1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Robert N. M. Watson under 11 * contract to Juniper Networks, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_ddb.h" 44 #include "opt_ipsec.h" 45 #include "opt_inet.h" 46 #include "opt_inet6.h" 47 #include "opt_ratelimit.h" 48 #include "opt_route.h" 49 #include "opt_rss.h" 50 51 #include <sys/param.h> 52 #include <sys/hash.h> 53 #include <sys/systm.h> 54 #include <sys/libkern.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/mbuf.h> 58 #include <sys/callout.h> 59 #include <sys/eventhandler.h> 60 #include <sys/domain.h> 61 #include <sys/protosw.h> 62 #include <sys/smp.h> 63 #include <sys/socket.h> 64 #include <sys/socketvar.h> 65 #include <sys/sockio.h> 66 #include <sys/priv.h> 67 #include <sys/proc.h> 68 #include <sys/refcount.h> 69 #include <sys/jail.h> 70 #include <sys/kernel.h> 71 #include <sys/sysctl.h> 72 73 #ifdef DDB 74 #include <ddb/ddb.h> 75 #endif 76 77 #include <vm/uma.h> 78 #include <vm/vm.h> 79 80 #include <net/if.h> 81 #include <net/if_var.h> 82 #include <net/if_types.h> 83 #include <net/if_llatbl.h> 84 #include <net/route.h> 85 #include <net/rss_config.h> 86 #include <net/vnet.h> 87 88 #if defined(INET) || defined(INET6) 89 #include <netinet/in.h> 90 #include <netinet/in_pcb.h> 91 #include <netinet/in_pcb_var.h> 92 #ifdef INET 93 #include <netinet/in_var.h> 94 #include <netinet/in_fib.h> 95 #endif 96 #include <netinet/ip_var.h> 97 #include <netinet/tcp_var.h> 98 #ifdef TCPHPTS 99 #include <netinet/tcp_hpts.h> 100 #endif 101 #include <netinet/udp.h> 102 #include <netinet/udp_var.h> 103 #ifdef INET6 104 #include <netinet/ip6.h> 105 #include <netinet6/in6_pcb.h> 106 #include <netinet6/in6_var.h> 107 #include <netinet6/ip6_var.h> 108 #endif /* INET6 */ 109 #include <net/route/nhop.h> 110 #endif 111 112 #include <netipsec/ipsec_support.h> 113 114 #include <security/mac/mac_framework.h> 115 116 #define INPCBLBGROUP_SIZMIN 8 117 #define INPCBLBGROUP_SIZMAX 256 118 #define INP_FREED 0x00000200 /* See in_pcb.h. */ 119 120 static struct callout ipport_tick_callout; 121 122 /* 123 * These configure the range of local port addresses assigned to 124 * "unspecified" outgoing connections/packets/whatever. 125 */ 126 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 127 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 128 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 129 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 130 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 131 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 132 133 /* 134 * Reserved ports accessible only to root. There are significant 135 * security considerations that must be accounted for when changing these, 136 * but the security benefits can be great. Please be careful. 137 */ 138 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 139 VNET_DEFINE(int, ipport_reservedlow); 140 141 /* Variables dealing with random ephemeral port allocation. */ 142 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 143 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 144 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 145 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 146 VNET_DEFINE(int, ipport_tcpallocs); 147 VNET_DEFINE_STATIC(int, ipport_tcplastcount); 148 149 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 150 151 #ifdef INET 152 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 153 struct in_addr faddr, u_int fport_arg, 154 struct in_addr laddr, u_int lport_arg, 155 int lookupflags, struct ifnet *ifp, 156 uint8_t numa_domain); 157 158 #define RANGECHK(var, min, max) \ 159 if ((var) < (min)) { (var) = (min); } \ 160 else if ((var) > (max)) { (var) = (max); } 161 162 static int 163 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 164 { 165 int error; 166 167 error = sysctl_handle_int(oidp, arg1, arg2, req); 168 if (error == 0) { 169 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 170 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 171 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 172 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 173 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 174 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 175 } 176 return (error); 177 } 178 179 #undef RANGECHK 180 181 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, 182 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 183 "IP Ports"); 184 185 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 186 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 187 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", 188 ""); 189 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 190 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 191 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", 192 ""); 193 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 194 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 195 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", 196 ""); 197 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 198 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 199 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", 200 ""); 201 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 202 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 203 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", 204 ""); 205 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 206 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 207 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", 208 ""); 209 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 210 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 211 &VNET_NAME(ipport_reservedhigh), 0, ""); 212 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 213 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 214 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 215 CTLFLAG_VNET | CTLFLAG_RW, 216 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 217 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 218 CTLFLAG_VNET | CTLFLAG_RW, 219 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 220 "allocations before switching to a sequential one"); 221 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 222 CTLFLAG_VNET | CTLFLAG_RW, 223 &VNET_NAME(ipport_randomtime), 0, 224 "Minimum time to keep sequential port " 225 "allocation before switching to a random one"); 226 227 #ifdef RATELIMIT 228 counter_u64_t rate_limit_new; 229 counter_u64_t rate_limit_chg; 230 counter_u64_t rate_limit_active; 231 counter_u64_t rate_limit_alloc_fail; 232 counter_u64_t rate_limit_set_ok; 233 234 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 235 "IP Rate Limiting"); 236 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD, 237 &rate_limit_active, "Active rate limited connections"); 238 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD, 239 &rate_limit_alloc_fail, "Rate limited connection failures"); 240 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD, 241 &rate_limit_set_ok, "Rate limited setting succeeded"); 242 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD, 243 &rate_limit_new, "Total Rate limit new attempts"); 244 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD, 245 &rate_limit_chg, "Total Rate limited change attempts"); 246 247 #endif /* RATELIMIT */ 248 249 #endif /* INET */ 250 251 VNET_DEFINE(uint32_t, in_pcbhashseed); 252 static void 253 in_pcbhashseed_init(void) 254 { 255 256 V_in_pcbhashseed = arc4random(); 257 } 258 VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, 259 in_pcbhashseed_init, 0); 260 261 /* 262 * in_pcb.c: manage the Protocol Control Blocks. 263 * 264 * NOTE: It is assumed that most of these functions will be called with 265 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 266 * functions often modify hash chains or addresses in pcbs. 267 */ 268 269 static struct inpcblbgroup * 270 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag, 271 uint16_t port, const union in_dependaddr *addr, int size, 272 uint8_t numa_domain) 273 { 274 struct inpcblbgroup *grp; 275 size_t bytes; 276 277 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 278 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 279 if (!grp) 280 return (NULL); 281 grp->il_vflag = vflag; 282 grp->il_lport = port; 283 grp->il_numa_domain = numa_domain; 284 grp->il_dependladdr = *addr; 285 grp->il_inpsiz = size; 286 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 287 return (grp); 288 } 289 290 static void 291 in_pcblbgroup_free_deferred(epoch_context_t ctx) 292 { 293 struct inpcblbgroup *grp; 294 295 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); 296 free(grp, M_PCB); 297 } 298 299 static void 300 in_pcblbgroup_free(struct inpcblbgroup *grp) 301 { 302 303 CK_LIST_REMOVE(grp, il_list); 304 NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx); 305 } 306 307 static struct inpcblbgroup * 308 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 309 struct inpcblbgroup *old_grp, int size) 310 { 311 struct inpcblbgroup *grp; 312 int i; 313 314 grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag, 315 old_grp->il_lport, &old_grp->il_dependladdr, size, 316 old_grp->il_numa_domain); 317 if (grp == NULL) 318 return (NULL); 319 320 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 321 ("invalid new local group size %d and old local group count %d", 322 grp->il_inpsiz, old_grp->il_inpcnt)); 323 324 for (i = 0; i < old_grp->il_inpcnt; ++i) 325 grp->il_inp[i] = old_grp->il_inp[i]; 326 grp->il_inpcnt = old_grp->il_inpcnt; 327 in_pcblbgroup_free(old_grp); 328 return (grp); 329 } 330 331 /* 332 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] 333 * and shrink group if possible. 334 */ 335 static void 336 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, 337 int i) 338 { 339 struct inpcblbgroup *grp, *new_grp; 340 341 grp = *grpp; 342 for (; i + 1 < grp->il_inpcnt; ++i) 343 grp->il_inp[i] = grp->il_inp[i + 1]; 344 grp->il_inpcnt--; 345 346 if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && 347 grp->il_inpcnt <= grp->il_inpsiz / 4) { 348 /* Shrink this group. */ 349 new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); 350 if (new_grp != NULL) 351 *grpp = new_grp; 352 } 353 } 354 355 /* 356 * Add PCB to load balance group for SO_REUSEPORT_LB option. 357 */ 358 static int 359 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain) 360 { 361 const static struct timeval interval = { 60, 0 }; 362 static struct timeval lastprint; 363 struct inpcbinfo *pcbinfo; 364 struct inpcblbgrouphead *hdr; 365 struct inpcblbgroup *grp; 366 uint32_t idx; 367 368 pcbinfo = inp->inp_pcbinfo; 369 370 INP_WLOCK_ASSERT(inp); 371 INP_HASH_WLOCK_ASSERT(pcbinfo); 372 373 /* 374 * Don't allow jailed socket to join local group. 375 */ 376 if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred)) 377 return (0); 378 379 #ifdef INET6 380 /* 381 * Don't allow IPv4 mapped INET6 wild socket. 382 */ 383 if ((inp->inp_vflag & INP_IPV4) && 384 inp->inp_laddr.s_addr == INADDR_ANY && 385 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 386 return (0); 387 } 388 #endif 389 390 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); 391 hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; 392 CK_LIST_FOREACH(grp, hdr, il_list) { 393 if (grp->il_vflag == inp->inp_vflag && 394 grp->il_lport == inp->inp_lport && 395 grp->il_numa_domain == numa_domain && 396 memcmp(&grp->il_dependladdr, 397 &inp->inp_inc.inc_ie.ie_dependladdr, 398 sizeof(grp->il_dependladdr)) == 0) 399 break; 400 } 401 if (grp == NULL) { 402 /* Create new load balance group. */ 403 grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag, 404 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 405 INPCBLBGROUP_SIZMIN, numa_domain); 406 if (grp == NULL) 407 return (ENOBUFS); 408 } else if (grp->il_inpcnt == grp->il_inpsiz) { 409 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 410 if (ratecheck(&lastprint, &interval)) 411 printf("lb group port %d, limit reached\n", 412 ntohs(grp->il_lport)); 413 return (0); 414 } 415 416 /* Expand this local group. */ 417 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 418 if (grp == NULL) 419 return (ENOBUFS); 420 } 421 422 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 423 ("invalid local group size %d and count %d", grp->il_inpsiz, 424 grp->il_inpcnt)); 425 426 grp->il_inp[grp->il_inpcnt] = inp; 427 grp->il_inpcnt++; 428 return (0); 429 } 430 431 /* 432 * Remove PCB from load balance group. 433 */ 434 static void 435 in_pcbremlbgrouphash(struct inpcb *inp) 436 { 437 struct inpcbinfo *pcbinfo; 438 struct inpcblbgrouphead *hdr; 439 struct inpcblbgroup *grp; 440 int i; 441 442 pcbinfo = inp->inp_pcbinfo; 443 444 INP_WLOCK_ASSERT(inp); 445 INP_HASH_WLOCK_ASSERT(pcbinfo); 446 447 hdr = &pcbinfo->ipi_lbgrouphashbase[ 448 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 449 CK_LIST_FOREACH(grp, hdr, il_list) { 450 for (i = 0; i < grp->il_inpcnt; ++i) { 451 if (grp->il_inp[i] != inp) 452 continue; 453 454 if (grp->il_inpcnt == 1) { 455 /* We are the last, free this local group. */ 456 in_pcblbgroup_free(grp); 457 } else { 458 /* Pull up inpcbs, shrink group if possible. */ 459 in_pcblbgroup_reorder(hdr, &grp, i); 460 } 461 return; 462 } 463 } 464 } 465 466 int 467 in_pcblbgroup_numa(struct inpcb *inp, int arg) 468 { 469 struct inpcbinfo *pcbinfo; 470 struct inpcblbgrouphead *hdr; 471 struct inpcblbgroup *grp; 472 int err, i; 473 uint8_t numa_domain; 474 475 switch (arg) { 476 case TCP_REUSPORT_LB_NUMA_NODOM: 477 numa_domain = M_NODOM; 478 break; 479 case TCP_REUSPORT_LB_NUMA_CURDOM: 480 numa_domain = PCPU_GET(domain); 481 break; 482 default: 483 if (arg < 0 || arg >= vm_ndomains) 484 return (EINVAL); 485 numa_domain = arg; 486 } 487 488 err = 0; 489 pcbinfo = inp->inp_pcbinfo; 490 INP_WLOCK_ASSERT(inp); 491 INP_HASH_WLOCK(pcbinfo); 492 hdr = &pcbinfo->ipi_lbgrouphashbase[ 493 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 494 CK_LIST_FOREACH(grp, hdr, il_list) { 495 for (i = 0; i < grp->il_inpcnt; ++i) { 496 if (grp->il_inp[i] != inp) 497 continue; 498 499 if (grp->il_numa_domain == numa_domain) { 500 goto abort_with_hash_wlock; 501 } 502 503 /* Remove it from the old group. */ 504 in_pcbremlbgrouphash(inp); 505 506 /* Add it to the new group based on numa domain. */ 507 in_pcbinslbgrouphash(inp, numa_domain); 508 goto abort_with_hash_wlock; 509 } 510 } 511 err = ENOENT; 512 abort_with_hash_wlock: 513 INP_HASH_WUNLOCK(pcbinfo); 514 return (err); 515 } 516 517 /* Make sure it is safe to use hashinit(9) on CK_LIST. */ 518 CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb))); 519 520 /* 521 * Initialize an inpcbinfo - a per-VNET instance of connections db. 522 */ 523 void 524 in_pcbinfo_init(struct inpcbinfo *pcbinfo, struct inpcbstorage *pcbstor, 525 u_int hash_nelements, u_int porthash_nelements) 526 { 527 528 mtx_init(&pcbinfo->ipi_lock, pcbstor->ips_infolock_name, NULL, MTX_DEF); 529 mtx_init(&pcbinfo->ipi_hash_lock, pcbstor->ips_hashlock_name, 530 NULL, MTX_DEF); 531 #ifdef VIMAGE 532 pcbinfo->ipi_vnet = curvnet; 533 #endif 534 CK_LIST_INIT(&pcbinfo->ipi_listhead); 535 pcbinfo->ipi_count = 0; 536 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 537 &pcbinfo->ipi_hashmask); 538 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); 539 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 540 &pcbinfo->ipi_porthashmask); 541 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, 542 &pcbinfo->ipi_lbgrouphashmask); 543 pcbinfo->ipi_zone = pcbstor->ips_zone; 544 pcbinfo->ipi_portzone = pcbstor->ips_portzone; 545 pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone); 546 } 547 548 /* 549 * Destroy an inpcbinfo. 550 */ 551 void 552 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 553 { 554 555 KASSERT(pcbinfo->ipi_count == 0, 556 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 557 558 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 559 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 560 pcbinfo->ipi_porthashmask); 561 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 562 pcbinfo->ipi_lbgrouphashmask); 563 mtx_destroy(&pcbinfo->ipi_hash_lock); 564 mtx_destroy(&pcbinfo->ipi_lock); 565 } 566 567 /* 568 * Initialize a pcbstorage - per protocol zones to allocate inpcbs. 569 */ 570 static void inpcb_dtor(void *, int, void *); 571 static void inpcb_fini(void *, int); 572 void 573 in_pcbstorage_init(void *arg) 574 { 575 struct inpcbstorage *pcbstor = arg; 576 577 pcbstor->ips_zone = uma_zcreate(pcbstor->ips_zone_name, 578 sizeof(struct inpcb), NULL, inpcb_dtor, pcbstor->ips_pcbinit, 579 inpcb_fini, UMA_ALIGN_PTR, UMA_ZONE_SMR); 580 pcbstor->ips_portzone = uma_zcreate(pcbstor->ips_portzone_name, 581 sizeof(struct inpcbport), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 582 uma_zone_set_smr(pcbstor->ips_portzone, 583 uma_zone_get_smr(pcbstor->ips_zone)); 584 } 585 586 /* 587 * Destroy a pcbstorage - used by unloadable protocols. 588 */ 589 void 590 in_pcbstorage_destroy(void *arg) 591 { 592 struct inpcbstorage *pcbstor = arg; 593 594 uma_zdestroy(pcbstor->ips_zone); 595 uma_zdestroy(pcbstor->ips_portzone); 596 } 597 598 /* 599 * Allocate a PCB and associate it with the socket. 600 * On success return with the PCB locked. 601 */ 602 int 603 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 604 { 605 struct inpcb *inp; 606 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 607 int error; 608 #endif 609 610 inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT); 611 if (inp == NULL) 612 return (ENOBUFS); 613 bzero(&inp->inp_start_zero, inp_zero_size); 614 #ifdef NUMA 615 inp->inp_numa_domain = M_NODOM; 616 #endif 617 inp->inp_pcbinfo = pcbinfo; 618 inp->inp_socket = so; 619 inp->inp_cred = crhold(so->so_cred); 620 inp->inp_inc.inc_fibnum = so->so_fibnum; 621 #ifdef MAC 622 error = mac_inpcb_init(inp, M_NOWAIT); 623 if (error != 0) 624 goto out; 625 mac_inpcb_create(so, inp); 626 #endif 627 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 628 error = ipsec_init_pcbpolicy(inp); 629 if (error != 0) { 630 #ifdef MAC 631 mac_inpcb_destroy(inp); 632 #endif 633 goto out; 634 } 635 #endif /*IPSEC*/ 636 #ifdef INET6 637 if (INP_SOCKAF(so) == AF_INET6) { 638 inp->inp_vflag |= INP_IPV6PROTO | INP_IPV6; 639 if (V_ip6_v6only) 640 inp->inp_flags |= IN6P_IPV6_V6ONLY; 641 #ifdef INET 642 else 643 inp->inp_vflag |= INP_IPV4; 644 #endif 645 if (V_ip6_auto_flowlabel) 646 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 647 inp->in6p_hops = -1; /* use kernel default */ 648 } 649 #endif 650 #if defined(INET) && defined(INET6) 651 else 652 #endif 653 #ifdef INET 654 inp->inp_vflag |= INP_IPV4; 655 #endif 656 /* 657 * Routes in inpcb's can cache L2 as well; they are guaranteed 658 * to be cleaned up. 659 */ 660 inp->inp_route.ro_flags = RT_LLE_CACHE; 661 #ifdef TCPHPTS 662 /* 663 * If using hpts lets drop a random number in so 664 * not all new connections fall on the same CPU. 665 */ 666 inp->inp_hpts_cpu = hpts_random_cpu(inp); 667 #endif 668 refcount_init(&inp->inp_refcount, 1); /* Reference from socket. */ 669 INP_WLOCK(inp); 670 INP_INFO_WLOCK(pcbinfo); 671 pcbinfo->ipi_count++; 672 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 673 CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list); 674 INP_INFO_WUNLOCK(pcbinfo); 675 so->so_pcb = inp; 676 677 return (0); 678 679 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 680 out: 681 uma_zfree_smr(pcbinfo->ipi_zone, inp); 682 return (error); 683 #endif 684 } 685 686 #ifdef INET 687 int 688 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 689 { 690 int anonport, error; 691 692 KASSERT(nam == NULL || nam->sa_family == AF_INET, 693 ("%s: invalid address family for %p", __func__, nam)); 694 KASSERT(nam == NULL || nam->sa_len == sizeof(struct sockaddr_in), 695 ("%s: invalid address length for %p", __func__, nam)); 696 INP_WLOCK_ASSERT(inp); 697 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 698 699 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 700 return (EINVAL); 701 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 702 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 703 &inp->inp_lport, cred); 704 if (error) 705 return (error); 706 if (in_pcbinshash(inp) != 0) { 707 inp->inp_laddr.s_addr = INADDR_ANY; 708 inp->inp_lport = 0; 709 return (EAGAIN); 710 } 711 if (anonport) 712 inp->inp_flags |= INP_ANONPORT; 713 return (0); 714 } 715 #endif 716 717 #if defined(INET) || defined(INET6) 718 /* 719 * Assign a local port like in_pcb_lport(), but also used with connect() 720 * and a foreign address and port. If fsa is non-NULL, choose a local port 721 * that is unused with those, otherwise one that is completely unused. 722 * lsa can be NULL for IPv6. 723 */ 724 int 725 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp, 726 struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags) 727 { 728 struct inpcbinfo *pcbinfo; 729 struct inpcb *tmpinp; 730 unsigned short *lastport; 731 int count, dorandom, error; 732 u_short aux, first, last, lport; 733 #ifdef INET 734 struct in_addr laddr, faddr; 735 #endif 736 #ifdef INET6 737 struct in6_addr *laddr6, *faddr6; 738 #endif 739 740 pcbinfo = inp->inp_pcbinfo; 741 742 /* 743 * Because no actual state changes occur here, a global write lock on 744 * the pcbinfo isn't required. 745 */ 746 INP_LOCK_ASSERT(inp); 747 INP_HASH_LOCK_ASSERT(pcbinfo); 748 749 if (inp->inp_flags & INP_HIGHPORT) { 750 first = V_ipport_hifirstauto; /* sysctl */ 751 last = V_ipport_hilastauto; 752 lastport = &pcbinfo->ipi_lasthi; 753 } else if (inp->inp_flags & INP_LOWPORT) { 754 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); 755 if (error) 756 return (error); 757 first = V_ipport_lowfirstauto; /* 1023 */ 758 last = V_ipport_lowlastauto; /* 600 */ 759 lastport = &pcbinfo->ipi_lastlow; 760 } else { 761 first = V_ipport_firstauto; /* sysctl */ 762 last = V_ipport_lastauto; 763 lastport = &pcbinfo->ipi_lastport; 764 } 765 /* 766 * For UDP(-Lite), use random port allocation as long as the user 767 * allows it. For TCP (and as of yet unknown) connections, 768 * use random port allocation only if the user allows it AND 769 * ipport_tick() allows it. 770 */ 771 if (V_ipport_randomized && 772 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 773 pcbinfo == &V_ulitecbinfo)) 774 dorandom = 1; 775 else 776 dorandom = 0; 777 /* 778 * It makes no sense to do random port allocation if 779 * we have the only port available. 780 */ 781 if (first == last) 782 dorandom = 0; 783 /* Make sure to not include UDP(-Lite) packets in the count. */ 784 if (pcbinfo != &V_udbinfo && pcbinfo != &V_ulitecbinfo) 785 V_ipport_tcpallocs++; 786 /* 787 * Instead of having two loops further down counting up or down 788 * make sure that first is always <= last and go with only one 789 * code path implementing all logic. 790 */ 791 if (first > last) { 792 aux = first; 793 first = last; 794 last = aux; 795 } 796 797 #ifdef INET 798 laddr.s_addr = INADDR_ANY; /* used by INET6+INET below too */ 799 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 800 if (lsa != NULL) 801 laddr = ((struct sockaddr_in *)lsa)->sin_addr; 802 if (fsa != NULL) 803 faddr = ((struct sockaddr_in *)fsa)->sin_addr; 804 } 805 #endif 806 #ifdef INET6 807 laddr6 = NULL; 808 if ((inp->inp_vflag & INP_IPV6) != 0) { 809 if (lsa != NULL) 810 laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr; 811 if (fsa != NULL) 812 faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr; 813 } 814 #endif 815 816 tmpinp = NULL; 817 lport = *lportp; 818 819 if (dorandom) 820 *lastport = first + (arc4random() % (last - first)); 821 822 count = last - first; 823 824 do { 825 if (count-- < 0) /* completely used? */ 826 return (EADDRNOTAVAIL); 827 ++*lastport; 828 if (*lastport < first || *lastport > last) 829 *lastport = first; 830 lport = htons(*lastport); 831 832 if (fsa != NULL) { 833 #ifdef INET 834 if (lsa->sa_family == AF_INET) { 835 tmpinp = in_pcblookup_hash_locked(pcbinfo, 836 faddr, fport, laddr, lport, lookupflags, 837 NULL, M_NODOM); 838 } 839 #endif 840 #ifdef INET6 841 if (lsa->sa_family == AF_INET6) { 842 tmpinp = in6_pcblookup_hash_locked(pcbinfo, 843 faddr6, fport, laddr6, lport, lookupflags, 844 NULL, M_NODOM); 845 } 846 #endif 847 } else { 848 #ifdef INET6 849 if ((inp->inp_vflag & INP_IPV6) != 0) { 850 tmpinp = in6_pcblookup_local(pcbinfo, 851 &inp->in6p_laddr, lport, lookupflags, cred); 852 #ifdef INET 853 if (tmpinp == NULL && 854 (inp->inp_vflag & INP_IPV4)) 855 tmpinp = in_pcblookup_local(pcbinfo, 856 laddr, lport, lookupflags, cred); 857 #endif 858 } 859 #endif 860 #if defined(INET) && defined(INET6) 861 else 862 #endif 863 #ifdef INET 864 tmpinp = in_pcblookup_local(pcbinfo, laddr, 865 lport, lookupflags, cred); 866 #endif 867 } 868 } while (tmpinp != NULL); 869 870 *lportp = lport; 871 872 return (0); 873 } 874 875 /* 876 * Select a local port (number) to use. 877 */ 878 int 879 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 880 struct ucred *cred, int lookupflags) 881 { 882 struct sockaddr_in laddr; 883 884 if (laddrp) { 885 bzero(&laddr, sizeof(laddr)); 886 laddr.sin_family = AF_INET; 887 laddr.sin_addr = *laddrp; 888 } 889 return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr : 890 NULL, lportp, NULL, 0, cred, lookupflags)); 891 } 892 893 /* 894 * Return cached socket options. 895 */ 896 int 897 inp_so_options(const struct inpcb *inp) 898 { 899 int so_options; 900 901 so_options = 0; 902 903 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 904 so_options |= SO_REUSEPORT_LB; 905 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 906 so_options |= SO_REUSEPORT; 907 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 908 so_options |= SO_REUSEADDR; 909 return (so_options); 910 } 911 #endif /* INET || INET6 */ 912 913 /* 914 * Check if a new BINDMULTI socket is allowed to be created. 915 * 916 * ni points to the new inp. 917 * oi points to the existing inp. 918 * 919 * This checks whether the existing inp also has BINDMULTI and 920 * whether the credentials match. 921 */ 922 int 923 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 924 { 925 /* Check permissions match */ 926 if ((ni->inp_flags2 & INP_BINDMULTI) && 927 (ni->inp_cred->cr_uid != 928 oi->inp_cred->cr_uid)) 929 return (0); 930 931 /* Check the existing inp has BINDMULTI set */ 932 if ((ni->inp_flags2 & INP_BINDMULTI) && 933 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 934 return (0); 935 936 /* 937 * We're okay - either INP_BINDMULTI isn't set on ni, or 938 * it is and it matches the checks. 939 */ 940 return (1); 941 } 942 943 #ifdef INET 944 /* 945 * Set up a bind operation on a PCB, performing port allocation 946 * as required, but do not actually modify the PCB. Callers can 947 * either complete the bind by setting inp_laddr/inp_lport and 948 * calling in_pcbinshash(), or they can just use the resulting 949 * port and address to authorise the sending of a once-off packet. 950 * 951 * On error, the values of *laddrp and *lportp are not changed. 952 */ 953 int 954 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 955 u_short *lportp, struct ucred *cred) 956 { 957 struct socket *so = inp->inp_socket; 958 struct sockaddr_in *sin; 959 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 960 struct in_addr laddr; 961 u_short lport = 0; 962 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 963 int error; 964 965 /* 966 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here 967 * so that we don't have to add to the (already messy) code below. 968 */ 969 int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); 970 971 /* 972 * No state changes, so read locks are sufficient here. 973 */ 974 INP_LOCK_ASSERT(inp); 975 INP_HASH_LOCK_ASSERT(pcbinfo); 976 977 laddr.s_addr = *laddrp; 978 if (nam != NULL && laddr.s_addr != INADDR_ANY) 979 return (EINVAL); 980 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) 981 lookupflags = INPLOOKUP_WILDCARD; 982 if (nam == NULL) { 983 if ((error = prison_local_ip4(cred, &laddr)) != 0) 984 return (error); 985 } else { 986 sin = (struct sockaddr_in *)nam; 987 KASSERT(sin->sin_family == AF_INET, 988 ("%s: invalid family for address %p", __func__, sin)); 989 KASSERT(sin->sin_len == sizeof(*sin), 990 ("%s: invalid length for address %p", __func__, sin)); 991 992 error = prison_local_ip4(cred, &sin->sin_addr); 993 if (error) 994 return (error); 995 if (sin->sin_port != *lportp) { 996 /* Don't allow the port to change. */ 997 if (*lportp != 0) 998 return (EINVAL); 999 lport = sin->sin_port; 1000 } 1001 /* NB: lport is left as 0 if the port isn't being changed. */ 1002 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 1003 /* 1004 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 1005 * allow complete duplication of binding if 1006 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 1007 * and a multicast address is bound on both 1008 * new and duplicated sockets. 1009 */ 1010 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 1011 reuseport = SO_REUSEADDR|SO_REUSEPORT; 1012 /* 1013 * XXX: How to deal with SO_REUSEPORT_LB here? 1014 * Treat same as SO_REUSEPORT for now. 1015 */ 1016 if ((so->so_options & 1017 (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) 1018 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; 1019 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 1020 sin->sin_port = 0; /* yech... */ 1021 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 1022 /* 1023 * Is the address a local IP address? 1024 * If INP_BINDANY is set, then the socket may be bound 1025 * to any endpoint address, local or not. 1026 */ 1027 if ((inp->inp_flags & INP_BINDANY) == 0 && 1028 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 1029 return (EADDRNOTAVAIL); 1030 } 1031 laddr = sin->sin_addr; 1032 if (lport) { 1033 struct inpcb *t; 1034 struct tcptw *tw; 1035 1036 /* GROSS */ 1037 if (ntohs(lport) <= V_ipport_reservedhigh && 1038 ntohs(lport) >= V_ipport_reservedlow && 1039 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) 1040 return (EACCES); 1041 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 1042 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { 1043 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 1044 lport, INPLOOKUP_WILDCARD, cred); 1045 /* 1046 * XXX 1047 * This entire block sorely needs a rewrite. 1048 */ 1049 if (t && 1050 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 1051 ((t->inp_flags & INP_TIMEWAIT) == 0) && 1052 (so->so_type != SOCK_STREAM || 1053 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 1054 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 1055 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 1056 (t->inp_flags2 & INP_REUSEPORT) || 1057 (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && 1058 (inp->inp_cred->cr_uid != 1059 t->inp_cred->cr_uid)) 1060 return (EADDRINUSE); 1061 1062 /* 1063 * If the socket is a BINDMULTI socket, then 1064 * the credentials need to match and the 1065 * original socket also has to have been bound 1066 * with BINDMULTI. 1067 */ 1068 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 1069 return (EADDRINUSE); 1070 } 1071 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 1072 lport, lookupflags, cred); 1073 if (t && (t->inp_flags & INP_TIMEWAIT)) { 1074 /* 1075 * XXXRW: If an incpb has had its timewait 1076 * state recycled, we treat the address as 1077 * being in use (for now). This is better 1078 * than a panic, but not desirable. 1079 */ 1080 tw = intotw(t); 1081 if (tw == NULL || 1082 ((reuseport & tw->tw_so_options) == 0 && 1083 (reuseport_lb & 1084 tw->tw_so_options) == 0)) { 1085 return (EADDRINUSE); 1086 } 1087 } else if (t && 1088 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 1089 (reuseport & inp_so_options(t)) == 0 && 1090 (reuseport_lb & inp_so_options(t)) == 0) { 1091 #ifdef INET6 1092 if (ntohl(sin->sin_addr.s_addr) != 1093 INADDR_ANY || 1094 ntohl(t->inp_laddr.s_addr) != 1095 INADDR_ANY || 1096 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 1097 (t->inp_vflag & INP_IPV6PROTO) == 0) 1098 #endif 1099 return (EADDRINUSE); 1100 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 1101 return (EADDRINUSE); 1102 } 1103 } 1104 } 1105 if (*lportp != 0) 1106 lport = *lportp; 1107 if (lport == 0) { 1108 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 1109 if (error != 0) 1110 return (error); 1111 } 1112 *laddrp = laddr.s_addr; 1113 *lportp = lport; 1114 return (0); 1115 } 1116 1117 /* 1118 * Connect from a socket to a specified address. 1119 * Both address and port must be specified in argument sin. 1120 * If don't have a local address for this socket yet, 1121 * then pick one. 1122 */ 1123 int 1124 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred, 1125 bool rehash) 1126 { 1127 u_short lport, fport; 1128 in_addr_t laddr, faddr; 1129 int anonport, error; 1130 1131 INP_WLOCK_ASSERT(inp); 1132 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1133 1134 lport = inp->inp_lport; 1135 laddr = inp->inp_laddr.s_addr; 1136 anonport = (lport == 0); 1137 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 1138 NULL, cred); 1139 if (error) 1140 return (error); 1141 1142 /* Do the initial binding of the local address if required. */ 1143 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 1144 KASSERT(rehash == true, 1145 ("Rehashing required for unbound inps")); 1146 inp->inp_lport = lport; 1147 inp->inp_laddr.s_addr = laddr; 1148 if (in_pcbinshash(inp) != 0) { 1149 inp->inp_laddr.s_addr = INADDR_ANY; 1150 inp->inp_lport = 0; 1151 return (EAGAIN); 1152 } 1153 } 1154 1155 /* Commit the remaining changes. */ 1156 inp->inp_lport = lport; 1157 inp->inp_laddr.s_addr = laddr; 1158 inp->inp_faddr.s_addr = faddr; 1159 inp->inp_fport = fport; 1160 if (rehash) { 1161 in_pcbrehash(inp); 1162 } else { 1163 in_pcbinshash(inp); 1164 } 1165 1166 if (anonport) 1167 inp->inp_flags |= INP_ANONPORT; 1168 return (0); 1169 } 1170 1171 /* 1172 * Do proper source address selection on an unbound socket in case 1173 * of connect. Take jails into account as well. 1174 */ 1175 int 1176 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 1177 struct ucred *cred) 1178 { 1179 struct ifaddr *ifa; 1180 struct sockaddr *sa; 1181 struct sockaddr_in *sin, dst; 1182 struct nhop_object *nh; 1183 int error; 1184 1185 NET_EPOCH_ASSERT(); 1186 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1187 /* 1188 * Bypass source address selection and use the primary jail IP 1189 * if requested. 1190 */ 1191 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 1192 return (0); 1193 1194 error = 0; 1195 1196 nh = NULL; 1197 bzero(&dst, sizeof(dst)); 1198 sin = &dst; 1199 sin->sin_family = AF_INET; 1200 sin->sin_len = sizeof(struct sockaddr_in); 1201 sin->sin_addr.s_addr = faddr->s_addr; 1202 1203 /* 1204 * If route is known our src addr is taken from the i/f, 1205 * else punt. 1206 * 1207 * Find out route to destination. 1208 */ 1209 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1210 nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr, 1211 0, NHR_NONE, 0); 1212 1213 /* 1214 * If we found a route, use the address corresponding to 1215 * the outgoing interface. 1216 * 1217 * Otherwise assume faddr is reachable on a directly connected 1218 * network and try to find a corresponding interface to take 1219 * the source address from. 1220 */ 1221 if (nh == NULL || nh->nh_ifp == NULL) { 1222 struct in_ifaddr *ia; 1223 struct ifnet *ifp; 1224 1225 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1226 inp->inp_socket->so_fibnum)); 1227 if (ia == NULL) { 1228 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1229 inp->inp_socket->so_fibnum)); 1230 } 1231 if (ia == NULL) { 1232 error = ENETUNREACH; 1233 goto done; 1234 } 1235 1236 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1237 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1238 goto done; 1239 } 1240 1241 ifp = ia->ia_ifp; 1242 ia = NULL; 1243 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1244 sa = ifa->ifa_addr; 1245 if (sa->sa_family != AF_INET) 1246 continue; 1247 sin = (struct sockaddr_in *)sa; 1248 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1249 ia = (struct in_ifaddr *)ifa; 1250 break; 1251 } 1252 } 1253 if (ia != NULL) { 1254 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1255 goto done; 1256 } 1257 1258 /* 3. As a last resort return the 'default' jail address. */ 1259 error = prison_get_ip4(cred, laddr); 1260 goto done; 1261 } 1262 1263 /* 1264 * If the outgoing interface on the route found is not 1265 * a loopback interface, use the address from that interface. 1266 * In case of jails do those three steps: 1267 * 1. check if the interface address belongs to the jail. If so use it. 1268 * 2. check if we have any address on the outgoing interface 1269 * belonging to this jail. If so use it. 1270 * 3. as a last resort return the 'default' jail address. 1271 */ 1272 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) { 1273 struct in_ifaddr *ia; 1274 struct ifnet *ifp; 1275 1276 /* If not jailed, use the default returned. */ 1277 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1278 ia = (struct in_ifaddr *)nh->nh_ifa; 1279 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1280 goto done; 1281 } 1282 1283 /* Jailed. */ 1284 /* 1. Check if the iface address belongs to the jail. */ 1285 sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr; 1286 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1287 ia = (struct in_ifaddr *)nh->nh_ifa; 1288 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1289 goto done; 1290 } 1291 1292 /* 1293 * 2. Check if we have any address on the outgoing interface 1294 * belonging to this jail. 1295 */ 1296 ia = NULL; 1297 ifp = nh->nh_ifp; 1298 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1299 sa = ifa->ifa_addr; 1300 if (sa->sa_family != AF_INET) 1301 continue; 1302 sin = (struct sockaddr_in *)sa; 1303 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1304 ia = (struct in_ifaddr *)ifa; 1305 break; 1306 } 1307 } 1308 if (ia != NULL) { 1309 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1310 goto done; 1311 } 1312 1313 /* 3. As a last resort return the 'default' jail address. */ 1314 error = prison_get_ip4(cred, laddr); 1315 goto done; 1316 } 1317 1318 /* 1319 * The outgoing interface is marked with 'loopback net', so a route 1320 * to ourselves is here. 1321 * Try to find the interface of the destination address and then 1322 * take the address from there. That interface is not necessarily 1323 * a loopback interface. 1324 * In case of jails, check that it is an address of the jail 1325 * and if we cannot find, fall back to the 'default' jail address. 1326 */ 1327 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) { 1328 struct in_ifaddr *ia; 1329 1330 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst), 1331 inp->inp_socket->so_fibnum)); 1332 if (ia == NULL) 1333 ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0, 1334 inp->inp_socket->so_fibnum)); 1335 if (ia == NULL) 1336 ia = ifatoia(ifa_ifwithaddr(sintosa(&dst))); 1337 1338 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1339 if (ia == NULL) { 1340 error = ENETUNREACH; 1341 goto done; 1342 } 1343 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1344 goto done; 1345 } 1346 1347 /* Jailed. */ 1348 if (ia != NULL) { 1349 struct ifnet *ifp; 1350 1351 ifp = ia->ia_ifp; 1352 ia = NULL; 1353 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1354 sa = ifa->ifa_addr; 1355 if (sa->sa_family != AF_INET) 1356 continue; 1357 sin = (struct sockaddr_in *)sa; 1358 if (prison_check_ip4(cred, 1359 &sin->sin_addr) == 0) { 1360 ia = (struct in_ifaddr *)ifa; 1361 break; 1362 } 1363 } 1364 if (ia != NULL) { 1365 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1366 goto done; 1367 } 1368 } 1369 1370 /* 3. As a last resort return the 'default' jail address. */ 1371 error = prison_get_ip4(cred, laddr); 1372 goto done; 1373 } 1374 1375 done: 1376 return (error); 1377 } 1378 1379 /* 1380 * Set up for a connect from a socket to the specified address. 1381 * On entry, *laddrp and *lportp should contain the current local 1382 * address and port for the PCB; these are updated to the values 1383 * that should be placed in inp_laddr and inp_lport to complete 1384 * the connect. 1385 * 1386 * On success, *faddrp and *fportp will be set to the remote address 1387 * and port. These are not updated in the error case. 1388 * 1389 * If the operation fails because the connection already exists, 1390 * *oinpp will be set to the PCB of that connection so that the 1391 * caller can decide to override it. In all other cases, *oinpp 1392 * is set to NULL. 1393 */ 1394 int 1395 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1396 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1397 struct inpcb **oinpp, struct ucred *cred) 1398 { 1399 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1400 struct in_ifaddr *ia; 1401 struct inpcb *oinp; 1402 struct in_addr laddr, faddr; 1403 u_short lport, fport; 1404 int error; 1405 1406 KASSERT(sin->sin_family == AF_INET, 1407 ("%s: invalid address family for %p", __func__, sin)); 1408 KASSERT(sin->sin_len == sizeof(*sin), 1409 ("%s: invalid address length for %p", __func__, sin)); 1410 1411 /* 1412 * Because a global state change doesn't actually occur here, a read 1413 * lock is sufficient. 1414 */ 1415 NET_EPOCH_ASSERT(); 1416 INP_LOCK_ASSERT(inp); 1417 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1418 1419 if (oinpp != NULL) 1420 *oinpp = NULL; 1421 if (sin->sin_port == 0) 1422 return (EADDRNOTAVAIL); 1423 laddr.s_addr = *laddrp; 1424 lport = *lportp; 1425 faddr = sin->sin_addr; 1426 fport = sin->sin_port; 1427 #ifdef ROUTE_MPATH 1428 if (CALC_FLOWID_OUTBOUND) { 1429 uint32_t hash_val, hash_type; 1430 1431 hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport, 1432 inp->inp_socket->so_proto->pr_protocol, &hash_type); 1433 1434 inp->inp_flowid = hash_val; 1435 inp->inp_flowtype = hash_type; 1436 } 1437 #endif 1438 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1439 /* 1440 * If the destination address is INADDR_ANY, 1441 * use the primary local address. 1442 * If the supplied address is INADDR_BROADCAST, 1443 * and the primary interface supports broadcast, 1444 * choose the broadcast address for that interface. 1445 */ 1446 if (faddr.s_addr == INADDR_ANY) { 1447 faddr = 1448 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1449 if (cred != NULL && 1450 (error = prison_get_ip4(cred, &faddr)) != 0) 1451 return (error); 1452 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1453 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1454 IFF_BROADCAST) 1455 faddr = satosin(&CK_STAILQ_FIRST( 1456 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1457 } 1458 } 1459 if (laddr.s_addr == INADDR_ANY) { 1460 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1461 /* 1462 * If the destination address is multicast and an outgoing 1463 * interface has been set as a multicast option, prefer the 1464 * address of that interface as our source address. 1465 */ 1466 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1467 inp->inp_moptions != NULL) { 1468 struct ip_moptions *imo; 1469 struct ifnet *ifp; 1470 1471 imo = inp->inp_moptions; 1472 if (imo->imo_multicast_ifp != NULL) { 1473 ifp = imo->imo_multicast_ifp; 1474 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1475 if ((ia->ia_ifp == ifp) && 1476 (cred == NULL || 1477 prison_check_ip4(cred, 1478 &ia->ia_addr.sin_addr) == 0)) 1479 break; 1480 } 1481 if (ia == NULL) 1482 error = EADDRNOTAVAIL; 1483 else { 1484 laddr = ia->ia_addr.sin_addr; 1485 error = 0; 1486 } 1487 } 1488 } 1489 if (error) 1490 return (error); 1491 } 1492 1493 if (lport != 0) { 1494 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, 1495 fport, laddr, lport, 0, NULL, M_NODOM); 1496 if (oinp != NULL) { 1497 if (oinpp != NULL) 1498 *oinpp = oinp; 1499 return (EADDRINUSE); 1500 } 1501 } else { 1502 struct sockaddr_in lsin, fsin; 1503 1504 bzero(&lsin, sizeof(lsin)); 1505 bzero(&fsin, sizeof(fsin)); 1506 lsin.sin_family = AF_INET; 1507 lsin.sin_addr = laddr; 1508 fsin.sin_family = AF_INET; 1509 fsin.sin_addr = faddr; 1510 error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin, 1511 &lport, (struct sockaddr *)& fsin, fport, cred, 1512 INPLOOKUP_WILDCARD); 1513 if (error) 1514 return (error); 1515 } 1516 *laddrp = laddr.s_addr; 1517 *lportp = lport; 1518 *faddrp = faddr.s_addr; 1519 *fportp = fport; 1520 return (0); 1521 } 1522 1523 void 1524 in_pcbdisconnect(struct inpcb *inp) 1525 { 1526 1527 INP_WLOCK_ASSERT(inp); 1528 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1529 1530 inp->inp_faddr.s_addr = INADDR_ANY; 1531 inp->inp_fport = 0; 1532 in_pcbrehash(inp); 1533 } 1534 #endif /* INET */ 1535 1536 /* 1537 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1538 * For most protocols, this will be invoked immediately prior to calling 1539 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1540 * socket, in which case in_pcbfree() is deferred. 1541 */ 1542 void 1543 in_pcbdetach(struct inpcb *inp) 1544 { 1545 1546 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1547 1548 #ifdef RATELIMIT 1549 if (inp->inp_snd_tag != NULL) 1550 in_pcbdetach_txrtlmt(inp); 1551 #endif 1552 inp->inp_socket->so_pcb = NULL; 1553 inp->inp_socket = NULL; 1554 } 1555 1556 /* 1557 * inpcb hash lookups are protected by SMR section. 1558 * 1559 * Once desired pcb has been found, switching from SMR section to a pcb 1560 * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK 1561 * here because SMR is a critical section. 1562 * In 99%+ cases inp_smr_lock() would obtain the lock immediately. 1563 */ 1564 static inline void 1565 inp_lock(struct inpcb *inp, const inp_lookup_t lock) 1566 { 1567 1568 lock == INPLOOKUP_RLOCKPCB ? 1569 rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock); 1570 } 1571 1572 static inline void 1573 inp_unlock(struct inpcb *inp, const inp_lookup_t lock) 1574 { 1575 1576 lock == INPLOOKUP_RLOCKPCB ? 1577 rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock); 1578 } 1579 1580 static inline int 1581 inp_trylock(struct inpcb *inp, const inp_lookup_t lock) 1582 { 1583 1584 return (lock == INPLOOKUP_RLOCKPCB ? 1585 rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock)); 1586 } 1587 1588 static inline bool 1589 in_pcbrele(struct inpcb *inp, const inp_lookup_t lock) 1590 { 1591 1592 return (lock == INPLOOKUP_RLOCKPCB ? 1593 in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp)); 1594 } 1595 1596 bool 1597 inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock) 1598 { 1599 1600 MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB); 1601 SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr); 1602 1603 if (__predict_true(inp_trylock(inp, lock))) { 1604 if (__predict_false(inp->inp_flags & INP_FREED)) { 1605 smr_exit(inp->inp_pcbinfo->ipi_smr); 1606 inp_unlock(inp, lock); 1607 return (false); 1608 } 1609 smr_exit(inp->inp_pcbinfo->ipi_smr); 1610 return (true); 1611 } 1612 1613 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1614 smr_exit(inp->inp_pcbinfo->ipi_smr); 1615 inp_lock(inp, lock); 1616 if (__predict_false(in_pcbrele(inp, lock))) 1617 return (false); 1618 /* 1619 * inp acquired through refcount & lock for sure didn't went 1620 * through uma_zfree(). However, it may have already went 1621 * through in_pcbfree() and has another reference, that 1622 * prevented its release by our in_pcbrele(). 1623 */ 1624 if (__predict_false(inp->inp_flags & INP_FREED)) { 1625 inp_unlock(inp, lock); 1626 return (false); 1627 } 1628 return (true); 1629 } else { 1630 smr_exit(inp->inp_pcbinfo->ipi_smr); 1631 return (false); 1632 } 1633 } 1634 1635 /* 1636 * inp_next() - inpcb hash/list traversal iterator 1637 * 1638 * Requires initialized struct inpcb_iterator for context. 1639 * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR(). 1640 * 1641 * - Iterator can have either write-lock or read-lock semantics, that can not 1642 * be changed later. 1643 * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through 1644 * a single hash slot. Note: only rip_input() does the latter. 1645 * - Iterator may have optional bool matching function. The matching function 1646 * will be executed for each inpcb in the SMR context, so it can not acquire 1647 * locks and can safely access only immutable fields of inpcb. 1648 * 1649 * A fresh initialized iterator has NULL inpcb in its context and that 1650 * means that inp_next() call would return the very first inpcb on the list 1651 * locked with desired semantic. In all following calls the context pointer 1652 * shall hold the current inpcb pointer. The KPI user is not supposed to 1653 * unlock the current inpcb! Upon end of traversal inp_next() will return NULL 1654 * and write NULL to its context. After end of traversal an iterator can be 1655 * reused. 1656 * 1657 * List traversals have the following features/constraints: 1658 * - New entries won't be seen, as they are always added to the head of a list. 1659 * - Removed entries won't stop traversal as long as they are not added to 1660 * a different list. This is violated by in_pcbrehash(). 1661 */ 1662 #define II_LIST_FIRST(ipi, hash) \ 1663 (((hash) == INP_ALL_LIST) ? \ 1664 CK_LIST_FIRST(&(ipi)->ipi_listhead) : \ 1665 CK_LIST_FIRST(&(ipi)->ipi_hashbase[(hash)])) 1666 #define II_LIST_NEXT(inp, hash) \ 1667 (((hash) == INP_ALL_LIST) ? \ 1668 CK_LIST_NEXT((inp), inp_list) : \ 1669 CK_LIST_NEXT((inp), inp_hash)) 1670 #define II_LOCK_ASSERT(inp, lock) \ 1671 rw_assert(&(inp)->inp_lock, \ 1672 (lock) == INPLOOKUP_RLOCKPCB ? RA_RLOCKED : RA_WLOCKED ) 1673 struct inpcb * 1674 inp_next(struct inpcb_iterator *ii) 1675 { 1676 const struct inpcbinfo *ipi = ii->ipi; 1677 inp_match_t *match = ii->match; 1678 void *ctx = ii->ctx; 1679 inp_lookup_t lock = ii->lock; 1680 int hash = ii->hash; 1681 struct inpcb *inp; 1682 1683 if (ii->inp == NULL) { /* First call. */ 1684 smr_enter(ipi->ipi_smr); 1685 /* This is unrolled CK_LIST_FOREACH(). */ 1686 for (inp = II_LIST_FIRST(ipi, hash); 1687 inp != NULL; 1688 inp = II_LIST_NEXT(inp, hash)) { 1689 if (match != NULL && (match)(inp, ctx) == false) 1690 continue; 1691 if (__predict_true(inp_smr_lock(inp, lock))) 1692 break; 1693 else { 1694 smr_enter(ipi->ipi_smr); 1695 MPASS(inp != II_LIST_FIRST(ipi, hash)); 1696 inp = II_LIST_FIRST(ipi, hash); 1697 if (inp == NULL) 1698 break; 1699 } 1700 } 1701 1702 if (inp == NULL) 1703 smr_exit(ipi->ipi_smr); 1704 else 1705 ii->inp = inp; 1706 1707 return (inp); 1708 } 1709 1710 /* Not a first call. */ 1711 smr_enter(ipi->ipi_smr); 1712 restart: 1713 inp = ii->inp; 1714 II_LOCK_ASSERT(inp, lock); 1715 next: 1716 inp = II_LIST_NEXT(inp, hash); 1717 if (inp == NULL) { 1718 smr_exit(ipi->ipi_smr); 1719 goto found; 1720 } 1721 1722 if (match != NULL && (match)(inp, ctx) == false) 1723 goto next; 1724 1725 if (__predict_true(inp_trylock(inp, lock))) { 1726 if (__predict_false(inp->inp_flags & INP_FREED)) { 1727 /* 1728 * Entries are never inserted in middle of a list, thus 1729 * as long as we are in SMR, we can continue traversal. 1730 * Jump to 'restart' should yield in the same result, 1731 * but could produce unnecessary looping. Could this 1732 * looping be unbound? 1733 */ 1734 inp_unlock(inp, lock); 1735 goto next; 1736 } else { 1737 smr_exit(ipi->ipi_smr); 1738 goto found; 1739 } 1740 } 1741 1742 /* 1743 * Can't obtain lock immediately, thus going hard. Once we exit the 1744 * SMR section we can no longer jump to 'next', and our only stable 1745 * anchoring point is ii->inp, which we keep locked for this case, so 1746 * we jump to 'restart'. 1747 */ 1748 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1749 smr_exit(ipi->ipi_smr); 1750 inp_lock(inp, lock); 1751 if (__predict_false(in_pcbrele(inp, lock))) { 1752 smr_enter(ipi->ipi_smr); 1753 goto restart; 1754 } 1755 /* 1756 * See comment in inp_smr_lock(). 1757 */ 1758 if (__predict_false(inp->inp_flags & INP_FREED)) { 1759 inp_unlock(inp, lock); 1760 smr_enter(ipi->ipi_smr); 1761 goto restart; 1762 } 1763 } else 1764 goto next; 1765 1766 found: 1767 inp_unlock(ii->inp, lock); 1768 ii->inp = inp; 1769 1770 return (ii->inp); 1771 } 1772 1773 /* 1774 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1775 * stability of an inpcb pointer despite the inpcb lock being released or 1776 * SMR section exited. 1777 * 1778 * To free a reference later in_pcbrele_(r|w)locked() must be performed. 1779 */ 1780 void 1781 in_pcbref(struct inpcb *inp) 1782 { 1783 u_int old __diagused; 1784 1785 old = refcount_acquire(&inp->inp_refcount); 1786 KASSERT(old > 0, ("%s: refcount 0", __func__)); 1787 } 1788 1789 /* 1790 * Drop a refcount on an inpcb elevated using in_pcbref(), potentially 1791 * freeing the pcb, if the reference was very last. 1792 */ 1793 bool 1794 in_pcbrele_rlocked(struct inpcb *inp) 1795 { 1796 1797 INP_RLOCK_ASSERT(inp); 1798 1799 if (refcount_release(&inp->inp_refcount) == 0) 1800 return (false); 1801 1802 MPASS(inp->inp_flags & INP_FREED); 1803 MPASS(inp->inp_socket == NULL); 1804 MPASS(inp->inp_in_hpts == 0); 1805 INP_RUNLOCK(inp); 1806 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1807 return (true); 1808 } 1809 1810 bool 1811 in_pcbrele_wlocked(struct inpcb *inp) 1812 { 1813 1814 INP_WLOCK_ASSERT(inp); 1815 1816 if (refcount_release(&inp->inp_refcount) == 0) 1817 return (false); 1818 1819 MPASS(inp->inp_flags & INP_FREED); 1820 MPASS(inp->inp_socket == NULL); 1821 MPASS(inp->inp_in_hpts == 0); 1822 INP_WUNLOCK(inp); 1823 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1824 return (true); 1825 } 1826 1827 /* 1828 * Unconditionally schedule an inpcb to be freed by decrementing its 1829 * reference count, which should occur only after the inpcb has been detached 1830 * from its socket. If another thread holds a temporary reference (acquired 1831 * using in_pcbref()) then the free is deferred until that reference is 1832 * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked. 1833 * Almost all work, including removal from global lists, is done in this 1834 * context, where the pcbinfo lock is held. 1835 */ 1836 void 1837 in_pcbfree(struct inpcb *inp) 1838 { 1839 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1840 #ifdef INET 1841 struct ip_moptions *imo; 1842 #endif 1843 #ifdef INET6 1844 struct ip6_moptions *im6o; 1845 #endif 1846 1847 INP_WLOCK_ASSERT(inp); 1848 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1849 KASSERT((inp->inp_flags & INP_FREED) == 0, 1850 ("%s: called twice for pcb %p", __func__, inp)); 1851 1852 inp->inp_flags |= INP_FREED; 1853 INP_INFO_WLOCK(pcbinfo); 1854 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1855 pcbinfo->ipi_count--; 1856 CK_LIST_REMOVE(inp, inp_list); 1857 INP_INFO_WUNLOCK(pcbinfo); 1858 1859 if (inp->inp_flags & INP_INHASHLIST) { 1860 struct inpcbport *phd = inp->inp_phd; 1861 1862 INP_HASH_WLOCK(pcbinfo); 1863 /* XXX: Only do if SO_REUSEPORT_LB set? */ 1864 in_pcbremlbgrouphash(inp); 1865 1866 CK_LIST_REMOVE(inp, inp_hash); 1867 CK_LIST_REMOVE(inp, inp_portlist); 1868 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 1869 CK_LIST_REMOVE(phd, phd_hash); 1870 uma_zfree_smr(pcbinfo->ipi_portzone, phd); 1871 } 1872 INP_HASH_WUNLOCK(pcbinfo); 1873 inp->inp_flags &= ~INP_INHASHLIST; 1874 } 1875 1876 RO_INVALIDATE_CACHE(&inp->inp_route); 1877 #ifdef MAC 1878 mac_inpcb_destroy(inp); 1879 #endif 1880 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1881 if (inp->inp_sp != NULL) 1882 ipsec_delete_pcbpolicy(inp); 1883 #endif 1884 #ifdef INET 1885 if (inp->inp_options) 1886 (void)m_free(inp->inp_options); 1887 imo = inp->inp_moptions; 1888 #endif 1889 #ifdef INET6 1890 if (inp->inp_vflag & INP_IPV6PROTO) { 1891 ip6_freepcbopts(inp->in6p_outputopts); 1892 im6o = inp->in6p_moptions; 1893 } else 1894 im6o = NULL; 1895 #endif 1896 1897 if (__predict_false(in_pcbrele_wlocked(inp) == false)) { 1898 INP_WUNLOCK(inp); 1899 } 1900 #ifdef INET6 1901 ip6_freemoptions(im6o); 1902 #endif 1903 #ifdef INET 1904 inp_freemoptions(imo); 1905 #endif 1906 /* Destruction is finalized in inpcb_dtor(). */ 1907 } 1908 1909 static void 1910 inpcb_dtor(void *mem, int size, void *arg) 1911 { 1912 struct inpcb *inp = mem; 1913 1914 crfree(inp->inp_cred); 1915 #ifdef INVARIANTS 1916 inp->inp_cred = NULL; 1917 #endif 1918 } 1919 1920 /* 1921 * Different protocols initialize their inpcbs differently - giving 1922 * different name to the lock. But they all are disposed the same. 1923 */ 1924 static void 1925 inpcb_fini(void *mem, int size) 1926 { 1927 struct inpcb *inp = mem; 1928 1929 INP_LOCK_DESTROY(inp); 1930 } 1931 1932 /* 1933 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1934 * port reservation, and preventing it from being returned by inpcb lookups. 1935 * 1936 * It is used by TCP to mark an inpcb as unused and avoid future packet 1937 * delivery or event notification when a socket remains open but TCP has 1938 * closed. This might occur as a result of a shutdown()-initiated TCP close 1939 * or a RST on the wire, and allows the port binding to be reused while still 1940 * maintaining the invariant that so_pcb always points to a valid inpcb until 1941 * in_pcbdetach(). 1942 * 1943 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1944 * in_pcbnotifyall() and in_pcbpurgeif0()? 1945 */ 1946 void 1947 in_pcbdrop(struct inpcb *inp) 1948 { 1949 1950 INP_WLOCK_ASSERT(inp); 1951 #ifdef INVARIANTS 1952 if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) 1953 MPASS(inp->inp_refcount > 1); 1954 #endif 1955 1956 /* 1957 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1958 * the hash lock...? 1959 */ 1960 inp->inp_flags |= INP_DROPPED; 1961 if (inp->inp_flags & INP_INHASHLIST) { 1962 struct inpcbport *phd = inp->inp_phd; 1963 1964 INP_HASH_WLOCK(inp->inp_pcbinfo); 1965 in_pcbremlbgrouphash(inp); 1966 CK_LIST_REMOVE(inp, inp_hash); 1967 CK_LIST_REMOVE(inp, inp_portlist); 1968 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 1969 CK_LIST_REMOVE(phd, phd_hash); 1970 uma_zfree_smr(inp->inp_pcbinfo->ipi_portzone, phd); 1971 } 1972 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1973 inp->inp_flags &= ~INP_INHASHLIST; 1974 } 1975 } 1976 1977 #ifdef INET 1978 /* 1979 * Common routines to return the socket addresses associated with inpcbs. 1980 */ 1981 struct sockaddr * 1982 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1983 { 1984 struct sockaddr_in *sin; 1985 1986 sin = malloc(sizeof *sin, M_SONAME, 1987 M_WAITOK | M_ZERO); 1988 sin->sin_family = AF_INET; 1989 sin->sin_len = sizeof(*sin); 1990 sin->sin_addr = *addr_p; 1991 sin->sin_port = port; 1992 1993 return (struct sockaddr *)sin; 1994 } 1995 1996 int 1997 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1998 { 1999 struct inpcb *inp; 2000 struct in_addr addr; 2001 in_port_t port; 2002 2003 inp = sotoinpcb(so); 2004 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 2005 2006 INP_RLOCK(inp); 2007 port = inp->inp_lport; 2008 addr = inp->inp_laddr; 2009 INP_RUNLOCK(inp); 2010 2011 *nam = in_sockaddr(port, &addr); 2012 return 0; 2013 } 2014 2015 int 2016 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 2017 { 2018 struct inpcb *inp; 2019 struct in_addr addr; 2020 in_port_t port; 2021 2022 inp = sotoinpcb(so); 2023 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 2024 2025 INP_RLOCK(inp); 2026 port = inp->inp_fport; 2027 addr = inp->inp_faddr; 2028 INP_RUNLOCK(inp); 2029 2030 *nam = in_sockaddr(port, &addr); 2031 return 0; 2032 } 2033 2034 void 2035 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 2036 struct inpcb *(*notify)(struct inpcb *, int)) 2037 { 2038 struct inpcb *inp, *inp_temp; 2039 2040 INP_INFO_WLOCK(pcbinfo); 2041 CK_LIST_FOREACH_SAFE(inp, &pcbinfo->ipi_listhead, inp_list, inp_temp) { 2042 INP_WLOCK(inp); 2043 #ifdef INET6 2044 if ((inp->inp_vflag & INP_IPV4) == 0) { 2045 INP_WUNLOCK(inp); 2046 continue; 2047 } 2048 #endif 2049 if (inp->inp_faddr.s_addr != faddr.s_addr || 2050 inp->inp_socket == NULL) { 2051 INP_WUNLOCK(inp); 2052 continue; 2053 } 2054 if ((*notify)(inp, errno)) 2055 INP_WUNLOCK(inp); 2056 } 2057 INP_INFO_WUNLOCK(pcbinfo); 2058 } 2059 2060 static bool 2061 inp_v4_multi_match(const struct inpcb *inp, void *v __unused) 2062 { 2063 2064 if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL) 2065 return (true); 2066 else 2067 return (false); 2068 } 2069 2070 void 2071 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 2072 { 2073 struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB, 2074 inp_v4_multi_match, NULL); 2075 struct inpcb *inp; 2076 struct in_multi *inm; 2077 struct in_mfilter *imf; 2078 struct ip_moptions *imo; 2079 2080 IN_MULTI_LOCK_ASSERT(); 2081 2082 while ((inp = inp_next(&inpi)) != NULL) { 2083 INP_WLOCK_ASSERT(inp); 2084 2085 imo = inp->inp_moptions; 2086 /* 2087 * Unselect the outgoing interface if it is being 2088 * detached. 2089 */ 2090 if (imo->imo_multicast_ifp == ifp) 2091 imo->imo_multicast_ifp = NULL; 2092 2093 /* 2094 * Drop multicast group membership if we joined 2095 * through the interface being detached. 2096 * 2097 * XXX This can all be deferred to an epoch_call 2098 */ 2099 restart: 2100 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 2101 if ((inm = imf->imf_inm) == NULL) 2102 continue; 2103 if (inm->inm_ifp != ifp) 2104 continue; 2105 ip_mfilter_remove(&imo->imo_head, imf); 2106 in_leavegroup_locked(inm, NULL); 2107 ip_mfilter_free(imf); 2108 goto restart; 2109 } 2110 } 2111 } 2112 2113 /* 2114 * Lookup a PCB based on the local address and port. Caller must hold the 2115 * hash lock. No inpcb locks or references are acquired. 2116 */ 2117 #define INP_LOOKUP_MAPPED_PCB_COST 3 2118 struct inpcb * 2119 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 2120 u_short lport, int lookupflags, struct ucred *cred) 2121 { 2122 struct inpcb *inp; 2123 #ifdef INET6 2124 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 2125 #else 2126 int matchwild = 3; 2127 #endif 2128 int wildcard; 2129 2130 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2131 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2132 INP_HASH_LOCK_ASSERT(pcbinfo); 2133 2134 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 2135 struct inpcbhead *head; 2136 /* 2137 * Look for an unconnected (wildcard foreign addr) PCB that 2138 * matches the local address and port we're looking for. 2139 */ 2140 head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport, 2141 pcbinfo->ipi_hashmask)]; 2142 CK_LIST_FOREACH(inp, head, inp_hash) { 2143 #ifdef INET6 2144 /* XXX inp locking */ 2145 if ((inp->inp_vflag & INP_IPV4) == 0) 2146 continue; 2147 #endif 2148 if (inp->inp_faddr.s_addr == INADDR_ANY && 2149 inp->inp_laddr.s_addr == laddr.s_addr && 2150 inp->inp_lport == lport) { 2151 /* 2152 * Found? 2153 */ 2154 if (cred == NULL || 2155 prison_equal_ip4(cred->cr_prison, 2156 inp->inp_cred->cr_prison)) 2157 return (inp); 2158 } 2159 } 2160 /* 2161 * Not found. 2162 */ 2163 return (NULL); 2164 } else { 2165 struct inpcbporthead *porthash; 2166 struct inpcbport *phd; 2167 struct inpcb *match = NULL; 2168 /* 2169 * Best fit PCB lookup. 2170 * 2171 * First see if this local port is in use by looking on the 2172 * port hash list. 2173 */ 2174 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 2175 pcbinfo->ipi_porthashmask)]; 2176 CK_LIST_FOREACH(phd, porthash, phd_hash) { 2177 if (phd->phd_port == lport) 2178 break; 2179 } 2180 if (phd != NULL) { 2181 /* 2182 * Port is in use by one or more PCBs. Look for best 2183 * fit. 2184 */ 2185 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 2186 wildcard = 0; 2187 if (cred != NULL && 2188 !prison_equal_ip4(inp->inp_cred->cr_prison, 2189 cred->cr_prison)) 2190 continue; 2191 #ifdef INET6 2192 /* XXX inp locking */ 2193 if ((inp->inp_vflag & INP_IPV4) == 0) 2194 continue; 2195 /* 2196 * We never select the PCB that has 2197 * INP_IPV6 flag and is bound to :: if 2198 * we have another PCB which is bound 2199 * to 0.0.0.0. If a PCB has the 2200 * INP_IPV6 flag, then we set its cost 2201 * higher than IPv4 only PCBs. 2202 * 2203 * Note that the case only happens 2204 * when a socket is bound to ::, under 2205 * the condition that the use of the 2206 * mapped address is allowed. 2207 */ 2208 if ((inp->inp_vflag & INP_IPV6) != 0) 2209 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 2210 #endif 2211 if (inp->inp_faddr.s_addr != INADDR_ANY) 2212 wildcard++; 2213 if (inp->inp_laddr.s_addr != INADDR_ANY) { 2214 if (laddr.s_addr == INADDR_ANY) 2215 wildcard++; 2216 else if (inp->inp_laddr.s_addr != laddr.s_addr) 2217 continue; 2218 } else { 2219 if (laddr.s_addr != INADDR_ANY) 2220 wildcard++; 2221 } 2222 if (wildcard < matchwild) { 2223 match = inp; 2224 matchwild = wildcard; 2225 if (matchwild == 0) 2226 break; 2227 } 2228 } 2229 } 2230 return (match); 2231 } 2232 } 2233 #undef INP_LOOKUP_MAPPED_PCB_COST 2234 2235 static struct inpcb * 2236 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 2237 const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr, 2238 uint16_t fport, int lookupflags, int numa_domain) 2239 { 2240 struct inpcb *local_wild, *numa_wild; 2241 const struct inpcblbgrouphead *hdr; 2242 struct inpcblbgroup *grp; 2243 uint32_t idx; 2244 2245 INP_HASH_LOCK_ASSERT(pcbinfo); 2246 2247 hdr = &pcbinfo->ipi_lbgrouphashbase[ 2248 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; 2249 2250 /* 2251 * Order of socket selection: 2252 * 1. non-wild. 2253 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD). 2254 * 2255 * NOTE: 2256 * - Load balanced group does not contain jailed sockets 2257 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets 2258 */ 2259 local_wild = NULL; 2260 numa_wild = NULL; 2261 CK_LIST_FOREACH(grp, hdr, il_list) { 2262 #ifdef INET6 2263 if (!(grp->il_vflag & INP_IPV4)) 2264 continue; 2265 #endif 2266 if (grp->il_lport != lport) 2267 continue; 2268 2269 idx = INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) % 2270 grp->il_inpcnt; 2271 if (grp->il_laddr.s_addr == laddr->s_addr) { 2272 if (numa_domain == M_NODOM || 2273 grp->il_numa_domain == numa_domain) { 2274 return (grp->il_inp[idx]); 2275 } else { 2276 numa_wild = grp->il_inp[idx]; 2277 } 2278 } 2279 if (grp->il_laddr.s_addr == INADDR_ANY && 2280 (lookupflags & INPLOOKUP_WILDCARD) != 0 && 2281 (local_wild == NULL || numa_domain == M_NODOM || 2282 grp->il_numa_domain == numa_domain)) { 2283 local_wild = grp->il_inp[idx]; 2284 } 2285 } 2286 if (numa_wild != NULL) 2287 return (numa_wild); 2288 2289 return (local_wild); 2290 } 2291 2292 /* 2293 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2294 * that the caller has either locked the hash list, which usually happens 2295 * for bind(2) operations, or is in SMR section, which happens when sorting 2296 * out incoming packets. 2297 */ 2298 static struct inpcb * 2299 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2300 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2301 struct ifnet *ifp, uint8_t numa_domain) 2302 { 2303 struct inpcbhead *head; 2304 struct inpcb *inp, *tmpinp; 2305 u_short fport = fport_arg, lport = lport_arg; 2306 2307 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2308 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2309 INP_HASH_LOCK_ASSERT(pcbinfo); 2310 2311 /* 2312 * First look for an exact match. 2313 */ 2314 tmpinp = NULL; 2315 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&faddr, lport, fport, 2316 pcbinfo->ipi_hashmask)]; 2317 CK_LIST_FOREACH(inp, head, inp_hash) { 2318 #ifdef INET6 2319 /* XXX inp locking */ 2320 if ((inp->inp_vflag & INP_IPV4) == 0) 2321 continue; 2322 #endif 2323 if (inp->inp_faddr.s_addr == faddr.s_addr && 2324 inp->inp_laddr.s_addr == laddr.s_addr && 2325 inp->inp_fport == fport && 2326 inp->inp_lport == lport) { 2327 /* 2328 * XXX We should be able to directly return 2329 * the inp here, without any checks. 2330 * Well unless both bound with SO_REUSEPORT? 2331 */ 2332 if (prison_flag(inp->inp_cred, PR_IP4)) 2333 return (inp); 2334 if (tmpinp == NULL) 2335 tmpinp = inp; 2336 } 2337 } 2338 if (tmpinp != NULL) 2339 return (tmpinp); 2340 2341 /* 2342 * Then look in lb group (for wildcard match). 2343 */ 2344 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2345 inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr, 2346 fport, lookupflags, numa_domain); 2347 if (inp != NULL) 2348 return (inp); 2349 } 2350 2351 /* 2352 * Then look for a wildcard match, if requested. 2353 */ 2354 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2355 struct inpcb *local_wild = NULL, *local_exact = NULL; 2356 #ifdef INET6 2357 struct inpcb *local_wild_mapped = NULL; 2358 #endif 2359 struct inpcb *jail_wild = NULL; 2360 int injail; 2361 2362 /* 2363 * Order of socket selection - we always prefer jails. 2364 * 1. jailed, non-wild. 2365 * 2. jailed, wild. 2366 * 3. non-jailed, non-wild. 2367 * 4. non-jailed, wild. 2368 */ 2369 2370 head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport, 2371 pcbinfo->ipi_hashmask)]; 2372 CK_LIST_FOREACH(inp, head, inp_hash) { 2373 #ifdef INET6 2374 /* XXX inp locking */ 2375 if ((inp->inp_vflag & INP_IPV4) == 0) 2376 continue; 2377 #endif 2378 if (inp->inp_faddr.s_addr != INADDR_ANY || 2379 inp->inp_lport != lport) 2380 continue; 2381 2382 injail = prison_flag(inp->inp_cred, PR_IP4); 2383 if (injail) { 2384 if (prison_check_ip4_locked( 2385 inp->inp_cred->cr_prison, &laddr) != 0) 2386 continue; 2387 } else { 2388 if (local_exact != NULL) 2389 continue; 2390 } 2391 2392 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2393 if (injail) 2394 return (inp); 2395 else 2396 local_exact = inp; 2397 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2398 #ifdef INET6 2399 /* XXX inp locking, NULL check */ 2400 if (inp->inp_vflag & INP_IPV6PROTO) 2401 local_wild_mapped = inp; 2402 else 2403 #endif 2404 if (injail) 2405 jail_wild = inp; 2406 else 2407 local_wild = inp; 2408 } 2409 } /* LIST_FOREACH */ 2410 if (jail_wild != NULL) 2411 return (jail_wild); 2412 if (local_exact != NULL) 2413 return (local_exact); 2414 if (local_wild != NULL) 2415 return (local_wild); 2416 #ifdef INET6 2417 if (local_wild_mapped != NULL) 2418 return (local_wild_mapped); 2419 #endif 2420 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 2421 2422 return (NULL); 2423 } 2424 2425 /* 2426 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 2427 * hash list lock, and will return the inpcb locked (i.e., requires 2428 * INPLOOKUP_LOCKPCB). 2429 */ 2430 static struct inpcb * 2431 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2432 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2433 struct ifnet *ifp, uint8_t numa_domain) 2434 { 2435 struct inpcb *inp; 2436 2437 smr_enter(pcbinfo->ipi_smr); 2438 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2439 lookupflags & INPLOOKUP_WILDCARD, ifp, numa_domain); 2440 if (inp != NULL) { 2441 if (__predict_false(inp_smr_lock(inp, 2442 (lookupflags & INPLOOKUP_LOCKMASK)) == false)) 2443 inp = NULL; 2444 } else 2445 smr_exit(pcbinfo->ipi_smr); 2446 2447 return (inp); 2448 } 2449 2450 /* 2451 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2452 * from which a pre-calculated hash value may be extracted. 2453 */ 2454 struct inpcb * 2455 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2456 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 2457 { 2458 2459 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2460 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2461 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2462 ("%s: LOCKPCB not set", __func__)); 2463 2464 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2465 lookupflags, ifp, M_NODOM)); 2466 } 2467 2468 struct inpcb * 2469 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2470 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2471 struct ifnet *ifp, struct mbuf *m) 2472 { 2473 2474 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2475 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2476 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2477 ("%s: LOCKPCB not set", __func__)); 2478 2479 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2480 lookupflags, ifp, m->m_pkthdr.numa_domain)); 2481 } 2482 #endif /* INET */ 2483 2484 /* 2485 * Insert PCB onto various hash lists. 2486 */ 2487 int 2488 in_pcbinshash(struct inpcb *inp) 2489 { 2490 struct inpcbhead *pcbhash; 2491 struct inpcbporthead *pcbporthash; 2492 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2493 struct inpcbport *phd; 2494 int so_options; 2495 2496 INP_WLOCK_ASSERT(inp); 2497 INP_HASH_WLOCK_ASSERT(pcbinfo); 2498 2499 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2500 ("in_pcbinshash: INP_INHASHLIST")); 2501 2502 #ifdef INET6 2503 if (inp->inp_vflag & INP_IPV6) 2504 pcbhash = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr, 2505 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2506 else 2507 #endif 2508 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr, 2509 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2510 2511 pcbporthash = &pcbinfo->ipi_porthashbase[ 2512 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2513 2514 /* 2515 * Add entry to load balance group. 2516 * Only do this if SO_REUSEPORT_LB is set. 2517 */ 2518 so_options = inp_so_options(inp); 2519 if (so_options & SO_REUSEPORT_LB) { 2520 int ret = in_pcbinslbgrouphash(inp, M_NODOM); 2521 if (ret) { 2522 /* pcb lb group malloc fail (ret=ENOBUFS). */ 2523 return (ret); 2524 } 2525 } 2526 2527 /* 2528 * Go through port list and look for a head for this lport. 2529 */ 2530 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2531 if (phd->phd_port == inp->inp_lport) 2532 break; 2533 } 2534 /* 2535 * If none exists, malloc one and tack it on. 2536 */ 2537 if (phd == NULL) { 2538 phd = uma_zalloc_smr(pcbinfo->ipi_portzone, M_NOWAIT); 2539 if (phd == NULL) { 2540 return (ENOBUFS); /* XXX */ 2541 } 2542 phd->phd_port = inp->inp_lport; 2543 CK_LIST_INIT(&phd->phd_pcblist); 2544 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2545 } 2546 inp->inp_phd = phd; 2547 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2548 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2549 inp->inp_flags |= INP_INHASHLIST; 2550 2551 return (0); 2552 } 2553 2554 /* 2555 * Move PCB to the proper hash bucket when { faddr, fport } have been 2556 * changed. NOTE: This does not handle the case of the lport changing (the 2557 * hashed port list would have to be updated as well), so the lport must 2558 * not change after in_pcbinshash() has been called. 2559 * 2560 * XXXGL: a race between this function and SMR-protected hash iterator 2561 * will lead to iterator traversing a possibly wrong hash list. However, 2562 * this race should have been here since change from rwlock to epoch. 2563 */ 2564 void 2565 in_pcbrehash(struct inpcb *inp) 2566 { 2567 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2568 struct inpcbhead *head; 2569 2570 INP_WLOCK_ASSERT(inp); 2571 INP_HASH_WLOCK_ASSERT(pcbinfo); 2572 2573 KASSERT(inp->inp_flags & INP_INHASHLIST, 2574 ("in_pcbrehash: !INP_INHASHLIST")); 2575 2576 #ifdef INET6 2577 if (inp->inp_vflag & INP_IPV6) 2578 head = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr, 2579 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2580 else 2581 #endif 2582 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr, 2583 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2584 2585 CK_LIST_REMOVE(inp, inp_hash); 2586 CK_LIST_INSERT_HEAD(head, inp, inp_hash); 2587 } 2588 2589 /* 2590 * Check for alternatives when higher level complains 2591 * about service problems. For now, invalidate cached 2592 * routing information. If the route was created dynamically 2593 * (by a redirect), time to try a default gateway again. 2594 */ 2595 void 2596 in_losing(struct inpcb *inp) 2597 { 2598 2599 RO_INVALIDATE_CACHE(&inp->inp_route); 2600 return; 2601 } 2602 2603 /* 2604 * A set label operation has occurred at the socket layer, propagate the 2605 * label change into the in_pcb for the socket. 2606 */ 2607 void 2608 in_pcbsosetlabel(struct socket *so) 2609 { 2610 #ifdef MAC 2611 struct inpcb *inp; 2612 2613 inp = sotoinpcb(so); 2614 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2615 2616 INP_WLOCK(inp); 2617 SOCK_LOCK(so); 2618 mac_inpcb_sosetlabel(so, inp); 2619 SOCK_UNLOCK(so); 2620 INP_WUNLOCK(inp); 2621 #endif 2622 } 2623 2624 /* 2625 * ipport_tick runs once per second, determining if random port allocation 2626 * should be continued. If more than ipport_randomcps ports have been 2627 * allocated in the last second, then we return to sequential port 2628 * allocation. We return to random allocation only once we drop below 2629 * ipport_randomcps for at least ipport_randomtime seconds. 2630 */ 2631 static void 2632 ipport_tick(void *xtp) 2633 { 2634 VNET_ITERATOR_DECL(vnet_iter); 2635 2636 VNET_LIST_RLOCK_NOSLEEP(); 2637 VNET_FOREACH(vnet_iter) { 2638 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2639 if (V_ipport_tcpallocs - V_ipport_tcplastcount <= 2640 V_ipport_randomcps) { 2641 if (V_ipport_stoprandom > 0) 2642 V_ipport_stoprandom--; 2643 } else 2644 V_ipport_stoprandom = V_ipport_randomtime; 2645 V_ipport_tcplastcount = V_ipport_tcpallocs; 2646 CURVNET_RESTORE(); 2647 } 2648 VNET_LIST_RUNLOCK_NOSLEEP(); 2649 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2650 } 2651 2652 static void 2653 ip_fini(void *xtp) 2654 { 2655 2656 callout_stop(&ipport_tick_callout); 2657 } 2658 2659 /* 2660 * The ipport_callout should start running at about the time we attach the 2661 * inet or inet6 domains. 2662 */ 2663 static void 2664 ipport_tick_init(const void *unused __unused) 2665 { 2666 2667 /* Start ipport_tick. */ 2668 callout_init(&ipport_tick_callout, 1); 2669 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2670 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2671 SHUTDOWN_PRI_DEFAULT); 2672 } 2673 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2674 ipport_tick_init, NULL); 2675 2676 void 2677 inp_wlock(struct inpcb *inp) 2678 { 2679 2680 INP_WLOCK(inp); 2681 } 2682 2683 void 2684 inp_wunlock(struct inpcb *inp) 2685 { 2686 2687 INP_WUNLOCK(inp); 2688 } 2689 2690 void 2691 inp_rlock(struct inpcb *inp) 2692 { 2693 2694 INP_RLOCK(inp); 2695 } 2696 2697 void 2698 inp_runlock(struct inpcb *inp) 2699 { 2700 2701 INP_RUNLOCK(inp); 2702 } 2703 2704 #ifdef INVARIANT_SUPPORT 2705 void 2706 inp_lock_assert(struct inpcb *inp) 2707 { 2708 2709 INP_WLOCK_ASSERT(inp); 2710 } 2711 2712 void 2713 inp_unlock_assert(struct inpcb *inp) 2714 { 2715 2716 INP_UNLOCK_ASSERT(inp); 2717 } 2718 #endif 2719 2720 void 2721 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2722 { 2723 struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo, 2724 INPLOOKUP_WLOCKPCB); 2725 struct inpcb *inp; 2726 2727 while ((inp = inp_next(&inpi)) != NULL) 2728 func(inp, arg); 2729 } 2730 2731 struct socket * 2732 inp_inpcbtosocket(struct inpcb *inp) 2733 { 2734 2735 INP_WLOCK_ASSERT(inp); 2736 return (inp->inp_socket); 2737 } 2738 2739 struct tcpcb * 2740 inp_inpcbtotcpcb(struct inpcb *inp) 2741 { 2742 2743 INP_WLOCK_ASSERT(inp); 2744 return ((struct tcpcb *)inp->inp_ppcb); 2745 } 2746 2747 int 2748 inp_ip_tos_get(const struct inpcb *inp) 2749 { 2750 2751 return (inp->inp_ip_tos); 2752 } 2753 2754 void 2755 inp_ip_tos_set(struct inpcb *inp, int val) 2756 { 2757 2758 inp->inp_ip_tos = val; 2759 } 2760 2761 void 2762 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2763 uint32_t *faddr, uint16_t *fp) 2764 { 2765 2766 INP_LOCK_ASSERT(inp); 2767 *laddr = inp->inp_laddr.s_addr; 2768 *faddr = inp->inp_faddr.s_addr; 2769 *lp = inp->inp_lport; 2770 *fp = inp->inp_fport; 2771 } 2772 2773 struct inpcb * 2774 so_sotoinpcb(struct socket *so) 2775 { 2776 2777 return (sotoinpcb(so)); 2778 } 2779 2780 struct tcpcb * 2781 so_sototcpcb(struct socket *so) 2782 { 2783 2784 return (sototcpcb(so)); 2785 } 2786 2787 /* 2788 * Create an external-format (``xinpcb'') structure using the information in 2789 * the kernel-format in_pcb structure pointed to by inp. This is done to 2790 * reduce the spew of irrelevant information over this interface, to isolate 2791 * user code from changes in the kernel structure, and potentially to provide 2792 * information-hiding if we decide that some of this information should be 2793 * hidden from users. 2794 */ 2795 void 2796 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2797 { 2798 2799 bzero(xi, sizeof(*xi)); 2800 xi->xi_len = sizeof(struct xinpcb); 2801 if (inp->inp_socket) 2802 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2803 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2804 xi->inp_gencnt = inp->inp_gencnt; 2805 xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; 2806 xi->inp_flow = inp->inp_flow; 2807 xi->inp_flowid = inp->inp_flowid; 2808 xi->inp_flowtype = inp->inp_flowtype; 2809 xi->inp_flags = inp->inp_flags; 2810 xi->inp_flags2 = inp->inp_flags2; 2811 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2812 xi->in6p_cksum = inp->in6p_cksum; 2813 xi->in6p_hops = inp->in6p_hops; 2814 xi->inp_ip_tos = inp->inp_ip_tos; 2815 xi->inp_vflag = inp->inp_vflag; 2816 xi->inp_ip_ttl = inp->inp_ip_ttl; 2817 xi->inp_ip_p = inp->inp_ip_p; 2818 xi->inp_ip_minttl = inp->inp_ip_minttl; 2819 } 2820 2821 int 2822 sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo, 2823 int (*ctloutput_set)(struct inpcb *, struct sockopt *)) 2824 { 2825 struct sockopt sopt; 2826 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, 2827 INPLOOKUP_WLOCKPCB); 2828 struct inpcb *inp; 2829 struct sockopt_parameters *params; 2830 struct socket *so; 2831 int error; 2832 char buf[1024]; 2833 2834 if (req->oldptr != NULL || req->oldlen != 0) 2835 return (EINVAL); 2836 if (req->newptr == NULL) 2837 return (EPERM); 2838 if (req->newlen > sizeof(buf)) 2839 return (ENOMEM); 2840 error = SYSCTL_IN(req, buf, req->newlen); 2841 if (error != 0) 2842 return (error); 2843 if (req->newlen < sizeof(struct sockopt_parameters)) 2844 return (EINVAL); 2845 params = (struct sockopt_parameters *)buf; 2846 sopt.sopt_level = params->sop_level; 2847 sopt.sopt_name = params->sop_optname; 2848 sopt.sopt_dir = SOPT_SET; 2849 sopt.sopt_val = params->sop_optval; 2850 sopt.sopt_valsize = req->newlen - sizeof(struct sockopt_parameters); 2851 sopt.sopt_td = NULL; 2852 #ifdef INET6 2853 if (params->sop_inc.inc_flags & INC_ISIPV6) { 2854 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_laddr)) 2855 params->sop_inc.inc6_laddr.s6_addr16[1] = 2856 htons(params->sop_inc.inc6_zoneid & 0xffff); 2857 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_faddr)) 2858 params->sop_inc.inc6_faddr.s6_addr16[1] = 2859 htons(params->sop_inc.inc6_zoneid & 0xffff); 2860 } 2861 #endif 2862 if (params->sop_inc.inc_lport != htons(0)) { 2863 if (params->sop_inc.inc_fport == htons(0)) 2864 inpi.hash = INP_PCBHASH_WILD(params->sop_inc.inc_lport, 2865 pcbinfo->ipi_hashmask); 2866 else 2867 #ifdef INET6 2868 if (params->sop_inc.inc_flags & INC_ISIPV6) 2869 inpi.hash = INP6_PCBHASH( 2870 ¶ms->sop_inc.inc6_faddr, 2871 params->sop_inc.inc_lport, 2872 params->sop_inc.inc_fport, 2873 pcbinfo->ipi_hashmask); 2874 else 2875 #endif 2876 inpi.hash = INP_PCBHASH( 2877 ¶ms->sop_inc.inc_faddr, 2878 params->sop_inc.inc_lport, 2879 params->sop_inc.inc_fport, 2880 pcbinfo->ipi_hashmask); 2881 } 2882 while ((inp = inp_next(&inpi)) != NULL) 2883 if (inp->inp_gencnt == params->sop_id) { 2884 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 2885 INP_WUNLOCK(inp); 2886 return (ECONNRESET); 2887 } 2888 so = inp->inp_socket; 2889 KASSERT(so != NULL, ("inp_socket == NULL")); 2890 soref(so); 2891 error = (*ctloutput_set)(inp, &sopt); 2892 sorele(so); 2893 break; 2894 } 2895 if (inp == NULL) 2896 error = ESRCH; 2897 return (error); 2898 } 2899 2900 #ifdef DDB 2901 static void 2902 db_print_indent(int indent) 2903 { 2904 int i; 2905 2906 for (i = 0; i < indent; i++) 2907 db_printf(" "); 2908 } 2909 2910 static void 2911 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2912 { 2913 char faddr_str[48], laddr_str[48]; 2914 2915 db_print_indent(indent); 2916 db_printf("%s at %p\n", name, inc); 2917 2918 indent += 2; 2919 2920 #ifdef INET6 2921 if (inc->inc_flags & INC_ISIPV6) { 2922 /* IPv6. */ 2923 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2924 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2925 } else 2926 #endif 2927 { 2928 /* IPv4. */ 2929 inet_ntoa_r(inc->inc_laddr, laddr_str); 2930 inet_ntoa_r(inc->inc_faddr, faddr_str); 2931 } 2932 db_print_indent(indent); 2933 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2934 ntohs(inc->inc_lport)); 2935 db_print_indent(indent); 2936 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2937 ntohs(inc->inc_fport)); 2938 } 2939 2940 static void 2941 db_print_inpflags(int inp_flags) 2942 { 2943 int comma; 2944 2945 comma = 0; 2946 if (inp_flags & INP_RECVOPTS) { 2947 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2948 comma = 1; 2949 } 2950 if (inp_flags & INP_RECVRETOPTS) { 2951 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2952 comma = 1; 2953 } 2954 if (inp_flags & INP_RECVDSTADDR) { 2955 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2956 comma = 1; 2957 } 2958 if (inp_flags & INP_ORIGDSTADDR) { 2959 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 2960 comma = 1; 2961 } 2962 if (inp_flags & INP_HDRINCL) { 2963 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2964 comma = 1; 2965 } 2966 if (inp_flags & INP_HIGHPORT) { 2967 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2968 comma = 1; 2969 } 2970 if (inp_flags & INP_LOWPORT) { 2971 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2972 comma = 1; 2973 } 2974 if (inp_flags & INP_ANONPORT) { 2975 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2976 comma = 1; 2977 } 2978 if (inp_flags & INP_RECVIF) { 2979 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2980 comma = 1; 2981 } 2982 if (inp_flags & INP_MTUDISC) { 2983 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2984 comma = 1; 2985 } 2986 if (inp_flags & INP_RECVTTL) { 2987 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 2988 comma = 1; 2989 } 2990 if (inp_flags & INP_DONTFRAG) { 2991 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 2992 comma = 1; 2993 } 2994 if (inp_flags & INP_RECVTOS) { 2995 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 2996 comma = 1; 2997 } 2998 if (inp_flags & IN6P_IPV6_V6ONLY) { 2999 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 3000 comma = 1; 3001 } 3002 if (inp_flags & IN6P_PKTINFO) { 3003 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 3004 comma = 1; 3005 } 3006 if (inp_flags & IN6P_HOPLIMIT) { 3007 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 3008 comma = 1; 3009 } 3010 if (inp_flags & IN6P_HOPOPTS) { 3011 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 3012 comma = 1; 3013 } 3014 if (inp_flags & IN6P_DSTOPTS) { 3015 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 3016 comma = 1; 3017 } 3018 if (inp_flags & IN6P_RTHDR) { 3019 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 3020 comma = 1; 3021 } 3022 if (inp_flags & IN6P_RTHDRDSTOPTS) { 3023 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 3024 comma = 1; 3025 } 3026 if (inp_flags & IN6P_TCLASS) { 3027 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 3028 comma = 1; 3029 } 3030 if (inp_flags & IN6P_AUTOFLOWLABEL) { 3031 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 3032 comma = 1; 3033 } 3034 if (inp_flags & INP_TIMEWAIT) { 3035 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 3036 comma = 1; 3037 } 3038 if (inp_flags & INP_ONESBCAST) { 3039 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 3040 comma = 1; 3041 } 3042 if (inp_flags & INP_DROPPED) { 3043 db_printf("%sINP_DROPPED", comma ? ", " : ""); 3044 comma = 1; 3045 } 3046 if (inp_flags & INP_SOCKREF) { 3047 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 3048 comma = 1; 3049 } 3050 if (inp_flags & IN6P_RFC2292) { 3051 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 3052 comma = 1; 3053 } 3054 if (inp_flags & IN6P_MTU) { 3055 db_printf("IN6P_MTU%s", comma ? ", " : ""); 3056 comma = 1; 3057 } 3058 } 3059 3060 static void 3061 db_print_inpvflag(u_char inp_vflag) 3062 { 3063 int comma; 3064 3065 comma = 0; 3066 if (inp_vflag & INP_IPV4) { 3067 db_printf("%sINP_IPV4", comma ? ", " : ""); 3068 comma = 1; 3069 } 3070 if (inp_vflag & INP_IPV6) { 3071 db_printf("%sINP_IPV6", comma ? ", " : ""); 3072 comma = 1; 3073 } 3074 if (inp_vflag & INP_IPV6PROTO) { 3075 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 3076 comma = 1; 3077 } 3078 } 3079 3080 static void 3081 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 3082 { 3083 3084 db_print_indent(indent); 3085 db_printf("%s at %p\n", name, inp); 3086 3087 indent += 2; 3088 3089 db_print_indent(indent); 3090 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 3091 3092 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 3093 3094 db_print_indent(indent); 3095 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 3096 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 3097 3098 db_print_indent(indent); 3099 db_printf("inp_label: %p inp_flags: 0x%x (", 3100 inp->inp_label, inp->inp_flags); 3101 db_print_inpflags(inp->inp_flags); 3102 db_printf(")\n"); 3103 3104 db_print_indent(indent); 3105 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 3106 inp->inp_vflag); 3107 db_print_inpvflag(inp->inp_vflag); 3108 db_printf(")\n"); 3109 3110 db_print_indent(indent); 3111 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 3112 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 3113 3114 db_print_indent(indent); 3115 #ifdef INET6 3116 if (inp->inp_vflag & INP_IPV6) { 3117 db_printf("in6p_options: %p in6p_outputopts: %p " 3118 "in6p_moptions: %p\n", inp->in6p_options, 3119 inp->in6p_outputopts, inp->in6p_moptions); 3120 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 3121 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 3122 inp->in6p_hops); 3123 } else 3124 #endif 3125 { 3126 db_printf("inp_ip_tos: %d inp_ip_options: %p " 3127 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 3128 inp->inp_options, inp->inp_moptions); 3129 } 3130 3131 db_print_indent(indent); 3132 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 3133 (uintmax_t)inp->inp_gencnt); 3134 } 3135 3136 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 3137 { 3138 struct inpcb *inp; 3139 3140 if (!have_addr) { 3141 db_printf("usage: show inpcb <addr>\n"); 3142 return; 3143 } 3144 inp = (struct inpcb *)addr; 3145 3146 db_print_inpcb(inp, "inpcb", 0); 3147 } 3148 #endif /* DDB */ 3149 3150 #ifdef RATELIMIT 3151 /* 3152 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 3153 * if any. 3154 */ 3155 int 3156 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 3157 { 3158 union if_snd_tag_modify_params params = { 3159 .rate_limit.max_rate = max_pacing_rate, 3160 .rate_limit.flags = M_NOWAIT, 3161 }; 3162 struct m_snd_tag *mst; 3163 int error; 3164 3165 mst = inp->inp_snd_tag; 3166 if (mst == NULL) 3167 return (EINVAL); 3168 3169 if (mst->sw->snd_tag_modify == NULL) { 3170 error = EOPNOTSUPP; 3171 } else { 3172 error = mst->sw->snd_tag_modify(mst, ¶ms); 3173 } 3174 return (error); 3175 } 3176 3177 /* 3178 * Query existing TX rate limit based on the existing 3179 * "inp->inp_snd_tag", if any. 3180 */ 3181 int 3182 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3183 { 3184 union if_snd_tag_query_params params = { }; 3185 struct m_snd_tag *mst; 3186 int error; 3187 3188 mst = inp->inp_snd_tag; 3189 if (mst == NULL) 3190 return (EINVAL); 3191 3192 if (mst->sw->snd_tag_query == NULL) { 3193 error = EOPNOTSUPP; 3194 } else { 3195 error = mst->sw->snd_tag_query(mst, ¶ms); 3196 if (error == 0 && p_max_pacing_rate != NULL) 3197 *p_max_pacing_rate = params.rate_limit.max_rate; 3198 } 3199 return (error); 3200 } 3201 3202 /* 3203 * Query existing TX queue level based on the existing 3204 * "inp->inp_snd_tag", if any. 3205 */ 3206 int 3207 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3208 { 3209 union if_snd_tag_query_params params = { }; 3210 struct m_snd_tag *mst; 3211 int error; 3212 3213 mst = inp->inp_snd_tag; 3214 if (mst == NULL) 3215 return (EINVAL); 3216 3217 if (mst->sw->snd_tag_query == NULL) 3218 return (EOPNOTSUPP); 3219 3220 error = mst->sw->snd_tag_query(mst, ¶ms); 3221 if (error == 0 && p_txqueue_level != NULL) 3222 *p_txqueue_level = params.rate_limit.queue_level; 3223 return (error); 3224 } 3225 3226 /* 3227 * Allocate a new TX rate limit send tag from the network interface 3228 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3229 */ 3230 int 3231 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3232 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st) 3233 3234 { 3235 union if_snd_tag_alloc_params params = { 3236 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3237 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3238 .rate_limit.hdr.flowid = flowid, 3239 .rate_limit.hdr.flowtype = flowtype, 3240 .rate_limit.hdr.numa_domain = inp->inp_numa_domain, 3241 .rate_limit.max_rate = max_pacing_rate, 3242 .rate_limit.flags = M_NOWAIT, 3243 }; 3244 int error; 3245 3246 INP_WLOCK_ASSERT(inp); 3247 3248 /* 3249 * If there is already a send tag, or the INP is being torn 3250 * down, allocating a new send tag is not allowed. Else send 3251 * tags may leak. 3252 */ 3253 if (*st != NULL || (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) != 0) 3254 return (EINVAL); 3255 3256 error = m_snd_tag_alloc(ifp, ¶ms, st); 3257 #ifdef INET 3258 if (error == 0) { 3259 counter_u64_add(rate_limit_set_ok, 1); 3260 counter_u64_add(rate_limit_active, 1); 3261 } else if (error != EOPNOTSUPP) 3262 counter_u64_add(rate_limit_alloc_fail, 1); 3263 #endif 3264 return (error); 3265 } 3266 3267 void 3268 in_pcbdetach_tag(struct m_snd_tag *mst) 3269 { 3270 3271 m_snd_tag_rele(mst); 3272 #ifdef INET 3273 counter_u64_add(rate_limit_active, -1); 3274 #endif 3275 } 3276 3277 /* 3278 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3279 * if any: 3280 */ 3281 void 3282 in_pcbdetach_txrtlmt(struct inpcb *inp) 3283 { 3284 struct m_snd_tag *mst; 3285 3286 INP_WLOCK_ASSERT(inp); 3287 3288 mst = inp->inp_snd_tag; 3289 inp->inp_snd_tag = NULL; 3290 3291 if (mst == NULL) 3292 return; 3293 3294 m_snd_tag_rele(mst); 3295 #ifdef INET 3296 counter_u64_add(rate_limit_active, -1); 3297 #endif 3298 } 3299 3300 int 3301 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate) 3302 { 3303 int error; 3304 3305 /* 3306 * If the existing send tag is for the wrong interface due to 3307 * a route change, first drop the existing tag. Set the 3308 * CHANGED flag so that we will keep trying to allocate a new 3309 * tag if we fail to allocate one this time. 3310 */ 3311 if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) { 3312 in_pcbdetach_txrtlmt(inp); 3313 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3314 } 3315 3316 /* 3317 * NOTE: When attaching to a network interface a reference is 3318 * made to ensure the network interface doesn't go away until 3319 * all ratelimit connections are gone. The network interface 3320 * pointers compared below represent valid network interfaces, 3321 * except when comparing towards NULL. 3322 */ 3323 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3324 error = 0; 3325 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3326 if (inp->inp_snd_tag != NULL) 3327 in_pcbdetach_txrtlmt(inp); 3328 error = 0; 3329 } else if (inp->inp_snd_tag == NULL) { 3330 /* 3331 * In order to utilize packet pacing with RSS, we need 3332 * to wait until there is a valid RSS hash before we 3333 * can proceed: 3334 */ 3335 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3336 error = EAGAIN; 3337 } else { 3338 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3339 mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag); 3340 } 3341 } else { 3342 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3343 } 3344 if (error == 0 || error == EOPNOTSUPP) 3345 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3346 3347 return (error); 3348 } 3349 3350 /* 3351 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3352 * is set in the fast path and will attach/detach/modify the TX rate 3353 * limit send tag based on the socket's so_max_pacing_rate value. 3354 */ 3355 void 3356 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3357 { 3358 struct socket *socket; 3359 uint32_t max_pacing_rate; 3360 bool did_upgrade; 3361 3362 if (inp == NULL) 3363 return; 3364 3365 socket = inp->inp_socket; 3366 if (socket == NULL) 3367 return; 3368 3369 if (!INP_WLOCKED(inp)) { 3370 /* 3371 * NOTE: If the write locking fails, we need to bail 3372 * out and use the non-ratelimited ring for the 3373 * transmit until there is a new chance to get the 3374 * write lock. 3375 */ 3376 if (!INP_TRY_UPGRADE(inp)) 3377 return; 3378 did_upgrade = 1; 3379 } else { 3380 did_upgrade = 0; 3381 } 3382 3383 /* 3384 * NOTE: The so_max_pacing_rate value is read unlocked, 3385 * because atomic updates are not required since the variable 3386 * is checked at every mbuf we send. It is assumed that the 3387 * variable read itself will be atomic. 3388 */ 3389 max_pacing_rate = socket->so_max_pacing_rate; 3390 3391 in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate); 3392 3393 if (did_upgrade) 3394 INP_DOWNGRADE(inp); 3395 } 3396 3397 /* 3398 * Track route changes for TX rate limiting. 3399 */ 3400 void 3401 in_pcboutput_eagain(struct inpcb *inp) 3402 { 3403 bool did_upgrade; 3404 3405 if (inp == NULL) 3406 return; 3407 3408 if (inp->inp_snd_tag == NULL) 3409 return; 3410 3411 if (!INP_WLOCKED(inp)) { 3412 /* 3413 * NOTE: If the write locking fails, we need to bail 3414 * out and use the non-ratelimited ring for the 3415 * transmit until there is a new chance to get the 3416 * write lock. 3417 */ 3418 if (!INP_TRY_UPGRADE(inp)) 3419 return; 3420 did_upgrade = 1; 3421 } else { 3422 did_upgrade = 0; 3423 } 3424 3425 /* detach rate limiting */ 3426 in_pcbdetach_txrtlmt(inp); 3427 3428 /* make sure new mbuf send tag allocation is made */ 3429 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3430 3431 if (did_upgrade) 3432 INP_DOWNGRADE(inp); 3433 } 3434 3435 #ifdef INET 3436 static void 3437 rl_init(void *st) 3438 { 3439 rate_limit_new = counter_u64_alloc(M_WAITOK); 3440 rate_limit_chg = counter_u64_alloc(M_WAITOK); 3441 rate_limit_active = counter_u64_alloc(M_WAITOK); 3442 rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK); 3443 rate_limit_set_ok = counter_u64_alloc(M_WAITOK); 3444 } 3445 3446 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL); 3447 #endif 3448 #endif /* RATELIMIT */ 3449