1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993, 1995 3 * The Regents of the University of California. 4 * Copyright (c) 2007-2009 Robert N. M. Watson 5 * Copyright (c) 2010-2011 Juniper Networks, Inc. 6 * All rights reserved. 7 * 8 * Portions of this software were developed by Robert N. M. Watson under 9 * contract to Juniper Networks, Inc. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_ddb.h" 42 #include "opt_ipsec.h" 43 #include "opt_inet.h" 44 #include "opt_inet6.h" 45 #include "opt_ratelimit.h" 46 #include "opt_pcbgroup.h" 47 #include "opt_rss.h" 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/lock.h> 52 #include <sys/malloc.h> 53 #include <sys/mbuf.h> 54 #include <sys/callout.h> 55 #include <sys/eventhandler.h> 56 #include <sys/domain.h> 57 #include <sys/protosw.h> 58 #include <sys/rmlock.h> 59 #include <sys/socket.h> 60 #include <sys/socketvar.h> 61 #include <sys/sockio.h> 62 #include <sys/priv.h> 63 #include <sys/proc.h> 64 #include <sys/refcount.h> 65 #include <sys/jail.h> 66 #include <sys/kernel.h> 67 #include <sys/sysctl.h> 68 69 #ifdef DDB 70 #include <ddb/ddb.h> 71 #endif 72 73 #include <vm/uma.h> 74 75 #include <net/if.h> 76 #include <net/if_var.h> 77 #include <net/if_types.h> 78 #include <net/if_llatbl.h> 79 #include <net/route.h> 80 #include <net/rss_config.h> 81 #include <net/vnet.h> 82 83 #if defined(INET) || defined(INET6) 84 #include <netinet/in.h> 85 #include <netinet/in_pcb.h> 86 #include <netinet/ip_var.h> 87 #include <netinet/tcp_var.h> 88 #include <netinet/udp.h> 89 #include <netinet/udp_var.h> 90 #endif 91 #ifdef INET 92 #include <netinet/in_var.h> 93 #endif 94 #ifdef INET6 95 #include <netinet/ip6.h> 96 #include <netinet6/in6_pcb.h> 97 #include <netinet6/in6_var.h> 98 #include <netinet6/ip6_var.h> 99 #endif /* INET6 */ 100 101 #include <netipsec/ipsec_support.h> 102 103 #include <security/mac/mac_framework.h> 104 105 static struct callout ipport_tick_callout; 106 107 /* 108 * These configure the range of local port addresses assigned to 109 * "unspecified" outgoing connections/packets/whatever. 110 */ 111 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 112 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 113 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 114 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 115 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 116 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 117 118 /* 119 * Reserved ports accessible only to root. There are significant 120 * security considerations that must be accounted for when changing these, 121 * but the security benefits can be great. Please be careful. 122 */ 123 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 124 VNET_DEFINE(int, ipport_reservedlow); 125 126 /* Variables dealing with random ephemeral port allocation. */ 127 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 128 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 129 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 130 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 131 VNET_DEFINE(int, ipport_tcpallocs); 132 static VNET_DEFINE(int, ipport_tcplastcount); 133 134 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 135 136 static void in_pcbremlists(struct inpcb *inp); 137 #ifdef INET 138 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 139 struct in_addr faddr, u_int fport_arg, 140 struct in_addr laddr, u_int lport_arg, 141 int lookupflags, struct ifnet *ifp); 142 143 #define RANGECHK(var, min, max) \ 144 if ((var) < (min)) { (var) = (min); } \ 145 else if ((var) > (max)) { (var) = (max); } 146 147 static int 148 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 149 { 150 int error; 151 152 error = sysctl_handle_int(oidp, arg1, arg2, req); 153 if (error == 0) { 154 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 155 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 156 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 157 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 158 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 159 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 160 } 161 return (error); 162 } 163 164 #undef RANGECHK 165 166 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, 167 "IP Ports"); 168 169 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 170 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 171 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", ""); 172 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 173 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 174 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", ""); 175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 176 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 177 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", ""); 178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 179 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 180 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", ""); 181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 182 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 183 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", ""); 184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 185 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 186 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", ""); 187 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 188 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 189 &VNET_NAME(ipport_reservedhigh), 0, ""); 190 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 191 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 192 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 193 CTLFLAG_VNET | CTLFLAG_RW, 194 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 195 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 196 CTLFLAG_VNET | CTLFLAG_RW, 197 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 198 "allocations before switching to a sequental one"); 199 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 200 CTLFLAG_VNET | CTLFLAG_RW, 201 &VNET_NAME(ipport_randomtime), 0, 202 "Minimum time to keep sequental port " 203 "allocation before switching to a random one"); 204 #endif /* INET */ 205 206 /* 207 * in_pcb.c: manage the Protocol Control Blocks. 208 * 209 * NOTE: It is assumed that most of these functions will be called with 210 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 211 * functions often modify hash chains or addresses in pcbs. 212 */ 213 214 /* 215 * Different protocols initialize their inpcbs differently - giving 216 * different name to the lock. But they all are disposed the same. 217 */ 218 static void 219 inpcb_fini(void *mem, int size) 220 { 221 struct inpcb *inp = mem; 222 223 INP_LOCK_DESTROY(inp); 224 } 225 226 /* 227 * Initialize an inpcbinfo -- we should be able to reduce the number of 228 * arguments in time. 229 */ 230 void 231 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 232 struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, 233 char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields) 234 { 235 236 INP_INFO_LOCK_INIT(pcbinfo, name); 237 INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ 238 INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist"); 239 #ifdef VIMAGE 240 pcbinfo->ipi_vnet = curvnet; 241 #endif 242 pcbinfo->ipi_listhead = listhead; 243 LIST_INIT(pcbinfo->ipi_listhead); 244 pcbinfo->ipi_count = 0; 245 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 246 &pcbinfo->ipi_hashmask); 247 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 248 &pcbinfo->ipi_porthashmask); 249 #ifdef PCBGROUP 250 in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); 251 #endif 252 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 253 NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0); 254 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 255 uma_zone_set_warning(pcbinfo->ipi_zone, 256 "kern.ipc.maxsockets limit reached"); 257 } 258 259 /* 260 * Destroy an inpcbinfo. 261 */ 262 void 263 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 264 { 265 266 KASSERT(pcbinfo->ipi_count == 0, 267 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 268 269 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 270 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 271 pcbinfo->ipi_porthashmask); 272 #ifdef PCBGROUP 273 in_pcbgroup_destroy(pcbinfo); 274 #endif 275 uma_zdestroy(pcbinfo->ipi_zone); 276 INP_LIST_LOCK_DESTROY(pcbinfo); 277 INP_HASH_LOCK_DESTROY(pcbinfo); 278 INP_INFO_LOCK_DESTROY(pcbinfo); 279 } 280 281 /* 282 * Allocate a PCB and associate it with the socket. 283 * On success return with the PCB locked. 284 */ 285 int 286 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 287 { 288 struct inpcb *inp; 289 int error; 290 291 #ifdef INVARIANTS 292 if (pcbinfo == &V_tcbinfo) { 293 INP_INFO_RLOCK_ASSERT(pcbinfo); 294 } else { 295 INP_INFO_WLOCK_ASSERT(pcbinfo); 296 } 297 #endif 298 299 error = 0; 300 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 301 if (inp == NULL) 302 return (ENOBUFS); 303 bzero(inp, inp_zero_size); 304 inp->inp_pcbinfo = pcbinfo; 305 inp->inp_socket = so; 306 inp->inp_cred = crhold(so->so_cred); 307 inp->inp_inc.inc_fibnum = so->so_fibnum; 308 #ifdef MAC 309 error = mac_inpcb_init(inp, M_NOWAIT); 310 if (error != 0) 311 goto out; 312 mac_inpcb_create(so, inp); 313 #endif 314 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 315 error = ipsec_init_pcbpolicy(inp); 316 if (error != 0) { 317 #ifdef MAC 318 mac_inpcb_destroy(inp); 319 #endif 320 goto out; 321 } 322 #endif /*IPSEC*/ 323 #ifdef INET6 324 if (INP_SOCKAF(so) == AF_INET6) { 325 inp->inp_vflag |= INP_IPV6PROTO; 326 if (V_ip6_v6only) 327 inp->inp_flags |= IN6P_IPV6_V6ONLY; 328 } 329 #endif 330 INP_WLOCK(inp); 331 INP_LIST_WLOCK(pcbinfo); 332 LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 333 pcbinfo->ipi_count++; 334 so->so_pcb = (caddr_t)inp; 335 #ifdef INET6 336 if (V_ip6_auto_flowlabel) 337 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 338 #endif 339 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 340 refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ 341 342 /* 343 * Routes in inpcb's can cache L2 as well; they are guaranteed 344 * to be cleaned up. 345 */ 346 inp->inp_route.ro_flags = RT_LLE_CACHE; 347 INP_LIST_WUNLOCK(pcbinfo); 348 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 349 out: 350 if (error != 0) { 351 crfree(inp->inp_cred); 352 uma_zfree(pcbinfo->ipi_zone, inp); 353 } 354 #endif 355 return (error); 356 } 357 358 #ifdef INET 359 int 360 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 361 { 362 int anonport, error; 363 364 INP_WLOCK_ASSERT(inp); 365 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 366 367 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 368 return (EINVAL); 369 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 370 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 371 &inp->inp_lport, cred); 372 if (error) 373 return (error); 374 if (in_pcbinshash(inp) != 0) { 375 inp->inp_laddr.s_addr = INADDR_ANY; 376 inp->inp_lport = 0; 377 return (EAGAIN); 378 } 379 if (anonport) 380 inp->inp_flags |= INP_ANONPORT; 381 return (0); 382 } 383 #endif 384 385 /* 386 * Select a local port (number) to use. 387 */ 388 #if defined(INET) || defined(INET6) 389 int 390 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 391 struct ucred *cred, int lookupflags) 392 { 393 struct inpcbinfo *pcbinfo; 394 struct inpcb *tmpinp; 395 unsigned short *lastport; 396 int count, dorandom, error; 397 u_short aux, first, last, lport; 398 #ifdef INET 399 struct in_addr laddr; 400 #endif 401 402 pcbinfo = inp->inp_pcbinfo; 403 404 /* 405 * Because no actual state changes occur here, a global write lock on 406 * the pcbinfo isn't required. 407 */ 408 INP_LOCK_ASSERT(inp); 409 INP_HASH_LOCK_ASSERT(pcbinfo); 410 411 if (inp->inp_flags & INP_HIGHPORT) { 412 first = V_ipport_hifirstauto; /* sysctl */ 413 last = V_ipport_hilastauto; 414 lastport = &pcbinfo->ipi_lasthi; 415 } else if (inp->inp_flags & INP_LOWPORT) { 416 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0); 417 if (error) 418 return (error); 419 first = V_ipport_lowfirstauto; /* 1023 */ 420 last = V_ipport_lowlastauto; /* 600 */ 421 lastport = &pcbinfo->ipi_lastlow; 422 } else { 423 first = V_ipport_firstauto; /* sysctl */ 424 last = V_ipport_lastauto; 425 lastport = &pcbinfo->ipi_lastport; 426 } 427 /* 428 * For UDP(-Lite), use random port allocation as long as the user 429 * allows it. For TCP (and as of yet unknown) connections, 430 * use random port allocation only if the user allows it AND 431 * ipport_tick() allows it. 432 */ 433 if (V_ipport_randomized && 434 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 435 pcbinfo == &V_ulitecbinfo)) 436 dorandom = 1; 437 else 438 dorandom = 0; 439 /* 440 * It makes no sense to do random port allocation if 441 * we have the only port available. 442 */ 443 if (first == last) 444 dorandom = 0; 445 /* Make sure to not include UDP(-Lite) packets in the count. */ 446 if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) 447 V_ipport_tcpallocs++; 448 /* 449 * Instead of having two loops further down counting up or down 450 * make sure that first is always <= last and go with only one 451 * code path implementing all logic. 452 */ 453 if (first > last) { 454 aux = first; 455 first = last; 456 last = aux; 457 } 458 459 #ifdef INET 460 /* Make the compiler happy. */ 461 laddr.s_addr = 0; 462 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 463 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p", 464 __func__, inp)); 465 laddr = *laddrp; 466 } 467 #endif 468 tmpinp = NULL; /* Make compiler happy. */ 469 lport = *lportp; 470 471 if (dorandom) 472 *lastport = first + (arc4random() % (last - first)); 473 474 count = last - first; 475 476 do { 477 if (count-- < 0) /* completely used? */ 478 return (EADDRNOTAVAIL); 479 ++*lastport; 480 if (*lastport < first || *lastport > last) 481 *lastport = first; 482 lport = htons(*lastport); 483 484 #ifdef INET6 485 if ((inp->inp_vflag & INP_IPV6) != 0) 486 tmpinp = in6_pcblookup_local(pcbinfo, 487 &inp->in6p_laddr, lport, lookupflags, cred); 488 #endif 489 #if defined(INET) && defined(INET6) 490 else 491 #endif 492 #ifdef INET 493 tmpinp = in_pcblookup_local(pcbinfo, laddr, 494 lport, lookupflags, cred); 495 #endif 496 } while (tmpinp != NULL); 497 498 #ifdef INET 499 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) 500 laddrp->s_addr = laddr.s_addr; 501 #endif 502 *lportp = lport; 503 504 return (0); 505 } 506 507 /* 508 * Return cached socket options. 509 */ 510 short 511 inp_so_options(const struct inpcb *inp) 512 { 513 short so_options; 514 515 so_options = 0; 516 517 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 518 so_options |= SO_REUSEPORT; 519 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 520 so_options |= SO_REUSEADDR; 521 return (so_options); 522 } 523 #endif /* INET || INET6 */ 524 525 /* 526 * Check if a new BINDMULTI socket is allowed to be created. 527 * 528 * ni points to the new inp. 529 * oi points to the exisitng inp. 530 * 531 * This checks whether the existing inp also has BINDMULTI and 532 * whether the credentials match. 533 */ 534 int 535 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 536 { 537 /* Check permissions match */ 538 if ((ni->inp_flags2 & INP_BINDMULTI) && 539 (ni->inp_cred->cr_uid != 540 oi->inp_cred->cr_uid)) 541 return (0); 542 543 /* Check the existing inp has BINDMULTI set */ 544 if ((ni->inp_flags2 & INP_BINDMULTI) && 545 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 546 return (0); 547 548 /* 549 * We're okay - either INP_BINDMULTI isn't set on ni, or 550 * it is and it matches the checks. 551 */ 552 return (1); 553 } 554 555 #ifdef INET 556 /* 557 * Set up a bind operation on a PCB, performing port allocation 558 * as required, but do not actually modify the PCB. Callers can 559 * either complete the bind by setting inp_laddr/inp_lport and 560 * calling in_pcbinshash(), or they can just use the resulting 561 * port and address to authorise the sending of a once-off packet. 562 * 563 * On error, the values of *laddrp and *lportp are not changed. 564 */ 565 int 566 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 567 u_short *lportp, struct ucred *cred) 568 { 569 struct socket *so = inp->inp_socket; 570 struct sockaddr_in *sin; 571 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 572 struct in_addr laddr; 573 u_short lport = 0; 574 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 575 int error; 576 577 /* 578 * No state changes, so read locks are sufficient here. 579 */ 580 INP_LOCK_ASSERT(inp); 581 INP_HASH_LOCK_ASSERT(pcbinfo); 582 583 if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 584 return (EADDRNOTAVAIL); 585 laddr.s_addr = *laddrp; 586 if (nam != NULL && laddr.s_addr != INADDR_ANY) 587 return (EINVAL); 588 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) 589 lookupflags = INPLOOKUP_WILDCARD; 590 if (nam == NULL) { 591 if ((error = prison_local_ip4(cred, &laddr)) != 0) 592 return (error); 593 } else { 594 sin = (struct sockaddr_in *)nam; 595 if (nam->sa_len != sizeof (*sin)) 596 return (EINVAL); 597 #ifdef notdef 598 /* 599 * We should check the family, but old programs 600 * incorrectly fail to initialize it. 601 */ 602 if (sin->sin_family != AF_INET) 603 return (EAFNOSUPPORT); 604 #endif 605 error = prison_local_ip4(cred, &sin->sin_addr); 606 if (error) 607 return (error); 608 if (sin->sin_port != *lportp) { 609 /* Don't allow the port to change. */ 610 if (*lportp != 0) 611 return (EINVAL); 612 lport = sin->sin_port; 613 } 614 /* NB: lport is left as 0 if the port isn't being changed. */ 615 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 616 /* 617 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 618 * allow complete duplication of binding if 619 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 620 * and a multicast address is bound on both 621 * new and duplicated sockets. 622 */ 623 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 624 reuseport = SO_REUSEADDR|SO_REUSEPORT; 625 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 626 sin->sin_port = 0; /* yech... */ 627 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 628 /* 629 * Is the address a local IP address? 630 * If INP_BINDANY is set, then the socket may be bound 631 * to any endpoint address, local or not. 632 */ 633 if ((inp->inp_flags & INP_BINDANY) == 0 && 634 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 635 return (EADDRNOTAVAIL); 636 } 637 laddr = sin->sin_addr; 638 if (lport) { 639 struct inpcb *t; 640 struct tcptw *tw; 641 642 /* GROSS */ 643 if (ntohs(lport) <= V_ipport_reservedhigh && 644 ntohs(lport) >= V_ipport_reservedlow && 645 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 646 0)) 647 return (EACCES); 648 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 649 priv_check_cred(inp->inp_cred, 650 PRIV_NETINET_REUSEPORT, 0) != 0) { 651 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 652 lport, INPLOOKUP_WILDCARD, cred); 653 /* 654 * XXX 655 * This entire block sorely needs a rewrite. 656 */ 657 if (t && 658 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 659 ((t->inp_flags & INP_TIMEWAIT) == 0) && 660 (so->so_type != SOCK_STREAM || 661 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 662 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 663 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 664 (t->inp_flags2 & INP_REUSEPORT) == 0) && 665 (inp->inp_cred->cr_uid != 666 t->inp_cred->cr_uid)) 667 return (EADDRINUSE); 668 669 /* 670 * If the socket is a BINDMULTI socket, then 671 * the credentials need to match and the 672 * original socket also has to have been bound 673 * with BINDMULTI. 674 */ 675 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 676 return (EADDRINUSE); 677 } 678 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 679 lport, lookupflags, cred); 680 if (t && (t->inp_flags & INP_TIMEWAIT)) { 681 /* 682 * XXXRW: If an incpb has had its timewait 683 * state recycled, we treat the address as 684 * being in use (for now). This is better 685 * than a panic, but not desirable. 686 */ 687 tw = intotw(t); 688 if (tw == NULL || 689 (reuseport & tw->tw_so_options) == 0) 690 return (EADDRINUSE); 691 } else if (t && 692 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 693 (reuseport & inp_so_options(t)) == 0) { 694 #ifdef INET6 695 if (ntohl(sin->sin_addr.s_addr) != 696 INADDR_ANY || 697 ntohl(t->inp_laddr.s_addr) != 698 INADDR_ANY || 699 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 700 (t->inp_vflag & INP_IPV6PROTO) == 0) 701 #endif 702 return (EADDRINUSE); 703 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 704 return (EADDRINUSE); 705 } 706 } 707 } 708 if (*lportp != 0) 709 lport = *lportp; 710 if (lport == 0) { 711 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 712 if (error != 0) 713 return (error); 714 715 } 716 *laddrp = laddr.s_addr; 717 *lportp = lport; 718 return (0); 719 } 720 721 /* 722 * Connect from a socket to a specified address. 723 * Both address and port must be specified in argument sin. 724 * If don't have a local address for this socket yet, 725 * then pick one. 726 */ 727 int 728 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, 729 struct ucred *cred, struct mbuf *m) 730 { 731 u_short lport, fport; 732 in_addr_t laddr, faddr; 733 int anonport, error; 734 735 INP_WLOCK_ASSERT(inp); 736 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 737 738 lport = inp->inp_lport; 739 laddr = inp->inp_laddr.s_addr; 740 anonport = (lport == 0); 741 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 742 NULL, cred); 743 if (error) 744 return (error); 745 746 /* Do the initial binding of the local address if required. */ 747 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 748 inp->inp_lport = lport; 749 inp->inp_laddr.s_addr = laddr; 750 if (in_pcbinshash(inp) != 0) { 751 inp->inp_laddr.s_addr = INADDR_ANY; 752 inp->inp_lport = 0; 753 return (EAGAIN); 754 } 755 } 756 757 /* Commit the remaining changes. */ 758 inp->inp_lport = lport; 759 inp->inp_laddr.s_addr = laddr; 760 inp->inp_faddr.s_addr = faddr; 761 inp->inp_fport = fport; 762 in_pcbrehash_mbuf(inp, m); 763 764 if (anonport) 765 inp->inp_flags |= INP_ANONPORT; 766 return (0); 767 } 768 769 int 770 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 771 { 772 773 return (in_pcbconnect_mbuf(inp, nam, cred, NULL)); 774 } 775 776 /* 777 * Do proper source address selection on an unbound socket in case 778 * of connect. Take jails into account as well. 779 */ 780 int 781 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 782 struct ucred *cred) 783 { 784 struct ifaddr *ifa; 785 struct sockaddr *sa; 786 struct sockaddr_in *sin; 787 struct route sro; 788 int error; 789 790 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 791 792 /* 793 * Bypass source address selection and use the primary jail IP 794 * if requested. 795 */ 796 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 797 return (0); 798 799 error = 0; 800 bzero(&sro, sizeof(sro)); 801 802 sin = (struct sockaddr_in *)&sro.ro_dst; 803 sin->sin_family = AF_INET; 804 sin->sin_len = sizeof(struct sockaddr_in); 805 sin->sin_addr.s_addr = faddr->s_addr; 806 807 /* 808 * If route is known our src addr is taken from the i/f, 809 * else punt. 810 * 811 * Find out route to destination. 812 */ 813 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 814 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); 815 816 /* 817 * If we found a route, use the address corresponding to 818 * the outgoing interface. 819 * 820 * Otherwise assume faddr is reachable on a directly connected 821 * network and try to find a corresponding interface to take 822 * the source address from. 823 */ 824 if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { 825 struct in_ifaddr *ia; 826 struct ifnet *ifp; 827 828 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 829 inp->inp_socket->so_fibnum)); 830 if (ia == NULL) 831 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 832 inp->inp_socket->so_fibnum)); 833 if (ia == NULL) { 834 error = ENETUNREACH; 835 goto done; 836 } 837 838 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 839 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 840 ifa_free(&ia->ia_ifa); 841 goto done; 842 } 843 844 ifp = ia->ia_ifp; 845 ifa_free(&ia->ia_ifa); 846 ia = NULL; 847 IF_ADDR_RLOCK(ifp); 848 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 849 850 sa = ifa->ifa_addr; 851 if (sa->sa_family != AF_INET) 852 continue; 853 sin = (struct sockaddr_in *)sa; 854 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 855 ia = (struct in_ifaddr *)ifa; 856 break; 857 } 858 } 859 if (ia != NULL) { 860 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 861 IF_ADDR_RUNLOCK(ifp); 862 goto done; 863 } 864 IF_ADDR_RUNLOCK(ifp); 865 866 /* 3. As a last resort return the 'default' jail address. */ 867 error = prison_get_ip4(cred, laddr); 868 goto done; 869 } 870 871 /* 872 * If the outgoing interface on the route found is not 873 * a loopback interface, use the address from that interface. 874 * In case of jails do those three steps: 875 * 1. check if the interface address belongs to the jail. If so use it. 876 * 2. check if we have any address on the outgoing interface 877 * belonging to this jail. If so use it. 878 * 3. as a last resort return the 'default' jail address. 879 */ 880 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { 881 struct in_ifaddr *ia; 882 struct ifnet *ifp; 883 884 /* If not jailed, use the default returned. */ 885 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 886 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 887 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 888 goto done; 889 } 890 891 /* Jailed. */ 892 /* 1. Check if the iface address belongs to the jail. */ 893 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; 894 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 895 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 896 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 897 goto done; 898 } 899 900 /* 901 * 2. Check if we have any address on the outgoing interface 902 * belonging to this jail. 903 */ 904 ia = NULL; 905 ifp = sro.ro_rt->rt_ifp; 906 IF_ADDR_RLOCK(ifp); 907 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 908 sa = ifa->ifa_addr; 909 if (sa->sa_family != AF_INET) 910 continue; 911 sin = (struct sockaddr_in *)sa; 912 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 913 ia = (struct in_ifaddr *)ifa; 914 break; 915 } 916 } 917 if (ia != NULL) { 918 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 919 IF_ADDR_RUNLOCK(ifp); 920 goto done; 921 } 922 IF_ADDR_RUNLOCK(ifp); 923 924 /* 3. As a last resort return the 'default' jail address. */ 925 error = prison_get_ip4(cred, laddr); 926 goto done; 927 } 928 929 /* 930 * The outgoing interface is marked with 'loopback net', so a route 931 * to ourselves is here. 932 * Try to find the interface of the destination address and then 933 * take the address from there. That interface is not necessarily 934 * a loopback interface. 935 * In case of jails, check that it is an address of the jail 936 * and if we cannot find, fall back to the 'default' jail address. 937 */ 938 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 939 struct sockaddr_in sain; 940 struct in_ifaddr *ia; 941 942 bzero(&sain, sizeof(struct sockaddr_in)); 943 sain.sin_family = AF_INET; 944 sain.sin_len = sizeof(struct sockaddr_in); 945 sain.sin_addr.s_addr = faddr->s_addr; 946 947 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain), 948 inp->inp_socket->so_fibnum)); 949 if (ia == NULL) 950 ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0, 951 inp->inp_socket->so_fibnum)); 952 if (ia == NULL) 953 ia = ifatoia(ifa_ifwithaddr(sintosa(&sain))); 954 955 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 956 if (ia == NULL) { 957 error = ENETUNREACH; 958 goto done; 959 } 960 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 961 ifa_free(&ia->ia_ifa); 962 goto done; 963 } 964 965 /* Jailed. */ 966 if (ia != NULL) { 967 struct ifnet *ifp; 968 969 ifp = ia->ia_ifp; 970 ifa_free(&ia->ia_ifa); 971 ia = NULL; 972 IF_ADDR_RLOCK(ifp); 973 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 974 975 sa = ifa->ifa_addr; 976 if (sa->sa_family != AF_INET) 977 continue; 978 sin = (struct sockaddr_in *)sa; 979 if (prison_check_ip4(cred, 980 &sin->sin_addr) == 0) { 981 ia = (struct in_ifaddr *)ifa; 982 break; 983 } 984 } 985 if (ia != NULL) { 986 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 987 IF_ADDR_RUNLOCK(ifp); 988 goto done; 989 } 990 IF_ADDR_RUNLOCK(ifp); 991 } 992 993 /* 3. As a last resort return the 'default' jail address. */ 994 error = prison_get_ip4(cred, laddr); 995 goto done; 996 } 997 998 done: 999 if (sro.ro_rt != NULL) 1000 RTFREE(sro.ro_rt); 1001 return (error); 1002 } 1003 1004 /* 1005 * Set up for a connect from a socket to the specified address. 1006 * On entry, *laddrp and *lportp should contain the current local 1007 * address and port for the PCB; these are updated to the values 1008 * that should be placed in inp_laddr and inp_lport to complete 1009 * the connect. 1010 * 1011 * On success, *faddrp and *fportp will be set to the remote address 1012 * and port. These are not updated in the error case. 1013 * 1014 * If the operation fails because the connection already exists, 1015 * *oinpp will be set to the PCB of that connection so that the 1016 * caller can decide to override it. In all other cases, *oinpp 1017 * is set to NULL. 1018 */ 1019 int 1020 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1021 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1022 struct inpcb **oinpp, struct ucred *cred) 1023 { 1024 struct rm_priotracker in_ifa_tracker; 1025 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1026 struct in_ifaddr *ia; 1027 struct inpcb *oinp; 1028 struct in_addr laddr, faddr; 1029 u_short lport, fport; 1030 int error; 1031 1032 /* 1033 * Because a global state change doesn't actually occur here, a read 1034 * lock is sufficient. 1035 */ 1036 INP_LOCK_ASSERT(inp); 1037 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1038 1039 if (oinpp != NULL) 1040 *oinpp = NULL; 1041 if (nam->sa_len != sizeof (*sin)) 1042 return (EINVAL); 1043 if (sin->sin_family != AF_INET) 1044 return (EAFNOSUPPORT); 1045 if (sin->sin_port == 0) 1046 return (EADDRNOTAVAIL); 1047 laddr.s_addr = *laddrp; 1048 lport = *lportp; 1049 faddr = sin->sin_addr; 1050 fport = sin->sin_port; 1051 1052 if (!TAILQ_EMPTY(&V_in_ifaddrhead)) { 1053 /* 1054 * If the destination address is INADDR_ANY, 1055 * use the primary local address. 1056 * If the supplied address is INADDR_BROADCAST, 1057 * and the primary interface supports broadcast, 1058 * choose the broadcast address for that interface. 1059 */ 1060 if (faddr.s_addr == INADDR_ANY) { 1061 IN_IFADDR_RLOCK(&in_ifa_tracker); 1062 faddr = 1063 IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1064 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1065 if (cred != NULL && 1066 (error = prison_get_ip4(cred, &faddr)) != 0) 1067 return (error); 1068 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1069 IN_IFADDR_RLOCK(&in_ifa_tracker); 1070 if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1071 IFF_BROADCAST) 1072 faddr = satosin(&TAILQ_FIRST( 1073 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1074 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1075 } 1076 } 1077 if (laddr.s_addr == INADDR_ANY) { 1078 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1079 /* 1080 * If the destination address is multicast and an outgoing 1081 * interface has been set as a multicast option, prefer the 1082 * address of that interface as our source address. 1083 */ 1084 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1085 inp->inp_moptions != NULL) { 1086 struct ip_moptions *imo; 1087 struct ifnet *ifp; 1088 1089 imo = inp->inp_moptions; 1090 if (imo->imo_multicast_ifp != NULL) { 1091 ifp = imo->imo_multicast_ifp; 1092 IN_IFADDR_RLOCK(&in_ifa_tracker); 1093 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1094 if ((ia->ia_ifp == ifp) && 1095 (cred == NULL || 1096 prison_check_ip4(cred, 1097 &ia->ia_addr.sin_addr) == 0)) 1098 break; 1099 } 1100 if (ia == NULL) 1101 error = EADDRNOTAVAIL; 1102 else { 1103 laddr = ia->ia_addr.sin_addr; 1104 error = 0; 1105 } 1106 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1107 } 1108 } 1109 if (error) 1110 return (error); 1111 } 1112 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport, 1113 laddr, lport, 0, NULL); 1114 if (oinp != NULL) { 1115 if (oinpp != NULL) 1116 *oinpp = oinp; 1117 return (EADDRINUSE); 1118 } 1119 if (lport == 0) { 1120 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 1121 cred); 1122 if (error) 1123 return (error); 1124 } 1125 *laddrp = laddr.s_addr; 1126 *lportp = lport; 1127 *faddrp = faddr.s_addr; 1128 *fportp = fport; 1129 return (0); 1130 } 1131 1132 void 1133 in_pcbdisconnect(struct inpcb *inp) 1134 { 1135 1136 INP_WLOCK_ASSERT(inp); 1137 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1138 1139 inp->inp_faddr.s_addr = INADDR_ANY; 1140 inp->inp_fport = 0; 1141 in_pcbrehash(inp); 1142 } 1143 #endif /* INET */ 1144 1145 /* 1146 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1147 * For most protocols, this will be invoked immediately prior to calling 1148 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1149 * socket, in which case in_pcbfree() is deferred. 1150 */ 1151 void 1152 in_pcbdetach(struct inpcb *inp) 1153 { 1154 1155 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1156 1157 #ifdef RATELIMIT 1158 if (inp->inp_snd_tag != NULL) 1159 in_pcbdetach_txrtlmt(inp); 1160 #endif 1161 inp->inp_socket->so_pcb = NULL; 1162 inp->inp_socket = NULL; 1163 } 1164 1165 /* 1166 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1167 * stability of an inpcb pointer despite the inpcb lock being released. This 1168 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 1169 * but where the inpcb lock may already held, or when acquiring a reference 1170 * via a pcbgroup. 1171 * 1172 * in_pcbref() should be used only to provide brief memory stability, and 1173 * must always be followed by a call to INP_WLOCK() and in_pcbrele() to 1174 * garbage collect the inpcb if it has been in_pcbfree()'d from another 1175 * context. Until in_pcbrele() has returned that the inpcb is still valid, 1176 * lock and rele are the *only* safe operations that may be performed on the 1177 * inpcb. 1178 * 1179 * While the inpcb will not be freed, releasing the inpcb lock means that the 1180 * connection's state may change, so the caller should be careful to 1181 * revalidate any cached state on reacquiring the lock. Drop the reference 1182 * using in_pcbrele(). 1183 */ 1184 void 1185 in_pcbref(struct inpcb *inp) 1186 { 1187 1188 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1189 1190 refcount_acquire(&inp->inp_refcount); 1191 } 1192 1193 /* 1194 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 1195 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 1196 * return a flag indicating whether or not the inpcb remains valid. If it is 1197 * valid, we return with the inpcb lock held. 1198 * 1199 * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a 1200 * reference on an inpcb. Historically more work was done here (actually, in 1201 * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the 1202 * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely 1203 * about memory stability (and continued use of the write lock). 1204 */ 1205 int 1206 in_pcbrele_rlocked(struct inpcb *inp) 1207 { 1208 struct inpcbinfo *pcbinfo; 1209 1210 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1211 1212 INP_RLOCK_ASSERT(inp); 1213 1214 if (refcount_release(&inp->inp_refcount) == 0) { 1215 /* 1216 * If the inpcb has been freed, let the caller know, even if 1217 * this isn't the last reference. 1218 */ 1219 if (inp->inp_flags2 & INP_FREED) { 1220 INP_RUNLOCK(inp); 1221 return (1); 1222 } 1223 return (0); 1224 } 1225 1226 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1227 1228 INP_RUNLOCK(inp); 1229 pcbinfo = inp->inp_pcbinfo; 1230 uma_zfree(pcbinfo->ipi_zone, inp); 1231 return (1); 1232 } 1233 1234 int 1235 in_pcbrele_wlocked(struct inpcb *inp) 1236 { 1237 struct inpcbinfo *pcbinfo; 1238 1239 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1240 1241 INP_WLOCK_ASSERT(inp); 1242 1243 if (refcount_release(&inp->inp_refcount) == 0) { 1244 /* 1245 * If the inpcb has been freed, let the caller know, even if 1246 * this isn't the last reference. 1247 */ 1248 if (inp->inp_flags2 & INP_FREED) { 1249 INP_WUNLOCK(inp); 1250 return (1); 1251 } 1252 return (0); 1253 } 1254 1255 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1256 1257 INP_WUNLOCK(inp); 1258 pcbinfo = inp->inp_pcbinfo; 1259 uma_zfree(pcbinfo->ipi_zone, inp); 1260 return (1); 1261 } 1262 1263 /* 1264 * Temporary wrapper. 1265 */ 1266 int 1267 in_pcbrele(struct inpcb *inp) 1268 { 1269 1270 return (in_pcbrele_wlocked(inp)); 1271 } 1272 1273 /* 1274 * Unconditionally schedule an inpcb to be freed by decrementing its 1275 * reference count, which should occur only after the inpcb has been detached 1276 * from its socket. If another thread holds a temporary reference (acquired 1277 * using in_pcbref()) then the free is deferred until that reference is 1278 * released using in_pcbrele(), but the inpcb is still unlocked. Almost all 1279 * work, including removal from global lists, is done in this context, where 1280 * the pcbinfo lock is held. 1281 */ 1282 void 1283 in_pcbfree(struct inpcb *inp) 1284 { 1285 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1286 1287 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1288 1289 #ifdef INVARIANTS 1290 if (pcbinfo == &V_tcbinfo) { 1291 INP_INFO_LOCK_ASSERT(pcbinfo); 1292 } else { 1293 INP_INFO_WLOCK_ASSERT(pcbinfo); 1294 } 1295 #endif 1296 INP_WLOCK_ASSERT(inp); 1297 1298 /* XXXRW: Do as much as possible here. */ 1299 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1300 if (inp->inp_sp != NULL) 1301 ipsec_delete_pcbpolicy(inp); 1302 #endif 1303 INP_LIST_WLOCK(pcbinfo); 1304 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1305 in_pcbremlists(inp); 1306 INP_LIST_WUNLOCK(pcbinfo); 1307 #ifdef INET6 1308 if (inp->inp_vflag & INP_IPV6PROTO) { 1309 ip6_freepcbopts(inp->in6p_outputopts); 1310 if (inp->in6p_moptions != NULL) 1311 ip6_freemoptions(inp->in6p_moptions); 1312 } 1313 #endif 1314 if (inp->inp_options) 1315 (void)m_free(inp->inp_options); 1316 #ifdef INET 1317 if (inp->inp_moptions != NULL) 1318 inp_freemoptions(inp->inp_moptions); 1319 #endif 1320 RO_RTFREE(&inp->inp_route); 1321 if (inp->inp_route.ro_lle) 1322 LLE_FREE(inp->inp_route.ro_lle); /* zeros ro_lle */ 1323 1324 inp->inp_vflag = 0; 1325 inp->inp_flags2 |= INP_FREED; 1326 crfree(inp->inp_cred); 1327 #ifdef MAC 1328 mac_inpcb_destroy(inp); 1329 #endif 1330 if (!in_pcbrele_wlocked(inp)) 1331 INP_WUNLOCK(inp); 1332 } 1333 1334 /* 1335 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1336 * port reservation, and preventing it from being returned by inpcb lookups. 1337 * 1338 * It is used by TCP to mark an inpcb as unused and avoid future packet 1339 * delivery or event notification when a socket remains open but TCP has 1340 * closed. This might occur as a result of a shutdown()-initiated TCP close 1341 * or a RST on the wire, and allows the port binding to be reused while still 1342 * maintaining the invariant that so_pcb always points to a valid inpcb until 1343 * in_pcbdetach(). 1344 * 1345 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1346 * in_pcbnotifyall() and in_pcbpurgeif0()? 1347 */ 1348 void 1349 in_pcbdrop(struct inpcb *inp) 1350 { 1351 1352 INP_WLOCK_ASSERT(inp); 1353 1354 /* 1355 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1356 * the hash lock...? 1357 */ 1358 inp->inp_flags |= INP_DROPPED; 1359 if (inp->inp_flags & INP_INHASHLIST) { 1360 struct inpcbport *phd = inp->inp_phd; 1361 1362 INP_HASH_WLOCK(inp->inp_pcbinfo); 1363 LIST_REMOVE(inp, inp_hash); 1364 LIST_REMOVE(inp, inp_portlist); 1365 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 1366 LIST_REMOVE(phd, phd_hash); 1367 free(phd, M_PCB); 1368 } 1369 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1370 inp->inp_flags &= ~INP_INHASHLIST; 1371 #ifdef PCBGROUP 1372 in_pcbgroup_remove(inp); 1373 #endif 1374 } 1375 } 1376 1377 #ifdef INET 1378 /* 1379 * Common routines to return the socket addresses associated with inpcbs. 1380 */ 1381 struct sockaddr * 1382 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1383 { 1384 struct sockaddr_in *sin; 1385 1386 sin = malloc(sizeof *sin, M_SONAME, 1387 M_WAITOK | M_ZERO); 1388 sin->sin_family = AF_INET; 1389 sin->sin_len = sizeof(*sin); 1390 sin->sin_addr = *addr_p; 1391 sin->sin_port = port; 1392 1393 return (struct sockaddr *)sin; 1394 } 1395 1396 int 1397 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1398 { 1399 struct inpcb *inp; 1400 struct in_addr addr; 1401 in_port_t port; 1402 1403 inp = sotoinpcb(so); 1404 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1405 1406 INP_RLOCK(inp); 1407 port = inp->inp_lport; 1408 addr = inp->inp_laddr; 1409 INP_RUNLOCK(inp); 1410 1411 *nam = in_sockaddr(port, &addr); 1412 return 0; 1413 } 1414 1415 int 1416 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1417 { 1418 struct inpcb *inp; 1419 struct in_addr addr; 1420 in_port_t port; 1421 1422 inp = sotoinpcb(so); 1423 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1424 1425 INP_RLOCK(inp); 1426 port = inp->inp_fport; 1427 addr = inp->inp_faddr; 1428 INP_RUNLOCK(inp); 1429 1430 *nam = in_sockaddr(port, &addr); 1431 return 0; 1432 } 1433 1434 void 1435 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1436 struct inpcb *(*notify)(struct inpcb *, int)) 1437 { 1438 struct inpcb *inp, *inp_temp; 1439 1440 INP_INFO_WLOCK(pcbinfo); 1441 LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1442 INP_WLOCK(inp); 1443 #ifdef INET6 1444 if ((inp->inp_vflag & INP_IPV4) == 0) { 1445 INP_WUNLOCK(inp); 1446 continue; 1447 } 1448 #endif 1449 if (inp->inp_faddr.s_addr != faddr.s_addr || 1450 inp->inp_socket == NULL) { 1451 INP_WUNLOCK(inp); 1452 continue; 1453 } 1454 if ((*notify)(inp, errno)) 1455 INP_WUNLOCK(inp); 1456 } 1457 INP_INFO_WUNLOCK(pcbinfo); 1458 } 1459 1460 void 1461 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1462 { 1463 struct inpcb *inp; 1464 struct ip_moptions *imo; 1465 int i, gap; 1466 1467 INP_INFO_WLOCK(pcbinfo); 1468 LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1469 INP_WLOCK(inp); 1470 imo = inp->inp_moptions; 1471 if ((inp->inp_vflag & INP_IPV4) && 1472 imo != NULL) { 1473 /* 1474 * Unselect the outgoing interface if it is being 1475 * detached. 1476 */ 1477 if (imo->imo_multicast_ifp == ifp) 1478 imo->imo_multicast_ifp = NULL; 1479 1480 /* 1481 * Drop multicast group membership if we joined 1482 * through the interface being detached. 1483 */ 1484 for (i = 0, gap = 0; i < imo->imo_num_memberships; 1485 i++) { 1486 if (imo->imo_membership[i]->inm_ifp == ifp) { 1487 in_delmulti(imo->imo_membership[i]); 1488 gap++; 1489 } else if (gap != 0) 1490 imo->imo_membership[i - gap] = 1491 imo->imo_membership[i]; 1492 } 1493 imo->imo_num_memberships -= gap; 1494 } 1495 INP_WUNLOCK(inp); 1496 } 1497 INP_INFO_WUNLOCK(pcbinfo); 1498 } 1499 1500 /* 1501 * Lookup a PCB based on the local address and port. Caller must hold the 1502 * hash lock. No inpcb locks or references are acquired. 1503 */ 1504 #define INP_LOOKUP_MAPPED_PCB_COST 3 1505 struct inpcb * 1506 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1507 u_short lport, int lookupflags, struct ucred *cred) 1508 { 1509 struct inpcb *inp; 1510 #ifdef INET6 1511 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1512 #else 1513 int matchwild = 3; 1514 #endif 1515 int wildcard; 1516 1517 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1518 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1519 1520 INP_HASH_LOCK_ASSERT(pcbinfo); 1521 1522 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1523 struct inpcbhead *head; 1524 /* 1525 * Look for an unconnected (wildcard foreign addr) PCB that 1526 * matches the local address and port we're looking for. 1527 */ 1528 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1529 0, pcbinfo->ipi_hashmask)]; 1530 LIST_FOREACH(inp, head, inp_hash) { 1531 #ifdef INET6 1532 /* XXX inp locking */ 1533 if ((inp->inp_vflag & INP_IPV4) == 0) 1534 continue; 1535 #endif 1536 if (inp->inp_faddr.s_addr == INADDR_ANY && 1537 inp->inp_laddr.s_addr == laddr.s_addr && 1538 inp->inp_lport == lport) { 1539 /* 1540 * Found? 1541 */ 1542 if (cred == NULL || 1543 prison_equal_ip4(cred->cr_prison, 1544 inp->inp_cred->cr_prison)) 1545 return (inp); 1546 } 1547 } 1548 /* 1549 * Not found. 1550 */ 1551 return (NULL); 1552 } else { 1553 struct inpcbporthead *porthash; 1554 struct inpcbport *phd; 1555 struct inpcb *match = NULL; 1556 /* 1557 * Best fit PCB lookup. 1558 * 1559 * First see if this local port is in use by looking on the 1560 * port hash list. 1561 */ 1562 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1563 pcbinfo->ipi_porthashmask)]; 1564 LIST_FOREACH(phd, porthash, phd_hash) { 1565 if (phd->phd_port == lport) 1566 break; 1567 } 1568 if (phd != NULL) { 1569 /* 1570 * Port is in use by one or more PCBs. Look for best 1571 * fit. 1572 */ 1573 LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1574 wildcard = 0; 1575 if (cred != NULL && 1576 !prison_equal_ip4(inp->inp_cred->cr_prison, 1577 cred->cr_prison)) 1578 continue; 1579 #ifdef INET6 1580 /* XXX inp locking */ 1581 if ((inp->inp_vflag & INP_IPV4) == 0) 1582 continue; 1583 /* 1584 * We never select the PCB that has 1585 * INP_IPV6 flag and is bound to :: if 1586 * we have another PCB which is bound 1587 * to 0.0.0.0. If a PCB has the 1588 * INP_IPV6 flag, then we set its cost 1589 * higher than IPv4 only PCBs. 1590 * 1591 * Note that the case only happens 1592 * when a socket is bound to ::, under 1593 * the condition that the use of the 1594 * mapped address is allowed. 1595 */ 1596 if ((inp->inp_vflag & INP_IPV6) != 0) 1597 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1598 #endif 1599 if (inp->inp_faddr.s_addr != INADDR_ANY) 1600 wildcard++; 1601 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1602 if (laddr.s_addr == INADDR_ANY) 1603 wildcard++; 1604 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1605 continue; 1606 } else { 1607 if (laddr.s_addr != INADDR_ANY) 1608 wildcard++; 1609 } 1610 if (wildcard < matchwild) { 1611 match = inp; 1612 matchwild = wildcard; 1613 if (matchwild == 0) 1614 break; 1615 } 1616 } 1617 } 1618 return (match); 1619 } 1620 } 1621 #undef INP_LOOKUP_MAPPED_PCB_COST 1622 1623 #ifdef PCBGROUP 1624 /* 1625 * Lookup PCB in hash list, using pcbgroup tables. 1626 */ 1627 static struct inpcb * 1628 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, 1629 struct in_addr faddr, u_int fport_arg, struct in_addr laddr, 1630 u_int lport_arg, int lookupflags, struct ifnet *ifp) 1631 { 1632 struct inpcbhead *head; 1633 struct inpcb *inp, *tmpinp; 1634 u_short fport = fport_arg, lport = lport_arg; 1635 1636 /* 1637 * First look for an exact match. 1638 */ 1639 tmpinp = NULL; 1640 INP_GROUP_LOCK(pcbgroup); 1641 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1642 pcbgroup->ipg_hashmask)]; 1643 LIST_FOREACH(inp, head, inp_pcbgrouphash) { 1644 #ifdef INET6 1645 /* XXX inp locking */ 1646 if ((inp->inp_vflag & INP_IPV4) == 0) 1647 continue; 1648 #endif 1649 if (inp->inp_faddr.s_addr == faddr.s_addr && 1650 inp->inp_laddr.s_addr == laddr.s_addr && 1651 inp->inp_fport == fport && 1652 inp->inp_lport == lport) { 1653 /* 1654 * XXX We should be able to directly return 1655 * the inp here, without any checks. 1656 * Well unless both bound with SO_REUSEPORT? 1657 */ 1658 if (prison_flag(inp->inp_cred, PR_IP4)) 1659 goto found; 1660 if (tmpinp == NULL) 1661 tmpinp = inp; 1662 } 1663 } 1664 if (tmpinp != NULL) { 1665 inp = tmpinp; 1666 goto found; 1667 } 1668 1669 #ifdef RSS 1670 /* 1671 * For incoming connections, we may wish to do a wildcard 1672 * match for an RSS-local socket. 1673 */ 1674 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1675 struct inpcb *local_wild = NULL, *local_exact = NULL; 1676 #ifdef INET6 1677 struct inpcb *local_wild_mapped = NULL; 1678 #endif 1679 struct inpcb *jail_wild = NULL; 1680 struct inpcbhead *head; 1681 int injail; 1682 1683 /* 1684 * Order of socket selection - we always prefer jails. 1685 * 1. jailed, non-wild. 1686 * 2. jailed, wild. 1687 * 3. non-jailed, non-wild. 1688 * 4. non-jailed, wild. 1689 */ 1690 1691 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, 1692 lport, 0, pcbgroup->ipg_hashmask)]; 1693 LIST_FOREACH(inp, head, inp_pcbgrouphash) { 1694 #ifdef INET6 1695 /* XXX inp locking */ 1696 if ((inp->inp_vflag & INP_IPV4) == 0) 1697 continue; 1698 #endif 1699 if (inp->inp_faddr.s_addr != INADDR_ANY || 1700 inp->inp_lport != lport) 1701 continue; 1702 1703 injail = prison_flag(inp->inp_cred, PR_IP4); 1704 if (injail) { 1705 if (prison_check_ip4(inp->inp_cred, 1706 &laddr) != 0) 1707 continue; 1708 } else { 1709 if (local_exact != NULL) 1710 continue; 1711 } 1712 1713 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1714 if (injail) 1715 goto found; 1716 else 1717 local_exact = inp; 1718 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1719 #ifdef INET6 1720 /* XXX inp locking, NULL check */ 1721 if (inp->inp_vflag & INP_IPV6PROTO) 1722 local_wild_mapped = inp; 1723 else 1724 #endif 1725 if (injail) 1726 jail_wild = inp; 1727 else 1728 local_wild = inp; 1729 } 1730 } /* LIST_FOREACH */ 1731 1732 inp = jail_wild; 1733 if (inp == NULL) 1734 inp = local_exact; 1735 if (inp == NULL) 1736 inp = local_wild; 1737 #ifdef INET6 1738 if (inp == NULL) 1739 inp = local_wild_mapped; 1740 #endif 1741 if (inp != NULL) 1742 goto found; 1743 } 1744 #endif 1745 1746 /* 1747 * Then look for a wildcard match, if requested. 1748 */ 1749 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1750 struct inpcb *local_wild = NULL, *local_exact = NULL; 1751 #ifdef INET6 1752 struct inpcb *local_wild_mapped = NULL; 1753 #endif 1754 struct inpcb *jail_wild = NULL; 1755 struct inpcbhead *head; 1756 int injail; 1757 1758 /* 1759 * Order of socket selection - we always prefer jails. 1760 * 1. jailed, non-wild. 1761 * 2. jailed, wild. 1762 * 3. non-jailed, non-wild. 1763 * 4. non-jailed, wild. 1764 */ 1765 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 1766 0, pcbinfo->ipi_wildmask)]; 1767 LIST_FOREACH(inp, head, inp_pcbgroup_wild) { 1768 #ifdef INET6 1769 /* XXX inp locking */ 1770 if ((inp->inp_vflag & INP_IPV4) == 0) 1771 continue; 1772 #endif 1773 if (inp->inp_faddr.s_addr != INADDR_ANY || 1774 inp->inp_lport != lport) 1775 continue; 1776 1777 injail = prison_flag(inp->inp_cred, PR_IP4); 1778 if (injail) { 1779 if (prison_check_ip4(inp->inp_cred, 1780 &laddr) != 0) 1781 continue; 1782 } else { 1783 if (local_exact != NULL) 1784 continue; 1785 } 1786 1787 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1788 if (injail) 1789 goto found; 1790 else 1791 local_exact = inp; 1792 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1793 #ifdef INET6 1794 /* XXX inp locking, NULL check */ 1795 if (inp->inp_vflag & INP_IPV6PROTO) 1796 local_wild_mapped = inp; 1797 else 1798 #endif 1799 if (injail) 1800 jail_wild = inp; 1801 else 1802 local_wild = inp; 1803 } 1804 } /* LIST_FOREACH */ 1805 inp = jail_wild; 1806 if (inp == NULL) 1807 inp = local_exact; 1808 if (inp == NULL) 1809 inp = local_wild; 1810 #ifdef INET6 1811 if (inp == NULL) 1812 inp = local_wild_mapped; 1813 #endif 1814 if (inp != NULL) 1815 goto found; 1816 } /* if (lookupflags & INPLOOKUP_WILDCARD) */ 1817 INP_GROUP_UNLOCK(pcbgroup); 1818 return (NULL); 1819 1820 found: 1821 in_pcbref(inp); 1822 INP_GROUP_UNLOCK(pcbgroup); 1823 if (lookupflags & INPLOOKUP_WLOCKPCB) { 1824 INP_WLOCK(inp); 1825 if (in_pcbrele_wlocked(inp)) 1826 return (NULL); 1827 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 1828 INP_RLOCK(inp); 1829 if (in_pcbrele_rlocked(inp)) 1830 return (NULL); 1831 } else 1832 panic("%s: locking bug", __func__); 1833 return (inp); 1834 } 1835 #endif /* PCBGROUP */ 1836 1837 /* 1838 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 1839 * that the caller has locked the hash list, and will not perform any further 1840 * locking or reference operations on either the hash list or the connection. 1841 */ 1842 static struct inpcb * 1843 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1844 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 1845 struct ifnet *ifp) 1846 { 1847 struct inpcbhead *head; 1848 struct inpcb *inp, *tmpinp; 1849 u_short fport = fport_arg, lport = lport_arg; 1850 1851 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1852 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1853 1854 INP_HASH_LOCK_ASSERT(pcbinfo); 1855 1856 /* 1857 * First look for an exact match. 1858 */ 1859 tmpinp = NULL; 1860 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1861 pcbinfo->ipi_hashmask)]; 1862 LIST_FOREACH(inp, head, inp_hash) { 1863 #ifdef INET6 1864 /* XXX inp locking */ 1865 if ((inp->inp_vflag & INP_IPV4) == 0) 1866 continue; 1867 #endif 1868 if (inp->inp_faddr.s_addr == faddr.s_addr && 1869 inp->inp_laddr.s_addr == laddr.s_addr && 1870 inp->inp_fport == fport && 1871 inp->inp_lport == lport) { 1872 /* 1873 * XXX We should be able to directly return 1874 * the inp here, without any checks. 1875 * Well unless both bound with SO_REUSEPORT? 1876 */ 1877 if (prison_flag(inp->inp_cred, PR_IP4)) 1878 return (inp); 1879 if (tmpinp == NULL) 1880 tmpinp = inp; 1881 } 1882 } 1883 if (tmpinp != NULL) 1884 return (tmpinp); 1885 1886 /* 1887 * Then look for a wildcard match, if requested. 1888 */ 1889 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1890 struct inpcb *local_wild = NULL, *local_exact = NULL; 1891 #ifdef INET6 1892 struct inpcb *local_wild_mapped = NULL; 1893 #endif 1894 struct inpcb *jail_wild = NULL; 1895 int injail; 1896 1897 /* 1898 * Order of socket selection - we always prefer jails. 1899 * 1. jailed, non-wild. 1900 * 2. jailed, wild. 1901 * 3. non-jailed, non-wild. 1902 * 4. non-jailed, wild. 1903 */ 1904 1905 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1906 0, pcbinfo->ipi_hashmask)]; 1907 LIST_FOREACH(inp, head, inp_hash) { 1908 #ifdef INET6 1909 /* XXX inp locking */ 1910 if ((inp->inp_vflag & INP_IPV4) == 0) 1911 continue; 1912 #endif 1913 if (inp->inp_faddr.s_addr != INADDR_ANY || 1914 inp->inp_lport != lport) 1915 continue; 1916 1917 injail = prison_flag(inp->inp_cred, PR_IP4); 1918 if (injail) { 1919 if (prison_check_ip4(inp->inp_cred, 1920 &laddr) != 0) 1921 continue; 1922 } else { 1923 if (local_exact != NULL) 1924 continue; 1925 } 1926 1927 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1928 if (injail) 1929 return (inp); 1930 else 1931 local_exact = inp; 1932 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1933 #ifdef INET6 1934 /* XXX inp locking, NULL check */ 1935 if (inp->inp_vflag & INP_IPV6PROTO) 1936 local_wild_mapped = inp; 1937 else 1938 #endif 1939 if (injail) 1940 jail_wild = inp; 1941 else 1942 local_wild = inp; 1943 } 1944 } /* LIST_FOREACH */ 1945 if (jail_wild != NULL) 1946 return (jail_wild); 1947 if (local_exact != NULL) 1948 return (local_exact); 1949 if (local_wild != NULL) 1950 return (local_wild); 1951 #ifdef INET6 1952 if (local_wild_mapped != NULL) 1953 return (local_wild_mapped); 1954 #endif 1955 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 1956 1957 return (NULL); 1958 } 1959 1960 /* 1961 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 1962 * hash list lock, and will return the inpcb locked (i.e., requires 1963 * INPLOOKUP_LOCKPCB). 1964 */ 1965 static struct inpcb * 1966 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1967 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 1968 struct ifnet *ifp) 1969 { 1970 struct inpcb *inp; 1971 1972 INP_HASH_RLOCK(pcbinfo); 1973 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 1974 (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp); 1975 if (inp != NULL) { 1976 in_pcbref(inp); 1977 INP_HASH_RUNLOCK(pcbinfo); 1978 if (lookupflags & INPLOOKUP_WLOCKPCB) { 1979 INP_WLOCK(inp); 1980 if (in_pcbrele_wlocked(inp)) 1981 return (NULL); 1982 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 1983 INP_RLOCK(inp); 1984 if (in_pcbrele_rlocked(inp)) 1985 return (NULL); 1986 } else 1987 panic("%s: locking bug", __func__); 1988 } else 1989 INP_HASH_RUNLOCK(pcbinfo); 1990 return (inp); 1991 } 1992 1993 /* 1994 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 1995 * from which a pre-calculated hash value may be extracted. 1996 * 1997 * Possibly more of this logic should be in in_pcbgroup.c. 1998 */ 1999 struct inpcb * 2000 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2001 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 2002 { 2003 #if defined(PCBGROUP) && !defined(RSS) 2004 struct inpcbgroup *pcbgroup; 2005 #endif 2006 2007 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2008 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2009 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2010 ("%s: LOCKPCB not set", __func__)); 2011 2012 /* 2013 * When not using RSS, use connection groups in preference to the 2014 * reservation table when looking up 4-tuples. When using RSS, just 2015 * use the reservation table, due to the cost of the Toeplitz hash 2016 * in software. 2017 * 2018 * XXXRW: This policy belongs in the pcbgroup code, as in principle 2019 * we could be doing RSS with a non-Toeplitz hash that is affordable 2020 * in software. 2021 */ 2022 #if defined(PCBGROUP) && !defined(RSS) 2023 if (in_pcbgroup_enabled(pcbinfo)) { 2024 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2025 fport); 2026 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2027 laddr, lport, lookupflags, ifp)); 2028 } 2029 #endif 2030 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2031 lookupflags, ifp)); 2032 } 2033 2034 struct inpcb * 2035 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2036 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2037 struct ifnet *ifp, struct mbuf *m) 2038 { 2039 #ifdef PCBGROUP 2040 struct inpcbgroup *pcbgroup; 2041 #endif 2042 2043 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2044 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2045 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2046 ("%s: LOCKPCB not set", __func__)); 2047 2048 #ifdef PCBGROUP 2049 /* 2050 * If we can use a hardware-generated hash to look up the connection 2051 * group, use that connection group to find the inpcb. Otherwise 2052 * fall back on a software hash -- or the reservation table if we're 2053 * using RSS. 2054 * 2055 * XXXRW: As above, that policy belongs in the pcbgroup code. 2056 */ 2057 if (in_pcbgroup_enabled(pcbinfo) && 2058 !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { 2059 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), 2060 m->m_pkthdr.flowid); 2061 if (pcbgroup != NULL) 2062 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, 2063 fport, laddr, lport, lookupflags, ifp)); 2064 #ifndef RSS 2065 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2066 fport); 2067 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2068 laddr, lport, lookupflags, ifp)); 2069 #endif 2070 } 2071 #endif 2072 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2073 lookupflags, ifp)); 2074 } 2075 #endif /* INET */ 2076 2077 /* 2078 * Insert PCB onto various hash lists. 2079 */ 2080 static int 2081 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update) 2082 { 2083 struct inpcbhead *pcbhash; 2084 struct inpcbporthead *pcbporthash; 2085 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2086 struct inpcbport *phd; 2087 u_int32_t hashkey_faddr; 2088 2089 INP_WLOCK_ASSERT(inp); 2090 INP_HASH_WLOCK_ASSERT(pcbinfo); 2091 2092 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2093 ("in_pcbinshash: INP_INHASHLIST")); 2094 2095 #ifdef INET6 2096 if (inp->inp_vflag & INP_IPV6) 2097 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2098 else 2099 #endif 2100 hashkey_faddr = inp->inp_faddr.s_addr; 2101 2102 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2103 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2104 2105 pcbporthash = &pcbinfo->ipi_porthashbase[ 2106 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2107 2108 /* 2109 * Go through port list and look for a head for this lport. 2110 */ 2111 LIST_FOREACH(phd, pcbporthash, phd_hash) { 2112 if (phd->phd_port == inp->inp_lport) 2113 break; 2114 } 2115 /* 2116 * If none exists, malloc one and tack it on. 2117 */ 2118 if (phd == NULL) { 2119 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 2120 if (phd == NULL) { 2121 return (ENOBUFS); /* XXX */ 2122 } 2123 phd->phd_port = inp->inp_lport; 2124 LIST_INIT(&phd->phd_pcblist); 2125 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2126 } 2127 inp->inp_phd = phd; 2128 LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2129 LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2130 inp->inp_flags |= INP_INHASHLIST; 2131 #ifdef PCBGROUP 2132 if (do_pcbgroup_update) 2133 in_pcbgroup_update(inp); 2134 #endif 2135 return (0); 2136 } 2137 2138 /* 2139 * For now, there are two public interfaces to insert an inpcb into the hash 2140 * lists -- one that does update pcbgroups, and one that doesn't. The latter 2141 * is used only in the TCP syncache, where in_pcbinshash is called before the 2142 * full 4-tuple is set for the inpcb, and we don't want to install in the 2143 * pcbgroup until later. 2144 * 2145 * XXXRW: This seems like a misfeature. in_pcbinshash should always update 2146 * connection groups, and partially initialised inpcbs should not be exposed 2147 * to either reservation hash tables or pcbgroups. 2148 */ 2149 int 2150 in_pcbinshash(struct inpcb *inp) 2151 { 2152 2153 return (in_pcbinshash_internal(inp, 1)); 2154 } 2155 2156 int 2157 in_pcbinshash_nopcbgroup(struct inpcb *inp) 2158 { 2159 2160 return (in_pcbinshash_internal(inp, 0)); 2161 } 2162 2163 /* 2164 * Move PCB to the proper hash bucket when { faddr, fport } have been 2165 * changed. NOTE: This does not handle the case of the lport changing (the 2166 * hashed port list would have to be updated as well), so the lport must 2167 * not change after in_pcbinshash() has been called. 2168 */ 2169 void 2170 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) 2171 { 2172 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2173 struct inpcbhead *head; 2174 u_int32_t hashkey_faddr; 2175 2176 INP_WLOCK_ASSERT(inp); 2177 INP_HASH_WLOCK_ASSERT(pcbinfo); 2178 2179 KASSERT(inp->inp_flags & INP_INHASHLIST, 2180 ("in_pcbrehash: !INP_INHASHLIST")); 2181 2182 #ifdef INET6 2183 if (inp->inp_vflag & INP_IPV6) 2184 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2185 else 2186 #endif 2187 hashkey_faddr = inp->inp_faddr.s_addr; 2188 2189 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2190 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2191 2192 LIST_REMOVE(inp, inp_hash); 2193 LIST_INSERT_HEAD(head, inp, inp_hash); 2194 2195 #ifdef PCBGROUP 2196 if (m != NULL) 2197 in_pcbgroup_update_mbuf(inp, m); 2198 else 2199 in_pcbgroup_update(inp); 2200 #endif 2201 } 2202 2203 void 2204 in_pcbrehash(struct inpcb *inp) 2205 { 2206 2207 in_pcbrehash_mbuf(inp, NULL); 2208 } 2209 2210 /* 2211 * Remove PCB from various lists. 2212 */ 2213 static void 2214 in_pcbremlists(struct inpcb *inp) 2215 { 2216 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2217 2218 #ifdef INVARIANTS 2219 if (pcbinfo == &V_tcbinfo) { 2220 INP_INFO_RLOCK_ASSERT(pcbinfo); 2221 } else { 2222 INP_INFO_WLOCK_ASSERT(pcbinfo); 2223 } 2224 #endif 2225 2226 INP_WLOCK_ASSERT(inp); 2227 INP_LIST_WLOCK_ASSERT(pcbinfo); 2228 2229 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 2230 if (inp->inp_flags & INP_INHASHLIST) { 2231 struct inpcbport *phd = inp->inp_phd; 2232 2233 INP_HASH_WLOCK(pcbinfo); 2234 LIST_REMOVE(inp, inp_hash); 2235 LIST_REMOVE(inp, inp_portlist); 2236 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 2237 LIST_REMOVE(phd, phd_hash); 2238 free(phd, M_PCB); 2239 } 2240 INP_HASH_WUNLOCK(pcbinfo); 2241 inp->inp_flags &= ~INP_INHASHLIST; 2242 } 2243 LIST_REMOVE(inp, inp_list); 2244 pcbinfo->ipi_count--; 2245 #ifdef PCBGROUP 2246 in_pcbgroup_remove(inp); 2247 #endif 2248 } 2249 2250 /* 2251 * Check for alternatives when higher level complains 2252 * about service problems. For now, invalidate cached 2253 * routing information. If the route was created dynamically 2254 * (by a redirect), time to try a default gateway again. 2255 */ 2256 void 2257 in_losing(struct inpcb *inp) 2258 { 2259 2260 RO_RTFREE(&inp->inp_route); 2261 if (inp->inp_route.ro_lle) 2262 LLE_FREE(inp->inp_route.ro_lle); /* zeros ro_lle */ 2263 return; 2264 } 2265 2266 /* 2267 * A set label operation has occurred at the socket layer, propagate the 2268 * label change into the in_pcb for the socket. 2269 */ 2270 void 2271 in_pcbsosetlabel(struct socket *so) 2272 { 2273 #ifdef MAC 2274 struct inpcb *inp; 2275 2276 inp = sotoinpcb(so); 2277 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2278 2279 INP_WLOCK(inp); 2280 SOCK_LOCK(so); 2281 mac_inpcb_sosetlabel(so, inp); 2282 SOCK_UNLOCK(so); 2283 INP_WUNLOCK(inp); 2284 #endif 2285 } 2286 2287 /* 2288 * ipport_tick runs once per second, determining if random port allocation 2289 * should be continued. If more than ipport_randomcps ports have been 2290 * allocated in the last second, then we return to sequential port 2291 * allocation. We return to random allocation only once we drop below 2292 * ipport_randomcps for at least ipport_randomtime seconds. 2293 */ 2294 static void 2295 ipport_tick(void *xtp) 2296 { 2297 VNET_ITERATOR_DECL(vnet_iter); 2298 2299 VNET_LIST_RLOCK_NOSLEEP(); 2300 VNET_FOREACH(vnet_iter) { 2301 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2302 if (V_ipport_tcpallocs <= 2303 V_ipport_tcplastcount + V_ipport_randomcps) { 2304 if (V_ipport_stoprandom > 0) 2305 V_ipport_stoprandom--; 2306 } else 2307 V_ipport_stoprandom = V_ipport_randomtime; 2308 V_ipport_tcplastcount = V_ipport_tcpallocs; 2309 CURVNET_RESTORE(); 2310 } 2311 VNET_LIST_RUNLOCK_NOSLEEP(); 2312 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2313 } 2314 2315 static void 2316 ip_fini(void *xtp) 2317 { 2318 2319 callout_stop(&ipport_tick_callout); 2320 } 2321 2322 /* 2323 * The ipport_callout should start running at about the time we attach the 2324 * inet or inet6 domains. 2325 */ 2326 static void 2327 ipport_tick_init(const void *unused __unused) 2328 { 2329 2330 /* Start ipport_tick. */ 2331 callout_init(&ipport_tick_callout, 1); 2332 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2333 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2334 SHUTDOWN_PRI_DEFAULT); 2335 } 2336 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2337 ipport_tick_init, NULL); 2338 2339 void 2340 inp_wlock(struct inpcb *inp) 2341 { 2342 2343 INP_WLOCK(inp); 2344 } 2345 2346 void 2347 inp_wunlock(struct inpcb *inp) 2348 { 2349 2350 INP_WUNLOCK(inp); 2351 } 2352 2353 void 2354 inp_rlock(struct inpcb *inp) 2355 { 2356 2357 INP_RLOCK(inp); 2358 } 2359 2360 void 2361 inp_runlock(struct inpcb *inp) 2362 { 2363 2364 INP_RUNLOCK(inp); 2365 } 2366 2367 #ifdef INVARIANT_SUPPORT 2368 void 2369 inp_lock_assert(struct inpcb *inp) 2370 { 2371 2372 INP_WLOCK_ASSERT(inp); 2373 } 2374 2375 void 2376 inp_unlock_assert(struct inpcb *inp) 2377 { 2378 2379 INP_UNLOCK_ASSERT(inp); 2380 } 2381 #endif 2382 2383 void 2384 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2385 { 2386 struct inpcb *inp; 2387 2388 INP_INFO_WLOCK(&V_tcbinfo); 2389 LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 2390 INP_WLOCK(inp); 2391 func(inp, arg); 2392 INP_WUNLOCK(inp); 2393 } 2394 INP_INFO_WUNLOCK(&V_tcbinfo); 2395 } 2396 2397 struct socket * 2398 inp_inpcbtosocket(struct inpcb *inp) 2399 { 2400 2401 INP_WLOCK_ASSERT(inp); 2402 return (inp->inp_socket); 2403 } 2404 2405 struct tcpcb * 2406 inp_inpcbtotcpcb(struct inpcb *inp) 2407 { 2408 2409 INP_WLOCK_ASSERT(inp); 2410 return ((struct tcpcb *)inp->inp_ppcb); 2411 } 2412 2413 int 2414 inp_ip_tos_get(const struct inpcb *inp) 2415 { 2416 2417 return (inp->inp_ip_tos); 2418 } 2419 2420 void 2421 inp_ip_tos_set(struct inpcb *inp, int val) 2422 { 2423 2424 inp->inp_ip_tos = val; 2425 } 2426 2427 void 2428 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2429 uint32_t *faddr, uint16_t *fp) 2430 { 2431 2432 INP_LOCK_ASSERT(inp); 2433 *laddr = inp->inp_laddr.s_addr; 2434 *faddr = inp->inp_faddr.s_addr; 2435 *lp = inp->inp_lport; 2436 *fp = inp->inp_fport; 2437 } 2438 2439 struct inpcb * 2440 so_sotoinpcb(struct socket *so) 2441 { 2442 2443 return (sotoinpcb(so)); 2444 } 2445 2446 struct tcpcb * 2447 so_sototcpcb(struct socket *so) 2448 { 2449 2450 return (sototcpcb(so)); 2451 } 2452 2453 /* 2454 * Create an external-format (``xinpcb'') structure using the information in 2455 * the kernel-format in_pcb structure pointed to by inp. This is done to 2456 * reduce the spew of irrelevant information over this interface, to isolate 2457 * user code from changes in the kernel structure, and potentially to provide 2458 * information-hiding if we decide that some of this information should be 2459 * hidden from users. 2460 */ 2461 void 2462 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2463 { 2464 2465 xi->xi_len = sizeof(struct xinpcb); 2466 if (inp->inp_socket) 2467 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2468 else 2469 bzero(&xi->xi_socket, sizeof(struct xsocket)); 2470 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2471 xi->inp_gencnt = inp->inp_gencnt; 2472 xi->inp_ppcb = inp->inp_ppcb; 2473 xi->inp_flow = inp->inp_flow; 2474 xi->inp_flowid = inp->inp_flowid; 2475 xi->inp_flowtype = inp->inp_flowtype; 2476 xi->inp_flags = inp->inp_flags; 2477 xi->inp_flags2 = inp->inp_flags2; 2478 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2479 xi->in6p_cksum = inp->in6p_cksum; 2480 xi->in6p_hops = inp->in6p_hops; 2481 xi->inp_ip_tos = inp->inp_ip_tos; 2482 xi->inp_vflag = inp->inp_vflag; 2483 xi->inp_ip_ttl = inp->inp_ip_ttl; 2484 xi->inp_ip_p = inp->inp_ip_p; 2485 xi->inp_ip_minttl = inp->inp_ip_minttl; 2486 } 2487 2488 #ifdef DDB 2489 static void 2490 db_print_indent(int indent) 2491 { 2492 int i; 2493 2494 for (i = 0; i < indent; i++) 2495 db_printf(" "); 2496 } 2497 2498 static void 2499 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2500 { 2501 char faddr_str[48], laddr_str[48]; 2502 2503 db_print_indent(indent); 2504 db_printf("%s at %p\n", name, inc); 2505 2506 indent += 2; 2507 2508 #ifdef INET6 2509 if (inc->inc_flags & INC_ISIPV6) { 2510 /* IPv6. */ 2511 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2512 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2513 } else 2514 #endif 2515 { 2516 /* IPv4. */ 2517 inet_ntoa_r(inc->inc_laddr, laddr_str); 2518 inet_ntoa_r(inc->inc_faddr, faddr_str); 2519 } 2520 db_print_indent(indent); 2521 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2522 ntohs(inc->inc_lport)); 2523 db_print_indent(indent); 2524 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2525 ntohs(inc->inc_fport)); 2526 } 2527 2528 static void 2529 db_print_inpflags(int inp_flags) 2530 { 2531 int comma; 2532 2533 comma = 0; 2534 if (inp_flags & INP_RECVOPTS) { 2535 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2536 comma = 1; 2537 } 2538 if (inp_flags & INP_RECVRETOPTS) { 2539 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2540 comma = 1; 2541 } 2542 if (inp_flags & INP_RECVDSTADDR) { 2543 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2544 comma = 1; 2545 } 2546 if (inp_flags & INP_ORIGDSTADDR) { 2547 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 2548 comma = 1; 2549 } 2550 if (inp_flags & INP_HDRINCL) { 2551 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2552 comma = 1; 2553 } 2554 if (inp_flags & INP_HIGHPORT) { 2555 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2556 comma = 1; 2557 } 2558 if (inp_flags & INP_LOWPORT) { 2559 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2560 comma = 1; 2561 } 2562 if (inp_flags & INP_ANONPORT) { 2563 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2564 comma = 1; 2565 } 2566 if (inp_flags & INP_RECVIF) { 2567 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2568 comma = 1; 2569 } 2570 if (inp_flags & INP_MTUDISC) { 2571 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2572 comma = 1; 2573 } 2574 if (inp_flags & INP_RECVTTL) { 2575 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 2576 comma = 1; 2577 } 2578 if (inp_flags & INP_DONTFRAG) { 2579 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 2580 comma = 1; 2581 } 2582 if (inp_flags & INP_RECVTOS) { 2583 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 2584 comma = 1; 2585 } 2586 if (inp_flags & IN6P_IPV6_V6ONLY) { 2587 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 2588 comma = 1; 2589 } 2590 if (inp_flags & IN6P_PKTINFO) { 2591 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 2592 comma = 1; 2593 } 2594 if (inp_flags & IN6P_HOPLIMIT) { 2595 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 2596 comma = 1; 2597 } 2598 if (inp_flags & IN6P_HOPOPTS) { 2599 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 2600 comma = 1; 2601 } 2602 if (inp_flags & IN6P_DSTOPTS) { 2603 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 2604 comma = 1; 2605 } 2606 if (inp_flags & IN6P_RTHDR) { 2607 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 2608 comma = 1; 2609 } 2610 if (inp_flags & IN6P_RTHDRDSTOPTS) { 2611 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 2612 comma = 1; 2613 } 2614 if (inp_flags & IN6P_TCLASS) { 2615 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 2616 comma = 1; 2617 } 2618 if (inp_flags & IN6P_AUTOFLOWLABEL) { 2619 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 2620 comma = 1; 2621 } 2622 if (inp_flags & INP_TIMEWAIT) { 2623 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 2624 comma = 1; 2625 } 2626 if (inp_flags & INP_ONESBCAST) { 2627 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 2628 comma = 1; 2629 } 2630 if (inp_flags & INP_DROPPED) { 2631 db_printf("%sINP_DROPPED", comma ? ", " : ""); 2632 comma = 1; 2633 } 2634 if (inp_flags & INP_SOCKREF) { 2635 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 2636 comma = 1; 2637 } 2638 if (inp_flags & IN6P_RFC2292) { 2639 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 2640 comma = 1; 2641 } 2642 if (inp_flags & IN6P_MTU) { 2643 db_printf("IN6P_MTU%s", comma ? ", " : ""); 2644 comma = 1; 2645 } 2646 } 2647 2648 static void 2649 db_print_inpvflag(u_char inp_vflag) 2650 { 2651 int comma; 2652 2653 comma = 0; 2654 if (inp_vflag & INP_IPV4) { 2655 db_printf("%sINP_IPV4", comma ? ", " : ""); 2656 comma = 1; 2657 } 2658 if (inp_vflag & INP_IPV6) { 2659 db_printf("%sINP_IPV6", comma ? ", " : ""); 2660 comma = 1; 2661 } 2662 if (inp_vflag & INP_IPV6PROTO) { 2663 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 2664 comma = 1; 2665 } 2666 } 2667 2668 static void 2669 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 2670 { 2671 2672 db_print_indent(indent); 2673 db_printf("%s at %p\n", name, inp); 2674 2675 indent += 2; 2676 2677 db_print_indent(indent); 2678 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 2679 2680 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 2681 2682 db_print_indent(indent); 2683 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 2684 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 2685 2686 db_print_indent(indent); 2687 db_printf("inp_label: %p inp_flags: 0x%x (", 2688 inp->inp_label, inp->inp_flags); 2689 db_print_inpflags(inp->inp_flags); 2690 db_printf(")\n"); 2691 2692 db_print_indent(indent); 2693 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 2694 inp->inp_vflag); 2695 db_print_inpvflag(inp->inp_vflag); 2696 db_printf(")\n"); 2697 2698 db_print_indent(indent); 2699 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 2700 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 2701 2702 db_print_indent(indent); 2703 #ifdef INET6 2704 if (inp->inp_vflag & INP_IPV6) { 2705 db_printf("in6p_options: %p in6p_outputopts: %p " 2706 "in6p_moptions: %p\n", inp->in6p_options, 2707 inp->in6p_outputopts, inp->in6p_moptions); 2708 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 2709 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 2710 inp->in6p_hops); 2711 } else 2712 #endif 2713 { 2714 db_printf("inp_ip_tos: %d inp_ip_options: %p " 2715 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 2716 inp->inp_options, inp->inp_moptions); 2717 } 2718 2719 db_print_indent(indent); 2720 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 2721 (uintmax_t)inp->inp_gencnt); 2722 } 2723 2724 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 2725 { 2726 struct inpcb *inp; 2727 2728 if (!have_addr) { 2729 db_printf("usage: show inpcb <addr>\n"); 2730 return; 2731 } 2732 inp = (struct inpcb *)addr; 2733 2734 db_print_inpcb(inp, "inpcb", 0); 2735 } 2736 #endif /* DDB */ 2737 2738 #ifdef RATELIMIT 2739 /* 2740 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 2741 * if any. 2742 */ 2743 int 2744 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 2745 { 2746 union if_snd_tag_modify_params params = { 2747 .rate_limit.max_rate = max_pacing_rate, 2748 }; 2749 struct m_snd_tag *mst; 2750 struct ifnet *ifp; 2751 int error; 2752 2753 mst = inp->inp_snd_tag; 2754 if (mst == NULL) 2755 return (EINVAL); 2756 2757 ifp = mst->ifp; 2758 if (ifp == NULL) 2759 return (EINVAL); 2760 2761 if (ifp->if_snd_tag_modify == NULL) { 2762 error = EOPNOTSUPP; 2763 } else { 2764 error = ifp->if_snd_tag_modify(mst, ¶ms); 2765 } 2766 return (error); 2767 } 2768 2769 /* 2770 * Query existing TX rate limit based on the existing 2771 * "inp->inp_snd_tag", if any. 2772 */ 2773 int 2774 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 2775 { 2776 union if_snd_tag_query_params params = { }; 2777 struct m_snd_tag *mst; 2778 struct ifnet *ifp; 2779 int error; 2780 2781 mst = inp->inp_snd_tag; 2782 if (mst == NULL) 2783 return (EINVAL); 2784 2785 ifp = mst->ifp; 2786 if (ifp == NULL) 2787 return (EINVAL); 2788 2789 if (ifp->if_snd_tag_query == NULL) { 2790 error = EOPNOTSUPP; 2791 } else { 2792 error = ifp->if_snd_tag_query(mst, ¶ms); 2793 if (error == 0 && p_max_pacing_rate != NULL) 2794 *p_max_pacing_rate = params.rate_limit.max_rate; 2795 } 2796 return (error); 2797 } 2798 2799 /* 2800 * Allocate a new TX rate limit send tag from the network interface 2801 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 2802 */ 2803 int 2804 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 2805 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate) 2806 { 2807 union if_snd_tag_alloc_params params = { 2808 .rate_limit.hdr.type = IF_SND_TAG_TYPE_RATE_LIMIT, 2809 .rate_limit.hdr.flowid = flowid, 2810 .rate_limit.hdr.flowtype = flowtype, 2811 .rate_limit.max_rate = max_pacing_rate, 2812 }; 2813 int error; 2814 2815 INP_WLOCK_ASSERT(inp); 2816 2817 if (inp->inp_snd_tag != NULL) 2818 return (EINVAL); 2819 2820 if (ifp->if_snd_tag_alloc == NULL) { 2821 error = EOPNOTSUPP; 2822 } else { 2823 error = ifp->if_snd_tag_alloc(ifp, ¶ms, &inp->inp_snd_tag); 2824 2825 /* 2826 * At success increment the refcount on 2827 * the send tag's network interface: 2828 */ 2829 if (error == 0) 2830 if_ref(inp->inp_snd_tag->ifp); 2831 } 2832 return (error); 2833 } 2834 2835 /* 2836 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 2837 * if any: 2838 */ 2839 void 2840 in_pcbdetach_txrtlmt(struct inpcb *inp) 2841 { 2842 struct m_snd_tag *mst; 2843 struct ifnet *ifp; 2844 2845 INP_WLOCK_ASSERT(inp); 2846 2847 mst = inp->inp_snd_tag; 2848 inp->inp_snd_tag = NULL; 2849 2850 if (mst == NULL) 2851 return; 2852 2853 ifp = mst->ifp; 2854 if (ifp == NULL) 2855 return; 2856 2857 /* 2858 * If the device was detached while we still had reference(s) 2859 * on the ifp, we assume if_snd_tag_free() was replaced with 2860 * stubs. 2861 */ 2862 ifp->if_snd_tag_free(mst); 2863 2864 /* release reference count on network interface */ 2865 if_rele(ifp); 2866 } 2867 2868 /* 2869 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 2870 * is set in the fast path and will attach/detach/modify the TX rate 2871 * limit send tag based on the socket's so_max_pacing_rate value. 2872 */ 2873 void 2874 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 2875 { 2876 struct socket *socket; 2877 uint32_t max_pacing_rate; 2878 bool did_upgrade; 2879 int error; 2880 2881 if (inp == NULL) 2882 return; 2883 2884 socket = inp->inp_socket; 2885 if (socket == NULL) 2886 return; 2887 2888 if (!INP_WLOCKED(inp)) { 2889 /* 2890 * NOTE: If the write locking fails, we need to bail 2891 * out and use the non-ratelimited ring for the 2892 * transmit until there is a new chance to get the 2893 * write lock. 2894 */ 2895 if (!INP_TRY_UPGRADE(inp)) 2896 return; 2897 did_upgrade = 1; 2898 } else { 2899 did_upgrade = 0; 2900 } 2901 2902 /* 2903 * NOTE: The so_max_pacing_rate value is read unlocked, 2904 * because atomic updates are not required since the variable 2905 * is checked at every mbuf we send. It is assumed that the 2906 * variable read itself will be atomic. 2907 */ 2908 max_pacing_rate = socket->so_max_pacing_rate; 2909 2910 /* 2911 * NOTE: When attaching to a network interface a reference is 2912 * made to ensure the network interface doesn't go away until 2913 * all ratelimit connections are gone. The network interface 2914 * pointers compared below represent valid network interfaces, 2915 * except when comparing towards NULL. 2916 */ 2917 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 2918 error = 0; 2919 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 2920 if (inp->inp_snd_tag != NULL) 2921 in_pcbdetach_txrtlmt(inp); 2922 error = 0; 2923 } else if (inp->inp_snd_tag == NULL) { 2924 /* 2925 * In order to utilize packet pacing with RSS, we need 2926 * to wait until there is a valid RSS hash before we 2927 * can proceed: 2928 */ 2929 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 2930 error = EAGAIN; 2931 } else { 2932 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 2933 mb->m_pkthdr.flowid, max_pacing_rate); 2934 } 2935 } else { 2936 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 2937 } 2938 if (error == 0 || error == EOPNOTSUPP) 2939 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 2940 if (did_upgrade) 2941 INP_DOWNGRADE(inp); 2942 } 2943 2944 /* 2945 * Track route changes for TX rate limiting. 2946 */ 2947 void 2948 in_pcboutput_eagain(struct inpcb *inp) 2949 { 2950 struct socket *socket; 2951 bool did_upgrade; 2952 2953 if (inp == NULL) 2954 return; 2955 2956 socket = inp->inp_socket; 2957 if (socket == NULL) 2958 return; 2959 2960 if (inp->inp_snd_tag == NULL) 2961 return; 2962 2963 if (!INP_WLOCKED(inp)) { 2964 /* 2965 * NOTE: If the write locking fails, we need to bail 2966 * out and use the non-ratelimited ring for the 2967 * transmit until there is a new chance to get the 2968 * write lock. 2969 */ 2970 if (!INP_TRY_UPGRADE(inp)) 2971 return; 2972 did_upgrade = 1; 2973 } else { 2974 did_upgrade = 0; 2975 } 2976 2977 /* detach rate limiting */ 2978 in_pcbdetach_txrtlmt(inp); 2979 2980 /* make sure new mbuf send tag allocation is made */ 2981 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 2982 2983 if (did_upgrade) 2984 INP_DOWNGRADE(inp); 2985 } 2986 #endif /* RATELIMIT */ 2987