1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993, 1995 3 * The Regents of the University of California. 4 * Copyright (c) 2007 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 4. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 32 * $FreeBSD$ 33 */ 34 35 #include "opt_ddb.h" 36 #include "opt_ipsec.h" 37 #include "opt_inet6.h" 38 #include "opt_mac.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/malloc.h> 43 #include <sys/mbuf.h> 44 #include <sys/domain.h> 45 #include <sys/protosw.h> 46 #include <sys/socket.h> 47 #include <sys/socketvar.h> 48 #include <sys/priv.h> 49 #include <sys/proc.h> 50 #include <sys/jail.h> 51 #include <sys/kernel.h> 52 #include <sys/sysctl.h> 53 54 #ifdef DDB 55 #include <ddb/ddb.h> 56 #endif 57 58 #include <vm/uma.h> 59 60 #include <net/if.h> 61 #include <net/if_types.h> 62 #include <net/route.h> 63 64 #include <netinet/in.h> 65 #include <netinet/in_pcb.h> 66 #include <netinet/in_var.h> 67 #include <netinet/ip_var.h> 68 #include <netinet/tcp_var.h> 69 #include <netinet/udp.h> 70 #include <netinet/udp_var.h> 71 #ifdef INET6 72 #include <netinet/ip6.h> 73 #include <netinet6/ip6_var.h> 74 #endif /* INET6 */ 75 76 #ifdef IPSEC 77 #include <netinet6/ipsec.h> 78 #include <netkey/key.h> 79 #endif /* IPSEC */ 80 81 #ifdef FAST_IPSEC 82 #if defined(IPSEC) || defined(IPSEC_ESP) 83 #error "Bad idea: don't compile with both IPSEC and FAST_IPSEC!" 84 #endif 85 86 #include <netipsec/ipsec.h> 87 #include <netipsec/key.h> 88 #endif /* FAST_IPSEC */ 89 90 #include <security/mac/mac_framework.h> 91 92 /* 93 * These configure the range of local port addresses assigned to 94 * "unspecified" outgoing connections/packets/whatever. 95 */ 96 int ipport_lowfirstauto = IPPORT_RESERVED - 1; /* 1023 */ 97 int ipport_lowlastauto = IPPORT_RESERVEDSTART; /* 600 */ 98 int ipport_firstauto = IPPORT_HIFIRSTAUTO; /* 49152 */ 99 int ipport_lastauto = IPPORT_HILASTAUTO; /* 65535 */ 100 int ipport_hifirstauto = IPPORT_HIFIRSTAUTO; /* 49152 */ 101 int ipport_hilastauto = IPPORT_HILASTAUTO; /* 65535 */ 102 103 /* 104 * Reserved ports accessible only to root. There are significant 105 * security considerations that must be accounted for when changing these, 106 * but the security benefits can be great. Please be careful. 107 */ 108 int ipport_reservedhigh = IPPORT_RESERVED - 1; /* 1023 */ 109 int ipport_reservedlow = 0; 110 111 /* Variables dealing with random ephemeral port allocation. */ 112 int ipport_randomized = 1; /* user controlled via sysctl */ 113 int ipport_randomcps = 10; /* user controlled via sysctl */ 114 int ipport_randomtime = 45; /* user controlled via sysctl */ 115 int ipport_stoprandom = 0; /* toggled by ipport_tick */ 116 int ipport_tcpallocs; 117 int ipport_tcplastcount; 118 119 #define RANGECHK(var, min, max) \ 120 if ((var) < (min)) { (var) = (min); } \ 121 else if ((var) > (max)) { (var) = (max); } 122 123 static int 124 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 125 { 126 int error; 127 128 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req); 129 if (error == 0) { 130 RANGECHK(ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 131 RANGECHK(ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 132 RANGECHK(ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 133 RANGECHK(ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 134 RANGECHK(ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 135 RANGECHK(ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 136 } 137 return (error); 138 } 139 140 #undef RANGECHK 141 142 SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports"); 143 144 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLTYPE_INT|CTLFLAG_RW, 145 &ipport_lowfirstauto, 0, &sysctl_net_ipport_check, "I", ""); 146 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLTYPE_INT|CTLFLAG_RW, 147 &ipport_lowlastauto, 0, &sysctl_net_ipport_check, "I", ""); 148 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLTYPE_INT|CTLFLAG_RW, 149 &ipport_firstauto, 0, &sysctl_net_ipport_check, "I", ""); 150 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLTYPE_INT|CTLFLAG_RW, 151 &ipport_lastauto, 0, &sysctl_net_ipport_check, "I", ""); 152 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLTYPE_INT|CTLFLAG_RW, 153 &ipport_hifirstauto, 0, &sysctl_net_ipport_check, "I", ""); 154 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLTYPE_INT|CTLFLAG_RW, 155 &ipport_hilastauto, 0, &sysctl_net_ipport_check, "I", ""); 156 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 157 CTLFLAG_RW|CTLFLAG_SECURE, &ipport_reservedhigh, 0, ""); 158 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 159 CTLFLAG_RW|CTLFLAG_SECURE, &ipport_reservedlow, 0, ""); 160 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW, 161 &ipport_randomized, 0, "Enable random port allocation"); 162 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW, 163 &ipport_randomcps, 0, "Maximum number of random port " 164 "allocations before switching to a sequental one"); 165 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW, 166 &ipport_randomtime, 0, "Minimum time to keep sequental port " 167 "allocation before switching to a random one"); 168 169 /* 170 * in_pcb.c: manage the Protocol Control Blocks. 171 * 172 * NOTE: It is assumed that most of these functions will be called with 173 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 174 * functions often modify hash chains or addresses in pcbs. 175 */ 176 177 /* 178 * Allocate a PCB and associate it with the socket. 179 * On success return with the PCB locked. 180 */ 181 int 182 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 183 { 184 struct inpcb *inp; 185 int error; 186 187 INP_INFO_WLOCK_ASSERT(pcbinfo); 188 error = 0; 189 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 190 if (inp == NULL) 191 return (ENOBUFS); 192 bzero(inp, inp_zero_size); 193 inp->inp_pcbinfo = pcbinfo; 194 inp->inp_socket = so; 195 #ifdef MAC 196 error = mac_init_inpcb(inp, M_NOWAIT); 197 if (error != 0) 198 goto out; 199 SOCK_LOCK(so); 200 mac_create_inpcb_from_socket(so, inp); 201 SOCK_UNLOCK(so); 202 #endif 203 #if defined(IPSEC) || defined(FAST_IPSEC) 204 #ifdef FAST_IPSEC 205 error = ipsec_init_policy(so, &inp->inp_sp); 206 #else 207 error = ipsec_init_pcbpolicy(so, &inp->inp_sp); 208 #endif 209 if (error != 0) 210 goto out; 211 #endif /*IPSEC*/ 212 #ifdef INET6 213 if (INP_SOCKAF(so) == AF_INET6) { 214 inp->inp_vflag |= INP_IPV6PROTO; 215 if (ip6_v6only) 216 inp->inp_flags |= IN6P_IPV6_V6ONLY; 217 } 218 #endif 219 LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 220 pcbinfo->ipi_count++; 221 so->so_pcb = (caddr_t)inp; 222 #ifdef INET6 223 if (ip6_auto_flowlabel) 224 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 225 #endif 226 INP_LOCK(inp); 227 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 228 229 #if defined(IPSEC) || defined(FAST_IPSEC) || defined(MAC) 230 out: 231 if (error != 0) 232 uma_zfree(pcbinfo->ipi_zone, inp); 233 #endif 234 return (error); 235 } 236 237 int 238 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 239 { 240 int anonport, error; 241 242 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 243 INP_LOCK_ASSERT(inp); 244 245 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 246 return (EINVAL); 247 anonport = inp->inp_lport == 0 && (nam == NULL || 248 ((struct sockaddr_in *)nam)->sin_port == 0); 249 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 250 &inp->inp_lport, cred); 251 if (error) 252 return (error); 253 if (in_pcbinshash(inp) != 0) { 254 inp->inp_laddr.s_addr = INADDR_ANY; 255 inp->inp_lport = 0; 256 return (EAGAIN); 257 } 258 if (anonport) 259 inp->inp_flags |= INP_ANONPORT; 260 return (0); 261 } 262 263 /* 264 * Set up a bind operation on a PCB, performing port allocation 265 * as required, but do not actually modify the PCB. Callers can 266 * either complete the bind by setting inp_laddr/inp_lport and 267 * calling in_pcbinshash(), or they can just use the resulting 268 * port and address to authorise the sending of a once-off packet. 269 * 270 * On error, the values of *laddrp and *lportp are not changed. 271 */ 272 int 273 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 274 u_short *lportp, struct ucred *cred) 275 { 276 struct socket *so = inp->inp_socket; 277 unsigned short *lastport; 278 struct sockaddr_in *sin; 279 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 280 struct in_addr laddr; 281 u_short lport = 0; 282 int wild = 0, reuseport = (so->so_options & SO_REUSEPORT); 283 int error, prison = 0; 284 int dorandom; 285 286 INP_INFO_WLOCK_ASSERT(pcbinfo); 287 INP_LOCK_ASSERT(inp); 288 289 if (TAILQ_EMPTY(&in_ifaddrhead)) /* XXX broken! */ 290 return (EADDRNOTAVAIL); 291 laddr.s_addr = *laddrp; 292 if (nam != NULL && laddr.s_addr != INADDR_ANY) 293 return (EINVAL); 294 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) 295 wild = INPLOOKUP_WILDCARD; 296 if (nam) { 297 sin = (struct sockaddr_in *)nam; 298 if (nam->sa_len != sizeof (*sin)) 299 return (EINVAL); 300 #ifdef notdef 301 /* 302 * We should check the family, but old programs 303 * incorrectly fail to initialize it. 304 */ 305 if (sin->sin_family != AF_INET) 306 return (EAFNOSUPPORT); 307 #endif 308 if (sin->sin_addr.s_addr != INADDR_ANY) 309 if (prison_ip(cred, 0, &sin->sin_addr.s_addr)) 310 return(EINVAL); 311 if (sin->sin_port != *lportp) { 312 /* Don't allow the port to change. */ 313 if (*lportp != 0) 314 return (EINVAL); 315 lport = sin->sin_port; 316 } 317 /* NB: lport is left as 0 if the port isn't being changed. */ 318 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 319 /* 320 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 321 * allow complete duplication of binding if 322 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 323 * and a multicast address is bound on both 324 * new and duplicated sockets. 325 */ 326 if (so->so_options & SO_REUSEADDR) 327 reuseport = SO_REUSEADDR|SO_REUSEPORT; 328 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 329 sin->sin_port = 0; /* yech... */ 330 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 331 if (ifa_ifwithaddr((struct sockaddr *)sin) == 0) 332 return (EADDRNOTAVAIL); 333 } 334 laddr = sin->sin_addr; 335 if (lport) { 336 struct inpcb *t; 337 struct tcptw *tw; 338 339 /* GROSS */ 340 if (ntohs(lport) <= ipport_reservedhigh && 341 ntohs(lport) >= ipport_reservedlow && 342 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 343 SUSER_ALLOWJAIL)) 344 return (EACCES); 345 if (jailed(cred)) 346 prison = 1; 347 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 348 priv_check_cred(so->so_cred, 349 PRIV_NETINET_REUSEPORT, SUSER_ALLOWJAIL) != 0) { 350 t = in_pcblookup_local(inp->inp_pcbinfo, 351 sin->sin_addr, lport, 352 prison ? 0 : INPLOOKUP_WILDCARD); 353 /* 354 * XXX 355 * This entire block sorely needs a rewrite. 356 */ 357 if (t && 358 ((t->inp_vflag & INP_TIMEWAIT) == 0) && 359 (so->so_type != SOCK_STREAM || 360 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 361 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 362 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 363 (t->inp_socket->so_options & 364 SO_REUSEPORT) == 0) && 365 (so->so_cred->cr_uid != 366 t->inp_socket->so_cred->cr_uid)) 367 return (EADDRINUSE); 368 } 369 if (prison && prison_ip(cred, 0, &sin->sin_addr.s_addr)) 370 return (EADDRNOTAVAIL); 371 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 372 lport, prison ? 0 : wild); 373 if (t && (t->inp_vflag & INP_TIMEWAIT)) { 374 /* 375 * XXXRW: If an incpb has had its timewait 376 * state recycled, we treat the address as 377 * being in use (for now). This is better 378 * than a panic, but not desirable. 379 */ 380 tw = intotw(inp); 381 if (tw == NULL || 382 (reuseport & tw->tw_so_options) == 0) 383 return (EADDRINUSE); 384 } else if (t && 385 (reuseport & t->inp_socket->so_options) == 0) { 386 #ifdef INET6 387 if (ntohl(sin->sin_addr.s_addr) != 388 INADDR_ANY || 389 ntohl(t->inp_laddr.s_addr) != 390 INADDR_ANY || 391 INP_SOCKAF(so) == 392 INP_SOCKAF(t->inp_socket)) 393 #endif 394 return (EADDRINUSE); 395 } 396 } 397 } 398 if (*lportp != 0) 399 lport = *lportp; 400 if (lport == 0) { 401 u_short first, last; 402 int count; 403 404 if (laddr.s_addr != INADDR_ANY) 405 if (prison_ip(cred, 0, &laddr.s_addr)) 406 return (EINVAL); 407 408 if (inp->inp_flags & INP_HIGHPORT) { 409 first = ipport_hifirstauto; /* sysctl */ 410 last = ipport_hilastauto; 411 lastport = &pcbinfo->ipi_lasthi; 412 } else if (inp->inp_flags & INP_LOWPORT) { 413 error = priv_check_cred(cred, 414 PRIV_NETINET_RESERVEDPORT, SUSER_ALLOWJAIL); 415 if (error) 416 return error; 417 first = ipport_lowfirstauto; /* 1023 */ 418 last = ipport_lowlastauto; /* 600 */ 419 lastport = &pcbinfo->ipi_lastlow; 420 } else { 421 first = ipport_firstauto; /* sysctl */ 422 last = ipport_lastauto; 423 lastport = &pcbinfo->ipi_lastport; 424 } 425 /* 426 * For UDP, use random port allocation as long as the user 427 * allows it. For TCP (and as of yet unknown) connections, 428 * use random port allocation only if the user allows it AND 429 * ipport_tick() allows it. 430 */ 431 if (ipport_randomized && 432 (!ipport_stoprandom || pcbinfo == &udbinfo)) 433 dorandom = 1; 434 else 435 dorandom = 0; 436 /* 437 * It makes no sense to do random port allocation if 438 * we have the only port available. 439 */ 440 if (first == last) 441 dorandom = 0; 442 /* Make sure to not include UDP packets in the count. */ 443 if (pcbinfo != &udbinfo) 444 ipport_tcpallocs++; 445 /* 446 * Simple check to ensure all ports are not used up causing 447 * a deadlock here. 448 * 449 * We split the two cases (up and down) so that the direction 450 * is not being tested on each round of the loop. 451 */ 452 if (first > last) { 453 /* 454 * counting down 455 */ 456 if (dorandom) 457 *lastport = first - 458 (arc4random() % (first - last)); 459 count = first - last; 460 461 do { 462 if (count-- < 0) /* completely used? */ 463 return (EADDRNOTAVAIL); 464 --*lastport; 465 if (*lastport > first || *lastport < last) 466 *lastport = first; 467 lport = htons(*lastport); 468 } while (in_pcblookup_local(pcbinfo, laddr, lport, 469 wild)); 470 } else { 471 /* 472 * counting up 473 */ 474 if (dorandom) 475 *lastport = first + 476 (arc4random() % (last - first)); 477 count = last - first; 478 479 do { 480 if (count-- < 0) /* completely used? */ 481 return (EADDRNOTAVAIL); 482 ++*lastport; 483 if (*lastport < first || *lastport > last) 484 *lastport = first; 485 lport = htons(*lastport); 486 } while (in_pcblookup_local(pcbinfo, laddr, lport, 487 wild)); 488 } 489 } 490 if (prison_ip(cred, 0, &laddr.s_addr)) 491 return (EINVAL); 492 *laddrp = laddr.s_addr; 493 *lportp = lport; 494 return (0); 495 } 496 497 /* 498 * Connect from a socket to a specified address. 499 * Both address and port must be specified in argument sin. 500 * If don't have a local address for this socket yet, 501 * then pick one. 502 */ 503 int 504 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 505 { 506 u_short lport, fport; 507 in_addr_t laddr, faddr; 508 int anonport, error; 509 510 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 511 INP_LOCK_ASSERT(inp); 512 513 lport = inp->inp_lport; 514 laddr = inp->inp_laddr.s_addr; 515 anonport = (lport == 0); 516 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 517 NULL, cred); 518 if (error) 519 return (error); 520 521 /* Do the initial binding of the local address if required. */ 522 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 523 inp->inp_lport = lport; 524 inp->inp_laddr.s_addr = laddr; 525 if (in_pcbinshash(inp) != 0) { 526 inp->inp_laddr.s_addr = INADDR_ANY; 527 inp->inp_lport = 0; 528 return (EAGAIN); 529 } 530 } 531 532 /* Commit the remaining changes. */ 533 inp->inp_lport = lport; 534 inp->inp_laddr.s_addr = laddr; 535 inp->inp_faddr.s_addr = faddr; 536 inp->inp_fport = fport; 537 in_pcbrehash(inp); 538 #ifdef IPSEC 539 if (inp->inp_socket->so_type == SOCK_STREAM) 540 ipsec_pcbconn(inp->inp_sp); 541 #endif 542 if (anonport) 543 inp->inp_flags |= INP_ANONPORT; 544 return (0); 545 } 546 547 /* 548 * Set up for a connect from a socket to the specified address. 549 * On entry, *laddrp and *lportp should contain the current local 550 * address and port for the PCB; these are updated to the values 551 * that should be placed in inp_laddr and inp_lport to complete 552 * the connect. 553 * 554 * On success, *faddrp and *fportp will be set to the remote address 555 * and port. These are not updated in the error case. 556 * 557 * If the operation fails because the connection already exists, 558 * *oinpp will be set to the PCB of that connection so that the 559 * caller can decide to override it. In all other cases, *oinpp 560 * is set to NULL. 561 */ 562 int 563 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 564 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 565 struct inpcb **oinpp, struct ucred *cred) 566 { 567 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 568 struct in_ifaddr *ia; 569 struct sockaddr_in sa; 570 struct ucred *socred; 571 struct inpcb *oinp; 572 struct in_addr laddr, faddr; 573 u_short lport, fport; 574 int error; 575 576 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 577 INP_LOCK_ASSERT(inp); 578 579 if (oinpp != NULL) 580 *oinpp = NULL; 581 if (nam->sa_len != sizeof (*sin)) 582 return (EINVAL); 583 if (sin->sin_family != AF_INET) 584 return (EAFNOSUPPORT); 585 if (sin->sin_port == 0) 586 return (EADDRNOTAVAIL); 587 laddr.s_addr = *laddrp; 588 lport = *lportp; 589 faddr = sin->sin_addr; 590 fport = sin->sin_port; 591 socred = inp->inp_socket->so_cred; 592 if (laddr.s_addr == INADDR_ANY && jailed(socred)) { 593 bzero(&sa, sizeof(sa)); 594 sa.sin_addr.s_addr = htonl(prison_getip(socred)); 595 sa.sin_len = sizeof(sa); 596 sa.sin_family = AF_INET; 597 error = in_pcbbind_setup(inp, (struct sockaddr *)&sa, 598 &laddr.s_addr, &lport, cred); 599 if (error) 600 return (error); 601 } 602 if (!TAILQ_EMPTY(&in_ifaddrhead)) { 603 /* 604 * If the destination address is INADDR_ANY, 605 * use the primary local address. 606 * If the supplied address is INADDR_BROADCAST, 607 * and the primary interface supports broadcast, 608 * choose the broadcast address for that interface. 609 */ 610 if (faddr.s_addr == INADDR_ANY) 611 faddr = IA_SIN(TAILQ_FIRST(&in_ifaddrhead))->sin_addr; 612 else if (faddr.s_addr == (u_long)INADDR_BROADCAST && 613 (TAILQ_FIRST(&in_ifaddrhead)->ia_ifp->if_flags & 614 IFF_BROADCAST)) 615 faddr = satosin(&TAILQ_FIRST( 616 &in_ifaddrhead)->ia_broadaddr)->sin_addr; 617 } 618 if (laddr.s_addr == INADDR_ANY) { 619 ia = (struct in_ifaddr *)0; 620 /* 621 * If route is known our src addr is taken from the i/f, 622 * else punt. 623 * 624 * Find out route to destination 625 */ 626 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 627 ia = ip_rtaddr(faddr); 628 /* 629 * If we found a route, use the address corresponding to 630 * the outgoing interface. 631 * 632 * Otherwise assume faddr is reachable on a directly connected 633 * network and try to find a corresponding interface to take 634 * the source address from. 635 */ 636 if (ia == 0) { 637 bzero(&sa, sizeof(sa)); 638 sa.sin_addr = faddr; 639 sa.sin_len = sizeof(sa); 640 sa.sin_family = AF_INET; 641 642 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sa))); 643 if (ia == 0) 644 ia = ifatoia(ifa_ifwithnet(sintosa(&sa))); 645 if (ia == 0) 646 return (ENETUNREACH); 647 } 648 /* 649 * If the destination address is multicast and an outgoing 650 * interface has been set as a multicast option, use the 651 * address of that interface as our source address. 652 */ 653 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 654 inp->inp_moptions != NULL) { 655 struct ip_moptions *imo; 656 struct ifnet *ifp; 657 658 imo = inp->inp_moptions; 659 if (imo->imo_multicast_ifp != NULL) { 660 ifp = imo->imo_multicast_ifp; 661 TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) 662 if (ia->ia_ifp == ifp) 663 break; 664 if (ia == 0) 665 return (EADDRNOTAVAIL); 666 } 667 } 668 laddr = ia->ia_addr.sin_addr; 669 } 670 671 oinp = in_pcblookup_hash(inp->inp_pcbinfo, faddr, fport, laddr, lport, 672 0, NULL); 673 if (oinp != NULL) { 674 if (oinpp != NULL) 675 *oinpp = oinp; 676 return (EADDRINUSE); 677 } 678 if (lport == 0) { 679 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 680 cred); 681 if (error) 682 return (error); 683 } 684 *laddrp = laddr.s_addr; 685 *lportp = lport; 686 *faddrp = faddr.s_addr; 687 *fportp = fport; 688 return (0); 689 } 690 691 void 692 in_pcbdisconnect(struct inpcb *inp) 693 { 694 695 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 696 INP_LOCK_ASSERT(inp); 697 698 inp->inp_faddr.s_addr = INADDR_ANY; 699 inp->inp_fport = 0; 700 in_pcbrehash(inp); 701 #ifdef IPSEC 702 ipsec_pcbdisconn(inp->inp_sp); 703 #endif 704 } 705 706 /* 707 * In the old world order, in_pcbdetach() served two functions: to detach the 708 * pcb from the socket/potentially free the socket, and to free the pcb 709 * itself. In the new world order, the protocol code is responsible for 710 * managing the relationship with the socket, and this code simply frees the 711 * pcb. 712 */ 713 void 714 in_pcbdetach(struct inpcb *inp) 715 { 716 717 KASSERT(inp->inp_socket != NULL, ("in_pcbdetach: inp_socket == NULL")); 718 inp->inp_socket->so_pcb = NULL; 719 inp->inp_socket = NULL; 720 } 721 722 void 723 in_pcbfree(struct inpcb *inp) 724 { 725 struct inpcbinfo *ipi = inp->inp_pcbinfo; 726 727 KASSERT(inp->inp_socket == NULL, ("in_pcbfree: inp_socket != NULL")); 728 INP_INFO_WLOCK_ASSERT(ipi); 729 INP_LOCK_ASSERT(inp); 730 731 #if defined(IPSEC) || defined(FAST_IPSEC) 732 ipsec4_delete_pcbpolicy(inp); 733 #endif /*IPSEC*/ 734 inp->inp_gencnt = ++ipi->ipi_gencnt; 735 in_pcbremlists(inp); 736 if (inp->inp_options) 737 (void)m_free(inp->inp_options); 738 ip_freemoptions(inp->inp_moptions); 739 inp->inp_vflag = 0; 740 741 #ifdef MAC 742 mac_destroy_inpcb(inp); 743 #endif 744 INP_UNLOCK(inp); 745 uma_zfree(ipi->ipi_zone, inp); 746 } 747 748 /* 749 * TCP needs to maintain its inpcb structure after the TCP connection has 750 * been torn down. However, it must be disconnected from the inpcb hashes as 751 * it must not prevent binding of future connections to the same port/ip 752 * combination by other inpcbs. 753 */ 754 void 755 in_pcbdrop(struct inpcb *inp) 756 { 757 758 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 759 INP_LOCK_ASSERT(inp); 760 761 inp->inp_vflag |= INP_DROPPED; 762 if (inp->inp_lport) { 763 struct inpcbport *phd = inp->inp_phd; 764 765 LIST_REMOVE(inp, inp_hash); 766 LIST_REMOVE(inp, inp_portlist); 767 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 768 LIST_REMOVE(phd, phd_hash); 769 free(phd, M_PCB); 770 } 771 inp->inp_lport = 0; 772 } 773 } 774 775 /* 776 * Common routines to return the socket addresses associated with inpcbs. 777 */ 778 struct sockaddr * 779 in_sockaddr(in_port_t port, struct in_addr *addr_p) 780 { 781 struct sockaddr_in *sin; 782 783 MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME, 784 M_WAITOK | M_ZERO); 785 sin->sin_family = AF_INET; 786 sin->sin_len = sizeof(*sin); 787 sin->sin_addr = *addr_p; 788 sin->sin_port = port; 789 790 return (struct sockaddr *)sin; 791 } 792 793 int 794 in_getsockaddr(struct socket *so, struct sockaddr **nam) 795 { 796 struct inpcb *inp; 797 struct in_addr addr; 798 in_port_t port; 799 800 inp = sotoinpcb(so); 801 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 802 803 INP_LOCK(inp); 804 port = inp->inp_lport; 805 addr = inp->inp_laddr; 806 INP_UNLOCK(inp); 807 808 *nam = in_sockaddr(port, &addr); 809 return 0; 810 } 811 812 int 813 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 814 { 815 struct inpcb *inp; 816 struct in_addr addr; 817 in_port_t port; 818 819 inp = sotoinpcb(so); 820 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 821 822 INP_LOCK(inp); 823 port = inp->inp_fport; 824 addr = inp->inp_faddr; 825 INP_UNLOCK(inp); 826 827 *nam = in_sockaddr(port, &addr); 828 return 0; 829 } 830 831 void 832 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 833 struct inpcb *(*notify)(struct inpcb *, int)) 834 { 835 struct inpcb *inp, *ninp; 836 struct inpcbhead *head; 837 838 INP_INFO_WLOCK(pcbinfo); 839 head = pcbinfo->ipi_listhead; 840 for (inp = LIST_FIRST(head); inp != NULL; inp = ninp) { 841 INP_LOCK(inp); 842 ninp = LIST_NEXT(inp, inp_list); 843 #ifdef INET6 844 if ((inp->inp_vflag & INP_IPV4) == 0) { 845 INP_UNLOCK(inp); 846 continue; 847 } 848 #endif 849 if (inp->inp_faddr.s_addr != faddr.s_addr || 850 inp->inp_socket == NULL) { 851 INP_UNLOCK(inp); 852 continue; 853 } 854 if ((*notify)(inp, errno)) 855 INP_UNLOCK(inp); 856 } 857 INP_INFO_WUNLOCK(pcbinfo); 858 } 859 860 void 861 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 862 { 863 struct inpcb *inp; 864 struct ip_moptions *imo; 865 int i, gap; 866 867 INP_INFO_RLOCK(pcbinfo); 868 LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 869 INP_LOCK(inp); 870 imo = inp->inp_moptions; 871 if ((inp->inp_vflag & INP_IPV4) && 872 imo != NULL) { 873 /* 874 * Unselect the outgoing interface if it is being 875 * detached. 876 */ 877 if (imo->imo_multicast_ifp == ifp) 878 imo->imo_multicast_ifp = NULL; 879 880 /* 881 * Drop multicast group membership if we joined 882 * through the interface being detached. 883 */ 884 for (i = 0, gap = 0; i < imo->imo_num_memberships; 885 i++) { 886 if (imo->imo_membership[i]->inm_ifp == ifp) { 887 in_delmulti(imo->imo_membership[i]); 888 gap++; 889 } else if (gap != 0) 890 imo->imo_membership[i - gap] = 891 imo->imo_membership[i]; 892 } 893 imo->imo_num_memberships -= gap; 894 } 895 INP_UNLOCK(inp); 896 } 897 INP_INFO_RUNLOCK(pcbinfo); 898 } 899 900 /* 901 * Lookup a PCB based on the local address and port. 902 */ 903 #define INP_LOOKUP_MAPPED_PCB_COST 3 904 struct inpcb * 905 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 906 u_int lport_arg, int wild_okay) 907 { 908 struct inpcb *inp; 909 #ifdef INET6 910 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 911 #else 912 int matchwild = 3; 913 #endif 914 int wildcard; 915 u_short lport = lport_arg; 916 917 INP_INFO_WLOCK_ASSERT(pcbinfo); 918 919 if (!wild_okay) { 920 struct inpcbhead *head; 921 /* 922 * Look for an unconnected (wildcard foreign addr) PCB that 923 * matches the local address and port we're looking for. 924 */ 925 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 926 0, pcbinfo->ipi_hashmask)]; 927 LIST_FOREACH(inp, head, inp_hash) { 928 #ifdef INET6 929 if ((inp->inp_vflag & INP_IPV4) == 0) 930 continue; 931 #endif 932 if (inp->inp_faddr.s_addr == INADDR_ANY && 933 inp->inp_laddr.s_addr == laddr.s_addr && 934 inp->inp_lport == lport) { 935 /* 936 * Found. 937 */ 938 return (inp); 939 } 940 } 941 /* 942 * Not found. 943 */ 944 return (NULL); 945 } else { 946 struct inpcbporthead *porthash; 947 struct inpcbport *phd; 948 struct inpcb *match = NULL; 949 /* 950 * Best fit PCB lookup. 951 * 952 * First see if this local port is in use by looking on the 953 * port hash list. 954 */ 955 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 956 pcbinfo->ipi_porthashmask)]; 957 LIST_FOREACH(phd, porthash, phd_hash) { 958 if (phd->phd_port == lport) 959 break; 960 } 961 if (phd != NULL) { 962 /* 963 * Port is in use by one or more PCBs. Look for best 964 * fit. 965 */ 966 LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 967 wildcard = 0; 968 #ifdef INET6 969 if ((inp->inp_vflag & INP_IPV4) == 0) 970 continue; 971 /* 972 * We never select the PCB that has 973 * INP_IPV6 flag and is bound to :: if 974 * we have another PCB which is bound 975 * to 0.0.0.0. If a PCB has the 976 * INP_IPV6 flag, then we set its cost 977 * higher than IPv4 only PCBs. 978 * 979 * Note that the case only happens 980 * when a socket is bound to ::, under 981 * the condition that the use of the 982 * mapped address is allowed. 983 */ 984 if ((inp->inp_vflag & INP_IPV6) != 0) 985 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 986 #endif 987 if (inp->inp_faddr.s_addr != INADDR_ANY) 988 wildcard++; 989 if (inp->inp_laddr.s_addr != INADDR_ANY) { 990 if (laddr.s_addr == INADDR_ANY) 991 wildcard++; 992 else if (inp->inp_laddr.s_addr != laddr.s_addr) 993 continue; 994 } else { 995 if (laddr.s_addr != INADDR_ANY) 996 wildcard++; 997 } 998 if (wildcard < matchwild) { 999 match = inp; 1000 matchwild = wildcard; 1001 if (matchwild == 0) { 1002 break; 1003 } 1004 } 1005 } 1006 } 1007 return (match); 1008 } 1009 } 1010 #undef INP_LOOKUP_MAPPED_PCB_COST 1011 1012 /* 1013 * Lookup PCB in hash list. 1014 */ 1015 struct inpcb * 1016 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1017 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard, 1018 struct ifnet *ifp) 1019 { 1020 struct inpcbhead *head; 1021 struct inpcb *inp; 1022 u_short fport = fport_arg, lport = lport_arg; 1023 1024 INP_INFO_RLOCK_ASSERT(pcbinfo); 1025 1026 /* 1027 * First look for an exact match. 1028 */ 1029 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1030 pcbinfo->ipi_hashmask)]; 1031 LIST_FOREACH(inp, head, inp_hash) { 1032 #ifdef INET6 1033 if ((inp->inp_vflag & INP_IPV4) == 0) 1034 continue; 1035 #endif 1036 if (inp->inp_faddr.s_addr == faddr.s_addr && 1037 inp->inp_laddr.s_addr == laddr.s_addr && 1038 inp->inp_fport == fport && 1039 inp->inp_lport == lport) 1040 return (inp); 1041 } 1042 1043 /* 1044 * Then look for a wildcard match, if requested. 1045 */ 1046 if (wildcard) { 1047 struct inpcb *local_wild = NULL; 1048 #ifdef INET6 1049 struct inpcb *local_wild_mapped = NULL; 1050 #endif 1051 1052 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1053 0, pcbinfo->ipi_hashmask)]; 1054 LIST_FOREACH(inp, head, inp_hash) { 1055 #ifdef INET6 1056 if ((inp->inp_vflag & INP_IPV4) == 0) 1057 continue; 1058 #endif 1059 if (inp->inp_faddr.s_addr == INADDR_ANY && 1060 inp->inp_lport == lport) { 1061 if (ifp && ifp->if_type == IFT_FAITH && 1062 (inp->inp_flags & INP_FAITH) == 0) 1063 continue; 1064 if (inp->inp_laddr.s_addr == laddr.s_addr) 1065 return (inp); 1066 else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1067 #ifdef INET6 1068 if (INP_CHECK_SOCKAF(inp->inp_socket, 1069 AF_INET6)) 1070 local_wild_mapped = inp; 1071 else 1072 #endif 1073 local_wild = inp; 1074 } 1075 } 1076 } 1077 #ifdef INET6 1078 if (local_wild == NULL) 1079 return (local_wild_mapped); 1080 #endif 1081 return (local_wild); 1082 } 1083 return (NULL); 1084 } 1085 1086 /* 1087 * Insert PCB onto various hash lists. 1088 */ 1089 int 1090 in_pcbinshash(struct inpcb *inp) 1091 { 1092 struct inpcbhead *pcbhash; 1093 struct inpcbporthead *pcbporthash; 1094 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1095 struct inpcbport *phd; 1096 u_int32_t hashkey_faddr; 1097 1098 INP_INFO_WLOCK_ASSERT(pcbinfo); 1099 INP_LOCK_ASSERT(inp); 1100 1101 #ifdef INET6 1102 if (inp->inp_vflag & INP_IPV6) 1103 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; 1104 else 1105 #endif /* INET6 */ 1106 hashkey_faddr = inp->inp_faddr.s_addr; 1107 1108 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 1109 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 1110 1111 pcbporthash = &pcbinfo->ipi_porthashbase[ 1112 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 1113 1114 /* 1115 * Go through port list and look for a head for this lport. 1116 */ 1117 LIST_FOREACH(phd, pcbporthash, phd_hash) { 1118 if (phd->phd_port == inp->inp_lport) 1119 break; 1120 } 1121 /* 1122 * If none exists, malloc one and tack it on. 1123 */ 1124 if (phd == NULL) { 1125 MALLOC(phd, struct inpcbport *, sizeof(struct inpcbport), M_PCB, M_NOWAIT); 1126 if (phd == NULL) { 1127 return (ENOBUFS); /* XXX */ 1128 } 1129 phd->phd_port = inp->inp_lport; 1130 LIST_INIT(&phd->phd_pcblist); 1131 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 1132 } 1133 inp->inp_phd = phd; 1134 LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 1135 LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 1136 return (0); 1137 } 1138 1139 /* 1140 * Move PCB to the proper hash bucket when { faddr, fport } have been 1141 * changed. NOTE: This does not handle the case of the lport changing (the 1142 * hashed port list would have to be updated as well), so the lport must 1143 * not change after in_pcbinshash() has been called. 1144 */ 1145 void 1146 in_pcbrehash(struct inpcb *inp) 1147 { 1148 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1149 struct inpcbhead *head; 1150 u_int32_t hashkey_faddr; 1151 1152 INP_INFO_WLOCK_ASSERT(pcbinfo); 1153 INP_LOCK_ASSERT(inp); 1154 1155 #ifdef INET6 1156 if (inp->inp_vflag & INP_IPV6) 1157 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; 1158 else 1159 #endif /* INET6 */ 1160 hashkey_faddr = inp->inp_faddr.s_addr; 1161 1162 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 1163 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 1164 1165 LIST_REMOVE(inp, inp_hash); 1166 LIST_INSERT_HEAD(head, inp, inp_hash); 1167 } 1168 1169 /* 1170 * Remove PCB from various lists. 1171 */ 1172 void 1173 in_pcbremlists(struct inpcb *inp) 1174 { 1175 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1176 1177 INP_INFO_WLOCK_ASSERT(pcbinfo); 1178 INP_LOCK_ASSERT(inp); 1179 1180 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1181 if (inp->inp_lport) { 1182 struct inpcbport *phd = inp->inp_phd; 1183 1184 LIST_REMOVE(inp, inp_hash); 1185 LIST_REMOVE(inp, inp_portlist); 1186 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 1187 LIST_REMOVE(phd, phd_hash); 1188 free(phd, M_PCB); 1189 } 1190 } 1191 LIST_REMOVE(inp, inp_list); 1192 pcbinfo->ipi_count--; 1193 } 1194 1195 /* 1196 * A set label operation has occurred at the socket layer, propagate the 1197 * label change into the in_pcb for the socket. 1198 */ 1199 void 1200 in_pcbsosetlabel(struct socket *so) 1201 { 1202 #ifdef MAC 1203 struct inpcb *inp; 1204 1205 inp = sotoinpcb(so); 1206 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 1207 1208 INP_LOCK(inp); 1209 SOCK_LOCK(so); 1210 mac_inpcb_sosetlabel(so, inp); 1211 SOCK_UNLOCK(so); 1212 INP_UNLOCK(inp); 1213 #endif 1214 } 1215 1216 /* 1217 * ipport_tick runs once per second, determining if random port allocation 1218 * should be continued. If more than ipport_randomcps ports have been 1219 * allocated in the last second, then we return to sequential port 1220 * allocation. We return to random allocation only once we drop below 1221 * ipport_randomcps for at least ipport_randomtime seconds. 1222 */ 1223 void 1224 ipport_tick(void *xtp) 1225 { 1226 1227 if (ipport_tcpallocs <= ipport_tcplastcount + ipport_randomcps) { 1228 if (ipport_stoprandom > 0) 1229 ipport_stoprandom--; 1230 } else 1231 ipport_stoprandom = ipport_randomtime; 1232 ipport_tcplastcount = ipport_tcpallocs; 1233 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 1234 } 1235 1236 #ifdef DDB 1237 static void 1238 db_print_indent(int indent) 1239 { 1240 int i; 1241 1242 for (i = 0; i < indent; i++) 1243 db_printf(" "); 1244 } 1245 1246 static void 1247 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 1248 { 1249 char faddr_str[48], laddr_str[48]; 1250 1251 db_print_indent(indent); 1252 db_printf("%s at %p\n", name, inc); 1253 1254 indent += 2; 1255 1256 #ifdef INET6 1257 if (inc->inc_flags == 1) { 1258 /* IPv6. */ 1259 ip6_sprintf(laddr_str, &inc->inc6_laddr); 1260 ip6_sprintf(faddr_str, &inc->inc6_faddr); 1261 } else { 1262 #endif 1263 /* IPv4. */ 1264 inet_ntoa_r(inc->inc_laddr, laddr_str); 1265 inet_ntoa_r(inc->inc_faddr, faddr_str); 1266 #ifdef INET6 1267 } 1268 #endif 1269 db_print_indent(indent); 1270 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 1271 ntohs(inc->inc_lport)); 1272 db_print_indent(indent); 1273 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 1274 ntohs(inc->inc_fport)); 1275 } 1276 1277 static void 1278 db_print_inpflags(int inp_flags) 1279 { 1280 int comma; 1281 1282 comma = 0; 1283 if (inp_flags & INP_RECVOPTS) { 1284 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 1285 comma = 1; 1286 } 1287 if (inp_flags & INP_RECVRETOPTS) { 1288 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 1289 comma = 1; 1290 } 1291 if (inp_flags & INP_RECVDSTADDR) { 1292 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 1293 comma = 1; 1294 } 1295 if (inp_flags & INP_HDRINCL) { 1296 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 1297 comma = 1; 1298 } 1299 if (inp_flags & INP_HIGHPORT) { 1300 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 1301 comma = 1; 1302 } 1303 if (inp_flags & INP_LOWPORT) { 1304 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 1305 comma = 1; 1306 } 1307 if (inp_flags & INP_ANONPORT) { 1308 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 1309 comma = 1; 1310 } 1311 if (inp_flags & INP_RECVIF) { 1312 db_printf("%sINP_RECVIF", comma ? ", " : ""); 1313 comma = 1; 1314 } 1315 if (inp_flags & INP_MTUDISC) { 1316 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 1317 comma = 1; 1318 } 1319 if (inp_flags & INP_FAITH) { 1320 db_printf("%sINP_FAITH", comma ? ", " : ""); 1321 comma = 1; 1322 } 1323 if (inp_flags & INP_RECVTTL) { 1324 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 1325 comma = 1; 1326 } 1327 if (inp_flags & INP_DONTFRAG) { 1328 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 1329 comma = 1; 1330 } 1331 if (inp_flags & IN6P_IPV6_V6ONLY) { 1332 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 1333 comma = 1; 1334 } 1335 if (inp_flags & IN6P_PKTINFO) { 1336 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 1337 comma = 1; 1338 } 1339 if (inp_flags & IN6P_HOPLIMIT) { 1340 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 1341 comma = 1; 1342 } 1343 if (inp_flags & IN6P_HOPOPTS) { 1344 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 1345 comma = 1; 1346 } 1347 if (inp_flags & IN6P_DSTOPTS) { 1348 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 1349 comma = 1; 1350 } 1351 if (inp_flags & IN6P_RTHDR) { 1352 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 1353 comma = 1; 1354 } 1355 if (inp_flags & IN6P_RTHDRDSTOPTS) { 1356 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 1357 comma = 1; 1358 } 1359 if (inp_flags & IN6P_TCLASS) { 1360 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 1361 comma = 1; 1362 } 1363 if (inp_flags & IN6P_AUTOFLOWLABEL) { 1364 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 1365 comma = 1; 1366 } 1367 if (inp_flags & IN6P_RFC2292) { 1368 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 1369 comma = 1; 1370 } 1371 if (inp_flags & IN6P_MTU) { 1372 db_printf("IN6P_MTU%s", comma ? ", " : ""); 1373 comma = 1; 1374 } 1375 } 1376 1377 static void 1378 db_print_inpvflag(u_char inp_vflag) 1379 { 1380 int comma; 1381 1382 comma = 0; 1383 if (inp_vflag & INP_IPV4) { 1384 db_printf("%sINP_IPV4", comma ? ", " : ""); 1385 comma = 1; 1386 } 1387 if (inp_vflag & INP_IPV6) { 1388 db_printf("%sINP_IPV6", comma ? ", " : ""); 1389 comma = 1; 1390 } 1391 if (inp_vflag & INP_IPV6PROTO) { 1392 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 1393 comma = 1; 1394 } 1395 if (inp_vflag & INP_TIMEWAIT) { 1396 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 1397 comma = 1; 1398 } 1399 if (inp_vflag & INP_ONESBCAST) { 1400 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 1401 comma = 1; 1402 } 1403 if (inp_vflag & INP_DROPPED) { 1404 db_printf("%sINP_DROPPED", comma ? ", " : ""); 1405 comma = 1; 1406 } 1407 if (inp_vflag & INP_SOCKREF) { 1408 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 1409 comma = 1; 1410 } 1411 } 1412 1413 void 1414 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 1415 { 1416 1417 db_print_indent(indent); 1418 db_printf("%s at %p\n", name, inp); 1419 1420 indent += 2; 1421 1422 db_print_indent(indent); 1423 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 1424 1425 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 1426 1427 db_print_indent(indent); 1428 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 1429 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 1430 1431 db_print_indent(indent); 1432 db_printf("inp_label: %p inp_flags: 0x%x (", 1433 inp->inp_label, inp->inp_flags); 1434 db_print_inpflags(inp->inp_flags); 1435 db_printf(")\n"); 1436 1437 db_print_indent(indent); 1438 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 1439 inp->inp_vflag); 1440 db_print_inpvflag(inp->inp_vflag); 1441 db_printf(")\n"); 1442 1443 db_print_indent(indent); 1444 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 1445 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 1446 1447 db_print_indent(indent); 1448 #ifdef INET6 1449 if (inp->inp_vflag & INP_IPV6) { 1450 db_printf("in6p_options: %p in6p_outputopts: %p " 1451 "in6p_moptions: %p\n", inp->in6p_options, 1452 inp->in6p_outputopts, inp->in6p_moptions); 1453 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 1454 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 1455 inp->in6p_hops); 1456 } else 1457 #endif 1458 { 1459 db_printf("inp_ip_tos: %d inp_ip_options: %p " 1460 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 1461 inp->inp_options, inp->inp_moptions); 1462 } 1463 1464 db_print_indent(indent); 1465 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 1466 (uintmax_t)inp->inp_gencnt); 1467 } 1468 1469 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 1470 { 1471 struct inpcb *inp; 1472 1473 if (!have_addr) { 1474 db_printf("usage: show inpcb <addr>\n"); 1475 return; 1476 } 1477 inp = (struct inpcb *)addr; 1478 1479 db_print_inpcb(inp, "inpcb", 0); 1480 } 1481 #endif 1482