xref: /freebsd/sys/netinet/in_pcb.c (revision 7cd2dcf07629713e5a3d60472cfe4701b705a167)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993, 1995
3  *	The Regents of the University of California.
4  * Copyright (c) 2007-2009 Robert N. M. Watson
5  * Copyright (c) 2010-2011 Juniper Networks, Inc.
6  * All rights reserved.
7  *
8  * Portions of this software were developed by Robert N. M. Watson under
9  * contract to Juniper Networks, Inc.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include "opt_ddb.h"
42 #include "opt_ipsec.h"
43 #include "opt_inet.h"
44 #include "opt_inet6.h"
45 #include "opt_pcbgroup.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #include <sys/callout.h>
52 #include <sys/domain.h>
53 #include <sys/protosw.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/refcount.h>
59 #include <sys/jail.h>
60 #include <sys/kernel.h>
61 #include <sys/sysctl.h>
62 
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
66 
67 #include <vm/uma.h>
68 
69 #include <net/if.h>
70 #include <net/if_types.h>
71 #include <net/route.h>
72 #include <net/vnet.h>
73 
74 #if defined(INET) || defined(INET6)
75 #include <netinet/in.h>
76 #include <netinet/in_pcb.h>
77 #include <netinet/ip_var.h>
78 #include <netinet/tcp_var.h>
79 #include <netinet/udp.h>
80 #include <netinet/udp_var.h>
81 #endif
82 #ifdef INET
83 #include <netinet/in_var.h>
84 #endif
85 #ifdef INET6
86 #include <netinet/ip6.h>
87 #include <netinet6/in6_pcb.h>
88 #include <netinet6/in6_var.h>
89 #include <netinet6/ip6_var.h>
90 #endif /* INET6 */
91 
92 
93 #ifdef IPSEC
94 #include <netipsec/ipsec.h>
95 #include <netipsec/key.h>
96 #endif /* IPSEC */
97 
98 #include <security/mac/mac_framework.h>
99 
100 static struct callout	ipport_tick_callout;
101 
102 /*
103  * These configure the range of local port addresses assigned to
104  * "unspecified" outgoing connections/packets/whatever.
105  */
106 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
107 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
108 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
109 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
110 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
111 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
112 
113 /*
114  * Reserved ports accessible only to root. There are significant
115  * security considerations that must be accounted for when changing these,
116  * but the security benefits can be great. Please be careful.
117  */
118 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
119 VNET_DEFINE(int, ipport_reservedlow);
120 
121 /* Variables dealing with random ephemeral port allocation. */
122 VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
123 VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
124 VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
125 VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
126 VNET_DEFINE(int, ipport_tcpallocs);
127 static VNET_DEFINE(int, ipport_tcplastcount);
128 
129 #define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
130 
131 static void	in_pcbremlists(struct inpcb *inp);
132 #ifdef INET
133 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
134 			    struct in_addr faddr, u_int fport_arg,
135 			    struct in_addr laddr, u_int lport_arg,
136 			    int lookupflags, struct ifnet *ifp);
137 
138 #define RANGECHK(var, min, max) \
139 	if ((var) < (min)) { (var) = (min); } \
140 	else if ((var) > (max)) { (var) = (max); }
141 
142 static int
143 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
144 {
145 	int error;
146 
147 #ifdef VIMAGE
148 	error = vnet_sysctl_handle_int(oidp, arg1, arg2, req);
149 #else
150 	error = sysctl_handle_int(oidp, arg1, arg2, req);
151 #endif
152 	if (error == 0) {
153 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
154 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
155 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
156 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
157 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
158 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
159 	}
160 	return (error);
161 }
162 
163 #undef RANGECHK
164 
165 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
166     "IP Ports");
167 
168 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
169 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowfirstauto), 0,
170 	&sysctl_net_ipport_check, "I", "");
171 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
172 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowlastauto), 0,
173 	&sysctl_net_ipport_check, "I", "");
174 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, first,
175 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_firstauto), 0,
176 	&sysctl_net_ipport_check, "I", "");
177 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, last,
178 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lastauto), 0,
179 	&sysctl_net_ipport_check, "I", "");
180 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
181 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hifirstauto), 0,
182 	&sysctl_net_ipport_check, "I", "");
183 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
184 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hilastauto), 0,
185 	&sysctl_net_ipport_check, "I", "");
186 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
187 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedhigh), 0, "");
188 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
189 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
190 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW,
191 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
192 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW,
193 	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
194 	"allocations before switching to a sequental one");
195 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW,
196 	&VNET_NAME(ipport_randomtime), 0,
197 	"Minimum time to keep sequental port "
198 	"allocation before switching to a random one");
199 #endif /* INET */
200 
201 /*
202  * in_pcb.c: manage the Protocol Control Blocks.
203  *
204  * NOTE: It is assumed that most of these functions will be called with
205  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
206  * functions often modify hash chains or addresses in pcbs.
207  */
208 
209 /*
210  * Initialize an inpcbinfo -- we should be able to reduce the number of
211  * arguments in time.
212  */
213 void
214 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
215     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
216     char *inpcbzone_name, uma_init inpcbzone_init, uma_fini inpcbzone_fini,
217     uint32_t inpcbzone_flags, u_int hashfields)
218 {
219 
220 	INP_INFO_LOCK_INIT(pcbinfo, name);
221 	INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");	/* XXXRW: argument? */
222 #ifdef VIMAGE
223 	pcbinfo->ipi_vnet = curvnet;
224 #endif
225 	pcbinfo->ipi_listhead = listhead;
226 	LIST_INIT(pcbinfo->ipi_listhead);
227 	pcbinfo->ipi_count = 0;
228 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
229 	    &pcbinfo->ipi_hashmask);
230 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
231 	    &pcbinfo->ipi_porthashmask);
232 #ifdef PCBGROUP
233 	in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
234 #endif
235 	pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
236 	    NULL, NULL, inpcbzone_init, inpcbzone_fini, UMA_ALIGN_PTR,
237 	    inpcbzone_flags);
238 	uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
239 }
240 
241 /*
242  * Destroy an inpcbinfo.
243  */
244 void
245 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
246 {
247 
248 	KASSERT(pcbinfo->ipi_count == 0,
249 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
250 
251 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
252 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
253 	    pcbinfo->ipi_porthashmask);
254 #ifdef PCBGROUP
255 	in_pcbgroup_destroy(pcbinfo);
256 #endif
257 	uma_zdestroy(pcbinfo->ipi_zone);
258 	INP_HASH_LOCK_DESTROY(pcbinfo);
259 	INP_INFO_LOCK_DESTROY(pcbinfo);
260 }
261 
262 /*
263  * Allocate a PCB and associate it with the socket.
264  * On success return with the PCB locked.
265  */
266 int
267 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
268 {
269 	struct inpcb *inp;
270 	int error;
271 
272 	INP_INFO_WLOCK_ASSERT(pcbinfo);
273 	error = 0;
274 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
275 	if (inp == NULL)
276 		return (ENOBUFS);
277 	bzero(inp, inp_zero_size);
278 	inp->inp_pcbinfo = pcbinfo;
279 	inp->inp_socket = so;
280 	inp->inp_cred = crhold(so->so_cred);
281 	inp->inp_inc.inc_fibnum = so->so_fibnum;
282 #ifdef MAC
283 	error = mac_inpcb_init(inp, M_NOWAIT);
284 	if (error != 0)
285 		goto out;
286 	mac_inpcb_create(so, inp);
287 #endif
288 #ifdef IPSEC
289 	error = ipsec_init_policy(so, &inp->inp_sp);
290 	if (error != 0) {
291 #ifdef MAC
292 		mac_inpcb_destroy(inp);
293 #endif
294 		goto out;
295 	}
296 #endif /*IPSEC*/
297 #ifdef INET6
298 	if (INP_SOCKAF(so) == AF_INET6) {
299 		inp->inp_vflag |= INP_IPV6PROTO;
300 		if (V_ip6_v6only)
301 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
302 	}
303 #endif
304 	LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
305 	pcbinfo->ipi_count++;
306 	so->so_pcb = (caddr_t)inp;
307 #ifdef INET6
308 	if (V_ip6_auto_flowlabel)
309 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
310 #endif
311 	INP_WLOCK(inp);
312 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
313 	refcount_init(&inp->inp_refcount, 1);	/* Reference from inpcbinfo */
314 #if defined(IPSEC) || defined(MAC)
315 out:
316 	if (error != 0) {
317 		crfree(inp->inp_cred);
318 		uma_zfree(pcbinfo->ipi_zone, inp);
319 	}
320 #endif
321 	return (error);
322 }
323 
324 #ifdef INET
325 int
326 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
327 {
328 	int anonport, error;
329 
330 	INP_WLOCK_ASSERT(inp);
331 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
332 
333 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
334 		return (EINVAL);
335 	anonport = inp->inp_lport == 0 && (nam == NULL ||
336 	    ((struct sockaddr_in *)nam)->sin_port == 0);
337 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
338 	    &inp->inp_lport, cred);
339 	if (error)
340 		return (error);
341 	if (in_pcbinshash(inp) != 0) {
342 		inp->inp_laddr.s_addr = INADDR_ANY;
343 		inp->inp_lport = 0;
344 		return (EAGAIN);
345 	}
346 	if (anonport)
347 		inp->inp_flags |= INP_ANONPORT;
348 	return (0);
349 }
350 #endif
351 
352 #if defined(INET) || defined(INET6)
353 int
354 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
355     struct ucred *cred, int lookupflags)
356 {
357 	struct inpcbinfo *pcbinfo;
358 	struct inpcb *tmpinp;
359 	unsigned short *lastport;
360 	int count, dorandom, error;
361 	u_short aux, first, last, lport;
362 #ifdef INET
363 	struct in_addr laddr;
364 #endif
365 
366 	pcbinfo = inp->inp_pcbinfo;
367 
368 	/*
369 	 * Because no actual state changes occur here, a global write lock on
370 	 * the pcbinfo isn't required.
371 	 */
372 	INP_LOCK_ASSERT(inp);
373 	INP_HASH_LOCK_ASSERT(pcbinfo);
374 
375 	if (inp->inp_flags & INP_HIGHPORT) {
376 		first = V_ipport_hifirstauto;	/* sysctl */
377 		last  = V_ipport_hilastauto;
378 		lastport = &pcbinfo->ipi_lasthi;
379 	} else if (inp->inp_flags & INP_LOWPORT) {
380 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
381 		if (error)
382 			return (error);
383 		first = V_ipport_lowfirstauto;	/* 1023 */
384 		last  = V_ipport_lowlastauto;	/* 600 */
385 		lastport = &pcbinfo->ipi_lastlow;
386 	} else {
387 		first = V_ipport_firstauto;	/* sysctl */
388 		last  = V_ipport_lastauto;
389 		lastport = &pcbinfo->ipi_lastport;
390 	}
391 	/*
392 	 * For UDP, use random port allocation as long as the user
393 	 * allows it.  For TCP (and as of yet unknown) connections,
394 	 * use random port allocation only if the user allows it AND
395 	 * ipport_tick() allows it.
396 	 */
397 	if (V_ipport_randomized &&
398 		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo))
399 		dorandom = 1;
400 	else
401 		dorandom = 0;
402 	/*
403 	 * It makes no sense to do random port allocation if
404 	 * we have the only port available.
405 	 */
406 	if (first == last)
407 		dorandom = 0;
408 	/* Make sure to not include UDP packets in the count. */
409 	if (pcbinfo != &V_udbinfo)
410 		V_ipport_tcpallocs++;
411 	/*
412 	 * Instead of having two loops further down counting up or down
413 	 * make sure that first is always <= last and go with only one
414 	 * code path implementing all logic.
415 	 */
416 	if (first > last) {
417 		aux = first;
418 		first = last;
419 		last = aux;
420 	}
421 
422 #ifdef INET
423 	/* Make the compiler happy. */
424 	laddr.s_addr = 0;
425 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
426 		KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
427 		    __func__, inp));
428 		laddr = *laddrp;
429 	}
430 #endif
431 	tmpinp = NULL;	/* Make compiler happy. */
432 	lport = *lportp;
433 
434 	if (dorandom)
435 		*lastport = first + (arc4random() % (last - first));
436 
437 	count = last - first;
438 
439 	do {
440 		if (count-- < 0)	/* completely used? */
441 			return (EADDRNOTAVAIL);
442 		++*lastport;
443 		if (*lastport < first || *lastport > last)
444 			*lastport = first;
445 		lport = htons(*lastport);
446 
447 #ifdef INET6
448 		if ((inp->inp_vflag & INP_IPV6) != 0)
449 			tmpinp = in6_pcblookup_local(pcbinfo,
450 			    &inp->in6p_laddr, lport, lookupflags, cred);
451 #endif
452 #if defined(INET) && defined(INET6)
453 		else
454 #endif
455 #ifdef INET
456 			tmpinp = in_pcblookup_local(pcbinfo, laddr,
457 			    lport, lookupflags, cred);
458 #endif
459 	} while (tmpinp != NULL);
460 
461 #ifdef INET
462 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
463 		laddrp->s_addr = laddr.s_addr;
464 #endif
465 	*lportp = lport;
466 
467 	return (0);
468 }
469 #endif /* INET || INET6 */
470 
471 #ifdef INET
472 /*
473  * Set up a bind operation on a PCB, performing port allocation
474  * as required, but do not actually modify the PCB. Callers can
475  * either complete the bind by setting inp_laddr/inp_lport and
476  * calling in_pcbinshash(), or they can just use the resulting
477  * port and address to authorise the sending of a once-off packet.
478  *
479  * On error, the values of *laddrp and *lportp are not changed.
480  */
481 int
482 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
483     u_short *lportp, struct ucred *cred)
484 {
485 	struct socket *so = inp->inp_socket;
486 	struct sockaddr_in *sin;
487 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
488 	struct in_addr laddr;
489 	u_short lport = 0;
490 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
491 	int error;
492 
493 	/*
494 	 * No state changes, so read locks are sufficient here.
495 	 */
496 	INP_LOCK_ASSERT(inp);
497 	INP_HASH_LOCK_ASSERT(pcbinfo);
498 
499 	if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
500 		return (EADDRNOTAVAIL);
501 	laddr.s_addr = *laddrp;
502 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
503 		return (EINVAL);
504 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
505 		lookupflags = INPLOOKUP_WILDCARD;
506 	if (nam == NULL) {
507 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
508 			return (error);
509 	} else {
510 		sin = (struct sockaddr_in *)nam;
511 		if (nam->sa_len != sizeof (*sin))
512 			return (EINVAL);
513 #ifdef notdef
514 		/*
515 		 * We should check the family, but old programs
516 		 * incorrectly fail to initialize it.
517 		 */
518 		if (sin->sin_family != AF_INET)
519 			return (EAFNOSUPPORT);
520 #endif
521 		error = prison_local_ip4(cred, &sin->sin_addr);
522 		if (error)
523 			return (error);
524 		if (sin->sin_port != *lportp) {
525 			/* Don't allow the port to change. */
526 			if (*lportp != 0)
527 				return (EINVAL);
528 			lport = sin->sin_port;
529 		}
530 		/* NB: lport is left as 0 if the port isn't being changed. */
531 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
532 			/*
533 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
534 			 * allow complete duplication of binding if
535 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
536 			 * and a multicast address is bound on both
537 			 * new and duplicated sockets.
538 			 */
539 			if (so->so_options & SO_REUSEADDR)
540 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
541 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
542 			sin->sin_port = 0;		/* yech... */
543 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
544 			/*
545 			 * Is the address a local IP address?
546 			 * If INP_BINDANY is set, then the socket may be bound
547 			 * to any endpoint address, local or not.
548 			 */
549 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
550 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
551 				return (EADDRNOTAVAIL);
552 		}
553 		laddr = sin->sin_addr;
554 		if (lport) {
555 			struct inpcb *t;
556 			struct tcptw *tw;
557 
558 			/* GROSS */
559 			if (ntohs(lport) <= V_ipport_reservedhigh &&
560 			    ntohs(lport) >= V_ipport_reservedlow &&
561 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
562 			    0))
563 				return (EACCES);
564 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
565 			    priv_check_cred(inp->inp_cred,
566 			    PRIV_NETINET_REUSEPORT, 0) != 0) {
567 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
568 				    lport, INPLOOKUP_WILDCARD, cred);
569 	/*
570 	 * XXX
571 	 * This entire block sorely needs a rewrite.
572 	 */
573 				if (t &&
574 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
575 				    (so->so_type != SOCK_STREAM ||
576 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
577 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
578 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
579 				     (t->inp_flags2 & INP_REUSEPORT) == 0) &&
580 				    (inp->inp_cred->cr_uid !=
581 				     t->inp_cred->cr_uid))
582 					return (EADDRINUSE);
583 			}
584 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
585 			    lport, lookupflags, cred);
586 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
587 				/*
588 				 * XXXRW: If an incpb has had its timewait
589 				 * state recycled, we treat the address as
590 				 * being in use (for now).  This is better
591 				 * than a panic, but not desirable.
592 				 */
593 				tw = intotw(t);
594 				if (tw == NULL ||
595 				    (reuseport & tw->tw_so_options) == 0)
596 					return (EADDRINUSE);
597 			} else if (t && (reuseport == 0 ||
598 			    (t->inp_flags2 & INP_REUSEPORT) == 0)) {
599 #ifdef INET6
600 				if (ntohl(sin->sin_addr.s_addr) !=
601 				    INADDR_ANY ||
602 				    ntohl(t->inp_laddr.s_addr) !=
603 				    INADDR_ANY ||
604 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
605 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
606 #endif
607 				return (EADDRINUSE);
608 			}
609 		}
610 	}
611 	if (*lportp != 0)
612 		lport = *lportp;
613 	if (lport == 0) {
614 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
615 		if (error != 0)
616 			return (error);
617 
618 	}
619 	*laddrp = laddr.s_addr;
620 	*lportp = lport;
621 	return (0);
622 }
623 
624 /*
625  * Connect from a socket to a specified address.
626  * Both address and port must be specified in argument sin.
627  * If don't have a local address for this socket yet,
628  * then pick one.
629  */
630 int
631 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
632     struct ucred *cred, struct mbuf *m)
633 {
634 	u_short lport, fport;
635 	in_addr_t laddr, faddr;
636 	int anonport, error;
637 
638 	INP_WLOCK_ASSERT(inp);
639 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
640 
641 	lport = inp->inp_lport;
642 	laddr = inp->inp_laddr.s_addr;
643 	anonport = (lport == 0);
644 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
645 	    NULL, cred);
646 	if (error)
647 		return (error);
648 
649 	/* Do the initial binding of the local address if required. */
650 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
651 		inp->inp_lport = lport;
652 		inp->inp_laddr.s_addr = laddr;
653 		if (in_pcbinshash(inp) != 0) {
654 			inp->inp_laddr.s_addr = INADDR_ANY;
655 			inp->inp_lport = 0;
656 			return (EAGAIN);
657 		}
658 	}
659 
660 	/* Commit the remaining changes. */
661 	inp->inp_lport = lport;
662 	inp->inp_laddr.s_addr = laddr;
663 	inp->inp_faddr.s_addr = faddr;
664 	inp->inp_fport = fport;
665 	in_pcbrehash_mbuf(inp, m);
666 
667 	if (anonport)
668 		inp->inp_flags |= INP_ANONPORT;
669 	return (0);
670 }
671 
672 int
673 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
674 {
675 
676 	return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
677 }
678 
679 /*
680  * Do proper source address selection on an unbound socket in case
681  * of connect. Take jails into account as well.
682  */
683 static int
684 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
685     struct ucred *cred)
686 {
687 	struct ifaddr *ifa;
688 	struct sockaddr *sa;
689 	struct sockaddr_in *sin;
690 	struct route sro;
691 	int error;
692 
693 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
694 
695 	/*
696 	 * Bypass source address selection and use the primary jail IP
697 	 * if requested.
698 	 */
699 	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
700 		return (0);
701 
702 	error = 0;
703 	bzero(&sro, sizeof(sro));
704 
705 	sin = (struct sockaddr_in *)&sro.ro_dst;
706 	sin->sin_family = AF_INET;
707 	sin->sin_len = sizeof(struct sockaddr_in);
708 	sin->sin_addr.s_addr = faddr->s_addr;
709 
710 	/*
711 	 * If route is known our src addr is taken from the i/f,
712 	 * else punt.
713 	 *
714 	 * Find out route to destination.
715 	 */
716 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
717 		in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
718 
719 	/*
720 	 * If we found a route, use the address corresponding to
721 	 * the outgoing interface.
722 	 *
723 	 * Otherwise assume faddr is reachable on a directly connected
724 	 * network and try to find a corresponding interface to take
725 	 * the source address from.
726 	 */
727 	if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
728 		struct in_ifaddr *ia;
729 		struct ifnet *ifp;
730 
731 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin));
732 		if (ia == NULL)
733 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0));
734 		if (ia == NULL) {
735 			error = ENETUNREACH;
736 			goto done;
737 		}
738 
739 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
740 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
741 			ifa_free(&ia->ia_ifa);
742 			goto done;
743 		}
744 
745 		ifp = ia->ia_ifp;
746 		ifa_free(&ia->ia_ifa);
747 		ia = NULL;
748 		IF_ADDR_RLOCK(ifp);
749 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
750 
751 			sa = ifa->ifa_addr;
752 			if (sa->sa_family != AF_INET)
753 				continue;
754 			sin = (struct sockaddr_in *)sa;
755 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
756 				ia = (struct in_ifaddr *)ifa;
757 				break;
758 			}
759 		}
760 		if (ia != NULL) {
761 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
762 			IF_ADDR_RUNLOCK(ifp);
763 			goto done;
764 		}
765 		IF_ADDR_RUNLOCK(ifp);
766 
767 		/* 3. As a last resort return the 'default' jail address. */
768 		error = prison_get_ip4(cred, laddr);
769 		goto done;
770 	}
771 
772 	/*
773 	 * If the outgoing interface on the route found is not
774 	 * a loopback interface, use the address from that interface.
775 	 * In case of jails do those three steps:
776 	 * 1. check if the interface address belongs to the jail. If so use it.
777 	 * 2. check if we have any address on the outgoing interface
778 	 *    belonging to this jail. If so use it.
779 	 * 3. as a last resort return the 'default' jail address.
780 	 */
781 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
782 		struct in_ifaddr *ia;
783 		struct ifnet *ifp;
784 
785 		/* If not jailed, use the default returned. */
786 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
787 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
788 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
789 			goto done;
790 		}
791 
792 		/* Jailed. */
793 		/* 1. Check if the iface address belongs to the jail. */
794 		sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
795 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
796 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
797 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
798 			goto done;
799 		}
800 
801 		/*
802 		 * 2. Check if we have any address on the outgoing interface
803 		 *    belonging to this jail.
804 		 */
805 		ia = NULL;
806 		ifp = sro.ro_rt->rt_ifp;
807 		IF_ADDR_RLOCK(ifp);
808 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
809 			sa = ifa->ifa_addr;
810 			if (sa->sa_family != AF_INET)
811 				continue;
812 			sin = (struct sockaddr_in *)sa;
813 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
814 				ia = (struct in_ifaddr *)ifa;
815 				break;
816 			}
817 		}
818 		if (ia != NULL) {
819 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
820 			IF_ADDR_RUNLOCK(ifp);
821 			goto done;
822 		}
823 		IF_ADDR_RUNLOCK(ifp);
824 
825 		/* 3. As a last resort return the 'default' jail address. */
826 		error = prison_get_ip4(cred, laddr);
827 		goto done;
828 	}
829 
830 	/*
831 	 * The outgoing interface is marked with 'loopback net', so a route
832 	 * to ourselves is here.
833 	 * Try to find the interface of the destination address and then
834 	 * take the address from there. That interface is not necessarily
835 	 * a loopback interface.
836 	 * In case of jails, check that it is an address of the jail
837 	 * and if we cannot find, fall back to the 'default' jail address.
838 	 */
839 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
840 		struct sockaddr_in sain;
841 		struct in_ifaddr *ia;
842 
843 		bzero(&sain, sizeof(struct sockaddr_in));
844 		sain.sin_family = AF_INET;
845 		sain.sin_len = sizeof(struct sockaddr_in);
846 		sain.sin_addr.s_addr = faddr->s_addr;
847 
848 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain)));
849 		if (ia == NULL)
850 			ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0));
851 		if (ia == NULL)
852 			ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
853 
854 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
855 			if (ia == NULL) {
856 				error = ENETUNREACH;
857 				goto done;
858 			}
859 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
860 			ifa_free(&ia->ia_ifa);
861 			goto done;
862 		}
863 
864 		/* Jailed. */
865 		if (ia != NULL) {
866 			struct ifnet *ifp;
867 
868 			ifp = ia->ia_ifp;
869 			ifa_free(&ia->ia_ifa);
870 			ia = NULL;
871 			IF_ADDR_RLOCK(ifp);
872 			TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
873 
874 				sa = ifa->ifa_addr;
875 				if (sa->sa_family != AF_INET)
876 					continue;
877 				sin = (struct sockaddr_in *)sa;
878 				if (prison_check_ip4(cred,
879 				    &sin->sin_addr) == 0) {
880 					ia = (struct in_ifaddr *)ifa;
881 					break;
882 				}
883 			}
884 			if (ia != NULL) {
885 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
886 				IF_ADDR_RUNLOCK(ifp);
887 				goto done;
888 			}
889 			IF_ADDR_RUNLOCK(ifp);
890 		}
891 
892 		/* 3. As a last resort return the 'default' jail address. */
893 		error = prison_get_ip4(cred, laddr);
894 		goto done;
895 	}
896 
897 done:
898 	if (sro.ro_rt != NULL)
899 		RTFREE(sro.ro_rt);
900 	return (error);
901 }
902 
903 /*
904  * Set up for a connect from a socket to the specified address.
905  * On entry, *laddrp and *lportp should contain the current local
906  * address and port for the PCB; these are updated to the values
907  * that should be placed in inp_laddr and inp_lport to complete
908  * the connect.
909  *
910  * On success, *faddrp and *fportp will be set to the remote address
911  * and port. These are not updated in the error case.
912  *
913  * If the operation fails because the connection already exists,
914  * *oinpp will be set to the PCB of that connection so that the
915  * caller can decide to override it. In all other cases, *oinpp
916  * is set to NULL.
917  */
918 int
919 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
920     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
921     struct inpcb **oinpp, struct ucred *cred)
922 {
923 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
924 	struct in_ifaddr *ia;
925 	struct inpcb *oinp;
926 	struct in_addr laddr, faddr;
927 	u_short lport, fport;
928 	int error;
929 
930 	/*
931 	 * Because a global state change doesn't actually occur here, a read
932 	 * lock is sufficient.
933 	 */
934 	INP_LOCK_ASSERT(inp);
935 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
936 
937 	if (oinpp != NULL)
938 		*oinpp = NULL;
939 	if (nam->sa_len != sizeof (*sin))
940 		return (EINVAL);
941 	if (sin->sin_family != AF_INET)
942 		return (EAFNOSUPPORT);
943 	if (sin->sin_port == 0)
944 		return (EADDRNOTAVAIL);
945 	laddr.s_addr = *laddrp;
946 	lport = *lportp;
947 	faddr = sin->sin_addr;
948 	fport = sin->sin_port;
949 
950 	if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
951 		/*
952 		 * If the destination address is INADDR_ANY,
953 		 * use the primary local address.
954 		 * If the supplied address is INADDR_BROADCAST,
955 		 * and the primary interface supports broadcast,
956 		 * choose the broadcast address for that interface.
957 		 */
958 		if (faddr.s_addr == INADDR_ANY) {
959 			IN_IFADDR_RLOCK();
960 			faddr =
961 			    IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
962 			IN_IFADDR_RUNLOCK();
963 			if (cred != NULL &&
964 			    (error = prison_get_ip4(cred, &faddr)) != 0)
965 				return (error);
966 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
967 			IN_IFADDR_RLOCK();
968 			if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
969 			    IFF_BROADCAST)
970 				faddr = satosin(&TAILQ_FIRST(
971 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
972 			IN_IFADDR_RUNLOCK();
973 		}
974 	}
975 	if (laddr.s_addr == INADDR_ANY) {
976 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
977 		/*
978 		 * If the destination address is multicast and an outgoing
979 		 * interface has been set as a multicast option, prefer the
980 		 * address of that interface as our source address.
981 		 */
982 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
983 		    inp->inp_moptions != NULL) {
984 			struct ip_moptions *imo;
985 			struct ifnet *ifp;
986 
987 			imo = inp->inp_moptions;
988 			if (imo->imo_multicast_ifp != NULL) {
989 				ifp = imo->imo_multicast_ifp;
990 				IN_IFADDR_RLOCK();
991 				TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
992 					if ((ia->ia_ifp == ifp) &&
993 					    (cred == NULL ||
994 					    prison_check_ip4(cred,
995 					    &ia->ia_addr.sin_addr) == 0))
996 						break;
997 				}
998 				if (ia == NULL)
999 					error = EADDRNOTAVAIL;
1000 				else {
1001 					laddr = ia->ia_addr.sin_addr;
1002 					error = 0;
1003 				}
1004 				IN_IFADDR_RUNLOCK();
1005 			}
1006 		}
1007 		if (error)
1008 			return (error);
1009 	}
1010 	oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1011 	    laddr, lport, 0, NULL);
1012 	if (oinp != NULL) {
1013 		if (oinpp != NULL)
1014 			*oinpp = oinp;
1015 		return (EADDRINUSE);
1016 	}
1017 	if (lport == 0) {
1018 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1019 		    cred);
1020 		if (error)
1021 			return (error);
1022 	}
1023 	*laddrp = laddr.s_addr;
1024 	*lportp = lport;
1025 	*faddrp = faddr.s_addr;
1026 	*fportp = fport;
1027 	return (0);
1028 }
1029 
1030 void
1031 in_pcbdisconnect(struct inpcb *inp)
1032 {
1033 
1034 	INP_WLOCK_ASSERT(inp);
1035 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1036 
1037 	inp->inp_faddr.s_addr = INADDR_ANY;
1038 	inp->inp_fport = 0;
1039 	in_pcbrehash(inp);
1040 }
1041 #endif /* INET */
1042 
1043 /*
1044  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1045  * For most protocols, this will be invoked immediately prior to calling
1046  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1047  * socket, in which case in_pcbfree() is deferred.
1048  */
1049 void
1050 in_pcbdetach(struct inpcb *inp)
1051 {
1052 
1053 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1054 
1055 	inp->inp_socket->so_pcb = NULL;
1056 	inp->inp_socket = NULL;
1057 }
1058 
1059 /*
1060  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1061  * stability of an inpcb pointer despite the inpcb lock being released.  This
1062  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1063  * but where the inpcb lock may already held, or when acquiring a reference
1064  * via a pcbgroup.
1065  *
1066  * in_pcbref() should be used only to provide brief memory stability, and
1067  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1068  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1069  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1070  * lock and rele are the *only* safe operations that may be performed on the
1071  * inpcb.
1072  *
1073  * While the inpcb will not be freed, releasing the inpcb lock means that the
1074  * connection's state may change, so the caller should be careful to
1075  * revalidate any cached state on reacquiring the lock.  Drop the reference
1076  * using in_pcbrele().
1077  */
1078 void
1079 in_pcbref(struct inpcb *inp)
1080 {
1081 
1082 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1083 
1084 	refcount_acquire(&inp->inp_refcount);
1085 }
1086 
1087 /*
1088  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1089  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1090  * return a flag indicating whether or not the inpcb remains valid.  If it is
1091  * valid, we return with the inpcb lock held.
1092  *
1093  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1094  * reference on an inpcb.  Historically more work was done here (actually, in
1095  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1096  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1097  * about memory stability (and continued use of the write lock).
1098  */
1099 int
1100 in_pcbrele_rlocked(struct inpcb *inp)
1101 {
1102 	struct inpcbinfo *pcbinfo;
1103 
1104 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1105 
1106 	INP_RLOCK_ASSERT(inp);
1107 
1108 	if (refcount_release(&inp->inp_refcount) == 0) {
1109 		/*
1110 		 * If the inpcb has been freed, let the caller know, even if
1111 		 * this isn't the last reference.
1112 		 */
1113 		if (inp->inp_flags2 & INP_FREED) {
1114 			INP_RUNLOCK(inp);
1115 			return (1);
1116 		}
1117 		return (0);
1118 	}
1119 
1120 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1121 
1122 	INP_RUNLOCK(inp);
1123 	pcbinfo = inp->inp_pcbinfo;
1124 	uma_zfree(pcbinfo->ipi_zone, inp);
1125 	return (1);
1126 }
1127 
1128 int
1129 in_pcbrele_wlocked(struct inpcb *inp)
1130 {
1131 	struct inpcbinfo *pcbinfo;
1132 
1133 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1134 
1135 	INP_WLOCK_ASSERT(inp);
1136 
1137 	if (refcount_release(&inp->inp_refcount) == 0)
1138 		return (0);
1139 
1140 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1141 
1142 	INP_WUNLOCK(inp);
1143 	pcbinfo = inp->inp_pcbinfo;
1144 	uma_zfree(pcbinfo->ipi_zone, inp);
1145 	return (1);
1146 }
1147 
1148 /*
1149  * Temporary wrapper.
1150  */
1151 int
1152 in_pcbrele(struct inpcb *inp)
1153 {
1154 
1155 	return (in_pcbrele_wlocked(inp));
1156 }
1157 
1158 /*
1159  * Unconditionally schedule an inpcb to be freed by decrementing its
1160  * reference count, which should occur only after the inpcb has been detached
1161  * from its socket.  If another thread holds a temporary reference (acquired
1162  * using in_pcbref()) then the free is deferred until that reference is
1163  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1164  * work, including removal from global lists, is done in this context, where
1165  * the pcbinfo lock is held.
1166  */
1167 void
1168 in_pcbfree(struct inpcb *inp)
1169 {
1170 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1171 
1172 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1173 
1174 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1175 	INP_WLOCK_ASSERT(inp);
1176 
1177 	/* XXXRW: Do as much as possible here. */
1178 #ifdef IPSEC
1179 	if (inp->inp_sp != NULL)
1180 		ipsec_delete_pcbpolicy(inp);
1181 #endif
1182 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1183 	in_pcbremlists(inp);
1184 #ifdef INET6
1185 	if (inp->inp_vflag & INP_IPV6PROTO) {
1186 		ip6_freepcbopts(inp->in6p_outputopts);
1187 		if (inp->in6p_moptions != NULL)
1188 			ip6_freemoptions(inp->in6p_moptions);
1189 	}
1190 #endif
1191 	if (inp->inp_options)
1192 		(void)m_free(inp->inp_options);
1193 #ifdef INET
1194 	if (inp->inp_moptions != NULL)
1195 		inp_freemoptions(inp->inp_moptions);
1196 #endif
1197 	inp->inp_vflag = 0;
1198 	inp->inp_flags2 |= INP_FREED;
1199 	crfree(inp->inp_cred);
1200 #ifdef MAC
1201 	mac_inpcb_destroy(inp);
1202 #endif
1203 	if (!in_pcbrele_wlocked(inp))
1204 		INP_WUNLOCK(inp);
1205 }
1206 
1207 /*
1208  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1209  * port reservation, and preventing it from being returned by inpcb lookups.
1210  *
1211  * It is used by TCP to mark an inpcb as unused and avoid future packet
1212  * delivery or event notification when a socket remains open but TCP has
1213  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1214  * or a RST on the wire, and allows the port binding to be reused while still
1215  * maintaining the invariant that so_pcb always points to a valid inpcb until
1216  * in_pcbdetach().
1217  *
1218  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1219  * in_pcbnotifyall() and in_pcbpurgeif0()?
1220  */
1221 void
1222 in_pcbdrop(struct inpcb *inp)
1223 {
1224 
1225 	INP_WLOCK_ASSERT(inp);
1226 
1227 	/*
1228 	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1229 	 * the hash lock...?
1230 	 */
1231 	inp->inp_flags |= INP_DROPPED;
1232 	if (inp->inp_flags & INP_INHASHLIST) {
1233 		struct inpcbport *phd = inp->inp_phd;
1234 
1235 		INP_HASH_WLOCK(inp->inp_pcbinfo);
1236 		LIST_REMOVE(inp, inp_hash);
1237 		LIST_REMOVE(inp, inp_portlist);
1238 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1239 			LIST_REMOVE(phd, phd_hash);
1240 			free(phd, M_PCB);
1241 		}
1242 		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1243 		inp->inp_flags &= ~INP_INHASHLIST;
1244 #ifdef PCBGROUP
1245 		in_pcbgroup_remove(inp);
1246 #endif
1247 	}
1248 }
1249 
1250 #ifdef INET
1251 /*
1252  * Common routines to return the socket addresses associated with inpcbs.
1253  */
1254 struct sockaddr *
1255 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1256 {
1257 	struct sockaddr_in *sin;
1258 
1259 	sin = malloc(sizeof *sin, M_SONAME,
1260 		M_WAITOK | M_ZERO);
1261 	sin->sin_family = AF_INET;
1262 	sin->sin_len = sizeof(*sin);
1263 	sin->sin_addr = *addr_p;
1264 	sin->sin_port = port;
1265 
1266 	return (struct sockaddr *)sin;
1267 }
1268 
1269 int
1270 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1271 {
1272 	struct inpcb *inp;
1273 	struct in_addr addr;
1274 	in_port_t port;
1275 
1276 	inp = sotoinpcb(so);
1277 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1278 
1279 	INP_RLOCK(inp);
1280 	port = inp->inp_lport;
1281 	addr = inp->inp_laddr;
1282 	INP_RUNLOCK(inp);
1283 
1284 	*nam = in_sockaddr(port, &addr);
1285 	return 0;
1286 }
1287 
1288 int
1289 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1290 {
1291 	struct inpcb *inp;
1292 	struct in_addr addr;
1293 	in_port_t port;
1294 
1295 	inp = sotoinpcb(so);
1296 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1297 
1298 	INP_RLOCK(inp);
1299 	port = inp->inp_fport;
1300 	addr = inp->inp_faddr;
1301 	INP_RUNLOCK(inp);
1302 
1303 	*nam = in_sockaddr(port, &addr);
1304 	return 0;
1305 }
1306 
1307 void
1308 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1309     struct inpcb *(*notify)(struct inpcb *, int))
1310 {
1311 	struct inpcb *inp, *inp_temp;
1312 
1313 	INP_INFO_WLOCK(pcbinfo);
1314 	LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1315 		INP_WLOCK(inp);
1316 #ifdef INET6
1317 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1318 			INP_WUNLOCK(inp);
1319 			continue;
1320 		}
1321 #endif
1322 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1323 		    inp->inp_socket == NULL) {
1324 			INP_WUNLOCK(inp);
1325 			continue;
1326 		}
1327 		if ((*notify)(inp, errno))
1328 			INP_WUNLOCK(inp);
1329 	}
1330 	INP_INFO_WUNLOCK(pcbinfo);
1331 }
1332 
1333 void
1334 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1335 {
1336 	struct inpcb *inp;
1337 	struct ip_moptions *imo;
1338 	int i, gap;
1339 
1340 	INP_INFO_RLOCK(pcbinfo);
1341 	LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1342 		INP_WLOCK(inp);
1343 		imo = inp->inp_moptions;
1344 		if ((inp->inp_vflag & INP_IPV4) &&
1345 		    imo != NULL) {
1346 			/*
1347 			 * Unselect the outgoing interface if it is being
1348 			 * detached.
1349 			 */
1350 			if (imo->imo_multicast_ifp == ifp)
1351 				imo->imo_multicast_ifp = NULL;
1352 
1353 			/*
1354 			 * Drop multicast group membership if we joined
1355 			 * through the interface being detached.
1356 			 */
1357 			for (i = 0, gap = 0; i < imo->imo_num_memberships;
1358 			    i++) {
1359 				if (imo->imo_membership[i]->inm_ifp == ifp) {
1360 					in_delmulti(imo->imo_membership[i]);
1361 					gap++;
1362 				} else if (gap != 0)
1363 					imo->imo_membership[i - gap] =
1364 					    imo->imo_membership[i];
1365 			}
1366 			imo->imo_num_memberships -= gap;
1367 		}
1368 		INP_WUNLOCK(inp);
1369 	}
1370 	INP_INFO_RUNLOCK(pcbinfo);
1371 }
1372 
1373 /*
1374  * Lookup a PCB based on the local address and port.  Caller must hold the
1375  * hash lock.  No inpcb locks or references are acquired.
1376  */
1377 #define INP_LOOKUP_MAPPED_PCB_COST	3
1378 struct inpcb *
1379 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1380     u_short lport, int lookupflags, struct ucred *cred)
1381 {
1382 	struct inpcb *inp;
1383 #ifdef INET6
1384 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1385 #else
1386 	int matchwild = 3;
1387 #endif
1388 	int wildcard;
1389 
1390 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1391 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1392 
1393 	INP_HASH_LOCK_ASSERT(pcbinfo);
1394 
1395 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1396 		struct inpcbhead *head;
1397 		/*
1398 		 * Look for an unconnected (wildcard foreign addr) PCB that
1399 		 * matches the local address and port we're looking for.
1400 		 */
1401 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1402 		    0, pcbinfo->ipi_hashmask)];
1403 		LIST_FOREACH(inp, head, inp_hash) {
1404 #ifdef INET6
1405 			/* XXX inp locking */
1406 			if ((inp->inp_vflag & INP_IPV4) == 0)
1407 				continue;
1408 #endif
1409 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1410 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1411 			    inp->inp_lport == lport) {
1412 				/*
1413 				 * Found?
1414 				 */
1415 				if (cred == NULL ||
1416 				    prison_equal_ip4(cred->cr_prison,
1417 					inp->inp_cred->cr_prison))
1418 					return (inp);
1419 			}
1420 		}
1421 		/*
1422 		 * Not found.
1423 		 */
1424 		return (NULL);
1425 	} else {
1426 		struct inpcbporthead *porthash;
1427 		struct inpcbport *phd;
1428 		struct inpcb *match = NULL;
1429 		/*
1430 		 * Best fit PCB lookup.
1431 		 *
1432 		 * First see if this local port is in use by looking on the
1433 		 * port hash list.
1434 		 */
1435 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1436 		    pcbinfo->ipi_porthashmask)];
1437 		LIST_FOREACH(phd, porthash, phd_hash) {
1438 			if (phd->phd_port == lport)
1439 				break;
1440 		}
1441 		if (phd != NULL) {
1442 			/*
1443 			 * Port is in use by one or more PCBs. Look for best
1444 			 * fit.
1445 			 */
1446 			LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1447 				wildcard = 0;
1448 				if (cred != NULL &&
1449 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
1450 					cred->cr_prison))
1451 					continue;
1452 #ifdef INET6
1453 				/* XXX inp locking */
1454 				if ((inp->inp_vflag & INP_IPV4) == 0)
1455 					continue;
1456 				/*
1457 				 * We never select the PCB that has
1458 				 * INP_IPV6 flag and is bound to :: if
1459 				 * we have another PCB which is bound
1460 				 * to 0.0.0.0.  If a PCB has the
1461 				 * INP_IPV6 flag, then we set its cost
1462 				 * higher than IPv4 only PCBs.
1463 				 *
1464 				 * Note that the case only happens
1465 				 * when a socket is bound to ::, under
1466 				 * the condition that the use of the
1467 				 * mapped address is allowed.
1468 				 */
1469 				if ((inp->inp_vflag & INP_IPV6) != 0)
1470 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1471 #endif
1472 				if (inp->inp_faddr.s_addr != INADDR_ANY)
1473 					wildcard++;
1474 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
1475 					if (laddr.s_addr == INADDR_ANY)
1476 						wildcard++;
1477 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
1478 						continue;
1479 				} else {
1480 					if (laddr.s_addr != INADDR_ANY)
1481 						wildcard++;
1482 				}
1483 				if (wildcard < matchwild) {
1484 					match = inp;
1485 					matchwild = wildcard;
1486 					if (matchwild == 0)
1487 						break;
1488 				}
1489 			}
1490 		}
1491 		return (match);
1492 	}
1493 }
1494 #undef INP_LOOKUP_MAPPED_PCB_COST
1495 
1496 #ifdef PCBGROUP
1497 /*
1498  * Lookup PCB in hash list, using pcbgroup tables.
1499  */
1500 static struct inpcb *
1501 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
1502     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
1503     u_int lport_arg, int lookupflags, struct ifnet *ifp)
1504 {
1505 	struct inpcbhead *head;
1506 	struct inpcb *inp, *tmpinp;
1507 	u_short fport = fport_arg, lport = lport_arg;
1508 
1509 	/*
1510 	 * First look for an exact match.
1511 	 */
1512 	tmpinp = NULL;
1513 	INP_GROUP_LOCK(pcbgroup);
1514 	head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1515 	    pcbgroup->ipg_hashmask)];
1516 	LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1517 #ifdef INET6
1518 		/* XXX inp locking */
1519 		if ((inp->inp_vflag & INP_IPV4) == 0)
1520 			continue;
1521 #endif
1522 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1523 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1524 		    inp->inp_fport == fport &&
1525 		    inp->inp_lport == lport) {
1526 			/*
1527 			 * XXX We should be able to directly return
1528 			 * the inp here, without any checks.
1529 			 * Well unless both bound with SO_REUSEPORT?
1530 			 */
1531 			if (prison_flag(inp->inp_cred, PR_IP4))
1532 				goto found;
1533 			if (tmpinp == NULL)
1534 				tmpinp = inp;
1535 		}
1536 	}
1537 	if (tmpinp != NULL) {
1538 		inp = tmpinp;
1539 		goto found;
1540 	}
1541 
1542 	/*
1543 	 * Then look for a wildcard match, if requested.
1544 	 */
1545 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1546 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1547 #ifdef INET6
1548 		struct inpcb *local_wild_mapped = NULL;
1549 #endif
1550 		struct inpcb *jail_wild = NULL;
1551 		struct inpcbhead *head;
1552 		int injail;
1553 
1554 		/*
1555 		 * Order of socket selection - we always prefer jails.
1556 		 *      1. jailed, non-wild.
1557 		 *      2. jailed, wild.
1558 		 *      3. non-jailed, non-wild.
1559 		 *      4. non-jailed, wild.
1560 		 */
1561 		head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
1562 		    0, pcbinfo->ipi_wildmask)];
1563 		LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
1564 #ifdef INET6
1565 			/* XXX inp locking */
1566 			if ((inp->inp_vflag & INP_IPV4) == 0)
1567 				continue;
1568 #endif
1569 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1570 			    inp->inp_lport != lport)
1571 				continue;
1572 
1573 			/* XXX inp locking */
1574 			if (ifp && ifp->if_type == IFT_FAITH &&
1575 			    (inp->inp_flags & INP_FAITH) == 0)
1576 				continue;
1577 
1578 			injail = prison_flag(inp->inp_cred, PR_IP4);
1579 			if (injail) {
1580 				if (prison_check_ip4(inp->inp_cred,
1581 				    &laddr) != 0)
1582 					continue;
1583 			} else {
1584 				if (local_exact != NULL)
1585 					continue;
1586 			}
1587 
1588 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1589 				if (injail)
1590 					goto found;
1591 				else
1592 					local_exact = inp;
1593 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1594 #ifdef INET6
1595 				/* XXX inp locking, NULL check */
1596 				if (inp->inp_vflag & INP_IPV6PROTO)
1597 					local_wild_mapped = inp;
1598 				else
1599 #endif
1600 					if (injail)
1601 						jail_wild = inp;
1602 					else
1603 						local_wild = inp;
1604 			}
1605 		} /* LIST_FOREACH */
1606 		inp = jail_wild;
1607 		if (inp == NULL)
1608 			inp = local_exact;
1609 		if (inp == NULL)
1610 			inp = local_wild;
1611 #ifdef INET6
1612 		if (inp == NULL)
1613 			inp = local_wild_mapped;
1614 #endif
1615 		if (inp != NULL)
1616 			goto found;
1617 	} /* if (lookupflags & INPLOOKUP_WILDCARD) */
1618 	INP_GROUP_UNLOCK(pcbgroup);
1619 	return (NULL);
1620 
1621 found:
1622 	in_pcbref(inp);
1623 	INP_GROUP_UNLOCK(pcbgroup);
1624 	if (lookupflags & INPLOOKUP_WLOCKPCB) {
1625 		INP_WLOCK(inp);
1626 		if (in_pcbrele_wlocked(inp))
1627 			return (NULL);
1628 	} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1629 		INP_RLOCK(inp);
1630 		if (in_pcbrele_rlocked(inp))
1631 			return (NULL);
1632 	} else
1633 		panic("%s: locking bug", __func__);
1634 	return (inp);
1635 }
1636 #endif /* PCBGROUP */
1637 
1638 /*
1639  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
1640  * that the caller has locked the hash list, and will not perform any further
1641  * locking or reference operations on either the hash list or the connection.
1642  */
1643 static struct inpcb *
1644 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1645     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
1646     struct ifnet *ifp)
1647 {
1648 	struct inpcbhead *head;
1649 	struct inpcb *inp, *tmpinp;
1650 	u_short fport = fport_arg, lport = lport_arg;
1651 
1652 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1653 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1654 
1655 	INP_HASH_LOCK_ASSERT(pcbinfo);
1656 
1657 	/*
1658 	 * First look for an exact match.
1659 	 */
1660 	tmpinp = NULL;
1661 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1662 	    pcbinfo->ipi_hashmask)];
1663 	LIST_FOREACH(inp, head, inp_hash) {
1664 #ifdef INET6
1665 		/* XXX inp locking */
1666 		if ((inp->inp_vflag & INP_IPV4) == 0)
1667 			continue;
1668 #endif
1669 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1670 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1671 		    inp->inp_fport == fport &&
1672 		    inp->inp_lport == lport) {
1673 			/*
1674 			 * XXX We should be able to directly return
1675 			 * the inp here, without any checks.
1676 			 * Well unless both bound with SO_REUSEPORT?
1677 			 */
1678 			if (prison_flag(inp->inp_cred, PR_IP4))
1679 				return (inp);
1680 			if (tmpinp == NULL)
1681 				tmpinp = inp;
1682 		}
1683 	}
1684 	if (tmpinp != NULL)
1685 		return (tmpinp);
1686 
1687 	/*
1688 	 * Then look for a wildcard match, if requested.
1689 	 */
1690 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1691 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1692 #ifdef INET6
1693 		struct inpcb *local_wild_mapped = NULL;
1694 #endif
1695 		struct inpcb *jail_wild = NULL;
1696 		int injail;
1697 
1698 		/*
1699 		 * Order of socket selection - we always prefer jails.
1700 		 *      1. jailed, non-wild.
1701 		 *      2. jailed, wild.
1702 		 *      3. non-jailed, non-wild.
1703 		 *      4. non-jailed, wild.
1704 		 */
1705 
1706 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1707 		    0, pcbinfo->ipi_hashmask)];
1708 		LIST_FOREACH(inp, head, inp_hash) {
1709 #ifdef INET6
1710 			/* XXX inp locking */
1711 			if ((inp->inp_vflag & INP_IPV4) == 0)
1712 				continue;
1713 #endif
1714 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1715 			    inp->inp_lport != lport)
1716 				continue;
1717 
1718 			/* XXX inp locking */
1719 			if (ifp && ifp->if_type == IFT_FAITH &&
1720 			    (inp->inp_flags & INP_FAITH) == 0)
1721 				continue;
1722 
1723 			injail = prison_flag(inp->inp_cred, PR_IP4);
1724 			if (injail) {
1725 				if (prison_check_ip4(inp->inp_cred,
1726 				    &laddr) != 0)
1727 					continue;
1728 			} else {
1729 				if (local_exact != NULL)
1730 					continue;
1731 			}
1732 
1733 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1734 				if (injail)
1735 					return (inp);
1736 				else
1737 					local_exact = inp;
1738 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1739 #ifdef INET6
1740 				/* XXX inp locking, NULL check */
1741 				if (inp->inp_vflag & INP_IPV6PROTO)
1742 					local_wild_mapped = inp;
1743 				else
1744 #endif
1745 					if (injail)
1746 						jail_wild = inp;
1747 					else
1748 						local_wild = inp;
1749 			}
1750 		} /* LIST_FOREACH */
1751 		if (jail_wild != NULL)
1752 			return (jail_wild);
1753 		if (local_exact != NULL)
1754 			return (local_exact);
1755 		if (local_wild != NULL)
1756 			return (local_wild);
1757 #ifdef INET6
1758 		if (local_wild_mapped != NULL)
1759 			return (local_wild_mapped);
1760 #endif
1761 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
1762 
1763 	return (NULL);
1764 }
1765 
1766 /*
1767  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
1768  * hash list lock, and will return the inpcb locked (i.e., requires
1769  * INPLOOKUP_LOCKPCB).
1770  */
1771 static struct inpcb *
1772 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1773     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
1774     struct ifnet *ifp)
1775 {
1776 	struct inpcb *inp;
1777 
1778 	INP_HASH_RLOCK(pcbinfo);
1779 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
1780 	    (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
1781 	if (inp != NULL) {
1782 		in_pcbref(inp);
1783 		INP_HASH_RUNLOCK(pcbinfo);
1784 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
1785 			INP_WLOCK(inp);
1786 			if (in_pcbrele_wlocked(inp))
1787 				return (NULL);
1788 		} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1789 			INP_RLOCK(inp);
1790 			if (in_pcbrele_rlocked(inp))
1791 				return (NULL);
1792 		} else
1793 			panic("%s: locking bug", __func__);
1794 	} else
1795 		INP_HASH_RUNLOCK(pcbinfo);
1796 	return (inp);
1797 }
1798 
1799 /*
1800  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
1801  * from which a pre-calculated hash value may be extracted.
1802  *
1803  * Possibly more of this logic should be in in_pcbgroup.c.
1804  */
1805 struct inpcb *
1806 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
1807     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
1808 {
1809 #if defined(PCBGROUP)
1810 	struct inpcbgroup *pcbgroup;
1811 #endif
1812 
1813 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
1814 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1815 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
1816 	    ("%s: LOCKPCB not set", __func__));
1817 
1818 #if defined(PCBGROUP)
1819 	if (in_pcbgroup_enabled(pcbinfo)) {
1820 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
1821 		    fport);
1822 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
1823 		    laddr, lport, lookupflags, ifp));
1824 	}
1825 #endif
1826 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
1827 	    lookupflags, ifp));
1828 }
1829 
1830 struct inpcb *
1831 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1832     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
1833     struct ifnet *ifp, struct mbuf *m)
1834 {
1835 #ifdef PCBGROUP
1836 	struct inpcbgroup *pcbgroup;
1837 #endif
1838 
1839 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
1840 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1841 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
1842 	    ("%s: LOCKPCB not set", __func__));
1843 
1844 #ifdef PCBGROUP
1845 	if (in_pcbgroup_enabled(pcbinfo)) {
1846 		pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
1847 		    m->m_pkthdr.flowid);
1848 		if (pcbgroup != NULL)
1849 			return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
1850 			    fport, laddr, lport, lookupflags, ifp));
1851 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
1852 		    fport);
1853 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
1854 		    laddr, lport, lookupflags, ifp));
1855 	}
1856 #endif
1857 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
1858 	    lookupflags, ifp));
1859 }
1860 #endif /* INET */
1861 
1862 /*
1863  * Insert PCB onto various hash lists.
1864  */
1865 static int
1866 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
1867 {
1868 	struct inpcbhead *pcbhash;
1869 	struct inpcbporthead *pcbporthash;
1870 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1871 	struct inpcbport *phd;
1872 	u_int32_t hashkey_faddr;
1873 
1874 	INP_WLOCK_ASSERT(inp);
1875 	INP_HASH_WLOCK_ASSERT(pcbinfo);
1876 
1877 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
1878 	    ("in_pcbinshash: INP_INHASHLIST"));
1879 
1880 #ifdef INET6
1881 	if (inp->inp_vflag & INP_IPV6)
1882 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1883 	else
1884 #endif
1885 	hashkey_faddr = inp->inp_faddr.s_addr;
1886 
1887 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
1888 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
1889 
1890 	pcbporthash = &pcbinfo->ipi_porthashbase[
1891 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
1892 
1893 	/*
1894 	 * Go through port list and look for a head for this lport.
1895 	 */
1896 	LIST_FOREACH(phd, pcbporthash, phd_hash) {
1897 		if (phd->phd_port == inp->inp_lport)
1898 			break;
1899 	}
1900 	/*
1901 	 * If none exists, malloc one and tack it on.
1902 	 */
1903 	if (phd == NULL) {
1904 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
1905 		if (phd == NULL) {
1906 			return (ENOBUFS); /* XXX */
1907 		}
1908 		phd->phd_port = inp->inp_lport;
1909 		LIST_INIT(&phd->phd_pcblist);
1910 		LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
1911 	}
1912 	inp->inp_phd = phd;
1913 	LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
1914 	LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
1915 	inp->inp_flags |= INP_INHASHLIST;
1916 #ifdef PCBGROUP
1917 	if (do_pcbgroup_update)
1918 		in_pcbgroup_update(inp);
1919 #endif
1920 	return (0);
1921 }
1922 
1923 /*
1924  * For now, there are two public interfaces to insert an inpcb into the hash
1925  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
1926  * is used only in the TCP syncache, where in_pcbinshash is called before the
1927  * full 4-tuple is set for the inpcb, and we don't want to install in the
1928  * pcbgroup until later.
1929  *
1930  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
1931  * connection groups, and partially initialised inpcbs should not be exposed
1932  * to either reservation hash tables or pcbgroups.
1933  */
1934 int
1935 in_pcbinshash(struct inpcb *inp)
1936 {
1937 
1938 	return (in_pcbinshash_internal(inp, 1));
1939 }
1940 
1941 int
1942 in_pcbinshash_nopcbgroup(struct inpcb *inp)
1943 {
1944 
1945 	return (in_pcbinshash_internal(inp, 0));
1946 }
1947 
1948 /*
1949  * Move PCB to the proper hash bucket when { faddr, fport } have  been
1950  * changed. NOTE: This does not handle the case of the lport changing (the
1951  * hashed port list would have to be updated as well), so the lport must
1952  * not change after in_pcbinshash() has been called.
1953  */
1954 void
1955 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
1956 {
1957 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1958 	struct inpcbhead *head;
1959 	u_int32_t hashkey_faddr;
1960 
1961 	INP_WLOCK_ASSERT(inp);
1962 	INP_HASH_WLOCK_ASSERT(pcbinfo);
1963 
1964 	KASSERT(inp->inp_flags & INP_INHASHLIST,
1965 	    ("in_pcbrehash: !INP_INHASHLIST"));
1966 
1967 #ifdef INET6
1968 	if (inp->inp_vflag & INP_IPV6)
1969 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1970 	else
1971 #endif
1972 	hashkey_faddr = inp->inp_faddr.s_addr;
1973 
1974 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
1975 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
1976 
1977 	LIST_REMOVE(inp, inp_hash);
1978 	LIST_INSERT_HEAD(head, inp, inp_hash);
1979 
1980 #ifdef PCBGROUP
1981 	if (m != NULL)
1982 		in_pcbgroup_update_mbuf(inp, m);
1983 	else
1984 		in_pcbgroup_update(inp);
1985 #endif
1986 }
1987 
1988 void
1989 in_pcbrehash(struct inpcb *inp)
1990 {
1991 
1992 	in_pcbrehash_mbuf(inp, NULL);
1993 }
1994 
1995 /*
1996  * Remove PCB from various lists.
1997  */
1998 static void
1999 in_pcbremlists(struct inpcb *inp)
2000 {
2001 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2002 
2003 	INP_INFO_WLOCK_ASSERT(pcbinfo);
2004 	INP_WLOCK_ASSERT(inp);
2005 
2006 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2007 	if (inp->inp_flags & INP_INHASHLIST) {
2008 		struct inpcbport *phd = inp->inp_phd;
2009 
2010 		INP_HASH_WLOCK(pcbinfo);
2011 		LIST_REMOVE(inp, inp_hash);
2012 		LIST_REMOVE(inp, inp_portlist);
2013 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
2014 			LIST_REMOVE(phd, phd_hash);
2015 			free(phd, M_PCB);
2016 		}
2017 		INP_HASH_WUNLOCK(pcbinfo);
2018 		inp->inp_flags &= ~INP_INHASHLIST;
2019 	}
2020 	LIST_REMOVE(inp, inp_list);
2021 	pcbinfo->ipi_count--;
2022 #ifdef PCBGROUP
2023 	in_pcbgroup_remove(inp);
2024 #endif
2025 }
2026 
2027 /*
2028  * A set label operation has occurred at the socket layer, propagate the
2029  * label change into the in_pcb for the socket.
2030  */
2031 void
2032 in_pcbsosetlabel(struct socket *so)
2033 {
2034 #ifdef MAC
2035 	struct inpcb *inp;
2036 
2037 	inp = sotoinpcb(so);
2038 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2039 
2040 	INP_WLOCK(inp);
2041 	SOCK_LOCK(so);
2042 	mac_inpcb_sosetlabel(so, inp);
2043 	SOCK_UNLOCK(so);
2044 	INP_WUNLOCK(inp);
2045 #endif
2046 }
2047 
2048 /*
2049  * ipport_tick runs once per second, determining if random port allocation
2050  * should be continued.  If more than ipport_randomcps ports have been
2051  * allocated in the last second, then we return to sequential port
2052  * allocation. We return to random allocation only once we drop below
2053  * ipport_randomcps for at least ipport_randomtime seconds.
2054  */
2055 static void
2056 ipport_tick(void *xtp)
2057 {
2058 	VNET_ITERATOR_DECL(vnet_iter);
2059 
2060 	VNET_LIST_RLOCK_NOSLEEP();
2061 	VNET_FOREACH(vnet_iter) {
2062 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
2063 		if (V_ipport_tcpallocs <=
2064 		    V_ipport_tcplastcount + V_ipport_randomcps) {
2065 			if (V_ipport_stoprandom > 0)
2066 				V_ipport_stoprandom--;
2067 		} else
2068 			V_ipport_stoprandom = V_ipport_randomtime;
2069 		V_ipport_tcplastcount = V_ipport_tcpallocs;
2070 		CURVNET_RESTORE();
2071 	}
2072 	VNET_LIST_RUNLOCK_NOSLEEP();
2073 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2074 }
2075 
2076 static void
2077 ip_fini(void *xtp)
2078 {
2079 
2080 	callout_stop(&ipport_tick_callout);
2081 }
2082 
2083 /*
2084  * The ipport_callout should start running at about the time we attach the
2085  * inet or inet6 domains.
2086  */
2087 static void
2088 ipport_tick_init(const void *unused __unused)
2089 {
2090 
2091 	/* Start ipport_tick. */
2092 	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
2093 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2094 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2095 		SHUTDOWN_PRI_DEFAULT);
2096 }
2097 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
2098     ipport_tick_init, NULL);
2099 
2100 void
2101 inp_wlock(struct inpcb *inp)
2102 {
2103 
2104 	INP_WLOCK(inp);
2105 }
2106 
2107 void
2108 inp_wunlock(struct inpcb *inp)
2109 {
2110 
2111 	INP_WUNLOCK(inp);
2112 }
2113 
2114 void
2115 inp_rlock(struct inpcb *inp)
2116 {
2117 
2118 	INP_RLOCK(inp);
2119 }
2120 
2121 void
2122 inp_runlock(struct inpcb *inp)
2123 {
2124 
2125 	INP_RUNLOCK(inp);
2126 }
2127 
2128 #ifdef INVARIANTS
2129 void
2130 inp_lock_assert(struct inpcb *inp)
2131 {
2132 
2133 	INP_WLOCK_ASSERT(inp);
2134 }
2135 
2136 void
2137 inp_unlock_assert(struct inpcb *inp)
2138 {
2139 
2140 	INP_UNLOCK_ASSERT(inp);
2141 }
2142 #endif
2143 
2144 void
2145 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2146 {
2147 	struct inpcb *inp;
2148 
2149 	INP_INFO_RLOCK(&V_tcbinfo);
2150 	LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2151 		INP_WLOCK(inp);
2152 		func(inp, arg);
2153 		INP_WUNLOCK(inp);
2154 	}
2155 	INP_INFO_RUNLOCK(&V_tcbinfo);
2156 }
2157 
2158 struct socket *
2159 inp_inpcbtosocket(struct inpcb *inp)
2160 {
2161 
2162 	INP_WLOCK_ASSERT(inp);
2163 	return (inp->inp_socket);
2164 }
2165 
2166 struct tcpcb *
2167 inp_inpcbtotcpcb(struct inpcb *inp)
2168 {
2169 
2170 	INP_WLOCK_ASSERT(inp);
2171 	return ((struct tcpcb *)inp->inp_ppcb);
2172 }
2173 
2174 int
2175 inp_ip_tos_get(const struct inpcb *inp)
2176 {
2177 
2178 	return (inp->inp_ip_tos);
2179 }
2180 
2181 void
2182 inp_ip_tos_set(struct inpcb *inp, int val)
2183 {
2184 
2185 	inp->inp_ip_tos = val;
2186 }
2187 
2188 void
2189 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2190     uint32_t *faddr, uint16_t *fp)
2191 {
2192 
2193 	INP_LOCK_ASSERT(inp);
2194 	*laddr = inp->inp_laddr.s_addr;
2195 	*faddr = inp->inp_faddr.s_addr;
2196 	*lp = inp->inp_lport;
2197 	*fp = inp->inp_fport;
2198 }
2199 
2200 struct inpcb *
2201 so_sotoinpcb(struct socket *so)
2202 {
2203 
2204 	return (sotoinpcb(so));
2205 }
2206 
2207 struct tcpcb *
2208 so_sototcpcb(struct socket *so)
2209 {
2210 
2211 	return (sototcpcb(so));
2212 }
2213 
2214 #ifdef DDB
2215 static void
2216 db_print_indent(int indent)
2217 {
2218 	int i;
2219 
2220 	for (i = 0; i < indent; i++)
2221 		db_printf(" ");
2222 }
2223 
2224 static void
2225 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2226 {
2227 	char faddr_str[48], laddr_str[48];
2228 
2229 	db_print_indent(indent);
2230 	db_printf("%s at %p\n", name, inc);
2231 
2232 	indent += 2;
2233 
2234 #ifdef INET6
2235 	if (inc->inc_flags & INC_ISIPV6) {
2236 		/* IPv6. */
2237 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
2238 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
2239 	} else
2240 #endif
2241 	{
2242 		/* IPv4. */
2243 		inet_ntoa_r(inc->inc_laddr, laddr_str);
2244 		inet_ntoa_r(inc->inc_faddr, faddr_str);
2245 	}
2246 	db_print_indent(indent);
2247 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2248 	    ntohs(inc->inc_lport));
2249 	db_print_indent(indent);
2250 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2251 	    ntohs(inc->inc_fport));
2252 }
2253 
2254 static void
2255 db_print_inpflags(int inp_flags)
2256 {
2257 	int comma;
2258 
2259 	comma = 0;
2260 	if (inp_flags & INP_RECVOPTS) {
2261 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2262 		comma = 1;
2263 	}
2264 	if (inp_flags & INP_RECVRETOPTS) {
2265 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2266 		comma = 1;
2267 	}
2268 	if (inp_flags & INP_RECVDSTADDR) {
2269 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2270 		comma = 1;
2271 	}
2272 	if (inp_flags & INP_HDRINCL) {
2273 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
2274 		comma = 1;
2275 	}
2276 	if (inp_flags & INP_HIGHPORT) {
2277 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2278 		comma = 1;
2279 	}
2280 	if (inp_flags & INP_LOWPORT) {
2281 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
2282 		comma = 1;
2283 	}
2284 	if (inp_flags & INP_ANONPORT) {
2285 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
2286 		comma = 1;
2287 	}
2288 	if (inp_flags & INP_RECVIF) {
2289 		db_printf("%sINP_RECVIF", comma ? ", " : "");
2290 		comma = 1;
2291 	}
2292 	if (inp_flags & INP_MTUDISC) {
2293 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
2294 		comma = 1;
2295 	}
2296 	if (inp_flags & INP_FAITH) {
2297 		db_printf("%sINP_FAITH", comma ? ", " : "");
2298 		comma = 1;
2299 	}
2300 	if (inp_flags & INP_RECVTTL) {
2301 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
2302 		comma = 1;
2303 	}
2304 	if (inp_flags & INP_DONTFRAG) {
2305 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2306 		comma = 1;
2307 	}
2308 	if (inp_flags & INP_RECVTOS) {
2309 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
2310 		comma = 1;
2311 	}
2312 	if (inp_flags & IN6P_IPV6_V6ONLY) {
2313 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
2314 		comma = 1;
2315 	}
2316 	if (inp_flags & IN6P_PKTINFO) {
2317 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
2318 		comma = 1;
2319 	}
2320 	if (inp_flags & IN6P_HOPLIMIT) {
2321 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
2322 		comma = 1;
2323 	}
2324 	if (inp_flags & IN6P_HOPOPTS) {
2325 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
2326 		comma = 1;
2327 	}
2328 	if (inp_flags & IN6P_DSTOPTS) {
2329 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
2330 		comma = 1;
2331 	}
2332 	if (inp_flags & IN6P_RTHDR) {
2333 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
2334 		comma = 1;
2335 	}
2336 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
2337 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
2338 		comma = 1;
2339 	}
2340 	if (inp_flags & IN6P_TCLASS) {
2341 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
2342 		comma = 1;
2343 	}
2344 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
2345 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
2346 		comma = 1;
2347 	}
2348 	if (inp_flags & INP_TIMEWAIT) {
2349 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
2350 		comma  = 1;
2351 	}
2352 	if (inp_flags & INP_ONESBCAST) {
2353 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
2354 		comma  = 1;
2355 	}
2356 	if (inp_flags & INP_DROPPED) {
2357 		db_printf("%sINP_DROPPED", comma ? ", " : "");
2358 		comma  = 1;
2359 	}
2360 	if (inp_flags & INP_SOCKREF) {
2361 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
2362 		comma  = 1;
2363 	}
2364 	if (inp_flags & IN6P_RFC2292) {
2365 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
2366 		comma = 1;
2367 	}
2368 	if (inp_flags & IN6P_MTU) {
2369 		db_printf("IN6P_MTU%s", comma ? ", " : "");
2370 		comma = 1;
2371 	}
2372 }
2373 
2374 static void
2375 db_print_inpvflag(u_char inp_vflag)
2376 {
2377 	int comma;
2378 
2379 	comma = 0;
2380 	if (inp_vflag & INP_IPV4) {
2381 		db_printf("%sINP_IPV4", comma ? ", " : "");
2382 		comma  = 1;
2383 	}
2384 	if (inp_vflag & INP_IPV6) {
2385 		db_printf("%sINP_IPV6", comma ? ", " : "");
2386 		comma  = 1;
2387 	}
2388 	if (inp_vflag & INP_IPV6PROTO) {
2389 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
2390 		comma  = 1;
2391 	}
2392 }
2393 
2394 static void
2395 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
2396 {
2397 
2398 	db_print_indent(indent);
2399 	db_printf("%s at %p\n", name, inp);
2400 
2401 	indent += 2;
2402 
2403 	db_print_indent(indent);
2404 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
2405 
2406 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
2407 
2408 	db_print_indent(indent);
2409 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
2410 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
2411 
2412 	db_print_indent(indent);
2413 	db_printf("inp_label: %p   inp_flags: 0x%x (",
2414 	   inp->inp_label, inp->inp_flags);
2415 	db_print_inpflags(inp->inp_flags);
2416 	db_printf(")\n");
2417 
2418 	db_print_indent(indent);
2419 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
2420 	    inp->inp_vflag);
2421 	db_print_inpvflag(inp->inp_vflag);
2422 	db_printf(")\n");
2423 
2424 	db_print_indent(indent);
2425 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
2426 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
2427 
2428 	db_print_indent(indent);
2429 #ifdef INET6
2430 	if (inp->inp_vflag & INP_IPV6) {
2431 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
2432 		    "in6p_moptions: %p\n", inp->in6p_options,
2433 		    inp->in6p_outputopts, inp->in6p_moptions);
2434 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
2435 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
2436 		    inp->in6p_hops);
2437 	} else
2438 #endif
2439 	{
2440 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
2441 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
2442 		    inp->inp_options, inp->inp_moptions);
2443 	}
2444 
2445 	db_print_indent(indent);
2446 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
2447 	    (uintmax_t)inp->inp_gencnt);
2448 }
2449 
2450 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
2451 {
2452 	struct inpcb *inp;
2453 
2454 	if (!have_addr) {
2455 		db_printf("usage: show inpcb <addr>\n");
2456 		return;
2457 	}
2458 	inp = (struct inpcb *)addr;
2459 
2460 	db_print_inpcb(inp, "inpcb", 0);
2461 }
2462 #endif /* DDB */
2463