1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993, 1995 3 * The Regents of the University of California. 4 * Copyright (c) 2007 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 4. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_ddb.h" 38 #include "opt_ipsec.h" 39 #include "opt_inet6.h" 40 #include "opt_mac.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/malloc.h> 45 #include <sys/mbuf.h> 46 #include <sys/domain.h> 47 #include <sys/protosw.h> 48 #include <sys/socket.h> 49 #include <sys/socketvar.h> 50 #include <sys/priv.h> 51 #include <sys/proc.h> 52 #include <sys/jail.h> 53 #include <sys/kernel.h> 54 #include <sys/sysctl.h> 55 56 #ifdef DDB 57 #include <ddb/ddb.h> 58 #endif 59 60 #include <vm/uma.h> 61 62 #include <net/if.h> 63 #include <net/if_types.h> 64 #include <net/route.h> 65 66 #include <netinet/in.h> 67 #include <netinet/in_pcb.h> 68 #include <netinet/in_var.h> 69 #include <netinet/ip_var.h> 70 #include <netinet/tcp_var.h> 71 #include <netinet/udp.h> 72 #include <netinet/udp_var.h> 73 #ifdef INET6 74 #include <netinet/ip6.h> 75 #include <netinet6/ip6_var.h> 76 #endif /* INET6 */ 77 78 79 #ifdef IPSEC 80 #include <netipsec/ipsec.h> 81 #include <netipsec/key.h> 82 #endif /* IPSEC */ 83 84 #include <security/mac/mac_framework.h> 85 86 /* 87 * These configure the range of local port addresses assigned to 88 * "unspecified" outgoing connections/packets/whatever. 89 */ 90 int ipport_lowfirstauto = IPPORT_RESERVED - 1; /* 1023 */ 91 int ipport_lowlastauto = IPPORT_RESERVEDSTART; /* 600 */ 92 int ipport_firstauto = IPPORT_HIFIRSTAUTO; /* 49152 */ 93 int ipport_lastauto = IPPORT_HILASTAUTO; /* 65535 */ 94 int ipport_hifirstauto = IPPORT_HIFIRSTAUTO; /* 49152 */ 95 int ipport_hilastauto = IPPORT_HILASTAUTO; /* 65535 */ 96 97 /* 98 * Reserved ports accessible only to root. There are significant 99 * security considerations that must be accounted for when changing these, 100 * but the security benefits can be great. Please be careful. 101 */ 102 int ipport_reservedhigh = IPPORT_RESERVED - 1; /* 1023 */ 103 int ipport_reservedlow = 0; 104 105 /* Variables dealing with random ephemeral port allocation. */ 106 int ipport_randomized = 1; /* user controlled via sysctl */ 107 int ipport_randomcps = 10; /* user controlled via sysctl */ 108 int ipport_randomtime = 45; /* user controlled via sysctl */ 109 int ipport_stoprandom = 0; /* toggled by ipport_tick */ 110 int ipport_tcpallocs; 111 int ipport_tcplastcount; 112 113 #define RANGECHK(var, min, max) \ 114 if ((var) < (min)) { (var) = (min); } \ 115 else if ((var) > (max)) { (var) = (max); } 116 117 static int 118 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 119 { 120 int error; 121 122 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req); 123 if (error == 0) { 124 RANGECHK(ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 125 RANGECHK(ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 126 RANGECHK(ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 127 RANGECHK(ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 128 RANGECHK(ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 129 RANGECHK(ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 130 } 131 return (error); 132 } 133 134 #undef RANGECHK 135 136 SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports"); 137 138 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLTYPE_INT|CTLFLAG_RW, 139 &ipport_lowfirstauto, 0, &sysctl_net_ipport_check, "I", ""); 140 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLTYPE_INT|CTLFLAG_RW, 141 &ipport_lowlastauto, 0, &sysctl_net_ipport_check, "I", ""); 142 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLTYPE_INT|CTLFLAG_RW, 143 &ipport_firstauto, 0, &sysctl_net_ipport_check, "I", ""); 144 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLTYPE_INT|CTLFLAG_RW, 145 &ipport_lastauto, 0, &sysctl_net_ipport_check, "I", ""); 146 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLTYPE_INT|CTLFLAG_RW, 147 &ipport_hifirstauto, 0, &sysctl_net_ipport_check, "I", ""); 148 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLTYPE_INT|CTLFLAG_RW, 149 &ipport_hilastauto, 0, &sysctl_net_ipport_check, "I", ""); 150 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 151 CTLFLAG_RW|CTLFLAG_SECURE, &ipport_reservedhigh, 0, ""); 152 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 153 CTLFLAG_RW|CTLFLAG_SECURE, &ipport_reservedlow, 0, ""); 154 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW, 155 &ipport_randomized, 0, "Enable random port allocation"); 156 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW, 157 &ipport_randomcps, 0, "Maximum number of random port " 158 "allocations before switching to a sequental one"); 159 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW, 160 &ipport_randomtime, 0, "Minimum time to keep sequental port " 161 "allocation before switching to a random one"); 162 163 /* 164 * in_pcb.c: manage the Protocol Control Blocks. 165 * 166 * NOTE: It is assumed that most of these functions will be called with 167 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 168 * functions often modify hash chains or addresses in pcbs. 169 */ 170 171 /* 172 * Allocate a PCB and associate it with the socket. 173 * On success return with the PCB locked. 174 */ 175 int 176 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 177 { 178 struct inpcb *inp; 179 int error; 180 181 INP_INFO_WLOCK_ASSERT(pcbinfo); 182 error = 0; 183 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 184 if (inp == NULL) 185 return (ENOBUFS); 186 bzero(inp, inp_zero_size); 187 inp->inp_pcbinfo = pcbinfo; 188 inp->inp_socket = so; 189 #ifdef MAC 190 error = mac_inpcb_init(inp, M_NOWAIT); 191 if (error != 0) 192 goto out; 193 SOCK_LOCK(so); 194 mac_inpcb_create(so, inp); 195 SOCK_UNLOCK(so); 196 #endif 197 198 #ifdef IPSEC 199 error = ipsec_init_policy(so, &inp->inp_sp); 200 if (error != 0) { 201 #ifdef MAC 202 mac_inpcb_destroy(inp); 203 #endif 204 goto out; 205 } 206 #endif /*IPSEC*/ 207 #ifdef INET6 208 if (INP_SOCKAF(so) == AF_INET6) { 209 inp->inp_vflag |= INP_IPV6PROTO; 210 if (ip6_v6only) 211 inp->inp_flags |= IN6P_IPV6_V6ONLY; 212 } 213 #endif 214 LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 215 pcbinfo->ipi_count++; 216 so->so_pcb = (caddr_t)inp; 217 #ifdef INET6 218 if (ip6_auto_flowlabel) 219 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 220 #endif 221 INP_LOCK(inp); 222 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 223 224 #if defined(IPSEC) || defined(MAC) 225 out: 226 if (error != 0) 227 uma_zfree(pcbinfo->ipi_zone, inp); 228 #endif 229 return (error); 230 } 231 232 int 233 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 234 { 235 int anonport, error; 236 237 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 238 INP_LOCK_ASSERT(inp); 239 240 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 241 return (EINVAL); 242 anonport = inp->inp_lport == 0 && (nam == NULL || 243 ((struct sockaddr_in *)nam)->sin_port == 0); 244 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 245 &inp->inp_lport, cred); 246 if (error) 247 return (error); 248 if (in_pcbinshash(inp) != 0) { 249 inp->inp_laddr.s_addr = INADDR_ANY; 250 inp->inp_lport = 0; 251 return (EAGAIN); 252 } 253 if (anonport) 254 inp->inp_flags |= INP_ANONPORT; 255 return (0); 256 } 257 258 /* 259 * Set up a bind operation on a PCB, performing port allocation 260 * as required, but do not actually modify the PCB. Callers can 261 * either complete the bind by setting inp_laddr/inp_lport and 262 * calling in_pcbinshash(), or they can just use the resulting 263 * port and address to authorise the sending of a once-off packet. 264 * 265 * On error, the values of *laddrp and *lportp are not changed. 266 */ 267 int 268 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 269 u_short *lportp, struct ucred *cred) 270 { 271 struct socket *so = inp->inp_socket; 272 unsigned short *lastport; 273 struct sockaddr_in *sin; 274 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 275 struct in_addr laddr; 276 u_short lport = 0; 277 int wild = 0, reuseport = (so->so_options & SO_REUSEPORT); 278 int error, prison = 0; 279 int dorandom; 280 281 INP_INFO_WLOCK_ASSERT(pcbinfo); 282 INP_LOCK_ASSERT(inp); 283 284 if (TAILQ_EMPTY(&in_ifaddrhead)) /* XXX broken! */ 285 return (EADDRNOTAVAIL); 286 laddr.s_addr = *laddrp; 287 if (nam != NULL && laddr.s_addr != INADDR_ANY) 288 return (EINVAL); 289 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) 290 wild = INPLOOKUP_WILDCARD; 291 if (nam) { 292 sin = (struct sockaddr_in *)nam; 293 if (nam->sa_len != sizeof (*sin)) 294 return (EINVAL); 295 #ifdef notdef 296 /* 297 * We should check the family, but old programs 298 * incorrectly fail to initialize it. 299 */ 300 if (sin->sin_family != AF_INET) 301 return (EAFNOSUPPORT); 302 #endif 303 if (sin->sin_addr.s_addr != INADDR_ANY) 304 if (prison_ip(cred, 0, &sin->sin_addr.s_addr)) 305 return(EINVAL); 306 if (sin->sin_port != *lportp) { 307 /* Don't allow the port to change. */ 308 if (*lportp != 0) 309 return (EINVAL); 310 lport = sin->sin_port; 311 } 312 /* NB: lport is left as 0 if the port isn't being changed. */ 313 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 314 /* 315 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 316 * allow complete duplication of binding if 317 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 318 * and a multicast address is bound on both 319 * new and duplicated sockets. 320 */ 321 if (so->so_options & SO_REUSEADDR) 322 reuseport = SO_REUSEADDR|SO_REUSEPORT; 323 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 324 sin->sin_port = 0; /* yech... */ 325 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 326 if (ifa_ifwithaddr((struct sockaddr *)sin) == 0) 327 return (EADDRNOTAVAIL); 328 } 329 laddr = sin->sin_addr; 330 if (lport) { 331 struct inpcb *t; 332 struct tcptw *tw; 333 334 /* GROSS */ 335 if (ntohs(lport) <= ipport_reservedhigh && 336 ntohs(lport) >= ipport_reservedlow && 337 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 338 0)) 339 return (EACCES); 340 if (jailed(cred)) 341 prison = 1; 342 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 343 priv_check_cred(so->so_cred, 344 PRIV_NETINET_REUSEPORT, 0) != 0) { 345 t = in_pcblookup_local(inp->inp_pcbinfo, 346 sin->sin_addr, lport, 347 prison ? 0 : INPLOOKUP_WILDCARD); 348 /* 349 * XXX 350 * This entire block sorely needs a rewrite. 351 */ 352 if (t && 353 ((t->inp_vflag & INP_TIMEWAIT) == 0) && 354 (so->so_type != SOCK_STREAM || 355 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 356 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 357 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 358 (t->inp_socket->so_options & 359 SO_REUSEPORT) == 0) && 360 (so->so_cred->cr_uid != 361 t->inp_socket->so_cred->cr_uid)) 362 return (EADDRINUSE); 363 } 364 if (prison && prison_ip(cred, 0, &sin->sin_addr.s_addr)) 365 return (EADDRNOTAVAIL); 366 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 367 lport, prison ? 0 : wild); 368 if (t && (t->inp_vflag & INP_TIMEWAIT)) { 369 /* 370 * XXXRW: If an incpb has had its timewait 371 * state recycled, we treat the address as 372 * being in use (for now). This is better 373 * than a panic, but not desirable. 374 */ 375 tw = intotw(inp); 376 if (tw == NULL || 377 (reuseport & tw->tw_so_options) == 0) 378 return (EADDRINUSE); 379 } else if (t && 380 (reuseport & t->inp_socket->so_options) == 0) { 381 #ifdef INET6 382 if (ntohl(sin->sin_addr.s_addr) != 383 INADDR_ANY || 384 ntohl(t->inp_laddr.s_addr) != 385 INADDR_ANY || 386 INP_SOCKAF(so) == 387 INP_SOCKAF(t->inp_socket)) 388 #endif 389 return (EADDRINUSE); 390 } 391 } 392 } 393 if (*lportp != 0) 394 lport = *lportp; 395 if (lport == 0) { 396 u_short first, last; 397 int count; 398 399 if (laddr.s_addr != INADDR_ANY) 400 if (prison_ip(cred, 0, &laddr.s_addr)) 401 return (EINVAL); 402 403 if (inp->inp_flags & INP_HIGHPORT) { 404 first = ipport_hifirstauto; /* sysctl */ 405 last = ipport_hilastauto; 406 lastport = &pcbinfo->ipi_lasthi; 407 } else if (inp->inp_flags & INP_LOWPORT) { 408 error = priv_check_cred(cred, 409 PRIV_NETINET_RESERVEDPORT, 0); 410 if (error) 411 return error; 412 first = ipport_lowfirstauto; /* 1023 */ 413 last = ipport_lowlastauto; /* 600 */ 414 lastport = &pcbinfo->ipi_lastlow; 415 } else { 416 first = ipport_firstauto; /* sysctl */ 417 last = ipport_lastauto; 418 lastport = &pcbinfo->ipi_lastport; 419 } 420 /* 421 * For UDP, use random port allocation as long as the user 422 * allows it. For TCP (and as of yet unknown) connections, 423 * use random port allocation only if the user allows it AND 424 * ipport_tick() allows it. 425 */ 426 if (ipport_randomized && 427 (!ipport_stoprandom || pcbinfo == &udbinfo)) 428 dorandom = 1; 429 else 430 dorandom = 0; 431 /* 432 * It makes no sense to do random port allocation if 433 * we have the only port available. 434 */ 435 if (first == last) 436 dorandom = 0; 437 /* Make sure to not include UDP packets in the count. */ 438 if (pcbinfo != &udbinfo) 439 ipport_tcpallocs++; 440 /* 441 * Simple check to ensure all ports are not used up causing 442 * a deadlock here. 443 * 444 * We split the two cases (up and down) so that the direction 445 * is not being tested on each round of the loop. 446 */ 447 if (first > last) { 448 /* 449 * counting down 450 */ 451 if (dorandom) 452 *lastport = first - 453 (arc4random() % (first - last)); 454 count = first - last; 455 456 do { 457 if (count-- < 0) /* completely used? */ 458 return (EADDRNOTAVAIL); 459 --*lastport; 460 if (*lastport > first || *lastport < last) 461 *lastport = first; 462 lport = htons(*lastport); 463 } while (in_pcblookup_local(pcbinfo, laddr, lport, 464 wild)); 465 } else { 466 /* 467 * counting up 468 */ 469 if (dorandom) 470 *lastport = first + 471 (arc4random() % (last - first)); 472 count = last - first; 473 474 do { 475 if (count-- < 0) /* completely used? */ 476 return (EADDRNOTAVAIL); 477 ++*lastport; 478 if (*lastport < first || *lastport > last) 479 *lastport = first; 480 lport = htons(*lastport); 481 } while (in_pcblookup_local(pcbinfo, laddr, lport, 482 wild)); 483 } 484 } 485 if (prison_ip(cred, 0, &laddr.s_addr)) 486 return (EINVAL); 487 *laddrp = laddr.s_addr; 488 *lportp = lport; 489 return (0); 490 } 491 492 /* 493 * Connect from a socket to a specified address. 494 * Both address and port must be specified in argument sin. 495 * If don't have a local address for this socket yet, 496 * then pick one. 497 */ 498 int 499 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 500 { 501 u_short lport, fport; 502 in_addr_t laddr, faddr; 503 int anonport, error; 504 505 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 506 INP_LOCK_ASSERT(inp); 507 508 lport = inp->inp_lport; 509 laddr = inp->inp_laddr.s_addr; 510 anonport = (lport == 0); 511 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 512 NULL, cred); 513 if (error) 514 return (error); 515 516 /* Do the initial binding of the local address if required. */ 517 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 518 inp->inp_lport = lport; 519 inp->inp_laddr.s_addr = laddr; 520 if (in_pcbinshash(inp) != 0) { 521 inp->inp_laddr.s_addr = INADDR_ANY; 522 inp->inp_lport = 0; 523 return (EAGAIN); 524 } 525 } 526 527 /* Commit the remaining changes. */ 528 inp->inp_lport = lport; 529 inp->inp_laddr.s_addr = laddr; 530 inp->inp_faddr.s_addr = faddr; 531 inp->inp_fport = fport; 532 in_pcbrehash(inp); 533 534 if (anonport) 535 inp->inp_flags |= INP_ANONPORT; 536 return (0); 537 } 538 539 /* 540 * Set up for a connect from a socket to the specified address. 541 * On entry, *laddrp and *lportp should contain the current local 542 * address and port for the PCB; these are updated to the values 543 * that should be placed in inp_laddr and inp_lport to complete 544 * the connect. 545 * 546 * On success, *faddrp and *fportp will be set to the remote address 547 * and port. These are not updated in the error case. 548 * 549 * If the operation fails because the connection already exists, 550 * *oinpp will be set to the PCB of that connection so that the 551 * caller can decide to override it. In all other cases, *oinpp 552 * is set to NULL. 553 */ 554 int 555 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 556 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 557 struct inpcb **oinpp, struct ucred *cred) 558 { 559 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 560 struct in_ifaddr *ia; 561 struct sockaddr_in sa; 562 struct ucred *socred; 563 struct inpcb *oinp; 564 struct in_addr laddr, faddr; 565 u_short lport, fport; 566 int error; 567 568 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 569 INP_LOCK_ASSERT(inp); 570 571 if (oinpp != NULL) 572 *oinpp = NULL; 573 if (nam->sa_len != sizeof (*sin)) 574 return (EINVAL); 575 if (sin->sin_family != AF_INET) 576 return (EAFNOSUPPORT); 577 if (sin->sin_port == 0) 578 return (EADDRNOTAVAIL); 579 laddr.s_addr = *laddrp; 580 lport = *lportp; 581 faddr = sin->sin_addr; 582 fport = sin->sin_port; 583 socred = inp->inp_socket->so_cred; 584 if (laddr.s_addr == INADDR_ANY && jailed(socred)) { 585 bzero(&sa, sizeof(sa)); 586 sa.sin_addr.s_addr = htonl(prison_getip(socred)); 587 sa.sin_len = sizeof(sa); 588 sa.sin_family = AF_INET; 589 error = in_pcbbind_setup(inp, (struct sockaddr *)&sa, 590 &laddr.s_addr, &lport, cred); 591 if (error) 592 return (error); 593 } 594 if (!TAILQ_EMPTY(&in_ifaddrhead)) { 595 /* 596 * If the destination address is INADDR_ANY, 597 * use the primary local address. 598 * If the supplied address is INADDR_BROADCAST, 599 * and the primary interface supports broadcast, 600 * choose the broadcast address for that interface. 601 */ 602 if (faddr.s_addr == INADDR_ANY) 603 faddr = IA_SIN(TAILQ_FIRST(&in_ifaddrhead))->sin_addr; 604 else if (faddr.s_addr == (u_long)INADDR_BROADCAST && 605 (TAILQ_FIRST(&in_ifaddrhead)->ia_ifp->if_flags & 606 IFF_BROADCAST)) 607 faddr = satosin(&TAILQ_FIRST( 608 &in_ifaddrhead)->ia_broadaddr)->sin_addr; 609 } 610 if (laddr.s_addr == INADDR_ANY) { 611 ia = (struct in_ifaddr *)0; 612 /* 613 * If route is known our src addr is taken from the i/f, 614 * else punt. 615 * 616 * Find out route to destination 617 */ 618 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 619 ia = ip_rtaddr(faddr); 620 /* 621 * If we found a route, use the address corresponding to 622 * the outgoing interface. 623 * 624 * Otherwise assume faddr is reachable on a directly connected 625 * network and try to find a corresponding interface to take 626 * the source address from. 627 */ 628 if (ia == 0) { 629 bzero(&sa, sizeof(sa)); 630 sa.sin_addr = faddr; 631 sa.sin_len = sizeof(sa); 632 sa.sin_family = AF_INET; 633 634 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sa))); 635 if (ia == 0) 636 ia = ifatoia(ifa_ifwithnet(sintosa(&sa))); 637 if (ia == 0) 638 return (ENETUNREACH); 639 } 640 /* 641 * If the destination address is multicast and an outgoing 642 * interface has been set as a multicast option, use the 643 * address of that interface as our source address. 644 */ 645 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 646 inp->inp_moptions != NULL) { 647 struct ip_moptions *imo; 648 struct ifnet *ifp; 649 650 imo = inp->inp_moptions; 651 if (imo->imo_multicast_ifp != NULL) { 652 ifp = imo->imo_multicast_ifp; 653 TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) 654 if (ia->ia_ifp == ifp) 655 break; 656 if (ia == 0) 657 return (EADDRNOTAVAIL); 658 } 659 } 660 laddr = ia->ia_addr.sin_addr; 661 } 662 663 oinp = in_pcblookup_hash(inp->inp_pcbinfo, faddr, fport, laddr, lport, 664 0, NULL); 665 if (oinp != NULL) { 666 if (oinpp != NULL) 667 *oinpp = oinp; 668 return (EADDRINUSE); 669 } 670 if (lport == 0) { 671 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 672 cred); 673 if (error) 674 return (error); 675 } 676 *laddrp = laddr.s_addr; 677 *lportp = lport; 678 *faddrp = faddr.s_addr; 679 *fportp = fport; 680 return (0); 681 } 682 683 void 684 in_pcbdisconnect(struct inpcb *inp) 685 { 686 687 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 688 INP_LOCK_ASSERT(inp); 689 690 inp->inp_faddr.s_addr = INADDR_ANY; 691 inp->inp_fport = 0; 692 in_pcbrehash(inp); 693 } 694 695 /* 696 * In the old world order, in_pcbdetach() served two functions: to detach the 697 * pcb from the socket/potentially free the socket, and to free the pcb 698 * itself. In the new world order, the protocol code is responsible for 699 * managing the relationship with the socket, and this code simply frees the 700 * pcb. 701 */ 702 void 703 in_pcbdetach(struct inpcb *inp) 704 { 705 706 KASSERT(inp->inp_socket != NULL, ("in_pcbdetach: inp_socket == NULL")); 707 inp->inp_socket->so_pcb = NULL; 708 inp->inp_socket = NULL; 709 } 710 711 void 712 in_pcbfree(struct inpcb *inp) 713 { 714 struct inpcbinfo *ipi = inp->inp_pcbinfo; 715 716 KASSERT(inp->inp_socket == NULL, ("in_pcbfree: inp_socket != NULL")); 717 INP_INFO_WLOCK_ASSERT(ipi); 718 INP_LOCK_ASSERT(inp); 719 720 #ifdef IPSEC 721 ipsec4_delete_pcbpolicy(inp); 722 #endif /*IPSEC*/ 723 inp->inp_gencnt = ++ipi->ipi_gencnt; 724 in_pcbremlists(inp); 725 if (inp->inp_options) 726 (void)m_free(inp->inp_options); 727 if (inp->inp_moptions != NULL) 728 inp_freemoptions(inp->inp_moptions); 729 inp->inp_vflag = 0; 730 731 #ifdef MAC 732 mac_inpcb_destroy(inp); 733 #endif 734 INP_UNLOCK(inp); 735 uma_zfree(ipi->ipi_zone, inp); 736 } 737 738 /* 739 * TCP needs to maintain its inpcb structure after the TCP connection has 740 * been torn down. However, it must be disconnected from the inpcb hashes as 741 * it must not prevent binding of future connections to the same port/ip 742 * combination by other inpcbs. 743 */ 744 void 745 in_pcbdrop(struct inpcb *inp) 746 { 747 748 INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo); 749 INP_LOCK_ASSERT(inp); 750 751 inp->inp_vflag |= INP_DROPPED; 752 if (inp->inp_lport) { 753 struct inpcbport *phd = inp->inp_phd; 754 755 LIST_REMOVE(inp, inp_hash); 756 LIST_REMOVE(inp, inp_portlist); 757 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 758 LIST_REMOVE(phd, phd_hash); 759 free(phd, M_PCB); 760 } 761 inp->inp_lport = 0; 762 } 763 } 764 765 /* 766 * Common routines to return the socket addresses associated with inpcbs. 767 */ 768 struct sockaddr * 769 in_sockaddr(in_port_t port, struct in_addr *addr_p) 770 { 771 struct sockaddr_in *sin; 772 773 MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME, 774 M_WAITOK | M_ZERO); 775 sin->sin_family = AF_INET; 776 sin->sin_len = sizeof(*sin); 777 sin->sin_addr = *addr_p; 778 sin->sin_port = port; 779 780 return (struct sockaddr *)sin; 781 } 782 783 int 784 in_getsockaddr(struct socket *so, struct sockaddr **nam) 785 { 786 struct inpcb *inp; 787 struct in_addr addr; 788 in_port_t port; 789 790 inp = sotoinpcb(so); 791 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 792 793 INP_LOCK(inp); 794 port = inp->inp_lport; 795 addr = inp->inp_laddr; 796 INP_UNLOCK(inp); 797 798 *nam = in_sockaddr(port, &addr); 799 return 0; 800 } 801 802 int 803 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 804 { 805 struct inpcb *inp; 806 struct in_addr addr; 807 in_port_t port; 808 809 inp = sotoinpcb(so); 810 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 811 812 INP_LOCK(inp); 813 port = inp->inp_fport; 814 addr = inp->inp_faddr; 815 INP_UNLOCK(inp); 816 817 *nam = in_sockaddr(port, &addr); 818 return 0; 819 } 820 821 void 822 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 823 struct inpcb *(*notify)(struct inpcb *, int)) 824 { 825 struct inpcb *inp, *ninp; 826 struct inpcbhead *head; 827 828 INP_INFO_WLOCK(pcbinfo); 829 head = pcbinfo->ipi_listhead; 830 for (inp = LIST_FIRST(head); inp != NULL; inp = ninp) { 831 INP_LOCK(inp); 832 ninp = LIST_NEXT(inp, inp_list); 833 #ifdef INET6 834 if ((inp->inp_vflag & INP_IPV4) == 0) { 835 INP_UNLOCK(inp); 836 continue; 837 } 838 #endif 839 if (inp->inp_faddr.s_addr != faddr.s_addr || 840 inp->inp_socket == NULL) { 841 INP_UNLOCK(inp); 842 continue; 843 } 844 if ((*notify)(inp, errno)) 845 INP_UNLOCK(inp); 846 } 847 INP_INFO_WUNLOCK(pcbinfo); 848 } 849 850 void 851 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 852 { 853 struct inpcb *inp; 854 struct ip_moptions *imo; 855 int i, gap; 856 857 INP_INFO_RLOCK(pcbinfo); 858 LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 859 INP_LOCK(inp); 860 imo = inp->inp_moptions; 861 if ((inp->inp_vflag & INP_IPV4) && 862 imo != NULL) { 863 /* 864 * Unselect the outgoing interface if it is being 865 * detached. 866 */ 867 if (imo->imo_multicast_ifp == ifp) 868 imo->imo_multicast_ifp = NULL; 869 870 /* 871 * Drop multicast group membership if we joined 872 * through the interface being detached. 873 */ 874 for (i = 0, gap = 0; i < imo->imo_num_memberships; 875 i++) { 876 if (imo->imo_membership[i]->inm_ifp == ifp) { 877 in_delmulti(imo->imo_membership[i]); 878 gap++; 879 } else if (gap != 0) 880 imo->imo_membership[i - gap] = 881 imo->imo_membership[i]; 882 } 883 imo->imo_num_memberships -= gap; 884 } 885 INP_UNLOCK(inp); 886 } 887 INP_INFO_RUNLOCK(pcbinfo); 888 } 889 890 /* 891 * Lookup a PCB based on the local address and port. 892 */ 893 #define INP_LOOKUP_MAPPED_PCB_COST 3 894 struct inpcb * 895 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 896 u_int lport_arg, int wild_okay) 897 { 898 struct inpcb *inp; 899 #ifdef INET6 900 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 901 #else 902 int matchwild = 3; 903 #endif 904 int wildcard; 905 u_short lport = lport_arg; 906 907 INP_INFO_WLOCK_ASSERT(pcbinfo); 908 909 if (!wild_okay) { 910 struct inpcbhead *head; 911 /* 912 * Look for an unconnected (wildcard foreign addr) PCB that 913 * matches the local address and port we're looking for. 914 */ 915 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 916 0, pcbinfo->ipi_hashmask)]; 917 LIST_FOREACH(inp, head, inp_hash) { 918 #ifdef INET6 919 if ((inp->inp_vflag & INP_IPV4) == 0) 920 continue; 921 #endif 922 if (inp->inp_faddr.s_addr == INADDR_ANY && 923 inp->inp_laddr.s_addr == laddr.s_addr && 924 inp->inp_lport == lport) { 925 /* 926 * Found. 927 */ 928 return (inp); 929 } 930 } 931 /* 932 * Not found. 933 */ 934 return (NULL); 935 } else { 936 struct inpcbporthead *porthash; 937 struct inpcbport *phd; 938 struct inpcb *match = NULL; 939 /* 940 * Best fit PCB lookup. 941 * 942 * First see if this local port is in use by looking on the 943 * port hash list. 944 */ 945 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 946 pcbinfo->ipi_porthashmask)]; 947 LIST_FOREACH(phd, porthash, phd_hash) { 948 if (phd->phd_port == lport) 949 break; 950 } 951 if (phd != NULL) { 952 /* 953 * Port is in use by one or more PCBs. Look for best 954 * fit. 955 */ 956 LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 957 wildcard = 0; 958 #ifdef INET6 959 if ((inp->inp_vflag & INP_IPV4) == 0) 960 continue; 961 /* 962 * We never select the PCB that has 963 * INP_IPV6 flag and is bound to :: if 964 * we have another PCB which is bound 965 * to 0.0.0.0. If a PCB has the 966 * INP_IPV6 flag, then we set its cost 967 * higher than IPv4 only PCBs. 968 * 969 * Note that the case only happens 970 * when a socket is bound to ::, under 971 * the condition that the use of the 972 * mapped address is allowed. 973 */ 974 if ((inp->inp_vflag & INP_IPV6) != 0) 975 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 976 #endif 977 if (inp->inp_faddr.s_addr != INADDR_ANY) 978 wildcard++; 979 if (inp->inp_laddr.s_addr != INADDR_ANY) { 980 if (laddr.s_addr == INADDR_ANY) 981 wildcard++; 982 else if (inp->inp_laddr.s_addr != laddr.s_addr) 983 continue; 984 } else { 985 if (laddr.s_addr != INADDR_ANY) 986 wildcard++; 987 } 988 if (wildcard < matchwild) { 989 match = inp; 990 matchwild = wildcard; 991 if (matchwild == 0) { 992 break; 993 } 994 } 995 } 996 } 997 return (match); 998 } 999 } 1000 #undef INP_LOOKUP_MAPPED_PCB_COST 1001 1002 /* 1003 * Lookup PCB in hash list. 1004 */ 1005 struct inpcb * 1006 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1007 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard, 1008 struct ifnet *ifp) 1009 { 1010 struct inpcbhead *head; 1011 struct inpcb *inp; 1012 u_short fport = fport_arg, lport = lport_arg; 1013 1014 INP_INFO_RLOCK_ASSERT(pcbinfo); 1015 1016 /* 1017 * First look for an exact match. 1018 */ 1019 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1020 pcbinfo->ipi_hashmask)]; 1021 LIST_FOREACH(inp, head, inp_hash) { 1022 #ifdef INET6 1023 if ((inp->inp_vflag & INP_IPV4) == 0) 1024 continue; 1025 #endif 1026 if (inp->inp_faddr.s_addr == faddr.s_addr && 1027 inp->inp_laddr.s_addr == laddr.s_addr && 1028 inp->inp_fport == fport && 1029 inp->inp_lport == lport) 1030 return (inp); 1031 } 1032 1033 /* 1034 * Then look for a wildcard match, if requested. 1035 */ 1036 if (wildcard) { 1037 struct inpcb *local_wild = NULL; 1038 #ifdef INET6 1039 struct inpcb *local_wild_mapped = NULL; 1040 #endif 1041 1042 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1043 0, pcbinfo->ipi_hashmask)]; 1044 LIST_FOREACH(inp, head, inp_hash) { 1045 #ifdef INET6 1046 if ((inp->inp_vflag & INP_IPV4) == 0) 1047 continue; 1048 #endif 1049 if (inp->inp_faddr.s_addr == INADDR_ANY && 1050 inp->inp_lport == lport) { 1051 if (ifp && ifp->if_type == IFT_FAITH && 1052 (inp->inp_flags & INP_FAITH) == 0) 1053 continue; 1054 if (inp->inp_laddr.s_addr == laddr.s_addr) 1055 return (inp); 1056 else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1057 #ifdef INET6 1058 if (INP_CHECK_SOCKAF(inp->inp_socket, 1059 AF_INET6)) 1060 local_wild_mapped = inp; 1061 else 1062 #endif 1063 local_wild = inp; 1064 } 1065 } 1066 } 1067 #ifdef INET6 1068 if (local_wild == NULL) 1069 return (local_wild_mapped); 1070 #endif 1071 return (local_wild); 1072 } 1073 return (NULL); 1074 } 1075 1076 /* 1077 * Insert PCB onto various hash lists. 1078 */ 1079 int 1080 in_pcbinshash(struct inpcb *inp) 1081 { 1082 struct inpcbhead *pcbhash; 1083 struct inpcbporthead *pcbporthash; 1084 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1085 struct inpcbport *phd; 1086 u_int32_t hashkey_faddr; 1087 1088 INP_INFO_WLOCK_ASSERT(pcbinfo); 1089 INP_LOCK_ASSERT(inp); 1090 1091 #ifdef INET6 1092 if (inp->inp_vflag & INP_IPV6) 1093 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; 1094 else 1095 #endif /* INET6 */ 1096 hashkey_faddr = inp->inp_faddr.s_addr; 1097 1098 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 1099 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 1100 1101 pcbporthash = &pcbinfo->ipi_porthashbase[ 1102 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 1103 1104 /* 1105 * Go through port list and look for a head for this lport. 1106 */ 1107 LIST_FOREACH(phd, pcbporthash, phd_hash) { 1108 if (phd->phd_port == inp->inp_lport) 1109 break; 1110 } 1111 /* 1112 * If none exists, malloc one and tack it on. 1113 */ 1114 if (phd == NULL) { 1115 MALLOC(phd, struct inpcbport *, sizeof(struct inpcbport), M_PCB, M_NOWAIT); 1116 if (phd == NULL) { 1117 return (ENOBUFS); /* XXX */ 1118 } 1119 phd->phd_port = inp->inp_lport; 1120 LIST_INIT(&phd->phd_pcblist); 1121 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 1122 } 1123 inp->inp_phd = phd; 1124 LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 1125 LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 1126 return (0); 1127 } 1128 1129 /* 1130 * Move PCB to the proper hash bucket when { faddr, fport } have been 1131 * changed. NOTE: This does not handle the case of the lport changing (the 1132 * hashed port list would have to be updated as well), so the lport must 1133 * not change after in_pcbinshash() has been called. 1134 */ 1135 void 1136 in_pcbrehash(struct inpcb *inp) 1137 { 1138 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1139 struct inpcbhead *head; 1140 u_int32_t hashkey_faddr; 1141 1142 INP_INFO_WLOCK_ASSERT(pcbinfo); 1143 INP_LOCK_ASSERT(inp); 1144 1145 #ifdef INET6 1146 if (inp->inp_vflag & INP_IPV6) 1147 hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */; 1148 else 1149 #endif /* INET6 */ 1150 hashkey_faddr = inp->inp_faddr.s_addr; 1151 1152 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 1153 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 1154 1155 LIST_REMOVE(inp, inp_hash); 1156 LIST_INSERT_HEAD(head, inp, inp_hash); 1157 } 1158 1159 /* 1160 * Remove PCB from various lists. 1161 */ 1162 void 1163 in_pcbremlists(struct inpcb *inp) 1164 { 1165 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1166 1167 INP_INFO_WLOCK_ASSERT(pcbinfo); 1168 INP_LOCK_ASSERT(inp); 1169 1170 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1171 if (inp->inp_lport) { 1172 struct inpcbport *phd = inp->inp_phd; 1173 1174 LIST_REMOVE(inp, inp_hash); 1175 LIST_REMOVE(inp, inp_portlist); 1176 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 1177 LIST_REMOVE(phd, phd_hash); 1178 free(phd, M_PCB); 1179 } 1180 } 1181 LIST_REMOVE(inp, inp_list); 1182 pcbinfo->ipi_count--; 1183 } 1184 1185 /* 1186 * A set label operation has occurred at the socket layer, propagate the 1187 * label change into the in_pcb for the socket. 1188 */ 1189 void 1190 in_pcbsosetlabel(struct socket *so) 1191 { 1192 #ifdef MAC 1193 struct inpcb *inp; 1194 1195 inp = sotoinpcb(so); 1196 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 1197 1198 INP_LOCK(inp); 1199 SOCK_LOCK(so); 1200 mac_inpcb_sosetlabel(so, inp); 1201 SOCK_UNLOCK(so); 1202 INP_UNLOCK(inp); 1203 #endif 1204 } 1205 1206 /* 1207 * ipport_tick runs once per second, determining if random port allocation 1208 * should be continued. If more than ipport_randomcps ports have been 1209 * allocated in the last second, then we return to sequential port 1210 * allocation. We return to random allocation only once we drop below 1211 * ipport_randomcps for at least ipport_randomtime seconds. 1212 */ 1213 void 1214 ipport_tick(void *xtp) 1215 { 1216 1217 if (ipport_tcpallocs <= ipport_tcplastcount + ipport_randomcps) { 1218 if (ipport_stoprandom > 0) 1219 ipport_stoprandom--; 1220 } else 1221 ipport_stoprandom = ipport_randomtime; 1222 ipport_tcplastcount = ipport_tcpallocs; 1223 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 1224 } 1225 1226 #ifdef DDB 1227 static void 1228 db_print_indent(int indent) 1229 { 1230 int i; 1231 1232 for (i = 0; i < indent; i++) 1233 db_printf(" "); 1234 } 1235 1236 static void 1237 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 1238 { 1239 char faddr_str[48], laddr_str[48]; 1240 1241 db_print_indent(indent); 1242 db_printf("%s at %p\n", name, inc); 1243 1244 indent += 2; 1245 1246 #ifdef INET6 1247 if (inc->inc_flags == 1) { 1248 /* IPv6. */ 1249 ip6_sprintf(laddr_str, &inc->inc6_laddr); 1250 ip6_sprintf(faddr_str, &inc->inc6_faddr); 1251 } else { 1252 #endif 1253 /* IPv4. */ 1254 inet_ntoa_r(inc->inc_laddr, laddr_str); 1255 inet_ntoa_r(inc->inc_faddr, faddr_str); 1256 #ifdef INET6 1257 } 1258 #endif 1259 db_print_indent(indent); 1260 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 1261 ntohs(inc->inc_lport)); 1262 db_print_indent(indent); 1263 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 1264 ntohs(inc->inc_fport)); 1265 } 1266 1267 static void 1268 db_print_inpflags(int inp_flags) 1269 { 1270 int comma; 1271 1272 comma = 0; 1273 if (inp_flags & INP_RECVOPTS) { 1274 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 1275 comma = 1; 1276 } 1277 if (inp_flags & INP_RECVRETOPTS) { 1278 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 1279 comma = 1; 1280 } 1281 if (inp_flags & INP_RECVDSTADDR) { 1282 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 1283 comma = 1; 1284 } 1285 if (inp_flags & INP_HDRINCL) { 1286 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 1287 comma = 1; 1288 } 1289 if (inp_flags & INP_HIGHPORT) { 1290 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 1291 comma = 1; 1292 } 1293 if (inp_flags & INP_LOWPORT) { 1294 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 1295 comma = 1; 1296 } 1297 if (inp_flags & INP_ANONPORT) { 1298 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 1299 comma = 1; 1300 } 1301 if (inp_flags & INP_RECVIF) { 1302 db_printf("%sINP_RECVIF", comma ? ", " : ""); 1303 comma = 1; 1304 } 1305 if (inp_flags & INP_MTUDISC) { 1306 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 1307 comma = 1; 1308 } 1309 if (inp_flags & INP_FAITH) { 1310 db_printf("%sINP_FAITH", comma ? ", " : ""); 1311 comma = 1; 1312 } 1313 if (inp_flags & INP_RECVTTL) { 1314 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 1315 comma = 1; 1316 } 1317 if (inp_flags & INP_DONTFRAG) { 1318 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 1319 comma = 1; 1320 } 1321 if (inp_flags & IN6P_IPV6_V6ONLY) { 1322 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 1323 comma = 1; 1324 } 1325 if (inp_flags & IN6P_PKTINFO) { 1326 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 1327 comma = 1; 1328 } 1329 if (inp_flags & IN6P_HOPLIMIT) { 1330 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 1331 comma = 1; 1332 } 1333 if (inp_flags & IN6P_HOPOPTS) { 1334 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 1335 comma = 1; 1336 } 1337 if (inp_flags & IN6P_DSTOPTS) { 1338 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 1339 comma = 1; 1340 } 1341 if (inp_flags & IN6P_RTHDR) { 1342 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 1343 comma = 1; 1344 } 1345 if (inp_flags & IN6P_RTHDRDSTOPTS) { 1346 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 1347 comma = 1; 1348 } 1349 if (inp_flags & IN6P_TCLASS) { 1350 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 1351 comma = 1; 1352 } 1353 if (inp_flags & IN6P_AUTOFLOWLABEL) { 1354 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 1355 comma = 1; 1356 } 1357 if (inp_flags & IN6P_RFC2292) { 1358 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 1359 comma = 1; 1360 } 1361 if (inp_flags & IN6P_MTU) { 1362 db_printf("IN6P_MTU%s", comma ? ", " : ""); 1363 comma = 1; 1364 } 1365 } 1366 1367 static void 1368 db_print_inpvflag(u_char inp_vflag) 1369 { 1370 int comma; 1371 1372 comma = 0; 1373 if (inp_vflag & INP_IPV4) { 1374 db_printf("%sINP_IPV4", comma ? ", " : ""); 1375 comma = 1; 1376 } 1377 if (inp_vflag & INP_IPV6) { 1378 db_printf("%sINP_IPV6", comma ? ", " : ""); 1379 comma = 1; 1380 } 1381 if (inp_vflag & INP_IPV6PROTO) { 1382 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 1383 comma = 1; 1384 } 1385 if (inp_vflag & INP_TIMEWAIT) { 1386 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 1387 comma = 1; 1388 } 1389 if (inp_vflag & INP_ONESBCAST) { 1390 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 1391 comma = 1; 1392 } 1393 if (inp_vflag & INP_DROPPED) { 1394 db_printf("%sINP_DROPPED", comma ? ", " : ""); 1395 comma = 1; 1396 } 1397 if (inp_vflag & INP_SOCKREF) { 1398 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 1399 comma = 1; 1400 } 1401 } 1402 1403 void 1404 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 1405 { 1406 1407 db_print_indent(indent); 1408 db_printf("%s at %p\n", name, inp); 1409 1410 indent += 2; 1411 1412 db_print_indent(indent); 1413 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 1414 1415 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 1416 1417 db_print_indent(indent); 1418 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 1419 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 1420 1421 db_print_indent(indent); 1422 db_printf("inp_label: %p inp_flags: 0x%x (", 1423 inp->inp_label, inp->inp_flags); 1424 db_print_inpflags(inp->inp_flags); 1425 db_printf(")\n"); 1426 1427 db_print_indent(indent); 1428 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 1429 inp->inp_vflag); 1430 db_print_inpvflag(inp->inp_vflag); 1431 db_printf(")\n"); 1432 1433 db_print_indent(indent); 1434 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 1435 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 1436 1437 db_print_indent(indent); 1438 #ifdef INET6 1439 if (inp->inp_vflag & INP_IPV6) { 1440 db_printf("in6p_options: %p in6p_outputopts: %p " 1441 "in6p_moptions: %p\n", inp->in6p_options, 1442 inp->in6p_outputopts, inp->in6p_moptions); 1443 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 1444 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 1445 inp->in6p_hops); 1446 } else 1447 #endif 1448 { 1449 db_printf("inp_ip_tos: %d inp_ip_options: %p " 1450 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 1451 inp->inp_options, inp->inp_moptions); 1452 } 1453 1454 db_print_indent(indent); 1455 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 1456 (uintmax_t)inp->inp_gencnt); 1457 } 1458 1459 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 1460 { 1461 struct inpcb *inp; 1462 1463 if (!have_addr) { 1464 db_printf("usage: show inpcb <addr>\n"); 1465 return; 1466 } 1467 inp = (struct inpcb *)addr; 1468 1469 db_print_inpcb(inp, "inpcb", 0); 1470 } 1471 #endif 1472