in_port_t port; 1113 1114 inp = sotoinpcb(so); 1115 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1116 1117 INP_RLOCK(inp); 1118 port = inp->inp_fport; 1119 addr = inp->inp_faddr; 1120 INP_RUNLOCK(inp); 1121 1122 *nam = in_sockaddr(port, &addr); 1123 return 0; 1124 } 1125 1126 void 1127 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1128 struct inpcb *(*notify)(struct inpcb *, int)) 1129 { 1130 struct inpcb *inp, *inp_temp; 1131 1132 INP_INFO_WLOCK(pcbinfo); 1133 LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1134 INP_WLOCK(inp); 1135 #ifdef INET6 1136 if ((inp->inp_vflag & INP_IPV4) == 0) { 1137 INP_WUNLOCK(inp); 1138 continue; 1139 } 1140 #endif 1141 if (inp->inp_faddr.s_addr != faddr.s_addr || 1142 inp->inp_socket == NULL) { 1143 INP_WUNLOCK(inp); 1144 continue; 1145 } 1146 if ((*notify)(inp, errno)) 1147 INP_WUNLOCK(inp); 1148 } 1149 INP_INFO_WUNLOCK(pcbinfo); 1150 } 1151 1152 void 1153 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1154 { 1155 struct inpcb *inp; 1156 struct ip_moptions *imo; 1157 int i, gap; 1158 1159 INP_INFO_RLOCK(pcbinfo); 1160 LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1161 INP_WLOCK(inp); 1162 imo = inp->inp_moptions; 1163 if ((inp->inp_vflag & INP_IPV4) && 1164 imo != NULL) { 1165 /* 1166 * Unselect the outgoing interface if it is being 1167 * detached. 1168 */ 1169 if (imo->imo_multicast_ifp == ifp) 1170 imo->imo_multicast_ifp = NULL; 1171 1172 /* 1173 * Drop multicast group membership if we joined 1174 * through the interface being detached. 1175 */ 1176 for (i = 0, gap = 0; i < imo->imo_num_memberships; 1177 i++) { 1178 if (imo->imo_membership[i]->inm_ifp == ifp) { 1179 in_delmulti(imo->imo_membership[i]); 1180 gap++; 1181 } else if (gap != 0) 1182 imo->imo_membership[i - gap] = 1183 imo->imo_membership[i]; 1184 } 1185 imo->imo_num_memberships -= gap; 1186 } 1187 INP_WUNLOCK(inp); 1188 } 1189 INP_INFO_RUNLOCK(pcbinfo); 1190 } 1191 1192 /* 1193 * Lookup a PCB based on the local address and port. 1194 */ 1195 #define INP_LOOKUP_MAPPED_PCB_COST 3 1196 struct inpcb * 1197 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1198 u_short lport, int wild_okay, struct ucred *cred) 1199 { 1200 struct inpcb *inp; 1201 #ifdef INET6 1202 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1203 #else 1204 int matchwild = 3; 1205 #endif 1206 int wildcard; 1207 1208 INP_INFO_LOCK_ASSERT(pcbinfo); 1209 1210 if (!wild_okay) { 1211 struct inpcbhead *head; 1212 /* 1213 * Look for an unconnected (wildcard foreign addr) PCB that 1214 * matches the local address and port we're looking for. 1215 */ 1216 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1217 0, pcbinfo->ipi_hashmask)]; 1218 LIST_FOREACH(inp, head, inp_hash) { 1219 #ifdef INET6 1220 /* XXX inp locking */ 1221 if ((inp->inp_vflag & INP_IPV4) == 0) 1222 continue; 1223 #endif 1224 if (inp->inp_faddr.s_addr == INADDR_ANY && 1225 inp->inp_laddr.s_addr == laddr.s_addr && 1226 inp->inp_lport == lport) { 1227 /* 1228 * Found? 1229 */ 1230 if (cred == NULL || 1231 prison_equal_ip4(cred->cr_prison, 1232 inp->inp_cred->cr_prison)) 1233 return (inp); 1234 } 1235 } 1236 /* 1237 * Not found. 1238 */ 1239 return (NULL); 1240 } else { 1241 struct inpcbporthead *porthash; 1242 struct inpcbport *phd; 1243 struct inpcb *match = NULL; 1244 /* 1245 * Best fit PCB lookup. 1246 * 1247 * First see if this local port is in use by looking on the 1248 * port hash list. 1249 */ 1250 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1251 pcbinfo->ipi_porthashmask)]; 1252 LIST_FOREACH(phd, porthash, phd_hash) { 1253 if (phd->phd_port == lport) 1254 break; 1255 } 1256 if (phd != NULL) { 1257 /* 1258 * Port is in use by one or more PCBs. Look for best 1259 * fit. 1260 */ 1261 LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1262 wildcard = 0; 1263 if (cred != NULL && 1264 !prison_equal_ip4(inp->inp_cred->cr_prison, 1265 cred->cr_prison)) 1266 continue; 1267 #ifdef INET6 1268 /* XXX inp locking */ 1269 if ((inp->inp_vflag & INP_IPV4) == 0) 1270 continue; 1271 /* 1272 * We never select the PCB that has 1273 * INP_IPV6 flag and is bound to :: if 1274 * we have another PCB which is bound 1275 * to 0.0.0.0. If a PCB has the 1276 * INP_IPV6 flag, then we set its cost 1277 * higher than IPv4 only PCBs. 1278 * 1279 * Note that the case only happens 1280 * when a socket is bound to ::, under 1281 * the condition that the use of the 1282 * mapped address is allowed. 1283 */ 1284 if ((inp->inp_vflag & INP_IPV6) != 0) 1285 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1286 #endif 1287 if (inp->inp_faddr.s_addr != INADDR_ANY) 1288 wildcard++; 1289 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1290 if (laddr.s_addr == INADDR_ANY) 1291 wildcard++; 1292 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1293 continue; 1294 } else { 1295 if (laddr.s_addr != INADDR_ANY) 1296 wildcard++; 1297 } 1298 if (wildcard < matchwild) { 1299 match = inp; 1300 matchwild = wildcard; 1301 if (matchwild == 0) 1302 break; 1303 } 1304 } 1305 } 1306 return (match); 1307 } 1308 } 1309 #undef INP_LOOKUP_MAPPED_PCB_COST 1310 1311 /* 1312 * Lookup PCB in hash list. 1313 */ 1314 struct inpcb * 1315 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1316 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard, 1317 struct ifnet *ifp) 1318 { 1319 struct inpcbhead *head; 1320 struct inpcb *inp, *tmpinp; 1321 u_short fport = fport_arg, lport = lport_arg; 1322 1323 INP_INFO_LOCK_ASSERT(pcbinfo); 1324 1325 /* 1326 * First look for an exact match. 1327 */ 1328 tmpinp = NULL; 1329 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1330 pcbinfo->ipi_hashmask)]; 1331 LIST_FOREACH(inp, head, inp_hash) { 1332 #ifdef INET6 1333 /* XXX inp locking */ 1334 if ((inp->inp_vflag & INP_IPV4) == 0) 1335 continue; 1336 #endif 1337 if (inp->inp_faddr.s_addr == faddr.s_addr && 1338 inp->inp_laddr.s_addr == laddr.s_addr && 1339 inp->inp_fport == fport && 1340 inp->inp_lport == lport) { 1341 /* 1342 * XXX We should be able to directly return 1343 * the inp here, without any checks. 1344 * Well unless both bound with SO_REUSEPORT? 1345 */ 1346 if (prison_flag(inp->inp_cred, PR_IP4)) 1347 return (inp); 1348 if (tmpinp == NULL) 1349 tmpinp = inp; 1350 } 1351 } 1352 if (tmpinp != NULL) 1353 return (tmpinp); 1354 1355 /* 1356 * Then look for a wildcard match, if requested. 1357 */ 1358 if (wildcard == INPLOOKUP_WILDCARD) { 1359 struct inpcb *local_wild = NULL, *local_exact = NULL; 1360 #ifdef INET6 1361 struct inpcb *local_wild_mapped = NULL; 1362 #endif 1363 struct inpcb *jail_wild = NULL; 1364 int injail; 1365 1366 /* 1367 * Order of socket selection - we always prefer jails. 1368 * 1. jailed, non-wild. 1369 * 2. jailed, wild. 1370 * 3. non-jailed, non-wild. 1371 * 4. non-jailed, wild. 1372 */ 1373 1374 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1375 0, pcbinfo->ipi_hashmask)]; 1376 LIST_FOREACH(inp, head, inp_hash) { 1377 #ifdef INET6 1378 /* XXX inp locking */ 1379 if ((inp->inp_vflag & INP_IPV4) == 0) 1380 continue; 1381 #endif 1382 if (inp->inp_faddr.s_addr != INADDR_ANY || 1383 inp->inp_lport != lport) 1384 continue; 1385 1386 /* XXX inp locking */ 1387 if (ifp && ifp->if_type == IFT_FAITH && 1388 (inp->inp_flags & INP_FAITH) == 0) 1389 continue; 1390 1391 injail = prison_flag(inp->inp_cred, PR_IP4); 1392 if (injail) { 1393 if (prison_check_ip4(inp->inp_cred, 1394 &laddr) != 0) 1395 continue; 1396 } else { 1397 if (local_exact != NULL) 1398 continue; 1399 } 1400 1401 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1402 if (injail) 1403 return (inp); 1404 else 1405 local_exact = inp; 1406 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1407 #ifdef INET6 1408 /* XXX inp locking, NULL check */ 1409 if (inp->inp_vflag & INP_IPV6PROTO) 1410 local_wild_mapped = inp; 1411 else 1412 #endif /* INET6 */ 1413 if (injail) 1414 jail_wild = inp; 1415 else 1416 local_wild = inp; 1417 } 1418 } /* LIST_FOREACH */ 1419 if (jail_wild != NULL) 1420 return (jail_wild); 1421 if (local_exact != NULL) 1422 return (local_exact); 1423 if (local_wild != NULL) 1424 return (local_wild); 1425 #ifdef INET6 1426 if (local_wild_mapped != NULL) 1427 return (local_wild_mapped); 1428 #endif /* defined(INET6) */ 1429 } /* if (wildcard == INPLOOKUP_WILDCARD) */ 1430 1431 return (NULL); 1432 } 1433 1434 /* 1435 * Insert PCB onto various hash lists. 1436 */ 1437 int 1438 in_pcbinshash(struct inpcb *inp) 1439 { 1440 struct inpcbhead *pcbhash; 1441 struct inpcbporthead *pcbporthash; 1442 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1443 struct inpcbport *phd; 1444 u_int32_t hashkey_faddr; 1445 1446 INP_INFO_WLOCK_ASSERT(pcbinfo); 1447 INP_WLOCK_ASSERT(inp); 1448 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 1449 ("in_pcbinshash: INP_INHASHLIST")); 1450 1451 #ifdef INET6 1452 if (inp->inp_vflag & INP_IPV6) 1453 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; 1454 else 1455 #endif /* INET6 */ 1456 hashkey_faddr = inp->inp_faddr.s_addr; 1457 1458 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 1459 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 1460 1461 pcbporthash = &pcbinfo->ipi_porthashbase[ 1462 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 1463 1464 /* 1465 * Go through port list and look for a head for this lport. 1466 */ 1467 LIST_FOREACH(phd, pcbporthash, phd_hash) { 1468 if (phd->phd_port == inp->inp_lport) 1469 break; 1470 } 1471 /* 1472 * If none exists, malloc one and tack it on. 1473 */ 1474 if (phd == NULL) { 1475 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 1476 if (phd == NULL) { 1477 return (ENOBUFS); /* XXX */ 1478 } 1479 phd->phd_port = inp->inp_lport; 1480 LIST_INIT(&phd->phd_pcblist); 1481 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 1482 } 1483 inp->inp_phd = phd; 1484 LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 1485 LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 1486 inp->inp_flags |= INP_INHASHLIST; 1487 return (0); 1488 } 1489 1490 /* 1491 * Move PCB to the proper hash bucket when { faddr, fport } have been 1492 * changed. NOTE: This does not handle the case of the lport changing (the 1493 * hashed port list would have to be updated as well), so the lport must 1494 * not change after in_pcbinshash() has been called. 1495 */ 1496 void 1497 in_pcbrehash(struct inpcb *inp) 1498 { 1499 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1500 struct inpcbhead *head; 1501 u_int32_t hashkey_faddr; 1502 1503 INP_INFO_WLOCK_ASSERT(pcbinfo); 1504 INP_WLOCK_ASSERT(inp); 1505 KASSERT(inp->inp_flags & INP_INHASHLIST, 1506 ("in_pcbrehash: !INP_INHASHLIST")); 1507 1508 #ifdef INET6 1509 if (inp->inp_vflag & INP_IPV6) 1510 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; 1511 else 1512 #endif /* INET6 */ 1513 hashkey_faddr = inp->inp_faddr.s_addr; 1514 1515 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 1516 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 1517 1518 LIST_REMOVE(inp, inp_hash); 1519 LIST_INSERT_HEAD(head, inp, inp_hash); 1520 } 1521 1522 /* 1523 * Remove PCB from various lists. 1524 */ 1525 static void 1526 in_pcbremlists(struct inpcb *inp) 1527 { 1528 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1529 1530 INP_INFO_WLOCK_ASSERT(pcbinfo); 1531 INP_WLOCK_ASSERT(inp); 1532 1533 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1534 if (inp->inp_flags & INP_INHASHLIST) { 1535 struct inpcbport *phd = inp->inp_phd; 1536 1537 LIST_REMOVE(inp, inp_hash); 1538 LIST_REMOVE(inp, inp_portlist); 1539 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 1540 LIST_REMOVE(phd, phd_hash); 1541 free(phd, M_PCB); 1542 } 1543 inp->inp_flags &= ~INP_INHASHLIST; 1544 } 1545 LIST_REMOVE(inp, inp_list); 1546 pcbinfo->ipi_count--; 1547 } 1548 1549 /* 1550 * A set label operation has occurred at the socket layer, propagate the 1551 * label change into the in_pcb for the socket. 1552 */ 1553 void 1554 in_pcbsosetlabel(struct socket *so) 1555 { 1556 #ifdef MAC 1557 struct inpcb *inp; 1558 1559 inp = sotoinpcb(so); 1560 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 1561 1562 INP_WLOCK(inp); 1563 SOCK_LOCK(so); 1564 mac_inpcb_sosetlabel(so, inp); 1565 SOCK_UNLOCK(so); 1566 INP_WUNLOCK(inp); 1567 #endif 1568 } 1569 1570 /* 1571 * ipport_tick runs once per second, determining if random port allocation 1572 * should be continued. If more than ipport_randomcps ports have been 1573 * allocated in the last second, then we return to sequential port 1574 * allocation. We return to random allocation only once we drop below 1575 * ipport_randomcps for at least ipport_randomtime seconds. 1576 */ 1577 void 1578 ipport_tick(void *xtp) 1579 { 1580 VNET_ITERATOR_DECL(vnet_iter); 1581 1582 VNET_LIST_RLOCK_NOSLEEP(); 1583 VNET_FOREACH(vnet_iter) { 1584 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 1585 if (V_ipport_tcpallocs <= 1586 V_ipport_tcplastcount + V_ipport_randomcps) { 1587 if (V_ipport_stoprandom > 0) 1588 V_ipport_stoprandom--; 1589 } else 1590 V_ipport_stoprandom = V_ipport_randomtime; 1591 V_ipport_tcplastcount = V_ipport_tcpallocs; 1592 CURVNET_RESTORE(); 1593 } 1594 VNET_LIST_RUNLOCK_NOSLEEP(); 1595 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 1596 } 1597 1598 void 1599 inp_wlock(struct inpcb *inp) 1600 { 1601 1602 INP_WLOCK(inp); 1603 } 1604 1605 void 1606 inp_wunlock(struct inpcb *inp) 1607 { 1608 1609 INP_WUNLOCK(inp); 1610 } 1611 1612 void 1613 inp_rlock(struct inpcb *inp) 1614 { 1615 1616 INP_RLOCK(inp); 1617 } 1618 1619 void 1620 inp_runlock(struct inpcb *inp) 1621 { 1622 1623 INP_RUNLOCK(inp); 1624 } 1625 1626 #ifdef INVARIANTS 1627 void 1628 inp_lock_assert(struct inpcb *inp) 1629 { 1630 1631 INP_WLOCK_ASSERT(inp); 1632 } 1633 1634 void 1635 inp_unlock_assert(struct inpcb *inp) 1636 { 1637 1638 INP_UNLOCK_ASSERT(inp); 1639 } 1640 #endif 1641 1642 void 1643 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 1644 { 1645 struct inpcb *inp; 1646 1647 INP_INFO_RLOCK(&V_tcbinfo); 1648 LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 1649 INP_WLOCK(inp); 1650 func(inp, arg); 1651 INP_WUNLOCK(inp); 1652 } 1653 INP_INFO_RUNLOCK(&V_tcbinfo); 1654 } 1655 1656 struct socket * 1657 inp_inpcbtosocket(struct inpcb *inp) 1658 { 1659 1660 INP_WLOCK_ASSERT(inp); 1661 return (inp->inp_socket); 1662 } 1663 1664 struct tcpcb * 1665 inp_inpcbtotcpcb(struct inpcb *inp) 1666 { 1667 1668 INP_WLOCK_ASSERT(inp); 1669 return ((struct tcpcb *)inp->inp_ppcb); 1670 } 1671 1672 int 1673 inp_ip_tos_get(const struct inpcb *inp) 1674 { 1675 1676 return (inp->inp_ip_tos); 1677 } 1678 1679 void 1680 inp_ip_tos_set(struct inpcb *inp, int val) 1681 { 1682 1683 inp->inp_ip_tos = val; 1684 } 1685 1686 void 1687 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 1688 uint32_t *faddr, uint16_t *fp) 1689 { 1690 1691 INP_LOCK_ASSERT(inp); 1692 *laddr = inp->inp_laddr.s_addr; 1693 *faddr = inp->inp_faddr.s_addr; 1694 *lp = inp->inp_lport; 1695 *fp = inp->inp_fport; 1696 } 1697 1698 struct inpcb * 1699 so_sotoinpcb(struct socket *so) 1700 { 1701 1702 return (sotoinpcb(so)); 1703 } 1704 1705 struct tcpcb * 1706 so_sototcpcb(struct socket *so) 1707 { 1708 1709 return (sototcpcb(so)); 1710 } 1711 1712 #ifdef DDB 1713 static void 1714 db_print_indent(int indent) 1715 { 1716 int i; 1717 1718 for (i = 0; i < indent; i++) 1719 db_printf(" "); 1720 } 1721 1722 static void 1723 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 1724 { 1725 char faddr_str[48], laddr_str[48]; 1726 1727 db_print_indent(indent); 1728 db_printf("%s at %p\n", name, inc); 1729 1730 indent += 2; 1731 1732 #ifdef INET6 1733 if (inc->inc_flags & INC_ISIPV6) { 1734 /* IPv6. */ 1735 ip6_sprintf(laddr_str, &inc->inc6_laddr); 1736 ip6_sprintf(faddr_str, &inc->inc6_faddr); 1737 } else { 1738 #endif 1739 /* IPv4. */ 1740 inet_ntoa_r(inc->inc_laddr, laddr_str); 1741 inet_ntoa_r(inc->inc_faddr, faddr_str); 1742 #ifdef INET6 1743 } 1744 #endif 1745 db_print_indent(indent); 1746 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 1747 ntohs(inc->inc_lport)); 1748 db_print_indent(indent); 1749 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 1750 ntohs(inc->inc_fport)); 1751 } 1752 1753 static void 1754 db_print_inpflags(int inp_flags) 1755 { 1756 int comma; 1757 1758 comma = 0; 1759 if (inp_flags & INP_RECVOPTS) { 1760 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 1761 comma = 1; 1762 } 1763 if (inp_flags & INP_RECVRETOPTS) { 1764 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 1765 comma = 1; 1766 } 1767 if (inp_flags & INP_RECVDSTADDR) { 1768 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 1769 comma = 1; 1770 } 1771 if (inp_flags & INP_HDRINCL) { 1772 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 1773 comma = 1; 1774 } 1775 if (inp_flags & INP_HIGHPORT) { 1776 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 1777 comma = 1; 1778 } 1779 if (inp_flags & INP_LOWPORT) { 1780 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 1781 comma = 1; 1782 } 1783 if (inp_flags & INP_ANONPORT) { 1784 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 1785 comma = 1; 1786 } 1787 if (inp_flags & INP_RECVIF) { 1788 db_printf("%sINP_RECVIF", comma ? ", " : ""); 1789 comma = 1; 1790 } 1791 if (inp_flags & INP_MTUDISC) { 1792 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 1793 comma = 1; 1794 } 1795 if (inp_flags & INP_FAITH) { 1796 db_printf("%sINP_FAITH", comma ? ", " : ""); 1797 comma = 1; 1798 } 1799 if (inp_flags & INP_RECVTTL) { 1800 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 1801 comma = 1; 1802 } 1803 if (inp_flags & INP_DONTFRAG) { 1804 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 1805 comma = 1; 1806 } 1807 if (inp_flags & IN6P_IPV6_V6ONLY) { 1808 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 1809 comma = 1; 1810 } 1811 if (inp_flags & IN6P_PKTINFO) { 1812 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 1813 comma = 1; 1814 } 1815 if (inp_flags & IN6P_HOPLIMIT) { 1816 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 1817 comma = 1; 1818 } 1819 if (inp_flags & IN6P_HOPOPTS) { 1820 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 1821 comma = 1; 1822 } 1823 if (inp_flags & IN6P_DSTOPTS) { 1824 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 1825 comma = 1; 1826 } 1827 if (inp_flags & IN6P_RTHDR) { 1828 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 1829 comma = 1; 1830 } 1831 if (inp_flags & IN6P_RTHDRDSTOPTS) { 1832 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 1833 comma = 1; 1834 } 1835 if (inp_flags & IN6P_TCLASS) { 1836 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 1837 comma = 1; 1838 } 1839 if (inp_flags & IN6P_AUTOFLOWLABEL) { 1840 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 1841 comma = 1; 1842 } 1843 if (inp_flags & INP_TIMEWAIT) { 1844 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 1845 comma = 1; 1846 } 1847 if (inp_flags & INP_ONESBCAST) { 1848 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 1849 comma = 1; 1850 } 1851 if (inp_flags & INP_DROPPED) { 1852 db_printf("%sINP_DROPPED", comma ? ", " : ""); 1853 comma = 1; 1854 } 1855 if (inp_flags & INP_SOCKREF) { 1856 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 1857 comma = 1; 1858 } 1859 if (inp_flags & IN6P_RFC2292) { 1860 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 1861 comma = 1; 1862 } 1863 if (inp_flags & IN6P_MTU) { 1864 db_printf("IN6P_MTU%s", comma ? ", " : ""); 1865 comma = 1; 1866 } 1867 } 1868 1869 static void 1870 db_print_inpvflag(u_char inp_vflag) 1871 { 1872 int comma; 1873 1874 comma = 0; 1875 if (inp_vflag & INP_IPV4) { 1876 db_printf("%sINP_IPV4", comma ? ", " : ""); 1877 comma = 1; 1878 } 1879 if (inp_vflag & INP_IPV6) { 1880 db_printf("%sINP_IPV6", comma ? ", " : ""); 1881 comma = 1; 1882 } 1883 if (inp_vflag & INP_IPV6PROTO) { 1884 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 1885 comma = 1; 1886 } 1887 } 1888 1889 static void 1890 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 1891 { 1892 1893 db_print_indent(indent); 1894 db_printf("%s at %p\n", name, inp); 1895 1896 indent += 2; 1897 1898 db_print_indent(indent); 1899 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 1900 1901 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 1902 1903 db_print_indent(indent); 1904 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 1905 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 1906 1907 db_print_indent(indent); 1908 db_printf("inp_label: %p inp_flags: 0x%x (", 1909 inp->inp_label, inp->inp_flags); 1910 db_print_inpflags(inp->inp_flags); 1911 db_printf(")\n"); 1912 1913 db_print_indent(indent); 1914 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 1915 inp->inp_vflag); 1916 db_print_inpvflag(inp->inp_vflag); 1917 db_printf(")\n"); 1918 1919 db_print_indent(indent); 1920 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 1921 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 1922 1923 db_print_indent(indent); 1924 #ifdef INET6 1925 if (inp->inp_vflag & INP_IPV6) { 1926 db_printf("in6p_options: %p in6p_outputopts: %p " 1927 "in6p_moptions: %p\n", inp->in6p_options, 1928 inp->in6p_outputopts, inp->in6p_moptions); 1929 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 1930 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 1931 inp->in6p_hops); 1932 } else 1933 #endif 1934 { 1935 db_printf("inp_ip_tos: %d inp_ip_options: %p " 1936 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 1937 inp->inp_options, inp->inp_moptions); 1938 } 1939 1940 db_print_indent(indent); 1941 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 1942 (uintmax_t)inp->inp_gencnt); 1943 } 1944 1945 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 1946 { 1947 struct inpcb *inp; 1948 1949 if (!have_addr) { 1950 db_printf("usage: show inpcb <addr>\n"); 1951 return; 1952 } 1953 inp = (struct inpcb *)addr; 1954 1955 db_print_inpcb(inp, "inpcb", 0); 1956 } 1957 #endif 1958