1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * Copyright (c) 2021-2022 Gleb Smirnoff <glebius@FreeBSD.org> 9 * All rights reserved. 10 * 11 * Portions of this software were developed by Robert N. M. Watson under 12 * contract to Juniper Networks, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 */ 38 39 #include <sys/cdefs.h> 40 #include "opt_ddb.h" 41 #include "opt_ipsec.h" 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_ratelimit.h" 45 #include "opt_route.h" 46 #include "opt_rss.h" 47 48 #include <sys/param.h> 49 #include <sys/hash.h> 50 #include <sys/systm.h> 51 #include <sys/libkern.h> 52 #include <sys/lock.h> 53 #include <sys/malloc.h> 54 #include <sys/mbuf.h> 55 #include <sys/eventhandler.h> 56 #include <sys/domain.h> 57 #include <sys/proc.h> 58 #include <sys/protosw.h> 59 #include <sys/smp.h> 60 #include <sys/smr.h> 61 #include <sys/socket.h> 62 #include <sys/socketvar.h> 63 #include <sys/sockio.h> 64 #include <sys/priv.h> 65 #include <sys/proc.h> 66 #include <sys/refcount.h> 67 #include <sys/jail.h> 68 #include <sys/kernel.h> 69 #include <sys/sysctl.h> 70 71 #ifdef DDB 72 #include <ddb/ddb.h> 73 #endif 74 75 #include <vm/uma.h> 76 #include <vm/vm.h> 77 78 #include <net/if.h> 79 #include <net/if_var.h> 80 #include <net/if_private.h> 81 #include <net/if_types.h> 82 #include <net/if_llatbl.h> 83 #include <net/route.h> 84 #include <net/rss_config.h> 85 #include <net/vnet.h> 86 87 #if defined(INET) || defined(INET6) 88 #include <netinet/in.h> 89 #include <netinet/in_pcb.h> 90 #include <netinet/in_pcb_var.h> 91 #include <netinet/tcp.h> 92 #ifdef INET 93 #include <netinet/in_var.h> 94 #include <netinet/in_fib.h> 95 #endif 96 #include <netinet/ip_var.h> 97 #ifdef INET6 98 #include <netinet/ip6.h> 99 #include <netinet6/in6_pcb.h> 100 #include <netinet6/in6_var.h> 101 #include <netinet6/ip6_var.h> 102 #endif /* INET6 */ 103 #include <net/route/nhop.h> 104 #endif 105 106 #include <netipsec/ipsec_support.h> 107 108 #include <security/mac/mac_framework.h> 109 110 #define INPCBLBGROUP_SIZMIN 8 111 #define INPCBLBGROUP_SIZMAX 256 112 113 #define INP_FREED 0x00000200 /* Went through in_pcbfree(). */ 114 #define INP_INLBGROUP 0x01000000 /* Inserted into inpcblbgroup. */ 115 116 /* 117 * These configure the range of local port addresses assigned to 118 * "unspecified" outgoing connections/packets/whatever. 119 */ 120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 126 127 /* 128 * Reserved ports accessible only to root. There are significant 129 * security considerations that must be accounted for when changing these, 130 * but the security benefits can be great. Please be careful. 131 */ 132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 133 VNET_DEFINE(int, ipport_reservedlow); 134 135 /* Enable random ephemeral port allocation by default. */ 136 VNET_DEFINE(int, ipport_randomized) = 1; 137 138 #ifdef INET 139 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 140 struct in_addr faddr, u_int fport_arg, 141 struct in_addr laddr, u_int lport_arg, 142 int lookupflags, uint8_t numa_domain, int fib); 143 144 #define RANGECHK(var, min, max) \ 145 if ((var) < (min)) { (var) = (min); } \ 146 else if ((var) > (max)) { (var) = (max); } 147 148 static int 149 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 150 { 151 int error; 152 153 error = sysctl_handle_int(oidp, arg1, arg2, req); 154 if (error == 0) { 155 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 156 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 157 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 158 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 159 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 160 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 161 } 162 return (error); 163 } 164 165 #undef RANGECHK 166 167 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, 168 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 169 "IP Ports"); 170 171 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 172 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 173 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", 174 ""); 175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 176 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 177 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", 178 ""); 179 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 180 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 181 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", 182 ""); 183 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 184 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 185 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", 186 ""); 187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 188 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 189 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", 190 ""); 191 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 192 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 193 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", 194 ""); 195 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 196 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 197 &VNET_NAME(ipport_reservedhigh), 0, ""); 198 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 199 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 200 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 201 CTLFLAG_VNET | CTLFLAG_RW, 202 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 203 204 #ifdef RATELIMIT 205 counter_u64_t rate_limit_new; 206 counter_u64_t rate_limit_chg; 207 counter_u64_t rate_limit_active; 208 counter_u64_t rate_limit_alloc_fail; 209 counter_u64_t rate_limit_set_ok; 210 211 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 212 "IP Rate Limiting"); 213 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD, 214 &rate_limit_active, "Active rate limited connections"); 215 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD, 216 &rate_limit_alloc_fail, "Rate limited connection failures"); 217 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD, 218 &rate_limit_set_ok, "Rate limited setting succeeded"); 219 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD, 220 &rate_limit_new, "Total Rate limit new attempts"); 221 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD, 222 &rate_limit_chg, "Total Rate limited change attempts"); 223 #endif /* RATELIMIT */ 224 225 #endif /* INET */ 226 227 VNET_DEFINE(uint32_t, in_pcbhashseed); 228 static void 229 in_pcbhashseed_init(void) 230 { 231 232 V_in_pcbhashseed = arc4random(); 233 } 234 VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, 235 in_pcbhashseed_init, NULL); 236 237 #ifdef INET 238 VNET_DEFINE_STATIC(int, connect_inaddr_wild) = 1; 239 #define V_connect_inaddr_wild VNET(connect_inaddr_wild) 240 SYSCTL_INT(_net_inet_ip, OID_AUTO, connect_inaddr_wild, 241 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(connect_inaddr_wild), 0, 242 "Allow connecting to INADDR_ANY or INADDR_BROADCAST for connect(2)"); 243 #endif 244 245 static void in_pcbremhash(struct inpcb *); 246 247 /* 248 * in_pcb.c: manage the Protocol Control Blocks. 249 * 250 * NOTE: It is assumed that most of these functions will be called with 251 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 252 * functions often modify hash chains or addresses in pcbs. 253 */ 254 255 static struct inpcblbgroup * 256 in_pcblbgroup_alloc(struct ucred *cred, u_char vflag, uint16_t port, 257 const union in_dependaddr *addr, int size, uint8_t numa_domain, int fib) 258 { 259 struct inpcblbgroup *grp; 260 size_t bytes; 261 262 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 263 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 264 if (grp == NULL) 265 return (NULL); 266 LIST_INIT(&grp->il_pending); 267 grp->il_cred = crhold(cred); 268 grp->il_vflag = vflag; 269 grp->il_lport = port; 270 grp->il_numa_domain = numa_domain; 271 grp->il_fibnum = fib; 272 grp->il_dependladdr = *addr; 273 grp->il_inpsiz = size; 274 return (grp); 275 } 276 277 static void 278 in_pcblbgroup_free_deferred(epoch_context_t ctx) 279 { 280 struct inpcblbgroup *grp; 281 282 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); 283 crfree(grp->il_cred); 284 free(grp, M_PCB); 285 } 286 287 static void 288 in_pcblbgroup_free(struct inpcblbgroup *grp) 289 { 290 KASSERT(LIST_EMPTY(&grp->il_pending), 291 ("local group %p still has pending inps", grp)); 292 293 CK_LIST_REMOVE(grp, il_list); 294 NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx); 295 } 296 297 static struct inpcblbgroup * 298 in_pcblbgroup_find(struct inpcb *inp) 299 { 300 struct inpcbinfo *pcbinfo; 301 struct inpcblbgroup *grp; 302 struct inpcblbgrouphead *hdr; 303 304 INP_LOCK_ASSERT(inp); 305 306 pcbinfo = inp->inp_pcbinfo; 307 INP_HASH_LOCK_ASSERT(pcbinfo); 308 309 hdr = &pcbinfo->ipi_lbgrouphashbase[ 310 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 311 CK_LIST_FOREACH(grp, hdr, il_list) { 312 struct inpcb *inp1; 313 314 for (unsigned int i = 0; i < grp->il_inpcnt; i++) { 315 if (inp == grp->il_inp[i]) 316 goto found; 317 } 318 LIST_FOREACH(inp1, &grp->il_pending, inp_lbgroup_list) { 319 if (inp == inp1) 320 goto found; 321 } 322 } 323 found: 324 return (grp); 325 } 326 327 static void 328 in_pcblbgroup_insert(struct inpcblbgroup *grp, struct inpcb *inp) 329 { 330 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 331 ("invalid local group size %d and count %d", grp->il_inpsiz, 332 grp->il_inpcnt)); 333 INP_WLOCK_ASSERT(inp); 334 335 if (inp->inp_socket->so_proto->pr_listen != pr_listen_notsupp && 336 !SOLISTENING(inp->inp_socket)) { 337 /* 338 * If this is a TCP socket, it should not be visible to lbgroup 339 * lookups until listen() has been called. 340 */ 341 LIST_INSERT_HEAD(&grp->il_pending, inp, inp_lbgroup_list); 342 grp->il_pendcnt++; 343 } else { 344 grp->il_inp[grp->il_inpcnt] = inp; 345 346 /* 347 * Synchronize with in_pcblookup_lbgroup(): make sure that we 348 * don't expose a null slot to the lookup path. 349 */ 350 atomic_store_rel_int(&grp->il_inpcnt, grp->il_inpcnt + 1); 351 } 352 353 inp->inp_flags |= INP_INLBGROUP; 354 } 355 356 static struct inpcblbgroup * 357 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 358 struct inpcblbgroup *old_grp, int size) 359 { 360 struct inpcblbgroup *grp; 361 int i; 362 363 grp = in_pcblbgroup_alloc(old_grp->il_cred, old_grp->il_vflag, 364 old_grp->il_lport, &old_grp->il_dependladdr, size, 365 old_grp->il_numa_domain, old_grp->il_fibnum); 366 if (grp == NULL) 367 return (NULL); 368 369 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 370 ("invalid new local group size %d and old local group count %d", 371 grp->il_inpsiz, old_grp->il_inpcnt)); 372 373 for (i = 0; i < old_grp->il_inpcnt; ++i) 374 grp->il_inp[i] = old_grp->il_inp[i]; 375 grp->il_inpcnt = old_grp->il_inpcnt; 376 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 377 LIST_SWAP(&old_grp->il_pending, &grp->il_pending, inpcb, 378 inp_lbgroup_list); 379 grp->il_pendcnt = old_grp->il_pendcnt; 380 old_grp->il_pendcnt = 0; 381 in_pcblbgroup_free(old_grp); 382 return (grp); 383 } 384 385 /* 386 * Add PCB to load balance group for SO_REUSEPORT_LB option. 387 */ 388 static int 389 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain) 390 { 391 const static struct timeval interval = { 60, 0 }; 392 static struct timeval lastprint; 393 struct inpcbinfo *pcbinfo; 394 struct inpcblbgrouphead *hdr; 395 struct inpcblbgroup *grp; 396 uint32_t idx; 397 int fib; 398 399 pcbinfo = inp->inp_pcbinfo; 400 401 INP_WLOCK_ASSERT(inp); 402 INP_HASH_WLOCK_ASSERT(pcbinfo); 403 404 fib = (inp->inp_flags & INP_BOUNDFIB) != 0 ? 405 inp->inp_inc.inc_fibnum : RT_ALL_FIBS; 406 407 #ifdef INET6 408 /* 409 * Don't allow IPv4 mapped INET6 wild socket. 410 */ 411 if ((inp->inp_vflag & INP_IPV4) && 412 inp->inp_laddr.s_addr == INADDR_ANY && 413 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 414 return (0); 415 } 416 #endif 417 418 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); 419 hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; 420 CK_LIST_FOREACH(grp, hdr, il_list) { 421 if (grp->il_cred->cr_prison == inp->inp_cred->cr_prison && 422 grp->il_vflag == inp->inp_vflag && 423 grp->il_lport == inp->inp_lport && 424 grp->il_numa_domain == numa_domain && 425 grp->il_fibnum == fib && 426 memcmp(&grp->il_dependladdr, 427 &inp->inp_inc.inc_ie.ie_dependladdr, 428 sizeof(grp->il_dependladdr)) == 0) { 429 break; 430 } 431 } 432 if (grp == NULL) { 433 /* Create new load balance group. */ 434 grp = in_pcblbgroup_alloc(inp->inp_cred, inp->inp_vflag, 435 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 436 INPCBLBGROUP_SIZMIN, numa_domain, fib); 437 if (grp == NULL) 438 return (ENOMEM); 439 in_pcblbgroup_insert(grp, inp); 440 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 441 } else if (grp->il_inpcnt + grp->il_pendcnt == grp->il_inpsiz) { 442 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 443 if (ratecheck(&lastprint, &interval)) 444 printf("lb group port %d, limit reached\n", 445 ntohs(grp->il_lport)); 446 return (0); 447 } 448 449 /* Expand this local group. */ 450 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 451 if (grp == NULL) 452 return (ENOMEM); 453 in_pcblbgroup_insert(grp, inp); 454 } else { 455 in_pcblbgroup_insert(grp, inp); 456 } 457 return (0); 458 } 459 460 /* 461 * Remove PCB from load balance group. 462 */ 463 static void 464 in_pcbremlbgrouphash(struct inpcb *inp) 465 { 466 struct inpcbinfo *pcbinfo; 467 struct inpcblbgrouphead *hdr; 468 struct inpcblbgroup *grp; 469 struct inpcb *inp1; 470 int i; 471 472 pcbinfo = inp->inp_pcbinfo; 473 474 INP_WLOCK_ASSERT(inp); 475 MPASS(inp->inp_flags & INP_INLBGROUP); 476 INP_HASH_WLOCK_ASSERT(pcbinfo); 477 478 hdr = &pcbinfo->ipi_lbgrouphashbase[ 479 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 480 CK_LIST_FOREACH(grp, hdr, il_list) { 481 for (i = 0; i < grp->il_inpcnt; ++i) { 482 if (grp->il_inp[i] != inp) 483 continue; 484 485 if (grp->il_inpcnt == 1 && 486 LIST_EMPTY(&grp->il_pending)) { 487 /* We are the last, free this local group. */ 488 in_pcblbgroup_free(grp); 489 } else { 490 grp->il_inp[i] = 491 grp->il_inp[grp->il_inpcnt - 1]; 492 493 /* 494 * Synchronize with in_pcblookup_lbgroup(). 495 */ 496 atomic_store_rel_int(&grp->il_inpcnt, 497 grp->il_inpcnt - 1); 498 } 499 inp->inp_flags &= ~INP_INLBGROUP; 500 return; 501 } 502 LIST_FOREACH(inp1, &grp->il_pending, inp_lbgroup_list) { 503 if (inp == inp1) { 504 LIST_REMOVE(inp, inp_lbgroup_list); 505 grp->il_pendcnt--; 506 inp->inp_flags &= ~INP_INLBGROUP; 507 return; 508 } 509 } 510 } 511 __assert_unreachable(); 512 } 513 514 int 515 in_pcblbgroup_numa(struct inpcb *inp, int arg) 516 { 517 struct inpcbinfo *pcbinfo; 518 int error; 519 uint8_t numa_domain; 520 521 switch (arg) { 522 case TCP_REUSPORT_LB_NUMA_NODOM: 523 numa_domain = M_NODOM; 524 break; 525 case TCP_REUSPORT_LB_NUMA_CURDOM: 526 numa_domain = PCPU_GET(domain); 527 break; 528 default: 529 if (arg < 0 || arg >= vm_ndomains) 530 return (EINVAL); 531 numa_domain = arg; 532 } 533 534 pcbinfo = inp->inp_pcbinfo; 535 INP_WLOCK_ASSERT(inp); 536 INP_HASH_WLOCK(pcbinfo); 537 if (in_pcblbgroup_find(inp) != NULL) { 538 /* Remove it from the old group. */ 539 in_pcbremlbgrouphash(inp); 540 /* Add it to the new group based on numa domain. */ 541 in_pcbinslbgrouphash(inp, numa_domain); 542 error = 0; 543 } else { 544 error = ENOENT; 545 } 546 INP_HASH_WUNLOCK(pcbinfo); 547 return (error); 548 } 549 550 /* Make sure it is safe to use hashinit(9) on CK_LIST. */ 551 CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb))); 552 553 /* 554 * Initialize an inpcbinfo - a per-VNET instance of connections db. 555 */ 556 void 557 in_pcbinfo_init(struct inpcbinfo *pcbinfo, struct inpcbstorage *pcbstor, 558 u_int hash_nelements, u_int porthash_nelements) 559 { 560 561 mtx_init(&pcbinfo->ipi_lock, pcbstor->ips_infolock_name, NULL, MTX_DEF); 562 mtx_init(&pcbinfo->ipi_hash_lock, pcbstor->ips_hashlock_name, 563 NULL, MTX_DEF); 564 #ifdef VIMAGE 565 pcbinfo->ipi_vnet = curvnet; 566 #endif 567 CK_LIST_INIT(&pcbinfo->ipi_listhead); 568 pcbinfo->ipi_count = 0; 569 pcbinfo->ipi_hash_exact = hashinit(hash_nelements, M_PCB, 570 &pcbinfo->ipi_hashmask); 571 pcbinfo->ipi_hash_wild = hashinit(hash_nelements, M_PCB, 572 &pcbinfo->ipi_hashmask); 573 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); 574 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 575 &pcbinfo->ipi_porthashmask); 576 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, 577 &pcbinfo->ipi_lbgrouphashmask); 578 pcbinfo->ipi_zone = pcbstor->ips_zone; 579 pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone); 580 } 581 582 /* 583 * Destroy an inpcbinfo. 584 */ 585 void 586 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 587 { 588 589 KASSERT(pcbinfo->ipi_count == 0, 590 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 591 592 hashdestroy(pcbinfo->ipi_hash_exact, M_PCB, pcbinfo->ipi_hashmask); 593 hashdestroy(pcbinfo->ipi_hash_wild, M_PCB, pcbinfo->ipi_hashmask); 594 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 595 pcbinfo->ipi_porthashmask); 596 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 597 pcbinfo->ipi_lbgrouphashmask); 598 mtx_destroy(&pcbinfo->ipi_hash_lock); 599 mtx_destroy(&pcbinfo->ipi_lock); 600 } 601 602 /* 603 * Initialize a pcbstorage - per protocol zones to allocate inpcbs. 604 */ 605 static void inpcb_fini(void *, int); 606 void 607 in_pcbstorage_init(void *arg) 608 { 609 struct inpcbstorage *pcbstor = arg; 610 611 pcbstor->ips_zone = uma_zcreate(pcbstor->ips_zone_name, 612 pcbstor->ips_size, NULL, NULL, pcbstor->ips_pcbinit, 613 inpcb_fini, UMA_ALIGN_CACHE, UMA_ZONE_SMR); 614 } 615 616 /* 617 * Destroy a pcbstorage - used by unloadable protocols. 618 */ 619 void 620 in_pcbstorage_destroy(void *arg) 621 { 622 struct inpcbstorage *pcbstor = arg; 623 624 uma_zdestroy(pcbstor->ips_zone); 625 } 626 627 /* 628 * Allocate a PCB and associate it with the socket. 629 * On success return with the PCB locked. 630 */ 631 int 632 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 633 { 634 struct inpcb *inp; 635 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 636 int error; 637 #endif 638 639 inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT); 640 if (inp == NULL) 641 return (ENOBUFS); 642 bzero(&inp->inp_start_zero, inp_zero_size); 643 #ifdef NUMA 644 inp->inp_numa_domain = M_NODOM; 645 #endif 646 inp->inp_pcbinfo = pcbinfo; 647 inp->inp_socket = so; 648 inp->inp_cred = crhold(so->so_cred); 649 inp->inp_inc.inc_fibnum = so->so_fibnum; 650 #ifdef MAC 651 error = mac_inpcb_init(inp, M_NOWAIT); 652 if (error != 0) 653 goto out; 654 mac_inpcb_create(so, inp); 655 #endif 656 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 657 error = ipsec_init_pcbpolicy(inp); 658 if (error != 0) { 659 #ifdef MAC 660 mac_inpcb_destroy(inp); 661 #endif 662 goto out; 663 } 664 #endif /*IPSEC*/ 665 #ifdef INET6 666 if (INP_SOCKAF(so) == AF_INET6) { 667 inp->inp_vflag |= INP_IPV6PROTO | INP_IPV6; 668 if (V_ip6_v6only) 669 inp->inp_flags |= IN6P_IPV6_V6ONLY; 670 #ifdef INET 671 else 672 inp->inp_vflag |= INP_IPV4; 673 #endif 674 if (V_ip6_auto_flowlabel) 675 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 676 inp->in6p_hops = -1; /* use kernel default */ 677 } 678 #endif 679 #if defined(INET) && defined(INET6) 680 else 681 #endif 682 #ifdef INET 683 inp->inp_vflag |= INP_IPV4; 684 #endif 685 inp->inp_smr = SMR_SEQ_INVALID; 686 687 /* 688 * Routes in inpcb's can cache L2 as well; they are guaranteed 689 * to be cleaned up. 690 */ 691 inp->inp_route.ro_flags = RT_LLE_CACHE; 692 refcount_init(&inp->inp_refcount, 1); /* Reference from socket. */ 693 INP_WLOCK(inp); 694 INP_INFO_WLOCK(pcbinfo); 695 pcbinfo->ipi_count++; 696 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 697 CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list); 698 INP_INFO_WUNLOCK(pcbinfo); 699 so->so_pcb = inp; 700 701 return (0); 702 703 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 704 out: 705 crfree(inp->inp_cred); 706 #ifdef INVARIANTS 707 inp->inp_cred = NULL; 708 #endif 709 uma_zfree_smr(pcbinfo->ipi_zone, inp); 710 return (error); 711 #endif 712 } 713 714 #ifdef INET 715 int 716 in_pcbbind(struct inpcb *inp, struct sockaddr_in *sin, int flags, 717 struct ucred *cred) 718 { 719 int anonport, error; 720 721 KASSERT(sin == NULL || sin->sin_family == AF_INET, 722 ("%s: invalid address family for %p", __func__, sin)); 723 KASSERT(sin == NULL || sin->sin_len == sizeof(struct sockaddr_in), 724 ("%s: invalid address length for %p", __func__, sin)); 725 INP_WLOCK_ASSERT(inp); 726 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 727 728 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 729 return (EINVAL); 730 anonport = sin == NULL || sin->sin_port == 0; 731 error = in_pcbbind_setup(inp, sin, &inp->inp_laddr.s_addr, 732 &inp->inp_lport, flags, cred); 733 if (error) 734 return (error); 735 if (__predict_false((error = in_pcbinshash(inp)) != 0)) { 736 MPASS(inp->inp_socket->so_options & SO_REUSEPORT_LB); 737 inp->inp_laddr.s_addr = INADDR_ANY; 738 inp->inp_lport = 0; 739 inp->inp_flags &= ~INP_BOUNDFIB; 740 return (error); 741 } 742 if (anonport) 743 inp->inp_flags |= INP_ANONPORT; 744 return (0); 745 } 746 #endif 747 748 #if defined(INET) || defined(INET6) 749 /* 750 * Assign a local port like in_pcb_lport(), but also used with connect() 751 * and a foreign address and port. If fsa is non-NULL, choose a local port 752 * that is unused with those, otherwise one that is completely unused. 753 * lsa can be NULL for IPv6. 754 */ 755 int 756 in_pcb_lport_dest(const struct inpcb *inp, struct sockaddr *lsa, 757 u_short *lportp, struct sockaddr *fsa, u_short fport, struct ucred *cred, 758 int lookupflags) 759 { 760 struct inpcbinfo *pcbinfo; 761 struct inpcb *tmpinp; 762 unsigned short *lastport; 763 int count, error; 764 u_short aux, first, last, lport; 765 #ifdef INET 766 struct in_addr laddr, faddr; 767 #endif 768 #ifdef INET6 769 struct in6_addr *laddr6, *faddr6; 770 #endif 771 772 pcbinfo = inp->inp_pcbinfo; 773 774 /* 775 * Because no actual state changes occur here, a global write lock on 776 * the pcbinfo isn't required. 777 */ 778 INP_LOCK_ASSERT(inp); 779 INP_HASH_LOCK_ASSERT(pcbinfo); 780 781 if (inp->inp_flags & INP_HIGHPORT) { 782 first = V_ipport_hifirstauto; /* sysctl */ 783 last = V_ipport_hilastauto; 784 lastport = &pcbinfo->ipi_lasthi; 785 } else if (inp->inp_flags & INP_LOWPORT) { 786 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); 787 if (error) 788 return (error); 789 first = V_ipport_lowfirstauto; /* 1023 */ 790 last = V_ipport_lowlastauto; /* 600 */ 791 lastport = &pcbinfo->ipi_lastlow; 792 } else { 793 first = V_ipport_firstauto; /* sysctl */ 794 last = V_ipport_lastauto; 795 lastport = &pcbinfo->ipi_lastport; 796 } 797 798 /* 799 * Instead of having two loops further down counting up or down 800 * make sure that first is always <= last and go with only one 801 * code path implementing all logic. 802 */ 803 if (first > last) { 804 aux = first; 805 first = last; 806 last = aux; 807 } 808 809 #ifdef INET 810 laddr.s_addr = INADDR_ANY; /* used by INET6+INET below too */ 811 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 812 if (lsa != NULL) 813 laddr = ((struct sockaddr_in *)lsa)->sin_addr; 814 if (fsa != NULL) 815 faddr = ((struct sockaddr_in *)fsa)->sin_addr; 816 } 817 #endif 818 #ifdef INET6 819 laddr6 = NULL; 820 if ((inp->inp_vflag & INP_IPV6) != 0) { 821 if (lsa != NULL) 822 laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr; 823 if (fsa != NULL) 824 faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr; 825 } 826 #endif 827 828 tmpinp = NULL; 829 lport = *lportp; 830 831 if (V_ipport_randomized) 832 *lastport = first + (arc4random() % (last - first)); 833 834 count = last - first; 835 836 do { 837 if (count-- < 0) /* completely used? */ 838 return (EADDRNOTAVAIL); 839 ++*lastport; 840 if (*lastport < first || *lastport > last) 841 *lastport = first; 842 lport = htons(*lastport); 843 844 if (fsa != NULL) { 845 #ifdef INET 846 if (lsa->sa_family == AF_INET) { 847 tmpinp = in_pcblookup_hash_locked(pcbinfo, 848 faddr, fport, laddr, lport, lookupflags, 849 M_NODOM, RT_ALL_FIBS); 850 } 851 #endif 852 #ifdef INET6 853 if (lsa->sa_family == AF_INET6) { 854 tmpinp = in6_pcblookup_hash_locked(pcbinfo, 855 faddr6, fport, laddr6, lport, lookupflags, 856 M_NODOM, RT_ALL_FIBS); 857 } 858 #endif 859 } else { 860 #ifdef INET6 861 if ((inp->inp_vflag & INP_IPV6) != 0) { 862 tmpinp = in6_pcblookup_local(pcbinfo, 863 &inp->in6p_laddr, lport, RT_ALL_FIBS, 864 lookupflags, cred); 865 #ifdef INET 866 if (tmpinp == NULL && 867 (inp->inp_vflag & INP_IPV4)) 868 tmpinp = in_pcblookup_local(pcbinfo, 869 laddr, lport, RT_ALL_FIBS, 870 lookupflags, cred); 871 #endif 872 } 873 #endif 874 #if defined(INET) && defined(INET6) 875 else 876 #endif 877 #ifdef INET 878 tmpinp = in_pcblookup_local(pcbinfo, laddr, 879 lport, RT_ALL_FIBS, lookupflags, cred); 880 #endif 881 } 882 } while (tmpinp != NULL); 883 884 *lportp = lport; 885 886 return (0); 887 } 888 889 /* 890 * Select a local port (number) to use. 891 */ 892 int 893 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 894 struct ucred *cred, int lookupflags) 895 { 896 struct sockaddr_in laddr; 897 898 if (laddrp) { 899 bzero(&laddr, sizeof(laddr)); 900 laddr.sin_family = AF_INET; 901 laddr.sin_addr = *laddrp; 902 } 903 return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr : 904 NULL, lportp, NULL, 0, cred, lookupflags)); 905 } 906 #endif /* INET || INET6 */ 907 908 #ifdef INET 909 /* 910 * Determine whether the inpcb can be bound to the specified address/port tuple. 911 */ 912 static int 913 in_pcbbind_avail(struct inpcb *inp, const struct in_addr laddr, 914 const u_short lport, const int fib, int sooptions, int lookupflags, 915 struct ucred *cred) 916 { 917 int reuseport, reuseport_lb; 918 919 INP_LOCK_ASSERT(inp); 920 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 921 922 reuseport = (sooptions & SO_REUSEPORT); 923 reuseport_lb = (sooptions & SO_REUSEPORT_LB); 924 925 if (IN_MULTICAST(ntohl(laddr.s_addr))) { 926 /* 927 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 928 * allow complete duplication of binding if 929 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 930 * and a multicast address is bound on both 931 * new and duplicated sockets. 932 */ 933 if ((sooptions & (SO_REUSEADDR | SO_REUSEPORT)) != 0) 934 reuseport = SO_REUSEADDR | SO_REUSEPORT; 935 /* 936 * XXX: How to deal with SO_REUSEPORT_LB here? 937 * Treat same as SO_REUSEPORT for now. 938 */ 939 if ((sooptions & (SO_REUSEADDR | SO_REUSEPORT_LB)) != 0) 940 reuseport_lb = SO_REUSEADDR | SO_REUSEPORT_LB; 941 } else if (!in_nullhost(laddr)) { 942 struct sockaddr_in sin; 943 944 memset(&sin, 0, sizeof(sin)); 945 sin.sin_family = AF_INET; 946 sin.sin_len = sizeof(sin); 947 sin.sin_addr = laddr; 948 949 /* 950 * Is the address a local IP address? 951 * If INP_BINDANY is set, then the socket may be bound 952 * to any endpoint address, local or not. 953 */ 954 if ((inp->inp_flags & INP_BINDANY) == 0 && 955 ifa_ifwithaddr_check((const struct sockaddr *)&sin) == 0) 956 return (EADDRNOTAVAIL); 957 } 958 959 if (lport != 0) { 960 struct inpcb *t; 961 962 if (ntohs(lport) <= V_ipport_reservedhigh && 963 ntohs(lport) >= V_ipport_reservedlow && 964 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) 965 return (EACCES); 966 967 if (!IN_MULTICAST(ntohl(laddr.s_addr)) && 968 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { 969 /* 970 * If a socket owned by a different user is already 971 * bound to this port, fail. In particular, SO_REUSE* 972 * can only be used to share a port among sockets owned 973 * by the same user. 974 * 975 * However, we can share a port with a connected socket 976 * which has a unique 4-tuple. 977 */ 978 t = in_pcblookup_local(inp->inp_pcbinfo, laddr, lport, 979 RT_ALL_FIBS, INPLOOKUP_WILDCARD, cred); 980 if (t != NULL && 981 (inp->inp_socket->so_type != SOCK_STREAM || 982 in_nullhost(t->inp_faddr)) && 983 (inp->inp_cred->cr_uid != t->inp_cred->cr_uid)) 984 return (EADDRINUSE); 985 } 986 t = in_pcblookup_local(inp->inp_pcbinfo, laddr, lport, fib, 987 lookupflags, cred); 988 if (t != NULL && ((reuseport | reuseport_lb) & 989 t->inp_socket->so_options) == 0) { 990 #ifdef INET6 991 if (!in_nullhost(laddr) || 992 !in_nullhost(t->inp_laddr) || 993 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 994 (t->inp_vflag & INP_IPV6PROTO) == 0) 995 #endif 996 return (EADDRINUSE); 997 } 998 } 999 return (0); 1000 } 1001 1002 /* 1003 * Set up a bind operation on a PCB, performing port allocation 1004 * as required, but do not actually modify the PCB. Callers can 1005 * either complete the bind by setting inp_laddr/inp_lport and 1006 * calling in_pcbinshash(), or they can just use the resulting 1007 * port and address to authorise the sending of a once-off packet. 1008 * 1009 * On error, the values of *laddrp and *lportp are not changed. 1010 */ 1011 int 1012 in_pcbbind_setup(struct inpcb *inp, struct sockaddr_in *sin, in_addr_t *laddrp, 1013 u_short *lportp, int flags, struct ucred *cred) 1014 { 1015 struct socket *so = inp->inp_socket; 1016 struct in_addr laddr; 1017 u_short lport = 0; 1018 int error, fib, lookupflags, sooptions; 1019 1020 /* 1021 * No state changes, so read locks are sufficient here. 1022 */ 1023 INP_LOCK_ASSERT(inp); 1024 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1025 1026 laddr.s_addr = *laddrp; 1027 if (sin != NULL && laddr.s_addr != INADDR_ANY) 1028 return (EINVAL); 1029 1030 lookupflags = 0; 1031 sooptions = atomic_load_int(&so->so_options); 1032 if ((sooptions & (SO_REUSEADDR | SO_REUSEPORT | SO_REUSEPORT_LB)) == 0) 1033 lookupflags = INPLOOKUP_WILDCARD; 1034 if (sin == NULL) { 1035 if ((error = prison_local_ip4(cred, &laddr)) != 0) 1036 return (error); 1037 } else { 1038 KASSERT(sin->sin_family == AF_INET, 1039 ("%s: invalid family for address %p", __func__, sin)); 1040 KASSERT(sin->sin_len == sizeof(*sin), 1041 ("%s: invalid length for address %p", __func__, sin)); 1042 1043 error = prison_local_ip4(cred, &sin->sin_addr); 1044 if (error) 1045 return (error); 1046 if (sin->sin_port != *lportp) { 1047 /* Don't allow the port to change. */ 1048 if (*lportp != 0) 1049 return (EINVAL); 1050 lport = sin->sin_port; 1051 } 1052 laddr = sin->sin_addr; 1053 1054 fib = (flags & INPBIND_FIB) != 0 ? inp->inp_inc.inc_fibnum : 1055 RT_ALL_FIBS; 1056 1057 /* See if this address/port combo is available. */ 1058 error = in_pcbbind_avail(inp, laddr, lport, fib, sooptions, 1059 lookupflags, cred); 1060 if (error != 0) 1061 return (error); 1062 } 1063 if (*lportp != 0) 1064 lport = *lportp; 1065 if (lport == 0) { 1066 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 1067 if (error != 0) 1068 return (error); 1069 } 1070 *laddrp = laddr.s_addr; 1071 *lportp = lport; 1072 if ((flags & INPBIND_FIB) != 0) 1073 inp->inp_flags |= INP_BOUNDFIB; 1074 return (0); 1075 } 1076 1077 /* 1078 * Connect from a socket to a specified address. 1079 * Both address and port must be specified in argument sin. 1080 * If don't have a local address for this socket yet, 1081 * then pick one. 1082 */ 1083 int 1084 in_pcbconnect(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred) 1085 { 1086 struct in_addr laddr, faddr; 1087 u_short lport; 1088 int error; 1089 bool anonport; 1090 1091 INP_WLOCK_ASSERT(inp); 1092 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1093 KASSERT(in_nullhost(inp->inp_faddr), 1094 ("%s: inp is already connected", __func__)); 1095 KASSERT(sin->sin_family == AF_INET, 1096 ("%s: invalid address family for %p", __func__, sin)); 1097 KASSERT(sin->sin_len == sizeof(*sin), 1098 ("%s: invalid address length for %p", __func__, sin)); 1099 1100 if (sin->sin_port == 0) 1101 return (EADDRNOTAVAIL); 1102 1103 anonport = (inp->inp_lport == 0); 1104 1105 if (__predict_false(in_broadcast(sin->sin_addr))) { 1106 if (!V_connect_inaddr_wild || CK_STAILQ_EMPTY(&V_in_ifaddrhead)) 1107 return (ENETUNREACH); 1108 /* 1109 * If the destination address is INADDR_ANY, use the primary 1110 * local address. If the supplied address is INADDR_BROADCAST, 1111 * and the primary interface supports broadcast, choose the 1112 * broadcast address for that interface. 1113 */ 1114 if (in_nullhost(sin->sin_addr)) { 1115 faddr = 1116 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1117 if ((error = prison_get_ip4(cred, &faddr)) != 0) 1118 return (error); 1119 } else if (sin->sin_addr.s_addr == INADDR_BROADCAST) { 1120 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags 1121 & IFF_BROADCAST) 1122 faddr = satosin(&CK_STAILQ_FIRST( 1123 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1124 else 1125 faddr = sin->sin_addr; 1126 } 1127 } else 1128 faddr = sin->sin_addr; 1129 1130 if (in_nullhost(inp->inp_laddr)) { 1131 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1132 /* 1133 * If the destination address is multicast and an outgoing 1134 * interface has been set as a multicast option, prefer the 1135 * address of that interface as our source address. 1136 */ 1137 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 1138 inp->inp_moptions != NULL && 1139 inp->inp_moptions->imo_multicast_ifp != NULL) { 1140 struct ifnet *ifp = 1141 inp->inp_moptions->imo_multicast_ifp; 1142 struct in_ifaddr *ia; 1143 1144 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1145 if (ia->ia_ifp == ifp && 1146 prison_check_ip4(cred, 1147 &ia->ia_addr.sin_addr) == 0) 1148 break; 1149 } 1150 if (ia == NULL) 1151 return (EADDRNOTAVAIL); 1152 laddr = ia->ia_addr.sin_addr; 1153 error = 0; 1154 } 1155 if (error) 1156 return (error); 1157 } else 1158 laddr = inp->inp_laddr; 1159 1160 if (anonport) { 1161 struct sockaddr_in lsin = { 1162 .sin_family = AF_INET, 1163 .sin_addr = laddr, 1164 }; 1165 struct sockaddr_in fsin = { 1166 .sin_family = AF_INET, 1167 .sin_addr = faddr, 1168 }; 1169 1170 error = in_pcb_lport_dest(inp, (struct sockaddr *)&lsin, 1171 &lport, (struct sockaddr *)&fsin, sin->sin_port, cred, 1172 INPLOOKUP_WILDCARD); 1173 if (error) 1174 return (error); 1175 } else if (in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, 1176 sin->sin_port, laddr, inp->inp_lport, 0, M_NODOM, RT_ALL_FIBS) != 1177 NULL) 1178 return (EADDRINUSE); 1179 else 1180 lport = inp->inp_lport; 1181 1182 MPASS(!in_nullhost(inp->inp_laddr) || inp->inp_lport != 0 || 1183 !(inp->inp_flags & INP_INHASHLIST)); 1184 1185 inp->inp_faddr = faddr; 1186 inp->inp_fport = sin->sin_port; 1187 inp->inp_laddr = laddr; 1188 inp->inp_lport = lport; 1189 1190 if ((inp->inp_flags & INP_INHASHLIST) == 0) { 1191 error = in_pcbinshash(inp); 1192 MPASS(error == 0); 1193 } else 1194 in_pcbrehash(inp); 1195 #ifdef ROUTE_MPATH 1196 if (CALC_FLOWID_OUTBOUND) { 1197 uint32_t hash_val, hash_type; 1198 1199 hash_val = fib4_calc_software_hash(inp->inp_laddr, 1200 inp->inp_faddr, 0, sin->sin_port, 1201 inp->inp_socket->so_proto->pr_protocol, &hash_type); 1202 1203 inp->inp_flowid = hash_val; 1204 inp->inp_flowtype = hash_type; 1205 } 1206 #endif 1207 if (anonport) 1208 inp->inp_flags |= INP_ANONPORT; 1209 return (0); 1210 } 1211 1212 /* 1213 * Do proper source address selection on an unbound socket in case 1214 * of connect. Take jails into account as well. 1215 */ 1216 int 1217 in_pcbladdr(const struct inpcb *inp, struct in_addr *faddr, 1218 struct in_addr *laddr, struct ucred *cred) 1219 { 1220 struct ifaddr *ifa; 1221 struct sockaddr *sa; 1222 struct sockaddr_in *sin, dst; 1223 struct nhop_object *nh; 1224 int error; 1225 1226 NET_EPOCH_ASSERT(); 1227 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1228 1229 /* 1230 * Bypass source address selection and use the primary jail IP 1231 * if requested. 1232 */ 1233 if (!prison_saddrsel_ip4(cred, laddr)) 1234 return (0); 1235 1236 error = 0; 1237 1238 nh = NULL; 1239 bzero(&dst, sizeof(dst)); 1240 sin = &dst; 1241 sin->sin_family = AF_INET; 1242 sin->sin_len = sizeof(struct sockaddr_in); 1243 sin->sin_addr.s_addr = faddr->s_addr; 1244 1245 /* 1246 * If route is known our src addr is taken from the i/f, 1247 * else punt. 1248 * 1249 * Find out route to destination. 1250 */ 1251 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1252 nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr, 1253 0, NHR_NONE, 0); 1254 1255 /* 1256 * If we found a route, use the address corresponding to 1257 * the outgoing interface. 1258 * 1259 * Otherwise assume faddr is reachable on a directly connected 1260 * network and try to find a corresponding interface to take 1261 * the source address from. 1262 */ 1263 if (nh == NULL || nh->nh_ifp == NULL) { 1264 struct in_ifaddr *ia; 1265 struct ifnet *ifp; 1266 1267 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1268 inp->inp_socket->so_fibnum)); 1269 if (ia == NULL) { 1270 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1271 inp->inp_socket->so_fibnum)); 1272 } 1273 if (ia == NULL) { 1274 error = ENETUNREACH; 1275 goto done; 1276 } 1277 1278 if (!prison_flag(cred, PR_IP4)) { 1279 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1280 goto done; 1281 } 1282 1283 ifp = ia->ia_ifp; 1284 ia = NULL; 1285 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1286 sa = ifa->ifa_addr; 1287 if (sa->sa_family != AF_INET) 1288 continue; 1289 sin = (struct sockaddr_in *)sa; 1290 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1291 ia = (struct in_ifaddr *)ifa; 1292 break; 1293 } 1294 } 1295 if (ia != NULL) { 1296 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1297 goto done; 1298 } 1299 1300 /* 3. As a last resort return the 'default' jail address. */ 1301 error = prison_get_ip4(cred, laddr); 1302 goto done; 1303 } 1304 1305 /* 1306 * If the outgoing interface on the route found is not 1307 * a loopback interface, use the address from that interface. 1308 * In case of jails do those three steps: 1309 * 1. check if the interface address belongs to the jail. If so use it. 1310 * 2. check if we have any address on the outgoing interface 1311 * belonging to this jail. If so use it. 1312 * 3. as a last resort return the 'default' jail address. 1313 */ 1314 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) { 1315 struct in_ifaddr *ia; 1316 struct ifnet *ifp; 1317 1318 /* If not jailed, use the default returned. */ 1319 if (!prison_flag(cred, PR_IP4)) { 1320 ia = (struct in_ifaddr *)nh->nh_ifa; 1321 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1322 goto done; 1323 } 1324 1325 /* Jailed. */ 1326 /* 1. Check if the iface address belongs to the jail. */ 1327 sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr; 1328 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1329 ia = (struct in_ifaddr *)nh->nh_ifa; 1330 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1331 goto done; 1332 } 1333 1334 /* 1335 * 2. Check if we have any address on the outgoing interface 1336 * belonging to this jail. 1337 */ 1338 ia = NULL; 1339 ifp = nh->nh_ifp; 1340 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1341 sa = ifa->ifa_addr; 1342 if (sa->sa_family != AF_INET) 1343 continue; 1344 sin = (struct sockaddr_in *)sa; 1345 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1346 ia = (struct in_ifaddr *)ifa; 1347 break; 1348 } 1349 } 1350 if (ia != NULL) { 1351 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1352 goto done; 1353 } 1354 1355 /* 3. As a last resort return the 'default' jail address. */ 1356 error = prison_get_ip4(cred, laddr); 1357 goto done; 1358 } 1359 1360 /* 1361 * The outgoing interface is marked with 'loopback net', so a route 1362 * to ourselves is here. 1363 * Try to find the interface of the destination address and then 1364 * take the address from there. That interface is not necessarily 1365 * a loopback interface. 1366 * In case of jails, check that it is an address of the jail 1367 * and if we cannot find, fall back to the 'default' jail address. 1368 */ 1369 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) { 1370 struct in_ifaddr *ia; 1371 1372 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst), 1373 inp->inp_socket->so_fibnum)); 1374 if (ia == NULL) 1375 ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0, 1376 inp->inp_socket->so_fibnum)); 1377 if (ia == NULL) 1378 ia = ifatoia(ifa_ifwithaddr(sintosa(&dst))); 1379 1380 if (!prison_flag(cred, PR_IP4)) { 1381 if (ia == NULL) { 1382 error = ENETUNREACH; 1383 goto done; 1384 } 1385 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1386 goto done; 1387 } 1388 1389 /* Jailed. */ 1390 if (ia != NULL) { 1391 struct ifnet *ifp; 1392 1393 ifp = ia->ia_ifp; 1394 ia = NULL; 1395 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1396 sa = ifa->ifa_addr; 1397 if (sa->sa_family != AF_INET) 1398 continue; 1399 sin = (struct sockaddr_in *)sa; 1400 if (prison_check_ip4(cred, 1401 &sin->sin_addr) == 0) { 1402 ia = (struct in_ifaddr *)ifa; 1403 break; 1404 } 1405 } 1406 if (ia != NULL) { 1407 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1408 goto done; 1409 } 1410 } 1411 1412 /* 3. As a last resort return the 'default' jail address. */ 1413 error = prison_get_ip4(cred, laddr); 1414 goto done; 1415 } 1416 1417 done: 1418 if (error == 0 && laddr->s_addr == INADDR_ANY) 1419 return (EHOSTUNREACH); 1420 return (error); 1421 } 1422 1423 void 1424 in_pcbdisconnect(struct inpcb *inp) 1425 { 1426 1427 INP_WLOCK_ASSERT(inp); 1428 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1429 KASSERT(inp->inp_smr == SMR_SEQ_INVALID, 1430 ("%s: inp %p was already disconnected", __func__, inp)); 1431 1432 in_pcbremhash_locked(inp); 1433 1434 /* See the comment in in_pcbinshash(). */ 1435 inp->inp_smr = smr_advance(inp->inp_pcbinfo->ipi_smr); 1436 inp->inp_laddr.s_addr = INADDR_ANY; 1437 inp->inp_faddr.s_addr = INADDR_ANY; 1438 inp->inp_fport = 0; 1439 } 1440 #endif /* INET */ 1441 1442 void 1443 in_pcblisten(struct inpcb *inp) 1444 { 1445 struct inpcblbgroup *grp; 1446 1447 INP_WLOCK_ASSERT(inp); 1448 1449 if ((inp->inp_flags & INP_INLBGROUP) != 0) { 1450 struct inpcbinfo *pcbinfo; 1451 1452 pcbinfo = inp->inp_pcbinfo; 1453 INP_HASH_WLOCK(pcbinfo); 1454 grp = in_pcblbgroup_find(inp); 1455 LIST_REMOVE(inp, inp_lbgroup_list); 1456 grp->il_pendcnt--; 1457 in_pcblbgroup_insert(grp, inp); 1458 INP_HASH_WUNLOCK(pcbinfo); 1459 } 1460 } 1461 1462 /* 1463 * inpcb hash lookups are protected by SMR section. 1464 * 1465 * Once desired pcb has been found, switching from SMR section to a pcb 1466 * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK 1467 * here because SMR is a critical section. 1468 * In 99%+ cases inp_smr_lock() would obtain the lock immediately. 1469 */ 1470 void 1471 inp_lock(struct inpcb *inp, const inp_lookup_t lock) 1472 { 1473 1474 lock == INPLOOKUP_RLOCKPCB ? 1475 rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock); 1476 } 1477 1478 void 1479 inp_unlock(struct inpcb *inp, const inp_lookup_t lock) 1480 { 1481 1482 lock == INPLOOKUP_RLOCKPCB ? 1483 rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock); 1484 } 1485 1486 int 1487 inp_trylock(struct inpcb *inp, const inp_lookup_t lock) 1488 { 1489 1490 return (lock == INPLOOKUP_RLOCKPCB ? 1491 rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock)); 1492 } 1493 1494 static inline bool 1495 _inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock, const int ignflags) 1496 { 1497 1498 MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB); 1499 SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr); 1500 1501 if (__predict_true(inp_trylock(inp, lock))) { 1502 if (__predict_false(inp->inp_flags & ignflags)) { 1503 smr_exit(inp->inp_pcbinfo->ipi_smr); 1504 inp_unlock(inp, lock); 1505 return (false); 1506 } 1507 smr_exit(inp->inp_pcbinfo->ipi_smr); 1508 return (true); 1509 } 1510 1511 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1512 smr_exit(inp->inp_pcbinfo->ipi_smr); 1513 inp_lock(inp, lock); 1514 if (__predict_false(in_pcbrele(inp, lock))) 1515 return (false); 1516 /* 1517 * inp acquired through refcount & lock for sure didn't went 1518 * through uma_zfree(). However, it may have already went 1519 * through in_pcbfree() and has another reference, that 1520 * prevented its release by our in_pcbrele(). 1521 */ 1522 if (__predict_false(inp->inp_flags & ignflags)) { 1523 inp_unlock(inp, lock); 1524 return (false); 1525 } 1526 return (true); 1527 } else { 1528 smr_exit(inp->inp_pcbinfo->ipi_smr); 1529 return (false); 1530 } 1531 } 1532 1533 bool 1534 inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock) 1535 { 1536 1537 /* 1538 * in_pcblookup() family of functions ignore not only freed entries, 1539 * that may be found due to lockless access to the hash, but dropped 1540 * entries, too. 1541 */ 1542 return (_inp_smr_lock(inp, lock, INP_FREED | INP_DROPPED)); 1543 } 1544 1545 /* 1546 * inp_next() - inpcb hash/list traversal iterator 1547 * 1548 * Requires initialized struct inpcb_iterator for context. 1549 * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR(). 1550 * 1551 * - Iterator can have either write-lock or read-lock semantics, that can not 1552 * be changed later. 1553 * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through 1554 * a single hash slot. Note: only rip_input() does the latter. 1555 * - Iterator may have optional bool matching function. The matching function 1556 * will be executed for each inpcb in the SMR context, so it can not acquire 1557 * locks and can safely access only immutable fields of inpcb. 1558 * 1559 * A fresh initialized iterator has NULL inpcb in its context and that 1560 * means that inp_next() call would return the very first inpcb on the list 1561 * locked with desired semantic. In all following calls the context pointer 1562 * shall hold the current inpcb pointer. The KPI user is not supposed to 1563 * unlock the current inpcb! Upon end of traversal inp_next() will return NULL 1564 * and write NULL to its context. After end of traversal an iterator can be 1565 * reused. 1566 * 1567 * List traversals have the following features/constraints: 1568 * - New entries won't be seen, as they are always added to the head of a list. 1569 * - Removed entries won't stop traversal as long as they are not added to 1570 * a different list. This is violated by in_pcbrehash(). 1571 */ 1572 #define II_LIST_FIRST(ipi, hash) \ 1573 (((hash) == INP_ALL_LIST) ? \ 1574 CK_LIST_FIRST(&(ipi)->ipi_listhead) : \ 1575 CK_LIST_FIRST(&(ipi)->ipi_hash_exact[(hash)])) 1576 #define II_LIST_NEXT(inp, hash) \ 1577 (((hash) == INP_ALL_LIST) ? \ 1578 CK_LIST_NEXT((inp), inp_list) : \ 1579 CK_LIST_NEXT((inp), inp_hash_exact)) 1580 #define II_LOCK_ASSERT(inp, lock) \ 1581 rw_assert(&(inp)->inp_lock, \ 1582 (lock) == INPLOOKUP_RLOCKPCB ? RA_RLOCKED : RA_WLOCKED ) 1583 struct inpcb * 1584 inp_next(struct inpcb_iterator *ii) 1585 { 1586 const struct inpcbinfo *ipi = ii->ipi; 1587 inp_match_t *match = ii->match; 1588 void *ctx = ii->ctx; 1589 inp_lookup_t lock = ii->lock; 1590 int hash = ii->hash; 1591 struct inpcb *inp; 1592 1593 if (ii->inp == NULL) { /* First call. */ 1594 smr_enter(ipi->ipi_smr); 1595 /* This is unrolled CK_LIST_FOREACH(). */ 1596 for (inp = II_LIST_FIRST(ipi, hash); 1597 inp != NULL; 1598 inp = II_LIST_NEXT(inp, hash)) { 1599 if (match != NULL && (match)(inp, ctx) == false) 1600 continue; 1601 if (__predict_true(_inp_smr_lock(inp, lock, INP_FREED))) 1602 break; 1603 else { 1604 smr_enter(ipi->ipi_smr); 1605 MPASS(inp != II_LIST_FIRST(ipi, hash)); 1606 inp = II_LIST_FIRST(ipi, hash); 1607 if (inp == NULL) 1608 break; 1609 } 1610 } 1611 1612 if (inp == NULL) 1613 smr_exit(ipi->ipi_smr); 1614 else 1615 ii->inp = inp; 1616 1617 return (inp); 1618 } 1619 1620 /* Not a first call. */ 1621 smr_enter(ipi->ipi_smr); 1622 restart: 1623 inp = ii->inp; 1624 II_LOCK_ASSERT(inp, lock); 1625 next: 1626 inp = II_LIST_NEXT(inp, hash); 1627 if (inp == NULL) { 1628 smr_exit(ipi->ipi_smr); 1629 goto found; 1630 } 1631 1632 if (match != NULL && (match)(inp, ctx) == false) 1633 goto next; 1634 1635 if (__predict_true(inp_trylock(inp, lock))) { 1636 if (__predict_false(inp->inp_flags & INP_FREED)) { 1637 /* 1638 * Entries are never inserted in middle of a list, thus 1639 * as long as we are in SMR, we can continue traversal. 1640 * Jump to 'restart' should yield in the same result, 1641 * but could produce unnecessary looping. Could this 1642 * looping be unbound? 1643 */ 1644 inp_unlock(inp, lock); 1645 goto next; 1646 } else { 1647 smr_exit(ipi->ipi_smr); 1648 goto found; 1649 } 1650 } 1651 1652 /* 1653 * Can't obtain lock immediately, thus going hard. Once we exit the 1654 * SMR section we can no longer jump to 'next', and our only stable 1655 * anchoring point is ii->inp, which we keep locked for this case, so 1656 * we jump to 'restart'. 1657 */ 1658 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1659 smr_exit(ipi->ipi_smr); 1660 inp_lock(inp, lock); 1661 if (__predict_false(in_pcbrele(inp, lock))) { 1662 smr_enter(ipi->ipi_smr); 1663 goto restart; 1664 } 1665 /* 1666 * See comment in inp_smr_lock(). 1667 */ 1668 if (__predict_false(inp->inp_flags & INP_FREED)) { 1669 inp_unlock(inp, lock); 1670 smr_enter(ipi->ipi_smr); 1671 goto restart; 1672 } 1673 } else 1674 goto next; 1675 1676 found: 1677 inp_unlock(ii->inp, lock); 1678 ii->inp = inp; 1679 1680 return (ii->inp); 1681 } 1682 1683 /* 1684 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1685 * stability of an inpcb pointer despite the inpcb lock being released or 1686 * SMR section exited. 1687 * 1688 * To free a reference later in_pcbrele_(r|w)locked() must be performed. 1689 */ 1690 void 1691 in_pcbref(struct inpcb *inp) 1692 { 1693 u_int old __diagused; 1694 1695 old = refcount_acquire(&inp->inp_refcount); 1696 KASSERT(old > 0, ("%s: refcount 0", __func__)); 1697 } 1698 1699 /* 1700 * Drop a refcount on an inpcb elevated using in_pcbref(), potentially 1701 * freeing the pcb, if the reference was very last. 1702 */ 1703 bool 1704 in_pcbrele_rlocked(struct inpcb *inp) 1705 { 1706 1707 INP_RLOCK_ASSERT(inp); 1708 1709 if (!refcount_release(&inp->inp_refcount)) 1710 return (false); 1711 1712 MPASS(inp->inp_flags & INP_FREED); 1713 MPASS(inp->inp_socket == NULL); 1714 crfree(inp->inp_cred); 1715 #ifdef INVARIANTS 1716 inp->inp_cred = NULL; 1717 #endif 1718 INP_RUNLOCK(inp); 1719 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1720 return (true); 1721 } 1722 1723 bool 1724 in_pcbrele_wlocked(struct inpcb *inp) 1725 { 1726 1727 INP_WLOCK_ASSERT(inp); 1728 1729 if (!refcount_release(&inp->inp_refcount)) 1730 return (false); 1731 1732 MPASS(inp->inp_flags & INP_FREED); 1733 MPASS(inp->inp_socket == NULL); 1734 crfree(inp->inp_cred); 1735 #ifdef INVARIANTS 1736 inp->inp_cred = NULL; 1737 #endif 1738 INP_WUNLOCK(inp); 1739 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1740 return (true); 1741 } 1742 1743 bool 1744 in_pcbrele(struct inpcb *inp, const inp_lookup_t lock) 1745 { 1746 1747 return (lock == INPLOOKUP_RLOCKPCB ? 1748 in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp)); 1749 } 1750 1751 /* 1752 * Unconditionally schedule an inpcb to be freed by decrementing its 1753 * reference count, which should occur only after the inpcb has been detached 1754 * from its socket. If another thread holds a temporary reference (acquired 1755 * using in_pcbref()) then the free is deferred until that reference is 1756 * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked. 1757 * Almost all work, including removal from global lists, is done in this 1758 * context, where the pcbinfo lock is held. 1759 */ 1760 void 1761 in_pcbfree(struct inpcb *inp) 1762 { 1763 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1764 #ifdef INET 1765 struct ip_moptions *imo; 1766 #endif 1767 #ifdef INET6 1768 struct ip6_moptions *im6o; 1769 #endif 1770 1771 INP_WLOCK_ASSERT(inp); 1772 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1773 KASSERT((inp->inp_flags & INP_FREED) == 0, 1774 ("%s: called twice for pcb %p", __func__, inp)); 1775 1776 /* 1777 * in_pcblookup_local() and in6_pcblookup_local() may return an inpcb 1778 * from the hash without acquiring inpcb lock, they rely on the hash 1779 * lock, thus in_pcbremhash() should be the first action. 1780 */ 1781 if (inp->inp_flags & INP_INHASHLIST) 1782 in_pcbremhash(inp); 1783 INP_INFO_WLOCK(pcbinfo); 1784 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1785 pcbinfo->ipi_count--; 1786 CK_LIST_REMOVE(inp, inp_list); 1787 INP_INFO_WUNLOCK(pcbinfo); 1788 1789 #ifdef RATELIMIT 1790 if (inp->inp_snd_tag != NULL) 1791 in_pcbdetach_txrtlmt(inp); 1792 #endif 1793 inp->inp_flags |= INP_FREED; 1794 inp->inp_socket->so_pcb = NULL; 1795 inp->inp_socket = NULL; 1796 1797 RO_INVALIDATE_CACHE(&inp->inp_route); 1798 #ifdef MAC 1799 mac_inpcb_destroy(inp); 1800 #endif 1801 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1802 if (inp->inp_sp != NULL) 1803 ipsec_delete_pcbpolicy(inp); 1804 #endif 1805 #ifdef INET 1806 if (inp->inp_options) 1807 (void)m_free(inp->inp_options); 1808 DEBUG_POISON_POINTER(inp->inp_options); 1809 imo = inp->inp_moptions; 1810 DEBUG_POISON_POINTER(inp->inp_moptions); 1811 #endif 1812 #ifdef INET6 1813 if (inp->inp_vflag & INP_IPV6PROTO) { 1814 ip6_freepcbopts(inp->in6p_outputopts); 1815 DEBUG_POISON_POINTER(inp->in6p_outputopts); 1816 im6o = inp->in6p_moptions; 1817 DEBUG_POISON_POINTER(inp->in6p_moptions); 1818 } else 1819 im6o = NULL; 1820 #endif 1821 1822 if (__predict_false(in_pcbrele_wlocked(inp) == false)) { 1823 INP_WUNLOCK(inp); 1824 } 1825 #ifdef INET6 1826 ip6_freemoptions(im6o); 1827 #endif 1828 #ifdef INET 1829 inp_freemoptions(imo); 1830 #endif 1831 } 1832 1833 /* 1834 * Different protocols initialize their inpcbs differently - giving 1835 * different name to the lock. But they all are disposed the same. 1836 */ 1837 static void 1838 inpcb_fini(void *mem, int size) 1839 { 1840 struct inpcb *inp = mem; 1841 1842 INP_LOCK_DESTROY(inp); 1843 } 1844 1845 /* 1846 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1847 * port reservation, and preventing it from being returned by inpcb lookups. 1848 * 1849 * It is used by TCP to mark an inpcb as unused and avoid future packet 1850 * delivery or event notification when a socket remains open but TCP has 1851 * closed. This might occur as a result of a shutdown()-initiated TCP close 1852 * or a RST on the wire, and allows the port binding to be reused while still 1853 * maintaining the invariant that so_pcb always points to a valid inpcb until 1854 * in_pcbdetach(). 1855 * 1856 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1857 * in_pcbpurgeif0()? 1858 */ 1859 void 1860 in_pcbdrop(struct inpcb *inp) 1861 { 1862 1863 INP_WLOCK_ASSERT(inp); 1864 1865 inp->inp_flags |= INP_DROPPED; 1866 if (inp->inp_flags & INP_INHASHLIST) 1867 in_pcbremhash(inp); 1868 } 1869 1870 #ifdef INET 1871 /* 1872 * Common routines to return the socket addresses associated with inpcbs. 1873 */ 1874 int 1875 in_getsockaddr(struct socket *so, struct sockaddr *sa) 1876 { 1877 struct inpcb *inp; 1878 1879 inp = sotoinpcb(so); 1880 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1881 1882 *(struct sockaddr_in *)sa = (struct sockaddr_in ){ 1883 .sin_len = sizeof(struct sockaddr_in), 1884 .sin_family = AF_INET, 1885 .sin_port = inp->inp_lport, 1886 .sin_addr = inp->inp_laddr, 1887 }; 1888 1889 return (0); 1890 } 1891 1892 int 1893 in_getpeeraddr(struct socket *so, struct sockaddr *sa) 1894 { 1895 struct inpcb *inp; 1896 1897 inp = sotoinpcb(so); 1898 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1899 1900 *(struct sockaddr_in *)sa = (struct sockaddr_in ){ 1901 .sin_len = sizeof(struct sockaddr_in), 1902 .sin_family = AF_INET, 1903 .sin_port = inp->inp_fport, 1904 .sin_addr = inp->inp_faddr, 1905 }; 1906 1907 return (0); 1908 } 1909 1910 static bool 1911 inp_v4_multi_match(const struct inpcb *inp, void *v __unused) 1912 { 1913 1914 if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL) 1915 return (true); 1916 else 1917 return (false); 1918 } 1919 1920 void 1921 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1922 { 1923 struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB, 1924 inp_v4_multi_match, NULL); 1925 struct inpcb *inp; 1926 struct in_multi *inm; 1927 struct in_mfilter *imf; 1928 struct ip_moptions *imo; 1929 1930 IN_MULTI_LOCK_ASSERT(); 1931 1932 while ((inp = inp_next(&inpi)) != NULL) { 1933 INP_WLOCK_ASSERT(inp); 1934 1935 imo = inp->inp_moptions; 1936 /* 1937 * Unselect the outgoing interface if it is being 1938 * detached. 1939 */ 1940 if (imo->imo_multicast_ifp == ifp) 1941 imo->imo_multicast_ifp = NULL; 1942 1943 /* 1944 * Drop multicast group membership if we joined 1945 * through the interface being detached. 1946 * 1947 * XXX This can all be deferred to an epoch_call 1948 */ 1949 restart: 1950 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 1951 if ((inm = imf->imf_inm) == NULL) 1952 continue; 1953 if (inm->inm_ifp != ifp) 1954 continue; 1955 ip_mfilter_remove(&imo->imo_head, imf); 1956 in_leavegroup_locked(inm, NULL); 1957 ip_mfilter_free(imf); 1958 goto restart; 1959 } 1960 } 1961 } 1962 1963 /* 1964 * Lookup a PCB based on the local address and port. Caller must hold the 1965 * hash lock. No inpcb locks or references are acquired. 1966 */ 1967 #define INP_LOOKUP_MAPPED_PCB_COST 3 1968 struct inpcb * 1969 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1970 u_short lport, int fib, int lookupflags, struct ucred *cred) 1971 { 1972 struct inpcb *inp; 1973 #ifdef INET6 1974 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1975 #else 1976 int matchwild = 3; 1977 #endif 1978 int wildcard; 1979 1980 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1981 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1982 KASSERT(fib == RT_ALL_FIBS || (fib >= 0 && fib < V_rt_numfibs), 1983 ("%s: invalid fib %d", __func__, fib)); 1984 1985 INP_HASH_LOCK_ASSERT(pcbinfo); 1986 1987 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1988 struct inpcbhead *head; 1989 /* 1990 * Look for an unconnected (wildcard foreign addr) PCB that 1991 * matches the local address and port we're looking for. 1992 */ 1993 head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport, 1994 pcbinfo->ipi_hashmask)]; 1995 CK_LIST_FOREACH(inp, head, inp_hash_wild) { 1996 #ifdef INET6 1997 /* XXX inp locking */ 1998 if ((inp->inp_vflag & INP_IPV4) == 0) 1999 continue; 2000 #endif 2001 if (inp->inp_faddr.s_addr == INADDR_ANY && 2002 inp->inp_laddr.s_addr == laddr.s_addr && 2003 inp->inp_lport == lport && (fib == RT_ALL_FIBS || 2004 inp->inp_inc.inc_fibnum == fib)) { 2005 /* 2006 * Found? 2007 */ 2008 if (prison_equal_ip4(cred->cr_prison, 2009 inp->inp_cred->cr_prison)) 2010 return (inp); 2011 } 2012 } 2013 /* 2014 * Not found. 2015 */ 2016 return (NULL); 2017 } else { 2018 struct inpcbhead *porthash; 2019 struct inpcb *match = NULL; 2020 2021 /* 2022 * Port is in use by one or more PCBs. Look for best 2023 * fit. 2024 */ 2025 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 2026 pcbinfo->ipi_porthashmask)]; 2027 CK_LIST_FOREACH(inp, porthash, inp_portlist) { 2028 if (inp->inp_lport != lport) 2029 continue; 2030 if (!prison_equal_ip4(inp->inp_cred->cr_prison, 2031 cred->cr_prison)) 2032 continue; 2033 if (fib != RT_ALL_FIBS && 2034 inp->inp_inc.inc_fibnum != fib) 2035 continue; 2036 wildcard = 0; 2037 #ifdef INET6 2038 /* XXX inp locking */ 2039 if ((inp->inp_vflag & INP_IPV4) == 0) 2040 continue; 2041 /* 2042 * We never select the PCB that has INP_IPV6 flag and 2043 * is bound to :: if we have another PCB which is bound 2044 * to 0.0.0.0. If a PCB has the INP_IPV6 flag, then we 2045 * set its cost higher than IPv4 only PCBs. 2046 * 2047 * Note that the case only happens when a socket is 2048 * bound to ::, under the condition that the use of the 2049 * mapped address is allowed. 2050 */ 2051 if ((inp->inp_vflag & INP_IPV6) != 0) 2052 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 2053 #endif 2054 if (inp->inp_faddr.s_addr != INADDR_ANY) 2055 wildcard++; 2056 if (inp->inp_laddr.s_addr != INADDR_ANY) { 2057 if (laddr.s_addr == INADDR_ANY) 2058 wildcard++; 2059 else if (inp->inp_laddr.s_addr != laddr.s_addr) 2060 continue; 2061 } else { 2062 if (laddr.s_addr != INADDR_ANY) 2063 wildcard++; 2064 } 2065 if (wildcard < matchwild) { 2066 match = inp; 2067 matchwild = wildcard; 2068 if (matchwild == 0) 2069 break; 2070 } 2071 } 2072 return (match); 2073 } 2074 } 2075 #undef INP_LOOKUP_MAPPED_PCB_COST 2076 2077 static bool 2078 in_pcblookup_lb_match(const struct inpcblbgroup *grp, int domain, int fib) 2079 { 2080 return ((domain == M_NODOM || domain == grp->il_numa_domain) && 2081 (fib == RT_ALL_FIBS || fib == grp->il_fibnum)); 2082 } 2083 2084 static struct inpcb * 2085 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 2086 const struct in_addr *faddr, uint16_t fport, const struct in_addr *laddr, 2087 uint16_t lport, int domain, int fib) 2088 { 2089 const struct inpcblbgrouphead *hdr; 2090 struct inpcblbgroup *grp; 2091 struct inpcblbgroup *jail_exact, *jail_wild, *local_exact, *local_wild; 2092 struct inpcb *inp; 2093 u_int count; 2094 2095 INP_HASH_LOCK_ASSERT(pcbinfo); 2096 NET_EPOCH_ASSERT(); 2097 2098 hdr = &pcbinfo->ipi_lbgrouphashbase[ 2099 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; 2100 2101 /* 2102 * Search for an LB group match based on the following criteria: 2103 * - prefer jailed groups to non-jailed groups 2104 * - prefer exact source address matches to wildcard matches 2105 * - prefer groups bound to the specified NUMA domain 2106 */ 2107 jail_exact = jail_wild = local_exact = local_wild = NULL; 2108 CK_LIST_FOREACH(grp, hdr, il_list) { 2109 bool injail; 2110 2111 #ifdef INET6 2112 if (!(grp->il_vflag & INP_IPV4)) 2113 continue; 2114 #endif 2115 if (grp->il_lport != lport) 2116 continue; 2117 2118 injail = prison_flag(grp->il_cred, PR_IP4) != 0; 2119 if (injail && prison_check_ip4_locked(grp->il_cred->cr_prison, 2120 laddr) != 0) 2121 continue; 2122 2123 if (grp->il_laddr.s_addr == laddr->s_addr) { 2124 if (injail) { 2125 jail_exact = grp; 2126 if (in_pcblookup_lb_match(grp, domain, fib)) 2127 /* This is a perfect match. */ 2128 goto out; 2129 } else if (local_exact == NULL || 2130 in_pcblookup_lb_match(grp, domain, fib)) { 2131 local_exact = grp; 2132 } 2133 } else if (grp->il_laddr.s_addr == INADDR_ANY) { 2134 if (injail) { 2135 if (jail_wild == NULL || 2136 in_pcblookup_lb_match(grp, domain, fib)) 2137 jail_wild = grp; 2138 } else if (local_wild == NULL || 2139 in_pcblookup_lb_match(grp, domain, fib)) { 2140 local_wild = grp; 2141 } 2142 } 2143 } 2144 2145 if (jail_exact != NULL) 2146 grp = jail_exact; 2147 else if (jail_wild != NULL) 2148 grp = jail_wild; 2149 else if (local_exact != NULL) 2150 grp = local_exact; 2151 else 2152 grp = local_wild; 2153 if (grp == NULL) 2154 return (NULL); 2155 2156 out: 2157 /* 2158 * Synchronize with in_pcblbgroup_insert(). 2159 */ 2160 count = atomic_load_acq_int(&grp->il_inpcnt); 2161 if (count == 0) 2162 return (NULL); 2163 inp = grp->il_inp[INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) % count]; 2164 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 2165 return (inp); 2166 } 2167 2168 static bool 2169 in_pcblookup_exact_match(const struct inpcb *inp, struct in_addr faddr, 2170 u_short fport, struct in_addr laddr, u_short lport) 2171 { 2172 #ifdef INET6 2173 /* XXX inp locking */ 2174 if ((inp->inp_vflag & INP_IPV4) == 0) 2175 return (false); 2176 #endif 2177 if (inp->inp_faddr.s_addr == faddr.s_addr && 2178 inp->inp_laddr.s_addr == laddr.s_addr && 2179 inp->inp_fport == fport && 2180 inp->inp_lport == lport) 2181 return (true); 2182 return (false); 2183 } 2184 2185 static struct inpcb * 2186 in_pcblookup_hash_exact(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2187 u_short fport, struct in_addr laddr, u_short lport) 2188 { 2189 struct inpcbhead *head; 2190 struct inpcb *inp; 2191 2192 INP_HASH_LOCK_ASSERT(pcbinfo); 2193 2194 head = &pcbinfo->ipi_hash_exact[INP_PCBHASH(&faddr, lport, fport, 2195 pcbinfo->ipi_hashmask)]; 2196 CK_LIST_FOREACH(inp, head, inp_hash_exact) { 2197 if (in_pcblookup_exact_match(inp, faddr, fport, laddr, lport)) 2198 return (inp); 2199 } 2200 return (NULL); 2201 } 2202 2203 typedef enum { 2204 INPLOOKUP_MATCH_NONE = 0, 2205 INPLOOKUP_MATCH_WILD = 1, 2206 INPLOOKUP_MATCH_LADDR = 2, 2207 } inp_lookup_match_t; 2208 2209 static inp_lookup_match_t 2210 in_pcblookup_wild_match(const struct inpcb *inp, struct in_addr laddr, 2211 u_short lport, int fib) 2212 { 2213 #ifdef INET6 2214 /* XXX inp locking */ 2215 if ((inp->inp_vflag & INP_IPV4) == 0) 2216 return (INPLOOKUP_MATCH_NONE); 2217 #endif 2218 if (inp->inp_faddr.s_addr != INADDR_ANY || inp->inp_lport != lport) 2219 return (INPLOOKUP_MATCH_NONE); 2220 if (fib != RT_ALL_FIBS && inp->inp_inc.inc_fibnum != fib) 2221 return (INPLOOKUP_MATCH_NONE); 2222 if (inp->inp_laddr.s_addr == INADDR_ANY) 2223 return (INPLOOKUP_MATCH_WILD); 2224 if (inp->inp_laddr.s_addr == laddr.s_addr) 2225 return (INPLOOKUP_MATCH_LADDR); 2226 return (INPLOOKUP_MATCH_NONE); 2227 } 2228 2229 #define INP_LOOKUP_AGAIN ((struct inpcb *)(uintptr_t)-1) 2230 2231 static struct inpcb * 2232 in_pcblookup_hash_wild_smr(struct inpcbinfo *pcbinfo, struct in_addr laddr, 2233 u_short lport, int fib, const inp_lookup_t lockflags) 2234 { 2235 struct inpcbhead *head; 2236 struct inpcb *inp; 2237 2238 KASSERT(SMR_ENTERED(pcbinfo->ipi_smr), 2239 ("%s: not in SMR read section", __func__)); 2240 2241 head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport, 2242 pcbinfo->ipi_hashmask)]; 2243 CK_LIST_FOREACH(inp, head, inp_hash_wild) { 2244 inp_lookup_match_t match; 2245 2246 match = in_pcblookup_wild_match(inp, laddr, lport, fib); 2247 if (match == INPLOOKUP_MATCH_NONE) 2248 continue; 2249 2250 if (__predict_true(inp_smr_lock(inp, lockflags))) { 2251 match = in_pcblookup_wild_match(inp, laddr, lport, fib); 2252 if (match != INPLOOKUP_MATCH_NONE && 2253 prison_check_ip4_locked(inp->inp_cred->cr_prison, 2254 &laddr) == 0) 2255 return (inp); 2256 inp_unlock(inp, lockflags); 2257 } 2258 2259 /* 2260 * The matching socket disappeared out from under us. Fall back 2261 * to a serialized lookup. 2262 */ 2263 return (INP_LOOKUP_AGAIN); 2264 } 2265 return (NULL); 2266 } 2267 2268 static struct inpcb * 2269 in_pcblookup_hash_wild_locked(struct inpcbinfo *pcbinfo, struct in_addr laddr, 2270 u_short lport, int fib) 2271 { 2272 struct inpcbhead *head; 2273 struct inpcb *inp, *local_wild, *local_exact, *jail_wild; 2274 #ifdef INET6 2275 struct inpcb *local_wild_mapped; 2276 #endif 2277 2278 INP_HASH_LOCK_ASSERT(pcbinfo); 2279 2280 /* 2281 * Order of socket selection - we always prefer jails. 2282 * 1. jailed, non-wild. 2283 * 2. jailed, wild. 2284 * 3. non-jailed, non-wild. 2285 * 4. non-jailed, wild. 2286 */ 2287 head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport, 2288 pcbinfo->ipi_hashmask)]; 2289 local_wild = local_exact = jail_wild = NULL; 2290 #ifdef INET6 2291 local_wild_mapped = NULL; 2292 #endif 2293 CK_LIST_FOREACH(inp, head, inp_hash_wild) { 2294 inp_lookup_match_t match; 2295 bool injail; 2296 2297 match = in_pcblookup_wild_match(inp, laddr, lport, fib); 2298 if (match == INPLOOKUP_MATCH_NONE) 2299 continue; 2300 2301 injail = prison_flag(inp->inp_cred, PR_IP4) != 0; 2302 if (injail) { 2303 if (prison_check_ip4_locked(inp->inp_cred->cr_prison, 2304 &laddr) != 0) 2305 continue; 2306 } else { 2307 if (local_exact != NULL) 2308 continue; 2309 } 2310 2311 if (match == INPLOOKUP_MATCH_LADDR) { 2312 if (injail) 2313 return (inp); 2314 local_exact = inp; 2315 } else { 2316 #ifdef INET6 2317 /* XXX inp locking, NULL check */ 2318 if (inp->inp_vflag & INP_IPV6PROTO) 2319 local_wild_mapped = inp; 2320 else 2321 #endif 2322 if (injail) 2323 jail_wild = inp; 2324 else 2325 local_wild = inp; 2326 } 2327 } 2328 if (jail_wild != NULL) 2329 return (jail_wild); 2330 if (local_exact != NULL) 2331 return (local_exact); 2332 if (local_wild != NULL) 2333 return (local_wild); 2334 #ifdef INET6 2335 if (local_wild_mapped != NULL) 2336 return (local_wild_mapped); 2337 #endif 2338 return (NULL); 2339 } 2340 2341 /* 2342 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2343 * that the caller has either locked the hash list, which usually happens 2344 * for bind(2) operations, or is in SMR section, which happens when sorting 2345 * out incoming packets. 2346 */ 2347 static struct inpcb * 2348 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2349 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2350 uint8_t numa_domain, int fib) 2351 { 2352 struct inpcb *inp; 2353 const u_short fport = fport_arg, lport = lport_arg; 2354 2355 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD | INPLOOKUP_FIB)) == 0, 2356 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2357 KASSERT(faddr.s_addr != INADDR_ANY, 2358 ("%s: invalid foreign address", __func__)); 2359 KASSERT(laddr.s_addr != INADDR_ANY, 2360 ("%s: invalid local address", __func__)); 2361 INP_HASH_WLOCK_ASSERT(pcbinfo); 2362 2363 inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport); 2364 if (inp != NULL) 2365 return (inp); 2366 2367 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2368 inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport, 2369 &laddr, lport, numa_domain, fib); 2370 if (inp == NULL) { 2371 inp = in_pcblookup_hash_wild_locked(pcbinfo, laddr, 2372 lport, fib); 2373 } 2374 } 2375 2376 return (inp); 2377 } 2378 2379 static struct inpcb * 2380 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2381 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2382 uint8_t numa_domain, int fib) 2383 { 2384 struct inpcb *inp; 2385 const inp_lookup_t lockflags = lookupflags & INPLOOKUP_LOCKMASK; 2386 2387 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2388 ("%s: LOCKPCB not set", __func__)); 2389 2390 INP_HASH_WLOCK(pcbinfo); 2391 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2392 lookupflags & ~INPLOOKUP_LOCKMASK, numa_domain, fib); 2393 if (inp != NULL && !inp_trylock(inp, lockflags)) { 2394 in_pcbref(inp); 2395 INP_HASH_WUNLOCK(pcbinfo); 2396 inp_lock(inp, lockflags); 2397 if (in_pcbrele(inp, lockflags)) 2398 /* XXX-MJ or retry until we get a negative match? */ 2399 inp = NULL; 2400 } else { 2401 INP_HASH_WUNLOCK(pcbinfo); 2402 } 2403 return (inp); 2404 } 2405 2406 static struct inpcb * 2407 in_pcblookup_hash_smr(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2408 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2409 uint8_t numa_domain, int fib) 2410 { 2411 struct inpcb *inp; 2412 const inp_lookup_t lockflags = lookupflags & INPLOOKUP_LOCKMASK; 2413 const u_short fport = fport_arg, lport = lport_arg; 2414 2415 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2416 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2417 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2418 ("%s: LOCKPCB not set", __func__)); 2419 2420 smr_enter(pcbinfo->ipi_smr); 2421 inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport); 2422 if (inp != NULL) { 2423 if (__predict_true(inp_smr_lock(inp, lockflags))) { 2424 /* 2425 * Revalidate the 4-tuple, the socket could have been 2426 * disconnected. 2427 */ 2428 if (__predict_true(in_pcblookup_exact_match(inp, 2429 faddr, fport, laddr, lport))) 2430 return (inp); 2431 inp_unlock(inp, lockflags); 2432 } 2433 2434 /* 2435 * We failed to lock the inpcb, or its connection state changed 2436 * out from under us. Fall back to a precise search. 2437 */ 2438 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2439 lookupflags, numa_domain, fib)); 2440 } 2441 2442 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2443 inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport, 2444 &laddr, lport, numa_domain, fib); 2445 if (inp != NULL) { 2446 if (__predict_true(inp_smr_lock(inp, lockflags))) { 2447 if (__predict_true(in_pcblookup_wild_match(inp, 2448 laddr, lport, fib) != INPLOOKUP_MATCH_NONE)) 2449 return (inp); 2450 inp_unlock(inp, lockflags); 2451 } 2452 inp = INP_LOOKUP_AGAIN; 2453 } else { 2454 inp = in_pcblookup_hash_wild_smr(pcbinfo, laddr, lport, 2455 fib, lockflags); 2456 } 2457 if (inp == INP_LOOKUP_AGAIN) { 2458 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, 2459 lport, lookupflags, numa_domain, fib)); 2460 } 2461 } 2462 2463 if (inp == NULL) 2464 smr_exit(pcbinfo->ipi_smr); 2465 2466 return (inp); 2467 } 2468 2469 /* 2470 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2471 * from which a pre-calculated hash value may be extracted. 2472 */ 2473 struct inpcb * 2474 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2475 struct in_addr laddr, u_int lport, int lookupflags, 2476 struct ifnet *ifp) 2477 { 2478 int fib; 2479 2480 fib = (lookupflags & INPLOOKUP_FIB) ? if_getfib(ifp) : RT_ALL_FIBS; 2481 return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport, 2482 lookupflags, M_NODOM, fib)); 2483 } 2484 2485 struct inpcb * 2486 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2487 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2488 struct ifnet *ifp __unused, struct mbuf *m) 2489 { 2490 int fib; 2491 2492 M_ASSERTPKTHDR(m); 2493 fib = (lookupflags & INPLOOKUP_FIB) ? M_GETFIB(m) : RT_ALL_FIBS; 2494 return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport, 2495 lookupflags, m->m_pkthdr.numa_domain, fib)); 2496 } 2497 #endif /* INET */ 2498 2499 static bool 2500 in_pcbjailed(const struct inpcb *inp, unsigned int flag) 2501 { 2502 return (prison_flag(inp->inp_cred, flag) != 0); 2503 } 2504 2505 /* 2506 * Insert the PCB into a hash chain using ordering rules which ensure that 2507 * in_pcblookup_hash_wild_*() always encounter the highest-ranking PCB first. 2508 * 2509 * Specifically, keep jailed PCBs in front of non-jailed PCBs, and keep PCBs 2510 * with exact local addresses ahead of wildcard PCBs. Unbound v4-mapped v6 PCBs 2511 * always appear last no matter whether they are jailed. 2512 */ 2513 static void 2514 _in_pcbinshash_wild(struct inpcbhead *pcbhash, struct inpcb *inp) 2515 { 2516 struct inpcb *last; 2517 bool bound, injail; 2518 2519 INP_LOCK_ASSERT(inp); 2520 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 2521 2522 last = NULL; 2523 bound = inp->inp_laddr.s_addr != INADDR_ANY; 2524 if (!bound && (inp->inp_vflag & INP_IPV6PROTO) != 0) { 2525 CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) { 2526 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) { 2527 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild); 2528 return; 2529 } 2530 } 2531 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild); 2532 return; 2533 } 2534 2535 injail = in_pcbjailed(inp, PR_IP4); 2536 if (!injail) { 2537 CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) { 2538 if (!in_pcbjailed(last, PR_IP4)) 2539 break; 2540 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) { 2541 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild); 2542 return; 2543 } 2544 } 2545 } else if (!CK_LIST_EMPTY(pcbhash) && 2546 !in_pcbjailed(CK_LIST_FIRST(pcbhash), PR_IP4)) { 2547 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild); 2548 return; 2549 } 2550 if (!bound) { 2551 CK_LIST_FOREACH_FROM(last, pcbhash, inp_hash_wild) { 2552 if (last->inp_laddr.s_addr == INADDR_ANY) 2553 break; 2554 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) { 2555 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild); 2556 return; 2557 } 2558 } 2559 } 2560 if (last == NULL) 2561 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild); 2562 else 2563 CK_LIST_INSERT_BEFORE(last, inp, inp_hash_wild); 2564 } 2565 2566 #ifdef INET6 2567 /* 2568 * See the comment above _in_pcbinshash_wild(). 2569 */ 2570 static void 2571 _in6_pcbinshash_wild(struct inpcbhead *pcbhash, struct inpcb *inp) 2572 { 2573 struct inpcb *last; 2574 bool bound, injail; 2575 2576 INP_LOCK_ASSERT(inp); 2577 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 2578 2579 last = NULL; 2580 bound = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr); 2581 injail = in_pcbjailed(inp, PR_IP6); 2582 if (!injail) { 2583 CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) { 2584 if (!in_pcbjailed(last, PR_IP6)) 2585 break; 2586 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) { 2587 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild); 2588 return; 2589 } 2590 } 2591 } else if (!CK_LIST_EMPTY(pcbhash) && 2592 !in_pcbjailed(CK_LIST_FIRST(pcbhash), PR_IP6)) { 2593 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild); 2594 return; 2595 } 2596 if (!bound) { 2597 CK_LIST_FOREACH_FROM(last, pcbhash, inp_hash_wild) { 2598 if (IN6_IS_ADDR_UNSPECIFIED(&last->in6p_laddr)) 2599 break; 2600 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) { 2601 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild); 2602 return; 2603 } 2604 } 2605 } 2606 if (last == NULL) 2607 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild); 2608 else 2609 CK_LIST_INSERT_BEFORE(last, inp, inp_hash_wild); 2610 } 2611 #endif 2612 2613 /* 2614 * Insert PCB onto various hash lists. 2615 * 2616 * With normal sockets this function shall not fail, so it could return void. 2617 * But for SO_REUSEPORT_LB it may need to allocate memory with locks held, 2618 * that's the only condition when it can fail. 2619 */ 2620 int 2621 in_pcbinshash(struct inpcb *inp) 2622 { 2623 struct inpcbhead *pcbhash, *pcbporthash; 2624 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2625 uint32_t hash; 2626 bool connected; 2627 2628 INP_WLOCK_ASSERT(inp); 2629 INP_HASH_WLOCK_ASSERT(pcbinfo); 2630 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2631 ("in_pcbinshash: INP_INHASHLIST")); 2632 2633 #ifdef INET6 2634 if (inp->inp_vflag & INP_IPV6) { 2635 hash = INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport, 2636 inp->inp_fport, pcbinfo->ipi_hashmask); 2637 connected = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr); 2638 } else 2639 #endif 2640 { 2641 hash = INP_PCBHASH(&inp->inp_faddr, inp->inp_lport, 2642 inp->inp_fport, pcbinfo->ipi_hashmask); 2643 connected = !in_nullhost(inp->inp_faddr); 2644 } 2645 2646 if (connected) 2647 pcbhash = &pcbinfo->ipi_hash_exact[hash]; 2648 else 2649 pcbhash = &pcbinfo->ipi_hash_wild[hash]; 2650 2651 pcbporthash = &pcbinfo->ipi_porthashbase[ 2652 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2653 2654 /* 2655 * Add entry to load balance group. 2656 * Only do this if SO_REUSEPORT_LB is set. 2657 */ 2658 if ((inp->inp_socket->so_options & SO_REUSEPORT_LB) != 0) { 2659 int error = in_pcbinslbgrouphash(inp, M_NODOM); 2660 if (error != 0) 2661 return (error); 2662 } 2663 2664 /* 2665 * The PCB may have been disconnected in the past. Before we can safely 2666 * make it visible in the hash table, we must wait for all readers which 2667 * may be traversing this PCB to finish. 2668 */ 2669 if (inp->inp_smr != SMR_SEQ_INVALID) { 2670 smr_wait(pcbinfo->ipi_smr, inp->inp_smr); 2671 inp->inp_smr = SMR_SEQ_INVALID; 2672 } 2673 2674 if (connected) 2675 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_exact); 2676 else { 2677 #ifdef INET6 2678 if ((inp->inp_vflag & INP_IPV6) != 0) 2679 _in6_pcbinshash_wild(pcbhash, inp); 2680 else 2681 #endif 2682 _in_pcbinshash_wild(pcbhash, inp); 2683 } 2684 CK_LIST_INSERT_HEAD(pcbporthash, inp, inp_portlist); 2685 inp->inp_flags |= INP_INHASHLIST; 2686 2687 return (0); 2688 } 2689 2690 void 2691 in_pcbremhash_locked(struct inpcb *inp) 2692 { 2693 2694 INP_WLOCK_ASSERT(inp); 2695 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 2696 MPASS(inp->inp_flags & INP_INHASHLIST); 2697 2698 if ((inp->inp_flags & INP_INLBGROUP) != 0) 2699 in_pcbremlbgrouphash(inp); 2700 #ifdef INET6 2701 if (inp->inp_vflag & INP_IPV6) { 2702 if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) 2703 CK_LIST_REMOVE(inp, inp_hash_wild); 2704 else 2705 CK_LIST_REMOVE(inp, inp_hash_exact); 2706 } else 2707 #endif 2708 { 2709 if (in_nullhost(inp->inp_faddr)) 2710 CK_LIST_REMOVE(inp, inp_hash_wild); 2711 else 2712 CK_LIST_REMOVE(inp, inp_hash_exact); 2713 } 2714 CK_LIST_REMOVE(inp, inp_portlist); 2715 inp->inp_flags &= ~INP_INHASHLIST; 2716 } 2717 2718 static void 2719 in_pcbremhash(struct inpcb *inp) 2720 { 2721 INP_HASH_WLOCK(inp->inp_pcbinfo); 2722 in_pcbremhash_locked(inp); 2723 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 2724 } 2725 2726 /* 2727 * Move PCB to the proper hash bucket when { faddr, fport } have been 2728 * changed. NOTE: This does not handle the case of the lport changing (the 2729 * hashed port list would have to be updated as well), so the lport must 2730 * not change after in_pcbinshash() has been called. 2731 */ 2732 void 2733 in_pcbrehash(struct inpcb *inp) 2734 { 2735 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2736 struct inpcbhead *head; 2737 uint32_t hash; 2738 bool connected; 2739 2740 INP_WLOCK_ASSERT(inp); 2741 INP_HASH_WLOCK_ASSERT(pcbinfo); 2742 KASSERT(inp->inp_flags & INP_INHASHLIST, 2743 ("%s: !INP_INHASHLIST", __func__)); 2744 KASSERT(inp->inp_smr == SMR_SEQ_INVALID, 2745 ("%s: inp was disconnected", __func__)); 2746 2747 #ifdef INET6 2748 if (inp->inp_vflag & INP_IPV6) { 2749 hash = INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport, 2750 inp->inp_fport, pcbinfo->ipi_hashmask); 2751 connected = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr); 2752 } else 2753 #endif 2754 { 2755 hash = INP_PCBHASH(&inp->inp_faddr, inp->inp_lport, 2756 inp->inp_fport, pcbinfo->ipi_hashmask); 2757 connected = !in_nullhost(inp->inp_faddr); 2758 } 2759 2760 /* 2761 * When rehashing, the caller must ensure that either the new or the old 2762 * foreign address was unspecified. 2763 */ 2764 if (connected) 2765 CK_LIST_REMOVE(inp, inp_hash_wild); 2766 else 2767 CK_LIST_REMOVE(inp, inp_hash_exact); 2768 2769 if (connected) { 2770 head = &pcbinfo->ipi_hash_exact[hash]; 2771 CK_LIST_INSERT_HEAD(head, inp, inp_hash_exact); 2772 } else { 2773 head = &pcbinfo->ipi_hash_wild[hash]; 2774 CK_LIST_INSERT_HEAD(head, inp, inp_hash_wild); 2775 } 2776 } 2777 2778 /* 2779 * Check for alternatives when higher level complains 2780 * about service problems. For now, invalidate cached 2781 * routing information. If the route was created dynamically 2782 * (by a redirect), time to try a default gateway again. 2783 */ 2784 void 2785 in_losing(struct inpcb *inp) 2786 { 2787 2788 RO_INVALIDATE_CACHE(&inp->inp_route); 2789 return; 2790 } 2791 2792 /* 2793 * A set label operation has occurred at the socket layer, propagate the 2794 * label change into the in_pcb for the socket. 2795 */ 2796 void 2797 in_pcbsosetlabel(struct socket *so) 2798 { 2799 #ifdef MAC 2800 struct inpcb *inp; 2801 2802 inp = sotoinpcb(so); 2803 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2804 2805 INP_WLOCK(inp); 2806 SOCK_LOCK(so); 2807 mac_inpcb_sosetlabel(so, inp); 2808 SOCK_UNLOCK(so); 2809 INP_WUNLOCK(inp); 2810 #endif 2811 } 2812 2813 void 2814 inp_wlock(struct inpcb *inp) 2815 { 2816 2817 INP_WLOCK(inp); 2818 } 2819 2820 void 2821 inp_wunlock(struct inpcb *inp) 2822 { 2823 2824 INP_WUNLOCK(inp); 2825 } 2826 2827 void 2828 inp_rlock(struct inpcb *inp) 2829 { 2830 2831 INP_RLOCK(inp); 2832 } 2833 2834 void 2835 inp_runlock(struct inpcb *inp) 2836 { 2837 2838 INP_RUNLOCK(inp); 2839 } 2840 2841 #ifdef INVARIANT_SUPPORT 2842 void 2843 inp_lock_assert(struct inpcb *inp) 2844 { 2845 2846 INP_WLOCK_ASSERT(inp); 2847 } 2848 2849 void 2850 inp_unlock_assert(struct inpcb *inp) 2851 { 2852 2853 INP_UNLOCK_ASSERT(inp); 2854 } 2855 #endif 2856 2857 void 2858 inp_apply_all(struct inpcbinfo *pcbinfo, 2859 void (*func)(struct inpcb *, void *), void *arg) 2860 { 2861 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, 2862 INPLOOKUP_WLOCKPCB); 2863 struct inpcb *inp; 2864 2865 while ((inp = inp_next(&inpi)) != NULL) 2866 func(inp, arg); 2867 } 2868 2869 struct socket * 2870 inp_inpcbtosocket(struct inpcb *inp) 2871 { 2872 2873 INP_WLOCK_ASSERT(inp); 2874 return (inp->inp_socket); 2875 } 2876 2877 void 2878 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2879 uint32_t *faddr, uint16_t *fp) 2880 { 2881 2882 INP_LOCK_ASSERT(inp); 2883 *laddr = inp->inp_laddr.s_addr; 2884 *faddr = inp->inp_faddr.s_addr; 2885 *lp = inp->inp_lport; 2886 *fp = inp->inp_fport; 2887 } 2888 2889 /* 2890 * Create an external-format (``xinpcb'') structure using the information in 2891 * the kernel-format in_pcb structure pointed to by inp. This is done to 2892 * reduce the spew of irrelevant information over this interface, to isolate 2893 * user code from changes in the kernel structure, and potentially to provide 2894 * information-hiding if we decide that some of this information should be 2895 * hidden from users. 2896 */ 2897 void 2898 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2899 { 2900 2901 bzero(xi, sizeof(*xi)); 2902 xi->xi_len = sizeof(struct xinpcb); 2903 if (inp->inp_socket) 2904 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2905 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2906 xi->inp_gencnt = inp->inp_gencnt; 2907 xi->inp_flow = inp->inp_flow; 2908 xi->inp_flowid = inp->inp_flowid; 2909 xi->inp_flowtype = inp->inp_flowtype; 2910 xi->inp_flags = inp->inp_flags; 2911 xi->inp_flags2 = inp->inp_flags2; 2912 xi->in6p_cksum = inp->in6p_cksum; 2913 xi->in6p_hops = inp->in6p_hops; 2914 xi->inp_ip_tos = inp->inp_ip_tos; 2915 xi->inp_vflag = inp->inp_vflag; 2916 xi->inp_ip_ttl = inp->inp_ip_ttl; 2917 xi->inp_ip_p = inp->inp_ip_p; 2918 xi->inp_ip_minttl = inp->inp_ip_minttl; 2919 } 2920 2921 int 2922 sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo, 2923 int (*ctloutput_set)(struct inpcb *, struct sockopt *)) 2924 { 2925 struct sockopt sopt; 2926 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, 2927 INPLOOKUP_WLOCKPCB); 2928 struct inpcb *inp; 2929 struct sockopt_parameters *params; 2930 struct socket *so; 2931 int error; 2932 char buf[1024]; 2933 2934 if (req->oldptr != NULL || req->oldlen != 0) 2935 return (EINVAL); 2936 if (req->newptr == NULL) 2937 return (EPERM); 2938 if (req->newlen > sizeof(buf)) 2939 return (ENOMEM); 2940 error = SYSCTL_IN(req, buf, req->newlen); 2941 if (error != 0) 2942 return (error); 2943 if (req->newlen < sizeof(struct sockopt_parameters)) 2944 return (EINVAL); 2945 params = (struct sockopt_parameters *)buf; 2946 sopt.sopt_level = params->sop_level; 2947 sopt.sopt_name = params->sop_optname; 2948 sopt.sopt_dir = SOPT_SET; 2949 sopt.sopt_val = params->sop_optval; 2950 sopt.sopt_valsize = req->newlen - sizeof(struct sockopt_parameters); 2951 sopt.sopt_td = NULL; 2952 #ifdef INET6 2953 if (params->sop_inc.inc_flags & INC_ISIPV6) { 2954 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_laddr)) 2955 params->sop_inc.inc6_laddr.s6_addr16[1] = 2956 htons(params->sop_inc.inc6_zoneid & 0xffff); 2957 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_faddr)) 2958 params->sop_inc.inc6_faddr.s6_addr16[1] = 2959 htons(params->sop_inc.inc6_zoneid & 0xffff); 2960 } 2961 #endif 2962 if (params->sop_inc.inc_lport != htons(0) && 2963 params->sop_inc.inc_fport != htons(0)) { 2964 #ifdef INET6 2965 if (params->sop_inc.inc_flags & INC_ISIPV6) 2966 inpi.hash = INP6_PCBHASH( 2967 ¶ms->sop_inc.inc6_faddr, 2968 params->sop_inc.inc_lport, 2969 params->sop_inc.inc_fport, 2970 pcbinfo->ipi_hashmask); 2971 else 2972 #endif 2973 inpi.hash = INP_PCBHASH( 2974 ¶ms->sop_inc.inc_faddr, 2975 params->sop_inc.inc_lport, 2976 params->sop_inc.inc_fport, 2977 pcbinfo->ipi_hashmask); 2978 } 2979 while ((inp = inp_next(&inpi)) != NULL) 2980 if (inp->inp_gencnt == params->sop_id) { 2981 if (inp->inp_flags & INP_DROPPED) { 2982 INP_WUNLOCK(inp); 2983 return (ECONNRESET); 2984 } 2985 so = inp->inp_socket; 2986 KASSERT(so != NULL, ("inp_socket == NULL")); 2987 soref(so); 2988 if (params->sop_level == SOL_SOCKET) { 2989 INP_WUNLOCK(inp); 2990 error = sosetopt(so, &sopt); 2991 } else 2992 error = (*ctloutput_set)(inp, &sopt); 2993 sorele(so); 2994 break; 2995 } 2996 if (inp == NULL) 2997 error = ESRCH; 2998 return (error); 2999 } 3000 3001 #ifdef DDB 3002 static void 3003 db_print_indent(int indent) 3004 { 3005 int i; 3006 3007 for (i = 0; i < indent; i++) 3008 db_printf(" "); 3009 } 3010 3011 static void 3012 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 3013 { 3014 char faddr_str[48], laddr_str[48]; 3015 3016 db_print_indent(indent); 3017 db_printf("%s at %p\n", name, inc); 3018 3019 indent += 2; 3020 3021 #ifdef INET6 3022 if (inc->inc_flags & INC_ISIPV6) { 3023 /* IPv6. */ 3024 ip6_sprintf(laddr_str, &inc->inc6_laddr); 3025 ip6_sprintf(faddr_str, &inc->inc6_faddr); 3026 } else 3027 #endif 3028 { 3029 /* IPv4. */ 3030 inet_ntoa_r(inc->inc_laddr, laddr_str); 3031 inet_ntoa_r(inc->inc_faddr, faddr_str); 3032 } 3033 db_print_indent(indent); 3034 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 3035 ntohs(inc->inc_lport)); 3036 db_print_indent(indent); 3037 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 3038 ntohs(inc->inc_fport)); 3039 } 3040 3041 static void 3042 db_print_inpflags(int inp_flags) 3043 { 3044 int comma; 3045 3046 comma = 0; 3047 if (inp_flags & INP_RECVOPTS) { 3048 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 3049 comma = 1; 3050 } 3051 if (inp_flags & INP_RECVRETOPTS) { 3052 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 3053 comma = 1; 3054 } 3055 if (inp_flags & INP_RECVDSTADDR) { 3056 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 3057 comma = 1; 3058 } 3059 if (inp_flags & INP_ORIGDSTADDR) { 3060 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 3061 comma = 1; 3062 } 3063 if (inp_flags & INP_HDRINCL) { 3064 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 3065 comma = 1; 3066 } 3067 if (inp_flags & INP_HIGHPORT) { 3068 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 3069 comma = 1; 3070 } 3071 if (inp_flags & INP_LOWPORT) { 3072 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 3073 comma = 1; 3074 } 3075 if (inp_flags & INP_ANONPORT) { 3076 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 3077 comma = 1; 3078 } 3079 if (inp_flags & INP_RECVIF) { 3080 db_printf("%sINP_RECVIF", comma ? ", " : ""); 3081 comma = 1; 3082 } 3083 if (inp_flags & INP_MTUDISC) { 3084 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 3085 comma = 1; 3086 } 3087 if (inp_flags & INP_RECVTTL) { 3088 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 3089 comma = 1; 3090 } 3091 if (inp_flags & INP_DONTFRAG) { 3092 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 3093 comma = 1; 3094 } 3095 if (inp_flags & INP_RECVTOS) { 3096 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 3097 comma = 1; 3098 } 3099 if (inp_flags & IN6P_IPV6_V6ONLY) { 3100 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 3101 comma = 1; 3102 } 3103 if (inp_flags & IN6P_PKTINFO) { 3104 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 3105 comma = 1; 3106 } 3107 if (inp_flags & IN6P_HOPLIMIT) { 3108 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 3109 comma = 1; 3110 } 3111 if (inp_flags & IN6P_HOPOPTS) { 3112 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 3113 comma = 1; 3114 } 3115 if (inp_flags & IN6P_DSTOPTS) { 3116 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 3117 comma = 1; 3118 } 3119 if (inp_flags & IN6P_RTHDR) { 3120 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 3121 comma = 1; 3122 } 3123 if (inp_flags & IN6P_RTHDRDSTOPTS) { 3124 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 3125 comma = 1; 3126 } 3127 if (inp_flags & IN6P_TCLASS) { 3128 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 3129 comma = 1; 3130 } 3131 if (inp_flags & IN6P_AUTOFLOWLABEL) { 3132 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 3133 comma = 1; 3134 } 3135 if (inp_flags & INP_ONESBCAST) { 3136 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 3137 comma = 1; 3138 } 3139 if (inp_flags & INP_DROPPED) { 3140 db_printf("%sINP_DROPPED", comma ? ", " : ""); 3141 comma = 1; 3142 } 3143 if (inp_flags & INP_SOCKREF) { 3144 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 3145 comma = 1; 3146 } 3147 if (inp_flags & IN6P_RFC2292) { 3148 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 3149 comma = 1; 3150 } 3151 if (inp_flags & IN6P_MTU) { 3152 db_printf("IN6P_MTU%s", comma ? ", " : ""); 3153 comma = 1; 3154 } 3155 } 3156 3157 static void 3158 db_print_inpvflag(u_char inp_vflag) 3159 { 3160 int comma; 3161 3162 comma = 0; 3163 if (inp_vflag & INP_IPV4) { 3164 db_printf("%sINP_IPV4", comma ? ", " : ""); 3165 comma = 1; 3166 } 3167 if (inp_vflag & INP_IPV6) { 3168 db_printf("%sINP_IPV6", comma ? ", " : ""); 3169 comma = 1; 3170 } 3171 if (inp_vflag & INP_IPV6PROTO) { 3172 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 3173 comma = 1; 3174 } 3175 } 3176 3177 static void 3178 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 3179 { 3180 3181 db_print_indent(indent); 3182 db_printf("%s at %p\n", name, inp); 3183 3184 indent += 2; 3185 3186 db_print_indent(indent); 3187 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 3188 3189 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 3190 3191 db_print_indent(indent); 3192 db_printf("inp_label: %p inp_flags: 0x%x (", 3193 inp->inp_label, inp->inp_flags); 3194 db_print_inpflags(inp->inp_flags); 3195 db_printf(")\n"); 3196 3197 db_print_indent(indent); 3198 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 3199 inp->inp_vflag); 3200 db_print_inpvflag(inp->inp_vflag); 3201 db_printf(")\n"); 3202 3203 db_print_indent(indent); 3204 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 3205 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 3206 3207 db_print_indent(indent); 3208 #ifdef INET6 3209 if (inp->inp_vflag & INP_IPV6) { 3210 db_printf("in6p_options: %p in6p_outputopts: %p " 3211 "in6p_moptions: %p\n", inp->in6p_options, 3212 inp->in6p_outputopts, inp->in6p_moptions); 3213 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 3214 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 3215 inp->in6p_hops); 3216 } else 3217 #endif 3218 { 3219 db_printf("inp_ip_tos: %d inp_ip_options: %p " 3220 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 3221 inp->inp_options, inp->inp_moptions); 3222 } 3223 3224 db_print_indent(indent); 3225 db_printf("inp_gencnt: %ju\n", (uintmax_t)inp->inp_gencnt); 3226 } 3227 3228 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 3229 { 3230 struct inpcb *inp; 3231 3232 if (!have_addr) { 3233 db_printf("usage: show inpcb <addr>\n"); 3234 return; 3235 } 3236 inp = (struct inpcb *)addr; 3237 3238 db_print_inpcb(inp, "inpcb", 0); 3239 } 3240 #endif /* DDB */ 3241 3242 #ifdef RATELIMIT 3243 /* 3244 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 3245 * if any. 3246 */ 3247 int 3248 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 3249 { 3250 union if_snd_tag_modify_params params = { 3251 .rate_limit.max_rate = max_pacing_rate, 3252 .rate_limit.flags = M_NOWAIT, 3253 }; 3254 struct m_snd_tag *mst; 3255 int error; 3256 3257 mst = inp->inp_snd_tag; 3258 if (mst == NULL) 3259 return (EINVAL); 3260 3261 if (mst->sw->snd_tag_modify == NULL) { 3262 error = EOPNOTSUPP; 3263 } else { 3264 error = mst->sw->snd_tag_modify(mst, ¶ms); 3265 } 3266 return (error); 3267 } 3268 3269 /* 3270 * Query existing TX rate limit based on the existing 3271 * "inp->inp_snd_tag", if any. 3272 */ 3273 int 3274 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3275 { 3276 union if_snd_tag_query_params params = { }; 3277 struct m_snd_tag *mst; 3278 int error; 3279 3280 mst = inp->inp_snd_tag; 3281 if (mst == NULL) 3282 return (EINVAL); 3283 3284 if (mst->sw->snd_tag_query == NULL) { 3285 error = EOPNOTSUPP; 3286 } else { 3287 error = mst->sw->snd_tag_query(mst, ¶ms); 3288 if (error == 0 && p_max_pacing_rate != NULL) 3289 *p_max_pacing_rate = params.rate_limit.max_rate; 3290 } 3291 return (error); 3292 } 3293 3294 /* 3295 * Query existing TX queue level based on the existing 3296 * "inp->inp_snd_tag", if any. 3297 */ 3298 int 3299 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3300 { 3301 union if_snd_tag_query_params params = { }; 3302 struct m_snd_tag *mst; 3303 int error; 3304 3305 mst = inp->inp_snd_tag; 3306 if (mst == NULL) 3307 return (EINVAL); 3308 3309 if (mst->sw->snd_tag_query == NULL) 3310 return (EOPNOTSUPP); 3311 3312 error = mst->sw->snd_tag_query(mst, ¶ms); 3313 if (error == 0 && p_txqueue_level != NULL) 3314 *p_txqueue_level = params.rate_limit.queue_level; 3315 return (error); 3316 } 3317 3318 /* 3319 * Allocate a new TX rate limit send tag from the network interface 3320 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3321 */ 3322 int 3323 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3324 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st) 3325 3326 { 3327 union if_snd_tag_alloc_params params = { 3328 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3329 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3330 .rate_limit.hdr.flowid = flowid, 3331 .rate_limit.hdr.flowtype = flowtype, 3332 .rate_limit.hdr.numa_domain = inp->inp_numa_domain, 3333 .rate_limit.max_rate = max_pacing_rate, 3334 .rate_limit.flags = M_NOWAIT, 3335 }; 3336 int error; 3337 3338 INP_WLOCK_ASSERT(inp); 3339 3340 /* 3341 * If there is already a send tag, or the INP is being torn 3342 * down, allocating a new send tag is not allowed. Else send 3343 * tags may leak. 3344 */ 3345 if (*st != NULL || (inp->inp_flags & INP_DROPPED) != 0) 3346 return (EINVAL); 3347 3348 error = m_snd_tag_alloc(ifp, ¶ms, st); 3349 #ifdef INET 3350 if (error == 0) { 3351 counter_u64_add(rate_limit_set_ok, 1); 3352 counter_u64_add(rate_limit_active, 1); 3353 } else if (error != EOPNOTSUPP) 3354 counter_u64_add(rate_limit_alloc_fail, 1); 3355 #endif 3356 return (error); 3357 } 3358 3359 void 3360 in_pcbdetach_tag(struct m_snd_tag *mst) 3361 { 3362 3363 m_snd_tag_rele(mst); 3364 #ifdef INET 3365 counter_u64_add(rate_limit_active, -1); 3366 #endif 3367 } 3368 3369 /* 3370 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3371 * if any: 3372 */ 3373 void 3374 in_pcbdetach_txrtlmt(struct inpcb *inp) 3375 { 3376 struct m_snd_tag *mst; 3377 3378 INP_WLOCK_ASSERT(inp); 3379 3380 mst = inp->inp_snd_tag; 3381 inp->inp_snd_tag = NULL; 3382 3383 if (mst == NULL) 3384 return; 3385 3386 m_snd_tag_rele(mst); 3387 #ifdef INET 3388 counter_u64_add(rate_limit_active, -1); 3389 #endif 3390 } 3391 3392 int 3393 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate) 3394 { 3395 int error; 3396 3397 /* 3398 * If the existing send tag is for the wrong interface due to 3399 * a route change, first drop the existing tag. Set the 3400 * CHANGED flag so that we will keep trying to allocate a new 3401 * tag if we fail to allocate one this time. 3402 */ 3403 if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) { 3404 in_pcbdetach_txrtlmt(inp); 3405 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3406 } 3407 3408 /* 3409 * NOTE: When attaching to a network interface a reference is 3410 * made to ensure the network interface doesn't go away until 3411 * all ratelimit connections are gone. The network interface 3412 * pointers compared below represent valid network interfaces, 3413 * except when comparing towards NULL. 3414 */ 3415 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3416 error = 0; 3417 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3418 if (inp->inp_snd_tag != NULL) 3419 in_pcbdetach_txrtlmt(inp); 3420 error = 0; 3421 } else if (inp->inp_snd_tag == NULL) { 3422 /* 3423 * In order to utilize packet pacing with RSS, we need 3424 * to wait until there is a valid RSS hash before we 3425 * can proceed: 3426 */ 3427 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3428 error = EAGAIN; 3429 } else { 3430 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3431 mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag); 3432 } 3433 } else { 3434 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3435 } 3436 if (error == 0 || error == EOPNOTSUPP) 3437 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3438 3439 return (error); 3440 } 3441 3442 /* 3443 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3444 * is set in the fast path and will attach/detach/modify the TX rate 3445 * limit send tag based on the socket's so_max_pacing_rate value. 3446 */ 3447 void 3448 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3449 { 3450 struct socket *socket; 3451 uint32_t max_pacing_rate; 3452 bool did_upgrade; 3453 3454 if (inp == NULL) 3455 return; 3456 3457 socket = inp->inp_socket; 3458 if (socket == NULL) 3459 return; 3460 3461 if (!INP_WLOCKED(inp)) { 3462 /* 3463 * NOTE: If the write locking fails, we need to bail 3464 * out and use the non-ratelimited ring for the 3465 * transmit until there is a new chance to get the 3466 * write lock. 3467 */ 3468 if (!INP_TRY_UPGRADE(inp)) 3469 return; 3470 did_upgrade = 1; 3471 } else { 3472 did_upgrade = 0; 3473 } 3474 3475 /* 3476 * NOTE: The so_max_pacing_rate value is read unlocked, 3477 * because atomic updates are not required since the variable 3478 * is checked at every mbuf we send. It is assumed that the 3479 * variable read itself will be atomic. 3480 */ 3481 max_pacing_rate = socket->so_max_pacing_rate; 3482 3483 in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate); 3484 3485 if (did_upgrade) 3486 INP_DOWNGRADE(inp); 3487 } 3488 3489 /* 3490 * Track route changes for TX rate limiting. 3491 */ 3492 void 3493 in_pcboutput_eagain(struct inpcb *inp) 3494 { 3495 bool did_upgrade; 3496 3497 if (inp == NULL) 3498 return; 3499 3500 if (inp->inp_snd_tag == NULL) 3501 return; 3502 3503 if (!INP_WLOCKED(inp)) { 3504 /* 3505 * NOTE: If the write locking fails, we need to bail 3506 * out and use the non-ratelimited ring for the 3507 * transmit until there is a new chance to get the 3508 * write lock. 3509 */ 3510 if (!INP_TRY_UPGRADE(inp)) 3511 return; 3512 did_upgrade = 1; 3513 } else { 3514 did_upgrade = 0; 3515 } 3516 3517 /* detach rate limiting */ 3518 in_pcbdetach_txrtlmt(inp); 3519 3520 /* make sure new mbuf send tag allocation is made */ 3521 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3522 3523 if (did_upgrade) 3524 INP_DOWNGRADE(inp); 3525 } 3526 3527 #ifdef INET 3528 static void 3529 rl_init(void *st) 3530 { 3531 rate_limit_new = counter_u64_alloc(M_WAITOK); 3532 rate_limit_chg = counter_u64_alloc(M_WAITOK); 3533 rate_limit_active = counter_u64_alloc(M_WAITOK); 3534 rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK); 3535 rate_limit_set_ok = counter_u64_alloc(M_WAITOK); 3536 } 3537 3538 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL); 3539 #endif 3540 #endif /* RATELIMIT */ 3541