1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * Copyright (c) 2021-2022 Gleb Smirnoff <glebius@FreeBSD.org> 9 * All rights reserved. 10 * 11 * Portions of this software were developed by Robert N. M. Watson under 12 * contract to Juniper Networks, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include "opt_ddb.h" 45 #include "opt_ipsec.h" 46 #include "opt_inet.h" 47 #include "opt_inet6.h" 48 #include "opt_ratelimit.h" 49 #include "opt_route.h" 50 #include "opt_rss.h" 51 52 #include <sys/param.h> 53 #include <sys/hash.h> 54 #include <sys/systm.h> 55 #include <sys/libkern.h> 56 #include <sys/lock.h> 57 #include <sys/malloc.h> 58 #include <sys/mbuf.h> 59 #include <sys/eventhandler.h> 60 #include <sys/domain.h> 61 #include <sys/protosw.h> 62 #include <sys/smp.h> 63 #include <sys/socket.h> 64 #include <sys/socketvar.h> 65 #include <sys/sockio.h> 66 #include <sys/priv.h> 67 #include <sys/proc.h> 68 #include <sys/refcount.h> 69 #include <sys/jail.h> 70 #include <sys/kernel.h> 71 #include <sys/sysctl.h> 72 73 #ifdef DDB 74 #include <ddb/ddb.h> 75 #endif 76 77 #include <vm/uma.h> 78 #include <vm/vm.h> 79 80 #include <net/if.h> 81 #include <net/if_var.h> 82 #include <net/if_private.h> 83 #include <net/if_types.h> 84 #include <net/if_llatbl.h> 85 #include <net/route.h> 86 #include <net/rss_config.h> 87 #include <net/vnet.h> 88 89 #if defined(INET) || defined(INET6) 90 #include <netinet/in.h> 91 #include <netinet/in_pcb.h> 92 #include <netinet/in_pcb_var.h> 93 #include <netinet/tcp.h> 94 #ifdef INET 95 #include <netinet/in_var.h> 96 #include <netinet/in_fib.h> 97 #endif 98 #include <netinet/ip_var.h> 99 #ifdef INET6 100 #include <netinet/ip6.h> 101 #include <netinet6/in6_pcb.h> 102 #include <netinet6/in6_var.h> 103 #include <netinet6/ip6_var.h> 104 #endif /* INET6 */ 105 #include <net/route/nhop.h> 106 #endif 107 108 #include <netipsec/ipsec_support.h> 109 110 #include <security/mac/mac_framework.h> 111 112 #define INPCBLBGROUP_SIZMIN 8 113 #define INPCBLBGROUP_SIZMAX 256 114 #define INP_FREED 0x00000200 /* See in_pcb.h. */ 115 116 /* 117 * These configure the range of local port addresses assigned to 118 * "unspecified" outgoing connections/packets/whatever. 119 */ 120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 126 127 /* 128 * Reserved ports accessible only to root. There are significant 129 * security considerations that must be accounted for when changing these, 130 * but the security benefits can be great. Please be careful. 131 */ 132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 133 VNET_DEFINE(int, ipport_reservedlow); 134 135 /* Enable random ephemeral port allocation by default. */ 136 VNET_DEFINE(int, ipport_randomized) = 1; 137 138 #ifdef INET 139 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 140 struct in_addr faddr, u_int fport_arg, 141 struct in_addr laddr, u_int lport_arg, 142 int lookupflags, struct ifnet *ifp, 143 uint8_t numa_domain); 144 145 #define RANGECHK(var, min, max) \ 146 if ((var) < (min)) { (var) = (min); } \ 147 else if ((var) > (max)) { (var) = (max); } 148 149 static int 150 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 151 { 152 int error; 153 154 error = sysctl_handle_int(oidp, arg1, arg2, req); 155 if (error == 0) { 156 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 157 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 158 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 159 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 160 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 161 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 162 } 163 return (error); 164 } 165 166 #undef RANGECHK 167 168 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, 169 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 170 "IP Ports"); 171 172 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 173 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 174 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", 175 ""); 176 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 177 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 178 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", 179 ""); 180 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 181 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 182 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", 183 ""); 184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 185 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 186 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", 187 ""); 188 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 189 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 190 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", 191 ""); 192 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 193 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 194 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", 195 ""); 196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 197 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 198 &VNET_NAME(ipport_reservedhigh), 0, ""); 199 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 200 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 202 CTLFLAG_VNET | CTLFLAG_RW, 203 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 204 205 #ifdef RATELIMIT 206 counter_u64_t rate_limit_new; 207 counter_u64_t rate_limit_chg; 208 counter_u64_t rate_limit_active; 209 counter_u64_t rate_limit_alloc_fail; 210 counter_u64_t rate_limit_set_ok; 211 212 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 213 "IP Rate Limiting"); 214 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD, 215 &rate_limit_active, "Active rate limited connections"); 216 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD, 217 &rate_limit_alloc_fail, "Rate limited connection failures"); 218 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD, 219 &rate_limit_set_ok, "Rate limited setting succeeded"); 220 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD, 221 &rate_limit_new, "Total Rate limit new attempts"); 222 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD, 223 &rate_limit_chg, "Total Rate limited change attempts"); 224 225 #endif /* RATELIMIT */ 226 227 #endif /* INET */ 228 229 VNET_DEFINE(uint32_t, in_pcbhashseed); 230 static void 231 in_pcbhashseed_init(void) 232 { 233 234 V_in_pcbhashseed = arc4random(); 235 } 236 VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, 237 in_pcbhashseed_init, 0); 238 239 static void in_pcbremhash(struct inpcb *); 240 241 /* 242 * in_pcb.c: manage the Protocol Control Blocks. 243 * 244 * NOTE: It is assumed that most of these functions will be called with 245 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 246 * functions often modify hash chains or addresses in pcbs. 247 */ 248 249 static struct inpcblbgroup * 250 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, struct ucred *cred, 251 u_char vflag, uint16_t port, const union in_dependaddr *addr, int size, 252 uint8_t numa_domain) 253 { 254 struct inpcblbgroup *grp; 255 size_t bytes; 256 257 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 258 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 259 if (grp == NULL) 260 return (NULL); 261 grp->il_cred = crhold(cred); 262 grp->il_vflag = vflag; 263 grp->il_lport = port; 264 grp->il_numa_domain = numa_domain; 265 grp->il_dependladdr = *addr; 266 grp->il_inpsiz = size; 267 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 268 return (grp); 269 } 270 271 static void 272 in_pcblbgroup_free_deferred(epoch_context_t ctx) 273 { 274 struct inpcblbgroup *grp; 275 276 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); 277 crfree(grp->il_cred); 278 free(grp, M_PCB); 279 } 280 281 static void 282 in_pcblbgroup_free(struct inpcblbgroup *grp) 283 { 284 285 CK_LIST_REMOVE(grp, il_list); 286 NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx); 287 } 288 289 static struct inpcblbgroup * 290 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 291 struct inpcblbgroup *old_grp, int size) 292 { 293 struct inpcblbgroup *grp; 294 int i; 295 296 grp = in_pcblbgroup_alloc(hdr, old_grp->il_cred, old_grp->il_vflag, 297 old_grp->il_lport, &old_grp->il_dependladdr, size, 298 old_grp->il_numa_domain); 299 if (grp == NULL) 300 return (NULL); 301 302 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 303 ("invalid new local group size %d and old local group count %d", 304 grp->il_inpsiz, old_grp->il_inpcnt)); 305 306 for (i = 0; i < old_grp->il_inpcnt; ++i) 307 grp->il_inp[i] = old_grp->il_inp[i]; 308 grp->il_inpcnt = old_grp->il_inpcnt; 309 in_pcblbgroup_free(old_grp); 310 return (grp); 311 } 312 313 /* 314 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] 315 * and shrink group if possible. 316 */ 317 static void 318 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, 319 int i) 320 { 321 struct inpcblbgroup *grp, *new_grp; 322 323 grp = *grpp; 324 for (; i + 1 < grp->il_inpcnt; ++i) 325 grp->il_inp[i] = grp->il_inp[i + 1]; 326 grp->il_inpcnt--; 327 328 if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && 329 grp->il_inpcnt <= grp->il_inpsiz / 4) { 330 /* Shrink this group. */ 331 new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); 332 if (new_grp != NULL) 333 *grpp = new_grp; 334 } 335 } 336 337 /* 338 * Add PCB to load balance group for SO_REUSEPORT_LB option. 339 */ 340 static int 341 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain) 342 { 343 const static struct timeval interval = { 60, 0 }; 344 static struct timeval lastprint; 345 struct inpcbinfo *pcbinfo; 346 struct inpcblbgrouphead *hdr; 347 struct inpcblbgroup *grp; 348 uint32_t idx; 349 350 pcbinfo = inp->inp_pcbinfo; 351 352 INP_WLOCK_ASSERT(inp); 353 INP_HASH_WLOCK_ASSERT(pcbinfo); 354 355 #ifdef INET6 356 /* 357 * Don't allow IPv4 mapped INET6 wild socket. 358 */ 359 if ((inp->inp_vflag & INP_IPV4) && 360 inp->inp_laddr.s_addr == INADDR_ANY && 361 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 362 return (0); 363 } 364 #endif 365 366 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); 367 hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; 368 CK_LIST_FOREACH(grp, hdr, il_list) { 369 if (grp->il_cred->cr_prison == inp->inp_cred->cr_prison && 370 grp->il_vflag == inp->inp_vflag && 371 grp->il_lport == inp->inp_lport && 372 grp->il_numa_domain == numa_domain && 373 memcmp(&grp->il_dependladdr, 374 &inp->inp_inc.inc_ie.ie_dependladdr, 375 sizeof(grp->il_dependladdr)) == 0) { 376 break; 377 } 378 } 379 if (grp == NULL) { 380 /* Create new load balance group. */ 381 grp = in_pcblbgroup_alloc(hdr, inp->inp_cred, inp->inp_vflag, 382 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 383 INPCBLBGROUP_SIZMIN, numa_domain); 384 if (grp == NULL) 385 return (ENOBUFS); 386 } else if (grp->il_inpcnt == grp->il_inpsiz) { 387 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 388 if (ratecheck(&lastprint, &interval)) 389 printf("lb group port %d, limit reached\n", 390 ntohs(grp->il_lport)); 391 return (0); 392 } 393 394 /* Expand this local group. */ 395 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 396 if (grp == NULL) 397 return (ENOBUFS); 398 } 399 400 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 401 ("invalid local group size %d and count %d", grp->il_inpsiz, 402 grp->il_inpcnt)); 403 404 grp->il_inp[grp->il_inpcnt] = inp; 405 grp->il_inpcnt++; 406 return (0); 407 } 408 409 /* 410 * Remove PCB from load balance group. 411 */ 412 static void 413 in_pcbremlbgrouphash(struct inpcb *inp) 414 { 415 struct inpcbinfo *pcbinfo; 416 struct inpcblbgrouphead *hdr; 417 struct inpcblbgroup *grp; 418 int i; 419 420 pcbinfo = inp->inp_pcbinfo; 421 422 INP_WLOCK_ASSERT(inp); 423 INP_HASH_WLOCK_ASSERT(pcbinfo); 424 425 hdr = &pcbinfo->ipi_lbgrouphashbase[ 426 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 427 CK_LIST_FOREACH(grp, hdr, il_list) { 428 for (i = 0; i < grp->il_inpcnt; ++i) { 429 if (grp->il_inp[i] != inp) 430 continue; 431 432 if (grp->il_inpcnt == 1) { 433 /* We are the last, free this local group. */ 434 in_pcblbgroup_free(grp); 435 } else { 436 /* Pull up inpcbs, shrink group if possible. */ 437 in_pcblbgroup_reorder(hdr, &grp, i); 438 } 439 return; 440 } 441 } 442 } 443 444 int 445 in_pcblbgroup_numa(struct inpcb *inp, int arg) 446 { 447 struct inpcbinfo *pcbinfo; 448 struct inpcblbgrouphead *hdr; 449 struct inpcblbgroup *grp; 450 int err, i; 451 uint8_t numa_domain; 452 453 switch (arg) { 454 case TCP_REUSPORT_LB_NUMA_NODOM: 455 numa_domain = M_NODOM; 456 break; 457 case TCP_REUSPORT_LB_NUMA_CURDOM: 458 numa_domain = PCPU_GET(domain); 459 break; 460 default: 461 if (arg < 0 || arg >= vm_ndomains) 462 return (EINVAL); 463 numa_domain = arg; 464 } 465 466 err = 0; 467 pcbinfo = inp->inp_pcbinfo; 468 INP_WLOCK_ASSERT(inp); 469 INP_HASH_WLOCK(pcbinfo); 470 hdr = &pcbinfo->ipi_lbgrouphashbase[ 471 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 472 CK_LIST_FOREACH(grp, hdr, il_list) { 473 for (i = 0; i < grp->il_inpcnt; ++i) { 474 if (grp->il_inp[i] != inp) 475 continue; 476 477 if (grp->il_numa_domain == numa_domain) { 478 goto abort_with_hash_wlock; 479 } 480 481 /* Remove it from the old group. */ 482 in_pcbremlbgrouphash(inp); 483 484 /* Add it to the new group based on numa domain. */ 485 in_pcbinslbgrouphash(inp, numa_domain); 486 goto abort_with_hash_wlock; 487 } 488 } 489 err = ENOENT; 490 abort_with_hash_wlock: 491 INP_HASH_WUNLOCK(pcbinfo); 492 return (err); 493 } 494 495 /* Make sure it is safe to use hashinit(9) on CK_LIST. */ 496 CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb))); 497 498 /* 499 * Initialize an inpcbinfo - a per-VNET instance of connections db. 500 */ 501 void 502 in_pcbinfo_init(struct inpcbinfo *pcbinfo, struct inpcbstorage *pcbstor, 503 u_int hash_nelements, u_int porthash_nelements) 504 { 505 506 mtx_init(&pcbinfo->ipi_lock, pcbstor->ips_infolock_name, NULL, MTX_DEF); 507 mtx_init(&pcbinfo->ipi_hash_lock, pcbstor->ips_hashlock_name, 508 NULL, MTX_DEF); 509 #ifdef VIMAGE 510 pcbinfo->ipi_vnet = curvnet; 511 #endif 512 CK_LIST_INIT(&pcbinfo->ipi_listhead); 513 pcbinfo->ipi_count = 0; 514 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 515 &pcbinfo->ipi_hashmask); 516 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); 517 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 518 &pcbinfo->ipi_porthashmask); 519 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, 520 &pcbinfo->ipi_lbgrouphashmask); 521 pcbinfo->ipi_zone = pcbstor->ips_zone; 522 pcbinfo->ipi_portzone = pcbstor->ips_portzone; 523 pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone); 524 } 525 526 /* 527 * Destroy an inpcbinfo. 528 */ 529 void 530 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 531 { 532 533 KASSERT(pcbinfo->ipi_count == 0, 534 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 535 536 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 537 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 538 pcbinfo->ipi_porthashmask); 539 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 540 pcbinfo->ipi_lbgrouphashmask); 541 mtx_destroy(&pcbinfo->ipi_hash_lock); 542 mtx_destroy(&pcbinfo->ipi_lock); 543 } 544 545 /* 546 * Initialize a pcbstorage - per protocol zones to allocate inpcbs. 547 */ 548 static void inpcb_dtor(void *, int, void *); 549 static void inpcb_fini(void *, int); 550 void 551 in_pcbstorage_init(void *arg) 552 { 553 struct inpcbstorage *pcbstor = arg; 554 555 pcbstor->ips_zone = uma_zcreate(pcbstor->ips_zone_name, 556 pcbstor->ips_size, NULL, inpcb_dtor, pcbstor->ips_pcbinit, 557 inpcb_fini, UMA_ALIGN_CACHE, UMA_ZONE_SMR); 558 pcbstor->ips_portzone = uma_zcreate(pcbstor->ips_portzone_name, 559 sizeof(struct inpcbport), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 560 uma_zone_set_smr(pcbstor->ips_portzone, 561 uma_zone_get_smr(pcbstor->ips_zone)); 562 } 563 564 /* 565 * Destroy a pcbstorage - used by unloadable protocols. 566 */ 567 void 568 in_pcbstorage_destroy(void *arg) 569 { 570 struct inpcbstorage *pcbstor = arg; 571 572 uma_zdestroy(pcbstor->ips_zone); 573 uma_zdestroy(pcbstor->ips_portzone); 574 } 575 576 /* 577 * Allocate a PCB and associate it with the socket. 578 * On success return with the PCB locked. 579 */ 580 int 581 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 582 { 583 struct inpcb *inp; 584 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 585 int error; 586 #endif 587 588 inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT); 589 if (inp == NULL) 590 return (ENOBUFS); 591 bzero(&inp->inp_start_zero, inp_zero_size); 592 #ifdef NUMA 593 inp->inp_numa_domain = M_NODOM; 594 #endif 595 inp->inp_pcbinfo = pcbinfo; 596 inp->inp_socket = so; 597 inp->inp_cred = crhold(so->so_cred); 598 inp->inp_inc.inc_fibnum = so->so_fibnum; 599 #ifdef MAC 600 error = mac_inpcb_init(inp, M_NOWAIT); 601 if (error != 0) 602 goto out; 603 mac_inpcb_create(so, inp); 604 #endif 605 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 606 error = ipsec_init_pcbpolicy(inp); 607 if (error != 0) { 608 #ifdef MAC 609 mac_inpcb_destroy(inp); 610 #endif 611 goto out; 612 } 613 #endif /*IPSEC*/ 614 #ifdef INET6 615 if (INP_SOCKAF(so) == AF_INET6) { 616 inp->inp_vflag |= INP_IPV6PROTO | INP_IPV6; 617 if (V_ip6_v6only) 618 inp->inp_flags |= IN6P_IPV6_V6ONLY; 619 #ifdef INET 620 else 621 inp->inp_vflag |= INP_IPV4; 622 #endif 623 if (V_ip6_auto_flowlabel) 624 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 625 inp->in6p_hops = -1; /* use kernel default */ 626 } 627 #endif 628 #if defined(INET) && defined(INET6) 629 else 630 #endif 631 #ifdef INET 632 inp->inp_vflag |= INP_IPV4; 633 #endif 634 /* 635 * Routes in inpcb's can cache L2 as well; they are guaranteed 636 * to be cleaned up. 637 */ 638 inp->inp_route.ro_flags = RT_LLE_CACHE; 639 refcount_init(&inp->inp_refcount, 1); /* Reference from socket. */ 640 INP_WLOCK(inp); 641 INP_INFO_WLOCK(pcbinfo); 642 pcbinfo->ipi_count++; 643 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 644 CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list); 645 INP_INFO_WUNLOCK(pcbinfo); 646 so->so_pcb = inp; 647 648 return (0); 649 650 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 651 out: 652 uma_zfree_smr(pcbinfo->ipi_zone, inp); 653 return (error); 654 #endif 655 } 656 657 #ifdef INET 658 int 659 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 660 { 661 int anonport, error; 662 663 KASSERT(nam == NULL || nam->sa_family == AF_INET, 664 ("%s: invalid address family for %p", __func__, nam)); 665 KASSERT(nam == NULL || nam->sa_len == sizeof(struct sockaddr_in), 666 ("%s: invalid address length for %p", __func__, nam)); 667 INP_WLOCK_ASSERT(inp); 668 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 669 670 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 671 return (EINVAL); 672 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 673 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 674 &inp->inp_lport, cred); 675 if (error) 676 return (error); 677 if (in_pcbinshash(inp) != 0) { 678 inp->inp_laddr.s_addr = INADDR_ANY; 679 inp->inp_lport = 0; 680 return (EAGAIN); 681 } 682 if (anonport) 683 inp->inp_flags |= INP_ANONPORT; 684 return (0); 685 } 686 #endif 687 688 #if defined(INET) || defined(INET6) 689 /* 690 * Assign a local port like in_pcb_lport(), but also used with connect() 691 * and a foreign address and port. If fsa is non-NULL, choose a local port 692 * that is unused with those, otherwise one that is completely unused. 693 * lsa can be NULL for IPv6. 694 */ 695 int 696 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp, 697 struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags) 698 { 699 struct inpcbinfo *pcbinfo; 700 struct inpcb *tmpinp; 701 unsigned short *lastport; 702 int count, error; 703 u_short aux, first, last, lport; 704 #ifdef INET 705 struct in_addr laddr, faddr; 706 #endif 707 #ifdef INET6 708 struct in6_addr *laddr6, *faddr6; 709 #endif 710 711 pcbinfo = inp->inp_pcbinfo; 712 713 /* 714 * Because no actual state changes occur here, a global write lock on 715 * the pcbinfo isn't required. 716 */ 717 INP_LOCK_ASSERT(inp); 718 INP_HASH_LOCK_ASSERT(pcbinfo); 719 720 if (inp->inp_flags & INP_HIGHPORT) { 721 first = V_ipport_hifirstauto; /* sysctl */ 722 last = V_ipport_hilastauto; 723 lastport = &pcbinfo->ipi_lasthi; 724 } else if (inp->inp_flags & INP_LOWPORT) { 725 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); 726 if (error) 727 return (error); 728 first = V_ipport_lowfirstauto; /* 1023 */ 729 last = V_ipport_lowlastauto; /* 600 */ 730 lastport = &pcbinfo->ipi_lastlow; 731 } else { 732 first = V_ipport_firstauto; /* sysctl */ 733 last = V_ipport_lastauto; 734 lastport = &pcbinfo->ipi_lastport; 735 } 736 737 /* 738 * Instead of having two loops further down counting up or down 739 * make sure that first is always <= last and go with only one 740 * code path implementing all logic. 741 */ 742 if (first > last) { 743 aux = first; 744 first = last; 745 last = aux; 746 } 747 748 #ifdef INET 749 laddr.s_addr = INADDR_ANY; /* used by INET6+INET below too */ 750 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 751 if (lsa != NULL) 752 laddr = ((struct sockaddr_in *)lsa)->sin_addr; 753 if (fsa != NULL) 754 faddr = ((struct sockaddr_in *)fsa)->sin_addr; 755 } 756 #endif 757 #ifdef INET6 758 laddr6 = NULL; 759 if ((inp->inp_vflag & INP_IPV6) != 0) { 760 if (lsa != NULL) 761 laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr; 762 if (fsa != NULL) 763 faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr; 764 } 765 #endif 766 767 tmpinp = NULL; 768 lport = *lportp; 769 770 if (V_ipport_randomized) 771 *lastport = first + (arc4random() % (last - first)); 772 773 count = last - first; 774 775 do { 776 if (count-- < 0) /* completely used? */ 777 return (EADDRNOTAVAIL); 778 ++*lastport; 779 if (*lastport < first || *lastport > last) 780 *lastport = first; 781 lport = htons(*lastport); 782 783 if (fsa != NULL) { 784 #ifdef INET 785 if (lsa->sa_family == AF_INET) { 786 tmpinp = in_pcblookup_hash_locked(pcbinfo, 787 faddr, fport, laddr, lport, lookupflags, 788 NULL, M_NODOM); 789 } 790 #endif 791 #ifdef INET6 792 if (lsa->sa_family == AF_INET6) { 793 tmpinp = in6_pcblookup_hash_locked(pcbinfo, 794 faddr6, fport, laddr6, lport, lookupflags, 795 NULL, M_NODOM); 796 } 797 #endif 798 } else { 799 #ifdef INET6 800 if ((inp->inp_vflag & INP_IPV6) != 0) { 801 tmpinp = in6_pcblookup_local(pcbinfo, 802 &inp->in6p_laddr, lport, lookupflags, cred); 803 #ifdef INET 804 if (tmpinp == NULL && 805 (inp->inp_vflag & INP_IPV4)) 806 tmpinp = in_pcblookup_local(pcbinfo, 807 laddr, lport, lookupflags, cred); 808 #endif 809 } 810 #endif 811 #if defined(INET) && defined(INET6) 812 else 813 #endif 814 #ifdef INET 815 tmpinp = in_pcblookup_local(pcbinfo, laddr, 816 lport, lookupflags, cred); 817 #endif 818 } 819 } while (tmpinp != NULL); 820 821 *lportp = lport; 822 823 return (0); 824 } 825 826 /* 827 * Select a local port (number) to use. 828 */ 829 int 830 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 831 struct ucred *cred, int lookupflags) 832 { 833 struct sockaddr_in laddr; 834 835 if (laddrp) { 836 bzero(&laddr, sizeof(laddr)); 837 laddr.sin_family = AF_INET; 838 laddr.sin_addr = *laddrp; 839 } 840 return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr : 841 NULL, lportp, NULL, 0, cred, lookupflags)); 842 } 843 844 /* 845 * Return cached socket options. 846 */ 847 int 848 inp_so_options(const struct inpcb *inp) 849 { 850 int so_options; 851 852 so_options = 0; 853 854 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 855 so_options |= SO_REUSEPORT_LB; 856 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 857 so_options |= SO_REUSEPORT; 858 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 859 so_options |= SO_REUSEADDR; 860 return (so_options); 861 } 862 #endif /* INET || INET6 */ 863 864 /* 865 * Check if a new BINDMULTI socket is allowed to be created. 866 * 867 * ni points to the new inp. 868 * oi points to the existing inp. 869 * 870 * This checks whether the existing inp also has BINDMULTI and 871 * whether the credentials match. 872 */ 873 int 874 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 875 { 876 /* Check permissions match */ 877 if ((ni->inp_flags2 & INP_BINDMULTI) && 878 (ni->inp_cred->cr_uid != 879 oi->inp_cred->cr_uid)) 880 return (0); 881 882 /* Check the existing inp has BINDMULTI set */ 883 if ((ni->inp_flags2 & INP_BINDMULTI) && 884 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 885 return (0); 886 887 /* 888 * We're okay - either INP_BINDMULTI isn't set on ni, or 889 * it is and it matches the checks. 890 */ 891 return (1); 892 } 893 894 #ifdef INET 895 /* 896 * Set up a bind operation on a PCB, performing port allocation 897 * as required, but do not actually modify the PCB. Callers can 898 * either complete the bind by setting inp_laddr/inp_lport and 899 * calling in_pcbinshash(), or they can just use the resulting 900 * port and address to authorise the sending of a once-off packet. 901 * 902 * On error, the values of *laddrp and *lportp are not changed. 903 */ 904 int 905 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 906 u_short *lportp, struct ucred *cred) 907 { 908 struct socket *so = inp->inp_socket; 909 struct sockaddr_in *sin; 910 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 911 struct in_addr laddr; 912 u_short lport = 0; 913 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 914 int error; 915 916 /* 917 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here 918 * so that we don't have to add to the (already messy) code below. 919 */ 920 int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); 921 922 /* 923 * No state changes, so read locks are sufficient here. 924 */ 925 INP_LOCK_ASSERT(inp); 926 INP_HASH_LOCK_ASSERT(pcbinfo); 927 928 laddr.s_addr = *laddrp; 929 if (nam != NULL && laddr.s_addr != INADDR_ANY) 930 return (EINVAL); 931 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) 932 lookupflags = INPLOOKUP_WILDCARD; 933 if (nam == NULL) { 934 if ((error = prison_local_ip4(cred, &laddr)) != 0) 935 return (error); 936 } else { 937 sin = (struct sockaddr_in *)nam; 938 KASSERT(sin->sin_family == AF_INET, 939 ("%s: invalid family for address %p", __func__, sin)); 940 KASSERT(sin->sin_len == sizeof(*sin), 941 ("%s: invalid length for address %p", __func__, sin)); 942 943 error = prison_local_ip4(cred, &sin->sin_addr); 944 if (error) 945 return (error); 946 if (sin->sin_port != *lportp) { 947 /* Don't allow the port to change. */ 948 if (*lportp != 0) 949 return (EINVAL); 950 lport = sin->sin_port; 951 } 952 /* NB: lport is left as 0 if the port isn't being changed. */ 953 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 954 /* 955 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 956 * allow complete duplication of binding if 957 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 958 * and a multicast address is bound on both 959 * new and duplicated sockets. 960 */ 961 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 962 reuseport = SO_REUSEADDR|SO_REUSEPORT; 963 /* 964 * XXX: How to deal with SO_REUSEPORT_LB here? 965 * Treat same as SO_REUSEPORT for now. 966 */ 967 if ((so->so_options & 968 (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) 969 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; 970 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 971 sin->sin_port = 0; /* yech... */ 972 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 973 /* 974 * Is the address a local IP address? 975 * If INP_BINDANY is set, then the socket may be bound 976 * to any endpoint address, local or not. 977 */ 978 if ((inp->inp_flags & INP_BINDANY) == 0 && 979 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 980 return (EADDRNOTAVAIL); 981 } 982 laddr = sin->sin_addr; 983 if (lport) { 984 struct inpcb *t; 985 986 /* GROSS */ 987 if (ntohs(lport) <= V_ipport_reservedhigh && 988 ntohs(lport) >= V_ipport_reservedlow && 989 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) 990 return (EACCES); 991 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 992 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { 993 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 994 lport, INPLOOKUP_WILDCARD, cred); 995 /* 996 * XXX 997 * This entire block sorely needs a rewrite. 998 */ 999 if (t && 1000 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 1001 (so->so_type != SOCK_STREAM || 1002 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 1003 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 1004 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 1005 (t->inp_flags2 & INP_REUSEPORT) || 1006 (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && 1007 (inp->inp_cred->cr_uid != 1008 t->inp_cred->cr_uid)) 1009 return (EADDRINUSE); 1010 1011 /* 1012 * If the socket is a BINDMULTI socket, then 1013 * the credentials need to match and the 1014 * original socket also has to have been bound 1015 * with BINDMULTI. 1016 */ 1017 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 1018 return (EADDRINUSE); 1019 } 1020 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 1021 lport, lookupflags, cred); 1022 if (t && ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 1023 (reuseport & inp_so_options(t)) == 0 && 1024 (reuseport_lb & inp_so_options(t)) == 0) { 1025 #ifdef INET6 1026 if (ntohl(sin->sin_addr.s_addr) != 1027 INADDR_ANY || 1028 ntohl(t->inp_laddr.s_addr) != 1029 INADDR_ANY || 1030 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 1031 (t->inp_vflag & INP_IPV6PROTO) == 0) 1032 #endif 1033 return (EADDRINUSE); 1034 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 1035 return (EADDRINUSE); 1036 } 1037 } 1038 } 1039 if (*lportp != 0) 1040 lport = *lportp; 1041 if (lport == 0) { 1042 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 1043 if (error != 0) 1044 return (error); 1045 } 1046 *laddrp = laddr.s_addr; 1047 *lportp = lport; 1048 return (0); 1049 } 1050 1051 /* 1052 * Connect from a socket to a specified address. 1053 * Both address and port must be specified in argument sin. 1054 * If don't have a local address for this socket yet, 1055 * then pick one. 1056 */ 1057 int 1058 in_pcbconnect(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred, 1059 bool rehash) 1060 { 1061 u_short lport, fport; 1062 in_addr_t laddr, faddr; 1063 int anonport, error; 1064 1065 INP_WLOCK_ASSERT(inp); 1066 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1067 1068 lport = inp->inp_lport; 1069 laddr = inp->inp_laddr.s_addr; 1070 anonport = (lport == 0); 1071 error = in_pcbconnect_setup(inp, sin, &laddr, &lport, &faddr, &fport, 1072 cred); 1073 if (error) 1074 return (error); 1075 1076 /* Do the initial binding of the local address if required. */ 1077 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 1078 KASSERT(rehash == true, 1079 ("Rehashing required for unbound inps")); 1080 inp->inp_lport = lport; 1081 inp->inp_laddr.s_addr = laddr; 1082 if (in_pcbinshash(inp) != 0) { 1083 inp->inp_laddr.s_addr = INADDR_ANY; 1084 inp->inp_lport = 0; 1085 return (EAGAIN); 1086 } 1087 } 1088 1089 /* Commit the remaining changes. */ 1090 inp->inp_lport = lport; 1091 inp->inp_laddr.s_addr = laddr; 1092 inp->inp_faddr.s_addr = faddr; 1093 inp->inp_fport = fport; 1094 if (rehash) { 1095 in_pcbrehash(inp); 1096 } else { 1097 in_pcbinshash(inp); 1098 } 1099 1100 if (anonport) 1101 inp->inp_flags |= INP_ANONPORT; 1102 return (0); 1103 } 1104 1105 /* 1106 * Do proper source address selection on an unbound socket in case 1107 * of connect. Take jails into account as well. 1108 */ 1109 int 1110 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 1111 struct ucred *cred) 1112 { 1113 struct ifaddr *ifa; 1114 struct sockaddr *sa; 1115 struct sockaddr_in *sin, dst; 1116 struct nhop_object *nh; 1117 int error; 1118 1119 NET_EPOCH_ASSERT(); 1120 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1121 1122 /* 1123 * Bypass source address selection and use the primary jail IP 1124 * if requested. 1125 */ 1126 if (!prison_saddrsel_ip4(cred, laddr)) 1127 return (0); 1128 1129 error = 0; 1130 1131 nh = NULL; 1132 bzero(&dst, sizeof(dst)); 1133 sin = &dst; 1134 sin->sin_family = AF_INET; 1135 sin->sin_len = sizeof(struct sockaddr_in); 1136 sin->sin_addr.s_addr = faddr->s_addr; 1137 1138 /* 1139 * If route is known our src addr is taken from the i/f, 1140 * else punt. 1141 * 1142 * Find out route to destination. 1143 */ 1144 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1145 nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr, 1146 0, NHR_NONE, 0); 1147 1148 /* 1149 * If we found a route, use the address corresponding to 1150 * the outgoing interface. 1151 * 1152 * Otherwise assume faddr is reachable on a directly connected 1153 * network and try to find a corresponding interface to take 1154 * the source address from. 1155 */ 1156 if (nh == NULL || nh->nh_ifp == NULL) { 1157 struct in_ifaddr *ia; 1158 struct ifnet *ifp; 1159 1160 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1161 inp->inp_socket->so_fibnum)); 1162 if (ia == NULL) { 1163 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1164 inp->inp_socket->so_fibnum)); 1165 } 1166 if (ia == NULL) { 1167 error = ENETUNREACH; 1168 goto done; 1169 } 1170 1171 if (!prison_flag(cred, PR_IP4)) { 1172 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1173 goto done; 1174 } 1175 1176 ifp = ia->ia_ifp; 1177 ia = NULL; 1178 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1179 sa = ifa->ifa_addr; 1180 if (sa->sa_family != AF_INET) 1181 continue; 1182 sin = (struct sockaddr_in *)sa; 1183 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1184 ia = (struct in_ifaddr *)ifa; 1185 break; 1186 } 1187 } 1188 if (ia != NULL) { 1189 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1190 goto done; 1191 } 1192 1193 /* 3. As a last resort return the 'default' jail address. */ 1194 error = prison_get_ip4(cred, laddr); 1195 goto done; 1196 } 1197 1198 /* 1199 * If the outgoing interface on the route found is not 1200 * a loopback interface, use the address from that interface. 1201 * In case of jails do those three steps: 1202 * 1. check if the interface address belongs to the jail. If so use it. 1203 * 2. check if we have any address on the outgoing interface 1204 * belonging to this jail. If so use it. 1205 * 3. as a last resort return the 'default' jail address. 1206 */ 1207 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) { 1208 struct in_ifaddr *ia; 1209 struct ifnet *ifp; 1210 1211 /* If not jailed, use the default returned. */ 1212 if (!prison_flag(cred, PR_IP4)) { 1213 ia = (struct in_ifaddr *)nh->nh_ifa; 1214 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1215 goto done; 1216 } 1217 1218 /* Jailed. */ 1219 /* 1. Check if the iface address belongs to the jail. */ 1220 sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr; 1221 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1222 ia = (struct in_ifaddr *)nh->nh_ifa; 1223 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1224 goto done; 1225 } 1226 1227 /* 1228 * 2. Check if we have any address on the outgoing interface 1229 * belonging to this jail. 1230 */ 1231 ia = NULL; 1232 ifp = nh->nh_ifp; 1233 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1234 sa = ifa->ifa_addr; 1235 if (sa->sa_family != AF_INET) 1236 continue; 1237 sin = (struct sockaddr_in *)sa; 1238 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1239 ia = (struct in_ifaddr *)ifa; 1240 break; 1241 } 1242 } 1243 if (ia != NULL) { 1244 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1245 goto done; 1246 } 1247 1248 /* 3. As a last resort return the 'default' jail address. */ 1249 error = prison_get_ip4(cred, laddr); 1250 goto done; 1251 } 1252 1253 /* 1254 * The outgoing interface is marked with 'loopback net', so a route 1255 * to ourselves is here. 1256 * Try to find the interface of the destination address and then 1257 * take the address from there. That interface is not necessarily 1258 * a loopback interface. 1259 * In case of jails, check that it is an address of the jail 1260 * and if we cannot find, fall back to the 'default' jail address. 1261 */ 1262 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) { 1263 struct in_ifaddr *ia; 1264 1265 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst), 1266 inp->inp_socket->so_fibnum)); 1267 if (ia == NULL) 1268 ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0, 1269 inp->inp_socket->so_fibnum)); 1270 if (ia == NULL) 1271 ia = ifatoia(ifa_ifwithaddr(sintosa(&dst))); 1272 1273 if (!prison_flag(cred, PR_IP4)) { 1274 if (ia == NULL) { 1275 error = ENETUNREACH; 1276 goto done; 1277 } 1278 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1279 goto done; 1280 } 1281 1282 /* Jailed. */ 1283 if (ia != NULL) { 1284 struct ifnet *ifp; 1285 1286 ifp = ia->ia_ifp; 1287 ia = NULL; 1288 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1289 sa = ifa->ifa_addr; 1290 if (sa->sa_family != AF_INET) 1291 continue; 1292 sin = (struct sockaddr_in *)sa; 1293 if (prison_check_ip4(cred, 1294 &sin->sin_addr) == 0) { 1295 ia = (struct in_ifaddr *)ifa; 1296 break; 1297 } 1298 } 1299 if (ia != NULL) { 1300 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1301 goto done; 1302 } 1303 } 1304 1305 /* 3. As a last resort return the 'default' jail address. */ 1306 error = prison_get_ip4(cred, laddr); 1307 goto done; 1308 } 1309 1310 done: 1311 return (error); 1312 } 1313 1314 /* 1315 * Set up for a connect from a socket to the specified address. 1316 * On entry, *laddrp and *lportp should contain the current local 1317 * address and port for the PCB; these are updated to the values 1318 * that should be placed in inp_laddr and inp_lport to complete 1319 * the connect. 1320 * 1321 * On success, *faddrp and *fportp will be set to the remote address 1322 * and port. These are not updated in the error case. 1323 */ 1324 int 1325 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr_in *sin, 1326 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1327 struct ucred *cred) 1328 { 1329 struct in_ifaddr *ia; 1330 struct in_addr laddr, faddr; 1331 u_short lport, fport; 1332 int error; 1333 1334 KASSERT(sin->sin_family == AF_INET, 1335 ("%s: invalid address family for %p", __func__, sin)); 1336 KASSERT(sin->sin_len == sizeof(*sin), 1337 ("%s: invalid address length for %p", __func__, sin)); 1338 1339 /* 1340 * Because a global state change doesn't actually occur here, a read 1341 * lock is sufficient. 1342 */ 1343 NET_EPOCH_ASSERT(); 1344 INP_LOCK_ASSERT(inp); 1345 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1346 1347 if (sin->sin_port == 0) 1348 return (EADDRNOTAVAIL); 1349 laddr.s_addr = *laddrp; 1350 lport = *lportp; 1351 faddr = sin->sin_addr; 1352 fport = sin->sin_port; 1353 #ifdef ROUTE_MPATH 1354 if (CALC_FLOWID_OUTBOUND) { 1355 uint32_t hash_val, hash_type; 1356 1357 hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport, 1358 inp->inp_socket->so_proto->pr_protocol, &hash_type); 1359 1360 inp->inp_flowid = hash_val; 1361 inp->inp_flowtype = hash_type; 1362 } 1363 #endif 1364 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1365 /* 1366 * If the destination address is INADDR_ANY, 1367 * use the primary local address. 1368 * If the supplied address is INADDR_BROADCAST, 1369 * and the primary interface supports broadcast, 1370 * choose the broadcast address for that interface. 1371 */ 1372 if (faddr.s_addr == INADDR_ANY) { 1373 faddr = 1374 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1375 if ((error = prison_get_ip4(cred, &faddr)) != 0) 1376 return (error); 1377 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1378 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1379 IFF_BROADCAST) 1380 faddr = satosin(&CK_STAILQ_FIRST( 1381 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1382 } 1383 } 1384 if (laddr.s_addr == INADDR_ANY) { 1385 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1386 /* 1387 * If the destination address is multicast and an outgoing 1388 * interface has been set as a multicast option, prefer the 1389 * address of that interface as our source address. 1390 */ 1391 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1392 inp->inp_moptions != NULL) { 1393 struct ip_moptions *imo; 1394 struct ifnet *ifp; 1395 1396 imo = inp->inp_moptions; 1397 if (imo->imo_multicast_ifp != NULL) { 1398 ifp = imo->imo_multicast_ifp; 1399 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1400 if (ia->ia_ifp == ifp && 1401 prison_check_ip4(cred, 1402 &ia->ia_addr.sin_addr) == 0) 1403 break; 1404 } 1405 if (ia == NULL) 1406 error = EADDRNOTAVAIL; 1407 else { 1408 laddr = ia->ia_addr.sin_addr; 1409 error = 0; 1410 } 1411 } 1412 } 1413 if (error) 1414 return (error); 1415 } 1416 1417 if (lport != 0) { 1418 if (in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, 1419 fport, laddr, lport, 0, NULL, M_NODOM) != NULL) 1420 return (EADDRINUSE); 1421 } else { 1422 struct sockaddr_in lsin, fsin; 1423 1424 bzero(&lsin, sizeof(lsin)); 1425 bzero(&fsin, sizeof(fsin)); 1426 lsin.sin_family = AF_INET; 1427 lsin.sin_addr = laddr; 1428 fsin.sin_family = AF_INET; 1429 fsin.sin_addr = faddr; 1430 error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin, 1431 &lport, (struct sockaddr *)& fsin, fport, cred, 1432 INPLOOKUP_WILDCARD); 1433 if (error) 1434 return (error); 1435 } 1436 *laddrp = laddr.s_addr; 1437 *lportp = lport; 1438 *faddrp = faddr.s_addr; 1439 *fportp = fport; 1440 return (0); 1441 } 1442 1443 void 1444 in_pcbdisconnect(struct inpcb *inp) 1445 { 1446 1447 INP_WLOCK_ASSERT(inp); 1448 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1449 1450 inp->inp_laddr.s_addr = INADDR_ANY; 1451 inp->inp_faddr.s_addr = INADDR_ANY; 1452 inp->inp_fport = 0; 1453 in_pcbrehash(inp); 1454 } 1455 #endif /* INET */ 1456 1457 /* 1458 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1459 * For most protocols, this will be invoked immediately prior to calling 1460 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1461 * socket, in which case in_pcbfree() is deferred. 1462 */ 1463 void 1464 in_pcbdetach(struct inpcb *inp) 1465 { 1466 1467 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1468 1469 #ifdef RATELIMIT 1470 if (inp->inp_snd_tag != NULL) 1471 in_pcbdetach_txrtlmt(inp); 1472 #endif 1473 inp->inp_socket->so_pcb = NULL; 1474 inp->inp_socket = NULL; 1475 } 1476 1477 /* 1478 * inpcb hash lookups are protected by SMR section. 1479 * 1480 * Once desired pcb has been found, switching from SMR section to a pcb 1481 * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK 1482 * here because SMR is a critical section. 1483 * In 99%+ cases inp_smr_lock() would obtain the lock immediately. 1484 */ 1485 static inline void 1486 inp_lock(struct inpcb *inp, const inp_lookup_t lock) 1487 { 1488 1489 lock == INPLOOKUP_RLOCKPCB ? 1490 rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock); 1491 } 1492 1493 static inline void 1494 inp_unlock(struct inpcb *inp, const inp_lookup_t lock) 1495 { 1496 1497 lock == INPLOOKUP_RLOCKPCB ? 1498 rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock); 1499 } 1500 1501 static inline int 1502 inp_trylock(struct inpcb *inp, const inp_lookup_t lock) 1503 { 1504 1505 return (lock == INPLOOKUP_RLOCKPCB ? 1506 rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock)); 1507 } 1508 1509 static inline bool 1510 in_pcbrele(struct inpcb *inp, const inp_lookup_t lock) 1511 { 1512 1513 return (lock == INPLOOKUP_RLOCKPCB ? 1514 in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp)); 1515 } 1516 1517 static inline bool 1518 _inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock, const int ignflags) 1519 { 1520 1521 MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB); 1522 SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr); 1523 1524 if (__predict_true(inp_trylock(inp, lock))) { 1525 if (__predict_false(inp->inp_flags & ignflags)) { 1526 smr_exit(inp->inp_pcbinfo->ipi_smr); 1527 inp_unlock(inp, lock); 1528 return (false); 1529 } 1530 smr_exit(inp->inp_pcbinfo->ipi_smr); 1531 return (true); 1532 } 1533 1534 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1535 smr_exit(inp->inp_pcbinfo->ipi_smr); 1536 inp_lock(inp, lock); 1537 if (__predict_false(in_pcbrele(inp, lock))) 1538 return (false); 1539 /* 1540 * inp acquired through refcount & lock for sure didn't went 1541 * through uma_zfree(). However, it may have already went 1542 * through in_pcbfree() and has another reference, that 1543 * prevented its release by our in_pcbrele(). 1544 */ 1545 if (__predict_false(inp->inp_flags & ignflags)) { 1546 inp_unlock(inp, lock); 1547 return (false); 1548 } 1549 return (true); 1550 } else { 1551 smr_exit(inp->inp_pcbinfo->ipi_smr); 1552 return (false); 1553 } 1554 } 1555 1556 bool 1557 inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock) 1558 { 1559 1560 /* 1561 * in_pcblookup() family of functions ignore not only freed entries, 1562 * that may be found due to lockless access to the hash, but dropped 1563 * entries, too. 1564 */ 1565 return (_inp_smr_lock(inp, lock, INP_FREED | INP_DROPPED)); 1566 } 1567 1568 /* 1569 * inp_next() - inpcb hash/list traversal iterator 1570 * 1571 * Requires initialized struct inpcb_iterator for context. 1572 * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR(). 1573 * 1574 * - Iterator can have either write-lock or read-lock semantics, that can not 1575 * be changed later. 1576 * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through 1577 * a single hash slot. Note: only rip_input() does the latter. 1578 * - Iterator may have optional bool matching function. The matching function 1579 * will be executed for each inpcb in the SMR context, so it can not acquire 1580 * locks and can safely access only immutable fields of inpcb. 1581 * 1582 * A fresh initialized iterator has NULL inpcb in its context and that 1583 * means that inp_next() call would return the very first inpcb on the list 1584 * locked with desired semantic. In all following calls the context pointer 1585 * shall hold the current inpcb pointer. The KPI user is not supposed to 1586 * unlock the current inpcb! Upon end of traversal inp_next() will return NULL 1587 * and write NULL to its context. After end of traversal an iterator can be 1588 * reused. 1589 * 1590 * List traversals have the following features/constraints: 1591 * - New entries won't be seen, as they are always added to the head of a list. 1592 * - Removed entries won't stop traversal as long as they are not added to 1593 * a different list. This is violated by in_pcbrehash(). 1594 */ 1595 #define II_LIST_FIRST(ipi, hash) \ 1596 (((hash) == INP_ALL_LIST) ? \ 1597 CK_LIST_FIRST(&(ipi)->ipi_listhead) : \ 1598 CK_LIST_FIRST(&(ipi)->ipi_hashbase[(hash)])) 1599 #define II_LIST_NEXT(inp, hash) \ 1600 (((hash) == INP_ALL_LIST) ? \ 1601 CK_LIST_NEXT((inp), inp_list) : \ 1602 CK_LIST_NEXT((inp), inp_hash)) 1603 #define II_LOCK_ASSERT(inp, lock) \ 1604 rw_assert(&(inp)->inp_lock, \ 1605 (lock) == INPLOOKUP_RLOCKPCB ? RA_RLOCKED : RA_WLOCKED ) 1606 struct inpcb * 1607 inp_next(struct inpcb_iterator *ii) 1608 { 1609 const struct inpcbinfo *ipi = ii->ipi; 1610 inp_match_t *match = ii->match; 1611 void *ctx = ii->ctx; 1612 inp_lookup_t lock = ii->lock; 1613 int hash = ii->hash; 1614 struct inpcb *inp; 1615 1616 if (ii->inp == NULL) { /* First call. */ 1617 smr_enter(ipi->ipi_smr); 1618 /* This is unrolled CK_LIST_FOREACH(). */ 1619 for (inp = II_LIST_FIRST(ipi, hash); 1620 inp != NULL; 1621 inp = II_LIST_NEXT(inp, hash)) { 1622 if (match != NULL && (match)(inp, ctx) == false) 1623 continue; 1624 if (__predict_true(_inp_smr_lock(inp, lock, INP_FREED))) 1625 break; 1626 else { 1627 smr_enter(ipi->ipi_smr); 1628 MPASS(inp != II_LIST_FIRST(ipi, hash)); 1629 inp = II_LIST_FIRST(ipi, hash); 1630 if (inp == NULL) 1631 break; 1632 } 1633 } 1634 1635 if (inp == NULL) 1636 smr_exit(ipi->ipi_smr); 1637 else 1638 ii->inp = inp; 1639 1640 return (inp); 1641 } 1642 1643 /* Not a first call. */ 1644 smr_enter(ipi->ipi_smr); 1645 restart: 1646 inp = ii->inp; 1647 II_LOCK_ASSERT(inp, lock); 1648 next: 1649 inp = II_LIST_NEXT(inp, hash); 1650 if (inp == NULL) { 1651 smr_exit(ipi->ipi_smr); 1652 goto found; 1653 } 1654 1655 if (match != NULL && (match)(inp, ctx) == false) 1656 goto next; 1657 1658 if (__predict_true(inp_trylock(inp, lock))) { 1659 if (__predict_false(inp->inp_flags & INP_FREED)) { 1660 /* 1661 * Entries are never inserted in middle of a list, thus 1662 * as long as we are in SMR, we can continue traversal. 1663 * Jump to 'restart' should yield in the same result, 1664 * but could produce unnecessary looping. Could this 1665 * looping be unbound? 1666 */ 1667 inp_unlock(inp, lock); 1668 goto next; 1669 } else { 1670 smr_exit(ipi->ipi_smr); 1671 goto found; 1672 } 1673 } 1674 1675 /* 1676 * Can't obtain lock immediately, thus going hard. Once we exit the 1677 * SMR section we can no longer jump to 'next', and our only stable 1678 * anchoring point is ii->inp, which we keep locked for this case, so 1679 * we jump to 'restart'. 1680 */ 1681 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1682 smr_exit(ipi->ipi_smr); 1683 inp_lock(inp, lock); 1684 if (__predict_false(in_pcbrele(inp, lock))) { 1685 smr_enter(ipi->ipi_smr); 1686 goto restart; 1687 } 1688 /* 1689 * See comment in inp_smr_lock(). 1690 */ 1691 if (__predict_false(inp->inp_flags & INP_FREED)) { 1692 inp_unlock(inp, lock); 1693 smr_enter(ipi->ipi_smr); 1694 goto restart; 1695 } 1696 } else 1697 goto next; 1698 1699 found: 1700 inp_unlock(ii->inp, lock); 1701 ii->inp = inp; 1702 1703 return (ii->inp); 1704 } 1705 1706 /* 1707 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1708 * stability of an inpcb pointer despite the inpcb lock being released or 1709 * SMR section exited. 1710 * 1711 * To free a reference later in_pcbrele_(r|w)locked() must be performed. 1712 */ 1713 void 1714 in_pcbref(struct inpcb *inp) 1715 { 1716 u_int old __diagused; 1717 1718 old = refcount_acquire(&inp->inp_refcount); 1719 KASSERT(old > 0, ("%s: refcount 0", __func__)); 1720 } 1721 1722 /* 1723 * Drop a refcount on an inpcb elevated using in_pcbref(), potentially 1724 * freeing the pcb, if the reference was very last. 1725 */ 1726 bool 1727 in_pcbrele_rlocked(struct inpcb *inp) 1728 { 1729 1730 INP_RLOCK_ASSERT(inp); 1731 1732 if (refcount_release(&inp->inp_refcount) == 0) 1733 return (false); 1734 1735 MPASS(inp->inp_flags & INP_FREED); 1736 MPASS(inp->inp_socket == NULL); 1737 MPASS(inp->inp_in_hpts == 0); 1738 INP_RUNLOCK(inp); 1739 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1740 return (true); 1741 } 1742 1743 bool 1744 in_pcbrele_wlocked(struct inpcb *inp) 1745 { 1746 1747 INP_WLOCK_ASSERT(inp); 1748 1749 if (refcount_release(&inp->inp_refcount) == 0) 1750 return (false); 1751 1752 MPASS(inp->inp_flags & INP_FREED); 1753 MPASS(inp->inp_socket == NULL); 1754 MPASS(inp->inp_in_hpts == 0); 1755 INP_WUNLOCK(inp); 1756 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1757 return (true); 1758 } 1759 1760 /* 1761 * Unconditionally schedule an inpcb to be freed by decrementing its 1762 * reference count, which should occur only after the inpcb has been detached 1763 * from its socket. If another thread holds a temporary reference (acquired 1764 * using in_pcbref()) then the free is deferred until that reference is 1765 * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked. 1766 * Almost all work, including removal from global lists, is done in this 1767 * context, where the pcbinfo lock is held. 1768 */ 1769 void 1770 in_pcbfree(struct inpcb *inp) 1771 { 1772 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1773 #ifdef INET 1774 struct ip_moptions *imo; 1775 #endif 1776 #ifdef INET6 1777 struct ip6_moptions *im6o; 1778 #endif 1779 1780 INP_WLOCK_ASSERT(inp); 1781 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1782 KASSERT((inp->inp_flags & INP_FREED) == 0, 1783 ("%s: called twice for pcb %p", __func__, inp)); 1784 1785 inp->inp_flags |= INP_FREED; 1786 INP_INFO_WLOCK(pcbinfo); 1787 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1788 pcbinfo->ipi_count--; 1789 CK_LIST_REMOVE(inp, inp_list); 1790 INP_INFO_WUNLOCK(pcbinfo); 1791 1792 if (inp->inp_flags & INP_INHASHLIST) 1793 in_pcbremhash(inp); 1794 1795 RO_INVALIDATE_CACHE(&inp->inp_route); 1796 #ifdef MAC 1797 mac_inpcb_destroy(inp); 1798 #endif 1799 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1800 if (inp->inp_sp != NULL) 1801 ipsec_delete_pcbpolicy(inp); 1802 #endif 1803 #ifdef INET 1804 if (inp->inp_options) 1805 (void)m_free(inp->inp_options); 1806 imo = inp->inp_moptions; 1807 #endif 1808 #ifdef INET6 1809 if (inp->inp_vflag & INP_IPV6PROTO) { 1810 ip6_freepcbopts(inp->in6p_outputopts); 1811 im6o = inp->in6p_moptions; 1812 } else 1813 im6o = NULL; 1814 #endif 1815 1816 if (__predict_false(in_pcbrele_wlocked(inp) == false)) { 1817 INP_WUNLOCK(inp); 1818 } 1819 #ifdef INET6 1820 ip6_freemoptions(im6o); 1821 #endif 1822 #ifdef INET 1823 inp_freemoptions(imo); 1824 #endif 1825 /* Destruction is finalized in inpcb_dtor(). */ 1826 } 1827 1828 static void 1829 inpcb_dtor(void *mem, int size, void *arg) 1830 { 1831 struct inpcb *inp = mem; 1832 1833 crfree(inp->inp_cred); 1834 #ifdef INVARIANTS 1835 inp->inp_cred = NULL; 1836 #endif 1837 } 1838 1839 /* 1840 * Different protocols initialize their inpcbs differently - giving 1841 * different name to the lock. But they all are disposed the same. 1842 */ 1843 static void 1844 inpcb_fini(void *mem, int size) 1845 { 1846 struct inpcb *inp = mem; 1847 1848 INP_LOCK_DESTROY(inp); 1849 } 1850 1851 /* 1852 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1853 * port reservation, and preventing it from being returned by inpcb lookups. 1854 * 1855 * It is used by TCP to mark an inpcb as unused and avoid future packet 1856 * delivery or event notification when a socket remains open but TCP has 1857 * closed. This might occur as a result of a shutdown()-initiated TCP close 1858 * or a RST on the wire, and allows the port binding to be reused while still 1859 * maintaining the invariant that so_pcb always points to a valid inpcb until 1860 * in_pcbdetach(). 1861 * 1862 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1863 * in_pcbnotifyall() and in_pcbpurgeif0()? 1864 */ 1865 void 1866 in_pcbdrop(struct inpcb *inp) 1867 { 1868 1869 INP_WLOCK_ASSERT(inp); 1870 #ifdef INVARIANTS 1871 if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) 1872 MPASS(inp->inp_refcount > 1); 1873 #endif 1874 1875 inp->inp_flags |= INP_DROPPED; 1876 if (inp->inp_flags & INP_INHASHLIST) 1877 in_pcbremhash(inp); 1878 } 1879 1880 #ifdef INET 1881 /* 1882 * Common routines to return the socket addresses associated with inpcbs. 1883 */ 1884 struct sockaddr * 1885 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1886 { 1887 struct sockaddr_in *sin; 1888 1889 sin = malloc(sizeof *sin, M_SONAME, 1890 M_WAITOK | M_ZERO); 1891 sin->sin_family = AF_INET; 1892 sin->sin_len = sizeof(*sin); 1893 sin->sin_addr = *addr_p; 1894 sin->sin_port = port; 1895 1896 return (struct sockaddr *)sin; 1897 } 1898 1899 int 1900 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1901 { 1902 struct inpcb *inp; 1903 struct in_addr addr; 1904 in_port_t port; 1905 1906 inp = sotoinpcb(so); 1907 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1908 1909 INP_RLOCK(inp); 1910 port = inp->inp_lport; 1911 addr = inp->inp_laddr; 1912 INP_RUNLOCK(inp); 1913 1914 *nam = in_sockaddr(port, &addr); 1915 return 0; 1916 } 1917 1918 int 1919 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1920 { 1921 struct inpcb *inp; 1922 struct in_addr addr; 1923 in_port_t port; 1924 1925 inp = sotoinpcb(so); 1926 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1927 1928 INP_RLOCK(inp); 1929 port = inp->inp_fport; 1930 addr = inp->inp_faddr; 1931 INP_RUNLOCK(inp); 1932 1933 *nam = in_sockaddr(port, &addr); 1934 return 0; 1935 } 1936 1937 void 1938 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1939 struct inpcb *(*notify)(struct inpcb *, int)) 1940 { 1941 struct inpcb *inp, *inp_temp; 1942 1943 INP_INFO_WLOCK(pcbinfo); 1944 CK_LIST_FOREACH_SAFE(inp, &pcbinfo->ipi_listhead, inp_list, inp_temp) { 1945 INP_WLOCK(inp); 1946 #ifdef INET6 1947 if ((inp->inp_vflag & INP_IPV4) == 0) { 1948 INP_WUNLOCK(inp); 1949 continue; 1950 } 1951 #endif 1952 if (inp->inp_faddr.s_addr != faddr.s_addr || 1953 inp->inp_socket == NULL) { 1954 INP_WUNLOCK(inp); 1955 continue; 1956 } 1957 if ((*notify)(inp, errno)) 1958 INP_WUNLOCK(inp); 1959 } 1960 INP_INFO_WUNLOCK(pcbinfo); 1961 } 1962 1963 static bool 1964 inp_v4_multi_match(const struct inpcb *inp, void *v __unused) 1965 { 1966 1967 if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL) 1968 return (true); 1969 else 1970 return (false); 1971 } 1972 1973 void 1974 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1975 { 1976 struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB, 1977 inp_v4_multi_match, NULL); 1978 struct inpcb *inp; 1979 struct in_multi *inm; 1980 struct in_mfilter *imf; 1981 struct ip_moptions *imo; 1982 1983 IN_MULTI_LOCK_ASSERT(); 1984 1985 while ((inp = inp_next(&inpi)) != NULL) { 1986 INP_WLOCK_ASSERT(inp); 1987 1988 imo = inp->inp_moptions; 1989 /* 1990 * Unselect the outgoing interface if it is being 1991 * detached. 1992 */ 1993 if (imo->imo_multicast_ifp == ifp) 1994 imo->imo_multicast_ifp = NULL; 1995 1996 /* 1997 * Drop multicast group membership if we joined 1998 * through the interface being detached. 1999 * 2000 * XXX This can all be deferred to an epoch_call 2001 */ 2002 restart: 2003 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 2004 if ((inm = imf->imf_inm) == NULL) 2005 continue; 2006 if (inm->inm_ifp != ifp) 2007 continue; 2008 ip_mfilter_remove(&imo->imo_head, imf); 2009 in_leavegroup_locked(inm, NULL); 2010 ip_mfilter_free(imf); 2011 goto restart; 2012 } 2013 } 2014 } 2015 2016 /* 2017 * Lookup a PCB based on the local address and port. Caller must hold the 2018 * hash lock. No inpcb locks or references are acquired. 2019 */ 2020 #define INP_LOOKUP_MAPPED_PCB_COST 3 2021 struct inpcb * 2022 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 2023 u_short lport, int lookupflags, struct ucred *cred) 2024 { 2025 struct inpcb *inp; 2026 #ifdef INET6 2027 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 2028 #else 2029 int matchwild = 3; 2030 #endif 2031 int wildcard; 2032 2033 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2034 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2035 INP_HASH_LOCK_ASSERT(pcbinfo); 2036 2037 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 2038 struct inpcbhead *head; 2039 /* 2040 * Look for an unconnected (wildcard foreign addr) PCB that 2041 * matches the local address and port we're looking for. 2042 */ 2043 head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport, 2044 pcbinfo->ipi_hashmask)]; 2045 CK_LIST_FOREACH(inp, head, inp_hash) { 2046 #ifdef INET6 2047 /* XXX inp locking */ 2048 if ((inp->inp_vflag & INP_IPV4) == 0) 2049 continue; 2050 #endif 2051 if (inp->inp_faddr.s_addr == INADDR_ANY && 2052 inp->inp_laddr.s_addr == laddr.s_addr && 2053 inp->inp_lport == lport) { 2054 /* 2055 * Found? 2056 */ 2057 if (prison_equal_ip4(cred->cr_prison, 2058 inp->inp_cred->cr_prison)) 2059 return (inp); 2060 } 2061 } 2062 /* 2063 * Not found. 2064 */ 2065 return (NULL); 2066 } else { 2067 struct inpcbporthead *porthash; 2068 struct inpcbport *phd; 2069 struct inpcb *match = NULL; 2070 /* 2071 * Best fit PCB lookup. 2072 * 2073 * First see if this local port is in use by looking on the 2074 * port hash list. 2075 */ 2076 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 2077 pcbinfo->ipi_porthashmask)]; 2078 CK_LIST_FOREACH(phd, porthash, phd_hash) { 2079 if (phd->phd_port == lport) 2080 break; 2081 } 2082 if (phd != NULL) { 2083 /* 2084 * Port is in use by one or more PCBs. Look for best 2085 * fit. 2086 */ 2087 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 2088 wildcard = 0; 2089 if (!prison_equal_ip4(inp->inp_cred->cr_prison, 2090 cred->cr_prison)) 2091 continue; 2092 #ifdef INET6 2093 /* XXX inp locking */ 2094 if ((inp->inp_vflag & INP_IPV4) == 0) 2095 continue; 2096 /* 2097 * We never select the PCB that has 2098 * INP_IPV6 flag and is bound to :: if 2099 * we have another PCB which is bound 2100 * to 0.0.0.0. If a PCB has the 2101 * INP_IPV6 flag, then we set its cost 2102 * higher than IPv4 only PCBs. 2103 * 2104 * Note that the case only happens 2105 * when a socket is bound to ::, under 2106 * the condition that the use of the 2107 * mapped address is allowed. 2108 */ 2109 if ((inp->inp_vflag & INP_IPV6) != 0) 2110 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 2111 #endif 2112 if (inp->inp_faddr.s_addr != INADDR_ANY) 2113 wildcard++; 2114 if (inp->inp_laddr.s_addr != INADDR_ANY) { 2115 if (laddr.s_addr == INADDR_ANY) 2116 wildcard++; 2117 else if (inp->inp_laddr.s_addr != laddr.s_addr) 2118 continue; 2119 } else { 2120 if (laddr.s_addr != INADDR_ANY) 2121 wildcard++; 2122 } 2123 if (wildcard < matchwild) { 2124 match = inp; 2125 matchwild = wildcard; 2126 if (matchwild == 0) 2127 break; 2128 } 2129 } 2130 } 2131 return (match); 2132 } 2133 } 2134 #undef INP_LOOKUP_MAPPED_PCB_COST 2135 2136 static bool 2137 in_pcblookup_lb_numa_match(const struct inpcblbgroup *grp, int domain) 2138 { 2139 return (domain == M_NODOM || domain == grp->il_numa_domain); 2140 } 2141 2142 static struct inpcb * 2143 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 2144 const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr, 2145 uint16_t fport, int lookupflags, int domain) 2146 { 2147 const struct inpcblbgrouphead *hdr; 2148 struct inpcblbgroup *grp; 2149 struct inpcblbgroup *jail_exact, *jail_wild, *local_exact, *local_wild; 2150 2151 INP_HASH_LOCK_ASSERT(pcbinfo); 2152 2153 hdr = &pcbinfo->ipi_lbgrouphashbase[ 2154 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; 2155 2156 /* 2157 * Search for an LB group match based on the following criteria: 2158 * - prefer jailed groups to non-jailed groups 2159 * - prefer exact source address matches to wildcard matches 2160 * - prefer groups bound to the specified NUMA domain 2161 */ 2162 jail_exact = jail_wild = local_exact = local_wild = NULL; 2163 CK_LIST_FOREACH(grp, hdr, il_list) { 2164 bool injail; 2165 2166 #ifdef INET6 2167 if (!(grp->il_vflag & INP_IPV4)) 2168 continue; 2169 #endif 2170 if (grp->il_lport != lport) 2171 continue; 2172 2173 injail = prison_flag(grp->il_cred, PR_IP4) != 0; 2174 if (injail && prison_check_ip4_locked(grp->il_cred->cr_prison, 2175 laddr) != 0) 2176 continue; 2177 2178 if (grp->il_laddr.s_addr == laddr->s_addr) { 2179 if (injail) { 2180 jail_exact = grp; 2181 if (in_pcblookup_lb_numa_match(grp, domain)) 2182 /* This is a perfect match. */ 2183 goto out; 2184 } else if (local_exact == NULL || 2185 in_pcblookup_lb_numa_match(grp, domain)) { 2186 local_exact = grp; 2187 } 2188 } else if (grp->il_laddr.s_addr == INADDR_ANY && 2189 (lookupflags & INPLOOKUP_WILDCARD) != 0) { 2190 if (injail) { 2191 if (jail_wild == NULL || 2192 in_pcblookup_lb_numa_match(grp, domain)) 2193 jail_wild = grp; 2194 } else if (local_wild == NULL || 2195 in_pcblookup_lb_numa_match(grp, domain)) { 2196 local_wild = grp; 2197 } 2198 } 2199 } 2200 2201 if (jail_exact != NULL) 2202 grp = jail_exact; 2203 else if (jail_wild != NULL) 2204 grp = jail_wild; 2205 else if (local_exact != NULL) 2206 grp = local_exact; 2207 else 2208 grp = local_wild; 2209 if (grp == NULL) 2210 return (NULL); 2211 out: 2212 return (grp->il_inp[INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) % 2213 grp->il_inpcnt]); 2214 } 2215 2216 /* 2217 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2218 * that the caller has either locked the hash list, which usually happens 2219 * for bind(2) operations, or is in SMR section, which happens when sorting 2220 * out incoming packets. 2221 */ 2222 static struct inpcb * 2223 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2224 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2225 struct ifnet *ifp, uint8_t numa_domain) 2226 { 2227 struct inpcbhead *head; 2228 struct inpcb *inp, *tmpinp; 2229 u_short fport = fport_arg, lport = lport_arg; 2230 2231 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2232 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2233 KASSERT(faddr.s_addr != INADDR_ANY, 2234 ("%s: invalid foreign address", __func__)); 2235 KASSERT(laddr.s_addr != INADDR_ANY, 2236 ("%s: invalid local address", __func__)); 2237 INP_HASH_LOCK_ASSERT(pcbinfo); 2238 2239 /* 2240 * First look for an exact match. 2241 */ 2242 tmpinp = NULL; 2243 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&faddr, lport, fport, 2244 pcbinfo->ipi_hashmask)]; 2245 CK_LIST_FOREACH(inp, head, inp_hash) { 2246 #ifdef INET6 2247 /* XXX inp locking */ 2248 if ((inp->inp_vflag & INP_IPV4) == 0) 2249 continue; 2250 #endif 2251 if (inp->inp_faddr.s_addr == faddr.s_addr && 2252 inp->inp_laddr.s_addr == laddr.s_addr && 2253 inp->inp_fport == fport && 2254 inp->inp_lport == lport) { 2255 /* 2256 * XXX We should be able to directly return 2257 * the inp here, without any checks. 2258 * Well unless both bound with SO_REUSEPORT? 2259 */ 2260 if (prison_flag(inp->inp_cred, PR_IP4)) 2261 return (inp); 2262 if (tmpinp == NULL) 2263 tmpinp = inp; 2264 } 2265 } 2266 if (tmpinp != NULL) 2267 return (tmpinp); 2268 2269 /* 2270 * Then look for a wildcard match, if requested. 2271 */ 2272 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2273 struct inpcb *local_wild = NULL, *local_exact = NULL; 2274 #ifdef INET6 2275 struct inpcb *local_wild_mapped = NULL; 2276 #endif 2277 struct inpcb *jail_wild = NULL; 2278 int injail; 2279 2280 /* 2281 * First see if an LB group matches the request before scanning 2282 * all sockets on this port. 2283 */ 2284 inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr, 2285 fport, lookupflags, numa_domain); 2286 if (inp != NULL) 2287 return (inp); 2288 2289 /* 2290 * Order of socket selection - we always prefer jails. 2291 * 1. jailed, non-wild. 2292 * 2. jailed, wild. 2293 * 3. non-jailed, non-wild. 2294 * 4. non-jailed, wild. 2295 */ 2296 2297 head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport, 2298 pcbinfo->ipi_hashmask)]; 2299 CK_LIST_FOREACH(inp, head, inp_hash) { 2300 #ifdef INET6 2301 /* XXX inp locking */ 2302 if ((inp->inp_vflag & INP_IPV4) == 0) 2303 continue; 2304 #endif 2305 if (inp->inp_faddr.s_addr != INADDR_ANY || 2306 inp->inp_lport != lport) 2307 continue; 2308 2309 injail = prison_flag(inp->inp_cred, PR_IP4); 2310 if (injail) { 2311 if (prison_check_ip4_locked( 2312 inp->inp_cred->cr_prison, &laddr) != 0) 2313 continue; 2314 } else { 2315 if (local_exact != NULL) 2316 continue; 2317 } 2318 2319 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2320 if (injail) 2321 return (inp); 2322 else 2323 local_exact = inp; 2324 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2325 #ifdef INET6 2326 /* XXX inp locking, NULL check */ 2327 if (inp->inp_vflag & INP_IPV6PROTO) 2328 local_wild_mapped = inp; 2329 else 2330 #endif 2331 if (injail) 2332 jail_wild = inp; 2333 else 2334 local_wild = inp; 2335 } 2336 } /* LIST_FOREACH */ 2337 if (jail_wild != NULL) 2338 return (jail_wild); 2339 if (local_exact != NULL) 2340 return (local_exact); 2341 if (local_wild != NULL) 2342 return (local_wild); 2343 #ifdef INET6 2344 if (local_wild_mapped != NULL) 2345 return (local_wild_mapped); 2346 #endif 2347 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 2348 2349 return (NULL); 2350 } 2351 2352 /* 2353 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 2354 * hash list lock, and will return the inpcb locked (i.e., requires 2355 * INPLOOKUP_LOCKPCB). 2356 */ 2357 static struct inpcb * 2358 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2359 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2360 struct ifnet *ifp, uint8_t numa_domain) 2361 { 2362 struct inpcb *inp; 2363 2364 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2365 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2366 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2367 ("%s: LOCKPCB not set", __func__)); 2368 2369 smr_enter(pcbinfo->ipi_smr); 2370 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2371 lookupflags & INPLOOKUP_WILDCARD, ifp, numa_domain); 2372 if (inp != NULL) { 2373 if (__predict_false(inp_smr_lock(inp, 2374 (lookupflags & INPLOOKUP_LOCKMASK)) == false)) 2375 inp = NULL; 2376 } else 2377 smr_exit(pcbinfo->ipi_smr); 2378 2379 return (inp); 2380 } 2381 2382 /* 2383 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2384 * from which a pre-calculated hash value may be extracted. 2385 */ 2386 struct inpcb * 2387 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2388 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 2389 { 2390 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2391 lookupflags, ifp, M_NODOM)); 2392 } 2393 2394 struct inpcb * 2395 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2396 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2397 struct ifnet *ifp, struct mbuf *m) 2398 { 2399 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2400 lookupflags, ifp, m->m_pkthdr.numa_domain)); 2401 } 2402 #endif /* INET */ 2403 2404 /* 2405 * Insert PCB onto various hash lists. 2406 */ 2407 int 2408 in_pcbinshash(struct inpcb *inp) 2409 { 2410 struct inpcbhead *pcbhash; 2411 struct inpcbporthead *pcbporthash; 2412 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2413 struct inpcbport *phd; 2414 2415 INP_WLOCK_ASSERT(inp); 2416 INP_HASH_WLOCK_ASSERT(pcbinfo); 2417 2418 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2419 ("in_pcbinshash: INP_INHASHLIST")); 2420 2421 #ifdef INET6 2422 if (inp->inp_vflag & INP_IPV6) 2423 pcbhash = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr, 2424 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2425 else 2426 #endif 2427 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr, 2428 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2429 2430 pcbporthash = &pcbinfo->ipi_porthashbase[ 2431 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2432 2433 /* 2434 * Add entry to load balance group. 2435 * Only do this if SO_REUSEPORT_LB is set. 2436 */ 2437 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) { 2438 int error = in_pcbinslbgrouphash(inp, M_NODOM); 2439 if (error != 0) 2440 return (error); 2441 } 2442 2443 /* 2444 * Go through port list and look for a head for this lport. 2445 */ 2446 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2447 if (phd->phd_port == inp->inp_lport) 2448 break; 2449 } 2450 2451 /* 2452 * If none exists, malloc one and tack it on. 2453 */ 2454 if (phd == NULL) { 2455 phd = uma_zalloc_smr(pcbinfo->ipi_portzone, M_NOWAIT); 2456 if (phd == NULL) { 2457 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 2458 in_pcbremlbgrouphash(inp); 2459 return (ENOMEM); 2460 } 2461 phd->phd_port = inp->inp_lport; 2462 CK_LIST_INIT(&phd->phd_pcblist); 2463 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2464 } 2465 inp->inp_phd = phd; 2466 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2467 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2468 inp->inp_flags |= INP_INHASHLIST; 2469 2470 return (0); 2471 } 2472 2473 static void 2474 in_pcbremhash(struct inpcb *inp) 2475 { 2476 struct inpcbport *phd = inp->inp_phd; 2477 2478 INP_WLOCK_ASSERT(inp); 2479 MPASS(inp->inp_flags & INP_INHASHLIST); 2480 2481 INP_HASH_WLOCK(inp->inp_pcbinfo); 2482 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 2483 in_pcbremlbgrouphash(inp); 2484 CK_LIST_REMOVE(inp, inp_hash); 2485 CK_LIST_REMOVE(inp, inp_portlist); 2486 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 2487 CK_LIST_REMOVE(phd, phd_hash); 2488 uma_zfree_smr(inp->inp_pcbinfo->ipi_portzone, phd); 2489 } 2490 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 2491 inp->inp_flags &= ~INP_INHASHLIST; 2492 } 2493 2494 /* 2495 * Move PCB to the proper hash bucket when { faddr, fport } have been 2496 * changed. NOTE: This does not handle the case of the lport changing (the 2497 * hashed port list would have to be updated as well), so the lport must 2498 * not change after in_pcbinshash() has been called. 2499 * 2500 * XXXGL: a race between this function and SMR-protected hash iterator 2501 * will lead to iterator traversing a possibly wrong hash list. However, 2502 * this race should have been here since change from rwlock to epoch. 2503 */ 2504 void 2505 in_pcbrehash(struct inpcb *inp) 2506 { 2507 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2508 struct inpcbhead *head; 2509 2510 INP_WLOCK_ASSERT(inp); 2511 INP_HASH_WLOCK_ASSERT(pcbinfo); 2512 2513 KASSERT(inp->inp_flags & INP_INHASHLIST, 2514 ("in_pcbrehash: !INP_INHASHLIST")); 2515 2516 #ifdef INET6 2517 if (inp->inp_vflag & INP_IPV6) 2518 head = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr, 2519 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2520 else 2521 #endif 2522 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr, 2523 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2524 2525 CK_LIST_REMOVE(inp, inp_hash); 2526 CK_LIST_INSERT_HEAD(head, inp, inp_hash); 2527 } 2528 2529 /* 2530 * Check for alternatives when higher level complains 2531 * about service problems. For now, invalidate cached 2532 * routing information. If the route was created dynamically 2533 * (by a redirect), time to try a default gateway again. 2534 */ 2535 void 2536 in_losing(struct inpcb *inp) 2537 { 2538 2539 RO_INVALIDATE_CACHE(&inp->inp_route); 2540 return; 2541 } 2542 2543 /* 2544 * A set label operation has occurred at the socket layer, propagate the 2545 * label change into the in_pcb for the socket. 2546 */ 2547 void 2548 in_pcbsosetlabel(struct socket *so) 2549 { 2550 #ifdef MAC 2551 struct inpcb *inp; 2552 2553 inp = sotoinpcb(so); 2554 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2555 2556 INP_WLOCK(inp); 2557 SOCK_LOCK(so); 2558 mac_inpcb_sosetlabel(so, inp); 2559 SOCK_UNLOCK(so); 2560 INP_WUNLOCK(inp); 2561 #endif 2562 } 2563 2564 void 2565 inp_wlock(struct inpcb *inp) 2566 { 2567 2568 INP_WLOCK(inp); 2569 } 2570 2571 void 2572 inp_wunlock(struct inpcb *inp) 2573 { 2574 2575 INP_WUNLOCK(inp); 2576 } 2577 2578 void 2579 inp_rlock(struct inpcb *inp) 2580 { 2581 2582 INP_RLOCK(inp); 2583 } 2584 2585 void 2586 inp_runlock(struct inpcb *inp) 2587 { 2588 2589 INP_RUNLOCK(inp); 2590 } 2591 2592 #ifdef INVARIANT_SUPPORT 2593 void 2594 inp_lock_assert(struct inpcb *inp) 2595 { 2596 2597 INP_WLOCK_ASSERT(inp); 2598 } 2599 2600 void 2601 inp_unlock_assert(struct inpcb *inp) 2602 { 2603 2604 INP_UNLOCK_ASSERT(inp); 2605 } 2606 #endif 2607 2608 void 2609 inp_apply_all(struct inpcbinfo *pcbinfo, 2610 void (*func)(struct inpcb *, void *), void *arg) 2611 { 2612 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, 2613 INPLOOKUP_WLOCKPCB); 2614 struct inpcb *inp; 2615 2616 while ((inp = inp_next(&inpi)) != NULL) 2617 func(inp, arg); 2618 } 2619 2620 struct socket * 2621 inp_inpcbtosocket(struct inpcb *inp) 2622 { 2623 2624 INP_WLOCK_ASSERT(inp); 2625 return (inp->inp_socket); 2626 } 2627 2628 struct tcpcb * 2629 inp_inpcbtotcpcb(struct inpcb *inp) 2630 { 2631 2632 INP_WLOCK_ASSERT(inp); 2633 return ((struct tcpcb *)inp->inp_ppcb); 2634 } 2635 2636 int 2637 inp_ip_tos_get(const struct inpcb *inp) 2638 { 2639 2640 return (inp->inp_ip_tos); 2641 } 2642 2643 void 2644 inp_ip_tos_set(struct inpcb *inp, int val) 2645 { 2646 2647 inp->inp_ip_tos = val; 2648 } 2649 2650 void 2651 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2652 uint32_t *faddr, uint16_t *fp) 2653 { 2654 2655 INP_LOCK_ASSERT(inp); 2656 *laddr = inp->inp_laddr.s_addr; 2657 *faddr = inp->inp_faddr.s_addr; 2658 *lp = inp->inp_lport; 2659 *fp = inp->inp_fport; 2660 } 2661 2662 struct inpcb * 2663 so_sotoinpcb(struct socket *so) 2664 { 2665 2666 return (sotoinpcb(so)); 2667 } 2668 2669 /* 2670 * Create an external-format (``xinpcb'') structure using the information in 2671 * the kernel-format in_pcb structure pointed to by inp. This is done to 2672 * reduce the spew of irrelevant information over this interface, to isolate 2673 * user code from changes in the kernel structure, and potentially to provide 2674 * information-hiding if we decide that some of this information should be 2675 * hidden from users. 2676 */ 2677 void 2678 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2679 { 2680 2681 bzero(xi, sizeof(*xi)); 2682 xi->xi_len = sizeof(struct xinpcb); 2683 if (inp->inp_socket) 2684 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2685 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2686 xi->inp_gencnt = inp->inp_gencnt; 2687 xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; 2688 xi->inp_flow = inp->inp_flow; 2689 xi->inp_flowid = inp->inp_flowid; 2690 xi->inp_flowtype = inp->inp_flowtype; 2691 xi->inp_flags = inp->inp_flags; 2692 xi->inp_flags2 = inp->inp_flags2; 2693 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2694 xi->in6p_cksum = inp->in6p_cksum; 2695 xi->in6p_hops = inp->in6p_hops; 2696 xi->inp_ip_tos = inp->inp_ip_tos; 2697 xi->inp_vflag = inp->inp_vflag; 2698 xi->inp_ip_ttl = inp->inp_ip_ttl; 2699 xi->inp_ip_p = inp->inp_ip_p; 2700 xi->inp_ip_minttl = inp->inp_ip_minttl; 2701 } 2702 2703 int 2704 sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo, 2705 int (*ctloutput_set)(struct inpcb *, struct sockopt *)) 2706 { 2707 struct sockopt sopt; 2708 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, 2709 INPLOOKUP_WLOCKPCB); 2710 struct inpcb *inp; 2711 struct sockopt_parameters *params; 2712 struct socket *so; 2713 int error; 2714 char buf[1024]; 2715 2716 if (req->oldptr != NULL || req->oldlen != 0) 2717 return (EINVAL); 2718 if (req->newptr == NULL) 2719 return (EPERM); 2720 if (req->newlen > sizeof(buf)) 2721 return (ENOMEM); 2722 error = SYSCTL_IN(req, buf, req->newlen); 2723 if (error != 0) 2724 return (error); 2725 if (req->newlen < sizeof(struct sockopt_parameters)) 2726 return (EINVAL); 2727 params = (struct sockopt_parameters *)buf; 2728 sopt.sopt_level = params->sop_level; 2729 sopt.sopt_name = params->sop_optname; 2730 sopt.sopt_dir = SOPT_SET; 2731 sopt.sopt_val = params->sop_optval; 2732 sopt.sopt_valsize = req->newlen - sizeof(struct sockopt_parameters); 2733 sopt.sopt_td = NULL; 2734 #ifdef INET6 2735 if (params->sop_inc.inc_flags & INC_ISIPV6) { 2736 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_laddr)) 2737 params->sop_inc.inc6_laddr.s6_addr16[1] = 2738 htons(params->sop_inc.inc6_zoneid & 0xffff); 2739 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_faddr)) 2740 params->sop_inc.inc6_faddr.s6_addr16[1] = 2741 htons(params->sop_inc.inc6_zoneid & 0xffff); 2742 } 2743 #endif 2744 if (params->sop_inc.inc_lport != htons(0)) { 2745 if (params->sop_inc.inc_fport == htons(0)) 2746 inpi.hash = INP_PCBHASH_WILD(params->sop_inc.inc_lport, 2747 pcbinfo->ipi_hashmask); 2748 else 2749 #ifdef INET6 2750 if (params->sop_inc.inc_flags & INC_ISIPV6) 2751 inpi.hash = INP6_PCBHASH( 2752 ¶ms->sop_inc.inc6_faddr, 2753 params->sop_inc.inc_lport, 2754 params->sop_inc.inc_fport, 2755 pcbinfo->ipi_hashmask); 2756 else 2757 #endif 2758 inpi.hash = INP_PCBHASH( 2759 ¶ms->sop_inc.inc_faddr, 2760 params->sop_inc.inc_lport, 2761 params->sop_inc.inc_fport, 2762 pcbinfo->ipi_hashmask); 2763 } 2764 while ((inp = inp_next(&inpi)) != NULL) 2765 if (inp->inp_gencnt == params->sop_id) { 2766 if (inp->inp_flags & INP_DROPPED) { 2767 INP_WUNLOCK(inp); 2768 return (ECONNRESET); 2769 } 2770 so = inp->inp_socket; 2771 KASSERT(so != NULL, ("inp_socket == NULL")); 2772 soref(so); 2773 error = (*ctloutput_set)(inp, &sopt); 2774 sorele(so); 2775 break; 2776 } 2777 if (inp == NULL) 2778 error = ESRCH; 2779 return (error); 2780 } 2781 2782 #ifdef DDB 2783 static void 2784 db_print_indent(int indent) 2785 { 2786 int i; 2787 2788 for (i = 0; i < indent; i++) 2789 db_printf(" "); 2790 } 2791 2792 static void 2793 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2794 { 2795 char faddr_str[48], laddr_str[48]; 2796 2797 db_print_indent(indent); 2798 db_printf("%s at %p\n", name, inc); 2799 2800 indent += 2; 2801 2802 #ifdef INET6 2803 if (inc->inc_flags & INC_ISIPV6) { 2804 /* IPv6. */ 2805 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2806 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2807 } else 2808 #endif 2809 { 2810 /* IPv4. */ 2811 inet_ntoa_r(inc->inc_laddr, laddr_str); 2812 inet_ntoa_r(inc->inc_faddr, faddr_str); 2813 } 2814 db_print_indent(indent); 2815 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2816 ntohs(inc->inc_lport)); 2817 db_print_indent(indent); 2818 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2819 ntohs(inc->inc_fport)); 2820 } 2821 2822 static void 2823 db_print_inpflags(int inp_flags) 2824 { 2825 int comma; 2826 2827 comma = 0; 2828 if (inp_flags & INP_RECVOPTS) { 2829 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2830 comma = 1; 2831 } 2832 if (inp_flags & INP_RECVRETOPTS) { 2833 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2834 comma = 1; 2835 } 2836 if (inp_flags & INP_RECVDSTADDR) { 2837 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2838 comma = 1; 2839 } 2840 if (inp_flags & INP_ORIGDSTADDR) { 2841 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 2842 comma = 1; 2843 } 2844 if (inp_flags & INP_HDRINCL) { 2845 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2846 comma = 1; 2847 } 2848 if (inp_flags & INP_HIGHPORT) { 2849 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2850 comma = 1; 2851 } 2852 if (inp_flags & INP_LOWPORT) { 2853 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2854 comma = 1; 2855 } 2856 if (inp_flags & INP_ANONPORT) { 2857 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2858 comma = 1; 2859 } 2860 if (inp_flags & INP_RECVIF) { 2861 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2862 comma = 1; 2863 } 2864 if (inp_flags & INP_MTUDISC) { 2865 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2866 comma = 1; 2867 } 2868 if (inp_flags & INP_RECVTTL) { 2869 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 2870 comma = 1; 2871 } 2872 if (inp_flags & INP_DONTFRAG) { 2873 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 2874 comma = 1; 2875 } 2876 if (inp_flags & INP_RECVTOS) { 2877 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 2878 comma = 1; 2879 } 2880 if (inp_flags & IN6P_IPV6_V6ONLY) { 2881 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 2882 comma = 1; 2883 } 2884 if (inp_flags & IN6P_PKTINFO) { 2885 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 2886 comma = 1; 2887 } 2888 if (inp_flags & IN6P_HOPLIMIT) { 2889 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 2890 comma = 1; 2891 } 2892 if (inp_flags & IN6P_HOPOPTS) { 2893 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 2894 comma = 1; 2895 } 2896 if (inp_flags & IN6P_DSTOPTS) { 2897 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 2898 comma = 1; 2899 } 2900 if (inp_flags & IN6P_RTHDR) { 2901 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 2902 comma = 1; 2903 } 2904 if (inp_flags & IN6P_RTHDRDSTOPTS) { 2905 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 2906 comma = 1; 2907 } 2908 if (inp_flags & IN6P_TCLASS) { 2909 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 2910 comma = 1; 2911 } 2912 if (inp_flags & IN6P_AUTOFLOWLABEL) { 2913 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 2914 comma = 1; 2915 } 2916 if (inp_flags & INP_ONESBCAST) { 2917 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 2918 comma = 1; 2919 } 2920 if (inp_flags & INP_DROPPED) { 2921 db_printf("%sINP_DROPPED", comma ? ", " : ""); 2922 comma = 1; 2923 } 2924 if (inp_flags & INP_SOCKREF) { 2925 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 2926 comma = 1; 2927 } 2928 if (inp_flags & IN6P_RFC2292) { 2929 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 2930 comma = 1; 2931 } 2932 if (inp_flags & IN6P_MTU) { 2933 db_printf("IN6P_MTU%s", comma ? ", " : ""); 2934 comma = 1; 2935 } 2936 } 2937 2938 static void 2939 db_print_inpvflag(u_char inp_vflag) 2940 { 2941 int comma; 2942 2943 comma = 0; 2944 if (inp_vflag & INP_IPV4) { 2945 db_printf("%sINP_IPV4", comma ? ", " : ""); 2946 comma = 1; 2947 } 2948 if (inp_vflag & INP_IPV6) { 2949 db_printf("%sINP_IPV6", comma ? ", " : ""); 2950 comma = 1; 2951 } 2952 if (inp_vflag & INP_IPV6PROTO) { 2953 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 2954 comma = 1; 2955 } 2956 } 2957 2958 static void 2959 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 2960 { 2961 2962 db_print_indent(indent); 2963 db_printf("%s at %p\n", name, inp); 2964 2965 indent += 2; 2966 2967 db_print_indent(indent); 2968 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 2969 2970 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 2971 2972 db_print_indent(indent); 2973 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 2974 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 2975 2976 db_print_indent(indent); 2977 db_printf("inp_label: %p inp_flags: 0x%x (", 2978 inp->inp_label, inp->inp_flags); 2979 db_print_inpflags(inp->inp_flags); 2980 db_printf(")\n"); 2981 2982 db_print_indent(indent); 2983 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 2984 inp->inp_vflag); 2985 db_print_inpvflag(inp->inp_vflag); 2986 db_printf(")\n"); 2987 2988 db_print_indent(indent); 2989 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 2990 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 2991 2992 db_print_indent(indent); 2993 #ifdef INET6 2994 if (inp->inp_vflag & INP_IPV6) { 2995 db_printf("in6p_options: %p in6p_outputopts: %p " 2996 "in6p_moptions: %p\n", inp->in6p_options, 2997 inp->in6p_outputopts, inp->in6p_moptions); 2998 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 2999 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 3000 inp->in6p_hops); 3001 } else 3002 #endif 3003 { 3004 db_printf("inp_ip_tos: %d inp_ip_options: %p " 3005 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 3006 inp->inp_options, inp->inp_moptions); 3007 } 3008 3009 db_print_indent(indent); 3010 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 3011 (uintmax_t)inp->inp_gencnt); 3012 } 3013 3014 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 3015 { 3016 struct inpcb *inp; 3017 3018 if (!have_addr) { 3019 db_printf("usage: show inpcb <addr>\n"); 3020 return; 3021 } 3022 inp = (struct inpcb *)addr; 3023 3024 db_print_inpcb(inp, "inpcb", 0); 3025 } 3026 #endif /* DDB */ 3027 3028 #ifdef RATELIMIT 3029 /* 3030 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 3031 * if any. 3032 */ 3033 int 3034 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 3035 { 3036 union if_snd_tag_modify_params params = { 3037 .rate_limit.max_rate = max_pacing_rate, 3038 .rate_limit.flags = M_NOWAIT, 3039 }; 3040 struct m_snd_tag *mst; 3041 int error; 3042 3043 mst = inp->inp_snd_tag; 3044 if (mst == NULL) 3045 return (EINVAL); 3046 3047 if (mst->sw->snd_tag_modify == NULL) { 3048 error = EOPNOTSUPP; 3049 } else { 3050 error = mst->sw->snd_tag_modify(mst, ¶ms); 3051 } 3052 return (error); 3053 } 3054 3055 /* 3056 * Query existing TX rate limit based on the existing 3057 * "inp->inp_snd_tag", if any. 3058 */ 3059 int 3060 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3061 { 3062 union if_snd_tag_query_params params = { }; 3063 struct m_snd_tag *mst; 3064 int error; 3065 3066 mst = inp->inp_snd_tag; 3067 if (mst == NULL) 3068 return (EINVAL); 3069 3070 if (mst->sw->snd_tag_query == NULL) { 3071 error = EOPNOTSUPP; 3072 } else { 3073 error = mst->sw->snd_tag_query(mst, ¶ms); 3074 if (error == 0 && p_max_pacing_rate != NULL) 3075 *p_max_pacing_rate = params.rate_limit.max_rate; 3076 } 3077 return (error); 3078 } 3079 3080 /* 3081 * Query existing TX queue level based on the existing 3082 * "inp->inp_snd_tag", if any. 3083 */ 3084 int 3085 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3086 { 3087 union if_snd_tag_query_params params = { }; 3088 struct m_snd_tag *mst; 3089 int error; 3090 3091 mst = inp->inp_snd_tag; 3092 if (mst == NULL) 3093 return (EINVAL); 3094 3095 if (mst->sw->snd_tag_query == NULL) 3096 return (EOPNOTSUPP); 3097 3098 error = mst->sw->snd_tag_query(mst, ¶ms); 3099 if (error == 0 && p_txqueue_level != NULL) 3100 *p_txqueue_level = params.rate_limit.queue_level; 3101 return (error); 3102 } 3103 3104 /* 3105 * Allocate a new TX rate limit send tag from the network interface 3106 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3107 */ 3108 int 3109 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3110 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st) 3111 3112 { 3113 union if_snd_tag_alloc_params params = { 3114 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3115 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3116 .rate_limit.hdr.flowid = flowid, 3117 .rate_limit.hdr.flowtype = flowtype, 3118 .rate_limit.hdr.numa_domain = inp->inp_numa_domain, 3119 .rate_limit.max_rate = max_pacing_rate, 3120 .rate_limit.flags = M_NOWAIT, 3121 }; 3122 int error; 3123 3124 INP_WLOCK_ASSERT(inp); 3125 3126 /* 3127 * If there is already a send tag, or the INP is being torn 3128 * down, allocating a new send tag is not allowed. Else send 3129 * tags may leak. 3130 */ 3131 if (*st != NULL || (inp->inp_flags & INP_DROPPED) != 0) 3132 return (EINVAL); 3133 3134 error = m_snd_tag_alloc(ifp, ¶ms, st); 3135 #ifdef INET 3136 if (error == 0) { 3137 counter_u64_add(rate_limit_set_ok, 1); 3138 counter_u64_add(rate_limit_active, 1); 3139 } else if (error != EOPNOTSUPP) 3140 counter_u64_add(rate_limit_alloc_fail, 1); 3141 #endif 3142 return (error); 3143 } 3144 3145 void 3146 in_pcbdetach_tag(struct m_snd_tag *mst) 3147 { 3148 3149 m_snd_tag_rele(mst); 3150 #ifdef INET 3151 counter_u64_add(rate_limit_active, -1); 3152 #endif 3153 } 3154 3155 /* 3156 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3157 * if any: 3158 */ 3159 void 3160 in_pcbdetach_txrtlmt(struct inpcb *inp) 3161 { 3162 struct m_snd_tag *mst; 3163 3164 INP_WLOCK_ASSERT(inp); 3165 3166 mst = inp->inp_snd_tag; 3167 inp->inp_snd_tag = NULL; 3168 3169 if (mst == NULL) 3170 return; 3171 3172 m_snd_tag_rele(mst); 3173 #ifdef INET 3174 counter_u64_add(rate_limit_active, -1); 3175 #endif 3176 } 3177 3178 int 3179 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate) 3180 { 3181 int error; 3182 3183 /* 3184 * If the existing send tag is for the wrong interface due to 3185 * a route change, first drop the existing tag. Set the 3186 * CHANGED flag so that we will keep trying to allocate a new 3187 * tag if we fail to allocate one this time. 3188 */ 3189 if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) { 3190 in_pcbdetach_txrtlmt(inp); 3191 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3192 } 3193 3194 /* 3195 * NOTE: When attaching to a network interface a reference is 3196 * made to ensure the network interface doesn't go away until 3197 * all ratelimit connections are gone. The network interface 3198 * pointers compared below represent valid network interfaces, 3199 * except when comparing towards NULL. 3200 */ 3201 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3202 error = 0; 3203 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3204 if (inp->inp_snd_tag != NULL) 3205 in_pcbdetach_txrtlmt(inp); 3206 error = 0; 3207 } else if (inp->inp_snd_tag == NULL) { 3208 /* 3209 * In order to utilize packet pacing with RSS, we need 3210 * to wait until there is a valid RSS hash before we 3211 * can proceed: 3212 */ 3213 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3214 error = EAGAIN; 3215 } else { 3216 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3217 mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag); 3218 } 3219 } else { 3220 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3221 } 3222 if (error == 0 || error == EOPNOTSUPP) 3223 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3224 3225 return (error); 3226 } 3227 3228 /* 3229 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3230 * is set in the fast path and will attach/detach/modify the TX rate 3231 * limit send tag based on the socket's so_max_pacing_rate value. 3232 */ 3233 void 3234 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3235 { 3236 struct socket *socket; 3237 uint32_t max_pacing_rate; 3238 bool did_upgrade; 3239 3240 if (inp == NULL) 3241 return; 3242 3243 socket = inp->inp_socket; 3244 if (socket == NULL) 3245 return; 3246 3247 if (!INP_WLOCKED(inp)) { 3248 /* 3249 * NOTE: If the write locking fails, we need to bail 3250 * out and use the non-ratelimited ring for the 3251 * transmit until there is a new chance to get the 3252 * write lock. 3253 */ 3254 if (!INP_TRY_UPGRADE(inp)) 3255 return; 3256 did_upgrade = 1; 3257 } else { 3258 did_upgrade = 0; 3259 } 3260 3261 /* 3262 * NOTE: The so_max_pacing_rate value is read unlocked, 3263 * because atomic updates are not required since the variable 3264 * is checked at every mbuf we send. It is assumed that the 3265 * variable read itself will be atomic. 3266 */ 3267 max_pacing_rate = socket->so_max_pacing_rate; 3268 3269 in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate); 3270 3271 if (did_upgrade) 3272 INP_DOWNGRADE(inp); 3273 } 3274 3275 /* 3276 * Track route changes for TX rate limiting. 3277 */ 3278 void 3279 in_pcboutput_eagain(struct inpcb *inp) 3280 { 3281 bool did_upgrade; 3282 3283 if (inp == NULL) 3284 return; 3285 3286 if (inp->inp_snd_tag == NULL) 3287 return; 3288 3289 if (!INP_WLOCKED(inp)) { 3290 /* 3291 * NOTE: If the write locking fails, we need to bail 3292 * out and use the non-ratelimited ring for the 3293 * transmit until there is a new chance to get the 3294 * write lock. 3295 */ 3296 if (!INP_TRY_UPGRADE(inp)) 3297 return; 3298 did_upgrade = 1; 3299 } else { 3300 did_upgrade = 0; 3301 } 3302 3303 /* detach rate limiting */ 3304 in_pcbdetach_txrtlmt(inp); 3305 3306 /* make sure new mbuf send tag allocation is made */ 3307 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3308 3309 if (did_upgrade) 3310 INP_DOWNGRADE(inp); 3311 } 3312 3313 #ifdef INET 3314 static void 3315 rl_init(void *st) 3316 { 3317 rate_limit_new = counter_u64_alloc(M_WAITOK); 3318 rate_limit_chg = counter_u64_alloc(M_WAITOK); 3319 rate_limit_active = counter_u64_alloc(M_WAITOK); 3320 rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK); 3321 rate_limit_set_ok = counter_u64_alloc(M_WAITOK); 3322 } 3323 3324 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL); 3325 #endif 3326 #endif /* RATELIMIT */ 3327