1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993, 1995 3 * The Regents of the University of California. 4 * Copyright (c) 2007-2009 Robert N. M. Watson 5 * Copyright (c) 2010-2011 Juniper Networks, Inc. 6 * All rights reserved. 7 * 8 * Portions of this software were developed by Robert N. M. Watson under 9 * contract to Juniper Networks, Inc. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 4. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_ddb.h" 42 #include "opt_ipsec.h" 43 #include "opt_inet.h" 44 #include "opt_inet6.h" 45 #include "opt_pcbgroup.h" 46 #include "opt_rss.h" 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/lock.h> 51 #include <sys/malloc.h> 52 #include <sys/mbuf.h> 53 #include <sys/callout.h> 54 #include <sys/domain.h> 55 #include <sys/protosw.h> 56 #include <sys/rmlock.h> 57 #include <sys/socket.h> 58 #include <sys/socketvar.h> 59 #include <sys/priv.h> 60 #include <sys/proc.h> 61 #include <sys/refcount.h> 62 #include <sys/jail.h> 63 #include <sys/kernel.h> 64 #include <sys/sysctl.h> 65 66 #ifdef DDB 67 #include <ddb/ddb.h> 68 #endif 69 70 #include <vm/uma.h> 71 72 #include <net/if.h> 73 #include <net/if_var.h> 74 #include <net/if_types.h> 75 #include <net/route.h> 76 #include <net/rss_config.h> 77 #include <net/vnet.h> 78 79 #if defined(INET) || defined(INET6) 80 #include <netinet/in.h> 81 #include <netinet/in_pcb.h> 82 #include <netinet/ip_var.h> 83 #include <netinet/tcp_var.h> 84 #include <netinet/udp.h> 85 #include <netinet/udp_var.h> 86 #endif 87 #ifdef INET 88 #include <netinet/in_var.h> 89 #endif 90 #ifdef INET6 91 #include <netinet/ip6.h> 92 #include <netinet6/in6_pcb.h> 93 #include <netinet6/in6_var.h> 94 #include <netinet6/ip6_var.h> 95 #endif /* INET6 */ 96 97 98 #ifdef IPSEC 99 #include <netipsec/ipsec.h> 100 #include <netipsec/key.h> 101 #endif /* IPSEC */ 102 103 #include <security/mac/mac_framework.h> 104 105 static struct callout ipport_tick_callout; 106 107 /* 108 * These configure the range of local port addresses assigned to 109 * "unspecified" outgoing connections/packets/whatever. 110 */ 111 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 112 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 113 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 114 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 115 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 116 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 117 118 /* 119 * Reserved ports accessible only to root. There are significant 120 * security considerations that must be accounted for when changing these, 121 * but the security benefits can be great. Please be careful. 122 */ 123 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 124 VNET_DEFINE(int, ipport_reservedlow); 125 126 /* Variables dealing with random ephemeral port allocation. */ 127 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 128 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 129 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 130 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 131 VNET_DEFINE(int, ipport_tcpallocs); 132 static VNET_DEFINE(int, ipport_tcplastcount); 133 134 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 135 136 static void in_pcbremlists(struct inpcb *inp); 137 #ifdef INET 138 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 139 struct in_addr faddr, u_int fport_arg, 140 struct in_addr laddr, u_int lport_arg, 141 int lookupflags, struct ifnet *ifp); 142 143 #define RANGECHK(var, min, max) \ 144 if ((var) < (min)) { (var) = (min); } \ 145 else if ((var) > (max)) { (var) = (max); } 146 147 static int 148 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 149 { 150 int error; 151 152 error = sysctl_handle_int(oidp, arg1, arg2, req); 153 if (error == 0) { 154 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 155 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 156 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 157 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 158 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 159 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 160 } 161 return (error); 162 } 163 164 #undef RANGECHK 165 166 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, 167 "IP Ports"); 168 169 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 170 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 171 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", ""); 172 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 173 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 174 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", ""); 175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 176 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 177 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", ""); 178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 179 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 180 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", ""); 181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 182 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 183 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", ""); 184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 185 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 186 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", ""); 187 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 188 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 189 &VNET_NAME(ipport_reservedhigh), 0, ""); 190 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 191 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 192 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 193 CTLFLAG_VNET | CTLFLAG_RW, 194 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 195 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 196 CTLFLAG_VNET | CTLFLAG_RW, 197 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 198 "allocations before switching to a sequental one"); 199 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 200 CTLFLAG_VNET | CTLFLAG_RW, 201 &VNET_NAME(ipport_randomtime), 0, 202 "Minimum time to keep sequental port " 203 "allocation before switching to a random one"); 204 #endif /* INET */ 205 206 /* 207 * in_pcb.c: manage the Protocol Control Blocks. 208 * 209 * NOTE: It is assumed that most of these functions will be called with 210 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 211 * functions often modify hash chains or addresses in pcbs. 212 */ 213 214 /* 215 * Initialize an inpcbinfo -- we should be able to reduce the number of 216 * arguments in time. 217 */ 218 void 219 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 220 struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, 221 char *inpcbzone_name, uma_init inpcbzone_init, uma_fini inpcbzone_fini, 222 uint32_t inpcbzone_flags, u_int hashfields) 223 { 224 225 INP_INFO_LOCK_INIT(pcbinfo, name); 226 INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ 227 #ifdef VIMAGE 228 pcbinfo->ipi_vnet = curvnet; 229 #endif 230 pcbinfo->ipi_listhead = listhead; 231 LIST_INIT(pcbinfo->ipi_listhead); 232 pcbinfo->ipi_count = 0; 233 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 234 &pcbinfo->ipi_hashmask); 235 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 236 &pcbinfo->ipi_porthashmask); 237 #ifdef PCBGROUP 238 in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); 239 #endif 240 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 241 NULL, NULL, inpcbzone_init, inpcbzone_fini, UMA_ALIGN_PTR, 242 inpcbzone_flags); 243 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 244 uma_zone_set_warning(pcbinfo->ipi_zone, 245 "kern.ipc.maxsockets limit reached"); 246 } 247 248 /* 249 * Destroy an inpcbinfo. 250 */ 251 void 252 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 253 { 254 255 KASSERT(pcbinfo->ipi_count == 0, 256 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 257 258 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 259 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 260 pcbinfo->ipi_porthashmask); 261 #ifdef PCBGROUP 262 in_pcbgroup_destroy(pcbinfo); 263 #endif 264 uma_zdestroy(pcbinfo->ipi_zone); 265 INP_HASH_LOCK_DESTROY(pcbinfo); 266 INP_INFO_LOCK_DESTROY(pcbinfo); 267 } 268 269 /* 270 * Allocate a PCB and associate it with the socket. 271 * On success return with the PCB locked. 272 */ 273 int 274 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 275 { 276 struct inpcb *inp; 277 int error; 278 279 INP_INFO_WLOCK_ASSERT(pcbinfo); 280 error = 0; 281 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 282 if (inp == NULL) 283 return (ENOBUFS); 284 bzero(inp, inp_zero_size); 285 inp->inp_pcbinfo = pcbinfo; 286 inp->inp_socket = so; 287 inp->inp_cred = crhold(so->so_cred); 288 inp->inp_inc.inc_fibnum = so->so_fibnum; 289 #ifdef MAC 290 error = mac_inpcb_init(inp, M_NOWAIT); 291 if (error != 0) 292 goto out; 293 mac_inpcb_create(so, inp); 294 #endif 295 #ifdef IPSEC 296 error = ipsec_init_policy(so, &inp->inp_sp); 297 if (error != 0) { 298 #ifdef MAC 299 mac_inpcb_destroy(inp); 300 #endif 301 goto out; 302 } 303 #endif /*IPSEC*/ 304 #ifdef INET6 305 if (INP_SOCKAF(so) == AF_INET6) { 306 inp->inp_vflag |= INP_IPV6PROTO; 307 if (V_ip6_v6only) 308 inp->inp_flags |= IN6P_IPV6_V6ONLY; 309 } 310 #endif 311 LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 312 pcbinfo->ipi_count++; 313 so->so_pcb = (caddr_t)inp; 314 #ifdef INET6 315 if (V_ip6_auto_flowlabel) 316 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 317 #endif 318 INP_WLOCK(inp); 319 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 320 refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ 321 #if defined(IPSEC) || defined(MAC) 322 out: 323 if (error != 0) { 324 crfree(inp->inp_cred); 325 uma_zfree(pcbinfo->ipi_zone, inp); 326 } 327 #endif 328 return (error); 329 } 330 331 #ifdef INET 332 int 333 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 334 { 335 int anonport, error; 336 337 INP_WLOCK_ASSERT(inp); 338 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 339 340 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 341 return (EINVAL); 342 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 343 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 344 &inp->inp_lport, cred); 345 if (error) 346 return (error); 347 if (in_pcbinshash(inp) != 0) { 348 inp->inp_laddr.s_addr = INADDR_ANY; 349 inp->inp_lport = 0; 350 return (EAGAIN); 351 } 352 if (anonport) 353 inp->inp_flags |= INP_ANONPORT; 354 return (0); 355 } 356 #endif 357 358 /* 359 * Select a local port (number) to use. 360 */ 361 #if defined(INET) || defined(INET6) 362 int 363 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 364 struct ucred *cred, int lookupflags) 365 { 366 struct inpcbinfo *pcbinfo; 367 struct inpcb *tmpinp; 368 unsigned short *lastport; 369 int count, dorandom, error; 370 u_short aux, first, last, lport; 371 #ifdef INET 372 struct in_addr laddr; 373 #endif 374 375 pcbinfo = inp->inp_pcbinfo; 376 377 /* 378 * Because no actual state changes occur here, a global write lock on 379 * the pcbinfo isn't required. 380 */ 381 INP_LOCK_ASSERT(inp); 382 INP_HASH_LOCK_ASSERT(pcbinfo); 383 384 if (inp->inp_flags & INP_HIGHPORT) { 385 first = V_ipport_hifirstauto; /* sysctl */ 386 last = V_ipport_hilastauto; 387 lastport = &pcbinfo->ipi_lasthi; 388 } else if (inp->inp_flags & INP_LOWPORT) { 389 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0); 390 if (error) 391 return (error); 392 first = V_ipport_lowfirstauto; /* 1023 */ 393 last = V_ipport_lowlastauto; /* 600 */ 394 lastport = &pcbinfo->ipi_lastlow; 395 } else { 396 first = V_ipport_firstauto; /* sysctl */ 397 last = V_ipport_lastauto; 398 lastport = &pcbinfo->ipi_lastport; 399 } 400 /* 401 * For UDP(-Lite), use random port allocation as long as the user 402 * allows it. For TCP (and as of yet unknown) connections, 403 * use random port allocation only if the user allows it AND 404 * ipport_tick() allows it. 405 */ 406 if (V_ipport_randomized && 407 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 408 pcbinfo == &V_ulitecbinfo)) 409 dorandom = 1; 410 else 411 dorandom = 0; 412 /* 413 * It makes no sense to do random port allocation if 414 * we have the only port available. 415 */ 416 if (first == last) 417 dorandom = 0; 418 /* Make sure to not include UDP(-Lite) packets in the count. */ 419 if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) 420 V_ipport_tcpallocs++; 421 /* 422 * Instead of having two loops further down counting up or down 423 * make sure that first is always <= last and go with only one 424 * code path implementing all logic. 425 */ 426 if (first > last) { 427 aux = first; 428 first = last; 429 last = aux; 430 } 431 432 #ifdef INET 433 /* Make the compiler happy. */ 434 laddr.s_addr = 0; 435 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 436 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p", 437 __func__, inp)); 438 laddr = *laddrp; 439 } 440 #endif 441 tmpinp = NULL; /* Make compiler happy. */ 442 lport = *lportp; 443 444 if (dorandom) 445 *lastport = first + (arc4random() % (last - first)); 446 447 count = last - first; 448 449 do { 450 if (count-- < 0) /* completely used? */ 451 return (EADDRNOTAVAIL); 452 ++*lastport; 453 if (*lastport < first || *lastport > last) 454 *lastport = first; 455 lport = htons(*lastport); 456 457 #ifdef INET6 458 if ((inp->inp_vflag & INP_IPV6) != 0) 459 tmpinp = in6_pcblookup_local(pcbinfo, 460 &inp->in6p_laddr, lport, lookupflags, cred); 461 #endif 462 #if defined(INET) && defined(INET6) 463 else 464 #endif 465 #ifdef INET 466 tmpinp = in_pcblookup_local(pcbinfo, laddr, 467 lport, lookupflags, cred); 468 #endif 469 } while (tmpinp != NULL); 470 471 #ifdef INET 472 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) 473 laddrp->s_addr = laddr.s_addr; 474 #endif 475 *lportp = lport; 476 477 return (0); 478 } 479 480 /* 481 * Return cached socket options. 482 */ 483 short 484 inp_so_options(const struct inpcb *inp) 485 { 486 short so_options; 487 488 so_options = 0; 489 490 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 491 so_options |= SO_REUSEPORT; 492 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 493 so_options |= SO_REUSEADDR; 494 return (so_options); 495 } 496 #endif /* INET || INET6 */ 497 498 /* 499 * Check if a new BINDMULTI socket is allowed to be created. 500 * 501 * ni points to the new inp. 502 * oi points to the exisitng inp. 503 * 504 * This checks whether the existing inp also has BINDMULTI and 505 * whether the credentials match. 506 */ 507 int 508 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 509 { 510 /* Check permissions match */ 511 if ((ni->inp_flags2 & INP_BINDMULTI) && 512 (ni->inp_cred->cr_uid != 513 oi->inp_cred->cr_uid)) 514 return (0); 515 516 /* Check the existing inp has BINDMULTI set */ 517 if ((ni->inp_flags2 & INP_BINDMULTI) && 518 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 519 return (0); 520 521 /* 522 * We're okay - either INP_BINDMULTI isn't set on ni, or 523 * it is and it matches the checks. 524 */ 525 return (1); 526 } 527 528 #ifdef INET 529 /* 530 * Set up a bind operation on a PCB, performing port allocation 531 * as required, but do not actually modify the PCB. Callers can 532 * either complete the bind by setting inp_laddr/inp_lport and 533 * calling in_pcbinshash(), or they can just use the resulting 534 * port and address to authorise the sending of a once-off packet. 535 * 536 * On error, the values of *laddrp and *lportp are not changed. 537 */ 538 int 539 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 540 u_short *lportp, struct ucred *cred) 541 { 542 struct socket *so = inp->inp_socket; 543 struct sockaddr_in *sin; 544 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 545 struct in_addr laddr; 546 u_short lport = 0; 547 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 548 int error; 549 550 /* 551 * No state changes, so read locks are sufficient here. 552 */ 553 INP_LOCK_ASSERT(inp); 554 INP_HASH_LOCK_ASSERT(pcbinfo); 555 556 if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 557 return (EADDRNOTAVAIL); 558 laddr.s_addr = *laddrp; 559 if (nam != NULL && laddr.s_addr != INADDR_ANY) 560 return (EINVAL); 561 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) 562 lookupflags = INPLOOKUP_WILDCARD; 563 if (nam == NULL) { 564 if ((error = prison_local_ip4(cred, &laddr)) != 0) 565 return (error); 566 } else { 567 sin = (struct sockaddr_in *)nam; 568 if (nam->sa_len != sizeof (*sin)) 569 return (EINVAL); 570 #ifdef notdef 571 /* 572 * We should check the family, but old programs 573 * incorrectly fail to initialize it. 574 */ 575 if (sin->sin_family != AF_INET) 576 return (EAFNOSUPPORT); 577 #endif 578 error = prison_local_ip4(cred, &sin->sin_addr); 579 if (error) 580 return (error); 581 if (sin->sin_port != *lportp) { 582 /* Don't allow the port to change. */ 583 if (*lportp != 0) 584 return (EINVAL); 585 lport = sin->sin_port; 586 } 587 /* NB: lport is left as 0 if the port isn't being changed. */ 588 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 589 /* 590 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 591 * allow complete duplication of binding if 592 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 593 * and a multicast address is bound on both 594 * new and duplicated sockets. 595 */ 596 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 597 reuseport = SO_REUSEADDR|SO_REUSEPORT; 598 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 599 sin->sin_port = 0; /* yech... */ 600 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 601 /* 602 * Is the address a local IP address? 603 * If INP_BINDANY is set, then the socket may be bound 604 * to any endpoint address, local or not. 605 */ 606 if ((inp->inp_flags & INP_BINDANY) == 0 && 607 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 608 return (EADDRNOTAVAIL); 609 } 610 laddr = sin->sin_addr; 611 if (lport) { 612 struct inpcb *t; 613 struct tcptw *tw; 614 615 /* GROSS */ 616 if (ntohs(lport) <= V_ipport_reservedhigh && 617 ntohs(lport) >= V_ipport_reservedlow && 618 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 619 0)) 620 return (EACCES); 621 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 622 priv_check_cred(inp->inp_cred, 623 PRIV_NETINET_REUSEPORT, 0) != 0) { 624 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 625 lport, INPLOOKUP_WILDCARD, cred); 626 /* 627 * XXX 628 * This entire block sorely needs a rewrite. 629 */ 630 if (t && 631 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 632 ((t->inp_flags & INP_TIMEWAIT) == 0) && 633 (so->so_type != SOCK_STREAM || 634 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 635 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 636 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 637 (t->inp_flags2 & INP_REUSEPORT) == 0) && 638 (inp->inp_cred->cr_uid != 639 t->inp_cred->cr_uid)) 640 return (EADDRINUSE); 641 642 /* 643 * If the socket is a BINDMULTI socket, then 644 * the credentials need to match and the 645 * original socket also has to have been bound 646 * with BINDMULTI. 647 */ 648 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 649 return (EADDRINUSE); 650 } 651 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 652 lport, lookupflags, cred); 653 if (t && (t->inp_flags & INP_TIMEWAIT)) { 654 /* 655 * XXXRW: If an incpb has had its timewait 656 * state recycled, we treat the address as 657 * being in use (for now). This is better 658 * than a panic, but not desirable. 659 */ 660 tw = intotw(t); 661 if (tw == NULL || 662 (reuseport & tw->tw_so_options) == 0) 663 return (EADDRINUSE); 664 } else if (t && 665 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 666 (reuseport & inp_so_options(t)) == 0) { 667 #ifdef INET6 668 if (ntohl(sin->sin_addr.s_addr) != 669 INADDR_ANY || 670 ntohl(t->inp_laddr.s_addr) != 671 INADDR_ANY || 672 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 673 (t->inp_vflag & INP_IPV6PROTO) == 0) 674 #endif 675 return (EADDRINUSE); 676 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 677 return (EADDRINUSE); 678 } 679 } 680 } 681 if (*lportp != 0) 682 lport = *lportp; 683 if (lport == 0) { 684 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 685 if (error != 0) 686 return (error); 687 688 } 689 *laddrp = laddr.s_addr; 690 *lportp = lport; 691 return (0); 692 } 693 694 /* 695 * Connect from a socket to a specified address. 696 * Both address and port must be specified in argument sin. 697 * If don't have a local address for this socket yet, 698 * then pick one. 699 */ 700 int 701 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, 702 struct ucred *cred, struct mbuf *m) 703 { 704 u_short lport, fport; 705 in_addr_t laddr, faddr; 706 int anonport, error; 707 708 INP_WLOCK_ASSERT(inp); 709 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 710 711 lport = inp->inp_lport; 712 laddr = inp->inp_laddr.s_addr; 713 anonport = (lport == 0); 714 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 715 NULL, cred); 716 if (error) 717 return (error); 718 719 /* Do the initial binding of the local address if required. */ 720 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 721 inp->inp_lport = lport; 722 inp->inp_laddr.s_addr = laddr; 723 if (in_pcbinshash(inp) != 0) { 724 inp->inp_laddr.s_addr = INADDR_ANY; 725 inp->inp_lport = 0; 726 return (EAGAIN); 727 } 728 } 729 730 /* Commit the remaining changes. */ 731 inp->inp_lport = lport; 732 inp->inp_laddr.s_addr = laddr; 733 inp->inp_faddr.s_addr = faddr; 734 inp->inp_fport = fport; 735 in_pcbrehash_mbuf(inp, m); 736 737 if (anonport) 738 inp->inp_flags |= INP_ANONPORT; 739 return (0); 740 } 741 742 int 743 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 744 { 745 746 return (in_pcbconnect_mbuf(inp, nam, cred, NULL)); 747 } 748 749 /* 750 * Do proper source address selection on an unbound socket in case 751 * of connect. Take jails into account as well. 752 */ 753 int 754 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 755 struct ucred *cred) 756 { 757 struct ifaddr *ifa; 758 struct sockaddr *sa; 759 struct sockaddr_in *sin; 760 struct route sro; 761 int error; 762 763 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 764 765 /* 766 * Bypass source address selection and use the primary jail IP 767 * if requested. 768 */ 769 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 770 return (0); 771 772 error = 0; 773 bzero(&sro, sizeof(sro)); 774 775 sin = (struct sockaddr_in *)&sro.ro_dst; 776 sin->sin_family = AF_INET; 777 sin->sin_len = sizeof(struct sockaddr_in); 778 sin->sin_addr.s_addr = faddr->s_addr; 779 780 /* 781 * If route is known our src addr is taken from the i/f, 782 * else punt. 783 * 784 * Find out route to destination. 785 */ 786 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 787 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); 788 789 /* 790 * If we found a route, use the address corresponding to 791 * the outgoing interface. 792 * 793 * Otherwise assume faddr is reachable on a directly connected 794 * network and try to find a corresponding interface to take 795 * the source address from. 796 */ 797 if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { 798 struct in_ifaddr *ia; 799 struct ifnet *ifp; 800 801 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 802 inp->inp_socket->so_fibnum)); 803 if (ia == NULL) 804 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 805 inp->inp_socket->so_fibnum)); 806 if (ia == NULL) { 807 error = ENETUNREACH; 808 goto done; 809 } 810 811 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 812 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 813 ifa_free(&ia->ia_ifa); 814 goto done; 815 } 816 817 ifp = ia->ia_ifp; 818 ifa_free(&ia->ia_ifa); 819 ia = NULL; 820 IF_ADDR_RLOCK(ifp); 821 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 822 823 sa = ifa->ifa_addr; 824 if (sa->sa_family != AF_INET) 825 continue; 826 sin = (struct sockaddr_in *)sa; 827 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 828 ia = (struct in_ifaddr *)ifa; 829 break; 830 } 831 } 832 if (ia != NULL) { 833 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 834 IF_ADDR_RUNLOCK(ifp); 835 goto done; 836 } 837 IF_ADDR_RUNLOCK(ifp); 838 839 /* 3. As a last resort return the 'default' jail address. */ 840 error = prison_get_ip4(cred, laddr); 841 goto done; 842 } 843 844 /* 845 * If the outgoing interface on the route found is not 846 * a loopback interface, use the address from that interface. 847 * In case of jails do those three steps: 848 * 1. check if the interface address belongs to the jail. If so use it. 849 * 2. check if we have any address on the outgoing interface 850 * belonging to this jail. If so use it. 851 * 3. as a last resort return the 'default' jail address. 852 */ 853 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { 854 struct in_ifaddr *ia; 855 struct ifnet *ifp; 856 857 /* If not jailed, use the default returned. */ 858 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 859 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 860 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 861 goto done; 862 } 863 864 /* Jailed. */ 865 /* 1. Check if the iface address belongs to the jail. */ 866 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; 867 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 868 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 869 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 870 goto done; 871 } 872 873 /* 874 * 2. Check if we have any address on the outgoing interface 875 * belonging to this jail. 876 */ 877 ia = NULL; 878 ifp = sro.ro_rt->rt_ifp; 879 IF_ADDR_RLOCK(ifp); 880 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 881 sa = ifa->ifa_addr; 882 if (sa->sa_family != AF_INET) 883 continue; 884 sin = (struct sockaddr_in *)sa; 885 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 886 ia = (struct in_ifaddr *)ifa; 887 break; 888 } 889 } 890 if (ia != NULL) { 891 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 892 IF_ADDR_RUNLOCK(ifp); 893 goto done; 894 } 895 IF_ADDR_RUNLOCK(ifp); 896 897 /* 3. As a last resort return the 'default' jail address. */ 898 error = prison_get_ip4(cred, laddr); 899 goto done; 900 } 901 902 /* 903 * The outgoing interface is marked with 'loopback net', so a route 904 * to ourselves is here. 905 * Try to find the interface of the destination address and then 906 * take the address from there. That interface is not necessarily 907 * a loopback interface. 908 * In case of jails, check that it is an address of the jail 909 * and if we cannot find, fall back to the 'default' jail address. 910 */ 911 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 912 struct sockaddr_in sain; 913 struct in_ifaddr *ia; 914 915 bzero(&sain, sizeof(struct sockaddr_in)); 916 sain.sin_family = AF_INET; 917 sain.sin_len = sizeof(struct sockaddr_in); 918 sain.sin_addr.s_addr = faddr->s_addr; 919 920 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain), 921 inp->inp_socket->so_fibnum)); 922 if (ia == NULL) 923 ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0, 924 inp->inp_socket->so_fibnum)); 925 if (ia == NULL) 926 ia = ifatoia(ifa_ifwithaddr(sintosa(&sain))); 927 928 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 929 if (ia == NULL) { 930 error = ENETUNREACH; 931 goto done; 932 } 933 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 934 ifa_free(&ia->ia_ifa); 935 goto done; 936 } 937 938 /* Jailed. */ 939 if (ia != NULL) { 940 struct ifnet *ifp; 941 942 ifp = ia->ia_ifp; 943 ifa_free(&ia->ia_ifa); 944 ia = NULL; 945 IF_ADDR_RLOCK(ifp); 946 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 947 948 sa = ifa->ifa_addr; 949 if (sa->sa_family != AF_INET) 950 continue; 951 sin = (struct sockaddr_in *)sa; 952 if (prison_check_ip4(cred, 953 &sin->sin_addr) == 0) { 954 ia = (struct in_ifaddr *)ifa; 955 break; 956 } 957 } 958 if (ia != NULL) { 959 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 960 IF_ADDR_RUNLOCK(ifp); 961 goto done; 962 } 963 IF_ADDR_RUNLOCK(ifp); 964 } 965 966 /* 3. As a last resort return the 'default' jail address. */ 967 error = prison_get_ip4(cred, laddr); 968 goto done; 969 } 970 971 done: 972 if (sro.ro_rt != NULL) 973 RTFREE(sro.ro_rt); 974 return (error); 975 } 976 977 /* 978 * Set up for a connect from a socket to the specified address. 979 * On entry, *laddrp and *lportp should contain the current local 980 * address and port for the PCB; these are updated to the values 981 * that should be placed in inp_laddr and inp_lport to complete 982 * the connect. 983 * 984 * On success, *faddrp and *fportp will be set to the remote address 985 * and port. These are not updated in the error case. 986 * 987 * If the operation fails because the connection already exists, 988 * *oinpp will be set to the PCB of that connection so that the 989 * caller can decide to override it. In all other cases, *oinpp 990 * is set to NULL. 991 */ 992 int 993 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 994 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 995 struct inpcb **oinpp, struct ucred *cred) 996 { 997 struct rm_priotracker in_ifa_tracker; 998 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 999 struct in_ifaddr *ia; 1000 struct inpcb *oinp; 1001 struct in_addr laddr, faddr; 1002 u_short lport, fport; 1003 int error; 1004 1005 /* 1006 * Because a global state change doesn't actually occur here, a read 1007 * lock is sufficient. 1008 */ 1009 INP_LOCK_ASSERT(inp); 1010 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1011 1012 if (oinpp != NULL) 1013 *oinpp = NULL; 1014 if (nam->sa_len != sizeof (*sin)) 1015 return (EINVAL); 1016 if (sin->sin_family != AF_INET) 1017 return (EAFNOSUPPORT); 1018 if (sin->sin_port == 0) 1019 return (EADDRNOTAVAIL); 1020 laddr.s_addr = *laddrp; 1021 lport = *lportp; 1022 faddr = sin->sin_addr; 1023 fport = sin->sin_port; 1024 1025 if (!TAILQ_EMPTY(&V_in_ifaddrhead)) { 1026 /* 1027 * If the destination address is INADDR_ANY, 1028 * use the primary local address. 1029 * If the supplied address is INADDR_BROADCAST, 1030 * and the primary interface supports broadcast, 1031 * choose the broadcast address for that interface. 1032 */ 1033 if (faddr.s_addr == INADDR_ANY) { 1034 IN_IFADDR_RLOCK(&in_ifa_tracker); 1035 faddr = 1036 IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1037 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1038 if (cred != NULL && 1039 (error = prison_get_ip4(cred, &faddr)) != 0) 1040 return (error); 1041 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1042 IN_IFADDR_RLOCK(&in_ifa_tracker); 1043 if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1044 IFF_BROADCAST) 1045 faddr = satosin(&TAILQ_FIRST( 1046 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1047 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1048 } 1049 } 1050 if (laddr.s_addr == INADDR_ANY) { 1051 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1052 /* 1053 * If the destination address is multicast and an outgoing 1054 * interface has been set as a multicast option, prefer the 1055 * address of that interface as our source address. 1056 */ 1057 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1058 inp->inp_moptions != NULL) { 1059 struct ip_moptions *imo; 1060 struct ifnet *ifp; 1061 1062 imo = inp->inp_moptions; 1063 if (imo->imo_multicast_ifp != NULL) { 1064 ifp = imo->imo_multicast_ifp; 1065 IN_IFADDR_RLOCK(&in_ifa_tracker); 1066 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1067 if ((ia->ia_ifp == ifp) && 1068 (cred == NULL || 1069 prison_check_ip4(cred, 1070 &ia->ia_addr.sin_addr) == 0)) 1071 break; 1072 } 1073 if (ia == NULL) 1074 error = EADDRNOTAVAIL; 1075 else { 1076 laddr = ia->ia_addr.sin_addr; 1077 error = 0; 1078 } 1079 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1080 } 1081 } 1082 if (error) 1083 return (error); 1084 } 1085 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport, 1086 laddr, lport, 0, NULL); 1087 if (oinp != NULL) { 1088 if (oinpp != NULL) 1089 *oinpp = oinp; 1090 return (EADDRINUSE); 1091 } 1092 if (lport == 0) { 1093 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 1094 cred); 1095 if (error) 1096 return (error); 1097 } 1098 *laddrp = laddr.s_addr; 1099 *lportp = lport; 1100 *faddrp = faddr.s_addr; 1101 *fportp = fport; 1102 return (0); 1103 } 1104 1105 void 1106 in_pcbdisconnect(struct inpcb *inp) 1107 { 1108 1109 INP_WLOCK_ASSERT(inp); 1110 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1111 1112 inp->inp_faddr.s_addr = INADDR_ANY; 1113 inp->inp_fport = 0; 1114 in_pcbrehash(inp); 1115 } 1116 #endif /* INET */ 1117 1118 /* 1119 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1120 * For most protocols, this will be invoked immediately prior to calling 1121 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1122 * socket, in which case in_pcbfree() is deferred. 1123 */ 1124 void 1125 in_pcbdetach(struct inpcb *inp) 1126 { 1127 1128 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1129 1130 inp->inp_socket->so_pcb = NULL; 1131 inp->inp_socket = NULL; 1132 } 1133 1134 /* 1135 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1136 * stability of an inpcb pointer despite the inpcb lock being released. This 1137 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 1138 * but where the inpcb lock may already held, or when acquiring a reference 1139 * via a pcbgroup. 1140 * 1141 * in_pcbref() should be used only to provide brief memory stability, and 1142 * must always be followed by a call to INP_WLOCK() and in_pcbrele() to 1143 * garbage collect the inpcb if it has been in_pcbfree()'d from another 1144 * context. Until in_pcbrele() has returned that the inpcb is still valid, 1145 * lock and rele are the *only* safe operations that may be performed on the 1146 * inpcb. 1147 * 1148 * While the inpcb will not be freed, releasing the inpcb lock means that the 1149 * connection's state may change, so the caller should be careful to 1150 * revalidate any cached state on reacquiring the lock. Drop the reference 1151 * using in_pcbrele(). 1152 */ 1153 void 1154 in_pcbref(struct inpcb *inp) 1155 { 1156 1157 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1158 1159 refcount_acquire(&inp->inp_refcount); 1160 } 1161 1162 /* 1163 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 1164 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 1165 * return a flag indicating whether or not the inpcb remains valid. If it is 1166 * valid, we return with the inpcb lock held. 1167 * 1168 * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a 1169 * reference on an inpcb. Historically more work was done here (actually, in 1170 * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the 1171 * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely 1172 * about memory stability (and continued use of the write lock). 1173 */ 1174 int 1175 in_pcbrele_rlocked(struct inpcb *inp) 1176 { 1177 struct inpcbinfo *pcbinfo; 1178 1179 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1180 1181 INP_RLOCK_ASSERT(inp); 1182 1183 if (refcount_release(&inp->inp_refcount) == 0) { 1184 /* 1185 * If the inpcb has been freed, let the caller know, even if 1186 * this isn't the last reference. 1187 */ 1188 if (inp->inp_flags2 & INP_FREED) { 1189 INP_RUNLOCK(inp); 1190 return (1); 1191 } 1192 return (0); 1193 } 1194 1195 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1196 1197 INP_RUNLOCK(inp); 1198 pcbinfo = inp->inp_pcbinfo; 1199 uma_zfree(pcbinfo->ipi_zone, inp); 1200 return (1); 1201 } 1202 1203 int 1204 in_pcbrele_wlocked(struct inpcb *inp) 1205 { 1206 struct inpcbinfo *pcbinfo; 1207 1208 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1209 1210 INP_WLOCK_ASSERT(inp); 1211 1212 if (refcount_release(&inp->inp_refcount) == 0) 1213 return (0); 1214 1215 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1216 1217 INP_WUNLOCK(inp); 1218 pcbinfo = inp->inp_pcbinfo; 1219 uma_zfree(pcbinfo->ipi_zone, inp); 1220 return (1); 1221 } 1222 1223 /* 1224 * Temporary wrapper. 1225 */ 1226 int 1227 in_pcbrele(struct inpcb *inp) 1228 { 1229 1230 return (in_pcbrele_wlocked(inp)); 1231 } 1232 1233 /* 1234 * Unconditionally schedule an inpcb to be freed by decrementing its 1235 * reference count, which should occur only after the inpcb has been detached 1236 * from its socket. If another thread holds a temporary reference (acquired 1237 * using in_pcbref()) then the free is deferred until that reference is 1238 * released using in_pcbrele(), but the inpcb is still unlocked. Almost all 1239 * work, including removal from global lists, is done in this context, where 1240 * the pcbinfo lock is held. 1241 */ 1242 void 1243 in_pcbfree(struct inpcb *inp) 1244 { 1245 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1246 1247 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1248 1249 INP_INFO_WLOCK_ASSERT(pcbinfo); 1250 INP_WLOCK_ASSERT(inp); 1251 1252 /* XXXRW: Do as much as possible here. */ 1253 #ifdef IPSEC 1254 if (inp->inp_sp != NULL) 1255 ipsec_delete_pcbpolicy(inp); 1256 #endif 1257 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1258 in_pcbremlists(inp); 1259 #ifdef INET6 1260 if (inp->inp_vflag & INP_IPV6PROTO) { 1261 ip6_freepcbopts(inp->in6p_outputopts); 1262 if (inp->in6p_moptions != NULL) 1263 ip6_freemoptions(inp->in6p_moptions); 1264 } 1265 #endif 1266 if (inp->inp_options) 1267 (void)m_free(inp->inp_options); 1268 #ifdef INET 1269 if (inp->inp_moptions != NULL) 1270 inp_freemoptions(inp->inp_moptions); 1271 #endif 1272 inp->inp_vflag = 0; 1273 inp->inp_flags2 |= INP_FREED; 1274 crfree(inp->inp_cred); 1275 #ifdef MAC 1276 mac_inpcb_destroy(inp); 1277 #endif 1278 if (!in_pcbrele_wlocked(inp)) 1279 INP_WUNLOCK(inp); 1280 } 1281 1282 /* 1283 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1284 * port reservation, and preventing it from being returned by inpcb lookups. 1285 * 1286 * It is used by TCP to mark an inpcb as unused and avoid future packet 1287 * delivery or event notification when a socket remains open but TCP has 1288 * closed. This might occur as a result of a shutdown()-initiated TCP close 1289 * or a RST on the wire, and allows the port binding to be reused while still 1290 * maintaining the invariant that so_pcb always points to a valid inpcb until 1291 * in_pcbdetach(). 1292 * 1293 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1294 * in_pcbnotifyall() and in_pcbpurgeif0()? 1295 */ 1296 void 1297 in_pcbdrop(struct inpcb *inp) 1298 { 1299 1300 INP_WLOCK_ASSERT(inp); 1301 1302 /* 1303 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1304 * the hash lock...? 1305 */ 1306 inp->inp_flags |= INP_DROPPED; 1307 if (inp->inp_flags & INP_INHASHLIST) { 1308 struct inpcbport *phd = inp->inp_phd; 1309 1310 INP_HASH_WLOCK(inp->inp_pcbinfo); 1311 LIST_REMOVE(inp, inp_hash); 1312 LIST_REMOVE(inp, inp_portlist); 1313 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 1314 LIST_REMOVE(phd, phd_hash); 1315 free(phd, M_PCB); 1316 } 1317 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1318 inp->inp_flags &= ~INP_INHASHLIST; 1319 #ifdef PCBGROUP 1320 in_pcbgroup_remove(inp); 1321 #endif 1322 } 1323 } 1324 1325 #ifdef INET 1326 /* 1327 * Common routines to return the socket addresses associated with inpcbs. 1328 */ 1329 struct sockaddr * 1330 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1331 { 1332 struct sockaddr_in *sin; 1333 1334 sin = malloc(sizeof *sin, M_SONAME, 1335 M_WAITOK | M_ZERO); 1336 sin->sin_family = AF_INET; 1337 sin->sin_len = sizeof(*sin); 1338 sin->sin_addr = *addr_p; 1339 sin->sin_port = port; 1340 1341 return (struct sockaddr *)sin; 1342 } 1343 1344 int 1345 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1346 { 1347 struct inpcb *inp; 1348 struct in_addr addr; 1349 in_port_t port; 1350 1351 inp = sotoinpcb(so); 1352 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1353 1354 INP_RLOCK(inp); 1355 port = inp->inp_lport; 1356 addr = inp->inp_laddr; 1357 INP_RUNLOCK(inp); 1358 1359 *nam = in_sockaddr(port, &addr); 1360 return 0; 1361 } 1362 1363 int 1364 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1365 { 1366 struct inpcb *inp; 1367 struct in_addr addr; 1368 in_port_t port; 1369 1370 inp = sotoinpcb(so); 1371 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1372 1373 INP_RLOCK(inp); 1374 port = inp->inp_fport; 1375 addr = inp->inp_faddr; 1376 INP_RUNLOCK(inp); 1377 1378 *nam = in_sockaddr(port, &addr); 1379 return 0; 1380 } 1381 1382 void 1383 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1384 struct inpcb *(*notify)(struct inpcb *, int)) 1385 { 1386 struct inpcb *inp, *inp_temp; 1387 1388 INP_INFO_WLOCK(pcbinfo); 1389 LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1390 INP_WLOCK(inp); 1391 #ifdef INET6 1392 if ((inp->inp_vflag & INP_IPV4) == 0) { 1393 INP_WUNLOCK(inp); 1394 continue; 1395 } 1396 #endif 1397 if (inp->inp_faddr.s_addr != faddr.s_addr || 1398 inp->inp_socket == NULL) { 1399 INP_WUNLOCK(inp); 1400 continue; 1401 } 1402 if ((*notify)(inp, errno)) 1403 INP_WUNLOCK(inp); 1404 } 1405 INP_INFO_WUNLOCK(pcbinfo); 1406 } 1407 1408 void 1409 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1410 { 1411 struct inpcb *inp; 1412 struct ip_moptions *imo; 1413 int i, gap; 1414 1415 INP_INFO_RLOCK(pcbinfo); 1416 LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1417 INP_WLOCK(inp); 1418 imo = inp->inp_moptions; 1419 if ((inp->inp_vflag & INP_IPV4) && 1420 imo != NULL) { 1421 /* 1422 * Unselect the outgoing interface if it is being 1423 * detached. 1424 */ 1425 if (imo->imo_multicast_ifp == ifp) 1426 imo->imo_multicast_ifp = NULL; 1427 1428 /* 1429 * Drop multicast group membership if we joined 1430 * through the interface being detached. 1431 */ 1432 for (i = 0, gap = 0; i < imo->imo_num_memberships; 1433 i++) { 1434 if (imo->imo_membership[i]->inm_ifp == ifp) { 1435 in_delmulti(imo->imo_membership[i]); 1436 gap++; 1437 } else if (gap != 0) 1438 imo->imo_membership[i - gap] = 1439 imo->imo_membership[i]; 1440 } 1441 imo->imo_num_memberships -= gap; 1442 } 1443 INP_WUNLOCK(inp); 1444 } 1445 INP_INFO_RUNLOCK(pcbinfo); 1446 } 1447 1448 /* 1449 * Lookup a PCB based on the local address and port. Caller must hold the 1450 * hash lock. No inpcb locks or references are acquired. 1451 */ 1452 #define INP_LOOKUP_MAPPED_PCB_COST 3 1453 struct inpcb * 1454 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1455 u_short lport, int lookupflags, struct ucred *cred) 1456 { 1457 struct inpcb *inp; 1458 #ifdef INET6 1459 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1460 #else 1461 int matchwild = 3; 1462 #endif 1463 int wildcard; 1464 1465 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1466 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1467 1468 INP_HASH_LOCK_ASSERT(pcbinfo); 1469 1470 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1471 struct inpcbhead *head; 1472 /* 1473 * Look for an unconnected (wildcard foreign addr) PCB that 1474 * matches the local address and port we're looking for. 1475 */ 1476 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1477 0, pcbinfo->ipi_hashmask)]; 1478 LIST_FOREACH(inp, head, inp_hash) { 1479 #ifdef INET6 1480 /* XXX inp locking */ 1481 if ((inp->inp_vflag & INP_IPV4) == 0) 1482 continue; 1483 #endif 1484 if (inp->inp_faddr.s_addr == INADDR_ANY && 1485 inp->inp_laddr.s_addr == laddr.s_addr && 1486 inp->inp_lport == lport) { 1487 /* 1488 * Found? 1489 */ 1490 if (cred == NULL || 1491 prison_equal_ip4(cred->cr_prison, 1492 inp->inp_cred->cr_prison)) 1493 return (inp); 1494 } 1495 } 1496 /* 1497 * Not found. 1498 */ 1499 return (NULL); 1500 } else { 1501 struct inpcbporthead *porthash; 1502 struct inpcbport *phd; 1503 struct inpcb *match = NULL; 1504 /* 1505 * Best fit PCB lookup. 1506 * 1507 * First see if this local port is in use by looking on the 1508 * port hash list. 1509 */ 1510 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1511 pcbinfo->ipi_porthashmask)]; 1512 LIST_FOREACH(phd, porthash, phd_hash) { 1513 if (phd->phd_port == lport) 1514 break; 1515 } 1516 if (phd != NULL) { 1517 /* 1518 * Port is in use by one or more PCBs. Look for best 1519 * fit. 1520 */ 1521 LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1522 wildcard = 0; 1523 if (cred != NULL && 1524 !prison_equal_ip4(inp->inp_cred->cr_prison, 1525 cred->cr_prison)) 1526 continue; 1527 #ifdef INET6 1528 /* XXX inp locking */ 1529 if ((inp->inp_vflag & INP_IPV4) == 0) 1530 continue; 1531 /* 1532 * We never select the PCB that has 1533 * INP_IPV6 flag and is bound to :: if 1534 * we have another PCB which is bound 1535 * to 0.0.0.0. If a PCB has the 1536 * INP_IPV6 flag, then we set its cost 1537 * higher than IPv4 only PCBs. 1538 * 1539 * Note that the case only happens 1540 * when a socket is bound to ::, under 1541 * the condition that the use of the 1542 * mapped address is allowed. 1543 */ 1544 if ((inp->inp_vflag & INP_IPV6) != 0) 1545 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1546 #endif 1547 if (inp->inp_faddr.s_addr != INADDR_ANY) 1548 wildcard++; 1549 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1550 if (laddr.s_addr == INADDR_ANY) 1551 wildcard++; 1552 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1553 continue; 1554 } else { 1555 if (laddr.s_addr != INADDR_ANY) 1556 wildcard++; 1557 } 1558 if (wildcard < matchwild) { 1559 match = inp; 1560 matchwild = wildcard; 1561 if (matchwild == 0) 1562 break; 1563 } 1564 } 1565 } 1566 return (match); 1567 } 1568 } 1569 #undef INP_LOOKUP_MAPPED_PCB_COST 1570 1571 #ifdef PCBGROUP 1572 /* 1573 * Lookup PCB in hash list, using pcbgroup tables. 1574 */ 1575 static struct inpcb * 1576 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, 1577 struct in_addr faddr, u_int fport_arg, struct in_addr laddr, 1578 u_int lport_arg, int lookupflags, struct ifnet *ifp) 1579 { 1580 struct inpcbhead *head; 1581 struct inpcb *inp, *tmpinp; 1582 u_short fport = fport_arg, lport = lport_arg; 1583 1584 /* 1585 * First look for an exact match. 1586 */ 1587 tmpinp = NULL; 1588 INP_GROUP_LOCK(pcbgroup); 1589 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1590 pcbgroup->ipg_hashmask)]; 1591 LIST_FOREACH(inp, head, inp_pcbgrouphash) { 1592 #ifdef INET6 1593 /* XXX inp locking */ 1594 if ((inp->inp_vflag & INP_IPV4) == 0) 1595 continue; 1596 #endif 1597 if (inp->inp_faddr.s_addr == faddr.s_addr && 1598 inp->inp_laddr.s_addr == laddr.s_addr && 1599 inp->inp_fport == fport && 1600 inp->inp_lport == lport) { 1601 /* 1602 * XXX We should be able to directly return 1603 * the inp here, without any checks. 1604 * Well unless both bound with SO_REUSEPORT? 1605 */ 1606 if (prison_flag(inp->inp_cred, PR_IP4)) 1607 goto found; 1608 if (tmpinp == NULL) 1609 tmpinp = inp; 1610 } 1611 } 1612 if (tmpinp != NULL) { 1613 inp = tmpinp; 1614 goto found; 1615 } 1616 1617 #ifdef RSS 1618 /* 1619 * For incoming connections, we may wish to do a wildcard 1620 * match for an RSS-local socket. 1621 */ 1622 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1623 struct inpcb *local_wild = NULL, *local_exact = NULL; 1624 #ifdef INET6 1625 struct inpcb *local_wild_mapped = NULL; 1626 #endif 1627 struct inpcb *jail_wild = NULL; 1628 struct inpcbhead *head; 1629 int injail; 1630 1631 /* 1632 * Order of socket selection - we always prefer jails. 1633 * 1. jailed, non-wild. 1634 * 2. jailed, wild. 1635 * 3. non-jailed, non-wild. 1636 * 4. non-jailed, wild. 1637 */ 1638 1639 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, 1640 lport, 0, pcbgroup->ipg_hashmask)]; 1641 LIST_FOREACH(inp, head, inp_pcbgrouphash) { 1642 #ifdef INET6 1643 /* XXX inp locking */ 1644 if ((inp->inp_vflag & INP_IPV4) == 0) 1645 continue; 1646 #endif 1647 if (inp->inp_faddr.s_addr != INADDR_ANY || 1648 inp->inp_lport != lport) 1649 continue; 1650 1651 injail = prison_flag(inp->inp_cred, PR_IP4); 1652 if (injail) { 1653 if (prison_check_ip4(inp->inp_cred, 1654 &laddr) != 0) 1655 continue; 1656 } else { 1657 if (local_exact != NULL) 1658 continue; 1659 } 1660 1661 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1662 if (injail) 1663 goto found; 1664 else 1665 local_exact = inp; 1666 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1667 #ifdef INET6 1668 /* XXX inp locking, NULL check */ 1669 if (inp->inp_vflag & INP_IPV6PROTO) 1670 local_wild_mapped = inp; 1671 else 1672 #endif 1673 if (injail) 1674 jail_wild = inp; 1675 else 1676 local_wild = inp; 1677 } 1678 } /* LIST_FOREACH */ 1679 1680 inp = jail_wild; 1681 if (inp == NULL) 1682 inp = local_exact; 1683 if (inp == NULL) 1684 inp = local_wild; 1685 #ifdef INET6 1686 if (inp == NULL) 1687 inp = local_wild_mapped; 1688 #endif 1689 if (inp != NULL) 1690 goto found; 1691 } 1692 #endif 1693 1694 /* 1695 * Then look for a wildcard match, if requested. 1696 */ 1697 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1698 struct inpcb *local_wild = NULL, *local_exact = NULL; 1699 #ifdef INET6 1700 struct inpcb *local_wild_mapped = NULL; 1701 #endif 1702 struct inpcb *jail_wild = NULL; 1703 struct inpcbhead *head; 1704 int injail; 1705 1706 /* 1707 * Order of socket selection - we always prefer jails. 1708 * 1. jailed, non-wild. 1709 * 2. jailed, wild. 1710 * 3. non-jailed, non-wild. 1711 * 4. non-jailed, wild. 1712 */ 1713 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 1714 0, pcbinfo->ipi_wildmask)]; 1715 LIST_FOREACH(inp, head, inp_pcbgroup_wild) { 1716 #ifdef INET6 1717 /* XXX inp locking */ 1718 if ((inp->inp_vflag & INP_IPV4) == 0) 1719 continue; 1720 #endif 1721 if (inp->inp_faddr.s_addr != INADDR_ANY || 1722 inp->inp_lport != lport) 1723 continue; 1724 1725 injail = prison_flag(inp->inp_cred, PR_IP4); 1726 if (injail) { 1727 if (prison_check_ip4(inp->inp_cred, 1728 &laddr) != 0) 1729 continue; 1730 } else { 1731 if (local_exact != NULL) 1732 continue; 1733 } 1734 1735 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1736 if (injail) 1737 goto found; 1738 else 1739 local_exact = inp; 1740 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1741 #ifdef INET6 1742 /* XXX inp locking, NULL check */ 1743 if (inp->inp_vflag & INP_IPV6PROTO) 1744 local_wild_mapped = inp; 1745 else 1746 #endif 1747 if (injail) 1748 jail_wild = inp; 1749 else 1750 local_wild = inp; 1751 } 1752 } /* LIST_FOREACH */ 1753 inp = jail_wild; 1754 if (inp == NULL) 1755 inp = local_exact; 1756 if (inp == NULL) 1757 inp = local_wild; 1758 #ifdef INET6 1759 if (inp == NULL) 1760 inp = local_wild_mapped; 1761 #endif 1762 if (inp != NULL) 1763 goto found; 1764 } /* if (lookupflags & INPLOOKUP_WILDCARD) */ 1765 INP_GROUP_UNLOCK(pcbgroup); 1766 return (NULL); 1767 1768 found: 1769 in_pcbref(inp); 1770 INP_GROUP_UNLOCK(pcbgroup); 1771 if (lookupflags & INPLOOKUP_WLOCKPCB) { 1772 INP_WLOCK(inp); 1773 if (in_pcbrele_wlocked(inp)) 1774 return (NULL); 1775 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 1776 INP_RLOCK(inp); 1777 if (in_pcbrele_rlocked(inp)) 1778 return (NULL); 1779 } else 1780 panic("%s: locking bug", __func__); 1781 return (inp); 1782 } 1783 #endif /* PCBGROUP */ 1784 1785 /* 1786 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 1787 * that the caller has locked the hash list, and will not perform any further 1788 * locking or reference operations on either the hash list or the connection. 1789 */ 1790 static struct inpcb * 1791 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1792 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 1793 struct ifnet *ifp) 1794 { 1795 struct inpcbhead *head; 1796 struct inpcb *inp, *tmpinp; 1797 u_short fport = fport_arg, lport = lport_arg; 1798 1799 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1800 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1801 1802 INP_HASH_LOCK_ASSERT(pcbinfo); 1803 1804 /* 1805 * First look for an exact match. 1806 */ 1807 tmpinp = NULL; 1808 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1809 pcbinfo->ipi_hashmask)]; 1810 LIST_FOREACH(inp, head, inp_hash) { 1811 #ifdef INET6 1812 /* XXX inp locking */ 1813 if ((inp->inp_vflag & INP_IPV4) == 0) 1814 continue; 1815 #endif 1816 if (inp->inp_faddr.s_addr == faddr.s_addr && 1817 inp->inp_laddr.s_addr == laddr.s_addr && 1818 inp->inp_fport == fport && 1819 inp->inp_lport == lport) { 1820 /* 1821 * XXX We should be able to directly return 1822 * the inp here, without any checks. 1823 * Well unless both bound with SO_REUSEPORT? 1824 */ 1825 if (prison_flag(inp->inp_cred, PR_IP4)) 1826 return (inp); 1827 if (tmpinp == NULL) 1828 tmpinp = inp; 1829 } 1830 } 1831 if (tmpinp != NULL) 1832 return (tmpinp); 1833 1834 /* 1835 * Then look for a wildcard match, if requested. 1836 */ 1837 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1838 struct inpcb *local_wild = NULL, *local_exact = NULL; 1839 #ifdef INET6 1840 struct inpcb *local_wild_mapped = NULL; 1841 #endif 1842 struct inpcb *jail_wild = NULL; 1843 int injail; 1844 1845 /* 1846 * Order of socket selection - we always prefer jails. 1847 * 1. jailed, non-wild. 1848 * 2. jailed, wild. 1849 * 3. non-jailed, non-wild. 1850 * 4. non-jailed, wild. 1851 */ 1852 1853 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1854 0, pcbinfo->ipi_hashmask)]; 1855 LIST_FOREACH(inp, head, inp_hash) { 1856 #ifdef INET6 1857 /* XXX inp locking */ 1858 if ((inp->inp_vflag & INP_IPV4) == 0) 1859 continue; 1860 #endif 1861 if (inp->inp_faddr.s_addr != INADDR_ANY || 1862 inp->inp_lport != lport) 1863 continue; 1864 1865 injail = prison_flag(inp->inp_cred, PR_IP4); 1866 if (injail) { 1867 if (prison_check_ip4(inp->inp_cred, 1868 &laddr) != 0) 1869 continue; 1870 } else { 1871 if (local_exact != NULL) 1872 continue; 1873 } 1874 1875 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1876 if (injail) 1877 return (inp); 1878 else 1879 local_exact = inp; 1880 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1881 #ifdef INET6 1882 /* XXX inp locking, NULL check */ 1883 if (inp->inp_vflag & INP_IPV6PROTO) 1884 local_wild_mapped = inp; 1885 else 1886 #endif 1887 if (injail) 1888 jail_wild = inp; 1889 else 1890 local_wild = inp; 1891 } 1892 } /* LIST_FOREACH */ 1893 if (jail_wild != NULL) 1894 return (jail_wild); 1895 if (local_exact != NULL) 1896 return (local_exact); 1897 if (local_wild != NULL) 1898 return (local_wild); 1899 #ifdef INET6 1900 if (local_wild_mapped != NULL) 1901 return (local_wild_mapped); 1902 #endif 1903 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 1904 1905 return (NULL); 1906 } 1907 1908 /* 1909 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 1910 * hash list lock, and will return the inpcb locked (i.e., requires 1911 * INPLOOKUP_LOCKPCB). 1912 */ 1913 static struct inpcb * 1914 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1915 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 1916 struct ifnet *ifp) 1917 { 1918 struct inpcb *inp; 1919 1920 INP_HASH_RLOCK(pcbinfo); 1921 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 1922 (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp); 1923 if (inp != NULL) { 1924 in_pcbref(inp); 1925 INP_HASH_RUNLOCK(pcbinfo); 1926 if (lookupflags & INPLOOKUP_WLOCKPCB) { 1927 INP_WLOCK(inp); 1928 if (in_pcbrele_wlocked(inp)) 1929 return (NULL); 1930 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 1931 INP_RLOCK(inp); 1932 if (in_pcbrele_rlocked(inp)) 1933 return (NULL); 1934 } else 1935 panic("%s: locking bug", __func__); 1936 } else 1937 INP_HASH_RUNLOCK(pcbinfo); 1938 return (inp); 1939 } 1940 1941 /* 1942 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 1943 * from which a pre-calculated hash value may be extracted. 1944 * 1945 * Possibly more of this logic should be in in_pcbgroup.c. 1946 */ 1947 struct inpcb * 1948 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 1949 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 1950 { 1951 #if defined(PCBGROUP) && !defined(RSS) 1952 struct inpcbgroup *pcbgroup; 1953 #endif 1954 1955 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 1956 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1957 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 1958 ("%s: LOCKPCB not set", __func__)); 1959 1960 /* 1961 * When not using RSS, use connection groups in preference to the 1962 * reservation table when looking up 4-tuples. When using RSS, just 1963 * use the reservation table, due to the cost of the Toeplitz hash 1964 * in software. 1965 * 1966 * XXXRW: This policy belongs in the pcbgroup code, as in principle 1967 * we could be doing RSS with a non-Toeplitz hash that is affordable 1968 * in software. 1969 */ 1970 #if defined(PCBGROUP) && !defined(RSS) 1971 if (in_pcbgroup_enabled(pcbinfo)) { 1972 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 1973 fport); 1974 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 1975 laddr, lport, lookupflags, ifp)); 1976 } 1977 #endif 1978 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 1979 lookupflags, ifp)); 1980 } 1981 1982 struct inpcb * 1983 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1984 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 1985 struct ifnet *ifp, struct mbuf *m) 1986 { 1987 #ifdef PCBGROUP 1988 struct inpcbgroup *pcbgroup; 1989 #endif 1990 1991 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 1992 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1993 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 1994 ("%s: LOCKPCB not set", __func__)); 1995 1996 #ifdef PCBGROUP 1997 /* 1998 * If we can use a hardware-generated hash to look up the connection 1999 * group, use that connection group to find the inpcb. Otherwise 2000 * fall back on a software hash -- or the reservation table if we're 2001 * using RSS. 2002 * 2003 * XXXRW: As above, that policy belongs in the pcbgroup code. 2004 */ 2005 if (in_pcbgroup_enabled(pcbinfo) && 2006 !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { 2007 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), 2008 m->m_pkthdr.flowid); 2009 if (pcbgroup != NULL) 2010 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, 2011 fport, laddr, lport, lookupflags, ifp)); 2012 #ifndef RSS 2013 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2014 fport); 2015 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2016 laddr, lport, lookupflags, ifp)); 2017 #endif 2018 } 2019 #endif 2020 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2021 lookupflags, ifp)); 2022 } 2023 #endif /* INET */ 2024 2025 /* 2026 * Insert PCB onto various hash lists. 2027 */ 2028 static int 2029 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update) 2030 { 2031 struct inpcbhead *pcbhash; 2032 struct inpcbporthead *pcbporthash; 2033 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2034 struct inpcbport *phd; 2035 u_int32_t hashkey_faddr; 2036 2037 INP_WLOCK_ASSERT(inp); 2038 INP_HASH_WLOCK_ASSERT(pcbinfo); 2039 2040 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2041 ("in_pcbinshash: INP_INHASHLIST")); 2042 2043 #ifdef INET6 2044 if (inp->inp_vflag & INP_IPV6) 2045 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2046 else 2047 #endif 2048 hashkey_faddr = inp->inp_faddr.s_addr; 2049 2050 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2051 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2052 2053 pcbporthash = &pcbinfo->ipi_porthashbase[ 2054 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2055 2056 /* 2057 * Go through port list and look for a head for this lport. 2058 */ 2059 LIST_FOREACH(phd, pcbporthash, phd_hash) { 2060 if (phd->phd_port == inp->inp_lport) 2061 break; 2062 } 2063 /* 2064 * If none exists, malloc one and tack it on. 2065 */ 2066 if (phd == NULL) { 2067 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 2068 if (phd == NULL) { 2069 return (ENOBUFS); /* XXX */ 2070 } 2071 phd->phd_port = inp->inp_lport; 2072 LIST_INIT(&phd->phd_pcblist); 2073 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2074 } 2075 inp->inp_phd = phd; 2076 LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2077 LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2078 inp->inp_flags |= INP_INHASHLIST; 2079 #ifdef PCBGROUP 2080 if (do_pcbgroup_update) 2081 in_pcbgroup_update(inp); 2082 #endif 2083 return (0); 2084 } 2085 2086 /* 2087 * For now, there are two public interfaces to insert an inpcb into the hash 2088 * lists -- one that does update pcbgroups, and one that doesn't. The latter 2089 * is used only in the TCP syncache, where in_pcbinshash is called before the 2090 * full 4-tuple is set for the inpcb, and we don't want to install in the 2091 * pcbgroup until later. 2092 * 2093 * XXXRW: This seems like a misfeature. in_pcbinshash should always update 2094 * connection groups, and partially initialised inpcbs should not be exposed 2095 * to either reservation hash tables or pcbgroups. 2096 */ 2097 int 2098 in_pcbinshash(struct inpcb *inp) 2099 { 2100 2101 return (in_pcbinshash_internal(inp, 1)); 2102 } 2103 2104 int 2105 in_pcbinshash_nopcbgroup(struct inpcb *inp) 2106 { 2107 2108 return (in_pcbinshash_internal(inp, 0)); 2109 } 2110 2111 /* 2112 * Move PCB to the proper hash bucket when { faddr, fport } have been 2113 * changed. NOTE: This does not handle the case of the lport changing (the 2114 * hashed port list would have to be updated as well), so the lport must 2115 * not change after in_pcbinshash() has been called. 2116 */ 2117 void 2118 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) 2119 { 2120 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2121 struct inpcbhead *head; 2122 u_int32_t hashkey_faddr; 2123 2124 INP_WLOCK_ASSERT(inp); 2125 INP_HASH_WLOCK_ASSERT(pcbinfo); 2126 2127 KASSERT(inp->inp_flags & INP_INHASHLIST, 2128 ("in_pcbrehash: !INP_INHASHLIST")); 2129 2130 #ifdef INET6 2131 if (inp->inp_vflag & INP_IPV6) 2132 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2133 else 2134 #endif 2135 hashkey_faddr = inp->inp_faddr.s_addr; 2136 2137 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2138 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2139 2140 LIST_REMOVE(inp, inp_hash); 2141 LIST_INSERT_HEAD(head, inp, inp_hash); 2142 2143 #ifdef PCBGROUP 2144 if (m != NULL) 2145 in_pcbgroup_update_mbuf(inp, m); 2146 else 2147 in_pcbgroup_update(inp); 2148 #endif 2149 } 2150 2151 void 2152 in_pcbrehash(struct inpcb *inp) 2153 { 2154 2155 in_pcbrehash_mbuf(inp, NULL); 2156 } 2157 2158 /* 2159 * Remove PCB from various lists. 2160 */ 2161 static void 2162 in_pcbremlists(struct inpcb *inp) 2163 { 2164 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2165 2166 INP_INFO_WLOCK_ASSERT(pcbinfo); 2167 INP_WLOCK_ASSERT(inp); 2168 2169 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 2170 if (inp->inp_flags & INP_INHASHLIST) { 2171 struct inpcbport *phd = inp->inp_phd; 2172 2173 INP_HASH_WLOCK(pcbinfo); 2174 LIST_REMOVE(inp, inp_hash); 2175 LIST_REMOVE(inp, inp_portlist); 2176 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 2177 LIST_REMOVE(phd, phd_hash); 2178 free(phd, M_PCB); 2179 } 2180 INP_HASH_WUNLOCK(pcbinfo); 2181 inp->inp_flags &= ~INP_INHASHLIST; 2182 } 2183 LIST_REMOVE(inp, inp_list); 2184 pcbinfo->ipi_count--; 2185 #ifdef PCBGROUP 2186 in_pcbgroup_remove(inp); 2187 #endif 2188 } 2189 2190 /* 2191 * A set label operation has occurred at the socket layer, propagate the 2192 * label change into the in_pcb for the socket. 2193 */ 2194 void 2195 in_pcbsosetlabel(struct socket *so) 2196 { 2197 #ifdef MAC 2198 struct inpcb *inp; 2199 2200 inp = sotoinpcb(so); 2201 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2202 2203 INP_WLOCK(inp); 2204 SOCK_LOCK(so); 2205 mac_inpcb_sosetlabel(so, inp); 2206 SOCK_UNLOCK(so); 2207 INP_WUNLOCK(inp); 2208 #endif 2209 } 2210 2211 /* 2212 * ipport_tick runs once per second, determining if random port allocation 2213 * should be continued. If more than ipport_randomcps ports have been 2214 * allocated in the last second, then we return to sequential port 2215 * allocation. We return to random allocation only once we drop below 2216 * ipport_randomcps for at least ipport_randomtime seconds. 2217 */ 2218 static void 2219 ipport_tick(void *xtp) 2220 { 2221 VNET_ITERATOR_DECL(vnet_iter); 2222 2223 VNET_LIST_RLOCK_NOSLEEP(); 2224 VNET_FOREACH(vnet_iter) { 2225 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2226 if (V_ipport_tcpallocs <= 2227 V_ipport_tcplastcount + V_ipport_randomcps) { 2228 if (V_ipport_stoprandom > 0) 2229 V_ipport_stoprandom--; 2230 } else 2231 V_ipport_stoprandom = V_ipport_randomtime; 2232 V_ipport_tcplastcount = V_ipport_tcpallocs; 2233 CURVNET_RESTORE(); 2234 } 2235 VNET_LIST_RUNLOCK_NOSLEEP(); 2236 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2237 } 2238 2239 static void 2240 ip_fini(void *xtp) 2241 { 2242 2243 callout_stop(&ipport_tick_callout); 2244 } 2245 2246 /* 2247 * The ipport_callout should start running at about the time we attach the 2248 * inet or inet6 domains. 2249 */ 2250 static void 2251 ipport_tick_init(const void *unused __unused) 2252 { 2253 2254 /* Start ipport_tick. */ 2255 callout_init(&ipport_tick_callout, 1); 2256 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2257 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2258 SHUTDOWN_PRI_DEFAULT); 2259 } 2260 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2261 ipport_tick_init, NULL); 2262 2263 void 2264 inp_wlock(struct inpcb *inp) 2265 { 2266 2267 INP_WLOCK(inp); 2268 } 2269 2270 void 2271 inp_wunlock(struct inpcb *inp) 2272 { 2273 2274 INP_WUNLOCK(inp); 2275 } 2276 2277 void 2278 inp_rlock(struct inpcb *inp) 2279 { 2280 2281 INP_RLOCK(inp); 2282 } 2283 2284 void 2285 inp_runlock(struct inpcb *inp) 2286 { 2287 2288 INP_RUNLOCK(inp); 2289 } 2290 2291 #ifdef INVARIANTS 2292 void 2293 inp_lock_assert(struct inpcb *inp) 2294 { 2295 2296 INP_WLOCK_ASSERT(inp); 2297 } 2298 2299 void 2300 inp_unlock_assert(struct inpcb *inp) 2301 { 2302 2303 INP_UNLOCK_ASSERT(inp); 2304 } 2305 #endif 2306 2307 void 2308 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2309 { 2310 struct inpcb *inp; 2311 2312 INP_INFO_RLOCK(&V_tcbinfo); 2313 LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 2314 INP_WLOCK(inp); 2315 func(inp, arg); 2316 INP_WUNLOCK(inp); 2317 } 2318 INP_INFO_RUNLOCK(&V_tcbinfo); 2319 } 2320 2321 struct socket * 2322 inp_inpcbtosocket(struct inpcb *inp) 2323 { 2324 2325 INP_WLOCK_ASSERT(inp); 2326 return (inp->inp_socket); 2327 } 2328 2329 struct tcpcb * 2330 inp_inpcbtotcpcb(struct inpcb *inp) 2331 { 2332 2333 INP_WLOCK_ASSERT(inp); 2334 return ((struct tcpcb *)inp->inp_ppcb); 2335 } 2336 2337 int 2338 inp_ip_tos_get(const struct inpcb *inp) 2339 { 2340 2341 return (inp->inp_ip_tos); 2342 } 2343 2344 void 2345 inp_ip_tos_set(struct inpcb *inp, int val) 2346 { 2347 2348 inp->inp_ip_tos = val; 2349 } 2350 2351 void 2352 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2353 uint32_t *faddr, uint16_t *fp) 2354 { 2355 2356 INP_LOCK_ASSERT(inp); 2357 *laddr = inp->inp_laddr.s_addr; 2358 *faddr = inp->inp_faddr.s_addr; 2359 *lp = inp->inp_lport; 2360 *fp = inp->inp_fport; 2361 } 2362 2363 struct inpcb * 2364 so_sotoinpcb(struct socket *so) 2365 { 2366 2367 return (sotoinpcb(so)); 2368 } 2369 2370 struct tcpcb * 2371 so_sototcpcb(struct socket *so) 2372 { 2373 2374 return (sototcpcb(so)); 2375 } 2376 2377 #ifdef DDB 2378 static void 2379 db_print_indent(int indent) 2380 { 2381 int i; 2382 2383 for (i = 0; i < indent; i++) 2384 db_printf(" "); 2385 } 2386 2387 static void 2388 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2389 { 2390 char faddr_str[48], laddr_str[48]; 2391 2392 db_print_indent(indent); 2393 db_printf("%s at %p\n", name, inc); 2394 2395 indent += 2; 2396 2397 #ifdef INET6 2398 if (inc->inc_flags & INC_ISIPV6) { 2399 /* IPv6. */ 2400 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2401 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2402 } else 2403 #endif 2404 { 2405 /* IPv4. */ 2406 inet_ntoa_r(inc->inc_laddr, laddr_str); 2407 inet_ntoa_r(inc->inc_faddr, faddr_str); 2408 } 2409 db_print_indent(indent); 2410 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2411 ntohs(inc->inc_lport)); 2412 db_print_indent(indent); 2413 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2414 ntohs(inc->inc_fport)); 2415 } 2416 2417 static void 2418 db_print_inpflags(int inp_flags) 2419 { 2420 int comma; 2421 2422 comma = 0; 2423 if (inp_flags & INP_RECVOPTS) { 2424 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2425 comma = 1; 2426 } 2427 if (inp_flags & INP_RECVRETOPTS) { 2428 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2429 comma = 1; 2430 } 2431 if (inp_flags & INP_RECVDSTADDR) { 2432 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2433 comma = 1; 2434 } 2435 if (inp_flags & INP_HDRINCL) { 2436 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2437 comma = 1; 2438 } 2439 if (inp_flags & INP_HIGHPORT) { 2440 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2441 comma = 1; 2442 } 2443 if (inp_flags & INP_LOWPORT) { 2444 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2445 comma = 1; 2446 } 2447 if (inp_flags & INP_ANONPORT) { 2448 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2449 comma = 1; 2450 } 2451 if (inp_flags & INP_RECVIF) { 2452 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2453 comma = 1; 2454 } 2455 if (inp_flags & INP_MTUDISC) { 2456 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2457 comma = 1; 2458 } 2459 if (inp_flags & INP_RECVTTL) { 2460 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 2461 comma = 1; 2462 } 2463 if (inp_flags & INP_DONTFRAG) { 2464 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 2465 comma = 1; 2466 } 2467 if (inp_flags & INP_RECVTOS) { 2468 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 2469 comma = 1; 2470 } 2471 if (inp_flags & IN6P_IPV6_V6ONLY) { 2472 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 2473 comma = 1; 2474 } 2475 if (inp_flags & IN6P_PKTINFO) { 2476 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 2477 comma = 1; 2478 } 2479 if (inp_flags & IN6P_HOPLIMIT) { 2480 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 2481 comma = 1; 2482 } 2483 if (inp_flags & IN6P_HOPOPTS) { 2484 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 2485 comma = 1; 2486 } 2487 if (inp_flags & IN6P_DSTOPTS) { 2488 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 2489 comma = 1; 2490 } 2491 if (inp_flags & IN6P_RTHDR) { 2492 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 2493 comma = 1; 2494 } 2495 if (inp_flags & IN6P_RTHDRDSTOPTS) { 2496 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 2497 comma = 1; 2498 } 2499 if (inp_flags & IN6P_TCLASS) { 2500 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 2501 comma = 1; 2502 } 2503 if (inp_flags & IN6P_AUTOFLOWLABEL) { 2504 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 2505 comma = 1; 2506 } 2507 if (inp_flags & INP_TIMEWAIT) { 2508 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 2509 comma = 1; 2510 } 2511 if (inp_flags & INP_ONESBCAST) { 2512 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 2513 comma = 1; 2514 } 2515 if (inp_flags & INP_DROPPED) { 2516 db_printf("%sINP_DROPPED", comma ? ", " : ""); 2517 comma = 1; 2518 } 2519 if (inp_flags & INP_SOCKREF) { 2520 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 2521 comma = 1; 2522 } 2523 if (inp_flags & IN6P_RFC2292) { 2524 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 2525 comma = 1; 2526 } 2527 if (inp_flags & IN6P_MTU) { 2528 db_printf("IN6P_MTU%s", comma ? ", " : ""); 2529 comma = 1; 2530 } 2531 } 2532 2533 static void 2534 db_print_inpvflag(u_char inp_vflag) 2535 { 2536 int comma; 2537 2538 comma = 0; 2539 if (inp_vflag & INP_IPV4) { 2540 db_printf("%sINP_IPV4", comma ? ", " : ""); 2541 comma = 1; 2542 } 2543 if (inp_vflag & INP_IPV6) { 2544 db_printf("%sINP_IPV6", comma ? ", " : ""); 2545 comma = 1; 2546 } 2547 if (inp_vflag & INP_IPV6PROTO) { 2548 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 2549 comma = 1; 2550 } 2551 } 2552 2553 static void 2554 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 2555 { 2556 2557 db_print_indent(indent); 2558 db_printf("%s at %p\n", name, inp); 2559 2560 indent += 2; 2561 2562 db_print_indent(indent); 2563 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 2564 2565 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 2566 2567 db_print_indent(indent); 2568 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 2569 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 2570 2571 db_print_indent(indent); 2572 db_printf("inp_label: %p inp_flags: 0x%x (", 2573 inp->inp_label, inp->inp_flags); 2574 db_print_inpflags(inp->inp_flags); 2575 db_printf(")\n"); 2576 2577 db_print_indent(indent); 2578 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 2579 inp->inp_vflag); 2580 db_print_inpvflag(inp->inp_vflag); 2581 db_printf(")\n"); 2582 2583 db_print_indent(indent); 2584 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 2585 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 2586 2587 db_print_indent(indent); 2588 #ifdef INET6 2589 if (inp->inp_vflag & INP_IPV6) { 2590 db_printf("in6p_options: %p in6p_outputopts: %p " 2591 "in6p_moptions: %p\n", inp->in6p_options, 2592 inp->in6p_outputopts, inp->in6p_moptions); 2593 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 2594 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 2595 inp->in6p_hops); 2596 } else 2597 #endif 2598 { 2599 db_printf("inp_ip_tos: %d inp_ip_options: %p " 2600 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 2601 inp->inp_options, inp->inp_moptions); 2602 } 2603 2604 db_print_indent(indent); 2605 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 2606 (uintmax_t)inp->inp_gencnt); 2607 } 2608 2609 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 2610 { 2611 struct inpcb *inp; 2612 2613 if (!have_addr) { 2614 db_printf("usage: show inpcb <addr>\n"); 2615 return; 2616 } 2617 inp = (struct inpcb *)addr; 2618 2619 db_print_inpcb(inp, "inpcb", 0); 2620 } 2621 #endif /* DDB */ 2622