1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Robert N. M. Watson under 11 * contract to Juniper Networks, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_ddb.h" 44 #include "opt_ipsec.h" 45 #include "opt_inet.h" 46 #include "opt_inet6.h" 47 #include "opt_ratelimit.h" 48 #include "opt_pcbgroup.h" 49 #include "opt_rss.h" 50 51 #include <sys/param.h> 52 #include <sys/systm.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/mbuf.h> 56 #include <sys/callout.h> 57 #include <sys/eventhandler.h> 58 #include <sys/domain.h> 59 #include <sys/protosw.h> 60 #include <sys/rmlock.h> 61 #include <sys/socket.h> 62 #include <sys/socketvar.h> 63 #include <sys/sockio.h> 64 #include <sys/priv.h> 65 #include <sys/proc.h> 66 #include <sys/refcount.h> 67 #include <sys/jail.h> 68 #include <sys/kernel.h> 69 #include <sys/sysctl.h> 70 71 #ifdef DDB 72 #include <ddb/ddb.h> 73 #endif 74 75 #include <vm/uma.h> 76 77 #include <net/if.h> 78 #include <net/if_var.h> 79 #include <net/if_types.h> 80 #include <net/if_llatbl.h> 81 #include <net/route.h> 82 #include <net/rss_config.h> 83 #include <net/vnet.h> 84 85 #if defined(INET) || defined(INET6) 86 #include <netinet/in.h> 87 #include <netinet/in_pcb.h> 88 #include <netinet/ip_var.h> 89 #include <netinet/tcp_var.h> 90 #include <netinet/udp.h> 91 #include <netinet/udp_var.h> 92 #endif 93 #ifdef INET 94 #include <netinet/in_var.h> 95 #endif 96 #ifdef INET6 97 #include <netinet/ip6.h> 98 #include <netinet6/in6_pcb.h> 99 #include <netinet6/in6_var.h> 100 #include <netinet6/ip6_var.h> 101 #endif /* INET6 */ 102 103 #include <netipsec/ipsec_support.h> 104 105 #include <security/mac/mac_framework.h> 106 107 static struct callout ipport_tick_callout; 108 109 /* 110 * These configure the range of local port addresses assigned to 111 * "unspecified" outgoing connections/packets/whatever. 112 */ 113 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 114 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 115 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 116 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 117 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 118 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 119 120 /* 121 * Reserved ports accessible only to root. There are significant 122 * security considerations that must be accounted for when changing these, 123 * but the security benefits can be great. Please be careful. 124 */ 125 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 126 VNET_DEFINE(int, ipport_reservedlow); 127 128 /* Variables dealing with random ephemeral port allocation. */ 129 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 130 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 131 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 132 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 133 VNET_DEFINE(int, ipport_tcpallocs); 134 static VNET_DEFINE(int, ipport_tcplastcount); 135 136 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 137 138 static void in_pcbremlists(struct inpcb *inp); 139 #ifdef INET 140 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 141 struct in_addr faddr, u_int fport_arg, 142 struct in_addr laddr, u_int lport_arg, 143 int lookupflags, struct ifnet *ifp); 144 145 #define RANGECHK(var, min, max) \ 146 if ((var) < (min)) { (var) = (min); } \ 147 else if ((var) > (max)) { (var) = (max); } 148 149 static int 150 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 151 { 152 int error; 153 154 error = sysctl_handle_int(oidp, arg1, arg2, req); 155 if (error == 0) { 156 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 157 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 158 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 159 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 160 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 161 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 162 } 163 return (error); 164 } 165 166 #undef RANGECHK 167 168 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, 169 "IP Ports"); 170 171 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 172 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 173 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", ""); 174 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 175 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 176 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", ""); 177 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 178 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 179 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", ""); 180 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 181 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 182 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", ""); 183 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 184 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 185 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", ""); 186 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 187 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 188 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", ""); 189 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 190 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 191 &VNET_NAME(ipport_reservedhigh), 0, ""); 192 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 193 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 194 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 195 CTLFLAG_VNET | CTLFLAG_RW, 196 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 197 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 198 CTLFLAG_VNET | CTLFLAG_RW, 199 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 200 "allocations before switching to a sequental one"); 201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 202 CTLFLAG_VNET | CTLFLAG_RW, 203 &VNET_NAME(ipport_randomtime), 0, 204 "Minimum time to keep sequental port " 205 "allocation before switching to a random one"); 206 #endif /* INET */ 207 208 /* 209 * in_pcb.c: manage the Protocol Control Blocks. 210 * 211 * NOTE: It is assumed that most of these functions will be called with 212 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 213 * functions often modify hash chains or addresses in pcbs. 214 */ 215 216 /* 217 * Different protocols initialize their inpcbs differently - giving 218 * different name to the lock. But they all are disposed the same. 219 */ 220 static void 221 inpcb_fini(void *mem, int size) 222 { 223 struct inpcb *inp = mem; 224 225 INP_LOCK_DESTROY(inp); 226 } 227 228 /* 229 * Initialize an inpcbinfo -- we should be able to reduce the number of 230 * arguments in time. 231 */ 232 void 233 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 234 struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, 235 char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields) 236 { 237 238 INP_INFO_LOCK_INIT(pcbinfo, name); 239 INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ 240 INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist"); 241 #ifdef VIMAGE 242 pcbinfo->ipi_vnet = curvnet; 243 #endif 244 pcbinfo->ipi_listhead = listhead; 245 LIST_INIT(pcbinfo->ipi_listhead); 246 pcbinfo->ipi_count = 0; 247 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 248 &pcbinfo->ipi_hashmask); 249 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 250 &pcbinfo->ipi_porthashmask); 251 #ifdef PCBGROUP 252 in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); 253 #endif 254 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 255 NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0); 256 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 257 uma_zone_set_warning(pcbinfo->ipi_zone, 258 "kern.ipc.maxsockets limit reached"); 259 } 260 261 /* 262 * Destroy an inpcbinfo. 263 */ 264 void 265 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 266 { 267 268 KASSERT(pcbinfo->ipi_count == 0, 269 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 270 271 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 272 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 273 pcbinfo->ipi_porthashmask); 274 #ifdef PCBGROUP 275 in_pcbgroup_destroy(pcbinfo); 276 #endif 277 uma_zdestroy(pcbinfo->ipi_zone); 278 INP_LIST_LOCK_DESTROY(pcbinfo); 279 INP_HASH_LOCK_DESTROY(pcbinfo); 280 INP_INFO_LOCK_DESTROY(pcbinfo); 281 } 282 283 /* 284 * Allocate a PCB and associate it with the socket. 285 * On success return with the PCB locked. 286 */ 287 int 288 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 289 { 290 struct inpcb *inp; 291 int error; 292 293 #ifdef INVARIANTS 294 if (pcbinfo == &V_tcbinfo) { 295 INP_INFO_RLOCK_ASSERT(pcbinfo); 296 } else { 297 INP_INFO_WLOCK_ASSERT(pcbinfo); 298 } 299 #endif 300 301 error = 0; 302 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 303 if (inp == NULL) 304 return (ENOBUFS); 305 bzero(&inp->inp_start_zero, inp_zero_size); 306 inp->inp_pcbinfo = pcbinfo; 307 inp->inp_socket = so; 308 inp->inp_cred = crhold(so->so_cred); 309 inp->inp_inc.inc_fibnum = so->so_fibnum; 310 #ifdef MAC 311 error = mac_inpcb_init(inp, M_NOWAIT); 312 if (error != 0) 313 goto out; 314 mac_inpcb_create(so, inp); 315 #endif 316 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 317 error = ipsec_init_pcbpolicy(inp); 318 if (error != 0) { 319 #ifdef MAC 320 mac_inpcb_destroy(inp); 321 #endif 322 goto out; 323 } 324 #endif /*IPSEC*/ 325 #ifdef INET6 326 if (INP_SOCKAF(so) == AF_INET6) { 327 inp->inp_vflag |= INP_IPV6PROTO; 328 if (V_ip6_v6only) 329 inp->inp_flags |= IN6P_IPV6_V6ONLY; 330 } 331 #endif 332 INP_WLOCK(inp); 333 INP_LIST_WLOCK(pcbinfo); 334 LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 335 pcbinfo->ipi_count++; 336 so->so_pcb = (caddr_t)inp; 337 #ifdef INET6 338 if (V_ip6_auto_flowlabel) 339 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 340 #endif 341 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 342 refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ 343 344 /* 345 * Routes in inpcb's can cache L2 as well; they are guaranteed 346 * to be cleaned up. 347 */ 348 inp->inp_route.ro_flags = RT_LLE_CACHE; 349 INP_LIST_WUNLOCK(pcbinfo); 350 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 351 out: 352 if (error != 0) { 353 crfree(inp->inp_cred); 354 uma_zfree(pcbinfo->ipi_zone, inp); 355 } 356 #endif 357 return (error); 358 } 359 360 #ifdef INET 361 int 362 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 363 { 364 int anonport, error; 365 366 INP_WLOCK_ASSERT(inp); 367 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 368 369 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 370 return (EINVAL); 371 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 372 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 373 &inp->inp_lport, cred); 374 if (error) 375 return (error); 376 if (in_pcbinshash(inp) != 0) { 377 inp->inp_laddr.s_addr = INADDR_ANY; 378 inp->inp_lport = 0; 379 return (EAGAIN); 380 } 381 if (anonport) 382 inp->inp_flags |= INP_ANONPORT; 383 return (0); 384 } 385 #endif 386 387 /* 388 * Select a local port (number) to use. 389 */ 390 #if defined(INET) || defined(INET6) 391 int 392 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 393 struct ucred *cred, int lookupflags) 394 { 395 struct inpcbinfo *pcbinfo; 396 struct inpcb *tmpinp; 397 unsigned short *lastport; 398 int count, dorandom, error; 399 u_short aux, first, last, lport; 400 #ifdef INET 401 struct in_addr laddr; 402 #endif 403 404 pcbinfo = inp->inp_pcbinfo; 405 406 /* 407 * Because no actual state changes occur here, a global write lock on 408 * the pcbinfo isn't required. 409 */ 410 INP_LOCK_ASSERT(inp); 411 INP_HASH_LOCK_ASSERT(pcbinfo); 412 413 if (inp->inp_flags & INP_HIGHPORT) { 414 first = V_ipport_hifirstauto; /* sysctl */ 415 last = V_ipport_hilastauto; 416 lastport = &pcbinfo->ipi_lasthi; 417 } else if (inp->inp_flags & INP_LOWPORT) { 418 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0); 419 if (error) 420 return (error); 421 first = V_ipport_lowfirstauto; /* 1023 */ 422 last = V_ipport_lowlastauto; /* 600 */ 423 lastport = &pcbinfo->ipi_lastlow; 424 } else { 425 first = V_ipport_firstauto; /* sysctl */ 426 last = V_ipport_lastauto; 427 lastport = &pcbinfo->ipi_lastport; 428 } 429 /* 430 * For UDP(-Lite), use random port allocation as long as the user 431 * allows it. For TCP (and as of yet unknown) connections, 432 * use random port allocation only if the user allows it AND 433 * ipport_tick() allows it. 434 */ 435 if (V_ipport_randomized && 436 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 437 pcbinfo == &V_ulitecbinfo)) 438 dorandom = 1; 439 else 440 dorandom = 0; 441 /* 442 * It makes no sense to do random port allocation if 443 * we have the only port available. 444 */ 445 if (first == last) 446 dorandom = 0; 447 /* Make sure to not include UDP(-Lite) packets in the count. */ 448 if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) 449 V_ipport_tcpallocs++; 450 /* 451 * Instead of having two loops further down counting up or down 452 * make sure that first is always <= last and go with only one 453 * code path implementing all logic. 454 */ 455 if (first > last) { 456 aux = first; 457 first = last; 458 last = aux; 459 } 460 461 #ifdef INET 462 /* Make the compiler happy. */ 463 laddr.s_addr = 0; 464 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 465 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p", 466 __func__, inp)); 467 laddr = *laddrp; 468 } 469 #endif 470 tmpinp = NULL; /* Make compiler happy. */ 471 lport = *lportp; 472 473 if (dorandom) 474 *lastport = first + (arc4random() % (last - first)); 475 476 count = last - first; 477 478 do { 479 if (count-- < 0) /* completely used? */ 480 return (EADDRNOTAVAIL); 481 ++*lastport; 482 if (*lastport < first || *lastport > last) 483 *lastport = first; 484 lport = htons(*lastport); 485 486 #ifdef INET6 487 if ((inp->inp_vflag & INP_IPV6) != 0) 488 tmpinp = in6_pcblookup_local(pcbinfo, 489 &inp->in6p_laddr, lport, lookupflags, cred); 490 #endif 491 #if defined(INET) && defined(INET6) 492 else 493 #endif 494 #ifdef INET 495 tmpinp = in_pcblookup_local(pcbinfo, laddr, 496 lport, lookupflags, cred); 497 #endif 498 } while (tmpinp != NULL); 499 500 #ifdef INET 501 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) 502 laddrp->s_addr = laddr.s_addr; 503 #endif 504 *lportp = lport; 505 506 return (0); 507 } 508 509 /* 510 * Return cached socket options. 511 */ 512 short 513 inp_so_options(const struct inpcb *inp) 514 { 515 short so_options; 516 517 so_options = 0; 518 519 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 520 so_options |= SO_REUSEPORT; 521 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 522 so_options |= SO_REUSEADDR; 523 return (so_options); 524 } 525 #endif /* INET || INET6 */ 526 527 /* 528 * Check if a new BINDMULTI socket is allowed to be created. 529 * 530 * ni points to the new inp. 531 * oi points to the exisitng inp. 532 * 533 * This checks whether the existing inp also has BINDMULTI and 534 * whether the credentials match. 535 */ 536 int 537 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 538 { 539 /* Check permissions match */ 540 if ((ni->inp_flags2 & INP_BINDMULTI) && 541 (ni->inp_cred->cr_uid != 542 oi->inp_cred->cr_uid)) 543 return (0); 544 545 /* Check the existing inp has BINDMULTI set */ 546 if ((ni->inp_flags2 & INP_BINDMULTI) && 547 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 548 return (0); 549 550 /* 551 * We're okay - either INP_BINDMULTI isn't set on ni, or 552 * it is and it matches the checks. 553 */ 554 return (1); 555 } 556 557 #ifdef INET 558 /* 559 * Set up a bind operation on a PCB, performing port allocation 560 * as required, but do not actually modify the PCB. Callers can 561 * either complete the bind by setting inp_laddr/inp_lport and 562 * calling in_pcbinshash(), or they can just use the resulting 563 * port and address to authorise the sending of a once-off packet. 564 * 565 * On error, the values of *laddrp and *lportp are not changed. 566 */ 567 int 568 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 569 u_short *lportp, struct ucred *cred) 570 { 571 struct socket *so = inp->inp_socket; 572 struct sockaddr_in *sin; 573 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 574 struct in_addr laddr; 575 u_short lport = 0; 576 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 577 int error; 578 579 /* 580 * No state changes, so read locks are sufficient here. 581 */ 582 INP_LOCK_ASSERT(inp); 583 INP_HASH_LOCK_ASSERT(pcbinfo); 584 585 if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 586 return (EADDRNOTAVAIL); 587 laddr.s_addr = *laddrp; 588 if (nam != NULL && laddr.s_addr != INADDR_ANY) 589 return (EINVAL); 590 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) 591 lookupflags = INPLOOKUP_WILDCARD; 592 if (nam == NULL) { 593 if ((error = prison_local_ip4(cred, &laddr)) != 0) 594 return (error); 595 } else { 596 sin = (struct sockaddr_in *)nam; 597 if (nam->sa_len != sizeof (*sin)) 598 return (EINVAL); 599 #ifdef notdef 600 /* 601 * We should check the family, but old programs 602 * incorrectly fail to initialize it. 603 */ 604 if (sin->sin_family != AF_INET) 605 return (EAFNOSUPPORT); 606 #endif 607 error = prison_local_ip4(cred, &sin->sin_addr); 608 if (error) 609 return (error); 610 if (sin->sin_port != *lportp) { 611 /* Don't allow the port to change. */ 612 if (*lportp != 0) 613 return (EINVAL); 614 lport = sin->sin_port; 615 } 616 /* NB: lport is left as 0 if the port isn't being changed. */ 617 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 618 /* 619 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 620 * allow complete duplication of binding if 621 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 622 * and a multicast address is bound on both 623 * new and duplicated sockets. 624 */ 625 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 626 reuseport = SO_REUSEADDR|SO_REUSEPORT; 627 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 628 sin->sin_port = 0; /* yech... */ 629 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 630 /* 631 * Is the address a local IP address? 632 * If INP_BINDANY is set, then the socket may be bound 633 * to any endpoint address, local or not. 634 */ 635 if ((inp->inp_flags & INP_BINDANY) == 0 && 636 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 637 return (EADDRNOTAVAIL); 638 } 639 laddr = sin->sin_addr; 640 if (lport) { 641 struct inpcb *t; 642 struct tcptw *tw; 643 644 /* GROSS */ 645 if (ntohs(lport) <= V_ipport_reservedhigh && 646 ntohs(lport) >= V_ipport_reservedlow && 647 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 648 0)) 649 return (EACCES); 650 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 651 priv_check_cred(inp->inp_cred, 652 PRIV_NETINET_REUSEPORT, 0) != 0) { 653 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 654 lport, INPLOOKUP_WILDCARD, cred); 655 /* 656 * XXX 657 * This entire block sorely needs a rewrite. 658 */ 659 if (t && 660 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 661 ((t->inp_flags & INP_TIMEWAIT) == 0) && 662 (so->so_type != SOCK_STREAM || 663 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 664 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 665 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 666 (t->inp_flags2 & INP_REUSEPORT) == 0) && 667 (inp->inp_cred->cr_uid != 668 t->inp_cred->cr_uid)) 669 return (EADDRINUSE); 670 671 /* 672 * If the socket is a BINDMULTI socket, then 673 * the credentials need to match and the 674 * original socket also has to have been bound 675 * with BINDMULTI. 676 */ 677 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 678 return (EADDRINUSE); 679 } 680 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 681 lport, lookupflags, cred); 682 if (t && (t->inp_flags & INP_TIMEWAIT)) { 683 /* 684 * XXXRW: If an incpb has had its timewait 685 * state recycled, we treat the address as 686 * being in use (for now). This is better 687 * than a panic, but not desirable. 688 */ 689 tw = intotw(t); 690 if (tw == NULL || 691 (reuseport & tw->tw_so_options) == 0) 692 return (EADDRINUSE); 693 } else if (t && 694 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 695 (reuseport & inp_so_options(t)) == 0) { 696 #ifdef INET6 697 if (ntohl(sin->sin_addr.s_addr) != 698 INADDR_ANY || 699 ntohl(t->inp_laddr.s_addr) != 700 INADDR_ANY || 701 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 702 (t->inp_vflag & INP_IPV6PROTO) == 0) 703 #endif 704 return (EADDRINUSE); 705 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 706 return (EADDRINUSE); 707 } 708 } 709 } 710 if (*lportp != 0) 711 lport = *lportp; 712 if (lport == 0) { 713 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 714 if (error != 0) 715 return (error); 716 717 } 718 *laddrp = laddr.s_addr; 719 *lportp = lport; 720 return (0); 721 } 722 723 /* 724 * Connect from a socket to a specified address. 725 * Both address and port must be specified in argument sin. 726 * If don't have a local address for this socket yet, 727 * then pick one. 728 */ 729 int 730 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, 731 struct ucred *cred, struct mbuf *m) 732 { 733 u_short lport, fport; 734 in_addr_t laddr, faddr; 735 int anonport, error; 736 737 INP_WLOCK_ASSERT(inp); 738 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 739 740 lport = inp->inp_lport; 741 laddr = inp->inp_laddr.s_addr; 742 anonport = (lport == 0); 743 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 744 NULL, cred); 745 if (error) 746 return (error); 747 748 /* Do the initial binding of the local address if required. */ 749 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 750 inp->inp_lport = lport; 751 inp->inp_laddr.s_addr = laddr; 752 if (in_pcbinshash(inp) != 0) { 753 inp->inp_laddr.s_addr = INADDR_ANY; 754 inp->inp_lport = 0; 755 return (EAGAIN); 756 } 757 } 758 759 /* Commit the remaining changes. */ 760 inp->inp_lport = lport; 761 inp->inp_laddr.s_addr = laddr; 762 inp->inp_faddr.s_addr = faddr; 763 inp->inp_fport = fport; 764 in_pcbrehash_mbuf(inp, m); 765 766 if (anonport) 767 inp->inp_flags |= INP_ANONPORT; 768 return (0); 769 } 770 771 int 772 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 773 { 774 775 return (in_pcbconnect_mbuf(inp, nam, cred, NULL)); 776 } 777 778 /* 779 * Do proper source address selection on an unbound socket in case 780 * of connect. Take jails into account as well. 781 */ 782 int 783 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 784 struct ucred *cred) 785 { 786 struct ifaddr *ifa; 787 struct sockaddr *sa; 788 struct sockaddr_in *sin; 789 struct route sro; 790 int error; 791 792 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 793 794 /* 795 * Bypass source address selection and use the primary jail IP 796 * if requested. 797 */ 798 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 799 return (0); 800 801 error = 0; 802 bzero(&sro, sizeof(sro)); 803 804 sin = (struct sockaddr_in *)&sro.ro_dst; 805 sin->sin_family = AF_INET; 806 sin->sin_len = sizeof(struct sockaddr_in); 807 sin->sin_addr.s_addr = faddr->s_addr; 808 809 /* 810 * If route is known our src addr is taken from the i/f, 811 * else punt. 812 * 813 * Find out route to destination. 814 */ 815 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 816 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); 817 818 /* 819 * If we found a route, use the address corresponding to 820 * the outgoing interface. 821 * 822 * Otherwise assume faddr is reachable on a directly connected 823 * network and try to find a corresponding interface to take 824 * the source address from. 825 */ 826 if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { 827 struct in_ifaddr *ia; 828 struct ifnet *ifp; 829 830 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 831 inp->inp_socket->so_fibnum)); 832 if (ia == NULL) 833 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 834 inp->inp_socket->so_fibnum)); 835 if (ia == NULL) { 836 error = ENETUNREACH; 837 goto done; 838 } 839 840 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 841 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 842 ifa_free(&ia->ia_ifa); 843 goto done; 844 } 845 846 ifp = ia->ia_ifp; 847 ifa_free(&ia->ia_ifa); 848 ia = NULL; 849 IF_ADDR_RLOCK(ifp); 850 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 851 852 sa = ifa->ifa_addr; 853 if (sa->sa_family != AF_INET) 854 continue; 855 sin = (struct sockaddr_in *)sa; 856 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 857 ia = (struct in_ifaddr *)ifa; 858 break; 859 } 860 } 861 if (ia != NULL) { 862 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 863 IF_ADDR_RUNLOCK(ifp); 864 goto done; 865 } 866 IF_ADDR_RUNLOCK(ifp); 867 868 /* 3. As a last resort return the 'default' jail address. */ 869 error = prison_get_ip4(cred, laddr); 870 goto done; 871 } 872 873 /* 874 * If the outgoing interface on the route found is not 875 * a loopback interface, use the address from that interface. 876 * In case of jails do those three steps: 877 * 1. check if the interface address belongs to the jail. If so use it. 878 * 2. check if we have any address on the outgoing interface 879 * belonging to this jail. If so use it. 880 * 3. as a last resort return the 'default' jail address. 881 */ 882 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { 883 struct in_ifaddr *ia; 884 struct ifnet *ifp; 885 886 /* If not jailed, use the default returned. */ 887 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 888 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 889 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 890 goto done; 891 } 892 893 /* Jailed. */ 894 /* 1. Check if the iface address belongs to the jail. */ 895 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; 896 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 897 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 898 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 899 goto done; 900 } 901 902 /* 903 * 2. Check if we have any address on the outgoing interface 904 * belonging to this jail. 905 */ 906 ia = NULL; 907 ifp = sro.ro_rt->rt_ifp; 908 IF_ADDR_RLOCK(ifp); 909 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 910 sa = ifa->ifa_addr; 911 if (sa->sa_family != AF_INET) 912 continue; 913 sin = (struct sockaddr_in *)sa; 914 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 915 ia = (struct in_ifaddr *)ifa; 916 break; 917 } 918 } 919 if (ia != NULL) { 920 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 921 IF_ADDR_RUNLOCK(ifp); 922 goto done; 923 } 924 IF_ADDR_RUNLOCK(ifp); 925 926 /* 3. As a last resort return the 'default' jail address. */ 927 error = prison_get_ip4(cred, laddr); 928 goto done; 929 } 930 931 /* 932 * The outgoing interface is marked with 'loopback net', so a route 933 * to ourselves is here. 934 * Try to find the interface of the destination address and then 935 * take the address from there. That interface is not necessarily 936 * a loopback interface. 937 * In case of jails, check that it is an address of the jail 938 * and if we cannot find, fall back to the 'default' jail address. 939 */ 940 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 941 struct sockaddr_in sain; 942 struct in_ifaddr *ia; 943 944 bzero(&sain, sizeof(struct sockaddr_in)); 945 sain.sin_family = AF_INET; 946 sain.sin_len = sizeof(struct sockaddr_in); 947 sain.sin_addr.s_addr = faddr->s_addr; 948 949 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain), 950 inp->inp_socket->so_fibnum)); 951 if (ia == NULL) 952 ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0, 953 inp->inp_socket->so_fibnum)); 954 if (ia == NULL) 955 ia = ifatoia(ifa_ifwithaddr(sintosa(&sain))); 956 957 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 958 if (ia == NULL) { 959 error = ENETUNREACH; 960 goto done; 961 } 962 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 963 ifa_free(&ia->ia_ifa); 964 goto done; 965 } 966 967 /* Jailed. */ 968 if (ia != NULL) { 969 struct ifnet *ifp; 970 971 ifp = ia->ia_ifp; 972 ifa_free(&ia->ia_ifa); 973 ia = NULL; 974 IF_ADDR_RLOCK(ifp); 975 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 976 977 sa = ifa->ifa_addr; 978 if (sa->sa_family != AF_INET) 979 continue; 980 sin = (struct sockaddr_in *)sa; 981 if (prison_check_ip4(cred, 982 &sin->sin_addr) == 0) { 983 ia = (struct in_ifaddr *)ifa; 984 break; 985 } 986 } 987 if (ia != NULL) { 988 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 989 IF_ADDR_RUNLOCK(ifp); 990 goto done; 991 } 992 IF_ADDR_RUNLOCK(ifp); 993 } 994 995 /* 3. As a last resort return the 'default' jail address. */ 996 error = prison_get_ip4(cred, laddr); 997 goto done; 998 } 999 1000 done: 1001 if (sro.ro_rt != NULL) 1002 RTFREE(sro.ro_rt); 1003 return (error); 1004 } 1005 1006 /* 1007 * Set up for a connect from a socket to the specified address. 1008 * On entry, *laddrp and *lportp should contain the current local 1009 * address and port for the PCB; these are updated to the values 1010 * that should be placed in inp_laddr and inp_lport to complete 1011 * the connect. 1012 * 1013 * On success, *faddrp and *fportp will be set to the remote address 1014 * and port. These are not updated in the error case. 1015 * 1016 * If the operation fails because the connection already exists, 1017 * *oinpp will be set to the PCB of that connection so that the 1018 * caller can decide to override it. In all other cases, *oinpp 1019 * is set to NULL. 1020 */ 1021 int 1022 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1023 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1024 struct inpcb **oinpp, struct ucred *cred) 1025 { 1026 struct rm_priotracker in_ifa_tracker; 1027 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1028 struct in_ifaddr *ia; 1029 struct inpcb *oinp; 1030 struct in_addr laddr, faddr; 1031 u_short lport, fport; 1032 int error; 1033 1034 /* 1035 * Because a global state change doesn't actually occur here, a read 1036 * lock is sufficient. 1037 */ 1038 INP_LOCK_ASSERT(inp); 1039 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1040 1041 if (oinpp != NULL) 1042 *oinpp = NULL; 1043 if (nam->sa_len != sizeof (*sin)) 1044 return (EINVAL); 1045 if (sin->sin_family != AF_INET) 1046 return (EAFNOSUPPORT); 1047 if (sin->sin_port == 0) 1048 return (EADDRNOTAVAIL); 1049 laddr.s_addr = *laddrp; 1050 lport = *lportp; 1051 faddr = sin->sin_addr; 1052 fport = sin->sin_port; 1053 1054 if (!TAILQ_EMPTY(&V_in_ifaddrhead)) { 1055 /* 1056 * If the destination address is INADDR_ANY, 1057 * use the primary local address. 1058 * If the supplied address is INADDR_BROADCAST, 1059 * and the primary interface supports broadcast, 1060 * choose the broadcast address for that interface. 1061 */ 1062 if (faddr.s_addr == INADDR_ANY) { 1063 IN_IFADDR_RLOCK(&in_ifa_tracker); 1064 faddr = 1065 IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1066 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1067 if (cred != NULL && 1068 (error = prison_get_ip4(cred, &faddr)) != 0) 1069 return (error); 1070 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1071 IN_IFADDR_RLOCK(&in_ifa_tracker); 1072 if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1073 IFF_BROADCAST) 1074 faddr = satosin(&TAILQ_FIRST( 1075 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1076 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1077 } 1078 } 1079 if (laddr.s_addr == INADDR_ANY) { 1080 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1081 /* 1082 * If the destination address is multicast and an outgoing 1083 * interface has been set as a multicast option, prefer the 1084 * address of that interface as our source address. 1085 */ 1086 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1087 inp->inp_moptions != NULL) { 1088 struct ip_moptions *imo; 1089 struct ifnet *ifp; 1090 1091 imo = inp->inp_moptions; 1092 if (imo->imo_multicast_ifp != NULL) { 1093 ifp = imo->imo_multicast_ifp; 1094 IN_IFADDR_RLOCK(&in_ifa_tracker); 1095 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1096 if ((ia->ia_ifp == ifp) && 1097 (cred == NULL || 1098 prison_check_ip4(cred, 1099 &ia->ia_addr.sin_addr) == 0)) 1100 break; 1101 } 1102 if (ia == NULL) 1103 error = EADDRNOTAVAIL; 1104 else { 1105 laddr = ia->ia_addr.sin_addr; 1106 error = 0; 1107 } 1108 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1109 } 1110 } 1111 if (error) 1112 return (error); 1113 } 1114 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport, 1115 laddr, lport, 0, NULL); 1116 if (oinp != NULL) { 1117 if (oinpp != NULL) 1118 *oinpp = oinp; 1119 return (EADDRINUSE); 1120 } 1121 if (lport == 0) { 1122 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 1123 cred); 1124 if (error) 1125 return (error); 1126 } 1127 *laddrp = laddr.s_addr; 1128 *lportp = lport; 1129 *faddrp = faddr.s_addr; 1130 *fportp = fport; 1131 return (0); 1132 } 1133 1134 void 1135 in_pcbdisconnect(struct inpcb *inp) 1136 { 1137 1138 INP_WLOCK_ASSERT(inp); 1139 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1140 1141 inp->inp_faddr.s_addr = INADDR_ANY; 1142 inp->inp_fport = 0; 1143 in_pcbrehash(inp); 1144 } 1145 #endif /* INET */ 1146 1147 /* 1148 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1149 * For most protocols, this will be invoked immediately prior to calling 1150 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1151 * socket, in which case in_pcbfree() is deferred. 1152 */ 1153 void 1154 in_pcbdetach(struct inpcb *inp) 1155 { 1156 1157 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1158 1159 #ifdef RATELIMIT 1160 if (inp->inp_snd_tag != NULL) 1161 in_pcbdetach_txrtlmt(inp); 1162 #endif 1163 inp->inp_socket->so_pcb = NULL; 1164 inp->inp_socket = NULL; 1165 } 1166 1167 /* 1168 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1169 * stability of an inpcb pointer despite the inpcb lock being released. This 1170 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 1171 * but where the inpcb lock may already held, or when acquiring a reference 1172 * via a pcbgroup. 1173 * 1174 * in_pcbref() should be used only to provide brief memory stability, and 1175 * must always be followed by a call to INP_WLOCK() and in_pcbrele() to 1176 * garbage collect the inpcb if it has been in_pcbfree()'d from another 1177 * context. Until in_pcbrele() has returned that the inpcb is still valid, 1178 * lock and rele are the *only* safe operations that may be performed on the 1179 * inpcb. 1180 * 1181 * While the inpcb will not be freed, releasing the inpcb lock means that the 1182 * connection's state may change, so the caller should be careful to 1183 * revalidate any cached state on reacquiring the lock. Drop the reference 1184 * using in_pcbrele(). 1185 */ 1186 void 1187 in_pcbref(struct inpcb *inp) 1188 { 1189 1190 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1191 1192 refcount_acquire(&inp->inp_refcount); 1193 } 1194 1195 /* 1196 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 1197 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 1198 * return a flag indicating whether or not the inpcb remains valid. If it is 1199 * valid, we return with the inpcb lock held. 1200 * 1201 * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a 1202 * reference on an inpcb. Historically more work was done here (actually, in 1203 * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the 1204 * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely 1205 * about memory stability (and continued use of the write lock). 1206 */ 1207 int 1208 in_pcbrele_rlocked(struct inpcb *inp) 1209 { 1210 struct inpcbinfo *pcbinfo; 1211 1212 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1213 1214 INP_RLOCK_ASSERT(inp); 1215 1216 if (refcount_release(&inp->inp_refcount) == 0) { 1217 /* 1218 * If the inpcb has been freed, let the caller know, even if 1219 * this isn't the last reference. 1220 */ 1221 if (inp->inp_flags2 & INP_FREED) { 1222 INP_RUNLOCK(inp); 1223 return (1); 1224 } 1225 return (0); 1226 } 1227 1228 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1229 1230 INP_RUNLOCK(inp); 1231 pcbinfo = inp->inp_pcbinfo; 1232 uma_zfree(pcbinfo->ipi_zone, inp); 1233 return (1); 1234 } 1235 1236 int 1237 in_pcbrele_wlocked(struct inpcb *inp) 1238 { 1239 struct inpcbinfo *pcbinfo; 1240 1241 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1242 1243 INP_WLOCK_ASSERT(inp); 1244 1245 if (refcount_release(&inp->inp_refcount) == 0) { 1246 /* 1247 * If the inpcb has been freed, let the caller know, even if 1248 * this isn't the last reference. 1249 */ 1250 if (inp->inp_flags2 & INP_FREED) { 1251 INP_WUNLOCK(inp); 1252 return (1); 1253 } 1254 return (0); 1255 } 1256 1257 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1258 1259 INP_WUNLOCK(inp); 1260 pcbinfo = inp->inp_pcbinfo; 1261 uma_zfree(pcbinfo->ipi_zone, inp); 1262 return (1); 1263 } 1264 1265 /* 1266 * Temporary wrapper. 1267 */ 1268 int 1269 in_pcbrele(struct inpcb *inp) 1270 { 1271 1272 return (in_pcbrele_wlocked(inp)); 1273 } 1274 1275 /* 1276 * Unconditionally schedule an inpcb to be freed by decrementing its 1277 * reference count, which should occur only after the inpcb has been detached 1278 * from its socket. If another thread holds a temporary reference (acquired 1279 * using in_pcbref()) then the free is deferred until that reference is 1280 * released using in_pcbrele(), but the inpcb is still unlocked. Almost all 1281 * work, including removal from global lists, is done in this context, where 1282 * the pcbinfo lock is held. 1283 */ 1284 void 1285 in_pcbfree(struct inpcb *inp) 1286 { 1287 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1288 1289 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1290 1291 #ifdef INVARIANTS 1292 if (pcbinfo == &V_tcbinfo) { 1293 INP_INFO_LOCK_ASSERT(pcbinfo); 1294 } else { 1295 INP_INFO_WLOCK_ASSERT(pcbinfo); 1296 } 1297 #endif 1298 INP_WLOCK_ASSERT(inp); 1299 1300 /* XXXRW: Do as much as possible here. */ 1301 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1302 if (inp->inp_sp != NULL) 1303 ipsec_delete_pcbpolicy(inp); 1304 #endif 1305 INP_LIST_WLOCK(pcbinfo); 1306 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1307 in_pcbremlists(inp); 1308 INP_LIST_WUNLOCK(pcbinfo); 1309 #ifdef INET6 1310 if (inp->inp_vflag & INP_IPV6PROTO) { 1311 ip6_freepcbopts(inp->in6p_outputopts); 1312 if (inp->in6p_moptions != NULL) 1313 ip6_freemoptions(inp->in6p_moptions); 1314 } 1315 #endif 1316 if (inp->inp_options) 1317 (void)m_free(inp->inp_options); 1318 #ifdef INET 1319 if (inp->inp_moptions != NULL) 1320 inp_freemoptions(inp->inp_moptions); 1321 #endif 1322 RO_RTFREE(&inp->inp_route); 1323 if (inp->inp_route.ro_lle) 1324 LLE_FREE(inp->inp_route.ro_lle); /* zeros ro_lle */ 1325 1326 inp->inp_vflag = 0; 1327 inp->inp_flags2 |= INP_FREED; 1328 crfree(inp->inp_cred); 1329 #ifdef MAC 1330 mac_inpcb_destroy(inp); 1331 #endif 1332 if (!in_pcbrele_wlocked(inp)) 1333 INP_WUNLOCK(inp); 1334 } 1335 1336 /* 1337 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1338 * port reservation, and preventing it from being returned by inpcb lookups. 1339 * 1340 * It is used by TCP to mark an inpcb as unused and avoid future packet 1341 * delivery or event notification when a socket remains open but TCP has 1342 * closed. This might occur as a result of a shutdown()-initiated TCP close 1343 * or a RST on the wire, and allows the port binding to be reused while still 1344 * maintaining the invariant that so_pcb always points to a valid inpcb until 1345 * in_pcbdetach(). 1346 * 1347 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1348 * in_pcbnotifyall() and in_pcbpurgeif0()? 1349 */ 1350 void 1351 in_pcbdrop(struct inpcb *inp) 1352 { 1353 1354 INP_WLOCK_ASSERT(inp); 1355 1356 /* 1357 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1358 * the hash lock...? 1359 */ 1360 inp->inp_flags |= INP_DROPPED; 1361 if (inp->inp_flags & INP_INHASHLIST) { 1362 struct inpcbport *phd = inp->inp_phd; 1363 1364 INP_HASH_WLOCK(inp->inp_pcbinfo); 1365 LIST_REMOVE(inp, inp_hash); 1366 LIST_REMOVE(inp, inp_portlist); 1367 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 1368 LIST_REMOVE(phd, phd_hash); 1369 free(phd, M_PCB); 1370 } 1371 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1372 inp->inp_flags &= ~INP_INHASHLIST; 1373 #ifdef PCBGROUP 1374 in_pcbgroup_remove(inp); 1375 #endif 1376 } 1377 } 1378 1379 #ifdef INET 1380 /* 1381 * Common routines to return the socket addresses associated with inpcbs. 1382 */ 1383 struct sockaddr * 1384 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1385 { 1386 struct sockaddr_in *sin; 1387 1388 sin = malloc(sizeof *sin, M_SONAME, 1389 M_WAITOK | M_ZERO); 1390 sin->sin_family = AF_INET; 1391 sin->sin_len = sizeof(*sin); 1392 sin->sin_addr = *addr_p; 1393 sin->sin_port = port; 1394 1395 return (struct sockaddr *)sin; 1396 } 1397 1398 int 1399 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1400 { 1401 struct inpcb *inp; 1402 struct in_addr addr; 1403 in_port_t port; 1404 1405 inp = sotoinpcb(so); 1406 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1407 1408 INP_RLOCK(inp); 1409 port = inp->inp_lport; 1410 addr = inp->inp_laddr; 1411 INP_RUNLOCK(inp); 1412 1413 *nam = in_sockaddr(port, &addr); 1414 return 0; 1415 } 1416 1417 int 1418 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1419 { 1420 struct inpcb *inp; 1421 struct in_addr addr; 1422 in_port_t port; 1423 1424 inp = sotoinpcb(so); 1425 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1426 1427 INP_RLOCK(inp); 1428 port = inp->inp_fport; 1429 addr = inp->inp_faddr; 1430 INP_RUNLOCK(inp); 1431 1432 *nam = in_sockaddr(port, &addr); 1433 return 0; 1434 } 1435 1436 void 1437 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1438 struct inpcb *(*notify)(struct inpcb *, int)) 1439 { 1440 struct inpcb *inp, *inp_temp; 1441 1442 INP_INFO_WLOCK(pcbinfo); 1443 LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1444 INP_WLOCK(inp); 1445 #ifdef INET6 1446 if ((inp->inp_vflag & INP_IPV4) == 0) { 1447 INP_WUNLOCK(inp); 1448 continue; 1449 } 1450 #endif 1451 if (inp->inp_faddr.s_addr != faddr.s_addr || 1452 inp->inp_socket == NULL) { 1453 INP_WUNLOCK(inp); 1454 continue; 1455 } 1456 if ((*notify)(inp, errno)) 1457 INP_WUNLOCK(inp); 1458 } 1459 INP_INFO_WUNLOCK(pcbinfo); 1460 } 1461 1462 void 1463 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1464 { 1465 struct inpcb *inp; 1466 struct ip_moptions *imo; 1467 int i, gap; 1468 1469 INP_INFO_WLOCK(pcbinfo); 1470 LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1471 INP_WLOCK(inp); 1472 imo = inp->inp_moptions; 1473 if ((inp->inp_vflag & INP_IPV4) && 1474 imo != NULL) { 1475 /* 1476 * Unselect the outgoing interface if it is being 1477 * detached. 1478 */ 1479 if (imo->imo_multicast_ifp == ifp) 1480 imo->imo_multicast_ifp = NULL; 1481 1482 /* 1483 * Drop multicast group membership if we joined 1484 * through the interface being detached. 1485 */ 1486 for (i = 0, gap = 0; i < imo->imo_num_memberships; 1487 i++) { 1488 if (imo->imo_membership[i]->inm_ifp == ifp) { 1489 in_delmulti(imo->imo_membership[i]); 1490 gap++; 1491 } else if (gap != 0) 1492 imo->imo_membership[i - gap] = 1493 imo->imo_membership[i]; 1494 } 1495 imo->imo_num_memberships -= gap; 1496 } 1497 INP_WUNLOCK(inp); 1498 } 1499 INP_INFO_WUNLOCK(pcbinfo); 1500 } 1501 1502 /* 1503 * Lookup a PCB based on the local address and port. Caller must hold the 1504 * hash lock. No inpcb locks or references are acquired. 1505 */ 1506 #define INP_LOOKUP_MAPPED_PCB_COST 3 1507 struct inpcb * 1508 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1509 u_short lport, int lookupflags, struct ucred *cred) 1510 { 1511 struct inpcb *inp; 1512 #ifdef INET6 1513 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1514 #else 1515 int matchwild = 3; 1516 #endif 1517 int wildcard; 1518 1519 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1520 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1521 1522 INP_HASH_LOCK_ASSERT(pcbinfo); 1523 1524 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1525 struct inpcbhead *head; 1526 /* 1527 * Look for an unconnected (wildcard foreign addr) PCB that 1528 * matches the local address and port we're looking for. 1529 */ 1530 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1531 0, pcbinfo->ipi_hashmask)]; 1532 LIST_FOREACH(inp, head, inp_hash) { 1533 #ifdef INET6 1534 /* XXX inp locking */ 1535 if ((inp->inp_vflag & INP_IPV4) == 0) 1536 continue; 1537 #endif 1538 if (inp->inp_faddr.s_addr == INADDR_ANY && 1539 inp->inp_laddr.s_addr == laddr.s_addr && 1540 inp->inp_lport == lport) { 1541 /* 1542 * Found? 1543 */ 1544 if (cred == NULL || 1545 prison_equal_ip4(cred->cr_prison, 1546 inp->inp_cred->cr_prison)) 1547 return (inp); 1548 } 1549 } 1550 /* 1551 * Not found. 1552 */ 1553 return (NULL); 1554 } else { 1555 struct inpcbporthead *porthash; 1556 struct inpcbport *phd; 1557 struct inpcb *match = NULL; 1558 /* 1559 * Best fit PCB lookup. 1560 * 1561 * First see if this local port is in use by looking on the 1562 * port hash list. 1563 */ 1564 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1565 pcbinfo->ipi_porthashmask)]; 1566 LIST_FOREACH(phd, porthash, phd_hash) { 1567 if (phd->phd_port == lport) 1568 break; 1569 } 1570 if (phd != NULL) { 1571 /* 1572 * Port is in use by one or more PCBs. Look for best 1573 * fit. 1574 */ 1575 LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1576 wildcard = 0; 1577 if (cred != NULL && 1578 !prison_equal_ip4(inp->inp_cred->cr_prison, 1579 cred->cr_prison)) 1580 continue; 1581 #ifdef INET6 1582 /* XXX inp locking */ 1583 if ((inp->inp_vflag & INP_IPV4) == 0) 1584 continue; 1585 /* 1586 * We never select the PCB that has 1587 * INP_IPV6 flag and is bound to :: if 1588 * we have another PCB which is bound 1589 * to 0.0.0.0. If a PCB has the 1590 * INP_IPV6 flag, then we set its cost 1591 * higher than IPv4 only PCBs. 1592 * 1593 * Note that the case only happens 1594 * when a socket is bound to ::, under 1595 * the condition that the use of the 1596 * mapped address is allowed. 1597 */ 1598 if ((inp->inp_vflag & INP_IPV6) != 0) 1599 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1600 #endif 1601 if (inp->inp_faddr.s_addr != INADDR_ANY) 1602 wildcard++; 1603 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1604 if (laddr.s_addr == INADDR_ANY) 1605 wildcard++; 1606 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1607 continue; 1608 } else { 1609 if (laddr.s_addr != INADDR_ANY) 1610 wildcard++; 1611 } 1612 if (wildcard < matchwild) { 1613 match = inp; 1614 matchwild = wildcard; 1615 if (matchwild == 0) 1616 break; 1617 } 1618 } 1619 } 1620 return (match); 1621 } 1622 } 1623 #undef INP_LOOKUP_MAPPED_PCB_COST 1624 1625 #ifdef PCBGROUP 1626 /* 1627 * Lookup PCB in hash list, using pcbgroup tables. 1628 */ 1629 static struct inpcb * 1630 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, 1631 struct in_addr faddr, u_int fport_arg, struct in_addr laddr, 1632 u_int lport_arg, int lookupflags, struct ifnet *ifp) 1633 { 1634 struct inpcbhead *head; 1635 struct inpcb *inp, *tmpinp; 1636 u_short fport = fport_arg, lport = lport_arg; 1637 1638 /* 1639 * First look for an exact match. 1640 */ 1641 tmpinp = NULL; 1642 INP_GROUP_LOCK(pcbgroup); 1643 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1644 pcbgroup->ipg_hashmask)]; 1645 LIST_FOREACH(inp, head, inp_pcbgrouphash) { 1646 #ifdef INET6 1647 /* XXX inp locking */ 1648 if ((inp->inp_vflag & INP_IPV4) == 0) 1649 continue; 1650 #endif 1651 if (inp->inp_faddr.s_addr == faddr.s_addr && 1652 inp->inp_laddr.s_addr == laddr.s_addr && 1653 inp->inp_fport == fport && 1654 inp->inp_lport == lport) { 1655 /* 1656 * XXX We should be able to directly return 1657 * the inp here, without any checks. 1658 * Well unless both bound with SO_REUSEPORT? 1659 */ 1660 if (prison_flag(inp->inp_cred, PR_IP4)) 1661 goto found; 1662 if (tmpinp == NULL) 1663 tmpinp = inp; 1664 } 1665 } 1666 if (tmpinp != NULL) { 1667 inp = tmpinp; 1668 goto found; 1669 } 1670 1671 #ifdef RSS 1672 /* 1673 * For incoming connections, we may wish to do a wildcard 1674 * match for an RSS-local socket. 1675 */ 1676 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1677 struct inpcb *local_wild = NULL, *local_exact = NULL; 1678 #ifdef INET6 1679 struct inpcb *local_wild_mapped = NULL; 1680 #endif 1681 struct inpcb *jail_wild = NULL; 1682 struct inpcbhead *head; 1683 int injail; 1684 1685 /* 1686 * Order of socket selection - we always prefer jails. 1687 * 1. jailed, non-wild. 1688 * 2. jailed, wild. 1689 * 3. non-jailed, non-wild. 1690 * 4. non-jailed, wild. 1691 */ 1692 1693 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, 1694 lport, 0, pcbgroup->ipg_hashmask)]; 1695 LIST_FOREACH(inp, head, inp_pcbgrouphash) { 1696 #ifdef INET6 1697 /* XXX inp locking */ 1698 if ((inp->inp_vflag & INP_IPV4) == 0) 1699 continue; 1700 #endif 1701 if (inp->inp_faddr.s_addr != INADDR_ANY || 1702 inp->inp_lport != lport) 1703 continue; 1704 1705 injail = prison_flag(inp->inp_cred, PR_IP4); 1706 if (injail) { 1707 if (prison_check_ip4(inp->inp_cred, 1708 &laddr) != 0) 1709 continue; 1710 } else { 1711 if (local_exact != NULL) 1712 continue; 1713 } 1714 1715 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1716 if (injail) 1717 goto found; 1718 else 1719 local_exact = inp; 1720 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1721 #ifdef INET6 1722 /* XXX inp locking, NULL check */ 1723 if (inp->inp_vflag & INP_IPV6PROTO) 1724 local_wild_mapped = inp; 1725 else 1726 #endif 1727 if (injail) 1728 jail_wild = inp; 1729 else 1730 local_wild = inp; 1731 } 1732 } /* LIST_FOREACH */ 1733 1734 inp = jail_wild; 1735 if (inp == NULL) 1736 inp = local_exact; 1737 if (inp == NULL) 1738 inp = local_wild; 1739 #ifdef INET6 1740 if (inp == NULL) 1741 inp = local_wild_mapped; 1742 #endif 1743 if (inp != NULL) 1744 goto found; 1745 } 1746 #endif 1747 1748 /* 1749 * Then look for a wildcard match, if requested. 1750 */ 1751 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1752 struct inpcb *local_wild = NULL, *local_exact = NULL; 1753 #ifdef INET6 1754 struct inpcb *local_wild_mapped = NULL; 1755 #endif 1756 struct inpcb *jail_wild = NULL; 1757 struct inpcbhead *head; 1758 int injail; 1759 1760 /* 1761 * Order of socket selection - we always prefer jails. 1762 * 1. jailed, non-wild. 1763 * 2. jailed, wild. 1764 * 3. non-jailed, non-wild. 1765 * 4. non-jailed, wild. 1766 */ 1767 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 1768 0, pcbinfo->ipi_wildmask)]; 1769 LIST_FOREACH(inp, head, inp_pcbgroup_wild) { 1770 #ifdef INET6 1771 /* XXX inp locking */ 1772 if ((inp->inp_vflag & INP_IPV4) == 0) 1773 continue; 1774 #endif 1775 if (inp->inp_faddr.s_addr != INADDR_ANY || 1776 inp->inp_lport != lport) 1777 continue; 1778 1779 injail = prison_flag(inp->inp_cred, PR_IP4); 1780 if (injail) { 1781 if (prison_check_ip4(inp->inp_cred, 1782 &laddr) != 0) 1783 continue; 1784 } else { 1785 if (local_exact != NULL) 1786 continue; 1787 } 1788 1789 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1790 if (injail) 1791 goto found; 1792 else 1793 local_exact = inp; 1794 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1795 #ifdef INET6 1796 /* XXX inp locking, NULL check */ 1797 if (inp->inp_vflag & INP_IPV6PROTO) 1798 local_wild_mapped = inp; 1799 else 1800 #endif 1801 if (injail) 1802 jail_wild = inp; 1803 else 1804 local_wild = inp; 1805 } 1806 } /* LIST_FOREACH */ 1807 inp = jail_wild; 1808 if (inp == NULL) 1809 inp = local_exact; 1810 if (inp == NULL) 1811 inp = local_wild; 1812 #ifdef INET6 1813 if (inp == NULL) 1814 inp = local_wild_mapped; 1815 #endif 1816 if (inp != NULL) 1817 goto found; 1818 } /* if (lookupflags & INPLOOKUP_WILDCARD) */ 1819 INP_GROUP_UNLOCK(pcbgroup); 1820 return (NULL); 1821 1822 found: 1823 in_pcbref(inp); 1824 INP_GROUP_UNLOCK(pcbgroup); 1825 if (lookupflags & INPLOOKUP_WLOCKPCB) { 1826 INP_WLOCK(inp); 1827 if (in_pcbrele_wlocked(inp)) 1828 return (NULL); 1829 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 1830 INP_RLOCK(inp); 1831 if (in_pcbrele_rlocked(inp)) 1832 return (NULL); 1833 } else 1834 panic("%s: locking bug", __func__); 1835 return (inp); 1836 } 1837 #endif /* PCBGROUP */ 1838 1839 /* 1840 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 1841 * that the caller has locked the hash list, and will not perform any further 1842 * locking or reference operations on either the hash list or the connection. 1843 */ 1844 static struct inpcb * 1845 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1846 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 1847 struct ifnet *ifp) 1848 { 1849 struct inpcbhead *head; 1850 struct inpcb *inp, *tmpinp; 1851 u_short fport = fport_arg, lport = lport_arg; 1852 1853 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1854 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1855 1856 INP_HASH_LOCK_ASSERT(pcbinfo); 1857 1858 /* 1859 * First look for an exact match. 1860 */ 1861 tmpinp = NULL; 1862 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1863 pcbinfo->ipi_hashmask)]; 1864 LIST_FOREACH(inp, head, inp_hash) { 1865 #ifdef INET6 1866 /* XXX inp locking */ 1867 if ((inp->inp_vflag & INP_IPV4) == 0) 1868 continue; 1869 #endif 1870 if (inp->inp_faddr.s_addr == faddr.s_addr && 1871 inp->inp_laddr.s_addr == laddr.s_addr && 1872 inp->inp_fport == fport && 1873 inp->inp_lport == lport) { 1874 /* 1875 * XXX We should be able to directly return 1876 * the inp here, without any checks. 1877 * Well unless both bound with SO_REUSEPORT? 1878 */ 1879 if (prison_flag(inp->inp_cred, PR_IP4)) 1880 return (inp); 1881 if (tmpinp == NULL) 1882 tmpinp = inp; 1883 } 1884 } 1885 if (tmpinp != NULL) 1886 return (tmpinp); 1887 1888 /* 1889 * Then look for a wildcard match, if requested. 1890 */ 1891 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1892 struct inpcb *local_wild = NULL, *local_exact = NULL; 1893 #ifdef INET6 1894 struct inpcb *local_wild_mapped = NULL; 1895 #endif 1896 struct inpcb *jail_wild = NULL; 1897 int injail; 1898 1899 /* 1900 * Order of socket selection - we always prefer jails. 1901 * 1. jailed, non-wild. 1902 * 2. jailed, wild. 1903 * 3. non-jailed, non-wild. 1904 * 4. non-jailed, wild. 1905 */ 1906 1907 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1908 0, pcbinfo->ipi_hashmask)]; 1909 LIST_FOREACH(inp, head, inp_hash) { 1910 #ifdef INET6 1911 /* XXX inp locking */ 1912 if ((inp->inp_vflag & INP_IPV4) == 0) 1913 continue; 1914 #endif 1915 if (inp->inp_faddr.s_addr != INADDR_ANY || 1916 inp->inp_lport != lport) 1917 continue; 1918 1919 injail = prison_flag(inp->inp_cred, PR_IP4); 1920 if (injail) { 1921 if (prison_check_ip4(inp->inp_cred, 1922 &laddr) != 0) 1923 continue; 1924 } else { 1925 if (local_exact != NULL) 1926 continue; 1927 } 1928 1929 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1930 if (injail) 1931 return (inp); 1932 else 1933 local_exact = inp; 1934 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1935 #ifdef INET6 1936 /* XXX inp locking, NULL check */ 1937 if (inp->inp_vflag & INP_IPV6PROTO) 1938 local_wild_mapped = inp; 1939 else 1940 #endif 1941 if (injail) 1942 jail_wild = inp; 1943 else 1944 local_wild = inp; 1945 } 1946 } /* LIST_FOREACH */ 1947 if (jail_wild != NULL) 1948 return (jail_wild); 1949 if (local_exact != NULL) 1950 return (local_exact); 1951 if (local_wild != NULL) 1952 return (local_wild); 1953 #ifdef INET6 1954 if (local_wild_mapped != NULL) 1955 return (local_wild_mapped); 1956 #endif 1957 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 1958 1959 return (NULL); 1960 } 1961 1962 /* 1963 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 1964 * hash list lock, and will return the inpcb locked (i.e., requires 1965 * INPLOOKUP_LOCKPCB). 1966 */ 1967 static struct inpcb * 1968 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1969 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 1970 struct ifnet *ifp) 1971 { 1972 struct inpcb *inp; 1973 1974 INP_HASH_RLOCK(pcbinfo); 1975 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 1976 (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp); 1977 if (inp != NULL) { 1978 in_pcbref(inp); 1979 INP_HASH_RUNLOCK(pcbinfo); 1980 if (lookupflags & INPLOOKUP_WLOCKPCB) { 1981 INP_WLOCK(inp); 1982 if (in_pcbrele_wlocked(inp)) 1983 return (NULL); 1984 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 1985 INP_RLOCK(inp); 1986 if (in_pcbrele_rlocked(inp)) 1987 return (NULL); 1988 } else 1989 panic("%s: locking bug", __func__); 1990 } else 1991 INP_HASH_RUNLOCK(pcbinfo); 1992 return (inp); 1993 } 1994 1995 /* 1996 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 1997 * from which a pre-calculated hash value may be extracted. 1998 * 1999 * Possibly more of this logic should be in in_pcbgroup.c. 2000 */ 2001 struct inpcb * 2002 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2003 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 2004 { 2005 #if defined(PCBGROUP) && !defined(RSS) 2006 struct inpcbgroup *pcbgroup; 2007 #endif 2008 2009 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2010 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2011 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2012 ("%s: LOCKPCB not set", __func__)); 2013 2014 /* 2015 * When not using RSS, use connection groups in preference to the 2016 * reservation table when looking up 4-tuples. When using RSS, just 2017 * use the reservation table, due to the cost of the Toeplitz hash 2018 * in software. 2019 * 2020 * XXXRW: This policy belongs in the pcbgroup code, as in principle 2021 * we could be doing RSS with a non-Toeplitz hash that is affordable 2022 * in software. 2023 */ 2024 #if defined(PCBGROUP) && !defined(RSS) 2025 if (in_pcbgroup_enabled(pcbinfo)) { 2026 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2027 fport); 2028 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2029 laddr, lport, lookupflags, ifp)); 2030 } 2031 #endif 2032 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2033 lookupflags, ifp)); 2034 } 2035 2036 struct inpcb * 2037 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2038 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2039 struct ifnet *ifp, struct mbuf *m) 2040 { 2041 #ifdef PCBGROUP 2042 struct inpcbgroup *pcbgroup; 2043 #endif 2044 2045 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2046 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2047 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2048 ("%s: LOCKPCB not set", __func__)); 2049 2050 #ifdef PCBGROUP 2051 /* 2052 * If we can use a hardware-generated hash to look up the connection 2053 * group, use that connection group to find the inpcb. Otherwise 2054 * fall back on a software hash -- or the reservation table if we're 2055 * using RSS. 2056 * 2057 * XXXRW: As above, that policy belongs in the pcbgroup code. 2058 */ 2059 if (in_pcbgroup_enabled(pcbinfo) && 2060 !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { 2061 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), 2062 m->m_pkthdr.flowid); 2063 if (pcbgroup != NULL) 2064 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, 2065 fport, laddr, lport, lookupflags, ifp)); 2066 #ifndef RSS 2067 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2068 fport); 2069 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2070 laddr, lport, lookupflags, ifp)); 2071 #endif 2072 } 2073 #endif 2074 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2075 lookupflags, ifp)); 2076 } 2077 #endif /* INET */ 2078 2079 /* 2080 * Insert PCB onto various hash lists. 2081 */ 2082 static int 2083 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update) 2084 { 2085 struct inpcbhead *pcbhash; 2086 struct inpcbporthead *pcbporthash; 2087 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2088 struct inpcbport *phd; 2089 u_int32_t hashkey_faddr; 2090 2091 INP_WLOCK_ASSERT(inp); 2092 INP_HASH_WLOCK_ASSERT(pcbinfo); 2093 2094 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2095 ("in_pcbinshash: INP_INHASHLIST")); 2096 2097 #ifdef INET6 2098 if (inp->inp_vflag & INP_IPV6) 2099 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2100 else 2101 #endif 2102 hashkey_faddr = inp->inp_faddr.s_addr; 2103 2104 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2105 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2106 2107 pcbporthash = &pcbinfo->ipi_porthashbase[ 2108 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2109 2110 /* 2111 * Go through port list and look for a head for this lport. 2112 */ 2113 LIST_FOREACH(phd, pcbporthash, phd_hash) { 2114 if (phd->phd_port == inp->inp_lport) 2115 break; 2116 } 2117 /* 2118 * If none exists, malloc one and tack it on. 2119 */ 2120 if (phd == NULL) { 2121 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 2122 if (phd == NULL) { 2123 return (ENOBUFS); /* XXX */ 2124 } 2125 phd->phd_port = inp->inp_lport; 2126 LIST_INIT(&phd->phd_pcblist); 2127 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2128 } 2129 inp->inp_phd = phd; 2130 LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2131 LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2132 inp->inp_flags |= INP_INHASHLIST; 2133 #ifdef PCBGROUP 2134 if (do_pcbgroup_update) 2135 in_pcbgroup_update(inp); 2136 #endif 2137 return (0); 2138 } 2139 2140 /* 2141 * For now, there are two public interfaces to insert an inpcb into the hash 2142 * lists -- one that does update pcbgroups, and one that doesn't. The latter 2143 * is used only in the TCP syncache, where in_pcbinshash is called before the 2144 * full 4-tuple is set for the inpcb, and we don't want to install in the 2145 * pcbgroup until later. 2146 * 2147 * XXXRW: This seems like a misfeature. in_pcbinshash should always update 2148 * connection groups, and partially initialised inpcbs should not be exposed 2149 * to either reservation hash tables or pcbgroups. 2150 */ 2151 int 2152 in_pcbinshash(struct inpcb *inp) 2153 { 2154 2155 return (in_pcbinshash_internal(inp, 1)); 2156 } 2157 2158 int 2159 in_pcbinshash_nopcbgroup(struct inpcb *inp) 2160 { 2161 2162 return (in_pcbinshash_internal(inp, 0)); 2163 } 2164 2165 /* 2166 * Move PCB to the proper hash bucket when { faddr, fport } have been 2167 * changed. NOTE: This does not handle the case of the lport changing (the 2168 * hashed port list would have to be updated as well), so the lport must 2169 * not change after in_pcbinshash() has been called. 2170 */ 2171 void 2172 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) 2173 { 2174 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2175 struct inpcbhead *head; 2176 u_int32_t hashkey_faddr; 2177 2178 INP_WLOCK_ASSERT(inp); 2179 INP_HASH_WLOCK_ASSERT(pcbinfo); 2180 2181 KASSERT(inp->inp_flags & INP_INHASHLIST, 2182 ("in_pcbrehash: !INP_INHASHLIST")); 2183 2184 #ifdef INET6 2185 if (inp->inp_vflag & INP_IPV6) 2186 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2187 else 2188 #endif 2189 hashkey_faddr = inp->inp_faddr.s_addr; 2190 2191 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2192 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2193 2194 LIST_REMOVE(inp, inp_hash); 2195 LIST_INSERT_HEAD(head, inp, inp_hash); 2196 2197 #ifdef PCBGROUP 2198 if (m != NULL) 2199 in_pcbgroup_update_mbuf(inp, m); 2200 else 2201 in_pcbgroup_update(inp); 2202 #endif 2203 } 2204 2205 void 2206 in_pcbrehash(struct inpcb *inp) 2207 { 2208 2209 in_pcbrehash_mbuf(inp, NULL); 2210 } 2211 2212 /* 2213 * Remove PCB from various lists. 2214 */ 2215 static void 2216 in_pcbremlists(struct inpcb *inp) 2217 { 2218 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2219 2220 #ifdef INVARIANTS 2221 if (pcbinfo == &V_tcbinfo) { 2222 INP_INFO_RLOCK_ASSERT(pcbinfo); 2223 } else { 2224 INP_INFO_WLOCK_ASSERT(pcbinfo); 2225 } 2226 #endif 2227 2228 INP_WLOCK_ASSERT(inp); 2229 INP_LIST_WLOCK_ASSERT(pcbinfo); 2230 2231 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 2232 if (inp->inp_flags & INP_INHASHLIST) { 2233 struct inpcbport *phd = inp->inp_phd; 2234 2235 INP_HASH_WLOCK(pcbinfo); 2236 LIST_REMOVE(inp, inp_hash); 2237 LIST_REMOVE(inp, inp_portlist); 2238 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 2239 LIST_REMOVE(phd, phd_hash); 2240 free(phd, M_PCB); 2241 } 2242 INP_HASH_WUNLOCK(pcbinfo); 2243 inp->inp_flags &= ~INP_INHASHLIST; 2244 } 2245 LIST_REMOVE(inp, inp_list); 2246 pcbinfo->ipi_count--; 2247 #ifdef PCBGROUP 2248 in_pcbgroup_remove(inp); 2249 #endif 2250 } 2251 2252 /* 2253 * Check for alternatives when higher level complains 2254 * about service problems. For now, invalidate cached 2255 * routing information. If the route was created dynamically 2256 * (by a redirect), time to try a default gateway again. 2257 */ 2258 void 2259 in_losing(struct inpcb *inp) 2260 { 2261 2262 RO_RTFREE(&inp->inp_route); 2263 if (inp->inp_route.ro_lle) 2264 LLE_FREE(inp->inp_route.ro_lle); /* zeros ro_lle */ 2265 return; 2266 } 2267 2268 /* 2269 * A set label operation has occurred at the socket layer, propagate the 2270 * label change into the in_pcb for the socket. 2271 */ 2272 void 2273 in_pcbsosetlabel(struct socket *so) 2274 { 2275 #ifdef MAC 2276 struct inpcb *inp; 2277 2278 inp = sotoinpcb(so); 2279 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2280 2281 INP_WLOCK(inp); 2282 SOCK_LOCK(so); 2283 mac_inpcb_sosetlabel(so, inp); 2284 SOCK_UNLOCK(so); 2285 INP_WUNLOCK(inp); 2286 #endif 2287 } 2288 2289 /* 2290 * ipport_tick runs once per second, determining if random port allocation 2291 * should be continued. If more than ipport_randomcps ports have been 2292 * allocated in the last second, then we return to sequential port 2293 * allocation. We return to random allocation only once we drop below 2294 * ipport_randomcps for at least ipport_randomtime seconds. 2295 */ 2296 static void 2297 ipport_tick(void *xtp) 2298 { 2299 VNET_ITERATOR_DECL(vnet_iter); 2300 2301 VNET_LIST_RLOCK_NOSLEEP(); 2302 VNET_FOREACH(vnet_iter) { 2303 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2304 if (V_ipport_tcpallocs <= 2305 V_ipport_tcplastcount + V_ipport_randomcps) { 2306 if (V_ipport_stoprandom > 0) 2307 V_ipport_stoprandom--; 2308 } else 2309 V_ipport_stoprandom = V_ipport_randomtime; 2310 V_ipport_tcplastcount = V_ipport_tcpallocs; 2311 CURVNET_RESTORE(); 2312 } 2313 VNET_LIST_RUNLOCK_NOSLEEP(); 2314 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2315 } 2316 2317 static void 2318 ip_fini(void *xtp) 2319 { 2320 2321 callout_stop(&ipport_tick_callout); 2322 } 2323 2324 /* 2325 * The ipport_callout should start running at about the time we attach the 2326 * inet or inet6 domains. 2327 */ 2328 static void 2329 ipport_tick_init(const void *unused __unused) 2330 { 2331 2332 /* Start ipport_tick. */ 2333 callout_init(&ipport_tick_callout, 1); 2334 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2335 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2336 SHUTDOWN_PRI_DEFAULT); 2337 } 2338 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2339 ipport_tick_init, NULL); 2340 2341 void 2342 inp_wlock(struct inpcb *inp) 2343 { 2344 2345 INP_WLOCK(inp); 2346 } 2347 2348 void 2349 inp_wunlock(struct inpcb *inp) 2350 { 2351 2352 INP_WUNLOCK(inp); 2353 } 2354 2355 void 2356 inp_rlock(struct inpcb *inp) 2357 { 2358 2359 INP_RLOCK(inp); 2360 } 2361 2362 void 2363 inp_runlock(struct inpcb *inp) 2364 { 2365 2366 INP_RUNLOCK(inp); 2367 } 2368 2369 #ifdef INVARIANT_SUPPORT 2370 void 2371 inp_lock_assert(struct inpcb *inp) 2372 { 2373 2374 INP_WLOCK_ASSERT(inp); 2375 } 2376 2377 void 2378 inp_unlock_assert(struct inpcb *inp) 2379 { 2380 2381 INP_UNLOCK_ASSERT(inp); 2382 } 2383 #endif 2384 2385 void 2386 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2387 { 2388 struct inpcb *inp; 2389 2390 INP_INFO_WLOCK(&V_tcbinfo); 2391 LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 2392 INP_WLOCK(inp); 2393 func(inp, arg); 2394 INP_WUNLOCK(inp); 2395 } 2396 INP_INFO_WUNLOCK(&V_tcbinfo); 2397 } 2398 2399 struct socket * 2400 inp_inpcbtosocket(struct inpcb *inp) 2401 { 2402 2403 INP_WLOCK_ASSERT(inp); 2404 return (inp->inp_socket); 2405 } 2406 2407 struct tcpcb * 2408 inp_inpcbtotcpcb(struct inpcb *inp) 2409 { 2410 2411 INP_WLOCK_ASSERT(inp); 2412 return ((struct tcpcb *)inp->inp_ppcb); 2413 } 2414 2415 int 2416 inp_ip_tos_get(const struct inpcb *inp) 2417 { 2418 2419 return (inp->inp_ip_tos); 2420 } 2421 2422 void 2423 inp_ip_tos_set(struct inpcb *inp, int val) 2424 { 2425 2426 inp->inp_ip_tos = val; 2427 } 2428 2429 void 2430 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2431 uint32_t *faddr, uint16_t *fp) 2432 { 2433 2434 INP_LOCK_ASSERT(inp); 2435 *laddr = inp->inp_laddr.s_addr; 2436 *faddr = inp->inp_faddr.s_addr; 2437 *lp = inp->inp_lport; 2438 *fp = inp->inp_fport; 2439 } 2440 2441 struct inpcb * 2442 so_sotoinpcb(struct socket *so) 2443 { 2444 2445 return (sotoinpcb(so)); 2446 } 2447 2448 struct tcpcb * 2449 so_sototcpcb(struct socket *so) 2450 { 2451 2452 return (sototcpcb(so)); 2453 } 2454 2455 /* 2456 * Create an external-format (``xinpcb'') structure using the information in 2457 * the kernel-format in_pcb structure pointed to by inp. This is done to 2458 * reduce the spew of irrelevant information over this interface, to isolate 2459 * user code from changes in the kernel structure, and potentially to provide 2460 * information-hiding if we decide that some of this information should be 2461 * hidden from users. 2462 */ 2463 void 2464 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2465 { 2466 2467 xi->xi_len = sizeof(struct xinpcb); 2468 if (inp->inp_socket) 2469 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2470 else 2471 bzero(&xi->xi_socket, sizeof(struct xsocket)); 2472 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2473 xi->inp_gencnt = inp->inp_gencnt; 2474 xi->inp_ppcb = inp->inp_ppcb; 2475 xi->inp_flow = inp->inp_flow; 2476 xi->inp_flowid = inp->inp_flowid; 2477 xi->inp_flowtype = inp->inp_flowtype; 2478 xi->inp_flags = inp->inp_flags; 2479 xi->inp_flags2 = inp->inp_flags2; 2480 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2481 xi->in6p_cksum = inp->in6p_cksum; 2482 xi->in6p_hops = inp->in6p_hops; 2483 xi->inp_ip_tos = inp->inp_ip_tos; 2484 xi->inp_vflag = inp->inp_vflag; 2485 xi->inp_ip_ttl = inp->inp_ip_ttl; 2486 xi->inp_ip_p = inp->inp_ip_p; 2487 xi->inp_ip_minttl = inp->inp_ip_minttl; 2488 } 2489 2490 #ifdef DDB 2491 static void 2492 db_print_indent(int indent) 2493 { 2494 int i; 2495 2496 for (i = 0; i < indent; i++) 2497 db_printf(" "); 2498 } 2499 2500 static void 2501 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2502 { 2503 char faddr_str[48], laddr_str[48]; 2504 2505 db_print_indent(indent); 2506 db_printf("%s at %p\n", name, inc); 2507 2508 indent += 2; 2509 2510 #ifdef INET6 2511 if (inc->inc_flags & INC_ISIPV6) { 2512 /* IPv6. */ 2513 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2514 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2515 } else 2516 #endif 2517 { 2518 /* IPv4. */ 2519 inet_ntoa_r(inc->inc_laddr, laddr_str); 2520 inet_ntoa_r(inc->inc_faddr, faddr_str); 2521 } 2522 db_print_indent(indent); 2523 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2524 ntohs(inc->inc_lport)); 2525 db_print_indent(indent); 2526 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2527 ntohs(inc->inc_fport)); 2528 } 2529 2530 static void 2531 db_print_inpflags(int inp_flags) 2532 { 2533 int comma; 2534 2535 comma = 0; 2536 if (inp_flags & INP_RECVOPTS) { 2537 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2538 comma = 1; 2539 } 2540 if (inp_flags & INP_RECVRETOPTS) { 2541 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2542 comma = 1; 2543 } 2544 if (inp_flags & INP_RECVDSTADDR) { 2545 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2546 comma = 1; 2547 } 2548 if (inp_flags & INP_ORIGDSTADDR) { 2549 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 2550 comma = 1; 2551 } 2552 if (inp_flags & INP_HDRINCL) { 2553 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2554 comma = 1; 2555 } 2556 if (inp_flags & INP_HIGHPORT) { 2557 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2558 comma = 1; 2559 } 2560 if (inp_flags & INP_LOWPORT) { 2561 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2562 comma = 1; 2563 } 2564 if (inp_flags & INP_ANONPORT) { 2565 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2566 comma = 1; 2567 } 2568 if (inp_flags & INP_RECVIF) { 2569 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2570 comma = 1; 2571 } 2572 if (inp_flags & INP_MTUDISC) { 2573 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2574 comma = 1; 2575 } 2576 if (inp_flags & INP_RECVTTL) { 2577 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 2578 comma = 1; 2579 } 2580 if (inp_flags & INP_DONTFRAG) { 2581 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 2582 comma = 1; 2583 } 2584 if (inp_flags & INP_RECVTOS) { 2585 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 2586 comma = 1; 2587 } 2588 if (inp_flags & IN6P_IPV6_V6ONLY) { 2589 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 2590 comma = 1; 2591 } 2592 if (inp_flags & IN6P_PKTINFO) { 2593 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 2594 comma = 1; 2595 } 2596 if (inp_flags & IN6P_HOPLIMIT) { 2597 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 2598 comma = 1; 2599 } 2600 if (inp_flags & IN6P_HOPOPTS) { 2601 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 2602 comma = 1; 2603 } 2604 if (inp_flags & IN6P_DSTOPTS) { 2605 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 2606 comma = 1; 2607 } 2608 if (inp_flags & IN6P_RTHDR) { 2609 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 2610 comma = 1; 2611 } 2612 if (inp_flags & IN6P_RTHDRDSTOPTS) { 2613 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 2614 comma = 1; 2615 } 2616 if (inp_flags & IN6P_TCLASS) { 2617 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 2618 comma = 1; 2619 } 2620 if (inp_flags & IN6P_AUTOFLOWLABEL) { 2621 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 2622 comma = 1; 2623 } 2624 if (inp_flags & INP_TIMEWAIT) { 2625 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 2626 comma = 1; 2627 } 2628 if (inp_flags & INP_ONESBCAST) { 2629 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 2630 comma = 1; 2631 } 2632 if (inp_flags & INP_DROPPED) { 2633 db_printf("%sINP_DROPPED", comma ? ", " : ""); 2634 comma = 1; 2635 } 2636 if (inp_flags & INP_SOCKREF) { 2637 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 2638 comma = 1; 2639 } 2640 if (inp_flags & IN6P_RFC2292) { 2641 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 2642 comma = 1; 2643 } 2644 if (inp_flags & IN6P_MTU) { 2645 db_printf("IN6P_MTU%s", comma ? ", " : ""); 2646 comma = 1; 2647 } 2648 } 2649 2650 static void 2651 db_print_inpvflag(u_char inp_vflag) 2652 { 2653 int comma; 2654 2655 comma = 0; 2656 if (inp_vflag & INP_IPV4) { 2657 db_printf("%sINP_IPV4", comma ? ", " : ""); 2658 comma = 1; 2659 } 2660 if (inp_vflag & INP_IPV6) { 2661 db_printf("%sINP_IPV6", comma ? ", " : ""); 2662 comma = 1; 2663 } 2664 if (inp_vflag & INP_IPV6PROTO) { 2665 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 2666 comma = 1; 2667 } 2668 } 2669 2670 static void 2671 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 2672 { 2673 2674 db_print_indent(indent); 2675 db_printf("%s at %p\n", name, inp); 2676 2677 indent += 2; 2678 2679 db_print_indent(indent); 2680 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 2681 2682 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 2683 2684 db_print_indent(indent); 2685 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 2686 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 2687 2688 db_print_indent(indent); 2689 db_printf("inp_label: %p inp_flags: 0x%x (", 2690 inp->inp_label, inp->inp_flags); 2691 db_print_inpflags(inp->inp_flags); 2692 db_printf(")\n"); 2693 2694 db_print_indent(indent); 2695 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 2696 inp->inp_vflag); 2697 db_print_inpvflag(inp->inp_vflag); 2698 db_printf(")\n"); 2699 2700 db_print_indent(indent); 2701 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 2702 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 2703 2704 db_print_indent(indent); 2705 #ifdef INET6 2706 if (inp->inp_vflag & INP_IPV6) { 2707 db_printf("in6p_options: %p in6p_outputopts: %p " 2708 "in6p_moptions: %p\n", inp->in6p_options, 2709 inp->in6p_outputopts, inp->in6p_moptions); 2710 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 2711 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 2712 inp->in6p_hops); 2713 } else 2714 #endif 2715 { 2716 db_printf("inp_ip_tos: %d inp_ip_options: %p " 2717 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 2718 inp->inp_options, inp->inp_moptions); 2719 } 2720 2721 db_print_indent(indent); 2722 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 2723 (uintmax_t)inp->inp_gencnt); 2724 } 2725 2726 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 2727 { 2728 struct inpcb *inp; 2729 2730 if (!have_addr) { 2731 db_printf("usage: show inpcb <addr>\n"); 2732 return; 2733 } 2734 inp = (struct inpcb *)addr; 2735 2736 db_print_inpcb(inp, "inpcb", 0); 2737 } 2738 #endif /* DDB */ 2739 2740 #ifdef RATELIMIT 2741 /* 2742 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 2743 * if any. 2744 */ 2745 int 2746 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 2747 { 2748 union if_snd_tag_modify_params params = { 2749 .rate_limit.max_rate = max_pacing_rate, 2750 }; 2751 struct m_snd_tag *mst; 2752 struct ifnet *ifp; 2753 int error; 2754 2755 mst = inp->inp_snd_tag; 2756 if (mst == NULL) 2757 return (EINVAL); 2758 2759 ifp = mst->ifp; 2760 if (ifp == NULL) 2761 return (EINVAL); 2762 2763 if (ifp->if_snd_tag_modify == NULL) { 2764 error = EOPNOTSUPP; 2765 } else { 2766 error = ifp->if_snd_tag_modify(mst, ¶ms); 2767 } 2768 return (error); 2769 } 2770 2771 /* 2772 * Query existing TX rate limit based on the existing 2773 * "inp->inp_snd_tag", if any. 2774 */ 2775 int 2776 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 2777 { 2778 union if_snd_tag_query_params params = { }; 2779 struct m_snd_tag *mst; 2780 struct ifnet *ifp; 2781 int error; 2782 2783 mst = inp->inp_snd_tag; 2784 if (mst == NULL) 2785 return (EINVAL); 2786 2787 ifp = mst->ifp; 2788 if (ifp == NULL) 2789 return (EINVAL); 2790 2791 if (ifp->if_snd_tag_query == NULL) { 2792 error = EOPNOTSUPP; 2793 } else { 2794 error = ifp->if_snd_tag_query(mst, ¶ms); 2795 if (error == 0 && p_max_pacing_rate != NULL) 2796 *p_max_pacing_rate = params.rate_limit.max_rate; 2797 } 2798 return (error); 2799 } 2800 2801 /* 2802 * Query existing TX queue level based on the existing 2803 * "inp->inp_snd_tag", if any. 2804 */ 2805 int 2806 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 2807 { 2808 union if_snd_tag_query_params params = { }; 2809 struct m_snd_tag *mst; 2810 struct ifnet *ifp; 2811 int error; 2812 2813 mst = inp->inp_snd_tag; 2814 if (mst == NULL) 2815 return (EINVAL); 2816 2817 ifp = mst->ifp; 2818 if (ifp == NULL) 2819 return (EINVAL); 2820 2821 if (ifp->if_snd_tag_query == NULL) 2822 return (EOPNOTSUPP); 2823 2824 error = ifp->if_snd_tag_query(mst, ¶ms); 2825 if (error == 0 && p_txqueue_level != NULL) 2826 *p_txqueue_level = params.rate_limit.queue_level; 2827 return (error); 2828 } 2829 2830 /* 2831 * Allocate a new TX rate limit send tag from the network interface 2832 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 2833 */ 2834 int 2835 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 2836 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate) 2837 { 2838 union if_snd_tag_alloc_params params = { 2839 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 2840 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 2841 .rate_limit.hdr.flowid = flowid, 2842 .rate_limit.hdr.flowtype = flowtype, 2843 .rate_limit.max_rate = max_pacing_rate, 2844 }; 2845 int error; 2846 2847 INP_WLOCK_ASSERT(inp); 2848 2849 if (inp->inp_snd_tag != NULL) 2850 return (EINVAL); 2851 2852 if (ifp->if_snd_tag_alloc == NULL) { 2853 error = EOPNOTSUPP; 2854 } else { 2855 error = ifp->if_snd_tag_alloc(ifp, ¶ms, &inp->inp_snd_tag); 2856 2857 /* 2858 * At success increment the refcount on 2859 * the send tag's network interface: 2860 */ 2861 if (error == 0) 2862 if_ref(inp->inp_snd_tag->ifp); 2863 } 2864 return (error); 2865 } 2866 2867 /* 2868 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 2869 * if any: 2870 */ 2871 void 2872 in_pcbdetach_txrtlmt(struct inpcb *inp) 2873 { 2874 struct m_snd_tag *mst; 2875 struct ifnet *ifp; 2876 2877 INP_WLOCK_ASSERT(inp); 2878 2879 mst = inp->inp_snd_tag; 2880 inp->inp_snd_tag = NULL; 2881 2882 if (mst == NULL) 2883 return; 2884 2885 ifp = mst->ifp; 2886 if (ifp == NULL) 2887 return; 2888 2889 /* 2890 * If the device was detached while we still had reference(s) 2891 * on the ifp, we assume if_snd_tag_free() was replaced with 2892 * stubs. 2893 */ 2894 ifp->if_snd_tag_free(mst); 2895 2896 /* release reference count on network interface */ 2897 if_rele(ifp); 2898 } 2899 2900 /* 2901 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 2902 * is set in the fast path and will attach/detach/modify the TX rate 2903 * limit send tag based on the socket's so_max_pacing_rate value. 2904 */ 2905 void 2906 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 2907 { 2908 struct socket *socket; 2909 uint32_t max_pacing_rate; 2910 bool did_upgrade; 2911 int error; 2912 2913 if (inp == NULL) 2914 return; 2915 2916 socket = inp->inp_socket; 2917 if (socket == NULL) 2918 return; 2919 2920 if (!INP_WLOCKED(inp)) { 2921 /* 2922 * NOTE: If the write locking fails, we need to bail 2923 * out and use the non-ratelimited ring for the 2924 * transmit until there is a new chance to get the 2925 * write lock. 2926 */ 2927 if (!INP_TRY_UPGRADE(inp)) 2928 return; 2929 did_upgrade = 1; 2930 } else { 2931 did_upgrade = 0; 2932 } 2933 2934 /* 2935 * NOTE: The so_max_pacing_rate value is read unlocked, 2936 * because atomic updates are not required since the variable 2937 * is checked at every mbuf we send. It is assumed that the 2938 * variable read itself will be atomic. 2939 */ 2940 max_pacing_rate = socket->so_max_pacing_rate; 2941 2942 /* 2943 * NOTE: When attaching to a network interface a reference is 2944 * made to ensure the network interface doesn't go away until 2945 * all ratelimit connections are gone. The network interface 2946 * pointers compared below represent valid network interfaces, 2947 * except when comparing towards NULL. 2948 */ 2949 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 2950 error = 0; 2951 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 2952 if (inp->inp_snd_tag != NULL) 2953 in_pcbdetach_txrtlmt(inp); 2954 error = 0; 2955 } else if (inp->inp_snd_tag == NULL) { 2956 /* 2957 * In order to utilize packet pacing with RSS, we need 2958 * to wait until there is a valid RSS hash before we 2959 * can proceed: 2960 */ 2961 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 2962 error = EAGAIN; 2963 } else { 2964 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 2965 mb->m_pkthdr.flowid, max_pacing_rate); 2966 } 2967 } else { 2968 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 2969 } 2970 if (error == 0 || error == EOPNOTSUPP) 2971 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 2972 if (did_upgrade) 2973 INP_DOWNGRADE(inp); 2974 } 2975 2976 /* 2977 * Track route changes for TX rate limiting. 2978 */ 2979 void 2980 in_pcboutput_eagain(struct inpcb *inp) 2981 { 2982 struct socket *socket; 2983 bool did_upgrade; 2984 2985 if (inp == NULL) 2986 return; 2987 2988 socket = inp->inp_socket; 2989 if (socket == NULL) 2990 return; 2991 2992 if (inp->inp_snd_tag == NULL) 2993 return; 2994 2995 if (!INP_WLOCKED(inp)) { 2996 /* 2997 * NOTE: If the write locking fails, we need to bail 2998 * out and use the non-ratelimited ring for the 2999 * transmit until there is a new chance to get the 3000 * write lock. 3001 */ 3002 if (!INP_TRY_UPGRADE(inp)) 3003 return; 3004 did_upgrade = 1; 3005 } else { 3006 did_upgrade = 0; 3007 } 3008 3009 /* detach rate limiting */ 3010 in_pcbdetach_txrtlmt(inp); 3011 3012 /* make sure new mbuf send tag allocation is made */ 3013 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3014 3015 if (did_upgrade) 3016 INP_DOWNGRADE(inp); 3017 } 3018 #endif /* RATELIMIT */ 3019