1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * Copyright (c) 2021-2022 Gleb Smirnoff <glebius@FreeBSD.org> 9 * All rights reserved. 10 * 11 * Portions of this software were developed by Robert N. M. Watson under 12 * contract to Juniper Networks, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 39 */ 40 41 #include <sys/cdefs.h> 42 #include "opt_ddb.h" 43 #include "opt_ipsec.h" 44 #include "opt_inet.h" 45 #include "opt_inet6.h" 46 #include "opt_ratelimit.h" 47 #include "opt_route.h" 48 #include "opt_rss.h" 49 50 #include <sys/param.h> 51 #include <sys/hash.h> 52 #include <sys/systm.h> 53 #include <sys/libkern.h> 54 #include <sys/lock.h> 55 #include <sys/malloc.h> 56 #include <sys/mbuf.h> 57 #include <sys/eventhandler.h> 58 #include <sys/domain.h> 59 #include <sys/proc.h> 60 #include <sys/protosw.h> 61 #include <sys/smp.h> 62 #include <sys/smr.h> 63 #include <sys/socket.h> 64 #include <sys/socketvar.h> 65 #include <sys/sockio.h> 66 #include <sys/priv.h> 67 #include <sys/proc.h> 68 #include <sys/refcount.h> 69 #include <sys/jail.h> 70 #include <sys/kernel.h> 71 #include <sys/sysctl.h> 72 73 #ifdef DDB 74 #include <ddb/ddb.h> 75 #endif 76 77 #include <vm/uma.h> 78 #include <vm/vm.h> 79 80 #include <net/if.h> 81 #include <net/if_var.h> 82 #include <net/if_private.h> 83 #include <net/if_types.h> 84 #include <net/if_llatbl.h> 85 #include <net/route.h> 86 #include <net/rss_config.h> 87 #include <net/vnet.h> 88 89 #if defined(INET) || defined(INET6) 90 #include <netinet/in.h> 91 #include <netinet/in_pcb.h> 92 #include <netinet/in_pcb_var.h> 93 #include <netinet/tcp.h> 94 #ifdef INET 95 #include <netinet/in_var.h> 96 #include <netinet/in_fib.h> 97 #endif 98 #include <netinet/ip_var.h> 99 #ifdef INET6 100 #include <netinet/ip6.h> 101 #include <netinet6/in6_pcb.h> 102 #include <netinet6/in6_var.h> 103 #include <netinet6/ip6_var.h> 104 #endif /* INET6 */ 105 #include <net/route/nhop.h> 106 #endif 107 108 #include <netipsec/ipsec_support.h> 109 110 #include <security/mac/mac_framework.h> 111 112 #define INPCBLBGROUP_SIZMIN 8 113 #define INPCBLBGROUP_SIZMAX 256 114 115 #define INP_FREED 0x00000200 /* Went through in_pcbfree(). */ 116 #define INP_INLBGROUP 0x01000000 /* Inserted into inpcblbgroup. */ 117 118 /* 119 * These configure the range of local port addresses assigned to 120 * "unspecified" outgoing connections/packets/whatever. 121 */ 122 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 123 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 124 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 125 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 126 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 127 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 128 129 /* 130 * Reserved ports accessible only to root. There are significant 131 * security considerations that must be accounted for when changing these, 132 * but the security benefits can be great. Please be careful. 133 */ 134 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 135 VNET_DEFINE(int, ipport_reservedlow); 136 137 /* Enable random ephemeral port allocation by default. */ 138 VNET_DEFINE(int, ipport_randomized) = 1; 139 140 #ifdef INET 141 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 142 struct in_addr faddr, u_int fport_arg, 143 struct in_addr laddr, u_int lport_arg, 144 int lookupflags, uint8_t numa_domain); 145 146 #define RANGECHK(var, min, max) \ 147 if ((var) < (min)) { (var) = (min); } \ 148 else if ((var) > (max)) { (var) = (max); } 149 150 static int 151 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 152 { 153 int error; 154 155 error = sysctl_handle_int(oidp, arg1, arg2, req); 156 if (error == 0) { 157 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 158 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 159 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 160 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 161 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 162 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 163 } 164 return (error); 165 } 166 167 #undef RANGECHK 168 169 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, 170 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 171 "IP Ports"); 172 173 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 174 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 175 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", 176 ""); 177 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 178 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 179 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", 180 ""); 181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 182 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 183 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", 184 ""); 185 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 186 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 187 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", 188 ""); 189 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 190 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 191 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", 192 ""); 193 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 194 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 195 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", 196 ""); 197 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 198 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 199 &VNET_NAME(ipport_reservedhigh), 0, ""); 200 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 201 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 202 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 203 CTLFLAG_VNET | CTLFLAG_RW, 204 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 205 206 #ifdef RATELIMIT 207 counter_u64_t rate_limit_new; 208 counter_u64_t rate_limit_chg; 209 counter_u64_t rate_limit_active; 210 counter_u64_t rate_limit_alloc_fail; 211 counter_u64_t rate_limit_set_ok; 212 213 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 214 "IP Rate Limiting"); 215 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD, 216 &rate_limit_active, "Active rate limited connections"); 217 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD, 218 &rate_limit_alloc_fail, "Rate limited connection failures"); 219 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD, 220 &rate_limit_set_ok, "Rate limited setting succeeded"); 221 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD, 222 &rate_limit_new, "Total Rate limit new attempts"); 223 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD, 224 &rate_limit_chg, "Total Rate limited change attempts"); 225 #endif /* RATELIMIT */ 226 227 #endif /* INET */ 228 229 VNET_DEFINE(uint32_t, in_pcbhashseed); 230 static void 231 in_pcbhashseed_init(void) 232 { 233 234 V_in_pcbhashseed = arc4random(); 235 } 236 VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, 237 in_pcbhashseed_init, 0); 238 239 static void in_pcbremhash(struct inpcb *); 240 241 /* 242 * in_pcb.c: manage the Protocol Control Blocks. 243 * 244 * NOTE: It is assumed that most of these functions will be called with 245 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 246 * functions often modify hash chains or addresses in pcbs. 247 */ 248 249 static struct inpcblbgroup * 250 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, struct ucred *cred, 251 u_char vflag, uint16_t port, const union in_dependaddr *addr, int size, 252 uint8_t numa_domain) 253 { 254 struct inpcblbgroup *grp; 255 size_t bytes; 256 257 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 258 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 259 if (grp == NULL) 260 return (NULL); 261 grp->il_cred = crhold(cred); 262 grp->il_vflag = vflag; 263 grp->il_lport = port; 264 grp->il_numa_domain = numa_domain; 265 grp->il_dependladdr = *addr; 266 grp->il_inpsiz = size; 267 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 268 return (grp); 269 } 270 271 static void 272 in_pcblbgroup_free_deferred(epoch_context_t ctx) 273 { 274 struct inpcblbgroup *grp; 275 276 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); 277 crfree(grp->il_cred); 278 free(grp, M_PCB); 279 } 280 281 static void 282 in_pcblbgroup_free(struct inpcblbgroup *grp) 283 { 284 285 CK_LIST_REMOVE(grp, il_list); 286 NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx); 287 } 288 289 static struct inpcblbgroup * 290 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 291 struct inpcblbgroup *old_grp, int size) 292 { 293 struct inpcblbgroup *grp; 294 int i; 295 296 grp = in_pcblbgroup_alloc(hdr, old_grp->il_cred, old_grp->il_vflag, 297 old_grp->il_lport, &old_grp->il_dependladdr, size, 298 old_grp->il_numa_domain); 299 if (grp == NULL) 300 return (NULL); 301 302 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 303 ("invalid new local group size %d and old local group count %d", 304 grp->il_inpsiz, old_grp->il_inpcnt)); 305 306 for (i = 0; i < old_grp->il_inpcnt; ++i) 307 grp->il_inp[i] = old_grp->il_inp[i]; 308 grp->il_inpcnt = old_grp->il_inpcnt; 309 in_pcblbgroup_free(old_grp); 310 return (grp); 311 } 312 313 /* 314 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] 315 * and shrink group if possible. 316 */ 317 static void 318 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, 319 int i) 320 { 321 struct inpcblbgroup *grp, *new_grp; 322 323 grp = *grpp; 324 for (; i + 1 < grp->il_inpcnt; ++i) 325 grp->il_inp[i] = grp->il_inp[i + 1]; 326 grp->il_inpcnt--; 327 328 if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && 329 grp->il_inpcnt <= grp->il_inpsiz / 4) { 330 /* Shrink this group. */ 331 new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); 332 if (new_grp != NULL) 333 *grpp = new_grp; 334 } 335 } 336 337 /* 338 * Add PCB to load balance group for SO_REUSEPORT_LB option. 339 */ 340 static int 341 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain) 342 { 343 const static struct timeval interval = { 60, 0 }; 344 static struct timeval lastprint; 345 struct inpcbinfo *pcbinfo; 346 struct inpcblbgrouphead *hdr; 347 struct inpcblbgroup *grp; 348 uint32_t idx; 349 350 pcbinfo = inp->inp_pcbinfo; 351 352 INP_WLOCK_ASSERT(inp); 353 INP_HASH_WLOCK_ASSERT(pcbinfo); 354 355 #ifdef INET6 356 /* 357 * Don't allow IPv4 mapped INET6 wild socket. 358 */ 359 if ((inp->inp_vflag & INP_IPV4) && 360 inp->inp_laddr.s_addr == INADDR_ANY && 361 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 362 return (0); 363 } 364 #endif 365 366 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); 367 hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; 368 CK_LIST_FOREACH(grp, hdr, il_list) { 369 if (grp->il_cred->cr_prison == inp->inp_cred->cr_prison && 370 grp->il_vflag == inp->inp_vflag && 371 grp->il_lport == inp->inp_lport && 372 grp->il_numa_domain == numa_domain && 373 memcmp(&grp->il_dependladdr, 374 &inp->inp_inc.inc_ie.ie_dependladdr, 375 sizeof(grp->il_dependladdr)) == 0) { 376 break; 377 } 378 } 379 if (grp == NULL) { 380 /* Create new load balance group. */ 381 grp = in_pcblbgroup_alloc(hdr, inp->inp_cred, inp->inp_vflag, 382 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 383 INPCBLBGROUP_SIZMIN, numa_domain); 384 if (grp == NULL) 385 return (ENOBUFS); 386 } else if (grp->il_inpcnt == grp->il_inpsiz) { 387 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 388 if (ratecheck(&lastprint, &interval)) 389 printf("lb group port %d, limit reached\n", 390 ntohs(grp->il_lport)); 391 return (0); 392 } 393 394 /* Expand this local group. */ 395 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 396 if (grp == NULL) 397 return (ENOBUFS); 398 } 399 400 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 401 ("invalid local group size %d and count %d", grp->il_inpsiz, 402 grp->il_inpcnt)); 403 404 grp->il_inp[grp->il_inpcnt] = inp; 405 grp->il_inpcnt++; 406 inp->inp_flags |= INP_INLBGROUP; 407 return (0); 408 } 409 410 /* 411 * Remove PCB from load balance group. 412 */ 413 static void 414 in_pcbremlbgrouphash(struct inpcb *inp) 415 { 416 struct inpcbinfo *pcbinfo; 417 struct inpcblbgrouphead *hdr; 418 struct inpcblbgroup *grp; 419 int i; 420 421 pcbinfo = inp->inp_pcbinfo; 422 423 INP_WLOCK_ASSERT(inp); 424 MPASS(inp->inp_flags & INP_INLBGROUP); 425 INP_HASH_WLOCK_ASSERT(pcbinfo); 426 427 hdr = &pcbinfo->ipi_lbgrouphashbase[ 428 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 429 CK_LIST_FOREACH(grp, hdr, il_list) { 430 for (i = 0; i < grp->il_inpcnt; ++i) { 431 if (grp->il_inp[i] != inp) 432 continue; 433 434 if (grp->il_inpcnt == 1) { 435 /* We are the last, free this local group. */ 436 in_pcblbgroup_free(grp); 437 } else { 438 /* Pull up inpcbs, shrink group if possible. */ 439 in_pcblbgroup_reorder(hdr, &grp, i); 440 } 441 inp->inp_flags &= ~INP_INLBGROUP; 442 return; 443 } 444 } 445 KASSERT(0, ("%s: did not find %p", __func__, inp)); 446 } 447 448 int 449 in_pcblbgroup_numa(struct inpcb *inp, int arg) 450 { 451 struct inpcbinfo *pcbinfo; 452 struct inpcblbgrouphead *hdr; 453 struct inpcblbgroup *grp; 454 int err, i; 455 uint8_t numa_domain; 456 457 switch (arg) { 458 case TCP_REUSPORT_LB_NUMA_NODOM: 459 numa_domain = M_NODOM; 460 break; 461 case TCP_REUSPORT_LB_NUMA_CURDOM: 462 numa_domain = PCPU_GET(domain); 463 break; 464 default: 465 if (arg < 0 || arg >= vm_ndomains) 466 return (EINVAL); 467 numa_domain = arg; 468 } 469 470 err = 0; 471 pcbinfo = inp->inp_pcbinfo; 472 INP_WLOCK_ASSERT(inp); 473 INP_HASH_WLOCK(pcbinfo); 474 hdr = &pcbinfo->ipi_lbgrouphashbase[ 475 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 476 CK_LIST_FOREACH(grp, hdr, il_list) { 477 for (i = 0; i < grp->il_inpcnt; ++i) { 478 if (grp->il_inp[i] != inp) 479 continue; 480 481 if (grp->il_numa_domain == numa_domain) { 482 goto abort_with_hash_wlock; 483 } 484 485 /* Remove it from the old group. */ 486 in_pcbremlbgrouphash(inp); 487 488 /* Add it to the new group based on numa domain. */ 489 in_pcbinslbgrouphash(inp, numa_domain); 490 goto abort_with_hash_wlock; 491 } 492 } 493 err = ENOENT; 494 abort_with_hash_wlock: 495 INP_HASH_WUNLOCK(pcbinfo); 496 return (err); 497 } 498 499 /* Make sure it is safe to use hashinit(9) on CK_LIST. */ 500 CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb))); 501 502 /* 503 * Initialize an inpcbinfo - a per-VNET instance of connections db. 504 */ 505 void 506 in_pcbinfo_init(struct inpcbinfo *pcbinfo, struct inpcbstorage *pcbstor, 507 u_int hash_nelements, u_int porthash_nelements) 508 { 509 510 mtx_init(&pcbinfo->ipi_lock, pcbstor->ips_infolock_name, NULL, MTX_DEF); 511 mtx_init(&pcbinfo->ipi_hash_lock, pcbstor->ips_hashlock_name, 512 NULL, MTX_DEF); 513 #ifdef VIMAGE 514 pcbinfo->ipi_vnet = curvnet; 515 #endif 516 CK_LIST_INIT(&pcbinfo->ipi_listhead); 517 pcbinfo->ipi_count = 0; 518 pcbinfo->ipi_hash_exact = hashinit(hash_nelements, M_PCB, 519 &pcbinfo->ipi_hashmask); 520 pcbinfo->ipi_hash_wild = hashinit(hash_nelements, M_PCB, 521 &pcbinfo->ipi_hashmask); 522 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); 523 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 524 &pcbinfo->ipi_porthashmask); 525 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, 526 &pcbinfo->ipi_lbgrouphashmask); 527 pcbinfo->ipi_zone = pcbstor->ips_zone; 528 pcbinfo->ipi_portzone = pcbstor->ips_portzone; 529 pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone); 530 } 531 532 /* 533 * Destroy an inpcbinfo. 534 */ 535 void 536 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 537 { 538 539 KASSERT(pcbinfo->ipi_count == 0, 540 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 541 542 hashdestroy(pcbinfo->ipi_hash_exact, M_PCB, pcbinfo->ipi_hashmask); 543 hashdestroy(pcbinfo->ipi_hash_wild, M_PCB, pcbinfo->ipi_hashmask); 544 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 545 pcbinfo->ipi_porthashmask); 546 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 547 pcbinfo->ipi_lbgrouphashmask); 548 mtx_destroy(&pcbinfo->ipi_hash_lock); 549 mtx_destroy(&pcbinfo->ipi_lock); 550 } 551 552 /* 553 * Initialize a pcbstorage - per protocol zones to allocate inpcbs. 554 */ 555 static void inpcb_fini(void *, int); 556 void 557 in_pcbstorage_init(void *arg) 558 { 559 struct inpcbstorage *pcbstor = arg; 560 561 pcbstor->ips_zone = uma_zcreate(pcbstor->ips_zone_name, 562 pcbstor->ips_size, NULL, NULL, pcbstor->ips_pcbinit, 563 inpcb_fini, UMA_ALIGN_CACHE, UMA_ZONE_SMR); 564 pcbstor->ips_portzone = uma_zcreate(pcbstor->ips_portzone_name, 565 sizeof(struct inpcbport), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 566 uma_zone_set_smr(pcbstor->ips_portzone, 567 uma_zone_get_smr(pcbstor->ips_zone)); 568 } 569 570 /* 571 * Destroy a pcbstorage - used by unloadable protocols. 572 */ 573 void 574 in_pcbstorage_destroy(void *arg) 575 { 576 struct inpcbstorage *pcbstor = arg; 577 578 uma_zdestroy(pcbstor->ips_zone); 579 uma_zdestroy(pcbstor->ips_portzone); 580 } 581 582 /* 583 * Allocate a PCB and associate it with the socket. 584 * On success return with the PCB locked. 585 */ 586 int 587 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 588 { 589 struct inpcb *inp; 590 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 591 int error; 592 #endif 593 594 inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT); 595 if (inp == NULL) 596 return (ENOBUFS); 597 bzero(&inp->inp_start_zero, inp_zero_size); 598 #ifdef NUMA 599 inp->inp_numa_domain = M_NODOM; 600 #endif 601 inp->inp_pcbinfo = pcbinfo; 602 inp->inp_socket = so; 603 inp->inp_cred = crhold(so->so_cred); 604 inp->inp_inc.inc_fibnum = so->so_fibnum; 605 #ifdef MAC 606 error = mac_inpcb_init(inp, M_NOWAIT); 607 if (error != 0) 608 goto out; 609 mac_inpcb_create(so, inp); 610 #endif 611 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 612 error = ipsec_init_pcbpolicy(inp); 613 if (error != 0) { 614 #ifdef MAC 615 mac_inpcb_destroy(inp); 616 #endif 617 goto out; 618 } 619 #endif /*IPSEC*/ 620 #ifdef INET6 621 if (INP_SOCKAF(so) == AF_INET6) { 622 inp->inp_vflag |= INP_IPV6PROTO | INP_IPV6; 623 if (V_ip6_v6only) 624 inp->inp_flags |= IN6P_IPV6_V6ONLY; 625 #ifdef INET 626 else 627 inp->inp_vflag |= INP_IPV4; 628 #endif 629 if (V_ip6_auto_flowlabel) 630 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 631 inp->in6p_hops = -1; /* use kernel default */ 632 } 633 #endif 634 #if defined(INET) && defined(INET6) 635 else 636 #endif 637 #ifdef INET 638 inp->inp_vflag |= INP_IPV4; 639 #endif 640 inp->inp_smr = SMR_SEQ_INVALID; 641 642 /* 643 * Routes in inpcb's can cache L2 as well; they are guaranteed 644 * to be cleaned up. 645 */ 646 inp->inp_route.ro_flags = RT_LLE_CACHE; 647 refcount_init(&inp->inp_refcount, 1); /* Reference from socket. */ 648 INP_WLOCK(inp); 649 INP_INFO_WLOCK(pcbinfo); 650 pcbinfo->ipi_count++; 651 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 652 CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list); 653 INP_INFO_WUNLOCK(pcbinfo); 654 so->so_pcb = inp; 655 656 return (0); 657 658 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 659 out: 660 uma_zfree_smr(pcbinfo->ipi_zone, inp); 661 return (error); 662 #endif 663 } 664 665 #ifdef INET 666 int 667 in_pcbbind(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred) 668 { 669 int anonport, error; 670 671 KASSERT(sin == NULL || sin->sin_family == AF_INET, 672 ("%s: invalid address family for %p", __func__, sin)); 673 KASSERT(sin == NULL || sin->sin_len == sizeof(struct sockaddr_in), 674 ("%s: invalid address length for %p", __func__, sin)); 675 INP_WLOCK_ASSERT(inp); 676 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 677 678 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 679 return (EINVAL); 680 anonport = sin == NULL || sin->sin_port == 0; 681 error = in_pcbbind_setup(inp, sin, &inp->inp_laddr.s_addr, 682 &inp->inp_lport, cred); 683 if (error) 684 return (error); 685 if (in_pcbinshash(inp) != 0) { 686 inp->inp_laddr.s_addr = INADDR_ANY; 687 inp->inp_lport = 0; 688 return (EAGAIN); 689 } 690 if (anonport) 691 inp->inp_flags |= INP_ANONPORT; 692 return (0); 693 } 694 #endif 695 696 #if defined(INET) || defined(INET6) 697 /* 698 * Assign a local port like in_pcb_lport(), but also used with connect() 699 * and a foreign address and port. If fsa is non-NULL, choose a local port 700 * that is unused with those, otherwise one that is completely unused. 701 * lsa can be NULL for IPv6. 702 */ 703 int 704 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp, 705 struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags) 706 { 707 struct inpcbinfo *pcbinfo; 708 struct inpcb *tmpinp; 709 unsigned short *lastport; 710 int count, error; 711 u_short aux, first, last, lport; 712 #ifdef INET 713 struct in_addr laddr, faddr; 714 #endif 715 #ifdef INET6 716 struct in6_addr *laddr6, *faddr6; 717 #endif 718 719 pcbinfo = inp->inp_pcbinfo; 720 721 /* 722 * Because no actual state changes occur here, a global write lock on 723 * the pcbinfo isn't required. 724 */ 725 INP_LOCK_ASSERT(inp); 726 INP_HASH_LOCK_ASSERT(pcbinfo); 727 728 if (inp->inp_flags & INP_HIGHPORT) { 729 first = V_ipport_hifirstauto; /* sysctl */ 730 last = V_ipport_hilastauto; 731 lastport = &pcbinfo->ipi_lasthi; 732 } else if (inp->inp_flags & INP_LOWPORT) { 733 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); 734 if (error) 735 return (error); 736 first = V_ipport_lowfirstauto; /* 1023 */ 737 last = V_ipport_lowlastauto; /* 600 */ 738 lastport = &pcbinfo->ipi_lastlow; 739 } else { 740 first = V_ipport_firstauto; /* sysctl */ 741 last = V_ipport_lastauto; 742 lastport = &pcbinfo->ipi_lastport; 743 } 744 745 /* 746 * Instead of having two loops further down counting up or down 747 * make sure that first is always <= last and go with only one 748 * code path implementing all logic. 749 */ 750 if (first > last) { 751 aux = first; 752 first = last; 753 last = aux; 754 } 755 756 #ifdef INET 757 laddr.s_addr = INADDR_ANY; /* used by INET6+INET below too */ 758 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 759 if (lsa != NULL) 760 laddr = ((struct sockaddr_in *)lsa)->sin_addr; 761 if (fsa != NULL) 762 faddr = ((struct sockaddr_in *)fsa)->sin_addr; 763 } 764 #endif 765 #ifdef INET6 766 laddr6 = NULL; 767 if ((inp->inp_vflag & INP_IPV6) != 0) { 768 if (lsa != NULL) 769 laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr; 770 if (fsa != NULL) 771 faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr; 772 } 773 #endif 774 775 tmpinp = NULL; 776 lport = *lportp; 777 778 if (V_ipport_randomized) 779 *lastport = first + (arc4random() % (last - first)); 780 781 count = last - first; 782 783 do { 784 if (count-- < 0) /* completely used? */ 785 return (EADDRNOTAVAIL); 786 ++*lastport; 787 if (*lastport < first || *lastport > last) 788 *lastport = first; 789 lport = htons(*lastport); 790 791 if (fsa != NULL) { 792 #ifdef INET 793 if (lsa->sa_family == AF_INET) { 794 tmpinp = in_pcblookup_hash_locked(pcbinfo, 795 faddr, fport, laddr, lport, lookupflags, 796 M_NODOM); 797 } 798 #endif 799 #ifdef INET6 800 if (lsa->sa_family == AF_INET6) { 801 tmpinp = in6_pcblookup_hash_locked(pcbinfo, 802 faddr6, fport, laddr6, lport, lookupflags, 803 M_NODOM); 804 } 805 #endif 806 } else { 807 #ifdef INET6 808 if ((inp->inp_vflag & INP_IPV6) != 0) { 809 tmpinp = in6_pcblookup_local(pcbinfo, 810 &inp->in6p_laddr, lport, lookupflags, cred); 811 #ifdef INET 812 if (tmpinp == NULL && 813 (inp->inp_vflag & INP_IPV4)) 814 tmpinp = in_pcblookup_local(pcbinfo, 815 laddr, lport, lookupflags, cred); 816 #endif 817 } 818 #endif 819 #if defined(INET) && defined(INET6) 820 else 821 #endif 822 #ifdef INET 823 tmpinp = in_pcblookup_local(pcbinfo, laddr, 824 lport, lookupflags, cred); 825 #endif 826 } 827 } while (tmpinp != NULL); 828 829 *lportp = lport; 830 831 return (0); 832 } 833 834 /* 835 * Select a local port (number) to use. 836 */ 837 int 838 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 839 struct ucred *cred, int lookupflags) 840 { 841 struct sockaddr_in laddr; 842 843 if (laddrp) { 844 bzero(&laddr, sizeof(laddr)); 845 laddr.sin_family = AF_INET; 846 laddr.sin_addr = *laddrp; 847 } 848 return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr : 849 NULL, lportp, NULL, 0, cred, lookupflags)); 850 } 851 #endif /* INET || INET6 */ 852 853 #ifdef INET 854 /* 855 * Set up a bind operation on a PCB, performing port allocation 856 * as required, but do not actually modify the PCB. Callers can 857 * either complete the bind by setting inp_laddr/inp_lport and 858 * calling in_pcbinshash(), or they can just use the resulting 859 * port and address to authorise the sending of a once-off packet. 860 * 861 * On error, the values of *laddrp and *lportp are not changed. 862 */ 863 int 864 in_pcbbind_setup(struct inpcb *inp, struct sockaddr_in *sin, in_addr_t *laddrp, 865 u_short *lportp, struct ucred *cred) 866 { 867 struct socket *so = inp->inp_socket; 868 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 869 struct in_addr laddr; 870 u_short lport = 0; 871 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 872 int error; 873 874 /* 875 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here 876 * so that we don't have to add to the (already messy) code below. 877 */ 878 int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); 879 880 /* 881 * No state changes, so read locks are sufficient here. 882 */ 883 INP_LOCK_ASSERT(inp); 884 INP_HASH_LOCK_ASSERT(pcbinfo); 885 886 laddr.s_addr = *laddrp; 887 if (sin != NULL && laddr.s_addr != INADDR_ANY) 888 return (EINVAL); 889 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) 890 lookupflags = INPLOOKUP_WILDCARD; 891 if (sin == NULL) { 892 if ((error = prison_local_ip4(cred, &laddr)) != 0) 893 return (error); 894 } else { 895 KASSERT(sin->sin_family == AF_INET, 896 ("%s: invalid family for address %p", __func__, sin)); 897 KASSERT(sin->sin_len == sizeof(*sin), 898 ("%s: invalid length for address %p", __func__, sin)); 899 900 error = prison_local_ip4(cred, &sin->sin_addr); 901 if (error) 902 return (error); 903 if (sin->sin_port != *lportp) { 904 /* Don't allow the port to change. */ 905 if (*lportp != 0) 906 return (EINVAL); 907 lport = sin->sin_port; 908 } 909 /* NB: lport is left as 0 if the port isn't being changed. */ 910 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 911 /* 912 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 913 * allow complete duplication of binding if 914 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 915 * and a multicast address is bound on both 916 * new and duplicated sockets. 917 */ 918 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 919 reuseport = SO_REUSEADDR|SO_REUSEPORT; 920 /* 921 * XXX: How to deal with SO_REUSEPORT_LB here? 922 * Treat same as SO_REUSEPORT for now. 923 */ 924 if ((so->so_options & 925 (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) 926 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; 927 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 928 sin->sin_port = 0; /* yech... */ 929 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 930 /* 931 * Is the address a local IP address? 932 * If INP_BINDANY is set, then the socket may be bound 933 * to any endpoint address, local or not. 934 */ 935 if ((inp->inp_flags & INP_BINDANY) == 0 && 936 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 937 return (EADDRNOTAVAIL); 938 } 939 laddr = sin->sin_addr; 940 if (lport) { 941 struct inpcb *t; 942 943 /* GROSS */ 944 if (ntohs(lport) <= V_ipport_reservedhigh && 945 ntohs(lport) >= V_ipport_reservedlow && 946 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) 947 return (EACCES); 948 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 949 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { 950 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 951 lport, INPLOOKUP_WILDCARD, cred); 952 /* 953 * XXX 954 * This entire block sorely needs a rewrite. 955 */ 956 if (t != NULL && 957 (so->so_type != SOCK_STREAM || 958 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 959 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 960 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 961 (t->inp_socket->so_options & SO_REUSEPORT) || 962 (t->inp_socket->so_options & SO_REUSEPORT_LB) == 0) && 963 (inp->inp_cred->cr_uid != 964 t->inp_cred->cr_uid)) 965 return (EADDRINUSE); 966 } 967 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 968 lport, lookupflags, cred); 969 if (t != NULL && (reuseport & t->inp_socket->so_options) == 0 && 970 (reuseport_lb & t->inp_socket->so_options) == 0) { 971 #ifdef INET6 972 if (ntohl(sin->sin_addr.s_addr) != 973 INADDR_ANY || 974 ntohl(t->inp_laddr.s_addr) != 975 INADDR_ANY || 976 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 977 (t->inp_vflag & INP_IPV6PROTO) == 0) 978 #endif 979 return (EADDRINUSE); 980 } 981 } 982 } 983 if (*lportp != 0) 984 lport = *lportp; 985 if (lport == 0) { 986 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 987 if (error != 0) 988 return (error); 989 } 990 *laddrp = laddr.s_addr; 991 *lportp = lport; 992 return (0); 993 } 994 995 /* 996 * Connect from a socket to a specified address. 997 * Both address and port must be specified in argument sin. 998 * If don't have a local address for this socket yet, 999 * then pick one. 1000 */ 1001 int 1002 in_pcbconnect(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred, 1003 bool rehash __unused) 1004 { 1005 u_short lport, fport; 1006 in_addr_t laddr, faddr; 1007 int anonport, error; 1008 1009 INP_WLOCK_ASSERT(inp); 1010 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1011 KASSERT(in_nullhost(inp->inp_faddr), 1012 ("%s: inp is already connected", __func__)); 1013 1014 lport = inp->inp_lport; 1015 laddr = inp->inp_laddr.s_addr; 1016 anonport = (lport == 0); 1017 error = in_pcbconnect_setup(inp, sin, &laddr, &lport, &faddr, &fport, 1018 cred); 1019 if (error) 1020 return (error); 1021 1022 inp->inp_faddr.s_addr = faddr; 1023 inp->inp_fport = fport; 1024 1025 /* Do the initial binding of the local address if required. */ 1026 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 1027 inp->inp_lport = lport; 1028 inp->inp_laddr.s_addr = laddr; 1029 if (in_pcbinshash(inp) != 0) { 1030 inp->inp_laddr.s_addr = inp->inp_faddr.s_addr = 1031 INADDR_ANY; 1032 inp->inp_lport = inp->inp_fport = 0; 1033 return (EAGAIN); 1034 } 1035 } else { 1036 inp->inp_lport = lport; 1037 inp->inp_laddr.s_addr = laddr; 1038 if ((inp->inp_flags & INP_INHASHLIST) != 0) 1039 in_pcbrehash(inp); 1040 else 1041 in_pcbinshash(inp); 1042 } 1043 1044 if (anonport) 1045 inp->inp_flags |= INP_ANONPORT; 1046 return (0); 1047 } 1048 1049 /* 1050 * Do proper source address selection on an unbound socket in case 1051 * of connect. Take jails into account as well. 1052 */ 1053 int 1054 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 1055 struct ucred *cred) 1056 { 1057 struct ifaddr *ifa; 1058 struct sockaddr *sa; 1059 struct sockaddr_in *sin, dst; 1060 struct nhop_object *nh; 1061 int error; 1062 1063 NET_EPOCH_ASSERT(); 1064 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1065 1066 /* 1067 * Bypass source address selection and use the primary jail IP 1068 * if requested. 1069 */ 1070 if (!prison_saddrsel_ip4(cred, laddr)) 1071 return (0); 1072 1073 error = 0; 1074 1075 nh = NULL; 1076 bzero(&dst, sizeof(dst)); 1077 sin = &dst; 1078 sin->sin_family = AF_INET; 1079 sin->sin_len = sizeof(struct sockaddr_in); 1080 sin->sin_addr.s_addr = faddr->s_addr; 1081 1082 /* 1083 * If route is known our src addr is taken from the i/f, 1084 * else punt. 1085 * 1086 * Find out route to destination. 1087 */ 1088 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1089 nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr, 1090 0, NHR_NONE, 0); 1091 1092 /* 1093 * If we found a route, use the address corresponding to 1094 * the outgoing interface. 1095 * 1096 * Otherwise assume faddr is reachable on a directly connected 1097 * network and try to find a corresponding interface to take 1098 * the source address from. 1099 */ 1100 if (nh == NULL || nh->nh_ifp == NULL) { 1101 struct in_ifaddr *ia; 1102 struct ifnet *ifp; 1103 1104 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1105 inp->inp_socket->so_fibnum)); 1106 if (ia == NULL) { 1107 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1108 inp->inp_socket->so_fibnum)); 1109 } 1110 if (ia == NULL) { 1111 error = ENETUNREACH; 1112 goto done; 1113 } 1114 1115 if (!prison_flag(cred, PR_IP4)) { 1116 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1117 goto done; 1118 } 1119 1120 ifp = ia->ia_ifp; 1121 ia = NULL; 1122 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1123 sa = ifa->ifa_addr; 1124 if (sa->sa_family != AF_INET) 1125 continue; 1126 sin = (struct sockaddr_in *)sa; 1127 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1128 ia = (struct in_ifaddr *)ifa; 1129 break; 1130 } 1131 } 1132 if (ia != NULL) { 1133 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1134 goto done; 1135 } 1136 1137 /* 3. As a last resort return the 'default' jail address. */ 1138 error = prison_get_ip4(cred, laddr); 1139 goto done; 1140 } 1141 1142 /* 1143 * If the outgoing interface on the route found is not 1144 * a loopback interface, use the address from that interface. 1145 * In case of jails do those three steps: 1146 * 1. check if the interface address belongs to the jail. If so use it. 1147 * 2. check if we have any address on the outgoing interface 1148 * belonging to this jail. If so use it. 1149 * 3. as a last resort return the 'default' jail address. 1150 */ 1151 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) { 1152 struct in_ifaddr *ia; 1153 struct ifnet *ifp; 1154 1155 /* If not jailed, use the default returned. */ 1156 if (!prison_flag(cred, PR_IP4)) { 1157 ia = (struct in_ifaddr *)nh->nh_ifa; 1158 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1159 goto done; 1160 } 1161 1162 /* Jailed. */ 1163 /* 1. Check if the iface address belongs to the jail. */ 1164 sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr; 1165 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1166 ia = (struct in_ifaddr *)nh->nh_ifa; 1167 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1168 goto done; 1169 } 1170 1171 /* 1172 * 2. Check if we have any address on the outgoing interface 1173 * belonging to this jail. 1174 */ 1175 ia = NULL; 1176 ifp = nh->nh_ifp; 1177 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1178 sa = ifa->ifa_addr; 1179 if (sa->sa_family != AF_INET) 1180 continue; 1181 sin = (struct sockaddr_in *)sa; 1182 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1183 ia = (struct in_ifaddr *)ifa; 1184 break; 1185 } 1186 } 1187 if (ia != NULL) { 1188 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1189 goto done; 1190 } 1191 1192 /* 3. As a last resort return the 'default' jail address. */ 1193 error = prison_get_ip4(cred, laddr); 1194 goto done; 1195 } 1196 1197 /* 1198 * The outgoing interface is marked with 'loopback net', so a route 1199 * to ourselves is here. 1200 * Try to find the interface of the destination address and then 1201 * take the address from there. That interface is not necessarily 1202 * a loopback interface. 1203 * In case of jails, check that it is an address of the jail 1204 * and if we cannot find, fall back to the 'default' jail address. 1205 */ 1206 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) { 1207 struct in_ifaddr *ia; 1208 1209 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst), 1210 inp->inp_socket->so_fibnum)); 1211 if (ia == NULL) 1212 ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0, 1213 inp->inp_socket->so_fibnum)); 1214 if (ia == NULL) 1215 ia = ifatoia(ifa_ifwithaddr(sintosa(&dst))); 1216 1217 if (!prison_flag(cred, PR_IP4)) { 1218 if (ia == NULL) { 1219 error = ENETUNREACH; 1220 goto done; 1221 } 1222 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1223 goto done; 1224 } 1225 1226 /* Jailed. */ 1227 if (ia != NULL) { 1228 struct ifnet *ifp; 1229 1230 ifp = ia->ia_ifp; 1231 ia = NULL; 1232 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1233 sa = ifa->ifa_addr; 1234 if (sa->sa_family != AF_INET) 1235 continue; 1236 sin = (struct sockaddr_in *)sa; 1237 if (prison_check_ip4(cred, 1238 &sin->sin_addr) == 0) { 1239 ia = (struct in_ifaddr *)ifa; 1240 break; 1241 } 1242 } 1243 if (ia != NULL) { 1244 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1245 goto done; 1246 } 1247 } 1248 1249 /* 3. As a last resort return the 'default' jail address. */ 1250 error = prison_get_ip4(cred, laddr); 1251 goto done; 1252 } 1253 1254 done: 1255 if (error == 0 && laddr->s_addr == INADDR_ANY) 1256 return (EHOSTUNREACH); 1257 return (error); 1258 } 1259 1260 /* 1261 * Set up for a connect from a socket to the specified address. 1262 * On entry, *laddrp and *lportp should contain the current local 1263 * address and port for the PCB; these are updated to the values 1264 * that should be placed in inp_laddr and inp_lport to complete 1265 * the connect. 1266 * 1267 * On success, *faddrp and *fportp will be set to the remote address 1268 * and port. These are not updated in the error case. 1269 */ 1270 int 1271 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr_in *sin, 1272 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1273 struct ucred *cred) 1274 { 1275 struct in_ifaddr *ia; 1276 struct in_addr laddr, faddr; 1277 u_short lport, fport; 1278 int error; 1279 1280 KASSERT(sin->sin_family == AF_INET, 1281 ("%s: invalid address family for %p", __func__, sin)); 1282 KASSERT(sin->sin_len == sizeof(*sin), 1283 ("%s: invalid address length for %p", __func__, sin)); 1284 1285 /* 1286 * Because a global state change doesn't actually occur here, a read 1287 * lock is sufficient. 1288 */ 1289 NET_EPOCH_ASSERT(); 1290 INP_LOCK_ASSERT(inp); 1291 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1292 1293 if (sin->sin_port == 0) 1294 return (EADDRNOTAVAIL); 1295 laddr.s_addr = *laddrp; 1296 lport = *lportp; 1297 faddr = sin->sin_addr; 1298 fport = sin->sin_port; 1299 #ifdef ROUTE_MPATH 1300 if (CALC_FLOWID_OUTBOUND) { 1301 uint32_t hash_val, hash_type; 1302 1303 hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport, 1304 inp->inp_socket->so_proto->pr_protocol, &hash_type); 1305 1306 inp->inp_flowid = hash_val; 1307 inp->inp_flowtype = hash_type; 1308 } 1309 #endif 1310 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1311 /* 1312 * If the destination address is INADDR_ANY, 1313 * use the primary local address. 1314 * If the supplied address is INADDR_BROADCAST, 1315 * and the primary interface supports broadcast, 1316 * choose the broadcast address for that interface. 1317 */ 1318 if (faddr.s_addr == INADDR_ANY) { 1319 faddr = 1320 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1321 if ((error = prison_get_ip4(cred, &faddr)) != 0) 1322 return (error); 1323 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1324 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1325 IFF_BROADCAST) 1326 faddr = satosin(&CK_STAILQ_FIRST( 1327 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1328 } 1329 } 1330 if (laddr.s_addr == INADDR_ANY) { 1331 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1332 /* 1333 * If the destination address is multicast and an outgoing 1334 * interface has been set as a multicast option, prefer the 1335 * address of that interface as our source address. 1336 */ 1337 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1338 inp->inp_moptions != NULL) { 1339 struct ip_moptions *imo; 1340 struct ifnet *ifp; 1341 1342 imo = inp->inp_moptions; 1343 if (imo->imo_multicast_ifp != NULL) { 1344 ifp = imo->imo_multicast_ifp; 1345 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1346 if (ia->ia_ifp == ifp && 1347 prison_check_ip4(cred, 1348 &ia->ia_addr.sin_addr) == 0) 1349 break; 1350 } 1351 if (ia == NULL) 1352 error = EADDRNOTAVAIL; 1353 else { 1354 laddr = ia->ia_addr.sin_addr; 1355 error = 0; 1356 } 1357 } 1358 } 1359 if (error) 1360 return (error); 1361 } 1362 1363 if (lport != 0) { 1364 if (in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, 1365 fport, laddr, lport, 0, M_NODOM) != NULL) 1366 return (EADDRINUSE); 1367 } else { 1368 struct sockaddr_in lsin, fsin; 1369 1370 bzero(&lsin, sizeof(lsin)); 1371 bzero(&fsin, sizeof(fsin)); 1372 lsin.sin_family = AF_INET; 1373 lsin.sin_addr = laddr; 1374 fsin.sin_family = AF_INET; 1375 fsin.sin_addr = faddr; 1376 error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin, 1377 &lport, (struct sockaddr *)& fsin, fport, cred, 1378 INPLOOKUP_WILDCARD); 1379 if (error) 1380 return (error); 1381 } 1382 *laddrp = laddr.s_addr; 1383 *lportp = lport; 1384 *faddrp = faddr.s_addr; 1385 *fportp = fport; 1386 return (0); 1387 } 1388 1389 void 1390 in_pcbdisconnect(struct inpcb *inp) 1391 { 1392 1393 INP_WLOCK_ASSERT(inp); 1394 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1395 KASSERT(inp->inp_smr == SMR_SEQ_INVALID, 1396 ("%s: inp %p was already disconnected", __func__, inp)); 1397 1398 in_pcbremhash_locked(inp); 1399 1400 /* See the comment in in_pcbinshash(). */ 1401 inp->inp_smr = smr_advance(inp->inp_pcbinfo->ipi_smr); 1402 inp->inp_laddr.s_addr = INADDR_ANY; 1403 inp->inp_faddr.s_addr = INADDR_ANY; 1404 inp->inp_fport = 0; 1405 } 1406 #endif /* INET */ 1407 1408 /* 1409 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1410 * For most protocols, this will be invoked immediately prior to calling 1411 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1412 * socket, in which case in_pcbfree() is deferred. 1413 */ 1414 void 1415 in_pcbdetach(struct inpcb *inp) 1416 { 1417 1418 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1419 1420 #ifdef RATELIMIT 1421 if (inp->inp_snd_tag != NULL) 1422 in_pcbdetach_txrtlmt(inp); 1423 #endif 1424 inp->inp_socket->so_pcb = NULL; 1425 inp->inp_socket = NULL; 1426 } 1427 1428 /* 1429 * inpcb hash lookups are protected by SMR section. 1430 * 1431 * Once desired pcb has been found, switching from SMR section to a pcb 1432 * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK 1433 * here because SMR is a critical section. 1434 * In 99%+ cases inp_smr_lock() would obtain the lock immediately. 1435 */ 1436 void 1437 inp_lock(struct inpcb *inp, const inp_lookup_t lock) 1438 { 1439 1440 lock == INPLOOKUP_RLOCKPCB ? 1441 rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock); 1442 } 1443 1444 void 1445 inp_unlock(struct inpcb *inp, const inp_lookup_t lock) 1446 { 1447 1448 lock == INPLOOKUP_RLOCKPCB ? 1449 rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock); 1450 } 1451 1452 int 1453 inp_trylock(struct inpcb *inp, const inp_lookup_t lock) 1454 { 1455 1456 return (lock == INPLOOKUP_RLOCKPCB ? 1457 rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock)); 1458 } 1459 1460 static inline bool 1461 _inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock, const int ignflags) 1462 { 1463 1464 MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB); 1465 SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr); 1466 1467 if (__predict_true(inp_trylock(inp, lock))) { 1468 if (__predict_false(inp->inp_flags & ignflags)) { 1469 smr_exit(inp->inp_pcbinfo->ipi_smr); 1470 inp_unlock(inp, lock); 1471 return (false); 1472 } 1473 smr_exit(inp->inp_pcbinfo->ipi_smr); 1474 return (true); 1475 } 1476 1477 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1478 smr_exit(inp->inp_pcbinfo->ipi_smr); 1479 inp_lock(inp, lock); 1480 if (__predict_false(in_pcbrele(inp, lock))) 1481 return (false); 1482 /* 1483 * inp acquired through refcount & lock for sure didn't went 1484 * through uma_zfree(). However, it may have already went 1485 * through in_pcbfree() and has another reference, that 1486 * prevented its release by our in_pcbrele(). 1487 */ 1488 if (__predict_false(inp->inp_flags & ignflags)) { 1489 inp_unlock(inp, lock); 1490 return (false); 1491 } 1492 return (true); 1493 } else { 1494 smr_exit(inp->inp_pcbinfo->ipi_smr); 1495 return (false); 1496 } 1497 } 1498 1499 bool 1500 inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock) 1501 { 1502 1503 /* 1504 * in_pcblookup() family of functions ignore not only freed entries, 1505 * that may be found due to lockless access to the hash, but dropped 1506 * entries, too. 1507 */ 1508 return (_inp_smr_lock(inp, lock, INP_FREED | INP_DROPPED)); 1509 } 1510 1511 /* 1512 * inp_next() - inpcb hash/list traversal iterator 1513 * 1514 * Requires initialized struct inpcb_iterator for context. 1515 * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR(). 1516 * 1517 * - Iterator can have either write-lock or read-lock semantics, that can not 1518 * be changed later. 1519 * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through 1520 * a single hash slot. Note: only rip_input() does the latter. 1521 * - Iterator may have optional bool matching function. The matching function 1522 * will be executed for each inpcb in the SMR context, so it can not acquire 1523 * locks and can safely access only immutable fields of inpcb. 1524 * 1525 * A fresh initialized iterator has NULL inpcb in its context and that 1526 * means that inp_next() call would return the very first inpcb on the list 1527 * locked with desired semantic. In all following calls the context pointer 1528 * shall hold the current inpcb pointer. The KPI user is not supposed to 1529 * unlock the current inpcb! Upon end of traversal inp_next() will return NULL 1530 * and write NULL to its context. After end of traversal an iterator can be 1531 * reused. 1532 * 1533 * List traversals have the following features/constraints: 1534 * - New entries won't be seen, as they are always added to the head of a list. 1535 * - Removed entries won't stop traversal as long as they are not added to 1536 * a different list. This is violated by in_pcbrehash(). 1537 */ 1538 #define II_LIST_FIRST(ipi, hash) \ 1539 (((hash) == INP_ALL_LIST) ? \ 1540 CK_LIST_FIRST(&(ipi)->ipi_listhead) : \ 1541 CK_LIST_FIRST(&(ipi)->ipi_hash_exact[(hash)])) 1542 #define II_LIST_NEXT(inp, hash) \ 1543 (((hash) == INP_ALL_LIST) ? \ 1544 CK_LIST_NEXT((inp), inp_list) : \ 1545 CK_LIST_NEXT((inp), inp_hash_exact)) 1546 #define II_LOCK_ASSERT(inp, lock) \ 1547 rw_assert(&(inp)->inp_lock, \ 1548 (lock) == INPLOOKUP_RLOCKPCB ? RA_RLOCKED : RA_WLOCKED ) 1549 struct inpcb * 1550 inp_next(struct inpcb_iterator *ii) 1551 { 1552 const struct inpcbinfo *ipi = ii->ipi; 1553 inp_match_t *match = ii->match; 1554 void *ctx = ii->ctx; 1555 inp_lookup_t lock = ii->lock; 1556 int hash = ii->hash; 1557 struct inpcb *inp; 1558 1559 if (ii->inp == NULL) { /* First call. */ 1560 smr_enter(ipi->ipi_smr); 1561 /* This is unrolled CK_LIST_FOREACH(). */ 1562 for (inp = II_LIST_FIRST(ipi, hash); 1563 inp != NULL; 1564 inp = II_LIST_NEXT(inp, hash)) { 1565 if (match != NULL && (match)(inp, ctx) == false) 1566 continue; 1567 if (__predict_true(_inp_smr_lock(inp, lock, INP_FREED))) 1568 break; 1569 else { 1570 smr_enter(ipi->ipi_smr); 1571 MPASS(inp != II_LIST_FIRST(ipi, hash)); 1572 inp = II_LIST_FIRST(ipi, hash); 1573 if (inp == NULL) 1574 break; 1575 } 1576 } 1577 1578 if (inp == NULL) 1579 smr_exit(ipi->ipi_smr); 1580 else 1581 ii->inp = inp; 1582 1583 return (inp); 1584 } 1585 1586 /* Not a first call. */ 1587 smr_enter(ipi->ipi_smr); 1588 restart: 1589 inp = ii->inp; 1590 II_LOCK_ASSERT(inp, lock); 1591 next: 1592 inp = II_LIST_NEXT(inp, hash); 1593 if (inp == NULL) { 1594 smr_exit(ipi->ipi_smr); 1595 goto found; 1596 } 1597 1598 if (match != NULL && (match)(inp, ctx) == false) 1599 goto next; 1600 1601 if (__predict_true(inp_trylock(inp, lock))) { 1602 if (__predict_false(inp->inp_flags & INP_FREED)) { 1603 /* 1604 * Entries are never inserted in middle of a list, thus 1605 * as long as we are in SMR, we can continue traversal. 1606 * Jump to 'restart' should yield in the same result, 1607 * but could produce unnecessary looping. Could this 1608 * looping be unbound? 1609 */ 1610 inp_unlock(inp, lock); 1611 goto next; 1612 } else { 1613 smr_exit(ipi->ipi_smr); 1614 goto found; 1615 } 1616 } 1617 1618 /* 1619 * Can't obtain lock immediately, thus going hard. Once we exit the 1620 * SMR section we can no longer jump to 'next', and our only stable 1621 * anchoring point is ii->inp, which we keep locked for this case, so 1622 * we jump to 'restart'. 1623 */ 1624 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1625 smr_exit(ipi->ipi_smr); 1626 inp_lock(inp, lock); 1627 if (__predict_false(in_pcbrele(inp, lock))) { 1628 smr_enter(ipi->ipi_smr); 1629 goto restart; 1630 } 1631 /* 1632 * See comment in inp_smr_lock(). 1633 */ 1634 if (__predict_false(inp->inp_flags & INP_FREED)) { 1635 inp_unlock(inp, lock); 1636 smr_enter(ipi->ipi_smr); 1637 goto restart; 1638 } 1639 } else 1640 goto next; 1641 1642 found: 1643 inp_unlock(ii->inp, lock); 1644 ii->inp = inp; 1645 1646 return (ii->inp); 1647 } 1648 1649 /* 1650 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1651 * stability of an inpcb pointer despite the inpcb lock being released or 1652 * SMR section exited. 1653 * 1654 * To free a reference later in_pcbrele_(r|w)locked() must be performed. 1655 */ 1656 void 1657 in_pcbref(struct inpcb *inp) 1658 { 1659 u_int old __diagused; 1660 1661 old = refcount_acquire(&inp->inp_refcount); 1662 KASSERT(old > 0, ("%s: refcount 0", __func__)); 1663 } 1664 1665 /* 1666 * Drop a refcount on an inpcb elevated using in_pcbref(), potentially 1667 * freeing the pcb, if the reference was very last. 1668 */ 1669 bool 1670 in_pcbrele_rlocked(struct inpcb *inp) 1671 { 1672 1673 INP_RLOCK_ASSERT(inp); 1674 1675 if (!refcount_release(&inp->inp_refcount)) 1676 return (false); 1677 1678 MPASS(inp->inp_flags & INP_FREED); 1679 MPASS(inp->inp_socket == NULL); 1680 crfree(inp->inp_cred); 1681 #ifdef INVARIANTS 1682 inp->inp_cred = NULL; 1683 #endif 1684 INP_RUNLOCK(inp); 1685 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1686 return (true); 1687 } 1688 1689 bool 1690 in_pcbrele_wlocked(struct inpcb *inp) 1691 { 1692 1693 INP_WLOCK_ASSERT(inp); 1694 1695 if (!refcount_release(&inp->inp_refcount)) 1696 return (false); 1697 1698 MPASS(inp->inp_flags & INP_FREED); 1699 MPASS(inp->inp_socket == NULL); 1700 crfree(inp->inp_cred); 1701 #ifdef INVARIANTS 1702 inp->inp_cred = NULL; 1703 #endif 1704 INP_WUNLOCK(inp); 1705 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1706 return (true); 1707 } 1708 1709 bool 1710 in_pcbrele(struct inpcb *inp, const inp_lookup_t lock) 1711 { 1712 1713 return (lock == INPLOOKUP_RLOCKPCB ? 1714 in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp)); 1715 } 1716 1717 /* 1718 * Unconditionally schedule an inpcb to be freed by decrementing its 1719 * reference count, which should occur only after the inpcb has been detached 1720 * from its socket. If another thread holds a temporary reference (acquired 1721 * using in_pcbref()) then the free is deferred until that reference is 1722 * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked. 1723 * Almost all work, including removal from global lists, is done in this 1724 * context, where the pcbinfo lock is held. 1725 */ 1726 void 1727 in_pcbfree(struct inpcb *inp) 1728 { 1729 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1730 #ifdef INET 1731 struct ip_moptions *imo; 1732 #endif 1733 #ifdef INET6 1734 struct ip6_moptions *im6o; 1735 #endif 1736 1737 INP_WLOCK_ASSERT(inp); 1738 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1739 KASSERT((inp->inp_flags & INP_FREED) == 0, 1740 ("%s: called twice for pcb %p", __func__, inp)); 1741 1742 inp->inp_flags |= INP_FREED; 1743 INP_INFO_WLOCK(pcbinfo); 1744 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1745 pcbinfo->ipi_count--; 1746 CK_LIST_REMOVE(inp, inp_list); 1747 INP_INFO_WUNLOCK(pcbinfo); 1748 1749 if (inp->inp_flags & INP_INHASHLIST) 1750 in_pcbremhash(inp); 1751 1752 RO_INVALIDATE_CACHE(&inp->inp_route); 1753 #ifdef MAC 1754 mac_inpcb_destroy(inp); 1755 #endif 1756 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1757 if (inp->inp_sp != NULL) 1758 ipsec_delete_pcbpolicy(inp); 1759 #endif 1760 #ifdef INET 1761 if (inp->inp_options) 1762 (void)m_free(inp->inp_options); 1763 imo = inp->inp_moptions; 1764 #endif 1765 #ifdef INET6 1766 if (inp->inp_vflag & INP_IPV6PROTO) { 1767 ip6_freepcbopts(inp->in6p_outputopts); 1768 im6o = inp->in6p_moptions; 1769 } else 1770 im6o = NULL; 1771 #endif 1772 1773 if (__predict_false(in_pcbrele_wlocked(inp) == false)) { 1774 INP_WUNLOCK(inp); 1775 } 1776 #ifdef INET6 1777 ip6_freemoptions(im6o); 1778 #endif 1779 #ifdef INET 1780 inp_freemoptions(imo); 1781 #endif 1782 } 1783 1784 /* 1785 * Different protocols initialize their inpcbs differently - giving 1786 * different name to the lock. But they all are disposed the same. 1787 */ 1788 static void 1789 inpcb_fini(void *mem, int size) 1790 { 1791 struct inpcb *inp = mem; 1792 1793 INP_LOCK_DESTROY(inp); 1794 } 1795 1796 /* 1797 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1798 * port reservation, and preventing it from being returned by inpcb lookups. 1799 * 1800 * It is used by TCP to mark an inpcb as unused and avoid future packet 1801 * delivery or event notification when a socket remains open but TCP has 1802 * closed. This might occur as a result of a shutdown()-initiated TCP close 1803 * or a RST on the wire, and allows the port binding to be reused while still 1804 * maintaining the invariant that so_pcb always points to a valid inpcb until 1805 * in_pcbdetach(). 1806 * 1807 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1808 * in_pcbnotifyall() and in_pcbpurgeif0()? 1809 */ 1810 void 1811 in_pcbdrop(struct inpcb *inp) 1812 { 1813 1814 INP_WLOCK_ASSERT(inp); 1815 #ifdef INVARIANTS 1816 if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) 1817 MPASS(inp->inp_refcount > 1); 1818 #endif 1819 1820 inp->inp_flags |= INP_DROPPED; 1821 if (inp->inp_flags & INP_INHASHLIST) 1822 in_pcbremhash(inp); 1823 } 1824 1825 #ifdef INET 1826 /* 1827 * Common routines to return the socket addresses associated with inpcbs. 1828 */ 1829 struct sockaddr * 1830 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1831 { 1832 struct sockaddr_in *sin; 1833 1834 sin = malloc(sizeof *sin, M_SONAME, 1835 M_WAITOK | M_ZERO); 1836 sin->sin_family = AF_INET; 1837 sin->sin_len = sizeof(*sin); 1838 sin->sin_addr = *addr_p; 1839 sin->sin_port = port; 1840 1841 return (struct sockaddr *)sin; 1842 } 1843 1844 int 1845 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1846 { 1847 struct inpcb *inp; 1848 struct in_addr addr; 1849 in_port_t port; 1850 1851 inp = sotoinpcb(so); 1852 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1853 1854 INP_RLOCK(inp); 1855 port = inp->inp_lport; 1856 addr = inp->inp_laddr; 1857 INP_RUNLOCK(inp); 1858 1859 *nam = in_sockaddr(port, &addr); 1860 return 0; 1861 } 1862 1863 int 1864 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1865 { 1866 struct inpcb *inp; 1867 struct in_addr addr; 1868 in_port_t port; 1869 1870 inp = sotoinpcb(so); 1871 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1872 1873 INP_RLOCK(inp); 1874 port = inp->inp_fport; 1875 addr = inp->inp_faddr; 1876 INP_RUNLOCK(inp); 1877 1878 *nam = in_sockaddr(port, &addr); 1879 return 0; 1880 } 1881 1882 void 1883 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1884 struct inpcb *(*notify)(struct inpcb *, int)) 1885 { 1886 struct inpcb *inp, *inp_temp; 1887 1888 INP_INFO_WLOCK(pcbinfo); 1889 CK_LIST_FOREACH_SAFE(inp, &pcbinfo->ipi_listhead, inp_list, inp_temp) { 1890 INP_WLOCK(inp); 1891 #ifdef INET6 1892 if ((inp->inp_vflag & INP_IPV4) == 0) { 1893 INP_WUNLOCK(inp); 1894 continue; 1895 } 1896 #endif 1897 if (inp->inp_faddr.s_addr != faddr.s_addr || 1898 inp->inp_socket == NULL) { 1899 INP_WUNLOCK(inp); 1900 continue; 1901 } 1902 if ((*notify)(inp, errno)) 1903 INP_WUNLOCK(inp); 1904 } 1905 INP_INFO_WUNLOCK(pcbinfo); 1906 } 1907 1908 static bool 1909 inp_v4_multi_match(const struct inpcb *inp, void *v __unused) 1910 { 1911 1912 if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL) 1913 return (true); 1914 else 1915 return (false); 1916 } 1917 1918 void 1919 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1920 { 1921 struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB, 1922 inp_v4_multi_match, NULL); 1923 struct inpcb *inp; 1924 struct in_multi *inm; 1925 struct in_mfilter *imf; 1926 struct ip_moptions *imo; 1927 1928 IN_MULTI_LOCK_ASSERT(); 1929 1930 while ((inp = inp_next(&inpi)) != NULL) { 1931 INP_WLOCK_ASSERT(inp); 1932 1933 imo = inp->inp_moptions; 1934 /* 1935 * Unselect the outgoing interface if it is being 1936 * detached. 1937 */ 1938 if (imo->imo_multicast_ifp == ifp) 1939 imo->imo_multicast_ifp = NULL; 1940 1941 /* 1942 * Drop multicast group membership if we joined 1943 * through the interface being detached. 1944 * 1945 * XXX This can all be deferred to an epoch_call 1946 */ 1947 restart: 1948 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 1949 if ((inm = imf->imf_inm) == NULL) 1950 continue; 1951 if (inm->inm_ifp != ifp) 1952 continue; 1953 ip_mfilter_remove(&imo->imo_head, imf); 1954 in_leavegroup_locked(inm, NULL); 1955 ip_mfilter_free(imf); 1956 goto restart; 1957 } 1958 } 1959 } 1960 1961 /* 1962 * Lookup a PCB based on the local address and port. Caller must hold the 1963 * hash lock. No inpcb locks or references are acquired. 1964 */ 1965 #define INP_LOOKUP_MAPPED_PCB_COST 3 1966 struct inpcb * 1967 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1968 u_short lport, int lookupflags, struct ucred *cred) 1969 { 1970 struct inpcb *inp; 1971 #ifdef INET6 1972 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1973 #else 1974 int matchwild = 3; 1975 #endif 1976 int wildcard; 1977 1978 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1979 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1980 INP_HASH_LOCK_ASSERT(pcbinfo); 1981 1982 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1983 struct inpcbhead *head; 1984 /* 1985 * Look for an unconnected (wildcard foreign addr) PCB that 1986 * matches the local address and port we're looking for. 1987 */ 1988 head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport, 1989 pcbinfo->ipi_hashmask)]; 1990 CK_LIST_FOREACH(inp, head, inp_hash_wild) { 1991 #ifdef INET6 1992 /* XXX inp locking */ 1993 if ((inp->inp_vflag & INP_IPV4) == 0) 1994 continue; 1995 #endif 1996 if (inp->inp_faddr.s_addr == INADDR_ANY && 1997 inp->inp_laddr.s_addr == laddr.s_addr && 1998 inp->inp_lport == lport) { 1999 /* 2000 * Found? 2001 */ 2002 if (prison_equal_ip4(cred->cr_prison, 2003 inp->inp_cred->cr_prison)) 2004 return (inp); 2005 } 2006 } 2007 /* 2008 * Not found. 2009 */ 2010 return (NULL); 2011 } else { 2012 struct inpcbporthead *porthash; 2013 struct inpcbport *phd; 2014 struct inpcb *match = NULL; 2015 /* 2016 * Best fit PCB lookup. 2017 * 2018 * First see if this local port is in use by looking on the 2019 * port hash list. 2020 */ 2021 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 2022 pcbinfo->ipi_porthashmask)]; 2023 CK_LIST_FOREACH(phd, porthash, phd_hash) { 2024 if (phd->phd_port == lport) 2025 break; 2026 } 2027 if (phd != NULL) { 2028 /* 2029 * Port is in use by one or more PCBs. Look for best 2030 * fit. 2031 */ 2032 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 2033 wildcard = 0; 2034 if (!prison_equal_ip4(inp->inp_cred->cr_prison, 2035 cred->cr_prison)) 2036 continue; 2037 #ifdef INET6 2038 /* XXX inp locking */ 2039 if ((inp->inp_vflag & INP_IPV4) == 0) 2040 continue; 2041 /* 2042 * We never select the PCB that has 2043 * INP_IPV6 flag and is bound to :: if 2044 * we have another PCB which is bound 2045 * to 0.0.0.0. If a PCB has the 2046 * INP_IPV6 flag, then we set its cost 2047 * higher than IPv4 only PCBs. 2048 * 2049 * Note that the case only happens 2050 * when a socket is bound to ::, under 2051 * the condition that the use of the 2052 * mapped address is allowed. 2053 */ 2054 if ((inp->inp_vflag & INP_IPV6) != 0) 2055 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 2056 #endif 2057 if (inp->inp_faddr.s_addr != INADDR_ANY) 2058 wildcard++; 2059 if (inp->inp_laddr.s_addr != INADDR_ANY) { 2060 if (laddr.s_addr == INADDR_ANY) 2061 wildcard++; 2062 else if (inp->inp_laddr.s_addr != laddr.s_addr) 2063 continue; 2064 } else { 2065 if (laddr.s_addr != INADDR_ANY) 2066 wildcard++; 2067 } 2068 if (wildcard < matchwild) { 2069 match = inp; 2070 matchwild = wildcard; 2071 if (matchwild == 0) 2072 break; 2073 } 2074 } 2075 } 2076 return (match); 2077 } 2078 } 2079 #undef INP_LOOKUP_MAPPED_PCB_COST 2080 2081 static bool 2082 in_pcblookup_lb_numa_match(const struct inpcblbgroup *grp, int domain) 2083 { 2084 return (domain == M_NODOM || domain == grp->il_numa_domain); 2085 } 2086 2087 static struct inpcb * 2088 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 2089 const struct in_addr *faddr, uint16_t fport, const struct in_addr *laddr, 2090 uint16_t lport, int domain) 2091 { 2092 const struct inpcblbgrouphead *hdr; 2093 struct inpcblbgroup *grp; 2094 struct inpcblbgroup *jail_exact, *jail_wild, *local_exact, *local_wild; 2095 2096 INP_HASH_LOCK_ASSERT(pcbinfo); 2097 2098 hdr = &pcbinfo->ipi_lbgrouphashbase[ 2099 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; 2100 2101 /* 2102 * Search for an LB group match based on the following criteria: 2103 * - prefer jailed groups to non-jailed groups 2104 * - prefer exact source address matches to wildcard matches 2105 * - prefer groups bound to the specified NUMA domain 2106 */ 2107 jail_exact = jail_wild = local_exact = local_wild = NULL; 2108 CK_LIST_FOREACH(grp, hdr, il_list) { 2109 bool injail; 2110 2111 #ifdef INET6 2112 if (!(grp->il_vflag & INP_IPV4)) 2113 continue; 2114 #endif 2115 if (grp->il_lport != lport) 2116 continue; 2117 2118 injail = prison_flag(grp->il_cred, PR_IP4) != 0; 2119 if (injail && prison_check_ip4_locked(grp->il_cred->cr_prison, 2120 laddr) != 0) 2121 continue; 2122 2123 if (grp->il_laddr.s_addr == laddr->s_addr) { 2124 if (injail) { 2125 jail_exact = grp; 2126 if (in_pcblookup_lb_numa_match(grp, domain)) 2127 /* This is a perfect match. */ 2128 goto out; 2129 } else if (local_exact == NULL || 2130 in_pcblookup_lb_numa_match(grp, domain)) { 2131 local_exact = grp; 2132 } 2133 } else if (grp->il_laddr.s_addr == INADDR_ANY) { 2134 if (injail) { 2135 if (jail_wild == NULL || 2136 in_pcblookup_lb_numa_match(grp, domain)) 2137 jail_wild = grp; 2138 } else if (local_wild == NULL || 2139 in_pcblookup_lb_numa_match(grp, domain)) { 2140 local_wild = grp; 2141 } 2142 } 2143 } 2144 2145 if (jail_exact != NULL) 2146 grp = jail_exact; 2147 else if (jail_wild != NULL) 2148 grp = jail_wild; 2149 else if (local_exact != NULL) 2150 grp = local_exact; 2151 else 2152 grp = local_wild; 2153 if (grp == NULL) 2154 return (NULL); 2155 out: 2156 return (grp->il_inp[INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) % 2157 grp->il_inpcnt]); 2158 } 2159 2160 static bool 2161 in_pcblookup_exact_match(const struct inpcb *inp, struct in_addr faddr, 2162 u_short fport, struct in_addr laddr, u_short lport) 2163 { 2164 #ifdef INET6 2165 /* XXX inp locking */ 2166 if ((inp->inp_vflag & INP_IPV4) == 0) 2167 return (false); 2168 #endif 2169 if (inp->inp_faddr.s_addr == faddr.s_addr && 2170 inp->inp_laddr.s_addr == laddr.s_addr && 2171 inp->inp_fport == fport && 2172 inp->inp_lport == lport) 2173 return (true); 2174 return (false); 2175 } 2176 2177 static struct inpcb * 2178 in_pcblookup_hash_exact(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2179 u_short fport, struct in_addr laddr, u_short lport) 2180 { 2181 struct inpcbhead *head; 2182 struct inpcb *inp; 2183 2184 INP_HASH_LOCK_ASSERT(pcbinfo); 2185 2186 head = &pcbinfo->ipi_hash_exact[INP_PCBHASH(&faddr, lport, fport, 2187 pcbinfo->ipi_hashmask)]; 2188 CK_LIST_FOREACH(inp, head, inp_hash_exact) { 2189 if (in_pcblookup_exact_match(inp, faddr, fport, laddr, lport)) 2190 return (inp); 2191 } 2192 return (NULL); 2193 } 2194 2195 typedef enum { 2196 INPLOOKUP_MATCH_NONE = 0, 2197 INPLOOKUP_MATCH_WILD = 1, 2198 INPLOOKUP_MATCH_LADDR = 2, 2199 } inp_lookup_match_t; 2200 2201 static inp_lookup_match_t 2202 in_pcblookup_wild_match(const struct inpcb *inp, struct in_addr laddr, 2203 u_short lport) 2204 { 2205 #ifdef INET6 2206 /* XXX inp locking */ 2207 if ((inp->inp_vflag & INP_IPV4) == 0) 2208 return (INPLOOKUP_MATCH_NONE); 2209 #endif 2210 if (inp->inp_faddr.s_addr != INADDR_ANY || inp->inp_lport != lport) 2211 return (INPLOOKUP_MATCH_NONE); 2212 if (inp->inp_laddr.s_addr == INADDR_ANY) 2213 return (INPLOOKUP_MATCH_WILD); 2214 if (inp->inp_laddr.s_addr == laddr.s_addr) 2215 return (INPLOOKUP_MATCH_LADDR); 2216 return (INPLOOKUP_MATCH_NONE); 2217 } 2218 2219 #define INP_LOOKUP_AGAIN ((struct inpcb *)(uintptr_t)-1) 2220 2221 static struct inpcb * 2222 in_pcblookup_hash_wild_smr(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2223 u_short fport, struct in_addr laddr, u_short lport, 2224 const inp_lookup_t lockflags) 2225 { 2226 struct inpcbhead *head; 2227 struct inpcb *inp; 2228 2229 KASSERT(SMR_ENTERED(pcbinfo->ipi_smr), 2230 ("%s: not in SMR read section", __func__)); 2231 2232 head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport, 2233 pcbinfo->ipi_hashmask)]; 2234 CK_LIST_FOREACH(inp, head, inp_hash_wild) { 2235 inp_lookup_match_t match; 2236 2237 match = in_pcblookup_wild_match(inp, laddr, lport); 2238 if (match == INPLOOKUP_MATCH_NONE) 2239 continue; 2240 2241 if (__predict_true(inp_smr_lock(inp, lockflags))) { 2242 match = in_pcblookup_wild_match(inp, laddr, lport); 2243 if (match != INPLOOKUP_MATCH_NONE && 2244 prison_check_ip4_locked(inp->inp_cred->cr_prison, 2245 &laddr) == 0) 2246 return (inp); 2247 inp_unlock(inp, lockflags); 2248 } 2249 2250 /* 2251 * The matching socket disappeared out from under us. Fall back 2252 * to a serialized lookup. 2253 */ 2254 return (INP_LOOKUP_AGAIN); 2255 } 2256 return (NULL); 2257 } 2258 2259 static struct inpcb * 2260 in_pcblookup_hash_wild_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2261 u_short fport, struct in_addr laddr, u_short lport) 2262 { 2263 struct inpcbhead *head; 2264 struct inpcb *inp, *local_wild, *local_exact, *jail_wild; 2265 #ifdef INET6 2266 struct inpcb *local_wild_mapped; 2267 #endif 2268 2269 INP_HASH_LOCK_ASSERT(pcbinfo); 2270 2271 /* 2272 * Order of socket selection - we always prefer jails. 2273 * 1. jailed, non-wild. 2274 * 2. jailed, wild. 2275 * 3. non-jailed, non-wild. 2276 * 4. non-jailed, wild. 2277 */ 2278 head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport, 2279 pcbinfo->ipi_hashmask)]; 2280 local_wild = local_exact = jail_wild = NULL; 2281 #ifdef INET6 2282 local_wild_mapped = NULL; 2283 #endif 2284 CK_LIST_FOREACH(inp, head, inp_hash_wild) { 2285 inp_lookup_match_t match; 2286 bool injail; 2287 2288 match = in_pcblookup_wild_match(inp, laddr, lport); 2289 if (match == INPLOOKUP_MATCH_NONE) 2290 continue; 2291 2292 injail = prison_flag(inp->inp_cred, PR_IP4) != 0; 2293 if (injail) { 2294 if (prison_check_ip4_locked(inp->inp_cred->cr_prison, 2295 &laddr) != 0) 2296 continue; 2297 } else { 2298 if (local_exact != NULL) 2299 continue; 2300 } 2301 2302 if (match == INPLOOKUP_MATCH_LADDR) { 2303 if (injail) 2304 return (inp); 2305 local_exact = inp; 2306 } else { 2307 #ifdef INET6 2308 /* XXX inp locking, NULL check */ 2309 if (inp->inp_vflag & INP_IPV6PROTO) 2310 local_wild_mapped = inp; 2311 else 2312 #endif 2313 if (injail) 2314 jail_wild = inp; 2315 else 2316 local_wild = inp; 2317 } 2318 } 2319 if (jail_wild != NULL) 2320 return (jail_wild); 2321 if (local_exact != NULL) 2322 return (local_exact); 2323 if (local_wild != NULL) 2324 return (local_wild); 2325 #ifdef INET6 2326 if (local_wild_mapped != NULL) 2327 return (local_wild_mapped); 2328 #endif 2329 return (NULL); 2330 } 2331 2332 /* 2333 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2334 * that the caller has either locked the hash list, which usually happens 2335 * for bind(2) operations, or is in SMR section, which happens when sorting 2336 * out incoming packets. 2337 */ 2338 static struct inpcb * 2339 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2340 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2341 uint8_t numa_domain) 2342 { 2343 struct inpcb *inp; 2344 const u_short fport = fport_arg, lport = lport_arg; 2345 2346 KASSERT((lookupflags & ~INPLOOKUP_WILDCARD) == 0, 2347 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2348 KASSERT(faddr.s_addr != INADDR_ANY, 2349 ("%s: invalid foreign address", __func__)); 2350 KASSERT(laddr.s_addr != INADDR_ANY, 2351 ("%s: invalid local address", __func__)); 2352 INP_HASH_WLOCK_ASSERT(pcbinfo); 2353 2354 inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport); 2355 if (inp != NULL) 2356 return (inp); 2357 2358 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2359 inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport, 2360 &laddr, lport, numa_domain); 2361 if (inp == NULL) { 2362 inp = in_pcblookup_hash_wild_locked(pcbinfo, faddr, 2363 fport, laddr, lport); 2364 } 2365 } 2366 2367 return (inp); 2368 } 2369 2370 static struct inpcb * 2371 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2372 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2373 uint8_t numa_domain) 2374 { 2375 struct inpcb *inp; 2376 const inp_lookup_t lockflags = lookupflags & INPLOOKUP_LOCKMASK; 2377 2378 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2379 ("%s: LOCKPCB not set", __func__)); 2380 2381 INP_HASH_WLOCK(pcbinfo); 2382 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2383 lookupflags & ~INPLOOKUP_LOCKMASK, numa_domain); 2384 if (inp != NULL && !inp_trylock(inp, lockflags)) { 2385 in_pcbref(inp); 2386 INP_HASH_WUNLOCK(pcbinfo); 2387 inp_lock(inp, lockflags); 2388 if (in_pcbrele(inp, lockflags)) 2389 /* XXX-MJ or retry until we get a negative match? */ 2390 inp = NULL; 2391 } else { 2392 INP_HASH_WUNLOCK(pcbinfo); 2393 } 2394 return (inp); 2395 } 2396 2397 static struct inpcb * 2398 in_pcblookup_hash_smr(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2399 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2400 uint8_t numa_domain) 2401 { 2402 struct inpcb *inp; 2403 const inp_lookup_t lockflags = lookupflags & INPLOOKUP_LOCKMASK; 2404 const u_short fport = fport_arg, lport = lport_arg; 2405 2406 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2407 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2408 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2409 ("%s: LOCKPCB not set", __func__)); 2410 2411 smr_enter(pcbinfo->ipi_smr); 2412 inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport); 2413 if (inp != NULL) { 2414 if (__predict_true(inp_smr_lock(inp, lockflags))) { 2415 /* 2416 * Revalidate the 4-tuple, the socket could have been 2417 * disconnected. 2418 */ 2419 if (__predict_true(in_pcblookup_exact_match(inp, 2420 faddr, fport, laddr, lport))) 2421 return (inp); 2422 inp_unlock(inp, lockflags); 2423 } 2424 2425 /* 2426 * We failed to lock the inpcb, or its connection state changed 2427 * out from under us. Fall back to a precise search. 2428 */ 2429 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2430 lookupflags, numa_domain)); 2431 } 2432 2433 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2434 inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport, 2435 &laddr, lport, numa_domain); 2436 if (inp != NULL) { 2437 if (__predict_true(inp_smr_lock(inp, lockflags))) { 2438 if (__predict_true(in_pcblookup_wild_match(inp, 2439 laddr, lport) != INPLOOKUP_MATCH_NONE)) 2440 return (inp); 2441 inp_unlock(inp, lockflags); 2442 } 2443 inp = INP_LOOKUP_AGAIN; 2444 } else { 2445 inp = in_pcblookup_hash_wild_smr(pcbinfo, faddr, fport, 2446 laddr, lport, lockflags); 2447 } 2448 if (inp == INP_LOOKUP_AGAIN) { 2449 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, 2450 lport, lookupflags, numa_domain)); 2451 } 2452 } 2453 2454 if (inp == NULL) 2455 smr_exit(pcbinfo->ipi_smr); 2456 2457 return (inp); 2458 } 2459 2460 /* 2461 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2462 * from which a pre-calculated hash value may be extracted. 2463 */ 2464 struct inpcb * 2465 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2466 struct in_addr laddr, u_int lport, int lookupflags, 2467 struct ifnet *ifp __unused) 2468 { 2469 return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport, 2470 lookupflags, M_NODOM)); 2471 } 2472 2473 struct inpcb * 2474 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2475 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2476 struct ifnet *ifp __unused, struct mbuf *m) 2477 { 2478 return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport, 2479 lookupflags, m->m_pkthdr.numa_domain)); 2480 } 2481 #endif /* INET */ 2482 2483 static bool 2484 in_pcbjailed(const struct inpcb *inp, unsigned int flag) 2485 { 2486 return (prison_flag(inp->inp_cred, flag) != 0); 2487 } 2488 2489 /* 2490 * Insert the PCB into a hash chain using ordering rules which ensure that 2491 * in_pcblookup_hash_wild_*() always encounter the highest-ranking PCB first. 2492 * 2493 * Specifically, keep jailed PCBs in front of non-jailed PCBs, and keep PCBs 2494 * with exact local addresses ahead of wildcard PCBs. Unbound v4-mapped v6 PCBs 2495 * always appear last no matter whether they are jailed. 2496 */ 2497 static void 2498 _in_pcbinshash_wild(struct inpcbhead *pcbhash, struct inpcb *inp) 2499 { 2500 struct inpcb *last; 2501 bool bound, injail; 2502 2503 INP_LOCK_ASSERT(inp); 2504 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 2505 2506 last = NULL; 2507 bound = inp->inp_laddr.s_addr != INADDR_ANY; 2508 if (!bound && (inp->inp_vflag & INP_IPV6PROTO) != 0) { 2509 CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) { 2510 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) { 2511 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild); 2512 return; 2513 } 2514 } 2515 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild); 2516 return; 2517 } 2518 2519 injail = in_pcbjailed(inp, PR_IP4); 2520 if (!injail) { 2521 CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) { 2522 if (!in_pcbjailed(last, PR_IP4)) 2523 break; 2524 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) { 2525 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild); 2526 return; 2527 } 2528 } 2529 } else if (!CK_LIST_EMPTY(pcbhash) && 2530 !in_pcbjailed(CK_LIST_FIRST(pcbhash), PR_IP4)) { 2531 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild); 2532 return; 2533 } 2534 if (!bound) { 2535 CK_LIST_FOREACH_FROM(last, pcbhash, inp_hash_wild) { 2536 if (last->inp_laddr.s_addr == INADDR_ANY) 2537 break; 2538 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) { 2539 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild); 2540 return; 2541 } 2542 } 2543 } 2544 if (last == NULL) 2545 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild); 2546 else 2547 CK_LIST_INSERT_BEFORE(last, inp, inp_hash_wild); 2548 } 2549 2550 #ifdef INET6 2551 /* 2552 * See the comment above _in_pcbinshash_wild(). 2553 */ 2554 static void 2555 _in6_pcbinshash_wild(struct inpcbhead *pcbhash, struct inpcb *inp) 2556 { 2557 struct inpcb *last; 2558 bool bound, injail; 2559 2560 INP_LOCK_ASSERT(inp); 2561 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 2562 2563 last = NULL; 2564 bound = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr); 2565 injail = in_pcbjailed(inp, PR_IP6); 2566 if (!injail) { 2567 CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) { 2568 if (!in_pcbjailed(last, PR_IP6)) 2569 break; 2570 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) { 2571 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild); 2572 return; 2573 } 2574 } 2575 } else if (!CK_LIST_EMPTY(pcbhash) && 2576 !in_pcbjailed(CK_LIST_FIRST(pcbhash), PR_IP6)) { 2577 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild); 2578 return; 2579 } 2580 if (!bound) { 2581 CK_LIST_FOREACH_FROM(last, pcbhash, inp_hash_wild) { 2582 if (IN6_IS_ADDR_UNSPECIFIED(&last->in6p_laddr)) 2583 break; 2584 if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) { 2585 CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild); 2586 return; 2587 } 2588 } 2589 } 2590 if (last == NULL) 2591 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild); 2592 else 2593 CK_LIST_INSERT_BEFORE(last, inp, inp_hash_wild); 2594 } 2595 #endif 2596 2597 /* 2598 * Insert PCB onto various hash lists. 2599 */ 2600 int 2601 in_pcbinshash(struct inpcb *inp) 2602 { 2603 struct inpcbhead *pcbhash; 2604 struct inpcbporthead *pcbporthash; 2605 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2606 struct inpcbport *phd; 2607 uint32_t hash; 2608 bool connected; 2609 2610 INP_WLOCK_ASSERT(inp); 2611 INP_HASH_WLOCK_ASSERT(pcbinfo); 2612 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2613 ("in_pcbinshash: INP_INHASHLIST")); 2614 2615 #ifdef INET6 2616 if (inp->inp_vflag & INP_IPV6) { 2617 hash = INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport, 2618 inp->inp_fport, pcbinfo->ipi_hashmask); 2619 connected = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr); 2620 } else 2621 #endif 2622 { 2623 hash = INP_PCBHASH(&inp->inp_faddr, inp->inp_lport, 2624 inp->inp_fport, pcbinfo->ipi_hashmask); 2625 connected = !in_nullhost(inp->inp_faddr); 2626 } 2627 2628 if (connected) 2629 pcbhash = &pcbinfo->ipi_hash_exact[hash]; 2630 else 2631 pcbhash = &pcbinfo->ipi_hash_wild[hash]; 2632 2633 pcbporthash = &pcbinfo->ipi_porthashbase[ 2634 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2635 2636 /* 2637 * Add entry to load balance group. 2638 * Only do this if SO_REUSEPORT_LB is set. 2639 */ 2640 if ((inp->inp_socket->so_options & SO_REUSEPORT_LB) != 0) { 2641 int error = in_pcbinslbgrouphash(inp, M_NODOM); 2642 if (error != 0) 2643 return (error); 2644 } 2645 2646 /* 2647 * Go through port list and look for a head for this lport. 2648 */ 2649 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2650 if (phd->phd_port == inp->inp_lport) 2651 break; 2652 } 2653 2654 /* 2655 * If none exists, malloc one and tack it on. 2656 */ 2657 if (phd == NULL) { 2658 phd = uma_zalloc_smr(pcbinfo->ipi_portzone, M_NOWAIT); 2659 if (phd == NULL) { 2660 if ((inp->inp_flags & INP_INLBGROUP) != 0) 2661 in_pcbremlbgrouphash(inp); 2662 return (ENOMEM); 2663 } 2664 phd->phd_port = inp->inp_lport; 2665 CK_LIST_INIT(&phd->phd_pcblist); 2666 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2667 } 2668 inp->inp_phd = phd; 2669 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2670 2671 /* 2672 * The PCB may have been disconnected in the past. Before we can safely 2673 * make it visible in the hash table, we must wait for all readers which 2674 * may be traversing this PCB to finish. 2675 */ 2676 if (inp->inp_smr != SMR_SEQ_INVALID) { 2677 smr_wait(pcbinfo->ipi_smr, inp->inp_smr); 2678 inp->inp_smr = SMR_SEQ_INVALID; 2679 } 2680 2681 if (connected) 2682 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_exact); 2683 else { 2684 #ifdef INET6 2685 if ((inp->inp_vflag & INP_IPV6) != 0) 2686 _in6_pcbinshash_wild(pcbhash, inp); 2687 else 2688 #endif 2689 _in_pcbinshash_wild(pcbhash, inp); 2690 } 2691 inp->inp_flags |= INP_INHASHLIST; 2692 2693 return (0); 2694 } 2695 2696 void 2697 in_pcbremhash_locked(struct inpcb *inp) 2698 { 2699 struct inpcbport *phd = inp->inp_phd; 2700 2701 INP_WLOCK_ASSERT(inp); 2702 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 2703 MPASS(inp->inp_flags & INP_INHASHLIST); 2704 2705 if ((inp->inp_flags & INP_INLBGROUP) != 0) 2706 in_pcbremlbgrouphash(inp); 2707 #ifdef INET6 2708 if (inp->inp_vflag & INP_IPV6) { 2709 if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) 2710 CK_LIST_REMOVE(inp, inp_hash_wild); 2711 else 2712 CK_LIST_REMOVE(inp, inp_hash_exact); 2713 } else 2714 #endif 2715 { 2716 if (in_nullhost(inp->inp_faddr)) 2717 CK_LIST_REMOVE(inp, inp_hash_wild); 2718 else 2719 CK_LIST_REMOVE(inp, inp_hash_exact); 2720 } 2721 CK_LIST_REMOVE(inp, inp_portlist); 2722 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 2723 CK_LIST_REMOVE(phd, phd_hash); 2724 uma_zfree_smr(inp->inp_pcbinfo->ipi_portzone, phd); 2725 } 2726 inp->inp_flags &= ~INP_INHASHLIST; 2727 } 2728 2729 static void 2730 in_pcbremhash(struct inpcb *inp) 2731 { 2732 INP_HASH_WLOCK(inp->inp_pcbinfo); 2733 in_pcbremhash_locked(inp); 2734 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 2735 } 2736 2737 /* 2738 * Move PCB to the proper hash bucket when { faddr, fport } have been 2739 * changed. NOTE: This does not handle the case of the lport changing (the 2740 * hashed port list would have to be updated as well), so the lport must 2741 * not change after in_pcbinshash() has been called. 2742 */ 2743 void 2744 in_pcbrehash(struct inpcb *inp) 2745 { 2746 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2747 struct inpcbhead *head; 2748 uint32_t hash; 2749 bool connected; 2750 2751 INP_WLOCK_ASSERT(inp); 2752 INP_HASH_WLOCK_ASSERT(pcbinfo); 2753 KASSERT(inp->inp_flags & INP_INHASHLIST, 2754 ("%s: !INP_INHASHLIST", __func__)); 2755 KASSERT(inp->inp_smr == SMR_SEQ_INVALID, 2756 ("%s: inp was disconnected", __func__)); 2757 2758 #ifdef INET6 2759 if (inp->inp_vflag & INP_IPV6) { 2760 hash = INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport, 2761 inp->inp_fport, pcbinfo->ipi_hashmask); 2762 connected = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr); 2763 } else 2764 #endif 2765 { 2766 hash = INP_PCBHASH(&inp->inp_faddr, inp->inp_lport, 2767 inp->inp_fport, pcbinfo->ipi_hashmask); 2768 connected = !in_nullhost(inp->inp_faddr); 2769 } 2770 2771 /* 2772 * When rehashing, the caller must ensure that either the new or the old 2773 * foreign address was unspecified. 2774 */ 2775 if (connected) 2776 CK_LIST_REMOVE(inp, inp_hash_wild); 2777 else 2778 CK_LIST_REMOVE(inp, inp_hash_exact); 2779 2780 if (connected) { 2781 head = &pcbinfo->ipi_hash_exact[hash]; 2782 CK_LIST_INSERT_HEAD(head, inp, inp_hash_exact); 2783 } else { 2784 head = &pcbinfo->ipi_hash_wild[hash]; 2785 CK_LIST_INSERT_HEAD(head, inp, inp_hash_wild); 2786 } 2787 } 2788 2789 /* 2790 * Check for alternatives when higher level complains 2791 * about service problems. For now, invalidate cached 2792 * routing information. If the route was created dynamically 2793 * (by a redirect), time to try a default gateway again. 2794 */ 2795 void 2796 in_losing(struct inpcb *inp) 2797 { 2798 2799 RO_INVALIDATE_CACHE(&inp->inp_route); 2800 return; 2801 } 2802 2803 /* 2804 * A set label operation has occurred at the socket layer, propagate the 2805 * label change into the in_pcb for the socket. 2806 */ 2807 void 2808 in_pcbsosetlabel(struct socket *so) 2809 { 2810 #ifdef MAC 2811 struct inpcb *inp; 2812 2813 inp = sotoinpcb(so); 2814 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2815 2816 INP_WLOCK(inp); 2817 SOCK_LOCK(so); 2818 mac_inpcb_sosetlabel(so, inp); 2819 SOCK_UNLOCK(so); 2820 INP_WUNLOCK(inp); 2821 #endif 2822 } 2823 2824 void 2825 inp_wlock(struct inpcb *inp) 2826 { 2827 2828 INP_WLOCK(inp); 2829 } 2830 2831 void 2832 inp_wunlock(struct inpcb *inp) 2833 { 2834 2835 INP_WUNLOCK(inp); 2836 } 2837 2838 void 2839 inp_rlock(struct inpcb *inp) 2840 { 2841 2842 INP_RLOCK(inp); 2843 } 2844 2845 void 2846 inp_runlock(struct inpcb *inp) 2847 { 2848 2849 INP_RUNLOCK(inp); 2850 } 2851 2852 #ifdef INVARIANT_SUPPORT 2853 void 2854 inp_lock_assert(struct inpcb *inp) 2855 { 2856 2857 INP_WLOCK_ASSERT(inp); 2858 } 2859 2860 void 2861 inp_unlock_assert(struct inpcb *inp) 2862 { 2863 2864 INP_UNLOCK_ASSERT(inp); 2865 } 2866 #endif 2867 2868 void 2869 inp_apply_all(struct inpcbinfo *pcbinfo, 2870 void (*func)(struct inpcb *, void *), void *arg) 2871 { 2872 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, 2873 INPLOOKUP_WLOCKPCB); 2874 struct inpcb *inp; 2875 2876 while ((inp = inp_next(&inpi)) != NULL) 2877 func(inp, arg); 2878 } 2879 2880 struct socket * 2881 inp_inpcbtosocket(struct inpcb *inp) 2882 { 2883 2884 INP_WLOCK_ASSERT(inp); 2885 return (inp->inp_socket); 2886 } 2887 2888 struct tcpcb * 2889 inp_inpcbtotcpcb(struct inpcb *inp) 2890 { 2891 2892 INP_WLOCK_ASSERT(inp); 2893 return ((struct tcpcb *)inp->inp_ppcb); 2894 } 2895 2896 int 2897 inp_ip_tos_get(const struct inpcb *inp) 2898 { 2899 2900 return (inp->inp_ip_tos); 2901 } 2902 2903 void 2904 inp_ip_tos_set(struct inpcb *inp, int val) 2905 { 2906 2907 inp->inp_ip_tos = val; 2908 } 2909 2910 void 2911 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2912 uint32_t *faddr, uint16_t *fp) 2913 { 2914 2915 INP_LOCK_ASSERT(inp); 2916 *laddr = inp->inp_laddr.s_addr; 2917 *faddr = inp->inp_faddr.s_addr; 2918 *lp = inp->inp_lport; 2919 *fp = inp->inp_fport; 2920 } 2921 2922 struct inpcb * 2923 so_sotoinpcb(struct socket *so) 2924 { 2925 2926 return (sotoinpcb(so)); 2927 } 2928 2929 /* 2930 * Create an external-format (``xinpcb'') structure using the information in 2931 * the kernel-format in_pcb structure pointed to by inp. This is done to 2932 * reduce the spew of irrelevant information over this interface, to isolate 2933 * user code from changes in the kernel structure, and potentially to provide 2934 * information-hiding if we decide that some of this information should be 2935 * hidden from users. 2936 */ 2937 void 2938 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2939 { 2940 2941 bzero(xi, sizeof(*xi)); 2942 xi->xi_len = sizeof(struct xinpcb); 2943 if (inp->inp_socket) 2944 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2945 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2946 xi->inp_gencnt = inp->inp_gencnt; 2947 xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; 2948 xi->inp_flow = inp->inp_flow; 2949 xi->inp_flowid = inp->inp_flowid; 2950 xi->inp_flowtype = inp->inp_flowtype; 2951 xi->inp_flags = inp->inp_flags; 2952 xi->inp_flags2 = inp->inp_flags2; 2953 xi->in6p_cksum = inp->in6p_cksum; 2954 xi->in6p_hops = inp->in6p_hops; 2955 xi->inp_ip_tos = inp->inp_ip_tos; 2956 xi->inp_vflag = inp->inp_vflag; 2957 xi->inp_ip_ttl = inp->inp_ip_ttl; 2958 xi->inp_ip_p = inp->inp_ip_p; 2959 xi->inp_ip_minttl = inp->inp_ip_minttl; 2960 } 2961 2962 int 2963 sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo, 2964 int (*ctloutput_set)(struct inpcb *, struct sockopt *)) 2965 { 2966 struct sockopt sopt; 2967 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, 2968 INPLOOKUP_WLOCKPCB); 2969 struct inpcb *inp; 2970 struct sockopt_parameters *params; 2971 struct socket *so; 2972 int error; 2973 char buf[1024]; 2974 2975 if (req->oldptr != NULL || req->oldlen != 0) 2976 return (EINVAL); 2977 if (req->newptr == NULL) 2978 return (EPERM); 2979 if (req->newlen > sizeof(buf)) 2980 return (ENOMEM); 2981 error = SYSCTL_IN(req, buf, req->newlen); 2982 if (error != 0) 2983 return (error); 2984 if (req->newlen < sizeof(struct sockopt_parameters)) 2985 return (EINVAL); 2986 params = (struct sockopt_parameters *)buf; 2987 sopt.sopt_level = params->sop_level; 2988 sopt.sopt_name = params->sop_optname; 2989 sopt.sopt_dir = SOPT_SET; 2990 sopt.sopt_val = params->sop_optval; 2991 sopt.sopt_valsize = req->newlen - sizeof(struct sockopt_parameters); 2992 sopt.sopt_td = NULL; 2993 #ifdef INET6 2994 if (params->sop_inc.inc_flags & INC_ISIPV6) { 2995 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_laddr)) 2996 params->sop_inc.inc6_laddr.s6_addr16[1] = 2997 htons(params->sop_inc.inc6_zoneid & 0xffff); 2998 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_faddr)) 2999 params->sop_inc.inc6_faddr.s6_addr16[1] = 3000 htons(params->sop_inc.inc6_zoneid & 0xffff); 3001 } 3002 #endif 3003 if (params->sop_inc.inc_lport != htons(0)) { 3004 if (params->sop_inc.inc_fport == htons(0)) 3005 inpi.hash = INP_PCBHASH_WILD(params->sop_inc.inc_lport, 3006 pcbinfo->ipi_hashmask); 3007 else 3008 #ifdef INET6 3009 if (params->sop_inc.inc_flags & INC_ISIPV6) 3010 inpi.hash = INP6_PCBHASH( 3011 ¶ms->sop_inc.inc6_faddr, 3012 params->sop_inc.inc_lport, 3013 params->sop_inc.inc_fport, 3014 pcbinfo->ipi_hashmask); 3015 else 3016 #endif 3017 inpi.hash = INP_PCBHASH( 3018 ¶ms->sop_inc.inc_faddr, 3019 params->sop_inc.inc_lport, 3020 params->sop_inc.inc_fport, 3021 pcbinfo->ipi_hashmask); 3022 } 3023 while ((inp = inp_next(&inpi)) != NULL) 3024 if (inp->inp_gencnt == params->sop_id) { 3025 if (inp->inp_flags & INP_DROPPED) { 3026 INP_WUNLOCK(inp); 3027 return (ECONNRESET); 3028 } 3029 so = inp->inp_socket; 3030 KASSERT(so != NULL, ("inp_socket == NULL")); 3031 soref(so); 3032 error = (*ctloutput_set)(inp, &sopt); 3033 sorele(so); 3034 break; 3035 } 3036 if (inp == NULL) 3037 error = ESRCH; 3038 return (error); 3039 } 3040 3041 #ifdef DDB 3042 static void 3043 db_print_indent(int indent) 3044 { 3045 int i; 3046 3047 for (i = 0; i < indent; i++) 3048 db_printf(" "); 3049 } 3050 3051 static void 3052 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 3053 { 3054 char faddr_str[48], laddr_str[48]; 3055 3056 db_print_indent(indent); 3057 db_printf("%s at %p\n", name, inc); 3058 3059 indent += 2; 3060 3061 #ifdef INET6 3062 if (inc->inc_flags & INC_ISIPV6) { 3063 /* IPv6. */ 3064 ip6_sprintf(laddr_str, &inc->inc6_laddr); 3065 ip6_sprintf(faddr_str, &inc->inc6_faddr); 3066 } else 3067 #endif 3068 { 3069 /* IPv4. */ 3070 inet_ntoa_r(inc->inc_laddr, laddr_str); 3071 inet_ntoa_r(inc->inc_faddr, faddr_str); 3072 } 3073 db_print_indent(indent); 3074 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 3075 ntohs(inc->inc_lport)); 3076 db_print_indent(indent); 3077 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 3078 ntohs(inc->inc_fport)); 3079 } 3080 3081 static void 3082 db_print_inpflags(int inp_flags) 3083 { 3084 int comma; 3085 3086 comma = 0; 3087 if (inp_flags & INP_RECVOPTS) { 3088 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 3089 comma = 1; 3090 } 3091 if (inp_flags & INP_RECVRETOPTS) { 3092 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 3093 comma = 1; 3094 } 3095 if (inp_flags & INP_RECVDSTADDR) { 3096 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 3097 comma = 1; 3098 } 3099 if (inp_flags & INP_ORIGDSTADDR) { 3100 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 3101 comma = 1; 3102 } 3103 if (inp_flags & INP_HDRINCL) { 3104 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 3105 comma = 1; 3106 } 3107 if (inp_flags & INP_HIGHPORT) { 3108 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 3109 comma = 1; 3110 } 3111 if (inp_flags & INP_LOWPORT) { 3112 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 3113 comma = 1; 3114 } 3115 if (inp_flags & INP_ANONPORT) { 3116 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 3117 comma = 1; 3118 } 3119 if (inp_flags & INP_RECVIF) { 3120 db_printf("%sINP_RECVIF", comma ? ", " : ""); 3121 comma = 1; 3122 } 3123 if (inp_flags & INP_MTUDISC) { 3124 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 3125 comma = 1; 3126 } 3127 if (inp_flags & INP_RECVTTL) { 3128 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 3129 comma = 1; 3130 } 3131 if (inp_flags & INP_DONTFRAG) { 3132 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 3133 comma = 1; 3134 } 3135 if (inp_flags & INP_RECVTOS) { 3136 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 3137 comma = 1; 3138 } 3139 if (inp_flags & IN6P_IPV6_V6ONLY) { 3140 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 3141 comma = 1; 3142 } 3143 if (inp_flags & IN6P_PKTINFO) { 3144 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 3145 comma = 1; 3146 } 3147 if (inp_flags & IN6P_HOPLIMIT) { 3148 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 3149 comma = 1; 3150 } 3151 if (inp_flags & IN6P_HOPOPTS) { 3152 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 3153 comma = 1; 3154 } 3155 if (inp_flags & IN6P_DSTOPTS) { 3156 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 3157 comma = 1; 3158 } 3159 if (inp_flags & IN6P_RTHDR) { 3160 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 3161 comma = 1; 3162 } 3163 if (inp_flags & IN6P_RTHDRDSTOPTS) { 3164 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 3165 comma = 1; 3166 } 3167 if (inp_flags & IN6P_TCLASS) { 3168 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 3169 comma = 1; 3170 } 3171 if (inp_flags & IN6P_AUTOFLOWLABEL) { 3172 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 3173 comma = 1; 3174 } 3175 if (inp_flags & INP_ONESBCAST) { 3176 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 3177 comma = 1; 3178 } 3179 if (inp_flags & INP_DROPPED) { 3180 db_printf("%sINP_DROPPED", comma ? ", " : ""); 3181 comma = 1; 3182 } 3183 if (inp_flags & INP_SOCKREF) { 3184 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 3185 comma = 1; 3186 } 3187 if (inp_flags & IN6P_RFC2292) { 3188 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 3189 comma = 1; 3190 } 3191 if (inp_flags & IN6P_MTU) { 3192 db_printf("IN6P_MTU%s", comma ? ", " : ""); 3193 comma = 1; 3194 } 3195 } 3196 3197 static void 3198 db_print_inpvflag(u_char inp_vflag) 3199 { 3200 int comma; 3201 3202 comma = 0; 3203 if (inp_vflag & INP_IPV4) { 3204 db_printf("%sINP_IPV4", comma ? ", " : ""); 3205 comma = 1; 3206 } 3207 if (inp_vflag & INP_IPV6) { 3208 db_printf("%sINP_IPV6", comma ? ", " : ""); 3209 comma = 1; 3210 } 3211 if (inp_vflag & INP_IPV6PROTO) { 3212 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 3213 comma = 1; 3214 } 3215 } 3216 3217 static void 3218 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 3219 { 3220 3221 db_print_indent(indent); 3222 db_printf("%s at %p\n", name, inp); 3223 3224 indent += 2; 3225 3226 db_print_indent(indent); 3227 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 3228 3229 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 3230 3231 db_print_indent(indent); 3232 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 3233 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 3234 3235 db_print_indent(indent); 3236 db_printf("inp_label: %p inp_flags: 0x%x (", 3237 inp->inp_label, inp->inp_flags); 3238 db_print_inpflags(inp->inp_flags); 3239 db_printf(")\n"); 3240 3241 db_print_indent(indent); 3242 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 3243 inp->inp_vflag); 3244 db_print_inpvflag(inp->inp_vflag); 3245 db_printf(")\n"); 3246 3247 db_print_indent(indent); 3248 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 3249 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 3250 3251 db_print_indent(indent); 3252 #ifdef INET6 3253 if (inp->inp_vflag & INP_IPV6) { 3254 db_printf("in6p_options: %p in6p_outputopts: %p " 3255 "in6p_moptions: %p\n", inp->in6p_options, 3256 inp->in6p_outputopts, inp->in6p_moptions); 3257 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 3258 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 3259 inp->in6p_hops); 3260 } else 3261 #endif 3262 { 3263 db_printf("inp_ip_tos: %d inp_ip_options: %p " 3264 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 3265 inp->inp_options, inp->inp_moptions); 3266 } 3267 3268 db_print_indent(indent); 3269 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 3270 (uintmax_t)inp->inp_gencnt); 3271 } 3272 3273 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 3274 { 3275 struct inpcb *inp; 3276 3277 if (!have_addr) { 3278 db_printf("usage: show inpcb <addr>\n"); 3279 return; 3280 } 3281 inp = (struct inpcb *)addr; 3282 3283 db_print_inpcb(inp, "inpcb", 0); 3284 } 3285 #endif /* DDB */ 3286 3287 #ifdef RATELIMIT 3288 /* 3289 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 3290 * if any. 3291 */ 3292 int 3293 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 3294 { 3295 union if_snd_tag_modify_params params = { 3296 .rate_limit.max_rate = max_pacing_rate, 3297 .rate_limit.flags = M_NOWAIT, 3298 }; 3299 struct m_snd_tag *mst; 3300 int error; 3301 3302 mst = inp->inp_snd_tag; 3303 if (mst == NULL) 3304 return (EINVAL); 3305 3306 if (mst->sw->snd_tag_modify == NULL) { 3307 error = EOPNOTSUPP; 3308 } else { 3309 error = mst->sw->snd_tag_modify(mst, ¶ms); 3310 } 3311 return (error); 3312 } 3313 3314 /* 3315 * Query existing TX rate limit based on the existing 3316 * "inp->inp_snd_tag", if any. 3317 */ 3318 int 3319 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3320 { 3321 union if_snd_tag_query_params params = { }; 3322 struct m_snd_tag *mst; 3323 int error; 3324 3325 mst = inp->inp_snd_tag; 3326 if (mst == NULL) 3327 return (EINVAL); 3328 3329 if (mst->sw->snd_tag_query == NULL) { 3330 error = EOPNOTSUPP; 3331 } else { 3332 error = mst->sw->snd_tag_query(mst, ¶ms); 3333 if (error == 0 && p_max_pacing_rate != NULL) 3334 *p_max_pacing_rate = params.rate_limit.max_rate; 3335 } 3336 return (error); 3337 } 3338 3339 /* 3340 * Query existing TX queue level based on the existing 3341 * "inp->inp_snd_tag", if any. 3342 */ 3343 int 3344 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3345 { 3346 union if_snd_tag_query_params params = { }; 3347 struct m_snd_tag *mst; 3348 int error; 3349 3350 mst = inp->inp_snd_tag; 3351 if (mst == NULL) 3352 return (EINVAL); 3353 3354 if (mst->sw->snd_tag_query == NULL) 3355 return (EOPNOTSUPP); 3356 3357 error = mst->sw->snd_tag_query(mst, ¶ms); 3358 if (error == 0 && p_txqueue_level != NULL) 3359 *p_txqueue_level = params.rate_limit.queue_level; 3360 return (error); 3361 } 3362 3363 /* 3364 * Allocate a new TX rate limit send tag from the network interface 3365 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3366 */ 3367 int 3368 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3369 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st) 3370 3371 { 3372 union if_snd_tag_alloc_params params = { 3373 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3374 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3375 .rate_limit.hdr.flowid = flowid, 3376 .rate_limit.hdr.flowtype = flowtype, 3377 .rate_limit.hdr.numa_domain = inp->inp_numa_domain, 3378 .rate_limit.max_rate = max_pacing_rate, 3379 .rate_limit.flags = M_NOWAIT, 3380 }; 3381 int error; 3382 3383 INP_WLOCK_ASSERT(inp); 3384 3385 /* 3386 * If there is already a send tag, or the INP is being torn 3387 * down, allocating a new send tag is not allowed. Else send 3388 * tags may leak. 3389 */ 3390 if (*st != NULL || (inp->inp_flags & INP_DROPPED) != 0) 3391 return (EINVAL); 3392 3393 error = m_snd_tag_alloc(ifp, ¶ms, st); 3394 #ifdef INET 3395 if (error == 0) { 3396 counter_u64_add(rate_limit_set_ok, 1); 3397 counter_u64_add(rate_limit_active, 1); 3398 } else if (error != EOPNOTSUPP) 3399 counter_u64_add(rate_limit_alloc_fail, 1); 3400 #endif 3401 return (error); 3402 } 3403 3404 void 3405 in_pcbdetach_tag(struct m_snd_tag *mst) 3406 { 3407 3408 m_snd_tag_rele(mst); 3409 #ifdef INET 3410 counter_u64_add(rate_limit_active, -1); 3411 #endif 3412 } 3413 3414 /* 3415 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3416 * if any: 3417 */ 3418 void 3419 in_pcbdetach_txrtlmt(struct inpcb *inp) 3420 { 3421 struct m_snd_tag *mst; 3422 3423 INP_WLOCK_ASSERT(inp); 3424 3425 mst = inp->inp_snd_tag; 3426 inp->inp_snd_tag = NULL; 3427 3428 if (mst == NULL) 3429 return; 3430 3431 m_snd_tag_rele(mst); 3432 #ifdef INET 3433 counter_u64_add(rate_limit_active, -1); 3434 #endif 3435 } 3436 3437 int 3438 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate) 3439 { 3440 int error; 3441 3442 /* 3443 * If the existing send tag is for the wrong interface due to 3444 * a route change, first drop the existing tag. Set the 3445 * CHANGED flag so that we will keep trying to allocate a new 3446 * tag if we fail to allocate one this time. 3447 */ 3448 if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) { 3449 in_pcbdetach_txrtlmt(inp); 3450 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3451 } 3452 3453 /* 3454 * NOTE: When attaching to a network interface a reference is 3455 * made to ensure the network interface doesn't go away until 3456 * all ratelimit connections are gone. The network interface 3457 * pointers compared below represent valid network interfaces, 3458 * except when comparing towards NULL. 3459 */ 3460 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3461 error = 0; 3462 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3463 if (inp->inp_snd_tag != NULL) 3464 in_pcbdetach_txrtlmt(inp); 3465 error = 0; 3466 } else if (inp->inp_snd_tag == NULL) { 3467 /* 3468 * In order to utilize packet pacing with RSS, we need 3469 * to wait until there is a valid RSS hash before we 3470 * can proceed: 3471 */ 3472 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3473 error = EAGAIN; 3474 } else { 3475 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3476 mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag); 3477 } 3478 } else { 3479 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3480 } 3481 if (error == 0 || error == EOPNOTSUPP) 3482 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3483 3484 return (error); 3485 } 3486 3487 /* 3488 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3489 * is set in the fast path and will attach/detach/modify the TX rate 3490 * limit send tag based on the socket's so_max_pacing_rate value. 3491 */ 3492 void 3493 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3494 { 3495 struct socket *socket; 3496 uint32_t max_pacing_rate; 3497 bool did_upgrade; 3498 3499 if (inp == NULL) 3500 return; 3501 3502 socket = inp->inp_socket; 3503 if (socket == NULL) 3504 return; 3505 3506 if (!INP_WLOCKED(inp)) { 3507 /* 3508 * NOTE: If the write locking fails, we need to bail 3509 * out and use the non-ratelimited ring for the 3510 * transmit until there is a new chance to get the 3511 * write lock. 3512 */ 3513 if (!INP_TRY_UPGRADE(inp)) 3514 return; 3515 did_upgrade = 1; 3516 } else { 3517 did_upgrade = 0; 3518 } 3519 3520 /* 3521 * NOTE: The so_max_pacing_rate value is read unlocked, 3522 * because atomic updates are not required since the variable 3523 * is checked at every mbuf we send. It is assumed that the 3524 * variable read itself will be atomic. 3525 */ 3526 max_pacing_rate = socket->so_max_pacing_rate; 3527 3528 in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate); 3529 3530 if (did_upgrade) 3531 INP_DOWNGRADE(inp); 3532 } 3533 3534 /* 3535 * Track route changes for TX rate limiting. 3536 */ 3537 void 3538 in_pcboutput_eagain(struct inpcb *inp) 3539 { 3540 bool did_upgrade; 3541 3542 if (inp == NULL) 3543 return; 3544 3545 if (inp->inp_snd_tag == NULL) 3546 return; 3547 3548 if (!INP_WLOCKED(inp)) { 3549 /* 3550 * NOTE: If the write locking fails, we need to bail 3551 * out and use the non-ratelimited ring for the 3552 * transmit until there is a new chance to get the 3553 * write lock. 3554 */ 3555 if (!INP_TRY_UPGRADE(inp)) 3556 return; 3557 did_upgrade = 1; 3558 } else { 3559 did_upgrade = 0; 3560 } 3561 3562 /* detach rate limiting */ 3563 in_pcbdetach_txrtlmt(inp); 3564 3565 /* make sure new mbuf send tag allocation is made */ 3566 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3567 3568 if (did_upgrade) 3569 INP_DOWNGRADE(inp); 3570 } 3571 3572 #ifdef INET 3573 static void 3574 rl_init(void *st) 3575 { 3576 rate_limit_new = counter_u64_alloc(M_WAITOK); 3577 rate_limit_chg = counter_u64_alloc(M_WAITOK); 3578 rate_limit_active = counter_u64_alloc(M_WAITOK); 3579 rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK); 3580 rate_limit_set_ok = counter_u64_alloc(M_WAITOK); 3581 } 3582 3583 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL); 3584 #endif 3585 #endif /* RATELIMIT */ 3586