1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993, 1995 3 * The Regents of the University of California. 4 * Copyright (c) 2007-2009 Robert N. M. Watson 5 * Copyright (c) 2010-2011 Juniper Networks, Inc. 6 * All rights reserved. 7 * 8 * Portions of this software were developed by Robert N. M. Watson under 9 * contract to Juniper Networks, Inc. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 4. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_ddb.h" 42 #include "opt_ipsec.h" 43 #include "opt_inet.h" 44 #include "opt_inet6.h" 45 #include "opt_pcbgroup.h" 46 #include "opt_rss.h" 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/lock.h> 51 #include <sys/malloc.h> 52 #include <sys/mbuf.h> 53 #include <sys/callout.h> 54 #include <sys/domain.h> 55 #include <sys/protosw.h> 56 #include <sys/rmlock.h> 57 #include <sys/socket.h> 58 #include <sys/socketvar.h> 59 #include <sys/priv.h> 60 #include <sys/proc.h> 61 #include <sys/refcount.h> 62 #include <sys/jail.h> 63 #include <sys/kernel.h> 64 #include <sys/sysctl.h> 65 66 #ifdef DDB 67 #include <ddb/ddb.h> 68 #endif 69 70 #include <vm/uma.h> 71 72 #include <net/if.h> 73 #include <net/if_var.h> 74 #include <net/if_types.h> 75 #include <net/route.h> 76 #include <net/rss_config.h> 77 #include <net/vnet.h> 78 79 #if defined(INET) || defined(INET6) 80 #include <netinet/in.h> 81 #include <netinet/in_pcb.h> 82 #include <netinet/ip_var.h> 83 #include <netinet/tcp_var.h> 84 #include <netinet/udp.h> 85 #include <netinet/udp_var.h> 86 #endif 87 #ifdef INET 88 #include <netinet/in_var.h> 89 #endif 90 #ifdef INET6 91 #include <netinet/ip6.h> 92 #include <netinet6/in6_pcb.h> 93 #include <netinet6/in6_var.h> 94 #include <netinet6/ip6_var.h> 95 #endif /* INET6 */ 96 97 98 #ifdef IPSEC 99 #include <netipsec/ipsec.h> 100 #include <netipsec/key.h> 101 #endif /* IPSEC */ 102 103 #include <security/mac/mac_framework.h> 104 105 static struct callout ipport_tick_callout; 106 107 /* 108 * These configure the range of local port addresses assigned to 109 * "unspecified" outgoing connections/packets/whatever. 110 */ 111 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 112 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 113 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 114 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 115 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 116 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 117 118 /* 119 * Reserved ports accessible only to root. There are significant 120 * security considerations that must be accounted for when changing these, 121 * but the security benefits can be great. Please be careful. 122 */ 123 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 124 VNET_DEFINE(int, ipport_reservedlow); 125 126 /* Variables dealing with random ephemeral port allocation. */ 127 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 128 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 129 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 130 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 131 VNET_DEFINE(int, ipport_tcpallocs); 132 static VNET_DEFINE(int, ipport_tcplastcount); 133 134 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 135 136 static void in_pcbremlists(struct inpcb *inp); 137 #ifdef INET 138 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 139 struct in_addr faddr, u_int fport_arg, 140 struct in_addr laddr, u_int lport_arg, 141 int lookupflags, struct ifnet *ifp); 142 143 #define RANGECHK(var, min, max) \ 144 if ((var) < (min)) { (var) = (min); } \ 145 else if ((var) > (max)) { (var) = (max); } 146 147 static int 148 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 149 { 150 int error; 151 152 error = sysctl_handle_int(oidp, arg1, arg2, req); 153 if (error == 0) { 154 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 155 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 156 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 157 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 158 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 159 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 160 } 161 return (error); 162 } 163 164 #undef RANGECHK 165 166 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, 167 "IP Ports"); 168 169 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 170 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 171 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", ""); 172 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 173 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 174 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", ""); 175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 176 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 177 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", ""); 178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 179 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 180 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", ""); 181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 182 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 183 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", ""); 184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 185 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 186 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", ""); 187 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 188 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 189 &VNET_NAME(ipport_reservedhigh), 0, ""); 190 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 191 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 192 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 193 CTLFLAG_VNET | CTLFLAG_RW, 194 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 195 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 196 CTLFLAG_VNET | CTLFLAG_RW, 197 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 198 "allocations before switching to a sequental one"); 199 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 200 CTLFLAG_VNET | CTLFLAG_RW, 201 &VNET_NAME(ipport_randomtime), 0, 202 "Minimum time to keep sequental port " 203 "allocation before switching to a random one"); 204 #endif /* INET */ 205 206 /* 207 * in_pcb.c: manage the Protocol Control Blocks. 208 * 209 * NOTE: It is assumed that most of these functions will be called with 210 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 211 * functions often modify hash chains or addresses in pcbs. 212 */ 213 214 /* 215 * Initialize an inpcbinfo -- we should be able to reduce the number of 216 * arguments in time. 217 */ 218 void 219 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 220 struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, 221 char *inpcbzone_name, uma_init inpcbzone_init, uma_fini inpcbzone_fini, 222 uint32_t inpcbzone_flags, u_int hashfields) 223 { 224 225 INP_INFO_LOCK_INIT(pcbinfo, name); 226 INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ 227 INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist"); 228 #ifdef VIMAGE 229 pcbinfo->ipi_vnet = curvnet; 230 #endif 231 pcbinfo->ipi_listhead = listhead; 232 LIST_INIT(pcbinfo->ipi_listhead); 233 pcbinfo->ipi_count = 0; 234 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 235 &pcbinfo->ipi_hashmask); 236 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 237 &pcbinfo->ipi_porthashmask); 238 #ifdef PCBGROUP 239 in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); 240 #endif 241 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 242 NULL, NULL, inpcbzone_init, inpcbzone_fini, UMA_ALIGN_PTR, 243 inpcbzone_flags); 244 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 245 uma_zone_set_warning(pcbinfo->ipi_zone, 246 "kern.ipc.maxsockets limit reached"); 247 } 248 249 /* 250 * Destroy an inpcbinfo. 251 */ 252 void 253 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 254 { 255 256 KASSERT(pcbinfo->ipi_count == 0, 257 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 258 259 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 260 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 261 pcbinfo->ipi_porthashmask); 262 #ifdef PCBGROUP 263 in_pcbgroup_destroy(pcbinfo); 264 #endif 265 uma_zdestroy(pcbinfo->ipi_zone); 266 INP_LIST_LOCK_DESTROY(pcbinfo); 267 INP_HASH_LOCK_DESTROY(pcbinfo); 268 INP_INFO_LOCK_DESTROY(pcbinfo); 269 } 270 271 /* 272 * Allocate a PCB and associate it with the socket. 273 * On success return with the PCB locked. 274 */ 275 int 276 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 277 { 278 struct inpcb *inp; 279 int error; 280 281 #ifdef INVARIANTS 282 if (pcbinfo == &V_tcbinfo) { 283 INP_INFO_RLOCK_ASSERT(pcbinfo); 284 } else { 285 INP_INFO_WLOCK_ASSERT(pcbinfo); 286 } 287 #endif 288 289 error = 0; 290 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 291 if (inp == NULL) 292 return (ENOBUFS); 293 bzero(inp, inp_zero_size); 294 inp->inp_pcbinfo = pcbinfo; 295 inp->inp_socket = so; 296 inp->inp_cred = crhold(so->so_cred); 297 inp->inp_inc.inc_fibnum = so->so_fibnum; 298 #ifdef MAC 299 error = mac_inpcb_init(inp, M_NOWAIT); 300 if (error != 0) 301 goto out; 302 mac_inpcb_create(so, inp); 303 #endif 304 #ifdef IPSEC 305 error = ipsec_init_policy(so, &inp->inp_sp); 306 if (error != 0) { 307 #ifdef MAC 308 mac_inpcb_destroy(inp); 309 #endif 310 goto out; 311 } 312 #endif /*IPSEC*/ 313 #ifdef INET6 314 if (INP_SOCKAF(so) == AF_INET6) { 315 inp->inp_vflag |= INP_IPV6PROTO; 316 if (V_ip6_v6only) 317 inp->inp_flags |= IN6P_IPV6_V6ONLY; 318 } 319 #endif 320 INP_WLOCK(inp); 321 INP_LIST_WLOCK(pcbinfo); 322 LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 323 pcbinfo->ipi_count++; 324 so->so_pcb = (caddr_t)inp; 325 #ifdef INET6 326 if (V_ip6_auto_flowlabel) 327 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 328 #endif 329 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 330 refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ 331 INP_LIST_WUNLOCK(pcbinfo); 332 #if defined(IPSEC) || defined(MAC) 333 out: 334 if (error != 0) { 335 crfree(inp->inp_cred); 336 uma_zfree(pcbinfo->ipi_zone, inp); 337 } 338 #endif 339 return (error); 340 } 341 342 #ifdef INET 343 int 344 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 345 { 346 int anonport, error; 347 348 INP_WLOCK_ASSERT(inp); 349 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 350 351 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 352 return (EINVAL); 353 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 354 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 355 &inp->inp_lport, cred); 356 if (error) 357 return (error); 358 if (in_pcbinshash(inp) != 0) { 359 inp->inp_laddr.s_addr = INADDR_ANY; 360 inp->inp_lport = 0; 361 return (EAGAIN); 362 } 363 if (anonport) 364 inp->inp_flags |= INP_ANONPORT; 365 return (0); 366 } 367 #endif 368 369 /* 370 * Select a local port (number) to use. 371 */ 372 #if defined(INET) || defined(INET6) 373 int 374 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 375 struct ucred *cred, int lookupflags) 376 { 377 struct inpcbinfo *pcbinfo; 378 struct inpcb *tmpinp; 379 unsigned short *lastport; 380 int count, dorandom, error; 381 u_short aux, first, last, lport; 382 #ifdef INET 383 struct in_addr laddr; 384 #endif 385 386 pcbinfo = inp->inp_pcbinfo; 387 388 /* 389 * Because no actual state changes occur here, a global write lock on 390 * the pcbinfo isn't required. 391 */ 392 INP_LOCK_ASSERT(inp); 393 INP_HASH_LOCK_ASSERT(pcbinfo); 394 395 if (inp->inp_flags & INP_HIGHPORT) { 396 first = V_ipport_hifirstauto; /* sysctl */ 397 last = V_ipport_hilastauto; 398 lastport = &pcbinfo->ipi_lasthi; 399 } else if (inp->inp_flags & INP_LOWPORT) { 400 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0); 401 if (error) 402 return (error); 403 first = V_ipport_lowfirstauto; /* 1023 */ 404 last = V_ipport_lowlastauto; /* 600 */ 405 lastport = &pcbinfo->ipi_lastlow; 406 } else { 407 first = V_ipport_firstauto; /* sysctl */ 408 last = V_ipport_lastauto; 409 lastport = &pcbinfo->ipi_lastport; 410 } 411 /* 412 * For UDP(-Lite), use random port allocation as long as the user 413 * allows it. For TCP (and as of yet unknown) connections, 414 * use random port allocation only if the user allows it AND 415 * ipport_tick() allows it. 416 */ 417 if (V_ipport_randomized && 418 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 419 pcbinfo == &V_ulitecbinfo)) 420 dorandom = 1; 421 else 422 dorandom = 0; 423 /* 424 * It makes no sense to do random port allocation if 425 * we have the only port available. 426 */ 427 if (first == last) 428 dorandom = 0; 429 /* Make sure to not include UDP(-Lite) packets in the count. */ 430 if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) 431 V_ipport_tcpallocs++; 432 /* 433 * Instead of having two loops further down counting up or down 434 * make sure that first is always <= last and go with only one 435 * code path implementing all logic. 436 */ 437 if (first > last) { 438 aux = first; 439 first = last; 440 last = aux; 441 } 442 443 #ifdef INET 444 /* Make the compiler happy. */ 445 laddr.s_addr = 0; 446 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 447 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p", 448 __func__, inp)); 449 laddr = *laddrp; 450 } 451 #endif 452 tmpinp = NULL; /* Make compiler happy. */ 453 lport = *lportp; 454 455 if (dorandom) 456 *lastport = first + (arc4random() % (last - first)); 457 458 count = last - first; 459 460 do { 461 if (count-- < 0) /* completely used? */ 462 return (EADDRNOTAVAIL); 463 ++*lastport; 464 if (*lastport < first || *lastport > last) 465 *lastport = first; 466 lport = htons(*lastport); 467 468 #ifdef INET6 469 if ((inp->inp_vflag & INP_IPV6) != 0) 470 tmpinp = in6_pcblookup_local(pcbinfo, 471 &inp->in6p_laddr, lport, lookupflags, cred); 472 #endif 473 #if defined(INET) && defined(INET6) 474 else 475 #endif 476 #ifdef INET 477 tmpinp = in_pcblookup_local(pcbinfo, laddr, 478 lport, lookupflags, cred); 479 #endif 480 } while (tmpinp != NULL); 481 482 #ifdef INET 483 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) 484 laddrp->s_addr = laddr.s_addr; 485 #endif 486 *lportp = lport; 487 488 return (0); 489 } 490 491 /* 492 * Return cached socket options. 493 */ 494 short 495 inp_so_options(const struct inpcb *inp) 496 { 497 short so_options; 498 499 so_options = 0; 500 501 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 502 so_options |= SO_REUSEPORT; 503 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 504 so_options |= SO_REUSEADDR; 505 return (so_options); 506 } 507 #endif /* INET || INET6 */ 508 509 /* 510 * Check if a new BINDMULTI socket is allowed to be created. 511 * 512 * ni points to the new inp. 513 * oi points to the exisitng inp. 514 * 515 * This checks whether the existing inp also has BINDMULTI and 516 * whether the credentials match. 517 */ 518 int 519 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 520 { 521 /* Check permissions match */ 522 if ((ni->inp_flags2 & INP_BINDMULTI) && 523 (ni->inp_cred->cr_uid != 524 oi->inp_cred->cr_uid)) 525 return (0); 526 527 /* Check the existing inp has BINDMULTI set */ 528 if ((ni->inp_flags2 & INP_BINDMULTI) && 529 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 530 return (0); 531 532 /* 533 * We're okay - either INP_BINDMULTI isn't set on ni, or 534 * it is and it matches the checks. 535 */ 536 return (1); 537 } 538 539 #ifdef INET 540 /* 541 * Set up a bind operation on a PCB, performing port allocation 542 * as required, but do not actually modify the PCB. Callers can 543 * either complete the bind by setting inp_laddr/inp_lport and 544 * calling in_pcbinshash(), or they can just use the resulting 545 * port and address to authorise the sending of a once-off packet. 546 * 547 * On error, the values of *laddrp and *lportp are not changed. 548 */ 549 int 550 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 551 u_short *lportp, struct ucred *cred) 552 { 553 struct socket *so = inp->inp_socket; 554 struct sockaddr_in *sin; 555 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 556 struct in_addr laddr; 557 u_short lport = 0; 558 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 559 int error; 560 561 /* 562 * No state changes, so read locks are sufficient here. 563 */ 564 INP_LOCK_ASSERT(inp); 565 INP_HASH_LOCK_ASSERT(pcbinfo); 566 567 if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 568 return (EADDRNOTAVAIL); 569 laddr.s_addr = *laddrp; 570 if (nam != NULL && laddr.s_addr != INADDR_ANY) 571 return (EINVAL); 572 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) 573 lookupflags = INPLOOKUP_WILDCARD; 574 if (nam == NULL) { 575 if ((error = prison_local_ip4(cred, &laddr)) != 0) 576 return (error); 577 } else { 578 sin = (struct sockaddr_in *)nam; 579 if (nam->sa_len != sizeof (*sin)) 580 return (EINVAL); 581 #ifdef notdef 582 /* 583 * We should check the family, but old programs 584 * incorrectly fail to initialize it. 585 */ 586 if (sin->sin_family != AF_INET) 587 return (EAFNOSUPPORT); 588 #endif 589 error = prison_local_ip4(cred, &sin->sin_addr); 590 if (error) 591 return (error); 592 if (sin->sin_port != *lportp) { 593 /* Don't allow the port to change. */ 594 if (*lportp != 0) 595 return (EINVAL); 596 lport = sin->sin_port; 597 } 598 /* NB: lport is left as 0 if the port isn't being changed. */ 599 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 600 /* 601 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 602 * allow complete duplication of binding if 603 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 604 * and a multicast address is bound on both 605 * new and duplicated sockets. 606 */ 607 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 608 reuseport = SO_REUSEADDR|SO_REUSEPORT; 609 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 610 sin->sin_port = 0; /* yech... */ 611 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 612 /* 613 * Is the address a local IP address? 614 * If INP_BINDANY is set, then the socket may be bound 615 * to any endpoint address, local or not. 616 */ 617 if ((inp->inp_flags & INP_BINDANY) == 0 && 618 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 619 return (EADDRNOTAVAIL); 620 } 621 laddr = sin->sin_addr; 622 if (lport) { 623 struct inpcb *t; 624 struct tcptw *tw; 625 626 /* GROSS */ 627 if (ntohs(lport) <= V_ipport_reservedhigh && 628 ntohs(lport) >= V_ipport_reservedlow && 629 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 630 0)) 631 return (EACCES); 632 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 633 priv_check_cred(inp->inp_cred, 634 PRIV_NETINET_REUSEPORT, 0) != 0) { 635 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 636 lport, INPLOOKUP_WILDCARD, cred); 637 /* 638 * XXX 639 * This entire block sorely needs a rewrite. 640 */ 641 if (t && 642 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 643 ((t->inp_flags & INP_TIMEWAIT) == 0) && 644 (so->so_type != SOCK_STREAM || 645 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 646 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 647 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 648 (t->inp_flags2 & INP_REUSEPORT) == 0) && 649 (inp->inp_cred->cr_uid != 650 t->inp_cred->cr_uid)) 651 return (EADDRINUSE); 652 653 /* 654 * If the socket is a BINDMULTI socket, then 655 * the credentials need to match and the 656 * original socket also has to have been bound 657 * with BINDMULTI. 658 */ 659 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 660 return (EADDRINUSE); 661 } 662 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 663 lport, lookupflags, cred); 664 if (t && (t->inp_flags & INP_TIMEWAIT)) { 665 /* 666 * XXXRW: If an incpb has had its timewait 667 * state recycled, we treat the address as 668 * being in use (for now). This is better 669 * than a panic, but not desirable. 670 */ 671 tw = intotw(t); 672 if (tw == NULL || 673 (reuseport & tw->tw_so_options) == 0) 674 return (EADDRINUSE); 675 } else if (t && 676 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 677 (reuseport & inp_so_options(t)) == 0) { 678 #ifdef INET6 679 if (ntohl(sin->sin_addr.s_addr) != 680 INADDR_ANY || 681 ntohl(t->inp_laddr.s_addr) != 682 INADDR_ANY || 683 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 684 (t->inp_vflag & INP_IPV6PROTO) == 0) 685 #endif 686 return (EADDRINUSE); 687 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 688 return (EADDRINUSE); 689 } 690 } 691 } 692 if (*lportp != 0) 693 lport = *lportp; 694 if (lport == 0) { 695 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 696 if (error != 0) 697 return (error); 698 699 } 700 *laddrp = laddr.s_addr; 701 *lportp = lport; 702 return (0); 703 } 704 705 /* 706 * Connect from a socket to a specified address. 707 * Both address and port must be specified in argument sin. 708 * If don't have a local address for this socket yet, 709 * then pick one. 710 */ 711 int 712 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, 713 struct ucred *cred, struct mbuf *m) 714 { 715 u_short lport, fport; 716 in_addr_t laddr, faddr; 717 int anonport, error; 718 719 INP_WLOCK_ASSERT(inp); 720 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 721 722 lport = inp->inp_lport; 723 laddr = inp->inp_laddr.s_addr; 724 anonport = (lport == 0); 725 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 726 NULL, cred); 727 if (error) 728 return (error); 729 730 /* Do the initial binding of the local address if required. */ 731 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 732 inp->inp_lport = lport; 733 inp->inp_laddr.s_addr = laddr; 734 if (in_pcbinshash(inp) != 0) { 735 inp->inp_laddr.s_addr = INADDR_ANY; 736 inp->inp_lport = 0; 737 return (EAGAIN); 738 } 739 } 740 741 /* Commit the remaining changes. */ 742 inp->inp_lport = lport; 743 inp->inp_laddr.s_addr = laddr; 744 inp->inp_faddr.s_addr = faddr; 745 inp->inp_fport = fport; 746 in_pcbrehash_mbuf(inp, m); 747 748 if (anonport) 749 inp->inp_flags |= INP_ANONPORT; 750 return (0); 751 } 752 753 int 754 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 755 { 756 757 return (in_pcbconnect_mbuf(inp, nam, cred, NULL)); 758 } 759 760 /* 761 * Do proper source address selection on an unbound socket in case 762 * of connect. Take jails into account as well. 763 */ 764 int 765 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 766 struct ucred *cred) 767 { 768 struct ifaddr *ifa; 769 struct sockaddr *sa; 770 struct sockaddr_in *sin; 771 struct route sro; 772 int error; 773 774 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 775 776 /* 777 * Bypass source address selection and use the primary jail IP 778 * if requested. 779 */ 780 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 781 return (0); 782 783 error = 0; 784 bzero(&sro, sizeof(sro)); 785 786 sin = (struct sockaddr_in *)&sro.ro_dst; 787 sin->sin_family = AF_INET; 788 sin->sin_len = sizeof(struct sockaddr_in); 789 sin->sin_addr.s_addr = faddr->s_addr; 790 791 /* 792 * If route is known our src addr is taken from the i/f, 793 * else punt. 794 * 795 * Find out route to destination. 796 */ 797 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 798 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); 799 800 /* 801 * If we found a route, use the address corresponding to 802 * the outgoing interface. 803 * 804 * Otherwise assume faddr is reachable on a directly connected 805 * network and try to find a corresponding interface to take 806 * the source address from. 807 */ 808 if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { 809 struct in_ifaddr *ia; 810 struct ifnet *ifp; 811 812 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 813 inp->inp_socket->so_fibnum)); 814 if (ia == NULL) 815 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 816 inp->inp_socket->so_fibnum)); 817 if (ia == NULL) { 818 error = ENETUNREACH; 819 goto done; 820 } 821 822 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 823 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 824 ifa_free(&ia->ia_ifa); 825 goto done; 826 } 827 828 ifp = ia->ia_ifp; 829 ifa_free(&ia->ia_ifa); 830 ia = NULL; 831 IF_ADDR_RLOCK(ifp); 832 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 833 834 sa = ifa->ifa_addr; 835 if (sa->sa_family != AF_INET) 836 continue; 837 sin = (struct sockaddr_in *)sa; 838 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 839 ia = (struct in_ifaddr *)ifa; 840 break; 841 } 842 } 843 if (ia != NULL) { 844 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 845 IF_ADDR_RUNLOCK(ifp); 846 goto done; 847 } 848 IF_ADDR_RUNLOCK(ifp); 849 850 /* 3. As a last resort return the 'default' jail address. */ 851 error = prison_get_ip4(cred, laddr); 852 goto done; 853 } 854 855 /* 856 * If the outgoing interface on the route found is not 857 * a loopback interface, use the address from that interface. 858 * In case of jails do those three steps: 859 * 1. check if the interface address belongs to the jail. If so use it. 860 * 2. check if we have any address on the outgoing interface 861 * belonging to this jail. If so use it. 862 * 3. as a last resort return the 'default' jail address. 863 */ 864 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { 865 struct in_ifaddr *ia; 866 struct ifnet *ifp; 867 868 /* If not jailed, use the default returned. */ 869 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 870 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 871 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 872 goto done; 873 } 874 875 /* Jailed. */ 876 /* 1. Check if the iface address belongs to the jail. */ 877 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; 878 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 879 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 880 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 881 goto done; 882 } 883 884 /* 885 * 2. Check if we have any address on the outgoing interface 886 * belonging to this jail. 887 */ 888 ia = NULL; 889 ifp = sro.ro_rt->rt_ifp; 890 IF_ADDR_RLOCK(ifp); 891 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 892 sa = ifa->ifa_addr; 893 if (sa->sa_family != AF_INET) 894 continue; 895 sin = (struct sockaddr_in *)sa; 896 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 897 ia = (struct in_ifaddr *)ifa; 898 break; 899 } 900 } 901 if (ia != NULL) { 902 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 903 IF_ADDR_RUNLOCK(ifp); 904 goto done; 905 } 906 IF_ADDR_RUNLOCK(ifp); 907 908 /* 3. As a last resort return the 'default' jail address. */ 909 error = prison_get_ip4(cred, laddr); 910 goto done; 911 } 912 913 /* 914 * The outgoing interface is marked with 'loopback net', so a route 915 * to ourselves is here. 916 * Try to find the interface of the destination address and then 917 * take the address from there. That interface is not necessarily 918 * a loopback interface. 919 * In case of jails, check that it is an address of the jail 920 * and if we cannot find, fall back to the 'default' jail address. 921 */ 922 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 923 struct sockaddr_in sain; 924 struct in_ifaddr *ia; 925 926 bzero(&sain, sizeof(struct sockaddr_in)); 927 sain.sin_family = AF_INET; 928 sain.sin_len = sizeof(struct sockaddr_in); 929 sain.sin_addr.s_addr = faddr->s_addr; 930 931 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain), 932 inp->inp_socket->so_fibnum)); 933 if (ia == NULL) 934 ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0, 935 inp->inp_socket->so_fibnum)); 936 if (ia == NULL) 937 ia = ifatoia(ifa_ifwithaddr(sintosa(&sain))); 938 939 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 940 if (ia == NULL) { 941 error = ENETUNREACH; 942 goto done; 943 } 944 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 945 ifa_free(&ia->ia_ifa); 946 goto done; 947 } 948 949 /* Jailed. */ 950 if (ia != NULL) { 951 struct ifnet *ifp; 952 953 ifp = ia->ia_ifp; 954 ifa_free(&ia->ia_ifa); 955 ia = NULL; 956 IF_ADDR_RLOCK(ifp); 957 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 958 959 sa = ifa->ifa_addr; 960 if (sa->sa_family != AF_INET) 961 continue; 962 sin = (struct sockaddr_in *)sa; 963 if (prison_check_ip4(cred, 964 &sin->sin_addr) == 0) { 965 ia = (struct in_ifaddr *)ifa; 966 break; 967 } 968 } 969 if (ia != NULL) { 970 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 971 IF_ADDR_RUNLOCK(ifp); 972 goto done; 973 } 974 IF_ADDR_RUNLOCK(ifp); 975 } 976 977 /* 3. As a last resort return the 'default' jail address. */ 978 error = prison_get_ip4(cred, laddr); 979 goto done; 980 } 981 982 done: 983 if (sro.ro_rt != NULL) 984 RTFREE(sro.ro_rt); 985 return (error); 986 } 987 988 /* 989 * Set up for a connect from a socket to the specified address. 990 * On entry, *laddrp and *lportp should contain the current local 991 * address and port for the PCB; these are updated to the values 992 * that should be placed in inp_laddr and inp_lport to complete 993 * the connect. 994 * 995 * On success, *faddrp and *fportp will be set to the remote address 996 * and port. These are not updated in the error case. 997 * 998 * If the operation fails because the connection already exists, 999 * *oinpp will be set to the PCB of that connection so that the 1000 * caller can decide to override it. In all other cases, *oinpp 1001 * is set to NULL. 1002 */ 1003 int 1004 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1005 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1006 struct inpcb **oinpp, struct ucred *cred) 1007 { 1008 struct rm_priotracker in_ifa_tracker; 1009 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1010 struct in_ifaddr *ia; 1011 struct inpcb *oinp; 1012 struct in_addr laddr, faddr; 1013 u_short lport, fport; 1014 int error; 1015 1016 /* 1017 * Because a global state change doesn't actually occur here, a read 1018 * lock is sufficient. 1019 */ 1020 INP_LOCK_ASSERT(inp); 1021 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1022 1023 if (oinpp != NULL) 1024 *oinpp = NULL; 1025 if (nam->sa_len != sizeof (*sin)) 1026 return (EINVAL); 1027 if (sin->sin_family != AF_INET) 1028 return (EAFNOSUPPORT); 1029 if (sin->sin_port == 0) 1030 return (EADDRNOTAVAIL); 1031 laddr.s_addr = *laddrp; 1032 lport = *lportp; 1033 faddr = sin->sin_addr; 1034 fport = sin->sin_port; 1035 1036 if (!TAILQ_EMPTY(&V_in_ifaddrhead)) { 1037 /* 1038 * If the destination address is INADDR_ANY, 1039 * use the primary local address. 1040 * If the supplied address is INADDR_BROADCAST, 1041 * and the primary interface supports broadcast, 1042 * choose the broadcast address for that interface. 1043 */ 1044 if (faddr.s_addr == INADDR_ANY) { 1045 IN_IFADDR_RLOCK(&in_ifa_tracker); 1046 faddr = 1047 IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1048 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1049 if (cred != NULL && 1050 (error = prison_get_ip4(cred, &faddr)) != 0) 1051 return (error); 1052 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1053 IN_IFADDR_RLOCK(&in_ifa_tracker); 1054 if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1055 IFF_BROADCAST) 1056 faddr = satosin(&TAILQ_FIRST( 1057 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1058 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1059 } 1060 } 1061 if (laddr.s_addr == INADDR_ANY) { 1062 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1063 /* 1064 * If the destination address is multicast and an outgoing 1065 * interface has been set as a multicast option, prefer the 1066 * address of that interface as our source address. 1067 */ 1068 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1069 inp->inp_moptions != NULL) { 1070 struct ip_moptions *imo; 1071 struct ifnet *ifp; 1072 1073 imo = inp->inp_moptions; 1074 if (imo->imo_multicast_ifp != NULL) { 1075 ifp = imo->imo_multicast_ifp; 1076 IN_IFADDR_RLOCK(&in_ifa_tracker); 1077 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1078 if ((ia->ia_ifp == ifp) && 1079 (cred == NULL || 1080 prison_check_ip4(cred, 1081 &ia->ia_addr.sin_addr) == 0)) 1082 break; 1083 } 1084 if (ia == NULL) 1085 error = EADDRNOTAVAIL; 1086 else { 1087 laddr = ia->ia_addr.sin_addr; 1088 error = 0; 1089 } 1090 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1091 } 1092 } 1093 if (error) 1094 return (error); 1095 } 1096 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport, 1097 laddr, lport, 0, NULL); 1098 if (oinp != NULL) { 1099 if (oinpp != NULL) 1100 *oinpp = oinp; 1101 return (EADDRINUSE); 1102 } 1103 if (lport == 0) { 1104 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 1105 cred); 1106 if (error) 1107 return (error); 1108 } 1109 *laddrp = laddr.s_addr; 1110 *lportp = lport; 1111 *faddrp = faddr.s_addr; 1112 *fportp = fport; 1113 return (0); 1114 } 1115 1116 void 1117 in_pcbdisconnect(struct inpcb *inp) 1118 { 1119 1120 INP_WLOCK_ASSERT(inp); 1121 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1122 1123 inp->inp_faddr.s_addr = INADDR_ANY; 1124 inp->inp_fport = 0; 1125 in_pcbrehash(inp); 1126 } 1127 #endif /* INET */ 1128 1129 /* 1130 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1131 * For most protocols, this will be invoked immediately prior to calling 1132 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1133 * socket, in which case in_pcbfree() is deferred. 1134 */ 1135 void 1136 in_pcbdetach(struct inpcb *inp) 1137 { 1138 1139 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1140 1141 inp->inp_socket->so_pcb = NULL; 1142 inp->inp_socket = NULL; 1143 } 1144 1145 /* 1146 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1147 * stability of an inpcb pointer despite the inpcb lock being released. This 1148 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 1149 * but where the inpcb lock may already held, or when acquiring a reference 1150 * via a pcbgroup. 1151 * 1152 * in_pcbref() should be used only to provide brief memory stability, and 1153 * must always be followed by a call to INP_WLOCK() and in_pcbrele() to 1154 * garbage collect the inpcb if it has been in_pcbfree()'d from another 1155 * context. Until in_pcbrele() has returned that the inpcb is still valid, 1156 * lock and rele are the *only* safe operations that may be performed on the 1157 * inpcb. 1158 * 1159 * While the inpcb will not be freed, releasing the inpcb lock means that the 1160 * connection's state may change, so the caller should be careful to 1161 * revalidate any cached state on reacquiring the lock. Drop the reference 1162 * using in_pcbrele(). 1163 */ 1164 void 1165 in_pcbref(struct inpcb *inp) 1166 { 1167 1168 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1169 1170 refcount_acquire(&inp->inp_refcount); 1171 } 1172 1173 /* 1174 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 1175 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 1176 * return a flag indicating whether or not the inpcb remains valid. If it is 1177 * valid, we return with the inpcb lock held. 1178 * 1179 * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a 1180 * reference on an inpcb. Historically more work was done here (actually, in 1181 * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the 1182 * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely 1183 * about memory stability (and continued use of the write lock). 1184 */ 1185 int 1186 in_pcbrele_rlocked(struct inpcb *inp) 1187 { 1188 struct inpcbinfo *pcbinfo; 1189 1190 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1191 1192 INP_RLOCK_ASSERT(inp); 1193 1194 if (refcount_release(&inp->inp_refcount) == 0) { 1195 /* 1196 * If the inpcb has been freed, let the caller know, even if 1197 * this isn't the last reference. 1198 */ 1199 if (inp->inp_flags2 & INP_FREED) { 1200 INP_RUNLOCK(inp); 1201 return (1); 1202 } 1203 return (0); 1204 } 1205 1206 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1207 1208 INP_RUNLOCK(inp); 1209 pcbinfo = inp->inp_pcbinfo; 1210 uma_zfree(pcbinfo->ipi_zone, inp); 1211 return (1); 1212 } 1213 1214 int 1215 in_pcbrele_wlocked(struct inpcb *inp) 1216 { 1217 struct inpcbinfo *pcbinfo; 1218 1219 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1220 1221 INP_WLOCK_ASSERT(inp); 1222 1223 if (refcount_release(&inp->inp_refcount) == 0) { 1224 /* 1225 * If the inpcb has been freed, let the caller know, even if 1226 * this isn't the last reference. 1227 */ 1228 if (inp->inp_flags2 & INP_FREED) { 1229 INP_WUNLOCK(inp); 1230 return (1); 1231 } 1232 return (0); 1233 } 1234 1235 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1236 1237 INP_WUNLOCK(inp); 1238 pcbinfo = inp->inp_pcbinfo; 1239 uma_zfree(pcbinfo->ipi_zone, inp); 1240 return (1); 1241 } 1242 1243 /* 1244 * Temporary wrapper. 1245 */ 1246 int 1247 in_pcbrele(struct inpcb *inp) 1248 { 1249 1250 return (in_pcbrele_wlocked(inp)); 1251 } 1252 1253 /* 1254 * Unconditionally schedule an inpcb to be freed by decrementing its 1255 * reference count, which should occur only after the inpcb has been detached 1256 * from its socket. If another thread holds a temporary reference (acquired 1257 * using in_pcbref()) then the free is deferred until that reference is 1258 * released using in_pcbrele(), but the inpcb is still unlocked. Almost all 1259 * work, including removal from global lists, is done in this context, where 1260 * the pcbinfo lock is held. 1261 */ 1262 void 1263 in_pcbfree(struct inpcb *inp) 1264 { 1265 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1266 1267 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1268 1269 #ifdef INVARIANTS 1270 if (pcbinfo == &V_tcbinfo) { 1271 INP_INFO_LOCK_ASSERT(pcbinfo); 1272 } else { 1273 INP_INFO_WLOCK_ASSERT(pcbinfo); 1274 } 1275 #endif 1276 INP_WLOCK_ASSERT(inp); 1277 1278 /* XXXRW: Do as much as possible here. */ 1279 #ifdef IPSEC 1280 if (inp->inp_sp != NULL) 1281 ipsec_delete_pcbpolicy(inp); 1282 #endif 1283 INP_LIST_WLOCK(pcbinfo); 1284 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1285 in_pcbremlists(inp); 1286 INP_LIST_WUNLOCK(pcbinfo); 1287 #ifdef INET6 1288 if (inp->inp_vflag & INP_IPV6PROTO) { 1289 ip6_freepcbopts(inp->in6p_outputopts); 1290 if (inp->in6p_moptions != NULL) 1291 ip6_freemoptions(inp->in6p_moptions); 1292 } 1293 #endif 1294 if (inp->inp_options) 1295 (void)m_free(inp->inp_options); 1296 #ifdef INET 1297 if (inp->inp_moptions != NULL) 1298 inp_freemoptions(inp->inp_moptions); 1299 #endif 1300 inp->inp_vflag = 0; 1301 inp->inp_flags2 |= INP_FREED; 1302 crfree(inp->inp_cred); 1303 #ifdef MAC 1304 mac_inpcb_destroy(inp); 1305 #endif 1306 if (!in_pcbrele_wlocked(inp)) 1307 INP_WUNLOCK(inp); 1308 } 1309 1310 /* 1311 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1312 * port reservation, and preventing it from being returned by inpcb lookups. 1313 * 1314 * It is used by TCP to mark an inpcb as unused and avoid future packet 1315 * delivery or event notification when a socket remains open but TCP has 1316 * closed. This might occur as a result of a shutdown()-initiated TCP close 1317 * or a RST on the wire, and allows the port binding to be reused while still 1318 * maintaining the invariant that so_pcb always points to a valid inpcb until 1319 * in_pcbdetach(). 1320 * 1321 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1322 * in_pcbnotifyall() and in_pcbpurgeif0()? 1323 */ 1324 void 1325 in_pcbdrop(struct inpcb *inp) 1326 { 1327 1328 INP_WLOCK_ASSERT(inp); 1329 1330 /* 1331 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1332 * the hash lock...? 1333 */ 1334 inp->inp_flags |= INP_DROPPED; 1335 if (inp->inp_flags & INP_INHASHLIST) { 1336 struct inpcbport *phd = inp->inp_phd; 1337 1338 INP_HASH_WLOCK(inp->inp_pcbinfo); 1339 LIST_REMOVE(inp, inp_hash); 1340 LIST_REMOVE(inp, inp_portlist); 1341 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 1342 LIST_REMOVE(phd, phd_hash); 1343 free(phd, M_PCB); 1344 } 1345 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1346 inp->inp_flags &= ~INP_INHASHLIST; 1347 #ifdef PCBGROUP 1348 in_pcbgroup_remove(inp); 1349 #endif 1350 } 1351 } 1352 1353 #ifdef INET 1354 /* 1355 * Common routines to return the socket addresses associated with inpcbs. 1356 */ 1357 struct sockaddr * 1358 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1359 { 1360 struct sockaddr_in *sin; 1361 1362 sin = malloc(sizeof *sin, M_SONAME, 1363 M_WAITOK | M_ZERO); 1364 sin->sin_family = AF_INET; 1365 sin->sin_len = sizeof(*sin); 1366 sin->sin_addr = *addr_p; 1367 sin->sin_port = port; 1368 1369 return (struct sockaddr *)sin; 1370 } 1371 1372 int 1373 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1374 { 1375 struct inpcb *inp; 1376 struct in_addr addr; 1377 in_port_t port; 1378 1379 inp = sotoinpcb(so); 1380 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1381 1382 INP_RLOCK(inp); 1383 port = inp->inp_lport; 1384 addr = inp->inp_laddr; 1385 INP_RUNLOCK(inp); 1386 1387 *nam = in_sockaddr(port, &addr); 1388 return 0; 1389 } 1390 1391 int 1392 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1393 { 1394 struct inpcb *inp; 1395 struct in_addr addr; 1396 in_port_t port; 1397 1398 inp = sotoinpcb(so); 1399 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1400 1401 INP_RLOCK(inp); 1402 port = inp->inp_fport; 1403 addr = inp->inp_faddr; 1404 INP_RUNLOCK(inp); 1405 1406 *nam = in_sockaddr(port, &addr); 1407 return 0; 1408 } 1409 1410 void 1411 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1412 struct inpcb *(*notify)(struct inpcb *, int)) 1413 { 1414 struct inpcb *inp, *inp_temp; 1415 1416 INP_INFO_WLOCK(pcbinfo); 1417 LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1418 INP_WLOCK(inp); 1419 #ifdef INET6 1420 if ((inp->inp_vflag & INP_IPV4) == 0) { 1421 INP_WUNLOCK(inp); 1422 continue; 1423 } 1424 #endif 1425 if (inp->inp_faddr.s_addr != faddr.s_addr || 1426 inp->inp_socket == NULL) { 1427 INP_WUNLOCK(inp); 1428 continue; 1429 } 1430 if ((*notify)(inp, errno)) 1431 INP_WUNLOCK(inp); 1432 } 1433 INP_INFO_WUNLOCK(pcbinfo); 1434 } 1435 1436 void 1437 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1438 { 1439 struct inpcb *inp; 1440 struct ip_moptions *imo; 1441 int i, gap; 1442 1443 INP_INFO_WLOCK(pcbinfo); 1444 LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1445 INP_WLOCK(inp); 1446 imo = inp->inp_moptions; 1447 if ((inp->inp_vflag & INP_IPV4) && 1448 imo != NULL) { 1449 /* 1450 * Unselect the outgoing interface if it is being 1451 * detached. 1452 */ 1453 if (imo->imo_multicast_ifp == ifp) 1454 imo->imo_multicast_ifp = NULL; 1455 1456 /* 1457 * Drop multicast group membership if we joined 1458 * through the interface being detached. 1459 */ 1460 for (i = 0, gap = 0; i < imo->imo_num_memberships; 1461 i++) { 1462 if (imo->imo_membership[i]->inm_ifp == ifp) { 1463 in_delmulti(imo->imo_membership[i]); 1464 gap++; 1465 } else if (gap != 0) 1466 imo->imo_membership[i - gap] = 1467 imo->imo_membership[i]; 1468 } 1469 imo->imo_num_memberships -= gap; 1470 } 1471 INP_WUNLOCK(inp); 1472 } 1473 INP_INFO_WUNLOCK(pcbinfo); 1474 } 1475 1476 /* 1477 * Lookup a PCB based on the local address and port. Caller must hold the 1478 * hash lock. No inpcb locks or references are acquired. 1479 */ 1480 #define INP_LOOKUP_MAPPED_PCB_COST 3 1481 struct inpcb * 1482 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1483 u_short lport, int lookupflags, struct ucred *cred) 1484 { 1485 struct inpcb *inp; 1486 #ifdef INET6 1487 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1488 #else 1489 int matchwild = 3; 1490 #endif 1491 int wildcard; 1492 1493 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1494 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1495 1496 INP_HASH_LOCK_ASSERT(pcbinfo); 1497 1498 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1499 struct inpcbhead *head; 1500 /* 1501 * Look for an unconnected (wildcard foreign addr) PCB that 1502 * matches the local address and port we're looking for. 1503 */ 1504 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1505 0, pcbinfo->ipi_hashmask)]; 1506 LIST_FOREACH(inp, head, inp_hash) { 1507 #ifdef INET6 1508 /* XXX inp locking */ 1509 if ((inp->inp_vflag & INP_IPV4) == 0) 1510 continue; 1511 #endif 1512 if (inp->inp_faddr.s_addr == INADDR_ANY && 1513 inp->inp_laddr.s_addr == laddr.s_addr && 1514 inp->inp_lport == lport) { 1515 /* 1516 * Found? 1517 */ 1518 if (cred == NULL || 1519 prison_equal_ip4(cred->cr_prison, 1520 inp->inp_cred->cr_prison)) 1521 return (inp); 1522 } 1523 } 1524 /* 1525 * Not found. 1526 */ 1527 return (NULL); 1528 } else { 1529 struct inpcbporthead *porthash; 1530 struct inpcbport *phd; 1531 struct inpcb *match = NULL; 1532 /* 1533 * Best fit PCB lookup. 1534 * 1535 * First see if this local port is in use by looking on the 1536 * port hash list. 1537 */ 1538 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1539 pcbinfo->ipi_porthashmask)]; 1540 LIST_FOREACH(phd, porthash, phd_hash) { 1541 if (phd->phd_port == lport) 1542 break; 1543 } 1544 if (phd != NULL) { 1545 /* 1546 * Port is in use by one or more PCBs. Look for best 1547 * fit. 1548 */ 1549 LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1550 wildcard = 0; 1551 if (cred != NULL && 1552 !prison_equal_ip4(inp->inp_cred->cr_prison, 1553 cred->cr_prison)) 1554 continue; 1555 #ifdef INET6 1556 /* XXX inp locking */ 1557 if ((inp->inp_vflag & INP_IPV4) == 0) 1558 continue; 1559 /* 1560 * We never select the PCB that has 1561 * INP_IPV6 flag and is bound to :: if 1562 * we have another PCB which is bound 1563 * to 0.0.0.0. If a PCB has the 1564 * INP_IPV6 flag, then we set its cost 1565 * higher than IPv4 only PCBs. 1566 * 1567 * Note that the case only happens 1568 * when a socket is bound to ::, under 1569 * the condition that the use of the 1570 * mapped address is allowed. 1571 */ 1572 if ((inp->inp_vflag & INP_IPV6) != 0) 1573 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1574 #endif 1575 if (inp->inp_faddr.s_addr != INADDR_ANY) 1576 wildcard++; 1577 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1578 if (laddr.s_addr == INADDR_ANY) 1579 wildcard++; 1580 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1581 continue; 1582 } else { 1583 if (laddr.s_addr != INADDR_ANY) 1584 wildcard++; 1585 } 1586 if (wildcard < matchwild) { 1587 match = inp; 1588 matchwild = wildcard; 1589 if (matchwild == 0) 1590 break; 1591 } 1592 } 1593 } 1594 return (match); 1595 } 1596 } 1597 #undef INP_LOOKUP_MAPPED_PCB_COST 1598 1599 #ifdef PCBGROUP 1600 /* 1601 * Lookup PCB in hash list, using pcbgroup tables. 1602 */ 1603 static struct inpcb * 1604 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, 1605 struct in_addr faddr, u_int fport_arg, struct in_addr laddr, 1606 u_int lport_arg, int lookupflags, struct ifnet *ifp) 1607 { 1608 struct inpcbhead *head; 1609 struct inpcb *inp, *tmpinp; 1610 u_short fport = fport_arg, lport = lport_arg; 1611 1612 /* 1613 * First look for an exact match. 1614 */ 1615 tmpinp = NULL; 1616 INP_GROUP_LOCK(pcbgroup); 1617 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1618 pcbgroup->ipg_hashmask)]; 1619 LIST_FOREACH(inp, head, inp_pcbgrouphash) { 1620 #ifdef INET6 1621 /* XXX inp locking */ 1622 if ((inp->inp_vflag & INP_IPV4) == 0) 1623 continue; 1624 #endif 1625 if (inp->inp_faddr.s_addr == faddr.s_addr && 1626 inp->inp_laddr.s_addr == laddr.s_addr && 1627 inp->inp_fport == fport && 1628 inp->inp_lport == lport) { 1629 /* 1630 * XXX We should be able to directly return 1631 * the inp here, without any checks. 1632 * Well unless both bound with SO_REUSEPORT? 1633 */ 1634 if (prison_flag(inp->inp_cred, PR_IP4)) 1635 goto found; 1636 if (tmpinp == NULL) 1637 tmpinp = inp; 1638 } 1639 } 1640 if (tmpinp != NULL) { 1641 inp = tmpinp; 1642 goto found; 1643 } 1644 1645 #ifdef RSS 1646 /* 1647 * For incoming connections, we may wish to do a wildcard 1648 * match for an RSS-local socket. 1649 */ 1650 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1651 struct inpcb *local_wild = NULL, *local_exact = NULL; 1652 #ifdef INET6 1653 struct inpcb *local_wild_mapped = NULL; 1654 #endif 1655 struct inpcb *jail_wild = NULL; 1656 struct inpcbhead *head; 1657 int injail; 1658 1659 /* 1660 * Order of socket selection - we always prefer jails. 1661 * 1. jailed, non-wild. 1662 * 2. jailed, wild. 1663 * 3. non-jailed, non-wild. 1664 * 4. non-jailed, wild. 1665 */ 1666 1667 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, 1668 lport, 0, pcbgroup->ipg_hashmask)]; 1669 LIST_FOREACH(inp, head, inp_pcbgrouphash) { 1670 #ifdef INET6 1671 /* XXX inp locking */ 1672 if ((inp->inp_vflag & INP_IPV4) == 0) 1673 continue; 1674 #endif 1675 if (inp->inp_faddr.s_addr != INADDR_ANY || 1676 inp->inp_lport != lport) 1677 continue; 1678 1679 injail = prison_flag(inp->inp_cred, PR_IP4); 1680 if (injail) { 1681 if (prison_check_ip4(inp->inp_cred, 1682 &laddr) != 0) 1683 continue; 1684 } else { 1685 if (local_exact != NULL) 1686 continue; 1687 } 1688 1689 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1690 if (injail) 1691 goto found; 1692 else 1693 local_exact = inp; 1694 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1695 #ifdef INET6 1696 /* XXX inp locking, NULL check */ 1697 if (inp->inp_vflag & INP_IPV6PROTO) 1698 local_wild_mapped = inp; 1699 else 1700 #endif 1701 if (injail) 1702 jail_wild = inp; 1703 else 1704 local_wild = inp; 1705 } 1706 } /* LIST_FOREACH */ 1707 1708 inp = jail_wild; 1709 if (inp == NULL) 1710 inp = local_exact; 1711 if (inp == NULL) 1712 inp = local_wild; 1713 #ifdef INET6 1714 if (inp == NULL) 1715 inp = local_wild_mapped; 1716 #endif 1717 if (inp != NULL) 1718 goto found; 1719 } 1720 #endif 1721 1722 /* 1723 * Then look for a wildcard match, if requested. 1724 */ 1725 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1726 struct inpcb *local_wild = NULL, *local_exact = NULL; 1727 #ifdef INET6 1728 struct inpcb *local_wild_mapped = NULL; 1729 #endif 1730 struct inpcb *jail_wild = NULL; 1731 struct inpcbhead *head; 1732 int injail; 1733 1734 /* 1735 * Order of socket selection - we always prefer jails. 1736 * 1. jailed, non-wild. 1737 * 2. jailed, wild. 1738 * 3. non-jailed, non-wild. 1739 * 4. non-jailed, wild. 1740 */ 1741 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 1742 0, pcbinfo->ipi_wildmask)]; 1743 LIST_FOREACH(inp, head, inp_pcbgroup_wild) { 1744 #ifdef INET6 1745 /* XXX inp locking */ 1746 if ((inp->inp_vflag & INP_IPV4) == 0) 1747 continue; 1748 #endif 1749 if (inp->inp_faddr.s_addr != INADDR_ANY || 1750 inp->inp_lport != lport) 1751 continue; 1752 1753 injail = prison_flag(inp->inp_cred, PR_IP4); 1754 if (injail) { 1755 if (prison_check_ip4(inp->inp_cred, 1756 &laddr) != 0) 1757 continue; 1758 } else { 1759 if (local_exact != NULL) 1760 continue; 1761 } 1762 1763 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1764 if (injail) 1765 goto found; 1766 else 1767 local_exact = inp; 1768 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1769 #ifdef INET6 1770 /* XXX inp locking, NULL check */ 1771 if (inp->inp_vflag & INP_IPV6PROTO) 1772 local_wild_mapped = inp; 1773 else 1774 #endif 1775 if (injail) 1776 jail_wild = inp; 1777 else 1778 local_wild = inp; 1779 } 1780 } /* LIST_FOREACH */ 1781 inp = jail_wild; 1782 if (inp == NULL) 1783 inp = local_exact; 1784 if (inp == NULL) 1785 inp = local_wild; 1786 #ifdef INET6 1787 if (inp == NULL) 1788 inp = local_wild_mapped; 1789 #endif 1790 if (inp != NULL) 1791 goto found; 1792 } /* if (lookupflags & INPLOOKUP_WILDCARD) */ 1793 INP_GROUP_UNLOCK(pcbgroup); 1794 return (NULL); 1795 1796 found: 1797 in_pcbref(inp); 1798 INP_GROUP_UNLOCK(pcbgroup); 1799 if (lookupflags & INPLOOKUP_WLOCKPCB) { 1800 INP_WLOCK(inp); 1801 if (in_pcbrele_wlocked(inp)) 1802 return (NULL); 1803 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 1804 INP_RLOCK(inp); 1805 if (in_pcbrele_rlocked(inp)) 1806 return (NULL); 1807 } else 1808 panic("%s: locking bug", __func__); 1809 return (inp); 1810 } 1811 #endif /* PCBGROUP */ 1812 1813 /* 1814 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 1815 * that the caller has locked the hash list, and will not perform any further 1816 * locking or reference operations on either the hash list or the connection. 1817 */ 1818 static struct inpcb * 1819 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1820 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 1821 struct ifnet *ifp) 1822 { 1823 struct inpcbhead *head; 1824 struct inpcb *inp, *tmpinp; 1825 u_short fport = fport_arg, lport = lport_arg; 1826 1827 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1828 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1829 1830 INP_HASH_LOCK_ASSERT(pcbinfo); 1831 1832 /* 1833 * First look for an exact match. 1834 */ 1835 tmpinp = NULL; 1836 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1837 pcbinfo->ipi_hashmask)]; 1838 LIST_FOREACH(inp, head, inp_hash) { 1839 #ifdef INET6 1840 /* XXX inp locking */ 1841 if ((inp->inp_vflag & INP_IPV4) == 0) 1842 continue; 1843 #endif 1844 if (inp->inp_faddr.s_addr == faddr.s_addr && 1845 inp->inp_laddr.s_addr == laddr.s_addr && 1846 inp->inp_fport == fport && 1847 inp->inp_lport == lport) { 1848 /* 1849 * XXX We should be able to directly return 1850 * the inp here, without any checks. 1851 * Well unless both bound with SO_REUSEPORT? 1852 */ 1853 if (prison_flag(inp->inp_cred, PR_IP4)) 1854 return (inp); 1855 if (tmpinp == NULL) 1856 tmpinp = inp; 1857 } 1858 } 1859 if (tmpinp != NULL) 1860 return (tmpinp); 1861 1862 /* 1863 * Then look for a wildcard match, if requested. 1864 */ 1865 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1866 struct inpcb *local_wild = NULL, *local_exact = NULL; 1867 #ifdef INET6 1868 struct inpcb *local_wild_mapped = NULL; 1869 #endif 1870 struct inpcb *jail_wild = NULL; 1871 int injail; 1872 1873 /* 1874 * Order of socket selection - we always prefer jails. 1875 * 1. jailed, non-wild. 1876 * 2. jailed, wild. 1877 * 3. non-jailed, non-wild. 1878 * 4. non-jailed, wild. 1879 */ 1880 1881 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1882 0, pcbinfo->ipi_hashmask)]; 1883 LIST_FOREACH(inp, head, inp_hash) { 1884 #ifdef INET6 1885 /* XXX inp locking */ 1886 if ((inp->inp_vflag & INP_IPV4) == 0) 1887 continue; 1888 #endif 1889 if (inp->inp_faddr.s_addr != INADDR_ANY || 1890 inp->inp_lport != lport) 1891 continue; 1892 1893 injail = prison_flag(inp->inp_cred, PR_IP4); 1894 if (injail) { 1895 if (prison_check_ip4(inp->inp_cred, 1896 &laddr) != 0) 1897 continue; 1898 } else { 1899 if (local_exact != NULL) 1900 continue; 1901 } 1902 1903 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1904 if (injail) 1905 return (inp); 1906 else 1907 local_exact = inp; 1908 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1909 #ifdef INET6 1910 /* XXX inp locking, NULL check */ 1911 if (inp->inp_vflag & INP_IPV6PROTO) 1912 local_wild_mapped = inp; 1913 else 1914 #endif 1915 if (injail) 1916 jail_wild = inp; 1917 else 1918 local_wild = inp; 1919 } 1920 } /* LIST_FOREACH */ 1921 if (jail_wild != NULL) 1922 return (jail_wild); 1923 if (local_exact != NULL) 1924 return (local_exact); 1925 if (local_wild != NULL) 1926 return (local_wild); 1927 #ifdef INET6 1928 if (local_wild_mapped != NULL) 1929 return (local_wild_mapped); 1930 #endif 1931 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 1932 1933 return (NULL); 1934 } 1935 1936 /* 1937 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 1938 * hash list lock, and will return the inpcb locked (i.e., requires 1939 * INPLOOKUP_LOCKPCB). 1940 */ 1941 static struct inpcb * 1942 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1943 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 1944 struct ifnet *ifp) 1945 { 1946 struct inpcb *inp; 1947 1948 INP_HASH_RLOCK(pcbinfo); 1949 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 1950 (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp); 1951 if (inp != NULL) { 1952 in_pcbref(inp); 1953 INP_HASH_RUNLOCK(pcbinfo); 1954 if (lookupflags & INPLOOKUP_WLOCKPCB) { 1955 INP_WLOCK(inp); 1956 if (in_pcbrele_wlocked(inp)) 1957 return (NULL); 1958 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 1959 INP_RLOCK(inp); 1960 if (in_pcbrele_rlocked(inp)) 1961 return (NULL); 1962 } else 1963 panic("%s: locking bug", __func__); 1964 } else 1965 INP_HASH_RUNLOCK(pcbinfo); 1966 return (inp); 1967 } 1968 1969 /* 1970 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 1971 * from which a pre-calculated hash value may be extracted. 1972 * 1973 * Possibly more of this logic should be in in_pcbgroup.c. 1974 */ 1975 struct inpcb * 1976 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 1977 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 1978 { 1979 #if defined(PCBGROUP) && !defined(RSS) 1980 struct inpcbgroup *pcbgroup; 1981 #endif 1982 1983 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 1984 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1985 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 1986 ("%s: LOCKPCB not set", __func__)); 1987 1988 /* 1989 * When not using RSS, use connection groups in preference to the 1990 * reservation table when looking up 4-tuples. When using RSS, just 1991 * use the reservation table, due to the cost of the Toeplitz hash 1992 * in software. 1993 * 1994 * XXXRW: This policy belongs in the pcbgroup code, as in principle 1995 * we could be doing RSS with a non-Toeplitz hash that is affordable 1996 * in software. 1997 */ 1998 #if defined(PCBGROUP) && !defined(RSS) 1999 if (in_pcbgroup_enabled(pcbinfo)) { 2000 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2001 fport); 2002 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2003 laddr, lport, lookupflags, ifp)); 2004 } 2005 #endif 2006 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2007 lookupflags, ifp)); 2008 } 2009 2010 struct inpcb * 2011 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2012 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2013 struct ifnet *ifp, struct mbuf *m) 2014 { 2015 #ifdef PCBGROUP 2016 struct inpcbgroup *pcbgroup; 2017 #endif 2018 2019 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2020 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2021 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2022 ("%s: LOCKPCB not set", __func__)); 2023 2024 #ifdef PCBGROUP 2025 /* 2026 * If we can use a hardware-generated hash to look up the connection 2027 * group, use that connection group to find the inpcb. Otherwise 2028 * fall back on a software hash -- or the reservation table if we're 2029 * using RSS. 2030 * 2031 * XXXRW: As above, that policy belongs in the pcbgroup code. 2032 */ 2033 if (in_pcbgroup_enabled(pcbinfo) && 2034 !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { 2035 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), 2036 m->m_pkthdr.flowid); 2037 if (pcbgroup != NULL) 2038 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, 2039 fport, laddr, lport, lookupflags, ifp)); 2040 #ifndef RSS 2041 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2042 fport); 2043 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2044 laddr, lport, lookupflags, ifp)); 2045 #endif 2046 } 2047 #endif 2048 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2049 lookupflags, ifp)); 2050 } 2051 #endif /* INET */ 2052 2053 /* 2054 * Insert PCB onto various hash lists. 2055 */ 2056 static int 2057 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update) 2058 { 2059 struct inpcbhead *pcbhash; 2060 struct inpcbporthead *pcbporthash; 2061 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2062 struct inpcbport *phd; 2063 u_int32_t hashkey_faddr; 2064 2065 INP_WLOCK_ASSERT(inp); 2066 INP_HASH_WLOCK_ASSERT(pcbinfo); 2067 2068 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2069 ("in_pcbinshash: INP_INHASHLIST")); 2070 2071 #ifdef INET6 2072 if (inp->inp_vflag & INP_IPV6) 2073 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2074 else 2075 #endif 2076 hashkey_faddr = inp->inp_faddr.s_addr; 2077 2078 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2079 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2080 2081 pcbporthash = &pcbinfo->ipi_porthashbase[ 2082 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2083 2084 /* 2085 * Go through port list and look for a head for this lport. 2086 */ 2087 LIST_FOREACH(phd, pcbporthash, phd_hash) { 2088 if (phd->phd_port == inp->inp_lport) 2089 break; 2090 } 2091 /* 2092 * If none exists, malloc one and tack it on. 2093 */ 2094 if (phd == NULL) { 2095 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 2096 if (phd == NULL) { 2097 return (ENOBUFS); /* XXX */ 2098 } 2099 phd->phd_port = inp->inp_lport; 2100 LIST_INIT(&phd->phd_pcblist); 2101 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2102 } 2103 inp->inp_phd = phd; 2104 LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2105 LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2106 inp->inp_flags |= INP_INHASHLIST; 2107 #ifdef PCBGROUP 2108 if (do_pcbgroup_update) 2109 in_pcbgroup_update(inp); 2110 #endif 2111 return (0); 2112 } 2113 2114 /* 2115 * For now, there are two public interfaces to insert an inpcb into the hash 2116 * lists -- one that does update pcbgroups, and one that doesn't. The latter 2117 * is used only in the TCP syncache, where in_pcbinshash is called before the 2118 * full 4-tuple is set for the inpcb, and we don't want to install in the 2119 * pcbgroup until later. 2120 * 2121 * XXXRW: This seems like a misfeature. in_pcbinshash should always update 2122 * connection groups, and partially initialised inpcbs should not be exposed 2123 * to either reservation hash tables or pcbgroups. 2124 */ 2125 int 2126 in_pcbinshash(struct inpcb *inp) 2127 { 2128 2129 return (in_pcbinshash_internal(inp, 1)); 2130 } 2131 2132 int 2133 in_pcbinshash_nopcbgroup(struct inpcb *inp) 2134 { 2135 2136 return (in_pcbinshash_internal(inp, 0)); 2137 } 2138 2139 /* 2140 * Move PCB to the proper hash bucket when { faddr, fport } have been 2141 * changed. NOTE: This does not handle the case of the lport changing (the 2142 * hashed port list would have to be updated as well), so the lport must 2143 * not change after in_pcbinshash() has been called. 2144 */ 2145 void 2146 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) 2147 { 2148 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2149 struct inpcbhead *head; 2150 u_int32_t hashkey_faddr; 2151 2152 INP_WLOCK_ASSERT(inp); 2153 INP_HASH_WLOCK_ASSERT(pcbinfo); 2154 2155 KASSERT(inp->inp_flags & INP_INHASHLIST, 2156 ("in_pcbrehash: !INP_INHASHLIST")); 2157 2158 #ifdef INET6 2159 if (inp->inp_vflag & INP_IPV6) 2160 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2161 else 2162 #endif 2163 hashkey_faddr = inp->inp_faddr.s_addr; 2164 2165 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2166 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2167 2168 LIST_REMOVE(inp, inp_hash); 2169 LIST_INSERT_HEAD(head, inp, inp_hash); 2170 2171 #ifdef PCBGROUP 2172 if (m != NULL) 2173 in_pcbgroup_update_mbuf(inp, m); 2174 else 2175 in_pcbgroup_update(inp); 2176 #endif 2177 } 2178 2179 void 2180 in_pcbrehash(struct inpcb *inp) 2181 { 2182 2183 in_pcbrehash_mbuf(inp, NULL); 2184 } 2185 2186 /* 2187 * Remove PCB from various lists. 2188 */ 2189 static void 2190 in_pcbremlists(struct inpcb *inp) 2191 { 2192 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2193 2194 #ifdef INVARIANTS 2195 if (pcbinfo == &V_tcbinfo) { 2196 INP_INFO_RLOCK_ASSERT(pcbinfo); 2197 } else { 2198 INP_INFO_WLOCK_ASSERT(pcbinfo); 2199 } 2200 #endif 2201 2202 INP_WLOCK_ASSERT(inp); 2203 INP_LIST_WLOCK_ASSERT(pcbinfo); 2204 2205 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 2206 if (inp->inp_flags & INP_INHASHLIST) { 2207 struct inpcbport *phd = inp->inp_phd; 2208 2209 INP_HASH_WLOCK(pcbinfo); 2210 LIST_REMOVE(inp, inp_hash); 2211 LIST_REMOVE(inp, inp_portlist); 2212 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 2213 LIST_REMOVE(phd, phd_hash); 2214 free(phd, M_PCB); 2215 } 2216 INP_HASH_WUNLOCK(pcbinfo); 2217 inp->inp_flags &= ~INP_INHASHLIST; 2218 } 2219 LIST_REMOVE(inp, inp_list); 2220 pcbinfo->ipi_count--; 2221 #ifdef PCBGROUP 2222 in_pcbgroup_remove(inp); 2223 #endif 2224 } 2225 2226 /* 2227 * A set label operation has occurred at the socket layer, propagate the 2228 * label change into the in_pcb for the socket. 2229 */ 2230 void 2231 in_pcbsosetlabel(struct socket *so) 2232 { 2233 #ifdef MAC 2234 struct inpcb *inp; 2235 2236 inp = sotoinpcb(so); 2237 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2238 2239 INP_WLOCK(inp); 2240 SOCK_LOCK(so); 2241 mac_inpcb_sosetlabel(so, inp); 2242 SOCK_UNLOCK(so); 2243 INP_WUNLOCK(inp); 2244 #endif 2245 } 2246 2247 /* 2248 * ipport_tick runs once per second, determining if random port allocation 2249 * should be continued. If more than ipport_randomcps ports have been 2250 * allocated in the last second, then we return to sequential port 2251 * allocation. We return to random allocation only once we drop below 2252 * ipport_randomcps for at least ipport_randomtime seconds. 2253 */ 2254 static void 2255 ipport_tick(void *xtp) 2256 { 2257 VNET_ITERATOR_DECL(vnet_iter); 2258 2259 VNET_LIST_RLOCK_NOSLEEP(); 2260 VNET_FOREACH(vnet_iter) { 2261 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2262 if (V_ipport_tcpallocs <= 2263 V_ipport_tcplastcount + V_ipport_randomcps) { 2264 if (V_ipport_stoprandom > 0) 2265 V_ipport_stoprandom--; 2266 } else 2267 V_ipport_stoprandom = V_ipport_randomtime; 2268 V_ipport_tcplastcount = V_ipport_tcpallocs; 2269 CURVNET_RESTORE(); 2270 } 2271 VNET_LIST_RUNLOCK_NOSLEEP(); 2272 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2273 } 2274 2275 static void 2276 ip_fini(void *xtp) 2277 { 2278 2279 callout_stop(&ipport_tick_callout); 2280 } 2281 2282 /* 2283 * The ipport_callout should start running at about the time we attach the 2284 * inet or inet6 domains. 2285 */ 2286 static void 2287 ipport_tick_init(const void *unused __unused) 2288 { 2289 2290 /* Start ipport_tick. */ 2291 callout_init(&ipport_tick_callout, 1); 2292 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2293 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2294 SHUTDOWN_PRI_DEFAULT); 2295 } 2296 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2297 ipport_tick_init, NULL); 2298 2299 void 2300 inp_wlock(struct inpcb *inp) 2301 { 2302 2303 INP_WLOCK(inp); 2304 } 2305 2306 void 2307 inp_wunlock(struct inpcb *inp) 2308 { 2309 2310 INP_WUNLOCK(inp); 2311 } 2312 2313 void 2314 inp_rlock(struct inpcb *inp) 2315 { 2316 2317 INP_RLOCK(inp); 2318 } 2319 2320 void 2321 inp_runlock(struct inpcb *inp) 2322 { 2323 2324 INP_RUNLOCK(inp); 2325 } 2326 2327 #ifdef INVARIANTS 2328 void 2329 inp_lock_assert(struct inpcb *inp) 2330 { 2331 2332 INP_WLOCK_ASSERT(inp); 2333 } 2334 2335 void 2336 inp_unlock_assert(struct inpcb *inp) 2337 { 2338 2339 INP_UNLOCK_ASSERT(inp); 2340 } 2341 #endif 2342 2343 void 2344 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2345 { 2346 struct inpcb *inp; 2347 2348 INP_INFO_WLOCK(&V_tcbinfo); 2349 LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 2350 INP_WLOCK(inp); 2351 func(inp, arg); 2352 INP_WUNLOCK(inp); 2353 } 2354 INP_INFO_WUNLOCK(&V_tcbinfo); 2355 } 2356 2357 struct socket * 2358 inp_inpcbtosocket(struct inpcb *inp) 2359 { 2360 2361 INP_WLOCK_ASSERT(inp); 2362 return (inp->inp_socket); 2363 } 2364 2365 struct tcpcb * 2366 inp_inpcbtotcpcb(struct inpcb *inp) 2367 { 2368 2369 INP_WLOCK_ASSERT(inp); 2370 return ((struct tcpcb *)inp->inp_ppcb); 2371 } 2372 2373 int 2374 inp_ip_tos_get(const struct inpcb *inp) 2375 { 2376 2377 return (inp->inp_ip_tos); 2378 } 2379 2380 void 2381 inp_ip_tos_set(struct inpcb *inp, int val) 2382 { 2383 2384 inp->inp_ip_tos = val; 2385 } 2386 2387 void 2388 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2389 uint32_t *faddr, uint16_t *fp) 2390 { 2391 2392 INP_LOCK_ASSERT(inp); 2393 *laddr = inp->inp_laddr.s_addr; 2394 *faddr = inp->inp_faddr.s_addr; 2395 *lp = inp->inp_lport; 2396 *fp = inp->inp_fport; 2397 } 2398 2399 struct inpcb * 2400 so_sotoinpcb(struct socket *so) 2401 { 2402 2403 return (sotoinpcb(so)); 2404 } 2405 2406 struct tcpcb * 2407 so_sototcpcb(struct socket *so) 2408 { 2409 2410 return (sototcpcb(so)); 2411 } 2412 2413 #ifdef DDB 2414 static void 2415 db_print_indent(int indent) 2416 { 2417 int i; 2418 2419 for (i = 0; i < indent; i++) 2420 db_printf(" "); 2421 } 2422 2423 static void 2424 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2425 { 2426 char faddr_str[48], laddr_str[48]; 2427 2428 db_print_indent(indent); 2429 db_printf("%s at %p\n", name, inc); 2430 2431 indent += 2; 2432 2433 #ifdef INET6 2434 if (inc->inc_flags & INC_ISIPV6) { 2435 /* IPv6. */ 2436 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2437 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2438 } else 2439 #endif 2440 { 2441 /* IPv4. */ 2442 inet_ntoa_r(inc->inc_laddr, laddr_str); 2443 inet_ntoa_r(inc->inc_faddr, faddr_str); 2444 } 2445 db_print_indent(indent); 2446 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2447 ntohs(inc->inc_lport)); 2448 db_print_indent(indent); 2449 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2450 ntohs(inc->inc_fport)); 2451 } 2452 2453 static void 2454 db_print_inpflags(int inp_flags) 2455 { 2456 int comma; 2457 2458 comma = 0; 2459 if (inp_flags & INP_RECVOPTS) { 2460 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2461 comma = 1; 2462 } 2463 if (inp_flags & INP_RECVRETOPTS) { 2464 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2465 comma = 1; 2466 } 2467 if (inp_flags & INP_RECVDSTADDR) { 2468 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2469 comma = 1; 2470 } 2471 if (inp_flags & INP_HDRINCL) { 2472 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2473 comma = 1; 2474 } 2475 if (inp_flags & INP_HIGHPORT) { 2476 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2477 comma = 1; 2478 } 2479 if (inp_flags & INP_LOWPORT) { 2480 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2481 comma = 1; 2482 } 2483 if (inp_flags & INP_ANONPORT) { 2484 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2485 comma = 1; 2486 } 2487 if (inp_flags & INP_RECVIF) { 2488 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2489 comma = 1; 2490 } 2491 if (inp_flags & INP_MTUDISC) { 2492 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2493 comma = 1; 2494 } 2495 if (inp_flags & INP_RECVTTL) { 2496 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 2497 comma = 1; 2498 } 2499 if (inp_flags & INP_DONTFRAG) { 2500 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 2501 comma = 1; 2502 } 2503 if (inp_flags & INP_RECVTOS) { 2504 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 2505 comma = 1; 2506 } 2507 if (inp_flags & IN6P_IPV6_V6ONLY) { 2508 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 2509 comma = 1; 2510 } 2511 if (inp_flags & IN6P_PKTINFO) { 2512 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 2513 comma = 1; 2514 } 2515 if (inp_flags & IN6P_HOPLIMIT) { 2516 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 2517 comma = 1; 2518 } 2519 if (inp_flags & IN6P_HOPOPTS) { 2520 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 2521 comma = 1; 2522 } 2523 if (inp_flags & IN6P_DSTOPTS) { 2524 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 2525 comma = 1; 2526 } 2527 if (inp_flags & IN6P_RTHDR) { 2528 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 2529 comma = 1; 2530 } 2531 if (inp_flags & IN6P_RTHDRDSTOPTS) { 2532 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 2533 comma = 1; 2534 } 2535 if (inp_flags & IN6P_TCLASS) { 2536 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 2537 comma = 1; 2538 } 2539 if (inp_flags & IN6P_AUTOFLOWLABEL) { 2540 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 2541 comma = 1; 2542 } 2543 if (inp_flags & INP_TIMEWAIT) { 2544 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 2545 comma = 1; 2546 } 2547 if (inp_flags & INP_ONESBCAST) { 2548 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 2549 comma = 1; 2550 } 2551 if (inp_flags & INP_DROPPED) { 2552 db_printf("%sINP_DROPPED", comma ? ", " : ""); 2553 comma = 1; 2554 } 2555 if (inp_flags & INP_SOCKREF) { 2556 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 2557 comma = 1; 2558 } 2559 if (inp_flags & IN6P_RFC2292) { 2560 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 2561 comma = 1; 2562 } 2563 if (inp_flags & IN6P_MTU) { 2564 db_printf("IN6P_MTU%s", comma ? ", " : ""); 2565 comma = 1; 2566 } 2567 } 2568 2569 static void 2570 db_print_inpvflag(u_char inp_vflag) 2571 { 2572 int comma; 2573 2574 comma = 0; 2575 if (inp_vflag & INP_IPV4) { 2576 db_printf("%sINP_IPV4", comma ? ", " : ""); 2577 comma = 1; 2578 } 2579 if (inp_vflag & INP_IPV6) { 2580 db_printf("%sINP_IPV6", comma ? ", " : ""); 2581 comma = 1; 2582 } 2583 if (inp_vflag & INP_IPV6PROTO) { 2584 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 2585 comma = 1; 2586 } 2587 } 2588 2589 static void 2590 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 2591 { 2592 2593 db_print_indent(indent); 2594 db_printf("%s at %p\n", name, inp); 2595 2596 indent += 2; 2597 2598 db_print_indent(indent); 2599 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 2600 2601 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 2602 2603 db_print_indent(indent); 2604 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 2605 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 2606 2607 db_print_indent(indent); 2608 db_printf("inp_label: %p inp_flags: 0x%x (", 2609 inp->inp_label, inp->inp_flags); 2610 db_print_inpflags(inp->inp_flags); 2611 db_printf(")\n"); 2612 2613 db_print_indent(indent); 2614 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 2615 inp->inp_vflag); 2616 db_print_inpvflag(inp->inp_vflag); 2617 db_printf(")\n"); 2618 2619 db_print_indent(indent); 2620 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 2621 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 2622 2623 db_print_indent(indent); 2624 #ifdef INET6 2625 if (inp->inp_vflag & INP_IPV6) { 2626 db_printf("in6p_options: %p in6p_outputopts: %p " 2627 "in6p_moptions: %p\n", inp->in6p_options, 2628 inp->in6p_outputopts, inp->in6p_moptions); 2629 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 2630 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 2631 inp->in6p_hops); 2632 } else 2633 #endif 2634 { 2635 db_printf("inp_ip_tos: %d inp_ip_options: %p " 2636 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 2637 inp->inp_options, inp->inp_moptions); 2638 } 2639 2640 db_print_indent(indent); 2641 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 2642 (uintmax_t)inp->inp_gencnt); 2643 } 2644 2645 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 2646 { 2647 struct inpcb *inp; 2648 2649 if (!have_addr) { 2650 db_printf("usage: show inpcb <addr>\n"); 2651 return; 2652 } 2653 inp = (struct inpcb *)addr; 2654 2655 db_print_inpcb(inp, "inpcb", 0); 2656 } 2657 #endif /* DDB */ 2658