xref: /freebsd/sys/netinet/in_pcb.c (revision 8c22b9f3ba586e008e8e55a6215a1d46eb6830b9)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2007-2009 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * All rights reserved.
9  *
10  * Portions of this software were developed by Robert N. M. Watson under
11  * contract to Juniper Networks, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include "opt_ddb.h"
44 #include "opt_ipsec.h"
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 #include "opt_ratelimit.h"
48 #include "opt_pcbgroup.h"
49 #include "opt_route.h"
50 #include "opt_rss.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/lock.h>
55 #include <sys/malloc.h>
56 #include <sys/mbuf.h>
57 #include <sys/callout.h>
58 #include <sys/eventhandler.h>
59 #include <sys/domain.h>
60 #include <sys/protosw.h>
61 #include <sys/smp.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/sockio.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/refcount.h>
68 #include <sys/jail.h>
69 #include <sys/kernel.h>
70 #include <sys/sysctl.h>
71 
72 #ifdef DDB
73 #include <ddb/ddb.h>
74 #endif
75 
76 #include <vm/uma.h>
77 #include <vm/vm.h>
78 
79 #include <net/if.h>
80 #include <net/if_var.h>
81 #include <net/if_types.h>
82 #include <net/if_llatbl.h>
83 #include <net/route.h>
84 #include <net/rss_config.h>
85 #include <net/vnet.h>
86 
87 #if defined(INET) || defined(INET6)
88 #include <netinet/in.h>
89 #include <netinet/in_pcb.h>
90 #ifdef INET
91 #include <netinet/in_var.h>
92 #include <netinet/in_fib.h>
93 #endif
94 #include <netinet/ip_var.h>
95 #include <netinet/tcp_var.h>
96 #ifdef TCPHPTS
97 #include <netinet/tcp_hpts.h>
98 #endif
99 #include <netinet/udp.h>
100 #include <netinet/udp_var.h>
101 #ifdef INET6
102 #include <netinet/ip6.h>
103 #include <netinet6/in6_pcb.h>
104 #include <netinet6/in6_var.h>
105 #include <netinet6/ip6_var.h>
106 #endif /* INET6 */
107 #include <net/route/nhop.h>
108 #endif
109 
110 #include <netipsec/ipsec_support.h>
111 
112 #include <security/mac/mac_framework.h>
113 
114 #define	INPCBLBGROUP_SIZMIN	8
115 #define	INPCBLBGROUP_SIZMAX	256
116 
117 static struct callout	ipport_tick_callout;
118 
119 /*
120  * These configure the range of local port addresses assigned to
121  * "unspecified" outgoing connections/packets/whatever.
122  */
123 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
124 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
125 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
126 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
127 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
128 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
129 
130 /*
131  * Reserved ports accessible only to root. There are significant
132  * security considerations that must be accounted for when changing these,
133  * but the security benefits can be great. Please be careful.
134  */
135 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
136 VNET_DEFINE(int, ipport_reservedlow);
137 
138 /* Variables dealing with random ephemeral port allocation. */
139 VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
140 VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
141 VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
142 VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
143 VNET_DEFINE(int, ipport_tcpallocs);
144 VNET_DEFINE_STATIC(int, ipport_tcplastcount);
145 
146 #define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
147 
148 static void	in_pcbremlists(struct inpcb *inp);
149 #ifdef INET
150 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
151 			    struct in_addr faddr, u_int fport_arg,
152 			    struct in_addr laddr, u_int lport_arg,
153 			    int lookupflags, struct ifnet *ifp,
154 			    uint8_t numa_domain);
155 
156 #define RANGECHK(var, min, max) \
157 	if ((var) < (min)) { (var) = (min); } \
158 	else if ((var) > (max)) { (var) = (max); }
159 
160 static int
161 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
162 {
163 	int error;
164 
165 	error = sysctl_handle_int(oidp, arg1, arg2, req);
166 	if (error == 0) {
167 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
168 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
169 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
170 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
171 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
172 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
173 	}
174 	return (error);
175 }
176 
177 #undef RANGECHK
178 
179 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange,
180     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
181     "IP Ports");
182 
183 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
184     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
185     &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I",
186     "");
187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
188     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
189     &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I",
190     "");
191 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
192     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
193     &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I",
194     "");
195 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
196     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
197     &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I",
198     "");
199 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
200     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
201     &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I",
202     "");
203 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
204     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
205     &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I",
206     "");
207 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
208 	CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
209 	&VNET_NAME(ipport_reservedhigh), 0, "");
210 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
211 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
212 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
213 	CTLFLAG_VNET | CTLFLAG_RW,
214 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
215 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
216 	CTLFLAG_VNET | CTLFLAG_RW,
217 	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
218 	"allocations before switching to a sequental one");
219 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
220 	CTLFLAG_VNET | CTLFLAG_RW,
221 	&VNET_NAME(ipport_randomtime), 0,
222 	"Minimum time to keep sequental port "
223 	"allocation before switching to a random one");
224 
225 #ifdef RATELIMIT
226 counter_u64_t rate_limit_new;
227 counter_u64_t rate_limit_chg;
228 counter_u64_t rate_limit_active;
229 counter_u64_t rate_limit_alloc_fail;
230 counter_u64_t rate_limit_set_ok;
231 
232 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
233     "IP Rate Limiting");
234 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD,
235     &rate_limit_active, "Active rate limited connections");
236 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD,
237    &rate_limit_alloc_fail, "Rate limited connection failures");
238 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD,
239    &rate_limit_set_ok, "Rate limited setting succeeded");
240 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD,
241    &rate_limit_new, "Total Rate limit new attempts");
242 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD,
243    &rate_limit_chg, "Total Rate limited change attempts");
244 
245 #endif /* RATELIMIT */
246 
247 #endif /* INET */
248 
249 /*
250  * in_pcb.c: manage the Protocol Control Blocks.
251  *
252  * NOTE: It is assumed that most of these functions will be called with
253  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
254  * functions often modify hash chains or addresses in pcbs.
255  */
256 
257 static struct inpcblbgroup *
258 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag,
259     uint16_t port, const union in_dependaddr *addr, int size,
260     uint8_t numa_domain)
261 {
262 	struct inpcblbgroup *grp;
263 	size_t bytes;
264 
265 	bytes = __offsetof(struct inpcblbgroup, il_inp[size]);
266 	grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT);
267 	if (!grp)
268 		return (NULL);
269 	grp->il_vflag = vflag;
270 	grp->il_lport = port;
271 	grp->il_numa_domain = numa_domain;
272 	grp->il_dependladdr = *addr;
273 	grp->il_inpsiz = size;
274 	CK_LIST_INSERT_HEAD(hdr, grp, il_list);
275 	return (grp);
276 }
277 
278 static void
279 in_pcblbgroup_free_deferred(epoch_context_t ctx)
280 {
281 	struct inpcblbgroup *grp;
282 
283 	grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx);
284 	free(grp, M_PCB);
285 }
286 
287 static void
288 in_pcblbgroup_free(struct inpcblbgroup *grp)
289 {
290 
291 	CK_LIST_REMOVE(grp, il_list);
292 	NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx);
293 }
294 
295 static struct inpcblbgroup *
296 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr,
297     struct inpcblbgroup *old_grp, int size)
298 {
299 	struct inpcblbgroup *grp;
300 	int i;
301 
302 	grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag,
303 	    old_grp->il_lport, &old_grp->il_dependladdr, size,
304 	    old_grp->il_numa_domain);
305 	if (grp == NULL)
306 		return (NULL);
307 
308 	KASSERT(old_grp->il_inpcnt < grp->il_inpsiz,
309 	    ("invalid new local group size %d and old local group count %d",
310 	     grp->il_inpsiz, old_grp->il_inpcnt));
311 
312 	for (i = 0; i < old_grp->il_inpcnt; ++i)
313 		grp->il_inp[i] = old_grp->il_inp[i];
314 	grp->il_inpcnt = old_grp->il_inpcnt;
315 	in_pcblbgroup_free(old_grp);
316 	return (grp);
317 }
318 
319 /*
320  * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i]
321  * and shrink group if possible.
322  */
323 static void
324 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp,
325     int i)
326 {
327 	struct inpcblbgroup *grp, *new_grp;
328 
329 	grp = *grpp;
330 	for (; i + 1 < grp->il_inpcnt; ++i)
331 		grp->il_inp[i] = grp->il_inp[i + 1];
332 	grp->il_inpcnt--;
333 
334 	if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN &&
335 	    grp->il_inpcnt <= grp->il_inpsiz / 4) {
336 		/* Shrink this group. */
337 		new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2);
338 		if (new_grp != NULL)
339 			*grpp = new_grp;
340 	}
341 }
342 
343 /*
344  * Add PCB to load balance group for SO_REUSEPORT_LB option.
345  */
346 static int
347 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain)
348 {
349 	const static struct timeval interval = { 60, 0 };
350 	static struct timeval lastprint;
351 	struct inpcbinfo *pcbinfo;
352 	struct inpcblbgrouphead *hdr;
353 	struct inpcblbgroup *grp;
354 	uint32_t idx;
355 
356 	pcbinfo = inp->inp_pcbinfo;
357 
358 	INP_WLOCK_ASSERT(inp);
359 	INP_HASH_WLOCK_ASSERT(pcbinfo);
360 
361 	/*
362 	 * Don't allow jailed socket to join local group.
363 	 */
364 	if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred))
365 		return (0);
366 
367 #ifdef INET6
368 	/*
369 	 * Don't allow IPv4 mapped INET6 wild socket.
370 	 */
371 	if ((inp->inp_vflag & INP_IPV4) &&
372 	    inp->inp_laddr.s_addr == INADDR_ANY &&
373 	    INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) {
374 		return (0);
375 	}
376 #endif
377 
378 	idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask);
379 	hdr = &pcbinfo->ipi_lbgrouphashbase[idx];
380 	CK_LIST_FOREACH(grp, hdr, il_list) {
381 		if (grp->il_vflag == inp->inp_vflag &&
382 		    grp->il_lport == inp->inp_lport &&
383 		    grp->il_numa_domain == numa_domain &&
384 		    memcmp(&grp->il_dependladdr,
385 		    &inp->inp_inc.inc_ie.ie_dependladdr,
386 		    sizeof(grp->il_dependladdr)) == 0)
387 			break;
388 	}
389 	if (grp == NULL) {
390 		/* Create new load balance group. */
391 		grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag,
392 		    inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr,
393 		    INPCBLBGROUP_SIZMIN, numa_domain);
394 		if (grp == NULL)
395 			return (ENOBUFS);
396 	} else if (grp->il_inpcnt == grp->il_inpsiz) {
397 		if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) {
398 			if (ratecheck(&lastprint, &interval))
399 				printf("lb group port %d, limit reached\n",
400 				    ntohs(grp->il_lport));
401 			return (0);
402 		}
403 
404 		/* Expand this local group. */
405 		grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2);
406 		if (grp == NULL)
407 			return (ENOBUFS);
408 	}
409 
410 	KASSERT(grp->il_inpcnt < grp->il_inpsiz,
411 	    ("invalid local group size %d and count %d", grp->il_inpsiz,
412 	    grp->il_inpcnt));
413 
414 	grp->il_inp[grp->il_inpcnt] = inp;
415 	grp->il_inpcnt++;
416 	return (0);
417 }
418 
419 /*
420  * Remove PCB from load balance group.
421  */
422 static void
423 in_pcbremlbgrouphash(struct inpcb *inp)
424 {
425 	struct inpcbinfo *pcbinfo;
426 	struct inpcblbgrouphead *hdr;
427 	struct inpcblbgroup *grp;
428 	int i;
429 
430 	pcbinfo = inp->inp_pcbinfo;
431 
432 	INP_WLOCK_ASSERT(inp);
433 	INP_HASH_WLOCK_ASSERT(pcbinfo);
434 
435 	hdr = &pcbinfo->ipi_lbgrouphashbase[
436 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
437 	CK_LIST_FOREACH(grp, hdr, il_list) {
438 		for (i = 0; i < grp->il_inpcnt; ++i) {
439 			if (grp->il_inp[i] != inp)
440 				continue;
441 
442 			if (grp->il_inpcnt == 1) {
443 				/* We are the last, free this local group. */
444 				in_pcblbgroup_free(grp);
445 			} else {
446 				/* Pull up inpcbs, shrink group if possible. */
447 				in_pcblbgroup_reorder(hdr, &grp, i);
448 			}
449 			return;
450 		}
451 	}
452 }
453 
454 int
455 in_pcblbgroup_numa(struct inpcb *inp, int arg)
456 {
457 	struct inpcbinfo *pcbinfo;
458 	struct inpcblbgrouphead *hdr;
459 	struct inpcblbgroup *grp;
460 	int err, i;
461 	uint8_t numa_domain;
462 
463 	switch (arg) {
464 	case TCP_REUSPORT_LB_NUMA_NODOM:
465 		numa_domain = M_NODOM;
466 		break;
467 	case TCP_REUSPORT_LB_NUMA_CURDOM:
468 		numa_domain = PCPU_GET(domain);
469 		break;
470 	default:
471 		if (arg < 0 || arg >= vm_ndomains)
472 			return (EINVAL);
473 		numa_domain = arg;
474 	}
475 
476 	err = 0;
477 	pcbinfo = inp->inp_pcbinfo;
478 	INP_WLOCK_ASSERT(inp);
479 	INP_HASH_WLOCK(pcbinfo);
480 	hdr = &pcbinfo->ipi_lbgrouphashbase[
481 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
482 	CK_LIST_FOREACH(grp, hdr, il_list) {
483 		for (i = 0; i < grp->il_inpcnt; ++i) {
484 			if (grp->il_inp[i] != inp)
485 				continue;
486 
487 			if (grp->il_numa_domain == numa_domain) {
488 				goto abort_with_hash_wlock;
489 			}
490 
491 			/* Remove it from the old group. */
492 			in_pcbremlbgrouphash(inp);
493 
494 			/* Add it to the new group based on numa domain. */
495 			in_pcbinslbgrouphash(inp, numa_domain);
496 			goto abort_with_hash_wlock;
497 		}
498 	}
499 	err = ENOENT;
500 abort_with_hash_wlock:
501 	INP_HASH_WUNLOCK(pcbinfo);
502 	return (err);
503 }
504 
505 /*
506  * Different protocols initialize their inpcbs differently - giving
507  * different name to the lock.  But they all are disposed the same.
508  */
509 static void
510 inpcb_fini(void *mem, int size)
511 {
512 	struct inpcb *inp = mem;
513 
514 	INP_LOCK_DESTROY(inp);
515 }
516 
517 /*
518  * Initialize an inpcbinfo -- we should be able to reduce the number of
519  * arguments in time.
520  */
521 void
522 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
523     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
524     char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields)
525 {
526 
527 	porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1);
528 
529 	INP_INFO_LOCK_INIT(pcbinfo, name);
530 	INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");	/* XXXRW: argument? */
531 	INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist");
532 #ifdef VIMAGE
533 	pcbinfo->ipi_vnet = curvnet;
534 #endif
535 	pcbinfo->ipi_listhead = listhead;
536 	CK_LIST_INIT(pcbinfo->ipi_listhead);
537 	pcbinfo->ipi_count = 0;
538 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
539 	    &pcbinfo->ipi_hashmask);
540 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
541 	    &pcbinfo->ipi_porthashmask);
542 	pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB,
543 	    &pcbinfo->ipi_lbgrouphashmask);
544 #ifdef PCBGROUP
545 	in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
546 #endif
547 	pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
548 	    NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0);
549 	uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
550 	uma_zone_set_warning(pcbinfo->ipi_zone,
551 	    "kern.ipc.maxsockets limit reached");
552 }
553 
554 /*
555  * Destroy an inpcbinfo.
556  */
557 void
558 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
559 {
560 
561 	KASSERT(pcbinfo->ipi_count == 0,
562 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
563 
564 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
565 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
566 	    pcbinfo->ipi_porthashmask);
567 	hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB,
568 	    pcbinfo->ipi_lbgrouphashmask);
569 #ifdef PCBGROUP
570 	in_pcbgroup_destroy(pcbinfo);
571 #endif
572 	uma_zdestroy(pcbinfo->ipi_zone);
573 	INP_LIST_LOCK_DESTROY(pcbinfo);
574 	INP_HASH_LOCK_DESTROY(pcbinfo);
575 	INP_INFO_LOCK_DESTROY(pcbinfo);
576 }
577 
578 /*
579  * Allocate a PCB and associate it with the socket.
580  * On success return with the PCB locked.
581  */
582 int
583 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
584 {
585 	struct inpcb *inp;
586 	int error;
587 
588 	error = 0;
589 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
590 	if (inp == NULL)
591 		return (ENOBUFS);
592 	bzero(&inp->inp_start_zero, inp_zero_size);
593 #ifdef NUMA
594 	inp->inp_numa_domain = M_NODOM;
595 #endif
596 	inp->inp_pcbinfo = pcbinfo;
597 	inp->inp_socket = so;
598 	inp->inp_cred = crhold(so->so_cred);
599 	inp->inp_inc.inc_fibnum = so->so_fibnum;
600 #ifdef MAC
601 	error = mac_inpcb_init(inp, M_NOWAIT);
602 	if (error != 0)
603 		goto out;
604 	mac_inpcb_create(so, inp);
605 #endif
606 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
607 	error = ipsec_init_pcbpolicy(inp);
608 	if (error != 0) {
609 #ifdef MAC
610 		mac_inpcb_destroy(inp);
611 #endif
612 		goto out;
613 	}
614 #endif /*IPSEC*/
615 #ifdef INET6
616 	if (INP_SOCKAF(so) == AF_INET6) {
617 		inp->inp_vflag |= INP_IPV6PROTO;
618 		if (V_ip6_v6only)
619 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
620 	}
621 #endif
622 	INP_WLOCK(inp);
623 	INP_LIST_WLOCK(pcbinfo);
624 	CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
625 	pcbinfo->ipi_count++;
626 	so->so_pcb = (caddr_t)inp;
627 #ifdef INET6
628 	if (V_ip6_auto_flowlabel)
629 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
630 #endif
631 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
632 	refcount_init(&inp->inp_refcount, 1);	/* Reference from inpcbinfo */
633 
634 	/*
635 	 * Routes in inpcb's can cache L2 as well; they are guaranteed
636 	 * to be cleaned up.
637 	 */
638 	inp->inp_route.ro_flags = RT_LLE_CACHE;
639 	INP_LIST_WUNLOCK(pcbinfo);
640 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
641 out:
642 	if (error != 0) {
643 		crfree(inp->inp_cred);
644 		uma_zfree(pcbinfo->ipi_zone, inp);
645 	}
646 #endif
647 	return (error);
648 }
649 
650 #ifdef INET
651 int
652 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
653 {
654 	int anonport, error;
655 
656 	KASSERT(nam == NULL || nam->sa_family == AF_INET,
657 	    ("%s: invalid address family for %p", __func__, nam));
658 	KASSERT(nam == NULL || nam->sa_len == sizeof(struct sockaddr_in),
659 	    ("%s: invalid address length for %p", __func__, nam));
660 	INP_WLOCK_ASSERT(inp);
661 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
662 
663 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
664 		return (EINVAL);
665 	anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
666 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
667 	    &inp->inp_lport, cred);
668 	if (error)
669 		return (error);
670 	if (in_pcbinshash(inp) != 0) {
671 		inp->inp_laddr.s_addr = INADDR_ANY;
672 		inp->inp_lport = 0;
673 		return (EAGAIN);
674 	}
675 	if (anonport)
676 		inp->inp_flags |= INP_ANONPORT;
677 	return (0);
678 }
679 #endif
680 
681 #if defined(INET) || defined(INET6)
682 /*
683  * Assign a local port like in_pcb_lport(), but also used with connect()
684  * and a foreign address and port.  If fsa is non-NULL, choose a local port
685  * that is unused with those, otherwise one that is completely unused.
686  * lsa can be NULL for IPv6.
687  */
688 int
689 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp,
690     struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags)
691 {
692 	struct inpcbinfo *pcbinfo;
693 	struct inpcb *tmpinp;
694 	unsigned short *lastport;
695 	int count, dorandom, error;
696 	u_short aux, first, last, lport;
697 #ifdef INET
698 	struct in_addr laddr, faddr;
699 #endif
700 #ifdef INET6
701 	struct in6_addr *laddr6, *faddr6;
702 #endif
703 
704 	pcbinfo = inp->inp_pcbinfo;
705 
706 	/*
707 	 * Because no actual state changes occur here, a global write lock on
708 	 * the pcbinfo isn't required.
709 	 */
710 	INP_LOCK_ASSERT(inp);
711 	INP_HASH_LOCK_ASSERT(pcbinfo);
712 
713 	if (inp->inp_flags & INP_HIGHPORT) {
714 		first = V_ipport_hifirstauto;	/* sysctl */
715 		last  = V_ipport_hilastauto;
716 		lastport = &pcbinfo->ipi_lasthi;
717 	} else if (inp->inp_flags & INP_LOWPORT) {
718 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT);
719 		if (error)
720 			return (error);
721 		first = V_ipport_lowfirstauto;	/* 1023 */
722 		last  = V_ipport_lowlastauto;	/* 600 */
723 		lastport = &pcbinfo->ipi_lastlow;
724 	} else {
725 		first = V_ipport_firstauto;	/* sysctl */
726 		last  = V_ipport_lastauto;
727 		lastport = &pcbinfo->ipi_lastport;
728 	}
729 	/*
730 	 * For UDP(-Lite), use random port allocation as long as the user
731 	 * allows it.  For TCP (and as of yet unknown) connections,
732 	 * use random port allocation only if the user allows it AND
733 	 * ipport_tick() allows it.
734 	 */
735 	if (V_ipport_randomized &&
736 		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
737 		pcbinfo == &V_ulitecbinfo))
738 		dorandom = 1;
739 	else
740 		dorandom = 0;
741 	/*
742 	 * It makes no sense to do random port allocation if
743 	 * we have the only port available.
744 	 */
745 	if (first == last)
746 		dorandom = 0;
747 	/* Make sure to not include UDP(-Lite) packets in the count. */
748 	if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
749 		V_ipport_tcpallocs++;
750 	/*
751 	 * Instead of having two loops further down counting up or down
752 	 * make sure that first is always <= last and go with only one
753 	 * code path implementing all logic.
754 	 */
755 	if (first > last) {
756 		aux = first;
757 		first = last;
758 		last = aux;
759 	}
760 
761 #ifdef INET
762 	laddr.s_addr = INADDR_ANY;
763 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
764 		if (lsa != NULL)
765 			laddr = ((struct sockaddr_in *)lsa)->sin_addr;
766 		if (fsa != NULL)
767 			faddr = ((struct sockaddr_in *)fsa)->sin_addr;
768 	}
769 #endif
770 #ifdef INET6
771 	laddr6 = NULL;
772 	if ((inp->inp_vflag & INP_IPV6) != 0) {
773 		if (lsa != NULL)
774 			laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr;
775 		if (fsa != NULL)
776 			faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr;
777 	}
778 #endif
779 
780 	tmpinp = NULL;
781 	lport = *lportp;
782 
783 	if (dorandom)
784 		*lastport = first + (arc4random() % (last - first));
785 
786 	count = last - first;
787 
788 	do {
789 		if (count-- < 0)	/* completely used? */
790 			return (EADDRNOTAVAIL);
791 		++*lastport;
792 		if (*lastport < first || *lastport > last)
793 			*lastport = first;
794 		lport = htons(*lastport);
795 
796 		if (fsa != NULL) {
797 #ifdef INET
798 			if (lsa->sa_family == AF_INET) {
799 				tmpinp = in_pcblookup_hash_locked(pcbinfo,
800 				    faddr, fport, laddr, lport, lookupflags,
801 				    NULL, M_NODOM);
802 			}
803 #endif
804 #ifdef INET6
805 			if (lsa->sa_family == AF_INET6) {
806 				tmpinp = in6_pcblookup_hash_locked(pcbinfo,
807 				    faddr6, fport, laddr6, lport, lookupflags,
808 				    NULL, M_NODOM);
809 			}
810 #endif
811 		} else {
812 #ifdef INET6
813 			if ((inp->inp_vflag & INP_IPV6) != 0)
814 				tmpinp = in6_pcblookup_local(pcbinfo,
815 				    &inp->in6p_laddr, lport, lookupflags, cred);
816 #endif
817 #if defined(INET) && defined(INET6)
818 			else
819 #endif
820 #ifdef INET
821 				tmpinp = in_pcblookup_local(pcbinfo, laddr,
822 				    lport, lookupflags, cred);
823 #endif
824 		}
825 	} while (tmpinp != NULL);
826 
827 	*lportp = lport;
828 
829 	return (0);
830 }
831 
832 /*
833  * Select a local port (number) to use.
834  */
835 int
836 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
837     struct ucred *cred, int lookupflags)
838 {
839 	struct sockaddr_in laddr;
840 
841 	if (laddrp) {
842 		bzero(&laddr, sizeof(laddr));
843 		laddr.sin_family = AF_INET;
844 		laddr.sin_addr = *laddrp;
845 	}
846 	return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr :
847 	    NULL, lportp, NULL, 0, cred, lookupflags));
848 }
849 
850 /*
851  * Return cached socket options.
852  */
853 int
854 inp_so_options(const struct inpcb *inp)
855 {
856 	int so_options;
857 
858 	so_options = 0;
859 
860 	if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0)
861 		so_options |= SO_REUSEPORT_LB;
862 	if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
863 		so_options |= SO_REUSEPORT;
864 	if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
865 		so_options |= SO_REUSEADDR;
866 	return (so_options);
867 }
868 #endif /* INET || INET6 */
869 
870 /*
871  * Check if a new BINDMULTI socket is allowed to be created.
872  *
873  * ni points to the new inp.
874  * oi points to the exisitng inp.
875  *
876  * This checks whether the existing inp also has BINDMULTI and
877  * whether the credentials match.
878  */
879 int
880 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
881 {
882 	/* Check permissions match */
883 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
884 	    (ni->inp_cred->cr_uid !=
885 	    oi->inp_cred->cr_uid))
886 		return (0);
887 
888 	/* Check the existing inp has BINDMULTI set */
889 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
890 	    ((oi->inp_flags2 & INP_BINDMULTI) == 0))
891 		return (0);
892 
893 	/*
894 	 * We're okay - either INP_BINDMULTI isn't set on ni, or
895 	 * it is and it matches the checks.
896 	 */
897 	return (1);
898 }
899 
900 #ifdef INET
901 /*
902  * Set up a bind operation on a PCB, performing port allocation
903  * as required, but do not actually modify the PCB. Callers can
904  * either complete the bind by setting inp_laddr/inp_lport and
905  * calling in_pcbinshash(), or they can just use the resulting
906  * port and address to authorise the sending of a once-off packet.
907  *
908  * On error, the values of *laddrp and *lportp are not changed.
909  */
910 int
911 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
912     u_short *lportp, struct ucred *cred)
913 {
914 	struct socket *so = inp->inp_socket;
915 	struct sockaddr_in *sin;
916 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
917 	struct in_addr laddr;
918 	u_short lport = 0;
919 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
920 	int error;
921 
922 	/*
923 	 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here
924 	 * so that we don't have to add to the (already messy) code below.
925 	 */
926 	int reuseport_lb = (so->so_options & SO_REUSEPORT_LB);
927 
928 	/*
929 	 * No state changes, so read locks are sufficient here.
930 	 */
931 	INP_LOCK_ASSERT(inp);
932 	INP_HASH_LOCK_ASSERT(pcbinfo);
933 
934 	if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
935 		return (EADDRNOTAVAIL);
936 	laddr.s_addr = *laddrp;
937 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
938 		return (EINVAL);
939 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0)
940 		lookupflags = INPLOOKUP_WILDCARD;
941 	if (nam == NULL) {
942 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
943 			return (error);
944 	} else {
945 		sin = (struct sockaddr_in *)nam;
946 		KASSERT(sin->sin_family == AF_INET,
947 		    ("%s: invalid family for address %p", __func__, sin));
948 		KASSERT(sin->sin_len == sizeof(*sin),
949 		    ("%s: invalid length for address %p", __func__, sin));
950 
951 		error = prison_local_ip4(cred, &sin->sin_addr);
952 		if (error)
953 			return (error);
954 		if (sin->sin_port != *lportp) {
955 			/* Don't allow the port to change. */
956 			if (*lportp != 0)
957 				return (EINVAL);
958 			lport = sin->sin_port;
959 		}
960 		/* NB: lport is left as 0 if the port isn't being changed. */
961 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
962 			/*
963 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
964 			 * allow complete duplication of binding if
965 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
966 			 * and a multicast address is bound on both
967 			 * new and duplicated sockets.
968 			 */
969 			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
970 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
971 			/*
972 			 * XXX: How to deal with SO_REUSEPORT_LB here?
973 			 * Treat same as SO_REUSEPORT for now.
974 			 */
975 			if ((so->so_options &
976 			    (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0)
977 				reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB;
978 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
979 			sin->sin_port = 0;		/* yech... */
980 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
981 			/*
982 			 * Is the address a local IP address?
983 			 * If INP_BINDANY is set, then the socket may be bound
984 			 * to any endpoint address, local or not.
985 			 */
986 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
987 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
988 				return (EADDRNOTAVAIL);
989 		}
990 		laddr = sin->sin_addr;
991 		if (lport) {
992 			struct inpcb *t;
993 			struct tcptw *tw;
994 
995 			/* GROSS */
996 			if (ntohs(lport) <= V_ipport_reservedhigh &&
997 			    ntohs(lport) >= V_ipport_reservedlow &&
998 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT))
999 				return (EACCES);
1000 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
1001 			    priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) {
1002 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
1003 				    lport, INPLOOKUP_WILDCARD, cred);
1004 	/*
1005 	 * XXX
1006 	 * This entire block sorely needs a rewrite.
1007 	 */
1008 				if (t &&
1009 				    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
1010 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
1011 				    (so->so_type != SOCK_STREAM ||
1012 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
1013 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
1014 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
1015 				     (t->inp_flags2 & INP_REUSEPORT) ||
1016 				     (t->inp_flags2 & INP_REUSEPORT_LB) == 0) &&
1017 				    (inp->inp_cred->cr_uid !=
1018 				     t->inp_cred->cr_uid))
1019 					return (EADDRINUSE);
1020 
1021 				/*
1022 				 * If the socket is a BINDMULTI socket, then
1023 				 * the credentials need to match and the
1024 				 * original socket also has to have been bound
1025 				 * with BINDMULTI.
1026 				 */
1027 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
1028 					return (EADDRINUSE);
1029 			}
1030 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
1031 			    lport, lookupflags, cred);
1032 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
1033 				/*
1034 				 * XXXRW: If an incpb has had its timewait
1035 				 * state recycled, we treat the address as
1036 				 * being in use (for now).  This is better
1037 				 * than a panic, but not desirable.
1038 				 */
1039 				tw = intotw(t);
1040 				if (tw == NULL ||
1041 				    ((reuseport & tw->tw_so_options) == 0 &&
1042 					(reuseport_lb &
1043 				            tw->tw_so_options) == 0)) {
1044 					return (EADDRINUSE);
1045 				}
1046 			} else if (t &&
1047 				   ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
1048 				   (reuseport & inp_so_options(t)) == 0 &&
1049 				   (reuseport_lb & inp_so_options(t)) == 0) {
1050 #ifdef INET6
1051 				if (ntohl(sin->sin_addr.s_addr) !=
1052 				    INADDR_ANY ||
1053 				    ntohl(t->inp_laddr.s_addr) !=
1054 				    INADDR_ANY ||
1055 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
1056 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
1057 #endif
1058 						return (EADDRINUSE);
1059 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
1060 					return (EADDRINUSE);
1061 			}
1062 		}
1063 	}
1064 	if (*lportp != 0)
1065 		lport = *lportp;
1066 	if (lport == 0) {
1067 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
1068 		if (error != 0)
1069 			return (error);
1070 	}
1071 	*laddrp = laddr.s_addr;
1072 	*lportp = lport;
1073 	return (0);
1074 }
1075 
1076 /*
1077  * Connect from a socket to a specified address.
1078  * Both address and port must be specified in argument sin.
1079  * If don't have a local address for this socket yet,
1080  * then pick one.
1081  */
1082 int
1083 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
1084     struct ucred *cred, struct mbuf *m, bool rehash)
1085 {
1086 	u_short lport, fport;
1087 	in_addr_t laddr, faddr;
1088 	int anonport, error;
1089 
1090 	INP_WLOCK_ASSERT(inp);
1091 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1092 
1093 	lport = inp->inp_lport;
1094 	laddr = inp->inp_laddr.s_addr;
1095 	anonport = (lport == 0);
1096 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
1097 	    NULL, cred);
1098 	if (error)
1099 		return (error);
1100 
1101 	/* Do the initial binding of the local address if required. */
1102 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
1103 		KASSERT(rehash == true,
1104 		    ("Rehashing required for unbound inps"));
1105 		inp->inp_lport = lport;
1106 		inp->inp_laddr.s_addr = laddr;
1107 		if (in_pcbinshash(inp) != 0) {
1108 			inp->inp_laddr.s_addr = INADDR_ANY;
1109 			inp->inp_lport = 0;
1110 			return (EAGAIN);
1111 		}
1112 	}
1113 
1114 	/* Commit the remaining changes. */
1115 	inp->inp_lport = lport;
1116 	inp->inp_laddr.s_addr = laddr;
1117 	inp->inp_faddr.s_addr = faddr;
1118 	inp->inp_fport = fport;
1119 	if (rehash) {
1120 		in_pcbrehash_mbuf(inp, m);
1121 	} else {
1122 		in_pcbinshash_mbuf(inp, m);
1123 	}
1124 
1125 	if (anonport)
1126 		inp->inp_flags |= INP_ANONPORT;
1127 	return (0);
1128 }
1129 
1130 int
1131 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
1132 {
1133 
1134 	return (in_pcbconnect_mbuf(inp, nam, cred, NULL, true));
1135 }
1136 
1137 /*
1138  * Do proper source address selection on an unbound socket in case
1139  * of connect. Take jails into account as well.
1140  */
1141 int
1142 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
1143     struct ucred *cred)
1144 {
1145 	struct ifaddr *ifa;
1146 	struct sockaddr *sa;
1147 	struct sockaddr_in *sin, dst;
1148 	struct nhop_object *nh;
1149 	int error;
1150 
1151 	NET_EPOCH_ASSERT();
1152 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
1153 	/*
1154 	 * Bypass source address selection and use the primary jail IP
1155 	 * if requested.
1156 	 */
1157 	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
1158 		return (0);
1159 
1160 	error = 0;
1161 
1162 	nh = NULL;
1163 	bzero(&dst, sizeof(dst));
1164 	sin = &dst;
1165 	sin->sin_family = AF_INET;
1166 	sin->sin_len = sizeof(struct sockaddr_in);
1167 	sin->sin_addr.s_addr = faddr->s_addr;
1168 
1169 	/*
1170 	 * If route is known our src addr is taken from the i/f,
1171 	 * else punt.
1172 	 *
1173 	 * Find out route to destination.
1174 	 */
1175 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
1176 		nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr,
1177 		    0, NHR_NONE, 0);
1178 
1179 	/*
1180 	 * If we found a route, use the address corresponding to
1181 	 * the outgoing interface.
1182 	 *
1183 	 * Otherwise assume faddr is reachable on a directly connected
1184 	 * network and try to find a corresponding interface to take
1185 	 * the source address from.
1186 	 */
1187 	if (nh == NULL || nh->nh_ifp == NULL) {
1188 		struct in_ifaddr *ia;
1189 		struct ifnet *ifp;
1190 
1191 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
1192 					inp->inp_socket->so_fibnum));
1193 		if (ia == NULL) {
1194 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
1195 						inp->inp_socket->so_fibnum));
1196 		}
1197 		if (ia == NULL) {
1198 			error = ENETUNREACH;
1199 			goto done;
1200 		}
1201 
1202 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1203 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1204 			goto done;
1205 		}
1206 
1207 		ifp = ia->ia_ifp;
1208 		ia = NULL;
1209 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1210 			sa = ifa->ifa_addr;
1211 			if (sa->sa_family != AF_INET)
1212 				continue;
1213 			sin = (struct sockaddr_in *)sa;
1214 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1215 				ia = (struct in_ifaddr *)ifa;
1216 				break;
1217 			}
1218 		}
1219 		if (ia != NULL) {
1220 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1221 			goto done;
1222 		}
1223 
1224 		/* 3. As a last resort return the 'default' jail address. */
1225 		error = prison_get_ip4(cred, laddr);
1226 		goto done;
1227 	}
1228 
1229 	/*
1230 	 * If the outgoing interface on the route found is not
1231 	 * a loopback interface, use the address from that interface.
1232 	 * In case of jails do those three steps:
1233 	 * 1. check if the interface address belongs to the jail. If so use it.
1234 	 * 2. check if we have any address on the outgoing interface
1235 	 *    belonging to this jail. If so use it.
1236 	 * 3. as a last resort return the 'default' jail address.
1237 	 */
1238 	if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) {
1239 		struct in_ifaddr *ia;
1240 		struct ifnet *ifp;
1241 
1242 		/* If not jailed, use the default returned. */
1243 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1244 			ia = (struct in_ifaddr *)nh->nh_ifa;
1245 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1246 			goto done;
1247 		}
1248 
1249 		/* Jailed. */
1250 		/* 1. Check if the iface address belongs to the jail. */
1251 		sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr;
1252 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1253 			ia = (struct in_ifaddr *)nh->nh_ifa;
1254 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1255 			goto done;
1256 		}
1257 
1258 		/*
1259 		 * 2. Check if we have any address on the outgoing interface
1260 		 *    belonging to this jail.
1261 		 */
1262 		ia = NULL;
1263 		ifp = nh->nh_ifp;
1264 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1265 			sa = ifa->ifa_addr;
1266 			if (sa->sa_family != AF_INET)
1267 				continue;
1268 			sin = (struct sockaddr_in *)sa;
1269 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1270 				ia = (struct in_ifaddr *)ifa;
1271 				break;
1272 			}
1273 		}
1274 		if (ia != NULL) {
1275 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1276 			goto done;
1277 		}
1278 
1279 		/* 3. As a last resort return the 'default' jail address. */
1280 		error = prison_get_ip4(cred, laddr);
1281 		goto done;
1282 	}
1283 
1284 	/*
1285 	 * The outgoing interface is marked with 'loopback net', so a route
1286 	 * to ourselves is here.
1287 	 * Try to find the interface of the destination address and then
1288 	 * take the address from there. That interface is not necessarily
1289 	 * a loopback interface.
1290 	 * In case of jails, check that it is an address of the jail
1291 	 * and if we cannot find, fall back to the 'default' jail address.
1292 	 */
1293 	if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) {
1294 		struct in_ifaddr *ia;
1295 
1296 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst),
1297 					inp->inp_socket->so_fibnum));
1298 		if (ia == NULL)
1299 			ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0,
1300 						inp->inp_socket->so_fibnum));
1301 		if (ia == NULL)
1302 			ia = ifatoia(ifa_ifwithaddr(sintosa(&dst)));
1303 
1304 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1305 			if (ia == NULL) {
1306 				error = ENETUNREACH;
1307 				goto done;
1308 			}
1309 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1310 			goto done;
1311 		}
1312 
1313 		/* Jailed. */
1314 		if (ia != NULL) {
1315 			struct ifnet *ifp;
1316 
1317 			ifp = ia->ia_ifp;
1318 			ia = NULL;
1319 			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1320 				sa = ifa->ifa_addr;
1321 				if (sa->sa_family != AF_INET)
1322 					continue;
1323 				sin = (struct sockaddr_in *)sa;
1324 				if (prison_check_ip4(cred,
1325 				    &sin->sin_addr) == 0) {
1326 					ia = (struct in_ifaddr *)ifa;
1327 					break;
1328 				}
1329 			}
1330 			if (ia != NULL) {
1331 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1332 				goto done;
1333 			}
1334 		}
1335 
1336 		/* 3. As a last resort return the 'default' jail address. */
1337 		error = prison_get_ip4(cred, laddr);
1338 		goto done;
1339 	}
1340 
1341 done:
1342 	return (error);
1343 }
1344 
1345 /*
1346  * Set up for a connect from a socket to the specified address.
1347  * On entry, *laddrp and *lportp should contain the current local
1348  * address and port for the PCB; these are updated to the values
1349  * that should be placed in inp_laddr and inp_lport to complete
1350  * the connect.
1351  *
1352  * On success, *faddrp and *fportp will be set to the remote address
1353  * and port. These are not updated in the error case.
1354  *
1355  * If the operation fails because the connection already exists,
1356  * *oinpp will be set to the PCB of that connection so that the
1357  * caller can decide to override it. In all other cases, *oinpp
1358  * is set to NULL.
1359  */
1360 int
1361 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
1362     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1363     struct inpcb **oinpp, struct ucred *cred)
1364 {
1365 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1366 	struct in_ifaddr *ia;
1367 	struct inpcb *oinp;
1368 	struct in_addr laddr, faddr;
1369 	u_short lport, fport;
1370 	int error;
1371 
1372 	KASSERT(sin->sin_family == AF_INET,
1373 	    ("%s: invalid address family for %p", __func__, sin));
1374 	KASSERT(sin->sin_len == sizeof(*sin),
1375 	    ("%s: invalid address length for %p", __func__, sin));
1376 
1377 	/*
1378 	 * Because a global state change doesn't actually occur here, a read
1379 	 * lock is sufficient.
1380 	 */
1381 	NET_EPOCH_ASSERT();
1382 	INP_LOCK_ASSERT(inp);
1383 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1384 
1385 	if (oinpp != NULL)
1386 		*oinpp = NULL;
1387 	if (sin->sin_port == 0)
1388 		return (EADDRNOTAVAIL);
1389 	laddr.s_addr = *laddrp;
1390 	lport = *lportp;
1391 	faddr = sin->sin_addr;
1392 	fport = sin->sin_port;
1393 #ifdef ROUTE_MPATH
1394 	if (CALC_FLOWID_OUTBOUND) {
1395 		uint32_t hash_val, hash_type;
1396 
1397 		hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport,
1398 		    inp->inp_socket->so_proto->pr_protocol, &hash_type);
1399 
1400 		inp->inp_flowid = hash_val;
1401 		inp->inp_flowtype = hash_type;
1402 	}
1403 #endif
1404 	if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) {
1405 		/*
1406 		 * If the destination address is INADDR_ANY,
1407 		 * use the primary local address.
1408 		 * If the supplied address is INADDR_BROADCAST,
1409 		 * and the primary interface supports broadcast,
1410 		 * choose the broadcast address for that interface.
1411 		 */
1412 		if (faddr.s_addr == INADDR_ANY) {
1413 			faddr =
1414 			    IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1415 			if (cred != NULL &&
1416 			    (error = prison_get_ip4(cred, &faddr)) != 0)
1417 				return (error);
1418 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1419 			if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1420 			    IFF_BROADCAST)
1421 				faddr = satosin(&CK_STAILQ_FIRST(
1422 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1423 		}
1424 	}
1425 	if (laddr.s_addr == INADDR_ANY) {
1426 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
1427 		/*
1428 		 * If the destination address is multicast and an outgoing
1429 		 * interface has been set as a multicast option, prefer the
1430 		 * address of that interface as our source address.
1431 		 */
1432 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1433 		    inp->inp_moptions != NULL) {
1434 			struct ip_moptions *imo;
1435 			struct ifnet *ifp;
1436 
1437 			imo = inp->inp_moptions;
1438 			if (imo->imo_multicast_ifp != NULL) {
1439 				ifp = imo->imo_multicast_ifp;
1440 				CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1441 					if ((ia->ia_ifp == ifp) &&
1442 					    (cred == NULL ||
1443 					    prison_check_ip4(cred,
1444 					    &ia->ia_addr.sin_addr) == 0))
1445 						break;
1446 				}
1447 				if (ia == NULL)
1448 					error = EADDRNOTAVAIL;
1449 				else {
1450 					laddr = ia->ia_addr.sin_addr;
1451 					error = 0;
1452 				}
1453 			}
1454 		}
1455 		if (error)
1456 			return (error);
1457 	}
1458 
1459 	if (lport != 0) {
1460 		oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr,
1461 		    fport, laddr, lport, 0, NULL, M_NODOM);
1462 		if (oinp != NULL) {
1463 			if (oinpp != NULL)
1464 				*oinpp = oinp;
1465 			return (EADDRINUSE);
1466 		}
1467 	} else {
1468 		struct sockaddr_in lsin, fsin;
1469 
1470 		bzero(&lsin, sizeof(lsin));
1471 		bzero(&fsin, sizeof(fsin));
1472 		lsin.sin_family = AF_INET;
1473 		lsin.sin_addr = laddr;
1474 		fsin.sin_family = AF_INET;
1475 		fsin.sin_addr = faddr;
1476 		error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin,
1477 		    &lport, (struct sockaddr *)& fsin, fport, cred,
1478 		    INPLOOKUP_WILDCARD);
1479 		if (error)
1480 			return (error);
1481 	}
1482 	*laddrp = laddr.s_addr;
1483 	*lportp = lport;
1484 	*faddrp = faddr.s_addr;
1485 	*fportp = fport;
1486 	return (0);
1487 }
1488 
1489 void
1490 in_pcbdisconnect(struct inpcb *inp)
1491 {
1492 
1493 	INP_WLOCK_ASSERT(inp);
1494 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1495 
1496 	inp->inp_faddr.s_addr = INADDR_ANY;
1497 	inp->inp_fport = 0;
1498 	in_pcbrehash(inp);
1499 }
1500 #endif /* INET */
1501 
1502 /*
1503  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1504  * For most protocols, this will be invoked immediately prior to calling
1505  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1506  * socket, in which case in_pcbfree() is deferred.
1507  */
1508 void
1509 in_pcbdetach(struct inpcb *inp)
1510 {
1511 
1512 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1513 
1514 #ifdef RATELIMIT
1515 	if (inp->inp_snd_tag != NULL)
1516 		in_pcbdetach_txrtlmt(inp);
1517 #endif
1518 	inp->inp_socket->so_pcb = NULL;
1519 	inp->inp_socket = NULL;
1520 }
1521 
1522 /*
1523  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1524  * stability of an inpcb pointer despite the inpcb lock being released.  This
1525  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1526  * but where the inpcb lock may already held, or when acquiring a reference
1527  * via a pcbgroup.
1528  *
1529  * in_pcbref() should be used only to provide brief memory stability, and
1530  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1531  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1532  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1533  * lock and rele are the *only* safe operations that may be performed on the
1534  * inpcb.
1535  *
1536  * While the inpcb will not be freed, releasing the inpcb lock means that the
1537  * connection's state may change, so the caller should be careful to
1538  * revalidate any cached state on reacquiring the lock.  Drop the reference
1539  * using in_pcbrele().
1540  */
1541 void
1542 in_pcbref(struct inpcb *inp)
1543 {
1544 
1545 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1546 
1547 	refcount_acquire(&inp->inp_refcount);
1548 }
1549 
1550 /*
1551  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1552  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1553  * return a flag indicating whether or not the inpcb remains valid.  If it is
1554  * valid, we return with the inpcb lock held.
1555  *
1556  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1557  * reference on an inpcb.  Historically more work was done here (actually, in
1558  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1559  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1560  * about memory stability (and continued use of the write lock).
1561  */
1562 int
1563 in_pcbrele_rlocked(struct inpcb *inp)
1564 {
1565 	struct inpcbinfo *pcbinfo;
1566 
1567 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1568 
1569 	INP_RLOCK_ASSERT(inp);
1570 
1571 	if (refcount_release(&inp->inp_refcount) == 0) {
1572 		/*
1573 		 * If the inpcb has been freed, let the caller know, even if
1574 		 * this isn't the last reference.
1575 		 */
1576 		if (inp->inp_flags2 & INP_FREED) {
1577 			INP_RUNLOCK(inp);
1578 			return (1);
1579 		}
1580 		return (0);
1581 	}
1582 
1583 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1584 #ifdef TCPHPTS
1585 	if (inp->inp_in_hpts || inp->inp_in_input) {
1586 		struct tcp_hpts_entry *hpts;
1587 		/*
1588 		 * We should not be on the hpts at
1589 		 * this point in any form. we must
1590 		 * get the lock to be sure.
1591 		 */
1592 		hpts = tcp_hpts_lock(inp);
1593 		if (inp->inp_in_hpts)
1594 			panic("Hpts:%p inp:%p at free still on hpts",
1595 			      hpts, inp);
1596 		mtx_unlock(&hpts->p_mtx);
1597 		hpts = tcp_input_lock(inp);
1598 		if (inp->inp_in_input)
1599 			panic("Hpts:%p inp:%p at free still on input hpts",
1600 			      hpts, inp);
1601 		mtx_unlock(&hpts->p_mtx);
1602 	}
1603 #endif
1604 	INP_RUNLOCK(inp);
1605 	pcbinfo = inp->inp_pcbinfo;
1606 	uma_zfree(pcbinfo->ipi_zone, inp);
1607 	return (1);
1608 }
1609 
1610 int
1611 in_pcbrele_wlocked(struct inpcb *inp)
1612 {
1613 	struct inpcbinfo *pcbinfo;
1614 
1615 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1616 
1617 	INP_WLOCK_ASSERT(inp);
1618 
1619 	if (refcount_release(&inp->inp_refcount) == 0) {
1620 		/*
1621 		 * If the inpcb has been freed, let the caller know, even if
1622 		 * this isn't the last reference.
1623 		 */
1624 		if (inp->inp_flags2 & INP_FREED) {
1625 			INP_WUNLOCK(inp);
1626 			return (1);
1627 		}
1628 		return (0);
1629 	}
1630 
1631 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1632 #ifdef TCPHPTS
1633 	if (inp->inp_in_hpts || inp->inp_in_input) {
1634 		struct tcp_hpts_entry *hpts;
1635 		/*
1636 		 * We should not be on the hpts at
1637 		 * this point in any form. we must
1638 		 * get the lock to be sure.
1639 		 */
1640 		hpts = tcp_hpts_lock(inp);
1641 		if (inp->inp_in_hpts)
1642 			panic("Hpts:%p inp:%p at free still on hpts",
1643 			      hpts, inp);
1644 		mtx_unlock(&hpts->p_mtx);
1645 		hpts = tcp_input_lock(inp);
1646 		if (inp->inp_in_input)
1647 			panic("Hpts:%p inp:%p at free still on input hpts",
1648 			      hpts, inp);
1649 		mtx_unlock(&hpts->p_mtx);
1650 	}
1651 #endif
1652 	INP_WUNLOCK(inp);
1653 	pcbinfo = inp->inp_pcbinfo;
1654 	uma_zfree(pcbinfo->ipi_zone, inp);
1655 	return (1);
1656 }
1657 
1658 /*
1659  * Temporary wrapper.
1660  */
1661 int
1662 in_pcbrele(struct inpcb *inp)
1663 {
1664 
1665 	return (in_pcbrele_wlocked(inp));
1666 }
1667 
1668 void
1669 in_pcblist_rele_rlocked(epoch_context_t ctx)
1670 {
1671 	struct in_pcblist *il;
1672 	struct inpcb *inp;
1673 	struct inpcbinfo *pcbinfo;
1674 	int i, n;
1675 
1676 	il = __containerof(ctx, struct in_pcblist, il_epoch_ctx);
1677 	pcbinfo = il->il_pcbinfo;
1678 	n = il->il_count;
1679 	INP_INFO_WLOCK(pcbinfo);
1680 	for (i = 0; i < n; i++) {
1681 		inp = il->il_inp_list[i];
1682 		INP_RLOCK(inp);
1683 		if (!in_pcbrele_rlocked(inp))
1684 			INP_RUNLOCK(inp);
1685 	}
1686 	INP_INFO_WUNLOCK(pcbinfo);
1687 	free(il, M_TEMP);
1688 }
1689 
1690 static void
1691 inpcbport_free(epoch_context_t ctx)
1692 {
1693 	struct inpcbport *phd;
1694 
1695 	phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx);
1696 	free(phd, M_PCB);
1697 }
1698 
1699 static void
1700 in_pcbfree_deferred(epoch_context_t ctx)
1701 {
1702 	struct inpcb *inp;
1703 	int released __unused;
1704 
1705 	inp = __containerof(ctx, struct inpcb, inp_epoch_ctx);
1706 
1707 	INP_WLOCK(inp);
1708 	CURVNET_SET(inp->inp_vnet);
1709 #ifdef INET
1710 	struct ip_moptions *imo = inp->inp_moptions;
1711 	inp->inp_moptions = NULL;
1712 #endif
1713 	/* XXXRW: Do as much as possible here. */
1714 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1715 	if (inp->inp_sp != NULL)
1716 		ipsec_delete_pcbpolicy(inp);
1717 #endif
1718 #ifdef INET6
1719 	struct ip6_moptions *im6o = NULL;
1720 	if (inp->inp_vflag & INP_IPV6PROTO) {
1721 		ip6_freepcbopts(inp->in6p_outputopts);
1722 		im6o = inp->in6p_moptions;
1723 		inp->in6p_moptions = NULL;
1724 	}
1725 #endif
1726 	if (inp->inp_options)
1727 		(void)m_free(inp->inp_options);
1728 	inp->inp_vflag = 0;
1729 	crfree(inp->inp_cred);
1730 #ifdef MAC
1731 	mac_inpcb_destroy(inp);
1732 #endif
1733 	released = in_pcbrele_wlocked(inp);
1734 	MPASS(released);
1735 #ifdef INET6
1736 	ip6_freemoptions(im6o);
1737 #endif
1738 #ifdef INET
1739 	inp_freemoptions(imo);
1740 #endif
1741 	CURVNET_RESTORE();
1742 }
1743 
1744 /*
1745  * Unconditionally schedule an inpcb to be freed by decrementing its
1746  * reference count, which should occur only after the inpcb has been detached
1747  * from its socket.  If another thread holds a temporary reference (acquired
1748  * using in_pcbref()) then the free is deferred until that reference is
1749  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1750  * work, including removal from global lists, is done in this context, where
1751  * the pcbinfo lock is held.
1752  */
1753 void
1754 in_pcbfree(struct inpcb *inp)
1755 {
1756 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1757 
1758 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1759 	KASSERT((inp->inp_flags2 & INP_FREED) == 0,
1760 	    ("%s: called twice for pcb %p", __func__, inp));
1761 	if (inp->inp_flags2 & INP_FREED) {
1762 		INP_WUNLOCK(inp);
1763 		return;
1764 	}
1765 
1766 	INP_WLOCK_ASSERT(inp);
1767 	INP_LIST_WLOCK(pcbinfo);
1768 	in_pcbremlists(inp);
1769 	INP_LIST_WUNLOCK(pcbinfo);
1770 	RO_INVALIDATE_CACHE(&inp->inp_route);
1771 	/* mark as destruction in progress */
1772 	inp->inp_flags2 |= INP_FREED;
1773 	INP_WUNLOCK(inp);
1774 	NET_EPOCH_CALL(in_pcbfree_deferred, &inp->inp_epoch_ctx);
1775 }
1776 
1777 /*
1778  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1779  * port reservation, and preventing it from being returned by inpcb lookups.
1780  *
1781  * It is used by TCP to mark an inpcb as unused and avoid future packet
1782  * delivery or event notification when a socket remains open but TCP has
1783  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1784  * or a RST on the wire, and allows the port binding to be reused while still
1785  * maintaining the invariant that so_pcb always points to a valid inpcb until
1786  * in_pcbdetach().
1787  *
1788  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1789  * in_pcbnotifyall() and in_pcbpurgeif0()?
1790  */
1791 void
1792 in_pcbdrop(struct inpcb *inp)
1793 {
1794 
1795 	INP_WLOCK_ASSERT(inp);
1796 #ifdef INVARIANTS
1797 	if (inp->inp_socket != NULL && inp->inp_ppcb != NULL)
1798 		MPASS(inp->inp_refcount > 1);
1799 #endif
1800 
1801 	/*
1802 	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1803 	 * the hash lock...?
1804 	 */
1805 	inp->inp_flags |= INP_DROPPED;
1806 	if (inp->inp_flags & INP_INHASHLIST) {
1807 		struct inpcbport *phd = inp->inp_phd;
1808 
1809 		INP_HASH_WLOCK(inp->inp_pcbinfo);
1810 		in_pcbremlbgrouphash(inp);
1811 		CK_LIST_REMOVE(inp, inp_hash);
1812 		CK_LIST_REMOVE(inp, inp_portlist);
1813 		if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
1814 			CK_LIST_REMOVE(phd, phd_hash);
1815 			NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx);
1816 		}
1817 		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1818 		inp->inp_flags &= ~INP_INHASHLIST;
1819 #ifdef PCBGROUP
1820 		in_pcbgroup_remove(inp);
1821 #endif
1822 	}
1823 }
1824 
1825 #ifdef INET
1826 /*
1827  * Common routines to return the socket addresses associated with inpcbs.
1828  */
1829 struct sockaddr *
1830 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1831 {
1832 	struct sockaddr_in *sin;
1833 
1834 	sin = malloc(sizeof *sin, M_SONAME,
1835 		M_WAITOK | M_ZERO);
1836 	sin->sin_family = AF_INET;
1837 	sin->sin_len = sizeof(*sin);
1838 	sin->sin_addr = *addr_p;
1839 	sin->sin_port = port;
1840 
1841 	return (struct sockaddr *)sin;
1842 }
1843 
1844 int
1845 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1846 {
1847 	struct inpcb *inp;
1848 	struct in_addr addr;
1849 	in_port_t port;
1850 
1851 	inp = sotoinpcb(so);
1852 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1853 
1854 	INP_RLOCK(inp);
1855 	port = inp->inp_lport;
1856 	addr = inp->inp_laddr;
1857 	INP_RUNLOCK(inp);
1858 
1859 	*nam = in_sockaddr(port, &addr);
1860 	return 0;
1861 }
1862 
1863 int
1864 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1865 {
1866 	struct inpcb *inp;
1867 	struct in_addr addr;
1868 	in_port_t port;
1869 
1870 	inp = sotoinpcb(so);
1871 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1872 
1873 	INP_RLOCK(inp);
1874 	port = inp->inp_fport;
1875 	addr = inp->inp_faddr;
1876 	INP_RUNLOCK(inp);
1877 
1878 	*nam = in_sockaddr(port, &addr);
1879 	return 0;
1880 }
1881 
1882 void
1883 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1884     struct inpcb *(*notify)(struct inpcb *, int))
1885 {
1886 	struct inpcb *inp, *inp_temp;
1887 
1888 	INP_INFO_WLOCK(pcbinfo);
1889 	CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1890 		INP_WLOCK(inp);
1891 #ifdef INET6
1892 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1893 			INP_WUNLOCK(inp);
1894 			continue;
1895 		}
1896 #endif
1897 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1898 		    inp->inp_socket == NULL) {
1899 			INP_WUNLOCK(inp);
1900 			continue;
1901 		}
1902 		if ((*notify)(inp, errno))
1903 			INP_WUNLOCK(inp);
1904 	}
1905 	INP_INFO_WUNLOCK(pcbinfo);
1906 }
1907 
1908 void
1909 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1910 {
1911 	struct inpcb *inp;
1912 	struct in_multi *inm;
1913 	struct in_mfilter *imf;
1914 	struct ip_moptions *imo;
1915 
1916 	INP_INFO_WLOCK(pcbinfo);
1917 	CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1918 		INP_WLOCK(inp);
1919 		imo = inp->inp_moptions;
1920 		if ((inp->inp_vflag & INP_IPV4) &&
1921 		    imo != NULL) {
1922 			/*
1923 			 * Unselect the outgoing interface if it is being
1924 			 * detached.
1925 			 */
1926 			if (imo->imo_multicast_ifp == ifp)
1927 				imo->imo_multicast_ifp = NULL;
1928 
1929 			/*
1930 			 * Drop multicast group membership if we joined
1931 			 * through the interface being detached.
1932 			 *
1933 			 * XXX This can all be deferred to an epoch_call
1934 			 */
1935 restart:
1936 			IP_MFILTER_FOREACH(imf, &imo->imo_head) {
1937 				if ((inm = imf->imf_inm) == NULL)
1938 					continue;
1939 				if (inm->inm_ifp != ifp)
1940 					continue;
1941 				ip_mfilter_remove(&imo->imo_head, imf);
1942 				IN_MULTI_LOCK_ASSERT();
1943 				in_leavegroup_locked(inm, NULL);
1944 				ip_mfilter_free(imf);
1945 				goto restart;
1946 			}
1947 		}
1948 		INP_WUNLOCK(inp);
1949 	}
1950 	INP_INFO_WUNLOCK(pcbinfo);
1951 }
1952 
1953 /*
1954  * Lookup a PCB based on the local address and port.  Caller must hold the
1955  * hash lock.  No inpcb locks or references are acquired.
1956  */
1957 #define INP_LOOKUP_MAPPED_PCB_COST	3
1958 struct inpcb *
1959 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1960     u_short lport, int lookupflags, struct ucred *cred)
1961 {
1962 	struct inpcb *inp;
1963 #ifdef INET6
1964 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1965 #else
1966 	int matchwild = 3;
1967 #endif
1968 	int wildcard;
1969 
1970 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1971 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1972 
1973 	INP_HASH_LOCK_ASSERT(pcbinfo);
1974 
1975 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1976 		struct inpcbhead *head;
1977 		/*
1978 		 * Look for an unconnected (wildcard foreign addr) PCB that
1979 		 * matches the local address and port we're looking for.
1980 		 */
1981 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1982 		    0, pcbinfo->ipi_hashmask)];
1983 		CK_LIST_FOREACH(inp, head, inp_hash) {
1984 #ifdef INET6
1985 			/* XXX inp locking */
1986 			if ((inp->inp_vflag & INP_IPV4) == 0)
1987 				continue;
1988 #endif
1989 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1990 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1991 			    inp->inp_lport == lport) {
1992 				/*
1993 				 * Found?
1994 				 */
1995 				if (cred == NULL ||
1996 				    prison_equal_ip4(cred->cr_prison,
1997 					inp->inp_cred->cr_prison))
1998 					return (inp);
1999 			}
2000 		}
2001 		/*
2002 		 * Not found.
2003 		 */
2004 		return (NULL);
2005 	} else {
2006 		struct inpcbporthead *porthash;
2007 		struct inpcbport *phd;
2008 		struct inpcb *match = NULL;
2009 		/*
2010 		 * Best fit PCB lookup.
2011 		 *
2012 		 * First see if this local port is in use by looking on the
2013 		 * port hash list.
2014 		 */
2015 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
2016 		    pcbinfo->ipi_porthashmask)];
2017 		CK_LIST_FOREACH(phd, porthash, phd_hash) {
2018 			if (phd->phd_port == lport)
2019 				break;
2020 		}
2021 		if (phd != NULL) {
2022 			/*
2023 			 * Port is in use by one or more PCBs. Look for best
2024 			 * fit.
2025 			 */
2026 			CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
2027 				wildcard = 0;
2028 				if (cred != NULL &&
2029 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
2030 					cred->cr_prison))
2031 					continue;
2032 #ifdef INET6
2033 				/* XXX inp locking */
2034 				if ((inp->inp_vflag & INP_IPV4) == 0)
2035 					continue;
2036 				/*
2037 				 * We never select the PCB that has
2038 				 * INP_IPV6 flag and is bound to :: if
2039 				 * we have another PCB which is bound
2040 				 * to 0.0.0.0.  If a PCB has the
2041 				 * INP_IPV6 flag, then we set its cost
2042 				 * higher than IPv4 only PCBs.
2043 				 *
2044 				 * Note that the case only happens
2045 				 * when a socket is bound to ::, under
2046 				 * the condition that the use of the
2047 				 * mapped address is allowed.
2048 				 */
2049 				if ((inp->inp_vflag & INP_IPV6) != 0)
2050 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
2051 #endif
2052 				if (inp->inp_faddr.s_addr != INADDR_ANY)
2053 					wildcard++;
2054 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
2055 					if (laddr.s_addr == INADDR_ANY)
2056 						wildcard++;
2057 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
2058 						continue;
2059 				} else {
2060 					if (laddr.s_addr != INADDR_ANY)
2061 						wildcard++;
2062 				}
2063 				if (wildcard < matchwild) {
2064 					match = inp;
2065 					matchwild = wildcard;
2066 					if (matchwild == 0)
2067 						break;
2068 				}
2069 			}
2070 		}
2071 		return (match);
2072 	}
2073 }
2074 #undef INP_LOOKUP_MAPPED_PCB_COST
2075 
2076 static struct inpcb *
2077 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo,
2078     const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr,
2079     uint16_t fport, int lookupflags, int numa_domain)
2080 {
2081 	struct inpcb *local_wild, *numa_wild;
2082 	const struct inpcblbgrouphead *hdr;
2083 	struct inpcblbgroup *grp;
2084 	uint32_t idx;
2085 
2086 	INP_HASH_LOCK_ASSERT(pcbinfo);
2087 
2088 	hdr = &pcbinfo->ipi_lbgrouphashbase[
2089 	    INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)];
2090 
2091 	/*
2092 	 * Order of socket selection:
2093 	 * 1. non-wild.
2094 	 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD).
2095 	 *
2096 	 * NOTE:
2097 	 * - Load balanced group does not contain jailed sockets
2098 	 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets
2099 	 */
2100 	local_wild = NULL;
2101 	numa_wild = NULL;
2102 	CK_LIST_FOREACH(grp, hdr, il_list) {
2103 #ifdef INET6
2104 		if (!(grp->il_vflag & INP_IPV4))
2105 			continue;
2106 #endif
2107 		if (grp->il_lport != lport)
2108 			continue;
2109 
2110 		idx = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport) %
2111 		    grp->il_inpcnt;
2112 		if (grp->il_laddr.s_addr == laddr->s_addr) {
2113 			if (numa_domain == M_NODOM ||
2114 			    grp->il_numa_domain == numa_domain) {
2115 				return (grp->il_inp[idx]);
2116 			} else {
2117 				numa_wild = grp->il_inp[idx];
2118 			}
2119 		}
2120 		if (grp->il_laddr.s_addr == INADDR_ANY &&
2121 		    (lookupflags & INPLOOKUP_WILDCARD) != 0 &&
2122 		    (local_wild == NULL || numa_domain == M_NODOM ||
2123 			grp->il_numa_domain == numa_domain)) {
2124 			local_wild = grp->il_inp[idx];
2125 		}
2126 	}
2127 	if (numa_wild != NULL)
2128 		return (numa_wild);
2129 
2130 	return (local_wild);
2131 }
2132 
2133 #ifdef PCBGROUP
2134 /*
2135  * Lookup PCB in hash list, using pcbgroup tables.
2136  */
2137 static struct inpcb *
2138 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
2139     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
2140     u_int lport_arg, int lookupflags, struct ifnet *ifp)
2141 {
2142 	struct inpcbhead *head;
2143 	struct inpcb *inp, *tmpinp;
2144 	u_short fport = fport_arg, lport = lport_arg;
2145 	bool locked;
2146 
2147 	/*
2148 	 * First look for an exact match.
2149 	 */
2150 	tmpinp = NULL;
2151 	INP_GROUP_LOCK(pcbgroup);
2152 	head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
2153 	    pcbgroup->ipg_hashmask)];
2154 	CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
2155 #ifdef INET6
2156 		/* XXX inp locking */
2157 		if ((inp->inp_vflag & INP_IPV4) == 0)
2158 			continue;
2159 #endif
2160 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
2161 		    inp->inp_laddr.s_addr == laddr.s_addr &&
2162 		    inp->inp_fport == fport &&
2163 		    inp->inp_lport == lport) {
2164 			/*
2165 			 * XXX We should be able to directly return
2166 			 * the inp here, without any checks.
2167 			 * Well unless both bound with SO_REUSEPORT?
2168 			 */
2169 			if (prison_flag(inp->inp_cred, PR_IP4))
2170 				goto found;
2171 			if (tmpinp == NULL)
2172 				tmpinp = inp;
2173 		}
2174 	}
2175 	if (tmpinp != NULL) {
2176 		inp = tmpinp;
2177 		goto found;
2178 	}
2179 
2180 #ifdef	RSS
2181 	/*
2182 	 * For incoming connections, we may wish to do a wildcard
2183 	 * match for an RSS-local socket.
2184 	 */
2185 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2186 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2187 #ifdef INET6
2188 		struct inpcb *local_wild_mapped = NULL;
2189 #endif
2190 		struct inpcb *jail_wild = NULL;
2191 		struct inpcbhead *head;
2192 		int injail;
2193 
2194 		/*
2195 		 * Order of socket selection - we always prefer jails.
2196 		 *      1. jailed, non-wild.
2197 		 *      2. jailed, wild.
2198 		 *      3. non-jailed, non-wild.
2199 		 *      4. non-jailed, wild.
2200 		 */
2201 
2202 		head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
2203 		    lport, 0, pcbgroup->ipg_hashmask)];
2204 		CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
2205 #ifdef INET6
2206 			/* XXX inp locking */
2207 			if ((inp->inp_vflag & INP_IPV4) == 0)
2208 				continue;
2209 #endif
2210 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2211 			    inp->inp_lport != lport)
2212 				continue;
2213 
2214 			injail = prison_flag(inp->inp_cred, PR_IP4);
2215 			if (injail) {
2216 				if (prison_check_ip4(inp->inp_cred,
2217 				    &laddr) != 0)
2218 					continue;
2219 			} else {
2220 				if (local_exact != NULL)
2221 					continue;
2222 			}
2223 
2224 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2225 				if (injail)
2226 					goto found;
2227 				else
2228 					local_exact = inp;
2229 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2230 #ifdef INET6
2231 				/* XXX inp locking, NULL check */
2232 				if (inp->inp_vflag & INP_IPV6PROTO)
2233 					local_wild_mapped = inp;
2234 				else
2235 #endif
2236 					if (injail)
2237 						jail_wild = inp;
2238 					else
2239 						local_wild = inp;
2240 			}
2241 		} /* LIST_FOREACH */
2242 
2243 		inp = jail_wild;
2244 		if (inp == NULL)
2245 			inp = local_exact;
2246 		if (inp == NULL)
2247 			inp = local_wild;
2248 #ifdef INET6
2249 		if (inp == NULL)
2250 			inp = local_wild_mapped;
2251 #endif
2252 		if (inp != NULL)
2253 			goto found;
2254 	}
2255 #endif
2256 
2257 	/*
2258 	 * Then look for a wildcard match, if requested.
2259 	 */
2260 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2261 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2262 #ifdef INET6
2263 		struct inpcb *local_wild_mapped = NULL;
2264 #endif
2265 		struct inpcb *jail_wild = NULL;
2266 		struct inpcbhead *head;
2267 		int injail;
2268 
2269 		/*
2270 		 * Order of socket selection - we always prefer jails.
2271 		 *      1. jailed, non-wild.
2272 		 *      2. jailed, wild.
2273 		 *      3. non-jailed, non-wild.
2274 		 *      4. non-jailed, wild.
2275 		 */
2276 		head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
2277 		    0, pcbinfo->ipi_wildmask)];
2278 		CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
2279 #ifdef INET6
2280 			/* XXX inp locking */
2281 			if ((inp->inp_vflag & INP_IPV4) == 0)
2282 				continue;
2283 #endif
2284 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2285 			    inp->inp_lport != lport)
2286 				continue;
2287 
2288 			injail = prison_flag(inp->inp_cred, PR_IP4);
2289 			if (injail) {
2290 				if (prison_check_ip4(inp->inp_cred,
2291 				    &laddr) != 0)
2292 					continue;
2293 			} else {
2294 				if (local_exact != NULL)
2295 					continue;
2296 			}
2297 
2298 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2299 				if (injail)
2300 					goto found;
2301 				else
2302 					local_exact = inp;
2303 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2304 #ifdef INET6
2305 				/* XXX inp locking, NULL check */
2306 				if (inp->inp_vflag & INP_IPV6PROTO)
2307 					local_wild_mapped = inp;
2308 				else
2309 #endif
2310 					if (injail)
2311 						jail_wild = inp;
2312 					else
2313 						local_wild = inp;
2314 			}
2315 		} /* LIST_FOREACH */
2316 		inp = jail_wild;
2317 		if (inp == NULL)
2318 			inp = local_exact;
2319 		if (inp == NULL)
2320 			inp = local_wild;
2321 #ifdef INET6
2322 		if (inp == NULL)
2323 			inp = local_wild_mapped;
2324 #endif
2325 		if (inp != NULL)
2326 			goto found;
2327 	} /* if (lookupflags & INPLOOKUP_WILDCARD) */
2328 	INP_GROUP_UNLOCK(pcbgroup);
2329 	return (NULL);
2330 
2331 found:
2332 	if (lookupflags & INPLOOKUP_WLOCKPCB)
2333 		locked = INP_TRY_WLOCK(inp);
2334 	else if (lookupflags & INPLOOKUP_RLOCKPCB)
2335 		locked = INP_TRY_RLOCK(inp);
2336 	else
2337 		panic("%s: locking bug", __func__);
2338 	if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) {
2339 		if (lookupflags & INPLOOKUP_WLOCKPCB)
2340 			INP_WUNLOCK(inp);
2341 		else
2342 			INP_RUNLOCK(inp);
2343 		return (NULL);
2344 	} else if (!locked)
2345 		in_pcbref(inp);
2346 	INP_GROUP_UNLOCK(pcbgroup);
2347 	if (!locked) {
2348 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
2349 			INP_WLOCK(inp);
2350 			if (in_pcbrele_wlocked(inp))
2351 				return (NULL);
2352 		} else {
2353 			INP_RLOCK(inp);
2354 			if (in_pcbrele_rlocked(inp))
2355 				return (NULL);
2356 		}
2357 	}
2358 #ifdef INVARIANTS
2359 	if (lookupflags & INPLOOKUP_WLOCKPCB)
2360 		INP_WLOCK_ASSERT(inp);
2361 	else
2362 		INP_RLOCK_ASSERT(inp);
2363 #endif
2364 	return (inp);
2365 }
2366 #endif /* PCBGROUP */
2367 
2368 /*
2369  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
2370  * that the caller has locked the hash list, and will not perform any further
2371  * locking or reference operations on either the hash list or the connection.
2372  */
2373 static struct inpcb *
2374 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2375     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2376     struct ifnet *ifp, uint8_t numa_domain)
2377 {
2378 	struct inpcbhead *head;
2379 	struct inpcb *inp, *tmpinp;
2380 	u_short fport = fport_arg, lport = lport_arg;
2381 
2382 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
2383 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2384 	INP_HASH_LOCK_ASSERT(pcbinfo);
2385 
2386 	/*
2387 	 * First look for an exact match.
2388 	 */
2389 	tmpinp = NULL;
2390 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
2391 	    pcbinfo->ipi_hashmask)];
2392 	CK_LIST_FOREACH(inp, head, inp_hash) {
2393 #ifdef INET6
2394 		/* XXX inp locking */
2395 		if ((inp->inp_vflag & INP_IPV4) == 0)
2396 			continue;
2397 #endif
2398 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
2399 		    inp->inp_laddr.s_addr == laddr.s_addr &&
2400 		    inp->inp_fport == fport &&
2401 		    inp->inp_lport == lport) {
2402 			/*
2403 			 * XXX We should be able to directly return
2404 			 * the inp here, without any checks.
2405 			 * Well unless both bound with SO_REUSEPORT?
2406 			 */
2407 			if (prison_flag(inp->inp_cred, PR_IP4))
2408 				return (inp);
2409 			if (tmpinp == NULL)
2410 				tmpinp = inp;
2411 		}
2412 	}
2413 	if (tmpinp != NULL)
2414 		return (tmpinp);
2415 
2416 	/*
2417 	 * Then look in lb group (for wildcard match).
2418 	 */
2419 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2420 		inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr,
2421 		    fport, lookupflags, numa_domain);
2422 		if (inp != NULL)
2423 			return (inp);
2424 	}
2425 
2426 	/*
2427 	 * Then look for a wildcard match, if requested.
2428 	 */
2429 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2430 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2431 #ifdef INET6
2432 		struct inpcb *local_wild_mapped = NULL;
2433 #endif
2434 		struct inpcb *jail_wild = NULL;
2435 		int injail;
2436 
2437 		/*
2438 		 * Order of socket selection - we always prefer jails.
2439 		 *      1. jailed, non-wild.
2440 		 *      2. jailed, wild.
2441 		 *      3. non-jailed, non-wild.
2442 		 *      4. non-jailed, wild.
2443 		 */
2444 
2445 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
2446 		    0, pcbinfo->ipi_hashmask)];
2447 		CK_LIST_FOREACH(inp, head, inp_hash) {
2448 #ifdef INET6
2449 			/* XXX inp locking */
2450 			if ((inp->inp_vflag & INP_IPV4) == 0)
2451 				continue;
2452 #endif
2453 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2454 			    inp->inp_lport != lport)
2455 				continue;
2456 
2457 			injail = prison_flag(inp->inp_cred, PR_IP4);
2458 			if (injail) {
2459 				if (prison_check_ip4(inp->inp_cred,
2460 				    &laddr) != 0)
2461 					continue;
2462 			} else {
2463 				if (local_exact != NULL)
2464 					continue;
2465 			}
2466 
2467 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2468 				if (injail)
2469 					return (inp);
2470 				else
2471 					local_exact = inp;
2472 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2473 #ifdef INET6
2474 				/* XXX inp locking, NULL check */
2475 				if (inp->inp_vflag & INP_IPV6PROTO)
2476 					local_wild_mapped = inp;
2477 				else
2478 #endif
2479 					if (injail)
2480 						jail_wild = inp;
2481 					else
2482 						local_wild = inp;
2483 			}
2484 		} /* LIST_FOREACH */
2485 		if (jail_wild != NULL)
2486 			return (jail_wild);
2487 		if (local_exact != NULL)
2488 			return (local_exact);
2489 		if (local_wild != NULL)
2490 			return (local_wild);
2491 #ifdef INET6
2492 		if (local_wild_mapped != NULL)
2493 			return (local_wild_mapped);
2494 #endif
2495 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
2496 
2497 	return (NULL);
2498 }
2499 
2500 /*
2501  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
2502  * hash list lock, and will return the inpcb locked (i.e., requires
2503  * INPLOOKUP_LOCKPCB).
2504  */
2505 static struct inpcb *
2506 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2507     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2508     struct ifnet *ifp, uint8_t numa_domain)
2509 {
2510 	struct inpcb *inp;
2511 
2512 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2513 	    lookupflags & INPLOOKUP_WILDCARD, ifp, numa_domain);
2514 	if (inp != NULL) {
2515 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
2516 			INP_WLOCK(inp);
2517 		} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
2518 			INP_RLOCK(inp);
2519 		} else
2520 			panic("%s: locking bug", __func__);
2521 		if (__predict_false(inp->inp_flags2 & INP_FREED)) {
2522 			INP_UNLOCK(inp);
2523 			inp = NULL;
2524 		}
2525 	}
2526 
2527 	return (inp);
2528 }
2529 
2530 /*
2531  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2532  * from which a pre-calculated hash value may be extracted.
2533  *
2534  * Possibly more of this logic should be in in_pcbgroup.c.
2535  */
2536 struct inpcb *
2537 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2538     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
2539 {
2540 #if defined(PCBGROUP) && !defined(RSS)
2541 	struct inpcbgroup *pcbgroup;
2542 #endif
2543 
2544 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2545 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2546 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2547 	    ("%s: LOCKPCB not set", __func__));
2548 
2549 	/*
2550 	 * When not using RSS, use connection groups in preference to the
2551 	 * reservation table when looking up 4-tuples.  When using RSS, just
2552 	 * use the reservation table, due to the cost of the Toeplitz hash
2553 	 * in software.
2554 	 *
2555 	 * XXXRW: This policy belongs in the pcbgroup code, as in principle
2556 	 * we could be doing RSS with a non-Toeplitz hash that is affordable
2557 	 * in software.
2558 	 */
2559 #if defined(PCBGROUP) && !defined(RSS)
2560 	if (in_pcbgroup_enabled(pcbinfo)) {
2561 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2562 		    fport);
2563 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2564 		    laddr, lport, lookupflags, ifp));
2565 	}
2566 #endif
2567 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2568 	    lookupflags, ifp, M_NODOM));
2569 }
2570 
2571 struct inpcb *
2572 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2573     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2574     struct ifnet *ifp, struct mbuf *m)
2575 {
2576 #ifdef PCBGROUP
2577 	struct inpcbgroup *pcbgroup;
2578 #endif
2579 
2580 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2581 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2582 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2583 	    ("%s: LOCKPCB not set", __func__));
2584 
2585 #ifdef PCBGROUP
2586 	/*
2587 	 * If we can use a hardware-generated hash to look up the connection
2588 	 * group, use that connection group to find the inpcb.  Otherwise
2589 	 * fall back on a software hash -- or the reservation table if we're
2590 	 * using RSS.
2591 	 *
2592 	 * XXXRW: As above, that policy belongs in the pcbgroup code.
2593 	 */
2594 	if (in_pcbgroup_enabled(pcbinfo) &&
2595 	    !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
2596 		pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
2597 		    m->m_pkthdr.flowid);
2598 		if (pcbgroup != NULL)
2599 			return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
2600 			    fport, laddr, lport, lookupflags, ifp));
2601 #ifndef RSS
2602 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2603 		    fport);
2604 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2605 		    laddr, lport, lookupflags, ifp));
2606 #endif
2607 	}
2608 #endif
2609 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2610 	    lookupflags, ifp, m->m_pkthdr.numa_domain));
2611 }
2612 #endif /* INET */
2613 
2614 /*
2615  * Insert PCB onto various hash lists.
2616  */
2617 static int
2618 in_pcbinshash_internal(struct inpcb *inp, struct mbuf *m)
2619 {
2620 	struct inpcbhead *pcbhash;
2621 	struct inpcbporthead *pcbporthash;
2622 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2623 	struct inpcbport *phd;
2624 	u_int32_t hashkey_faddr;
2625 	int so_options;
2626 
2627 	INP_WLOCK_ASSERT(inp);
2628 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2629 
2630 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2631 	    ("in_pcbinshash: INP_INHASHLIST"));
2632 
2633 #ifdef INET6
2634 	if (inp->inp_vflag & INP_IPV6)
2635 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2636 	else
2637 #endif
2638 	hashkey_faddr = inp->inp_faddr.s_addr;
2639 
2640 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2641 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2642 
2643 	pcbporthash = &pcbinfo->ipi_porthashbase[
2644 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2645 
2646 	/*
2647 	 * Add entry to load balance group.
2648 	 * Only do this if SO_REUSEPORT_LB is set.
2649 	 */
2650 	so_options = inp_so_options(inp);
2651 	if (so_options & SO_REUSEPORT_LB) {
2652 		int ret = in_pcbinslbgrouphash(inp, M_NODOM);
2653 		if (ret) {
2654 			/* pcb lb group malloc fail (ret=ENOBUFS). */
2655 			return (ret);
2656 		}
2657 	}
2658 
2659 	/*
2660 	 * Go through port list and look for a head for this lport.
2661 	 */
2662 	CK_LIST_FOREACH(phd, pcbporthash, phd_hash) {
2663 		if (phd->phd_port == inp->inp_lport)
2664 			break;
2665 	}
2666 	/*
2667 	 * If none exists, malloc one and tack it on.
2668 	 */
2669 	if (phd == NULL) {
2670 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
2671 		if (phd == NULL) {
2672 			return (ENOBUFS); /* XXX */
2673 		}
2674 		bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context));
2675 		phd->phd_port = inp->inp_lport;
2676 		CK_LIST_INIT(&phd->phd_pcblist);
2677 		CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2678 	}
2679 	inp->inp_phd = phd;
2680 	CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2681 	CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2682 	inp->inp_flags |= INP_INHASHLIST;
2683 #ifdef PCBGROUP
2684 	if (m != NULL) {
2685 		in_pcbgroup_update_mbuf(inp, m);
2686 	} else {
2687 		in_pcbgroup_update(inp);
2688 	}
2689 #endif
2690 	return (0);
2691 }
2692 
2693 int
2694 in_pcbinshash(struct inpcb *inp)
2695 {
2696 
2697 	return (in_pcbinshash_internal(inp, NULL));
2698 }
2699 
2700 int
2701 in_pcbinshash_mbuf(struct inpcb *inp, struct mbuf *m)
2702 {
2703 
2704 	return (in_pcbinshash_internal(inp, m));
2705 }
2706 
2707 /*
2708  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2709  * changed. NOTE: This does not handle the case of the lport changing (the
2710  * hashed port list would have to be updated as well), so the lport must
2711  * not change after in_pcbinshash() has been called.
2712  */
2713 void
2714 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
2715 {
2716 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2717 	struct inpcbhead *head;
2718 	u_int32_t hashkey_faddr;
2719 
2720 	INP_WLOCK_ASSERT(inp);
2721 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2722 
2723 	KASSERT(inp->inp_flags & INP_INHASHLIST,
2724 	    ("in_pcbrehash: !INP_INHASHLIST"));
2725 
2726 #ifdef INET6
2727 	if (inp->inp_vflag & INP_IPV6)
2728 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2729 	else
2730 #endif
2731 	hashkey_faddr = inp->inp_faddr.s_addr;
2732 
2733 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2734 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2735 
2736 	CK_LIST_REMOVE(inp, inp_hash);
2737 	CK_LIST_INSERT_HEAD(head, inp, inp_hash);
2738 
2739 #ifdef PCBGROUP
2740 	if (m != NULL)
2741 		in_pcbgroup_update_mbuf(inp, m);
2742 	else
2743 		in_pcbgroup_update(inp);
2744 #endif
2745 }
2746 
2747 void
2748 in_pcbrehash(struct inpcb *inp)
2749 {
2750 
2751 	in_pcbrehash_mbuf(inp, NULL);
2752 }
2753 
2754 /*
2755  * Remove PCB from various lists.
2756  */
2757 static void
2758 in_pcbremlists(struct inpcb *inp)
2759 {
2760 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2761 
2762 	INP_WLOCK_ASSERT(inp);
2763 	INP_LIST_WLOCK_ASSERT(pcbinfo);
2764 
2765 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2766 	if (inp->inp_flags & INP_INHASHLIST) {
2767 		struct inpcbport *phd = inp->inp_phd;
2768 
2769 		INP_HASH_WLOCK(pcbinfo);
2770 
2771 		/* XXX: Only do if SO_REUSEPORT_LB set? */
2772 		in_pcbremlbgrouphash(inp);
2773 
2774 		CK_LIST_REMOVE(inp, inp_hash);
2775 		CK_LIST_REMOVE(inp, inp_portlist);
2776 		if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
2777 			CK_LIST_REMOVE(phd, phd_hash);
2778 			NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx);
2779 		}
2780 		INP_HASH_WUNLOCK(pcbinfo);
2781 		inp->inp_flags &= ~INP_INHASHLIST;
2782 	}
2783 	CK_LIST_REMOVE(inp, inp_list);
2784 	pcbinfo->ipi_count--;
2785 #ifdef PCBGROUP
2786 	in_pcbgroup_remove(inp);
2787 #endif
2788 }
2789 
2790 /*
2791  * Check for alternatives when higher level complains
2792  * about service problems.  For now, invalidate cached
2793  * routing information.  If the route was created dynamically
2794  * (by a redirect), time to try a default gateway again.
2795  */
2796 void
2797 in_losing(struct inpcb *inp)
2798 {
2799 
2800 	RO_INVALIDATE_CACHE(&inp->inp_route);
2801 	return;
2802 }
2803 
2804 /*
2805  * A set label operation has occurred at the socket layer, propagate the
2806  * label change into the in_pcb for the socket.
2807  */
2808 void
2809 in_pcbsosetlabel(struct socket *so)
2810 {
2811 #ifdef MAC
2812 	struct inpcb *inp;
2813 
2814 	inp = sotoinpcb(so);
2815 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2816 
2817 	INP_WLOCK(inp);
2818 	SOCK_LOCK(so);
2819 	mac_inpcb_sosetlabel(so, inp);
2820 	SOCK_UNLOCK(so);
2821 	INP_WUNLOCK(inp);
2822 #endif
2823 }
2824 
2825 /*
2826  * ipport_tick runs once per second, determining if random port allocation
2827  * should be continued.  If more than ipport_randomcps ports have been
2828  * allocated in the last second, then we return to sequential port
2829  * allocation. We return to random allocation only once we drop below
2830  * ipport_randomcps for at least ipport_randomtime seconds.
2831  */
2832 static void
2833 ipport_tick(void *xtp)
2834 {
2835 	VNET_ITERATOR_DECL(vnet_iter);
2836 
2837 	VNET_LIST_RLOCK_NOSLEEP();
2838 	VNET_FOREACH(vnet_iter) {
2839 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
2840 		if (V_ipport_tcpallocs <=
2841 		    V_ipport_tcplastcount + V_ipport_randomcps) {
2842 			if (V_ipport_stoprandom > 0)
2843 				V_ipport_stoprandom--;
2844 		} else
2845 			V_ipport_stoprandom = V_ipport_randomtime;
2846 		V_ipport_tcplastcount = V_ipport_tcpallocs;
2847 		CURVNET_RESTORE();
2848 	}
2849 	VNET_LIST_RUNLOCK_NOSLEEP();
2850 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2851 }
2852 
2853 static void
2854 ip_fini(void *xtp)
2855 {
2856 
2857 	callout_stop(&ipport_tick_callout);
2858 }
2859 
2860 /*
2861  * The ipport_callout should start running at about the time we attach the
2862  * inet or inet6 domains.
2863  */
2864 static void
2865 ipport_tick_init(const void *unused __unused)
2866 {
2867 
2868 	/* Start ipport_tick. */
2869 	callout_init(&ipport_tick_callout, 1);
2870 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2871 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2872 		SHUTDOWN_PRI_DEFAULT);
2873 }
2874 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
2875     ipport_tick_init, NULL);
2876 
2877 void
2878 inp_wlock(struct inpcb *inp)
2879 {
2880 
2881 	INP_WLOCK(inp);
2882 }
2883 
2884 void
2885 inp_wunlock(struct inpcb *inp)
2886 {
2887 
2888 	INP_WUNLOCK(inp);
2889 }
2890 
2891 void
2892 inp_rlock(struct inpcb *inp)
2893 {
2894 
2895 	INP_RLOCK(inp);
2896 }
2897 
2898 void
2899 inp_runlock(struct inpcb *inp)
2900 {
2901 
2902 	INP_RUNLOCK(inp);
2903 }
2904 
2905 #ifdef INVARIANT_SUPPORT
2906 void
2907 inp_lock_assert(struct inpcb *inp)
2908 {
2909 
2910 	INP_WLOCK_ASSERT(inp);
2911 }
2912 
2913 void
2914 inp_unlock_assert(struct inpcb *inp)
2915 {
2916 
2917 	INP_UNLOCK_ASSERT(inp);
2918 }
2919 #endif
2920 
2921 void
2922 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2923 {
2924 	struct inpcb *inp;
2925 
2926 	INP_INFO_WLOCK(&V_tcbinfo);
2927 	CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2928 		INP_WLOCK(inp);
2929 		func(inp, arg);
2930 		INP_WUNLOCK(inp);
2931 	}
2932 	INP_INFO_WUNLOCK(&V_tcbinfo);
2933 }
2934 
2935 struct socket *
2936 inp_inpcbtosocket(struct inpcb *inp)
2937 {
2938 
2939 	INP_WLOCK_ASSERT(inp);
2940 	return (inp->inp_socket);
2941 }
2942 
2943 struct tcpcb *
2944 inp_inpcbtotcpcb(struct inpcb *inp)
2945 {
2946 
2947 	INP_WLOCK_ASSERT(inp);
2948 	return ((struct tcpcb *)inp->inp_ppcb);
2949 }
2950 
2951 int
2952 inp_ip_tos_get(const struct inpcb *inp)
2953 {
2954 
2955 	return (inp->inp_ip_tos);
2956 }
2957 
2958 void
2959 inp_ip_tos_set(struct inpcb *inp, int val)
2960 {
2961 
2962 	inp->inp_ip_tos = val;
2963 }
2964 
2965 void
2966 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2967     uint32_t *faddr, uint16_t *fp)
2968 {
2969 
2970 	INP_LOCK_ASSERT(inp);
2971 	*laddr = inp->inp_laddr.s_addr;
2972 	*faddr = inp->inp_faddr.s_addr;
2973 	*lp = inp->inp_lport;
2974 	*fp = inp->inp_fport;
2975 }
2976 
2977 struct inpcb *
2978 so_sotoinpcb(struct socket *so)
2979 {
2980 
2981 	return (sotoinpcb(so));
2982 }
2983 
2984 struct tcpcb *
2985 so_sototcpcb(struct socket *so)
2986 {
2987 
2988 	return (sototcpcb(so));
2989 }
2990 
2991 /*
2992  * Create an external-format (``xinpcb'') structure using the information in
2993  * the kernel-format in_pcb structure pointed to by inp.  This is done to
2994  * reduce the spew of irrelevant information over this interface, to isolate
2995  * user code from changes in the kernel structure, and potentially to provide
2996  * information-hiding if we decide that some of this information should be
2997  * hidden from users.
2998  */
2999 void
3000 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
3001 {
3002 
3003 	bzero(xi, sizeof(*xi));
3004 	xi->xi_len = sizeof(struct xinpcb);
3005 	if (inp->inp_socket)
3006 		sotoxsocket(inp->inp_socket, &xi->xi_socket);
3007 	bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
3008 	xi->inp_gencnt = inp->inp_gencnt;
3009 	xi->inp_ppcb = (uintptr_t)inp->inp_ppcb;
3010 	xi->inp_flow = inp->inp_flow;
3011 	xi->inp_flowid = inp->inp_flowid;
3012 	xi->inp_flowtype = inp->inp_flowtype;
3013 	xi->inp_flags = inp->inp_flags;
3014 	xi->inp_flags2 = inp->inp_flags2;
3015 	xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket;
3016 	xi->in6p_cksum = inp->in6p_cksum;
3017 	xi->in6p_hops = inp->in6p_hops;
3018 	xi->inp_ip_tos = inp->inp_ip_tos;
3019 	xi->inp_vflag = inp->inp_vflag;
3020 	xi->inp_ip_ttl = inp->inp_ip_ttl;
3021 	xi->inp_ip_p = inp->inp_ip_p;
3022 	xi->inp_ip_minttl = inp->inp_ip_minttl;
3023 }
3024 
3025 #ifdef DDB
3026 static void
3027 db_print_indent(int indent)
3028 {
3029 	int i;
3030 
3031 	for (i = 0; i < indent; i++)
3032 		db_printf(" ");
3033 }
3034 
3035 static void
3036 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
3037 {
3038 	char faddr_str[48], laddr_str[48];
3039 
3040 	db_print_indent(indent);
3041 	db_printf("%s at %p\n", name, inc);
3042 
3043 	indent += 2;
3044 
3045 #ifdef INET6
3046 	if (inc->inc_flags & INC_ISIPV6) {
3047 		/* IPv6. */
3048 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
3049 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
3050 	} else
3051 #endif
3052 	{
3053 		/* IPv4. */
3054 		inet_ntoa_r(inc->inc_laddr, laddr_str);
3055 		inet_ntoa_r(inc->inc_faddr, faddr_str);
3056 	}
3057 	db_print_indent(indent);
3058 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
3059 	    ntohs(inc->inc_lport));
3060 	db_print_indent(indent);
3061 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
3062 	    ntohs(inc->inc_fport));
3063 }
3064 
3065 static void
3066 db_print_inpflags(int inp_flags)
3067 {
3068 	int comma;
3069 
3070 	comma = 0;
3071 	if (inp_flags & INP_RECVOPTS) {
3072 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
3073 		comma = 1;
3074 	}
3075 	if (inp_flags & INP_RECVRETOPTS) {
3076 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
3077 		comma = 1;
3078 	}
3079 	if (inp_flags & INP_RECVDSTADDR) {
3080 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
3081 		comma = 1;
3082 	}
3083 	if (inp_flags & INP_ORIGDSTADDR) {
3084 		db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
3085 		comma = 1;
3086 	}
3087 	if (inp_flags & INP_HDRINCL) {
3088 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
3089 		comma = 1;
3090 	}
3091 	if (inp_flags & INP_HIGHPORT) {
3092 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
3093 		comma = 1;
3094 	}
3095 	if (inp_flags & INP_LOWPORT) {
3096 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
3097 		comma = 1;
3098 	}
3099 	if (inp_flags & INP_ANONPORT) {
3100 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
3101 		comma = 1;
3102 	}
3103 	if (inp_flags & INP_RECVIF) {
3104 		db_printf("%sINP_RECVIF", comma ? ", " : "");
3105 		comma = 1;
3106 	}
3107 	if (inp_flags & INP_MTUDISC) {
3108 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
3109 		comma = 1;
3110 	}
3111 	if (inp_flags & INP_RECVTTL) {
3112 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
3113 		comma = 1;
3114 	}
3115 	if (inp_flags & INP_DONTFRAG) {
3116 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
3117 		comma = 1;
3118 	}
3119 	if (inp_flags & INP_RECVTOS) {
3120 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
3121 		comma = 1;
3122 	}
3123 	if (inp_flags & IN6P_IPV6_V6ONLY) {
3124 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
3125 		comma = 1;
3126 	}
3127 	if (inp_flags & IN6P_PKTINFO) {
3128 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
3129 		comma = 1;
3130 	}
3131 	if (inp_flags & IN6P_HOPLIMIT) {
3132 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
3133 		comma = 1;
3134 	}
3135 	if (inp_flags & IN6P_HOPOPTS) {
3136 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
3137 		comma = 1;
3138 	}
3139 	if (inp_flags & IN6P_DSTOPTS) {
3140 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
3141 		comma = 1;
3142 	}
3143 	if (inp_flags & IN6P_RTHDR) {
3144 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
3145 		comma = 1;
3146 	}
3147 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
3148 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
3149 		comma = 1;
3150 	}
3151 	if (inp_flags & IN6P_TCLASS) {
3152 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
3153 		comma = 1;
3154 	}
3155 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
3156 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
3157 		comma = 1;
3158 	}
3159 	if (inp_flags & INP_TIMEWAIT) {
3160 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
3161 		comma  = 1;
3162 	}
3163 	if (inp_flags & INP_ONESBCAST) {
3164 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
3165 		comma  = 1;
3166 	}
3167 	if (inp_flags & INP_DROPPED) {
3168 		db_printf("%sINP_DROPPED", comma ? ", " : "");
3169 		comma  = 1;
3170 	}
3171 	if (inp_flags & INP_SOCKREF) {
3172 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
3173 		comma  = 1;
3174 	}
3175 	if (inp_flags & IN6P_RFC2292) {
3176 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
3177 		comma = 1;
3178 	}
3179 	if (inp_flags & IN6P_MTU) {
3180 		db_printf("IN6P_MTU%s", comma ? ", " : "");
3181 		comma = 1;
3182 	}
3183 }
3184 
3185 static void
3186 db_print_inpvflag(u_char inp_vflag)
3187 {
3188 	int comma;
3189 
3190 	comma = 0;
3191 	if (inp_vflag & INP_IPV4) {
3192 		db_printf("%sINP_IPV4", comma ? ", " : "");
3193 		comma  = 1;
3194 	}
3195 	if (inp_vflag & INP_IPV6) {
3196 		db_printf("%sINP_IPV6", comma ? ", " : "");
3197 		comma  = 1;
3198 	}
3199 	if (inp_vflag & INP_IPV6PROTO) {
3200 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
3201 		comma  = 1;
3202 	}
3203 }
3204 
3205 static void
3206 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
3207 {
3208 
3209 	db_print_indent(indent);
3210 	db_printf("%s at %p\n", name, inp);
3211 
3212 	indent += 2;
3213 
3214 	db_print_indent(indent);
3215 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
3216 
3217 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
3218 
3219 	db_print_indent(indent);
3220 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
3221 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
3222 
3223 	db_print_indent(indent);
3224 	db_printf("inp_label: %p   inp_flags: 0x%x (",
3225 	   inp->inp_label, inp->inp_flags);
3226 	db_print_inpflags(inp->inp_flags);
3227 	db_printf(")\n");
3228 
3229 	db_print_indent(indent);
3230 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
3231 	    inp->inp_vflag);
3232 	db_print_inpvflag(inp->inp_vflag);
3233 	db_printf(")\n");
3234 
3235 	db_print_indent(indent);
3236 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
3237 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
3238 
3239 	db_print_indent(indent);
3240 #ifdef INET6
3241 	if (inp->inp_vflag & INP_IPV6) {
3242 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
3243 		    "in6p_moptions: %p\n", inp->in6p_options,
3244 		    inp->in6p_outputopts, inp->in6p_moptions);
3245 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
3246 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
3247 		    inp->in6p_hops);
3248 	} else
3249 #endif
3250 	{
3251 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
3252 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
3253 		    inp->inp_options, inp->inp_moptions);
3254 	}
3255 
3256 	db_print_indent(indent);
3257 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
3258 	    (uintmax_t)inp->inp_gencnt);
3259 }
3260 
3261 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
3262 {
3263 	struct inpcb *inp;
3264 
3265 	if (!have_addr) {
3266 		db_printf("usage: show inpcb <addr>\n");
3267 		return;
3268 	}
3269 	inp = (struct inpcb *)addr;
3270 
3271 	db_print_inpcb(inp, "inpcb", 0);
3272 }
3273 #endif /* DDB */
3274 
3275 #ifdef RATELIMIT
3276 /*
3277  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
3278  * if any.
3279  */
3280 int
3281 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
3282 {
3283 	union if_snd_tag_modify_params params = {
3284 		.rate_limit.max_rate = max_pacing_rate,
3285 		.rate_limit.flags = M_NOWAIT,
3286 	};
3287 	struct m_snd_tag *mst;
3288 	int error;
3289 
3290 	mst = inp->inp_snd_tag;
3291 	if (mst == NULL)
3292 		return (EINVAL);
3293 
3294 	if (mst->sw->snd_tag_modify == NULL) {
3295 		error = EOPNOTSUPP;
3296 	} else {
3297 		error = mst->sw->snd_tag_modify(mst, &params);
3298 	}
3299 	return (error);
3300 }
3301 
3302 /*
3303  * Query existing TX rate limit based on the existing
3304  * "inp->inp_snd_tag", if any.
3305  */
3306 int
3307 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
3308 {
3309 	union if_snd_tag_query_params params = { };
3310 	struct m_snd_tag *mst;
3311 	int error;
3312 
3313 	mst = inp->inp_snd_tag;
3314 	if (mst == NULL)
3315 		return (EINVAL);
3316 
3317 	if (mst->sw->snd_tag_query == NULL) {
3318 		error = EOPNOTSUPP;
3319 	} else {
3320 		error = mst->sw->snd_tag_query(mst, &params);
3321 		if (error == 0 && p_max_pacing_rate != NULL)
3322 			*p_max_pacing_rate = params.rate_limit.max_rate;
3323 	}
3324 	return (error);
3325 }
3326 
3327 /*
3328  * Query existing TX queue level based on the existing
3329  * "inp->inp_snd_tag", if any.
3330  */
3331 int
3332 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
3333 {
3334 	union if_snd_tag_query_params params = { };
3335 	struct m_snd_tag *mst;
3336 	int error;
3337 
3338 	mst = inp->inp_snd_tag;
3339 	if (mst == NULL)
3340 		return (EINVAL);
3341 
3342 	if (mst->sw->snd_tag_query == NULL)
3343 		return (EOPNOTSUPP);
3344 
3345 	error = mst->sw->snd_tag_query(mst, &params);
3346 	if (error == 0 && p_txqueue_level != NULL)
3347 		*p_txqueue_level = params.rate_limit.queue_level;
3348 	return (error);
3349 }
3350 
3351 /*
3352  * Allocate a new TX rate limit send tag from the network interface
3353  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
3354  */
3355 int
3356 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
3357     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st)
3358 
3359 {
3360 	union if_snd_tag_alloc_params params = {
3361 		.rate_limit.hdr.type = (max_pacing_rate == -1U) ?
3362 		    IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
3363 		.rate_limit.hdr.flowid = flowid,
3364 		.rate_limit.hdr.flowtype = flowtype,
3365 		.rate_limit.hdr.numa_domain = inp->inp_numa_domain,
3366 		.rate_limit.max_rate = max_pacing_rate,
3367 		.rate_limit.flags = M_NOWAIT,
3368 	};
3369 	int error;
3370 
3371 	INP_WLOCK_ASSERT(inp);
3372 
3373 	/*
3374 	 * If there is already a send tag, or the INP is being torn
3375 	 * down, allocating a new send tag is not allowed. Else send
3376 	 * tags may leak.
3377 	 */
3378 	if (*st != NULL || (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) != 0)
3379 		return (EINVAL);
3380 
3381 	error = m_snd_tag_alloc(ifp, &params, st);
3382 #ifdef INET
3383 	if (error == 0) {
3384 		counter_u64_add(rate_limit_set_ok, 1);
3385 		counter_u64_add(rate_limit_active, 1);
3386 	} else if (error != EOPNOTSUPP)
3387 		  counter_u64_add(rate_limit_alloc_fail, 1);
3388 #endif
3389 	return (error);
3390 }
3391 
3392 void
3393 in_pcbdetach_tag(struct m_snd_tag *mst)
3394 {
3395 
3396 	m_snd_tag_rele(mst);
3397 #ifdef INET
3398 	counter_u64_add(rate_limit_active, -1);
3399 #endif
3400 }
3401 
3402 /*
3403  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
3404  * if any:
3405  */
3406 void
3407 in_pcbdetach_txrtlmt(struct inpcb *inp)
3408 {
3409 	struct m_snd_tag *mst;
3410 
3411 	INP_WLOCK_ASSERT(inp);
3412 
3413 	mst = inp->inp_snd_tag;
3414 	inp->inp_snd_tag = NULL;
3415 
3416 	if (mst == NULL)
3417 		return;
3418 
3419 	m_snd_tag_rele(mst);
3420 #ifdef INET
3421 	counter_u64_add(rate_limit_active, -1);
3422 #endif
3423 }
3424 
3425 int
3426 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate)
3427 {
3428 	int error;
3429 
3430 	/*
3431 	 * If the existing send tag is for the wrong interface due to
3432 	 * a route change, first drop the existing tag.  Set the
3433 	 * CHANGED flag so that we will keep trying to allocate a new
3434 	 * tag if we fail to allocate one this time.
3435 	 */
3436 	if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) {
3437 		in_pcbdetach_txrtlmt(inp);
3438 		inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3439 	}
3440 
3441 	/*
3442 	 * NOTE: When attaching to a network interface a reference is
3443 	 * made to ensure the network interface doesn't go away until
3444 	 * all ratelimit connections are gone. The network interface
3445 	 * pointers compared below represent valid network interfaces,
3446 	 * except when comparing towards NULL.
3447 	 */
3448 	if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3449 		error = 0;
3450 	} else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3451 		if (inp->inp_snd_tag != NULL)
3452 			in_pcbdetach_txrtlmt(inp);
3453 		error = 0;
3454 	} else if (inp->inp_snd_tag == NULL) {
3455 		/*
3456 		 * In order to utilize packet pacing with RSS, we need
3457 		 * to wait until there is a valid RSS hash before we
3458 		 * can proceed:
3459 		 */
3460 		if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3461 			error = EAGAIN;
3462 		} else {
3463 			error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3464 			    mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag);
3465 		}
3466 	} else {
3467 		error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3468 	}
3469 	if (error == 0 || error == EOPNOTSUPP)
3470 		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3471 
3472 	return (error);
3473 }
3474 
3475 /*
3476  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
3477  * is set in the fast path and will attach/detach/modify the TX rate
3478  * limit send tag based on the socket's so_max_pacing_rate value.
3479  */
3480 void
3481 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
3482 {
3483 	struct socket *socket;
3484 	uint32_t max_pacing_rate;
3485 	bool did_upgrade;
3486 	int error;
3487 
3488 	if (inp == NULL)
3489 		return;
3490 
3491 	socket = inp->inp_socket;
3492 	if (socket == NULL)
3493 		return;
3494 
3495 	if (!INP_WLOCKED(inp)) {
3496 		/*
3497 		 * NOTE: If the write locking fails, we need to bail
3498 		 * out and use the non-ratelimited ring for the
3499 		 * transmit until there is a new chance to get the
3500 		 * write lock.
3501 		 */
3502 		if (!INP_TRY_UPGRADE(inp))
3503 			return;
3504 		did_upgrade = 1;
3505 	} else {
3506 		did_upgrade = 0;
3507 	}
3508 
3509 	/*
3510 	 * NOTE: The so_max_pacing_rate value is read unlocked,
3511 	 * because atomic updates are not required since the variable
3512 	 * is checked at every mbuf we send. It is assumed that the
3513 	 * variable read itself will be atomic.
3514 	 */
3515 	max_pacing_rate = socket->so_max_pacing_rate;
3516 
3517 	error = in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate);
3518 
3519 	if (did_upgrade)
3520 		INP_DOWNGRADE(inp);
3521 }
3522 
3523 /*
3524  * Track route changes for TX rate limiting.
3525  */
3526 void
3527 in_pcboutput_eagain(struct inpcb *inp)
3528 {
3529 	bool did_upgrade;
3530 
3531 	if (inp == NULL)
3532 		return;
3533 
3534 	if (inp->inp_snd_tag == NULL)
3535 		return;
3536 
3537 	if (!INP_WLOCKED(inp)) {
3538 		/*
3539 		 * NOTE: If the write locking fails, we need to bail
3540 		 * out and use the non-ratelimited ring for the
3541 		 * transmit until there is a new chance to get the
3542 		 * write lock.
3543 		 */
3544 		if (!INP_TRY_UPGRADE(inp))
3545 			return;
3546 		did_upgrade = 1;
3547 	} else {
3548 		did_upgrade = 0;
3549 	}
3550 
3551 	/* detach rate limiting */
3552 	in_pcbdetach_txrtlmt(inp);
3553 
3554 	/* make sure new mbuf send tag allocation is made */
3555 	inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3556 
3557 	if (did_upgrade)
3558 		INP_DOWNGRADE(inp);
3559 }
3560 
3561 #ifdef INET
3562 static void
3563 rl_init(void *st)
3564 {
3565 	rate_limit_new = counter_u64_alloc(M_WAITOK);
3566 	rate_limit_chg = counter_u64_alloc(M_WAITOK);
3567 	rate_limit_active = counter_u64_alloc(M_WAITOK);
3568 	rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK);
3569 	rate_limit_set_ok = counter_u64_alloc(M_WAITOK);
3570 }
3571 
3572 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL);
3573 #endif
3574 #endif /* RATELIMIT */
3575