1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993, 1995 3 * The Regents of the University of California. 4 * Copyright (c) 2007-2009 Robert N. M. Watson 5 * Copyright (c) 2010-2011 Juniper Networks, Inc. 6 * All rights reserved. 7 * 8 * Portions of this software were developed by Robert N. M. Watson under 9 * contract to Juniper Networks, Inc. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 4. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_ddb.h" 42 #include "opt_ipsec.h" 43 #include "opt_inet.h" 44 #include "opt_inet6.h" 45 #include "opt_ratelimit.h" 46 #include "opt_pcbgroup.h" 47 #include "opt_rss.h" 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/lock.h> 52 #include <sys/malloc.h> 53 #include <sys/mbuf.h> 54 #include <sys/callout.h> 55 #include <sys/eventhandler.h> 56 #include <sys/domain.h> 57 #include <sys/protosw.h> 58 #include <sys/rmlock.h> 59 #include <sys/socket.h> 60 #include <sys/socketvar.h> 61 #include <sys/sockio.h> 62 #include <sys/priv.h> 63 #include <sys/proc.h> 64 #include <sys/refcount.h> 65 #include <sys/jail.h> 66 #include <sys/kernel.h> 67 #include <sys/sysctl.h> 68 69 #ifdef DDB 70 #include <ddb/ddb.h> 71 #endif 72 73 #include <vm/uma.h> 74 75 #include <net/if.h> 76 #include <net/if_var.h> 77 #include <net/if_types.h> 78 #include <net/if_llatbl.h> 79 #include <net/route.h> 80 #include <net/rss_config.h> 81 #include <net/vnet.h> 82 83 #if defined(INET) || defined(INET6) 84 #include <netinet/in.h> 85 #include <netinet/in_pcb.h> 86 #include <netinet/ip_var.h> 87 #include <netinet/tcp_var.h> 88 #include <netinet/udp.h> 89 #include <netinet/udp_var.h> 90 #endif 91 #ifdef INET 92 #include <netinet/in_var.h> 93 #endif 94 #ifdef INET6 95 #include <netinet/ip6.h> 96 #include <netinet6/in6_pcb.h> 97 #include <netinet6/in6_var.h> 98 #include <netinet6/ip6_var.h> 99 #endif /* INET6 */ 100 101 102 #ifdef IPSEC 103 #include <netipsec/ipsec.h> 104 #include <netipsec/key.h> 105 #endif /* IPSEC */ 106 107 #include <security/mac/mac_framework.h> 108 109 static struct callout ipport_tick_callout; 110 111 /* 112 * These configure the range of local port addresses assigned to 113 * "unspecified" outgoing connections/packets/whatever. 114 */ 115 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 116 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 117 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 118 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 119 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 120 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 121 122 /* 123 * Reserved ports accessible only to root. There are significant 124 * security considerations that must be accounted for when changing these, 125 * but the security benefits can be great. Please be careful. 126 */ 127 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 128 VNET_DEFINE(int, ipport_reservedlow); 129 130 /* Variables dealing with random ephemeral port allocation. */ 131 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 132 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 133 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 134 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 135 VNET_DEFINE(int, ipport_tcpallocs); 136 static VNET_DEFINE(int, ipport_tcplastcount); 137 138 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 139 140 static void in_pcbremlists(struct inpcb *inp); 141 #ifdef INET 142 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 143 struct in_addr faddr, u_int fport_arg, 144 struct in_addr laddr, u_int lport_arg, 145 int lookupflags, struct ifnet *ifp); 146 147 #define RANGECHK(var, min, max) \ 148 if ((var) < (min)) { (var) = (min); } \ 149 else if ((var) > (max)) { (var) = (max); } 150 151 static int 152 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 153 { 154 int error; 155 156 error = sysctl_handle_int(oidp, arg1, arg2, req); 157 if (error == 0) { 158 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 159 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 160 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 161 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 162 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 163 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 164 } 165 return (error); 166 } 167 168 #undef RANGECHK 169 170 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, 171 "IP Ports"); 172 173 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 174 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 175 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", ""); 176 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 177 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 178 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", ""); 179 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 180 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 181 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", ""); 182 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 183 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 184 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", ""); 185 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 186 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 187 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", ""); 188 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 189 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 190 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", ""); 191 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 192 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 193 &VNET_NAME(ipport_reservedhigh), 0, ""); 194 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 195 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 197 CTLFLAG_VNET | CTLFLAG_RW, 198 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 199 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 200 CTLFLAG_VNET | CTLFLAG_RW, 201 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 202 "allocations before switching to a sequental one"); 203 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 204 CTLFLAG_VNET | CTLFLAG_RW, 205 &VNET_NAME(ipport_randomtime), 0, 206 "Minimum time to keep sequental port " 207 "allocation before switching to a random one"); 208 #endif /* INET */ 209 210 /* 211 * in_pcb.c: manage the Protocol Control Blocks. 212 * 213 * NOTE: It is assumed that most of these functions will be called with 214 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 215 * functions often modify hash chains or addresses in pcbs. 216 */ 217 218 /* 219 * Initialize an inpcbinfo -- we should be able to reduce the number of 220 * arguments in time. 221 */ 222 void 223 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 224 struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, 225 char *inpcbzone_name, uma_init inpcbzone_init, uma_fini inpcbzone_fini, 226 uint32_t inpcbzone_flags, u_int hashfields) 227 { 228 229 INP_INFO_LOCK_INIT(pcbinfo, name); 230 INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ 231 INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist"); 232 #ifdef VIMAGE 233 pcbinfo->ipi_vnet = curvnet; 234 #endif 235 pcbinfo->ipi_listhead = listhead; 236 LIST_INIT(pcbinfo->ipi_listhead); 237 pcbinfo->ipi_count = 0; 238 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 239 &pcbinfo->ipi_hashmask); 240 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 241 &pcbinfo->ipi_porthashmask); 242 #ifdef PCBGROUP 243 in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); 244 #endif 245 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 246 NULL, NULL, inpcbzone_init, inpcbzone_fini, UMA_ALIGN_PTR, 247 inpcbzone_flags); 248 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 249 uma_zone_set_warning(pcbinfo->ipi_zone, 250 "kern.ipc.maxsockets limit reached"); 251 } 252 253 /* 254 * Destroy an inpcbinfo. 255 */ 256 void 257 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 258 { 259 260 KASSERT(pcbinfo->ipi_count == 0, 261 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 262 263 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 264 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 265 pcbinfo->ipi_porthashmask); 266 #ifdef PCBGROUP 267 in_pcbgroup_destroy(pcbinfo); 268 #endif 269 uma_zdestroy(pcbinfo->ipi_zone); 270 INP_LIST_LOCK_DESTROY(pcbinfo); 271 INP_HASH_LOCK_DESTROY(pcbinfo); 272 INP_INFO_LOCK_DESTROY(pcbinfo); 273 } 274 275 /* 276 * Allocate a PCB and associate it with the socket. 277 * On success return with the PCB locked. 278 */ 279 int 280 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 281 { 282 struct inpcb *inp; 283 int error; 284 285 #ifdef INVARIANTS 286 if (pcbinfo == &V_tcbinfo) { 287 INP_INFO_RLOCK_ASSERT(pcbinfo); 288 } else { 289 INP_INFO_WLOCK_ASSERT(pcbinfo); 290 } 291 #endif 292 293 error = 0; 294 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 295 if (inp == NULL) 296 return (ENOBUFS); 297 bzero(inp, inp_zero_size); 298 inp->inp_pcbinfo = pcbinfo; 299 inp->inp_socket = so; 300 inp->inp_cred = crhold(so->so_cred); 301 inp->inp_inc.inc_fibnum = so->so_fibnum; 302 #ifdef MAC 303 error = mac_inpcb_init(inp, M_NOWAIT); 304 if (error != 0) 305 goto out; 306 mac_inpcb_create(so, inp); 307 #endif 308 #ifdef IPSEC 309 error = ipsec_init_policy(so, &inp->inp_sp); 310 if (error != 0) { 311 #ifdef MAC 312 mac_inpcb_destroy(inp); 313 #endif 314 goto out; 315 } 316 #endif /*IPSEC*/ 317 #ifdef INET6 318 if (INP_SOCKAF(so) == AF_INET6) { 319 inp->inp_vflag |= INP_IPV6PROTO; 320 if (V_ip6_v6only) 321 inp->inp_flags |= IN6P_IPV6_V6ONLY; 322 } 323 #endif 324 INP_WLOCK(inp); 325 INP_LIST_WLOCK(pcbinfo); 326 LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 327 pcbinfo->ipi_count++; 328 so->so_pcb = (caddr_t)inp; 329 #ifdef INET6 330 if (V_ip6_auto_flowlabel) 331 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 332 #endif 333 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 334 refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ 335 INP_LIST_WUNLOCK(pcbinfo); 336 #if defined(IPSEC) || defined(MAC) 337 out: 338 if (error != 0) { 339 crfree(inp->inp_cred); 340 uma_zfree(pcbinfo->ipi_zone, inp); 341 } 342 #endif 343 return (error); 344 } 345 346 #ifdef INET 347 int 348 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 349 { 350 int anonport, error; 351 352 INP_WLOCK_ASSERT(inp); 353 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 354 355 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 356 return (EINVAL); 357 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 358 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 359 &inp->inp_lport, cred); 360 if (error) 361 return (error); 362 if (in_pcbinshash(inp) != 0) { 363 inp->inp_laddr.s_addr = INADDR_ANY; 364 inp->inp_lport = 0; 365 return (EAGAIN); 366 } 367 if (anonport) 368 inp->inp_flags |= INP_ANONPORT; 369 return (0); 370 } 371 #endif 372 373 /* 374 * Select a local port (number) to use. 375 */ 376 #if defined(INET) || defined(INET6) 377 int 378 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 379 struct ucred *cred, int lookupflags) 380 { 381 struct inpcbinfo *pcbinfo; 382 struct inpcb *tmpinp; 383 unsigned short *lastport; 384 int count, dorandom, error; 385 u_short aux, first, last, lport; 386 #ifdef INET 387 struct in_addr laddr; 388 #endif 389 390 pcbinfo = inp->inp_pcbinfo; 391 392 /* 393 * Because no actual state changes occur here, a global write lock on 394 * the pcbinfo isn't required. 395 */ 396 INP_LOCK_ASSERT(inp); 397 INP_HASH_LOCK_ASSERT(pcbinfo); 398 399 if (inp->inp_flags & INP_HIGHPORT) { 400 first = V_ipport_hifirstauto; /* sysctl */ 401 last = V_ipport_hilastauto; 402 lastport = &pcbinfo->ipi_lasthi; 403 } else if (inp->inp_flags & INP_LOWPORT) { 404 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0); 405 if (error) 406 return (error); 407 first = V_ipport_lowfirstauto; /* 1023 */ 408 last = V_ipport_lowlastauto; /* 600 */ 409 lastport = &pcbinfo->ipi_lastlow; 410 } else { 411 first = V_ipport_firstauto; /* sysctl */ 412 last = V_ipport_lastauto; 413 lastport = &pcbinfo->ipi_lastport; 414 } 415 /* 416 * For UDP(-Lite), use random port allocation as long as the user 417 * allows it. For TCP (and as of yet unknown) connections, 418 * use random port allocation only if the user allows it AND 419 * ipport_tick() allows it. 420 */ 421 if (V_ipport_randomized && 422 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 423 pcbinfo == &V_ulitecbinfo)) 424 dorandom = 1; 425 else 426 dorandom = 0; 427 /* 428 * It makes no sense to do random port allocation if 429 * we have the only port available. 430 */ 431 if (first == last) 432 dorandom = 0; 433 /* Make sure to not include UDP(-Lite) packets in the count. */ 434 if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) 435 V_ipport_tcpallocs++; 436 /* 437 * Instead of having two loops further down counting up or down 438 * make sure that first is always <= last and go with only one 439 * code path implementing all logic. 440 */ 441 if (first > last) { 442 aux = first; 443 first = last; 444 last = aux; 445 } 446 447 #ifdef INET 448 /* Make the compiler happy. */ 449 laddr.s_addr = 0; 450 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 451 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p", 452 __func__, inp)); 453 laddr = *laddrp; 454 } 455 #endif 456 tmpinp = NULL; /* Make compiler happy. */ 457 lport = *lportp; 458 459 if (dorandom) 460 *lastport = first + (arc4random() % (last - first)); 461 462 count = last - first; 463 464 do { 465 if (count-- < 0) /* completely used? */ 466 return (EADDRNOTAVAIL); 467 ++*lastport; 468 if (*lastport < first || *lastport > last) 469 *lastport = first; 470 lport = htons(*lastport); 471 472 #ifdef INET6 473 if ((inp->inp_vflag & INP_IPV6) != 0) 474 tmpinp = in6_pcblookup_local(pcbinfo, 475 &inp->in6p_laddr, lport, lookupflags, cred); 476 #endif 477 #if defined(INET) && defined(INET6) 478 else 479 #endif 480 #ifdef INET 481 tmpinp = in_pcblookup_local(pcbinfo, laddr, 482 lport, lookupflags, cred); 483 #endif 484 } while (tmpinp != NULL); 485 486 #ifdef INET 487 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) 488 laddrp->s_addr = laddr.s_addr; 489 #endif 490 *lportp = lport; 491 492 return (0); 493 } 494 495 /* 496 * Return cached socket options. 497 */ 498 short 499 inp_so_options(const struct inpcb *inp) 500 { 501 short so_options; 502 503 so_options = 0; 504 505 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 506 so_options |= SO_REUSEPORT; 507 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 508 so_options |= SO_REUSEADDR; 509 return (so_options); 510 } 511 #endif /* INET || INET6 */ 512 513 /* 514 * Check if a new BINDMULTI socket is allowed to be created. 515 * 516 * ni points to the new inp. 517 * oi points to the exisitng inp. 518 * 519 * This checks whether the existing inp also has BINDMULTI and 520 * whether the credentials match. 521 */ 522 int 523 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 524 { 525 /* Check permissions match */ 526 if ((ni->inp_flags2 & INP_BINDMULTI) && 527 (ni->inp_cred->cr_uid != 528 oi->inp_cred->cr_uid)) 529 return (0); 530 531 /* Check the existing inp has BINDMULTI set */ 532 if ((ni->inp_flags2 & INP_BINDMULTI) && 533 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 534 return (0); 535 536 /* 537 * We're okay - either INP_BINDMULTI isn't set on ni, or 538 * it is and it matches the checks. 539 */ 540 return (1); 541 } 542 543 #ifdef INET 544 /* 545 * Set up a bind operation on a PCB, performing port allocation 546 * as required, but do not actually modify the PCB. Callers can 547 * either complete the bind by setting inp_laddr/inp_lport and 548 * calling in_pcbinshash(), or they can just use the resulting 549 * port and address to authorise the sending of a once-off packet. 550 * 551 * On error, the values of *laddrp and *lportp are not changed. 552 */ 553 int 554 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 555 u_short *lportp, struct ucred *cred) 556 { 557 struct socket *so = inp->inp_socket; 558 struct sockaddr_in *sin; 559 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 560 struct in_addr laddr; 561 u_short lport = 0; 562 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 563 int error; 564 565 /* 566 * No state changes, so read locks are sufficient here. 567 */ 568 INP_LOCK_ASSERT(inp); 569 INP_HASH_LOCK_ASSERT(pcbinfo); 570 571 if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 572 return (EADDRNOTAVAIL); 573 laddr.s_addr = *laddrp; 574 if (nam != NULL && laddr.s_addr != INADDR_ANY) 575 return (EINVAL); 576 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) 577 lookupflags = INPLOOKUP_WILDCARD; 578 if (nam == NULL) { 579 if ((error = prison_local_ip4(cred, &laddr)) != 0) 580 return (error); 581 } else { 582 sin = (struct sockaddr_in *)nam; 583 if (nam->sa_len != sizeof (*sin)) 584 return (EINVAL); 585 #ifdef notdef 586 /* 587 * We should check the family, but old programs 588 * incorrectly fail to initialize it. 589 */ 590 if (sin->sin_family != AF_INET) 591 return (EAFNOSUPPORT); 592 #endif 593 error = prison_local_ip4(cred, &sin->sin_addr); 594 if (error) 595 return (error); 596 if (sin->sin_port != *lportp) { 597 /* Don't allow the port to change. */ 598 if (*lportp != 0) 599 return (EINVAL); 600 lport = sin->sin_port; 601 } 602 /* NB: lport is left as 0 if the port isn't being changed. */ 603 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 604 /* 605 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 606 * allow complete duplication of binding if 607 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 608 * and a multicast address is bound on both 609 * new and duplicated sockets. 610 */ 611 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 612 reuseport = SO_REUSEADDR|SO_REUSEPORT; 613 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 614 sin->sin_port = 0; /* yech... */ 615 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 616 /* 617 * Is the address a local IP address? 618 * If INP_BINDANY is set, then the socket may be bound 619 * to any endpoint address, local or not. 620 */ 621 if ((inp->inp_flags & INP_BINDANY) == 0 && 622 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 623 return (EADDRNOTAVAIL); 624 } 625 laddr = sin->sin_addr; 626 if (lport) { 627 struct inpcb *t; 628 struct tcptw *tw; 629 630 /* GROSS */ 631 if (ntohs(lport) <= V_ipport_reservedhigh && 632 ntohs(lport) >= V_ipport_reservedlow && 633 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 634 0)) 635 return (EACCES); 636 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 637 priv_check_cred(inp->inp_cred, 638 PRIV_NETINET_REUSEPORT, 0) != 0) { 639 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 640 lport, INPLOOKUP_WILDCARD, cred); 641 /* 642 * XXX 643 * This entire block sorely needs a rewrite. 644 */ 645 if (t && 646 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 647 ((t->inp_flags & INP_TIMEWAIT) == 0) && 648 (so->so_type != SOCK_STREAM || 649 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 650 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 651 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 652 (t->inp_flags2 & INP_REUSEPORT) == 0) && 653 (inp->inp_cred->cr_uid != 654 t->inp_cred->cr_uid)) 655 return (EADDRINUSE); 656 657 /* 658 * If the socket is a BINDMULTI socket, then 659 * the credentials need to match and the 660 * original socket also has to have been bound 661 * with BINDMULTI. 662 */ 663 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 664 return (EADDRINUSE); 665 } 666 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 667 lport, lookupflags, cred); 668 if (t && (t->inp_flags & INP_TIMEWAIT)) { 669 /* 670 * XXXRW: If an incpb has had its timewait 671 * state recycled, we treat the address as 672 * being in use (for now). This is better 673 * than a panic, but not desirable. 674 */ 675 tw = intotw(t); 676 if (tw == NULL || 677 (reuseport & tw->tw_so_options) == 0) 678 return (EADDRINUSE); 679 } else if (t && 680 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 681 (reuseport & inp_so_options(t)) == 0) { 682 #ifdef INET6 683 if (ntohl(sin->sin_addr.s_addr) != 684 INADDR_ANY || 685 ntohl(t->inp_laddr.s_addr) != 686 INADDR_ANY || 687 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 688 (t->inp_vflag & INP_IPV6PROTO) == 0) 689 #endif 690 return (EADDRINUSE); 691 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 692 return (EADDRINUSE); 693 } 694 } 695 } 696 if (*lportp != 0) 697 lport = *lportp; 698 if (lport == 0) { 699 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 700 if (error != 0) 701 return (error); 702 703 } 704 *laddrp = laddr.s_addr; 705 *lportp = lport; 706 return (0); 707 } 708 709 /* 710 * Connect from a socket to a specified address. 711 * Both address and port must be specified in argument sin. 712 * If don't have a local address for this socket yet, 713 * then pick one. 714 */ 715 int 716 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, 717 struct ucred *cred, struct mbuf *m) 718 { 719 u_short lport, fport; 720 in_addr_t laddr, faddr; 721 int anonport, error; 722 723 INP_WLOCK_ASSERT(inp); 724 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 725 726 lport = inp->inp_lport; 727 laddr = inp->inp_laddr.s_addr; 728 anonport = (lport == 0); 729 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 730 NULL, cred); 731 if (error) 732 return (error); 733 734 /* Do the initial binding of the local address if required. */ 735 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 736 inp->inp_lport = lport; 737 inp->inp_laddr.s_addr = laddr; 738 if (in_pcbinshash(inp) != 0) { 739 inp->inp_laddr.s_addr = INADDR_ANY; 740 inp->inp_lport = 0; 741 return (EAGAIN); 742 } 743 } 744 745 /* Commit the remaining changes. */ 746 inp->inp_lport = lport; 747 inp->inp_laddr.s_addr = laddr; 748 inp->inp_faddr.s_addr = faddr; 749 inp->inp_fport = fport; 750 in_pcbrehash_mbuf(inp, m); 751 752 if (anonport) 753 inp->inp_flags |= INP_ANONPORT; 754 return (0); 755 } 756 757 int 758 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 759 { 760 761 return (in_pcbconnect_mbuf(inp, nam, cred, NULL)); 762 } 763 764 /* 765 * Do proper source address selection on an unbound socket in case 766 * of connect. Take jails into account as well. 767 */ 768 int 769 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 770 struct ucred *cred) 771 { 772 struct ifaddr *ifa; 773 struct sockaddr *sa; 774 struct sockaddr_in *sin; 775 struct route sro; 776 int error; 777 778 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 779 780 /* 781 * Bypass source address selection and use the primary jail IP 782 * if requested. 783 */ 784 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 785 return (0); 786 787 error = 0; 788 bzero(&sro, sizeof(sro)); 789 790 sin = (struct sockaddr_in *)&sro.ro_dst; 791 sin->sin_family = AF_INET; 792 sin->sin_len = sizeof(struct sockaddr_in); 793 sin->sin_addr.s_addr = faddr->s_addr; 794 795 /* 796 * If route is known our src addr is taken from the i/f, 797 * else punt. 798 * 799 * Find out route to destination. 800 */ 801 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 802 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); 803 804 /* 805 * If we found a route, use the address corresponding to 806 * the outgoing interface. 807 * 808 * Otherwise assume faddr is reachable on a directly connected 809 * network and try to find a corresponding interface to take 810 * the source address from. 811 */ 812 if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { 813 struct in_ifaddr *ia; 814 struct ifnet *ifp; 815 816 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 817 inp->inp_socket->so_fibnum)); 818 if (ia == NULL) 819 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 820 inp->inp_socket->so_fibnum)); 821 if (ia == NULL) { 822 error = ENETUNREACH; 823 goto done; 824 } 825 826 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 827 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 828 ifa_free(&ia->ia_ifa); 829 goto done; 830 } 831 832 ifp = ia->ia_ifp; 833 ifa_free(&ia->ia_ifa); 834 ia = NULL; 835 IF_ADDR_RLOCK(ifp); 836 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 837 838 sa = ifa->ifa_addr; 839 if (sa->sa_family != AF_INET) 840 continue; 841 sin = (struct sockaddr_in *)sa; 842 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 843 ia = (struct in_ifaddr *)ifa; 844 break; 845 } 846 } 847 if (ia != NULL) { 848 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 849 IF_ADDR_RUNLOCK(ifp); 850 goto done; 851 } 852 IF_ADDR_RUNLOCK(ifp); 853 854 /* 3. As a last resort return the 'default' jail address. */ 855 error = prison_get_ip4(cred, laddr); 856 goto done; 857 } 858 859 /* 860 * If the outgoing interface on the route found is not 861 * a loopback interface, use the address from that interface. 862 * In case of jails do those three steps: 863 * 1. check if the interface address belongs to the jail. If so use it. 864 * 2. check if we have any address on the outgoing interface 865 * belonging to this jail. If so use it. 866 * 3. as a last resort return the 'default' jail address. 867 */ 868 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { 869 struct in_ifaddr *ia; 870 struct ifnet *ifp; 871 872 /* If not jailed, use the default returned. */ 873 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 874 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 875 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 876 goto done; 877 } 878 879 /* Jailed. */ 880 /* 1. Check if the iface address belongs to the jail. */ 881 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; 882 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 883 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 884 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 885 goto done; 886 } 887 888 /* 889 * 2. Check if we have any address on the outgoing interface 890 * belonging to this jail. 891 */ 892 ia = NULL; 893 ifp = sro.ro_rt->rt_ifp; 894 IF_ADDR_RLOCK(ifp); 895 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 896 sa = ifa->ifa_addr; 897 if (sa->sa_family != AF_INET) 898 continue; 899 sin = (struct sockaddr_in *)sa; 900 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 901 ia = (struct in_ifaddr *)ifa; 902 break; 903 } 904 } 905 if (ia != NULL) { 906 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 907 IF_ADDR_RUNLOCK(ifp); 908 goto done; 909 } 910 IF_ADDR_RUNLOCK(ifp); 911 912 /* 3. As a last resort return the 'default' jail address. */ 913 error = prison_get_ip4(cred, laddr); 914 goto done; 915 } 916 917 /* 918 * The outgoing interface is marked with 'loopback net', so a route 919 * to ourselves is here. 920 * Try to find the interface of the destination address and then 921 * take the address from there. That interface is not necessarily 922 * a loopback interface. 923 * In case of jails, check that it is an address of the jail 924 * and if we cannot find, fall back to the 'default' jail address. 925 */ 926 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 927 struct sockaddr_in sain; 928 struct in_ifaddr *ia; 929 930 bzero(&sain, sizeof(struct sockaddr_in)); 931 sain.sin_family = AF_INET; 932 sain.sin_len = sizeof(struct sockaddr_in); 933 sain.sin_addr.s_addr = faddr->s_addr; 934 935 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain), 936 inp->inp_socket->so_fibnum)); 937 if (ia == NULL) 938 ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0, 939 inp->inp_socket->so_fibnum)); 940 if (ia == NULL) 941 ia = ifatoia(ifa_ifwithaddr(sintosa(&sain))); 942 943 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 944 if (ia == NULL) { 945 error = ENETUNREACH; 946 goto done; 947 } 948 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 949 ifa_free(&ia->ia_ifa); 950 goto done; 951 } 952 953 /* Jailed. */ 954 if (ia != NULL) { 955 struct ifnet *ifp; 956 957 ifp = ia->ia_ifp; 958 ifa_free(&ia->ia_ifa); 959 ia = NULL; 960 IF_ADDR_RLOCK(ifp); 961 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 962 963 sa = ifa->ifa_addr; 964 if (sa->sa_family != AF_INET) 965 continue; 966 sin = (struct sockaddr_in *)sa; 967 if (prison_check_ip4(cred, 968 &sin->sin_addr) == 0) { 969 ia = (struct in_ifaddr *)ifa; 970 break; 971 } 972 } 973 if (ia != NULL) { 974 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 975 IF_ADDR_RUNLOCK(ifp); 976 goto done; 977 } 978 IF_ADDR_RUNLOCK(ifp); 979 } 980 981 /* 3. As a last resort return the 'default' jail address. */ 982 error = prison_get_ip4(cred, laddr); 983 goto done; 984 } 985 986 done: 987 if (sro.ro_rt != NULL) 988 RTFREE(sro.ro_rt); 989 return (error); 990 } 991 992 /* 993 * Set up for a connect from a socket to the specified address. 994 * On entry, *laddrp and *lportp should contain the current local 995 * address and port for the PCB; these are updated to the values 996 * that should be placed in inp_laddr and inp_lport to complete 997 * the connect. 998 * 999 * On success, *faddrp and *fportp will be set to the remote address 1000 * and port. These are not updated in the error case. 1001 * 1002 * If the operation fails because the connection already exists, 1003 * *oinpp will be set to the PCB of that connection so that the 1004 * caller can decide to override it. In all other cases, *oinpp 1005 * is set to NULL. 1006 */ 1007 int 1008 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1009 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1010 struct inpcb **oinpp, struct ucred *cred) 1011 { 1012 struct rm_priotracker in_ifa_tracker; 1013 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1014 struct in_ifaddr *ia; 1015 struct inpcb *oinp; 1016 struct in_addr laddr, faddr; 1017 u_short lport, fport; 1018 int error; 1019 1020 /* 1021 * Because a global state change doesn't actually occur here, a read 1022 * lock is sufficient. 1023 */ 1024 INP_LOCK_ASSERT(inp); 1025 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1026 1027 if (oinpp != NULL) 1028 *oinpp = NULL; 1029 if (nam->sa_len != sizeof (*sin)) 1030 return (EINVAL); 1031 if (sin->sin_family != AF_INET) 1032 return (EAFNOSUPPORT); 1033 if (sin->sin_port == 0) 1034 return (EADDRNOTAVAIL); 1035 laddr.s_addr = *laddrp; 1036 lport = *lportp; 1037 faddr = sin->sin_addr; 1038 fport = sin->sin_port; 1039 1040 if (!TAILQ_EMPTY(&V_in_ifaddrhead)) { 1041 /* 1042 * If the destination address is INADDR_ANY, 1043 * use the primary local address. 1044 * If the supplied address is INADDR_BROADCAST, 1045 * and the primary interface supports broadcast, 1046 * choose the broadcast address for that interface. 1047 */ 1048 if (faddr.s_addr == INADDR_ANY) { 1049 IN_IFADDR_RLOCK(&in_ifa_tracker); 1050 faddr = 1051 IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1052 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1053 if (cred != NULL && 1054 (error = prison_get_ip4(cred, &faddr)) != 0) 1055 return (error); 1056 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1057 IN_IFADDR_RLOCK(&in_ifa_tracker); 1058 if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1059 IFF_BROADCAST) 1060 faddr = satosin(&TAILQ_FIRST( 1061 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1062 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1063 } 1064 } 1065 if (laddr.s_addr == INADDR_ANY) { 1066 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1067 /* 1068 * If the destination address is multicast and an outgoing 1069 * interface has been set as a multicast option, prefer the 1070 * address of that interface as our source address. 1071 */ 1072 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1073 inp->inp_moptions != NULL) { 1074 struct ip_moptions *imo; 1075 struct ifnet *ifp; 1076 1077 imo = inp->inp_moptions; 1078 if (imo->imo_multicast_ifp != NULL) { 1079 ifp = imo->imo_multicast_ifp; 1080 IN_IFADDR_RLOCK(&in_ifa_tracker); 1081 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1082 if ((ia->ia_ifp == ifp) && 1083 (cred == NULL || 1084 prison_check_ip4(cred, 1085 &ia->ia_addr.sin_addr) == 0)) 1086 break; 1087 } 1088 if (ia == NULL) 1089 error = EADDRNOTAVAIL; 1090 else { 1091 laddr = ia->ia_addr.sin_addr; 1092 error = 0; 1093 } 1094 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1095 } 1096 } 1097 if (error) 1098 return (error); 1099 } 1100 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport, 1101 laddr, lport, 0, NULL); 1102 if (oinp != NULL) { 1103 if (oinpp != NULL) 1104 *oinpp = oinp; 1105 return (EADDRINUSE); 1106 } 1107 if (lport == 0) { 1108 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 1109 cred); 1110 if (error) 1111 return (error); 1112 } 1113 *laddrp = laddr.s_addr; 1114 *lportp = lport; 1115 *faddrp = faddr.s_addr; 1116 *fportp = fport; 1117 return (0); 1118 } 1119 1120 void 1121 in_pcbdisconnect(struct inpcb *inp) 1122 { 1123 1124 INP_WLOCK_ASSERT(inp); 1125 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1126 1127 inp->inp_faddr.s_addr = INADDR_ANY; 1128 inp->inp_fport = 0; 1129 in_pcbrehash(inp); 1130 } 1131 #endif /* INET */ 1132 1133 /* 1134 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1135 * For most protocols, this will be invoked immediately prior to calling 1136 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1137 * socket, in which case in_pcbfree() is deferred. 1138 */ 1139 void 1140 in_pcbdetach(struct inpcb *inp) 1141 { 1142 1143 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1144 1145 #ifdef RATELIMIT 1146 if (inp->inp_snd_tag != NULL) 1147 in_pcbdetach_txrtlmt(inp); 1148 #endif 1149 inp->inp_socket->so_pcb = NULL; 1150 inp->inp_socket = NULL; 1151 } 1152 1153 /* 1154 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1155 * stability of an inpcb pointer despite the inpcb lock being released. This 1156 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 1157 * but where the inpcb lock may already held, or when acquiring a reference 1158 * via a pcbgroup. 1159 * 1160 * in_pcbref() should be used only to provide brief memory stability, and 1161 * must always be followed by a call to INP_WLOCK() and in_pcbrele() to 1162 * garbage collect the inpcb if it has been in_pcbfree()'d from another 1163 * context. Until in_pcbrele() has returned that the inpcb is still valid, 1164 * lock and rele are the *only* safe operations that may be performed on the 1165 * inpcb. 1166 * 1167 * While the inpcb will not be freed, releasing the inpcb lock means that the 1168 * connection's state may change, so the caller should be careful to 1169 * revalidate any cached state on reacquiring the lock. Drop the reference 1170 * using in_pcbrele(). 1171 */ 1172 void 1173 in_pcbref(struct inpcb *inp) 1174 { 1175 1176 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1177 1178 refcount_acquire(&inp->inp_refcount); 1179 } 1180 1181 /* 1182 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 1183 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 1184 * return a flag indicating whether or not the inpcb remains valid. If it is 1185 * valid, we return with the inpcb lock held. 1186 * 1187 * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a 1188 * reference on an inpcb. Historically more work was done here (actually, in 1189 * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the 1190 * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely 1191 * about memory stability (and continued use of the write lock). 1192 */ 1193 int 1194 in_pcbrele_rlocked(struct inpcb *inp) 1195 { 1196 struct inpcbinfo *pcbinfo; 1197 1198 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1199 1200 INP_RLOCK_ASSERT(inp); 1201 1202 if (refcount_release(&inp->inp_refcount) == 0) { 1203 /* 1204 * If the inpcb has been freed, let the caller know, even if 1205 * this isn't the last reference. 1206 */ 1207 if (inp->inp_flags2 & INP_FREED) { 1208 INP_RUNLOCK(inp); 1209 return (1); 1210 } 1211 return (0); 1212 } 1213 1214 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1215 1216 INP_RUNLOCK(inp); 1217 pcbinfo = inp->inp_pcbinfo; 1218 uma_zfree(pcbinfo->ipi_zone, inp); 1219 return (1); 1220 } 1221 1222 int 1223 in_pcbrele_wlocked(struct inpcb *inp) 1224 { 1225 struct inpcbinfo *pcbinfo; 1226 1227 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1228 1229 INP_WLOCK_ASSERT(inp); 1230 1231 if (refcount_release(&inp->inp_refcount) == 0) { 1232 /* 1233 * If the inpcb has been freed, let the caller know, even if 1234 * this isn't the last reference. 1235 */ 1236 if (inp->inp_flags2 & INP_FREED) { 1237 INP_WUNLOCK(inp); 1238 return (1); 1239 } 1240 return (0); 1241 } 1242 1243 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1244 1245 INP_WUNLOCK(inp); 1246 pcbinfo = inp->inp_pcbinfo; 1247 uma_zfree(pcbinfo->ipi_zone, inp); 1248 return (1); 1249 } 1250 1251 /* 1252 * Temporary wrapper. 1253 */ 1254 int 1255 in_pcbrele(struct inpcb *inp) 1256 { 1257 1258 return (in_pcbrele_wlocked(inp)); 1259 } 1260 1261 /* 1262 * Unconditionally schedule an inpcb to be freed by decrementing its 1263 * reference count, which should occur only after the inpcb has been detached 1264 * from its socket. If another thread holds a temporary reference (acquired 1265 * using in_pcbref()) then the free is deferred until that reference is 1266 * released using in_pcbrele(), but the inpcb is still unlocked. Almost all 1267 * work, including removal from global lists, is done in this context, where 1268 * the pcbinfo lock is held. 1269 */ 1270 void 1271 in_pcbfree(struct inpcb *inp) 1272 { 1273 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1274 1275 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1276 1277 #ifdef INVARIANTS 1278 if (pcbinfo == &V_tcbinfo) { 1279 INP_INFO_LOCK_ASSERT(pcbinfo); 1280 } else { 1281 INP_INFO_WLOCK_ASSERT(pcbinfo); 1282 } 1283 #endif 1284 INP_WLOCK_ASSERT(inp); 1285 1286 /* XXXRW: Do as much as possible here. */ 1287 #ifdef IPSEC 1288 if (inp->inp_sp != NULL) 1289 ipsec_delete_pcbpolicy(inp); 1290 #endif 1291 INP_LIST_WLOCK(pcbinfo); 1292 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1293 in_pcbremlists(inp); 1294 INP_LIST_WUNLOCK(pcbinfo); 1295 #ifdef INET6 1296 if (inp->inp_vflag & INP_IPV6PROTO) { 1297 ip6_freepcbopts(inp->in6p_outputopts); 1298 if (inp->in6p_moptions != NULL) 1299 ip6_freemoptions(inp->in6p_moptions); 1300 } 1301 #endif 1302 if (inp->inp_options) 1303 (void)m_free(inp->inp_options); 1304 #ifdef INET 1305 if (inp->inp_moptions != NULL) 1306 inp_freemoptions(inp->inp_moptions); 1307 #endif 1308 RO_RTFREE(&inp->inp_route); 1309 if (inp->inp_route.ro_lle) 1310 LLE_FREE(inp->inp_route.ro_lle); /* zeros ro_lle */ 1311 1312 inp->inp_vflag = 0; 1313 inp->inp_flags2 |= INP_FREED; 1314 crfree(inp->inp_cred); 1315 #ifdef MAC 1316 mac_inpcb_destroy(inp); 1317 #endif 1318 if (!in_pcbrele_wlocked(inp)) 1319 INP_WUNLOCK(inp); 1320 } 1321 1322 /* 1323 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1324 * port reservation, and preventing it from being returned by inpcb lookups. 1325 * 1326 * It is used by TCP to mark an inpcb as unused and avoid future packet 1327 * delivery or event notification when a socket remains open but TCP has 1328 * closed. This might occur as a result of a shutdown()-initiated TCP close 1329 * or a RST on the wire, and allows the port binding to be reused while still 1330 * maintaining the invariant that so_pcb always points to a valid inpcb until 1331 * in_pcbdetach(). 1332 * 1333 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1334 * in_pcbnotifyall() and in_pcbpurgeif0()? 1335 */ 1336 void 1337 in_pcbdrop(struct inpcb *inp) 1338 { 1339 1340 INP_WLOCK_ASSERT(inp); 1341 1342 /* 1343 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1344 * the hash lock...? 1345 */ 1346 inp->inp_flags |= INP_DROPPED; 1347 if (inp->inp_flags & INP_INHASHLIST) { 1348 struct inpcbport *phd = inp->inp_phd; 1349 1350 INP_HASH_WLOCK(inp->inp_pcbinfo); 1351 LIST_REMOVE(inp, inp_hash); 1352 LIST_REMOVE(inp, inp_portlist); 1353 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 1354 LIST_REMOVE(phd, phd_hash); 1355 free(phd, M_PCB); 1356 } 1357 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1358 inp->inp_flags &= ~INP_INHASHLIST; 1359 #ifdef PCBGROUP 1360 in_pcbgroup_remove(inp); 1361 #endif 1362 } 1363 } 1364 1365 #ifdef INET 1366 /* 1367 * Common routines to return the socket addresses associated with inpcbs. 1368 */ 1369 struct sockaddr * 1370 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1371 { 1372 struct sockaddr_in *sin; 1373 1374 sin = malloc(sizeof *sin, M_SONAME, 1375 M_WAITOK | M_ZERO); 1376 sin->sin_family = AF_INET; 1377 sin->sin_len = sizeof(*sin); 1378 sin->sin_addr = *addr_p; 1379 sin->sin_port = port; 1380 1381 return (struct sockaddr *)sin; 1382 } 1383 1384 int 1385 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1386 { 1387 struct inpcb *inp; 1388 struct in_addr addr; 1389 in_port_t port; 1390 1391 inp = sotoinpcb(so); 1392 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1393 1394 INP_RLOCK(inp); 1395 port = inp->inp_lport; 1396 addr = inp->inp_laddr; 1397 INP_RUNLOCK(inp); 1398 1399 *nam = in_sockaddr(port, &addr); 1400 return 0; 1401 } 1402 1403 int 1404 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1405 { 1406 struct inpcb *inp; 1407 struct in_addr addr; 1408 in_port_t port; 1409 1410 inp = sotoinpcb(so); 1411 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1412 1413 INP_RLOCK(inp); 1414 port = inp->inp_fport; 1415 addr = inp->inp_faddr; 1416 INP_RUNLOCK(inp); 1417 1418 *nam = in_sockaddr(port, &addr); 1419 return 0; 1420 } 1421 1422 void 1423 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1424 struct inpcb *(*notify)(struct inpcb *, int)) 1425 { 1426 struct inpcb *inp, *inp_temp; 1427 1428 INP_INFO_WLOCK(pcbinfo); 1429 LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1430 INP_WLOCK(inp); 1431 #ifdef INET6 1432 if ((inp->inp_vflag & INP_IPV4) == 0) { 1433 INP_WUNLOCK(inp); 1434 continue; 1435 } 1436 #endif 1437 if (inp->inp_faddr.s_addr != faddr.s_addr || 1438 inp->inp_socket == NULL) { 1439 INP_WUNLOCK(inp); 1440 continue; 1441 } 1442 if ((*notify)(inp, errno)) 1443 INP_WUNLOCK(inp); 1444 } 1445 INP_INFO_WUNLOCK(pcbinfo); 1446 } 1447 1448 void 1449 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1450 { 1451 struct inpcb *inp; 1452 struct ip_moptions *imo; 1453 int i, gap; 1454 1455 INP_INFO_WLOCK(pcbinfo); 1456 LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1457 INP_WLOCK(inp); 1458 imo = inp->inp_moptions; 1459 if ((inp->inp_vflag & INP_IPV4) && 1460 imo != NULL) { 1461 /* 1462 * Unselect the outgoing interface if it is being 1463 * detached. 1464 */ 1465 if (imo->imo_multicast_ifp == ifp) 1466 imo->imo_multicast_ifp = NULL; 1467 1468 /* 1469 * Drop multicast group membership if we joined 1470 * through the interface being detached. 1471 */ 1472 for (i = 0, gap = 0; i < imo->imo_num_memberships; 1473 i++) { 1474 if (imo->imo_membership[i]->inm_ifp == ifp) { 1475 in_delmulti(imo->imo_membership[i]); 1476 gap++; 1477 } else if (gap != 0) 1478 imo->imo_membership[i - gap] = 1479 imo->imo_membership[i]; 1480 } 1481 imo->imo_num_memberships -= gap; 1482 } 1483 INP_WUNLOCK(inp); 1484 } 1485 INP_INFO_WUNLOCK(pcbinfo); 1486 } 1487 1488 /* 1489 * Lookup a PCB based on the local address and port. Caller must hold the 1490 * hash lock. No inpcb locks or references are acquired. 1491 */ 1492 #define INP_LOOKUP_MAPPED_PCB_COST 3 1493 struct inpcb * 1494 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1495 u_short lport, int lookupflags, struct ucred *cred) 1496 { 1497 struct inpcb *inp; 1498 #ifdef INET6 1499 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1500 #else 1501 int matchwild = 3; 1502 #endif 1503 int wildcard; 1504 1505 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1506 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1507 1508 INP_HASH_LOCK_ASSERT(pcbinfo); 1509 1510 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1511 struct inpcbhead *head; 1512 /* 1513 * Look for an unconnected (wildcard foreign addr) PCB that 1514 * matches the local address and port we're looking for. 1515 */ 1516 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1517 0, pcbinfo->ipi_hashmask)]; 1518 LIST_FOREACH(inp, head, inp_hash) { 1519 #ifdef INET6 1520 /* XXX inp locking */ 1521 if ((inp->inp_vflag & INP_IPV4) == 0) 1522 continue; 1523 #endif 1524 if (inp->inp_faddr.s_addr == INADDR_ANY && 1525 inp->inp_laddr.s_addr == laddr.s_addr && 1526 inp->inp_lport == lport) { 1527 /* 1528 * Found? 1529 */ 1530 if (cred == NULL || 1531 prison_equal_ip4(cred->cr_prison, 1532 inp->inp_cred->cr_prison)) 1533 return (inp); 1534 } 1535 } 1536 /* 1537 * Not found. 1538 */ 1539 return (NULL); 1540 } else { 1541 struct inpcbporthead *porthash; 1542 struct inpcbport *phd; 1543 struct inpcb *match = NULL; 1544 /* 1545 * Best fit PCB lookup. 1546 * 1547 * First see if this local port is in use by looking on the 1548 * port hash list. 1549 */ 1550 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1551 pcbinfo->ipi_porthashmask)]; 1552 LIST_FOREACH(phd, porthash, phd_hash) { 1553 if (phd->phd_port == lport) 1554 break; 1555 } 1556 if (phd != NULL) { 1557 /* 1558 * Port is in use by one or more PCBs. Look for best 1559 * fit. 1560 */ 1561 LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1562 wildcard = 0; 1563 if (cred != NULL && 1564 !prison_equal_ip4(inp->inp_cred->cr_prison, 1565 cred->cr_prison)) 1566 continue; 1567 #ifdef INET6 1568 /* XXX inp locking */ 1569 if ((inp->inp_vflag & INP_IPV4) == 0) 1570 continue; 1571 /* 1572 * We never select the PCB that has 1573 * INP_IPV6 flag and is bound to :: if 1574 * we have another PCB which is bound 1575 * to 0.0.0.0. If a PCB has the 1576 * INP_IPV6 flag, then we set its cost 1577 * higher than IPv4 only PCBs. 1578 * 1579 * Note that the case only happens 1580 * when a socket is bound to ::, under 1581 * the condition that the use of the 1582 * mapped address is allowed. 1583 */ 1584 if ((inp->inp_vflag & INP_IPV6) != 0) 1585 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1586 #endif 1587 if (inp->inp_faddr.s_addr != INADDR_ANY) 1588 wildcard++; 1589 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1590 if (laddr.s_addr == INADDR_ANY) 1591 wildcard++; 1592 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1593 continue; 1594 } else { 1595 if (laddr.s_addr != INADDR_ANY) 1596 wildcard++; 1597 } 1598 if (wildcard < matchwild) { 1599 match = inp; 1600 matchwild = wildcard; 1601 if (matchwild == 0) 1602 break; 1603 } 1604 } 1605 } 1606 return (match); 1607 } 1608 } 1609 #undef INP_LOOKUP_MAPPED_PCB_COST 1610 1611 #ifdef PCBGROUP 1612 /* 1613 * Lookup PCB in hash list, using pcbgroup tables. 1614 */ 1615 static struct inpcb * 1616 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, 1617 struct in_addr faddr, u_int fport_arg, struct in_addr laddr, 1618 u_int lport_arg, int lookupflags, struct ifnet *ifp) 1619 { 1620 struct inpcbhead *head; 1621 struct inpcb *inp, *tmpinp; 1622 u_short fport = fport_arg, lport = lport_arg; 1623 1624 /* 1625 * First look for an exact match. 1626 */ 1627 tmpinp = NULL; 1628 INP_GROUP_LOCK(pcbgroup); 1629 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1630 pcbgroup->ipg_hashmask)]; 1631 LIST_FOREACH(inp, head, inp_pcbgrouphash) { 1632 #ifdef INET6 1633 /* XXX inp locking */ 1634 if ((inp->inp_vflag & INP_IPV4) == 0) 1635 continue; 1636 #endif 1637 if (inp->inp_faddr.s_addr == faddr.s_addr && 1638 inp->inp_laddr.s_addr == laddr.s_addr && 1639 inp->inp_fport == fport && 1640 inp->inp_lport == lport) { 1641 /* 1642 * XXX We should be able to directly return 1643 * the inp here, without any checks. 1644 * Well unless both bound with SO_REUSEPORT? 1645 */ 1646 if (prison_flag(inp->inp_cred, PR_IP4)) 1647 goto found; 1648 if (tmpinp == NULL) 1649 tmpinp = inp; 1650 } 1651 } 1652 if (tmpinp != NULL) { 1653 inp = tmpinp; 1654 goto found; 1655 } 1656 1657 #ifdef RSS 1658 /* 1659 * For incoming connections, we may wish to do a wildcard 1660 * match for an RSS-local socket. 1661 */ 1662 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1663 struct inpcb *local_wild = NULL, *local_exact = NULL; 1664 #ifdef INET6 1665 struct inpcb *local_wild_mapped = NULL; 1666 #endif 1667 struct inpcb *jail_wild = NULL; 1668 struct inpcbhead *head; 1669 int injail; 1670 1671 /* 1672 * Order of socket selection - we always prefer jails. 1673 * 1. jailed, non-wild. 1674 * 2. jailed, wild. 1675 * 3. non-jailed, non-wild. 1676 * 4. non-jailed, wild. 1677 */ 1678 1679 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, 1680 lport, 0, pcbgroup->ipg_hashmask)]; 1681 LIST_FOREACH(inp, head, inp_pcbgrouphash) { 1682 #ifdef INET6 1683 /* XXX inp locking */ 1684 if ((inp->inp_vflag & INP_IPV4) == 0) 1685 continue; 1686 #endif 1687 if (inp->inp_faddr.s_addr != INADDR_ANY || 1688 inp->inp_lport != lport) 1689 continue; 1690 1691 injail = prison_flag(inp->inp_cred, PR_IP4); 1692 if (injail) { 1693 if (prison_check_ip4(inp->inp_cred, 1694 &laddr) != 0) 1695 continue; 1696 } else { 1697 if (local_exact != NULL) 1698 continue; 1699 } 1700 1701 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1702 if (injail) 1703 goto found; 1704 else 1705 local_exact = inp; 1706 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1707 #ifdef INET6 1708 /* XXX inp locking, NULL check */ 1709 if (inp->inp_vflag & INP_IPV6PROTO) 1710 local_wild_mapped = inp; 1711 else 1712 #endif 1713 if (injail) 1714 jail_wild = inp; 1715 else 1716 local_wild = inp; 1717 } 1718 } /* LIST_FOREACH */ 1719 1720 inp = jail_wild; 1721 if (inp == NULL) 1722 inp = local_exact; 1723 if (inp == NULL) 1724 inp = local_wild; 1725 #ifdef INET6 1726 if (inp == NULL) 1727 inp = local_wild_mapped; 1728 #endif 1729 if (inp != NULL) 1730 goto found; 1731 } 1732 #endif 1733 1734 /* 1735 * Then look for a wildcard match, if requested. 1736 */ 1737 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1738 struct inpcb *local_wild = NULL, *local_exact = NULL; 1739 #ifdef INET6 1740 struct inpcb *local_wild_mapped = NULL; 1741 #endif 1742 struct inpcb *jail_wild = NULL; 1743 struct inpcbhead *head; 1744 int injail; 1745 1746 /* 1747 * Order of socket selection - we always prefer jails. 1748 * 1. jailed, non-wild. 1749 * 2. jailed, wild. 1750 * 3. non-jailed, non-wild. 1751 * 4. non-jailed, wild. 1752 */ 1753 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 1754 0, pcbinfo->ipi_wildmask)]; 1755 LIST_FOREACH(inp, head, inp_pcbgroup_wild) { 1756 #ifdef INET6 1757 /* XXX inp locking */ 1758 if ((inp->inp_vflag & INP_IPV4) == 0) 1759 continue; 1760 #endif 1761 if (inp->inp_faddr.s_addr != INADDR_ANY || 1762 inp->inp_lport != lport) 1763 continue; 1764 1765 injail = prison_flag(inp->inp_cred, PR_IP4); 1766 if (injail) { 1767 if (prison_check_ip4(inp->inp_cred, 1768 &laddr) != 0) 1769 continue; 1770 } else { 1771 if (local_exact != NULL) 1772 continue; 1773 } 1774 1775 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1776 if (injail) 1777 goto found; 1778 else 1779 local_exact = inp; 1780 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1781 #ifdef INET6 1782 /* XXX inp locking, NULL check */ 1783 if (inp->inp_vflag & INP_IPV6PROTO) 1784 local_wild_mapped = inp; 1785 else 1786 #endif 1787 if (injail) 1788 jail_wild = inp; 1789 else 1790 local_wild = inp; 1791 } 1792 } /* LIST_FOREACH */ 1793 inp = jail_wild; 1794 if (inp == NULL) 1795 inp = local_exact; 1796 if (inp == NULL) 1797 inp = local_wild; 1798 #ifdef INET6 1799 if (inp == NULL) 1800 inp = local_wild_mapped; 1801 #endif 1802 if (inp != NULL) 1803 goto found; 1804 } /* if (lookupflags & INPLOOKUP_WILDCARD) */ 1805 INP_GROUP_UNLOCK(pcbgroup); 1806 return (NULL); 1807 1808 found: 1809 in_pcbref(inp); 1810 INP_GROUP_UNLOCK(pcbgroup); 1811 if (lookupflags & INPLOOKUP_WLOCKPCB) { 1812 INP_WLOCK(inp); 1813 if (in_pcbrele_wlocked(inp)) 1814 return (NULL); 1815 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 1816 INP_RLOCK(inp); 1817 if (in_pcbrele_rlocked(inp)) 1818 return (NULL); 1819 } else 1820 panic("%s: locking bug", __func__); 1821 return (inp); 1822 } 1823 #endif /* PCBGROUP */ 1824 1825 /* 1826 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 1827 * that the caller has locked the hash list, and will not perform any further 1828 * locking or reference operations on either the hash list or the connection. 1829 */ 1830 static struct inpcb * 1831 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1832 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 1833 struct ifnet *ifp) 1834 { 1835 struct inpcbhead *head; 1836 struct inpcb *inp, *tmpinp; 1837 u_short fport = fport_arg, lport = lport_arg; 1838 1839 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1840 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1841 1842 INP_HASH_LOCK_ASSERT(pcbinfo); 1843 1844 /* 1845 * First look for an exact match. 1846 */ 1847 tmpinp = NULL; 1848 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1849 pcbinfo->ipi_hashmask)]; 1850 LIST_FOREACH(inp, head, inp_hash) { 1851 #ifdef INET6 1852 /* XXX inp locking */ 1853 if ((inp->inp_vflag & INP_IPV4) == 0) 1854 continue; 1855 #endif 1856 if (inp->inp_faddr.s_addr == faddr.s_addr && 1857 inp->inp_laddr.s_addr == laddr.s_addr && 1858 inp->inp_fport == fport && 1859 inp->inp_lport == lport) { 1860 /* 1861 * XXX We should be able to directly return 1862 * the inp here, without any checks. 1863 * Well unless both bound with SO_REUSEPORT? 1864 */ 1865 if (prison_flag(inp->inp_cred, PR_IP4)) 1866 return (inp); 1867 if (tmpinp == NULL) 1868 tmpinp = inp; 1869 } 1870 } 1871 if (tmpinp != NULL) 1872 return (tmpinp); 1873 1874 /* 1875 * Then look for a wildcard match, if requested. 1876 */ 1877 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1878 struct inpcb *local_wild = NULL, *local_exact = NULL; 1879 #ifdef INET6 1880 struct inpcb *local_wild_mapped = NULL; 1881 #endif 1882 struct inpcb *jail_wild = NULL; 1883 int injail; 1884 1885 /* 1886 * Order of socket selection - we always prefer jails. 1887 * 1. jailed, non-wild. 1888 * 2. jailed, wild. 1889 * 3. non-jailed, non-wild. 1890 * 4. non-jailed, wild. 1891 */ 1892 1893 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1894 0, pcbinfo->ipi_hashmask)]; 1895 LIST_FOREACH(inp, head, inp_hash) { 1896 #ifdef INET6 1897 /* XXX inp locking */ 1898 if ((inp->inp_vflag & INP_IPV4) == 0) 1899 continue; 1900 #endif 1901 if (inp->inp_faddr.s_addr != INADDR_ANY || 1902 inp->inp_lport != lport) 1903 continue; 1904 1905 injail = prison_flag(inp->inp_cred, PR_IP4); 1906 if (injail) { 1907 if (prison_check_ip4(inp->inp_cred, 1908 &laddr) != 0) 1909 continue; 1910 } else { 1911 if (local_exact != NULL) 1912 continue; 1913 } 1914 1915 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1916 if (injail) 1917 return (inp); 1918 else 1919 local_exact = inp; 1920 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1921 #ifdef INET6 1922 /* XXX inp locking, NULL check */ 1923 if (inp->inp_vflag & INP_IPV6PROTO) 1924 local_wild_mapped = inp; 1925 else 1926 #endif 1927 if (injail) 1928 jail_wild = inp; 1929 else 1930 local_wild = inp; 1931 } 1932 } /* LIST_FOREACH */ 1933 if (jail_wild != NULL) 1934 return (jail_wild); 1935 if (local_exact != NULL) 1936 return (local_exact); 1937 if (local_wild != NULL) 1938 return (local_wild); 1939 #ifdef INET6 1940 if (local_wild_mapped != NULL) 1941 return (local_wild_mapped); 1942 #endif 1943 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 1944 1945 return (NULL); 1946 } 1947 1948 /* 1949 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 1950 * hash list lock, and will return the inpcb locked (i.e., requires 1951 * INPLOOKUP_LOCKPCB). 1952 */ 1953 static struct inpcb * 1954 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1955 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 1956 struct ifnet *ifp) 1957 { 1958 struct inpcb *inp; 1959 1960 INP_HASH_RLOCK(pcbinfo); 1961 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 1962 (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp); 1963 if (inp != NULL) { 1964 in_pcbref(inp); 1965 INP_HASH_RUNLOCK(pcbinfo); 1966 if (lookupflags & INPLOOKUP_WLOCKPCB) { 1967 INP_WLOCK(inp); 1968 if (in_pcbrele_wlocked(inp)) 1969 return (NULL); 1970 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 1971 INP_RLOCK(inp); 1972 if (in_pcbrele_rlocked(inp)) 1973 return (NULL); 1974 } else 1975 panic("%s: locking bug", __func__); 1976 } else 1977 INP_HASH_RUNLOCK(pcbinfo); 1978 return (inp); 1979 } 1980 1981 /* 1982 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 1983 * from which a pre-calculated hash value may be extracted. 1984 * 1985 * Possibly more of this logic should be in in_pcbgroup.c. 1986 */ 1987 struct inpcb * 1988 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 1989 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 1990 { 1991 #if defined(PCBGROUP) && !defined(RSS) 1992 struct inpcbgroup *pcbgroup; 1993 #endif 1994 1995 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 1996 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1997 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 1998 ("%s: LOCKPCB not set", __func__)); 1999 2000 /* 2001 * When not using RSS, use connection groups in preference to the 2002 * reservation table when looking up 4-tuples. When using RSS, just 2003 * use the reservation table, due to the cost of the Toeplitz hash 2004 * in software. 2005 * 2006 * XXXRW: This policy belongs in the pcbgroup code, as in principle 2007 * we could be doing RSS with a non-Toeplitz hash that is affordable 2008 * in software. 2009 */ 2010 #if defined(PCBGROUP) && !defined(RSS) 2011 if (in_pcbgroup_enabled(pcbinfo)) { 2012 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2013 fport); 2014 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2015 laddr, lport, lookupflags, ifp)); 2016 } 2017 #endif 2018 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2019 lookupflags, ifp)); 2020 } 2021 2022 struct inpcb * 2023 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2024 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2025 struct ifnet *ifp, struct mbuf *m) 2026 { 2027 #ifdef PCBGROUP 2028 struct inpcbgroup *pcbgroup; 2029 #endif 2030 2031 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2032 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2033 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2034 ("%s: LOCKPCB not set", __func__)); 2035 2036 #ifdef PCBGROUP 2037 /* 2038 * If we can use a hardware-generated hash to look up the connection 2039 * group, use that connection group to find the inpcb. Otherwise 2040 * fall back on a software hash -- or the reservation table if we're 2041 * using RSS. 2042 * 2043 * XXXRW: As above, that policy belongs in the pcbgroup code. 2044 */ 2045 if (in_pcbgroup_enabled(pcbinfo) && 2046 !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { 2047 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), 2048 m->m_pkthdr.flowid); 2049 if (pcbgroup != NULL) 2050 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, 2051 fport, laddr, lport, lookupflags, ifp)); 2052 #ifndef RSS 2053 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2054 fport); 2055 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2056 laddr, lport, lookupflags, ifp)); 2057 #endif 2058 } 2059 #endif 2060 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2061 lookupflags, ifp)); 2062 } 2063 #endif /* INET */ 2064 2065 /* 2066 * Insert PCB onto various hash lists. 2067 */ 2068 static int 2069 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update) 2070 { 2071 struct inpcbhead *pcbhash; 2072 struct inpcbporthead *pcbporthash; 2073 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2074 struct inpcbport *phd; 2075 u_int32_t hashkey_faddr; 2076 2077 INP_WLOCK_ASSERT(inp); 2078 INP_HASH_WLOCK_ASSERT(pcbinfo); 2079 2080 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2081 ("in_pcbinshash: INP_INHASHLIST")); 2082 2083 #ifdef INET6 2084 if (inp->inp_vflag & INP_IPV6) 2085 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2086 else 2087 #endif 2088 hashkey_faddr = inp->inp_faddr.s_addr; 2089 2090 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2091 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2092 2093 pcbporthash = &pcbinfo->ipi_porthashbase[ 2094 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2095 2096 /* 2097 * Go through port list and look for a head for this lport. 2098 */ 2099 LIST_FOREACH(phd, pcbporthash, phd_hash) { 2100 if (phd->phd_port == inp->inp_lport) 2101 break; 2102 } 2103 /* 2104 * If none exists, malloc one and tack it on. 2105 */ 2106 if (phd == NULL) { 2107 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 2108 if (phd == NULL) { 2109 return (ENOBUFS); /* XXX */ 2110 } 2111 phd->phd_port = inp->inp_lport; 2112 LIST_INIT(&phd->phd_pcblist); 2113 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2114 } 2115 inp->inp_phd = phd; 2116 LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2117 LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2118 inp->inp_flags |= INP_INHASHLIST; 2119 #ifdef PCBGROUP 2120 if (do_pcbgroup_update) 2121 in_pcbgroup_update(inp); 2122 #endif 2123 return (0); 2124 } 2125 2126 /* 2127 * For now, there are two public interfaces to insert an inpcb into the hash 2128 * lists -- one that does update pcbgroups, and one that doesn't. The latter 2129 * is used only in the TCP syncache, where in_pcbinshash is called before the 2130 * full 4-tuple is set for the inpcb, and we don't want to install in the 2131 * pcbgroup until later. 2132 * 2133 * XXXRW: This seems like a misfeature. in_pcbinshash should always update 2134 * connection groups, and partially initialised inpcbs should not be exposed 2135 * to either reservation hash tables or pcbgroups. 2136 */ 2137 int 2138 in_pcbinshash(struct inpcb *inp) 2139 { 2140 2141 return (in_pcbinshash_internal(inp, 1)); 2142 } 2143 2144 int 2145 in_pcbinshash_nopcbgroup(struct inpcb *inp) 2146 { 2147 2148 return (in_pcbinshash_internal(inp, 0)); 2149 } 2150 2151 /* 2152 * Move PCB to the proper hash bucket when { faddr, fport } have been 2153 * changed. NOTE: This does not handle the case of the lport changing (the 2154 * hashed port list would have to be updated as well), so the lport must 2155 * not change after in_pcbinshash() has been called. 2156 */ 2157 void 2158 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) 2159 { 2160 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2161 struct inpcbhead *head; 2162 u_int32_t hashkey_faddr; 2163 2164 INP_WLOCK_ASSERT(inp); 2165 INP_HASH_WLOCK_ASSERT(pcbinfo); 2166 2167 KASSERT(inp->inp_flags & INP_INHASHLIST, 2168 ("in_pcbrehash: !INP_INHASHLIST")); 2169 2170 #ifdef INET6 2171 if (inp->inp_vflag & INP_IPV6) 2172 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2173 else 2174 #endif 2175 hashkey_faddr = inp->inp_faddr.s_addr; 2176 2177 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2178 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2179 2180 LIST_REMOVE(inp, inp_hash); 2181 LIST_INSERT_HEAD(head, inp, inp_hash); 2182 2183 #ifdef PCBGROUP 2184 if (m != NULL) 2185 in_pcbgroup_update_mbuf(inp, m); 2186 else 2187 in_pcbgroup_update(inp); 2188 #endif 2189 } 2190 2191 void 2192 in_pcbrehash(struct inpcb *inp) 2193 { 2194 2195 in_pcbrehash_mbuf(inp, NULL); 2196 } 2197 2198 /* 2199 * Remove PCB from various lists. 2200 */ 2201 static void 2202 in_pcbremlists(struct inpcb *inp) 2203 { 2204 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2205 2206 #ifdef INVARIANTS 2207 if (pcbinfo == &V_tcbinfo) { 2208 INP_INFO_RLOCK_ASSERT(pcbinfo); 2209 } else { 2210 INP_INFO_WLOCK_ASSERT(pcbinfo); 2211 } 2212 #endif 2213 2214 INP_WLOCK_ASSERT(inp); 2215 INP_LIST_WLOCK_ASSERT(pcbinfo); 2216 2217 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 2218 if (inp->inp_flags & INP_INHASHLIST) { 2219 struct inpcbport *phd = inp->inp_phd; 2220 2221 INP_HASH_WLOCK(pcbinfo); 2222 LIST_REMOVE(inp, inp_hash); 2223 LIST_REMOVE(inp, inp_portlist); 2224 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 2225 LIST_REMOVE(phd, phd_hash); 2226 free(phd, M_PCB); 2227 } 2228 INP_HASH_WUNLOCK(pcbinfo); 2229 inp->inp_flags &= ~INP_INHASHLIST; 2230 } 2231 LIST_REMOVE(inp, inp_list); 2232 pcbinfo->ipi_count--; 2233 #ifdef PCBGROUP 2234 in_pcbgroup_remove(inp); 2235 #endif 2236 } 2237 2238 /* 2239 * Check for alternatives when higher level complains 2240 * about service problems. For now, invalidate cached 2241 * routing information. If the route was created dynamically 2242 * (by a redirect), time to try a default gateway again. 2243 */ 2244 void 2245 in_losing(struct inpcb *inp) 2246 { 2247 2248 RO_RTFREE(&inp->inp_route); 2249 if (inp->inp_route.ro_lle) 2250 LLE_FREE(inp->inp_route.ro_lle); /* zeros ro_lle */ 2251 return; 2252 } 2253 2254 /* 2255 * A set label operation has occurred at the socket layer, propagate the 2256 * label change into the in_pcb for the socket. 2257 */ 2258 void 2259 in_pcbsosetlabel(struct socket *so) 2260 { 2261 #ifdef MAC 2262 struct inpcb *inp; 2263 2264 inp = sotoinpcb(so); 2265 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2266 2267 INP_WLOCK(inp); 2268 SOCK_LOCK(so); 2269 mac_inpcb_sosetlabel(so, inp); 2270 SOCK_UNLOCK(so); 2271 INP_WUNLOCK(inp); 2272 #endif 2273 } 2274 2275 /* 2276 * ipport_tick runs once per second, determining if random port allocation 2277 * should be continued. If more than ipport_randomcps ports have been 2278 * allocated in the last second, then we return to sequential port 2279 * allocation. We return to random allocation only once we drop below 2280 * ipport_randomcps for at least ipport_randomtime seconds. 2281 */ 2282 static void 2283 ipport_tick(void *xtp) 2284 { 2285 VNET_ITERATOR_DECL(vnet_iter); 2286 2287 VNET_LIST_RLOCK_NOSLEEP(); 2288 VNET_FOREACH(vnet_iter) { 2289 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2290 if (V_ipport_tcpallocs <= 2291 V_ipport_tcplastcount + V_ipport_randomcps) { 2292 if (V_ipport_stoprandom > 0) 2293 V_ipport_stoprandom--; 2294 } else 2295 V_ipport_stoprandom = V_ipport_randomtime; 2296 V_ipport_tcplastcount = V_ipport_tcpallocs; 2297 CURVNET_RESTORE(); 2298 } 2299 VNET_LIST_RUNLOCK_NOSLEEP(); 2300 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2301 } 2302 2303 static void 2304 ip_fini(void *xtp) 2305 { 2306 2307 callout_stop(&ipport_tick_callout); 2308 } 2309 2310 /* 2311 * The ipport_callout should start running at about the time we attach the 2312 * inet or inet6 domains. 2313 */ 2314 static void 2315 ipport_tick_init(const void *unused __unused) 2316 { 2317 2318 /* Start ipport_tick. */ 2319 callout_init(&ipport_tick_callout, 1); 2320 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2321 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2322 SHUTDOWN_PRI_DEFAULT); 2323 } 2324 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2325 ipport_tick_init, NULL); 2326 2327 void 2328 inp_wlock(struct inpcb *inp) 2329 { 2330 2331 INP_WLOCK(inp); 2332 } 2333 2334 void 2335 inp_wunlock(struct inpcb *inp) 2336 { 2337 2338 INP_WUNLOCK(inp); 2339 } 2340 2341 void 2342 inp_rlock(struct inpcb *inp) 2343 { 2344 2345 INP_RLOCK(inp); 2346 } 2347 2348 void 2349 inp_runlock(struct inpcb *inp) 2350 { 2351 2352 INP_RUNLOCK(inp); 2353 } 2354 2355 #ifdef INVARIANTS 2356 void 2357 inp_lock_assert(struct inpcb *inp) 2358 { 2359 2360 INP_WLOCK_ASSERT(inp); 2361 } 2362 2363 void 2364 inp_unlock_assert(struct inpcb *inp) 2365 { 2366 2367 INP_UNLOCK_ASSERT(inp); 2368 } 2369 #endif 2370 2371 void 2372 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2373 { 2374 struct inpcb *inp; 2375 2376 INP_INFO_WLOCK(&V_tcbinfo); 2377 LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 2378 INP_WLOCK(inp); 2379 func(inp, arg); 2380 INP_WUNLOCK(inp); 2381 } 2382 INP_INFO_WUNLOCK(&V_tcbinfo); 2383 } 2384 2385 struct socket * 2386 inp_inpcbtosocket(struct inpcb *inp) 2387 { 2388 2389 INP_WLOCK_ASSERT(inp); 2390 return (inp->inp_socket); 2391 } 2392 2393 struct tcpcb * 2394 inp_inpcbtotcpcb(struct inpcb *inp) 2395 { 2396 2397 INP_WLOCK_ASSERT(inp); 2398 return ((struct tcpcb *)inp->inp_ppcb); 2399 } 2400 2401 int 2402 inp_ip_tos_get(const struct inpcb *inp) 2403 { 2404 2405 return (inp->inp_ip_tos); 2406 } 2407 2408 void 2409 inp_ip_tos_set(struct inpcb *inp, int val) 2410 { 2411 2412 inp->inp_ip_tos = val; 2413 } 2414 2415 void 2416 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2417 uint32_t *faddr, uint16_t *fp) 2418 { 2419 2420 INP_LOCK_ASSERT(inp); 2421 *laddr = inp->inp_laddr.s_addr; 2422 *faddr = inp->inp_faddr.s_addr; 2423 *lp = inp->inp_lport; 2424 *fp = inp->inp_fport; 2425 } 2426 2427 struct inpcb * 2428 so_sotoinpcb(struct socket *so) 2429 { 2430 2431 return (sotoinpcb(so)); 2432 } 2433 2434 struct tcpcb * 2435 so_sototcpcb(struct socket *so) 2436 { 2437 2438 return (sototcpcb(so)); 2439 } 2440 2441 #ifdef DDB 2442 static void 2443 db_print_indent(int indent) 2444 { 2445 int i; 2446 2447 for (i = 0; i < indent; i++) 2448 db_printf(" "); 2449 } 2450 2451 static void 2452 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2453 { 2454 char faddr_str[48], laddr_str[48]; 2455 2456 db_print_indent(indent); 2457 db_printf("%s at %p\n", name, inc); 2458 2459 indent += 2; 2460 2461 #ifdef INET6 2462 if (inc->inc_flags & INC_ISIPV6) { 2463 /* IPv6. */ 2464 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2465 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2466 } else 2467 #endif 2468 { 2469 /* IPv4. */ 2470 inet_ntoa_r(inc->inc_laddr, laddr_str); 2471 inet_ntoa_r(inc->inc_faddr, faddr_str); 2472 } 2473 db_print_indent(indent); 2474 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2475 ntohs(inc->inc_lport)); 2476 db_print_indent(indent); 2477 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2478 ntohs(inc->inc_fport)); 2479 } 2480 2481 static void 2482 db_print_inpflags(int inp_flags) 2483 { 2484 int comma; 2485 2486 comma = 0; 2487 if (inp_flags & INP_RECVOPTS) { 2488 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2489 comma = 1; 2490 } 2491 if (inp_flags & INP_RECVRETOPTS) { 2492 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2493 comma = 1; 2494 } 2495 if (inp_flags & INP_RECVDSTADDR) { 2496 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2497 comma = 1; 2498 } 2499 if (inp_flags & INP_HDRINCL) { 2500 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2501 comma = 1; 2502 } 2503 if (inp_flags & INP_HIGHPORT) { 2504 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2505 comma = 1; 2506 } 2507 if (inp_flags & INP_LOWPORT) { 2508 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2509 comma = 1; 2510 } 2511 if (inp_flags & INP_ANONPORT) { 2512 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2513 comma = 1; 2514 } 2515 if (inp_flags & INP_RECVIF) { 2516 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2517 comma = 1; 2518 } 2519 if (inp_flags & INP_MTUDISC) { 2520 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2521 comma = 1; 2522 } 2523 if (inp_flags & INP_RECVTTL) { 2524 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 2525 comma = 1; 2526 } 2527 if (inp_flags & INP_DONTFRAG) { 2528 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 2529 comma = 1; 2530 } 2531 if (inp_flags & INP_RECVTOS) { 2532 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 2533 comma = 1; 2534 } 2535 if (inp_flags & IN6P_IPV6_V6ONLY) { 2536 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 2537 comma = 1; 2538 } 2539 if (inp_flags & IN6P_PKTINFO) { 2540 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 2541 comma = 1; 2542 } 2543 if (inp_flags & IN6P_HOPLIMIT) { 2544 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 2545 comma = 1; 2546 } 2547 if (inp_flags & IN6P_HOPOPTS) { 2548 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 2549 comma = 1; 2550 } 2551 if (inp_flags & IN6P_DSTOPTS) { 2552 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 2553 comma = 1; 2554 } 2555 if (inp_flags & IN6P_RTHDR) { 2556 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 2557 comma = 1; 2558 } 2559 if (inp_flags & IN6P_RTHDRDSTOPTS) { 2560 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 2561 comma = 1; 2562 } 2563 if (inp_flags & IN6P_TCLASS) { 2564 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 2565 comma = 1; 2566 } 2567 if (inp_flags & IN6P_AUTOFLOWLABEL) { 2568 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 2569 comma = 1; 2570 } 2571 if (inp_flags & INP_TIMEWAIT) { 2572 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 2573 comma = 1; 2574 } 2575 if (inp_flags & INP_ONESBCAST) { 2576 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 2577 comma = 1; 2578 } 2579 if (inp_flags & INP_DROPPED) { 2580 db_printf("%sINP_DROPPED", comma ? ", " : ""); 2581 comma = 1; 2582 } 2583 if (inp_flags & INP_SOCKREF) { 2584 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 2585 comma = 1; 2586 } 2587 if (inp_flags & IN6P_RFC2292) { 2588 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 2589 comma = 1; 2590 } 2591 if (inp_flags & IN6P_MTU) { 2592 db_printf("IN6P_MTU%s", comma ? ", " : ""); 2593 comma = 1; 2594 } 2595 } 2596 2597 static void 2598 db_print_inpvflag(u_char inp_vflag) 2599 { 2600 int comma; 2601 2602 comma = 0; 2603 if (inp_vflag & INP_IPV4) { 2604 db_printf("%sINP_IPV4", comma ? ", " : ""); 2605 comma = 1; 2606 } 2607 if (inp_vflag & INP_IPV6) { 2608 db_printf("%sINP_IPV6", comma ? ", " : ""); 2609 comma = 1; 2610 } 2611 if (inp_vflag & INP_IPV6PROTO) { 2612 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 2613 comma = 1; 2614 } 2615 } 2616 2617 static void 2618 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 2619 { 2620 2621 db_print_indent(indent); 2622 db_printf("%s at %p\n", name, inp); 2623 2624 indent += 2; 2625 2626 db_print_indent(indent); 2627 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 2628 2629 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 2630 2631 db_print_indent(indent); 2632 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 2633 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 2634 2635 db_print_indent(indent); 2636 db_printf("inp_label: %p inp_flags: 0x%x (", 2637 inp->inp_label, inp->inp_flags); 2638 db_print_inpflags(inp->inp_flags); 2639 db_printf(")\n"); 2640 2641 db_print_indent(indent); 2642 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 2643 inp->inp_vflag); 2644 db_print_inpvflag(inp->inp_vflag); 2645 db_printf(")\n"); 2646 2647 db_print_indent(indent); 2648 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 2649 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 2650 2651 db_print_indent(indent); 2652 #ifdef INET6 2653 if (inp->inp_vflag & INP_IPV6) { 2654 db_printf("in6p_options: %p in6p_outputopts: %p " 2655 "in6p_moptions: %p\n", inp->in6p_options, 2656 inp->in6p_outputopts, inp->in6p_moptions); 2657 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 2658 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 2659 inp->in6p_hops); 2660 } else 2661 #endif 2662 { 2663 db_printf("inp_ip_tos: %d inp_ip_options: %p " 2664 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 2665 inp->inp_options, inp->inp_moptions); 2666 } 2667 2668 db_print_indent(indent); 2669 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 2670 (uintmax_t)inp->inp_gencnt); 2671 } 2672 2673 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 2674 { 2675 struct inpcb *inp; 2676 2677 if (!have_addr) { 2678 db_printf("usage: show inpcb <addr>\n"); 2679 return; 2680 } 2681 inp = (struct inpcb *)addr; 2682 2683 db_print_inpcb(inp, "inpcb", 0); 2684 } 2685 #endif /* DDB */ 2686 2687 #ifdef RATELIMIT 2688 /* 2689 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 2690 * if any. 2691 */ 2692 int 2693 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 2694 { 2695 union if_snd_tag_modify_params params = { 2696 .rate_limit.max_rate = max_pacing_rate, 2697 }; 2698 struct m_snd_tag *mst; 2699 struct ifnet *ifp; 2700 int error; 2701 2702 mst = inp->inp_snd_tag; 2703 if (mst == NULL) 2704 return (EINVAL); 2705 2706 ifp = mst->ifp; 2707 if (ifp == NULL) 2708 return (EINVAL); 2709 2710 if (ifp->if_snd_tag_modify == NULL) { 2711 error = EOPNOTSUPP; 2712 } else { 2713 error = ifp->if_snd_tag_modify(mst, ¶ms); 2714 } 2715 return (error); 2716 } 2717 2718 /* 2719 * Query existing TX rate limit based on the existing 2720 * "inp->inp_snd_tag", if any. 2721 */ 2722 int 2723 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 2724 { 2725 union if_snd_tag_query_params params = { }; 2726 struct m_snd_tag *mst; 2727 struct ifnet *ifp; 2728 int error; 2729 2730 mst = inp->inp_snd_tag; 2731 if (mst == NULL) 2732 return (EINVAL); 2733 2734 ifp = mst->ifp; 2735 if (ifp == NULL) 2736 return (EINVAL); 2737 2738 if (ifp->if_snd_tag_query == NULL) { 2739 error = EOPNOTSUPP; 2740 } else { 2741 error = ifp->if_snd_tag_query(mst, ¶ms); 2742 if (error == 0 && p_max_pacing_rate != NULL) 2743 *p_max_pacing_rate = params.rate_limit.max_rate; 2744 } 2745 return (error); 2746 } 2747 2748 /* 2749 * Allocate a new TX rate limit send tag from the network interface 2750 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 2751 */ 2752 int 2753 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 2754 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate) 2755 { 2756 union if_snd_tag_alloc_params params = { 2757 .rate_limit.hdr.type = IF_SND_TAG_TYPE_RATE_LIMIT, 2758 .rate_limit.hdr.flowid = flowid, 2759 .rate_limit.hdr.flowtype = flowtype, 2760 .rate_limit.max_rate = max_pacing_rate, 2761 }; 2762 int error; 2763 2764 INP_WLOCK_ASSERT(inp); 2765 2766 if (inp->inp_snd_tag != NULL) 2767 return (EINVAL); 2768 2769 if (ifp->if_snd_tag_alloc == NULL) { 2770 error = EOPNOTSUPP; 2771 } else { 2772 error = ifp->if_snd_tag_alloc(ifp, ¶ms, &inp->inp_snd_tag); 2773 2774 /* 2775 * At success increment the refcount on 2776 * the send tag's network interface: 2777 */ 2778 if (error == 0) 2779 if_ref(inp->inp_snd_tag->ifp); 2780 } 2781 return (error); 2782 } 2783 2784 /* 2785 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 2786 * if any: 2787 */ 2788 void 2789 in_pcbdetach_txrtlmt(struct inpcb *inp) 2790 { 2791 struct m_snd_tag *mst; 2792 struct ifnet *ifp; 2793 2794 INP_WLOCK_ASSERT(inp); 2795 2796 mst = inp->inp_snd_tag; 2797 inp->inp_snd_tag = NULL; 2798 2799 if (mst == NULL) 2800 return; 2801 2802 ifp = mst->ifp; 2803 if (ifp == NULL) 2804 return; 2805 2806 /* 2807 * If the device was detached while we still had reference(s) 2808 * on the ifp, we assume if_snd_tag_free() was replaced with 2809 * stubs. 2810 */ 2811 ifp->if_snd_tag_free(mst); 2812 2813 /* release reference count on network interface */ 2814 if_rele(ifp); 2815 } 2816 2817 /* 2818 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 2819 * is set in the fast path and will attach/detach/modify the TX rate 2820 * limit send tag based on the socket's so_max_pacing_rate value. 2821 */ 2822 void 2823 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 2824 { 2825 struct socket *socket; 2826 uint32_t max_pacing_rate; 2827 bool did_upgrade; 2828 int error; 2829 2830 if (inp == NULL) 2831 return; 2832 2833 socket = inp->inp_socket; 2834 if (socket == NULL) 2835 return; 2836 2837 if (!INP_WLOCKED(inp)) { 2838 /* 2839 * NOTE: If the write locking fails, we need to bail 2840 * out and use the non-ratelimited ring for the 2841 * transmit until there is a new chance to get the 2842 * write lock. 2843 */ 2844 if (!INP_TRY_UPGRADE(inp)) 2845 return; 2846 did_upgrade = 1; 2847 } else { 2848 did_upgrade = 0; 2849 } 2850 2851 /* 2852 * NOTE: The so_max_pacing_rate value is read unlocked, 2853 * because atomic updates are not required since the variable 2854 * is checked at every mbuf we send. It is assumed that the 2855 * variable read itself will be atomic. 2856 */ 2857 max_pacing_rate = socket->so_max_pacing_rate; 2858 2859 /* 2860 * NOTE: When attaching to a network interface a reference is 2861 * made to ensure the network interface doesn't go away until 2862 * all ratelimit connections are gone. The network interface 2863 * pointers compared below represent valid network interfaces, 2864 * except when comparing towards NULL. 2865 */ 2866 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 2867 error = 0; 2868 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 2869 if (inp->inp_snd_tag != NULL) 2870 in_pcbdetach_txrtlmt(inp); 2871 error = 0; 2872 } else if (inp->inp_snd_tag == NULL) { 2873 /* 2874 * In order to utilize packet pacing with RSS, we need 2875 * to wait until there is a valid RSS hash before we 2876 * can proceed: 2877 */ 2878 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 2879 error = EAGAIN; 2880 } else { 2881 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 2882 mb->m_pkthdr.flowid, max_pacing_rate); 2883 } 2884 } else { 2885 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 2886 } 2887 if (error == 0 || error == EOPNOTSUPP) 2888 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 2889 if (did_upgrade) 2890 INP_DOWNGRADE(inp); 2891 } 2892 2893 /* 2894 * Track route changes for TX rate limiting. 2895 */ 2896 void 2897 in_pcboutput_eagain(struct inpcb *inp) 2898 { 2899 struct socket *socket; 2900 bool did_upgrade; 2901 2902 if (inp == NULL) 2903 return; 2904 2905 socket = inp->inp_socket; 2906 if (socket == NULL) 2907 return; 2908 2909 if (inp->inp_snd_tag == NULL) 2910 return; 2911 2912 if (!INP_WLOCKED(inp)) { 2913 /* 2914 * NOTE: If the write locking fails, we need to bail 2915 * out and use the non-ratelimited ring for the 2916 * transmit until there is a new chance to get the 2917 * write lock. 2918 */ 2919 if (!INP_TRY_UPGRADE(inp)) 2920 return; 2921 did_upgrade = 1; 2922 } else { 2923 did_upgrade = 0; 2924 } 2925 2926 /* detach rate limiting */ 2927 in_pcbdetach_txrtlmt(inp); 2928 2929 /* make sure new mbuf send tag allocation is made */ 2930 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 2931 2932 if (did_upgrade) 2933 INP_DOWNGRADE(inp); 2934 } 2935 #endif /* RATELIMIT */ 2936