xref: /freebsd/sys/netinet/in_pcb.c (revision 70e0bbedef95258a4dadc996d641a9bebd3f107d)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993, 1995
3  *	The Regents of the University of California.
4  * Copyright (c) 2007-2009 Robert N. M. Watson
5  * Copyright (c) 2010-2011 Juniper Networks, Inc.
6  * All rights reserved.
7  *
8  * Portions of this software were developed by Robert N. M. Watson under
9  * contract to Juniper Networks, Inc.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include "opt_ddb.h"
42 #include "opt_ipsec.h"
43 #include "opt_inet.h"
44 #include "opt_inet6.h"
45 #include "opt_pcbgroup.h"
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/malloc.h>
50 #include <sys/mbuf.h>
51 #include <sys/callout.h>
52 #include <sys/domain.h>
53 #include <sys/protosw.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/refcount.h>
59 #include <sys/jail.h>
60 #include <sys/kernel.h>
61 #include <sys/sysctl.h>
62 
63 #ifdef DDB
64 #include <ddb/ddb.h>
65 #endif
66 
67 #include <vm/uma.h>
68 
69 #include <net/if.h>
70 #include <net/if_types.h>
71 #include <net/route.h>
72 #include <net/vnet.h>
73 
74 #if defined(INET) || defined(INET6)
75 #include <netinet/in.h>
76 #include <netinet/in_pcb.h>
77 #include <netinet/ip_var.h>
78 #include <netinet/tcp_var.h>
79 #include <netinet/udp.h>
80 #include <netinet/udp_var.h>
81 #endif
82 #ifdef INET
83 #include <netinet/in_var.h>
84 #endif
85 #ifdef INET6
86 #include <netinet/ip6.h>
87 #include <netinet6/in6_pcb.h>
88 #include <netinet6/in6_var.h>
89 #include <netinet6/ip6_var.h>
90 #endif /* INET6 */
91 
92 
93 #ifdef IPSEC
94 #include <netipsec/ipsec.h>
95 #include <netipsec/key.h>
96 #endif /* IPSEC */
97 
98 #include <security/mac/mac_framework.h>
99 
100 static struct callout	ipport_tick_callout;
101 
102 /*
103  * These configure the range of local port addresses assigned to
104  * "unspecified" outgoing connections/packets/whatever.
105  */
106 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
107 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
108 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
109 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
110 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
111 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
112 
113 /*
114  * Reserved ports accessible only to root. There are significant
115  * security considerations that must be accounted for when changing these,
116  * but the security benefits can be great. Please be careful.
117  */
118 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
119 VNET_DEFINE(int, ipport_reservedlow);
120 
121 /* Variables dealing with random ephemeral port allocation. */
122 VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
123 VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
124 VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
125 VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
126 VNET_DEFINE(int, ipport_tcpallocs);
127 static VNET_DEFINE(int, ipport_tcplastcount);
128 
129 #define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
130 
131 static void	in_pcbremlists(struct inpcb *inp);
132 #ifdef INET
133 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
134 			    struct in_addr faddr, u_int fport_arg,
135 			    struct in_addr laddr, u_int lport_arg,
136 			    int lookupflags, struct ifnet *ifp);
137 
138 #define RANGECHK(var, min, max) \
139 	if ((var) < (min)) { (var) = (min); } \
140 	else if ((var) > (max)) { (var) = (max); }
141 
142 static int
143 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
144 {
145 	int error;
146 
147 #ifdef VIMAGE
148 	error = vnet_sysctl_handle_int(oidp, arg1, arg2, req);
149 #else
150 	error = sysctl_handle_int(oidp, arg1, arg2, req);
151 #endif
152 	if (error == 0) {
153 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
154 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
155 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
156 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
157 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
158 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
159 	}
160 	return (error);
161 }
162 
163 #undef RANGECHK
164 
165 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
166     "IP Ports");
167 
168 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
169 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowfirstauto), 0,
170 	&sysctl_net_ipport_check, "I", "");
171 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
172 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowlastauto), 0,
173 	&sysctl_net_ipport_check, "I", "");
174 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, first,
175 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_firstauto), 0,
176 	&sysctl_net_ipport_check, "I", "");
177 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, last,
178 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lastauto), 0,
179 	&sysctl_net_ipport_check, "I", "");
180 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
181 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hifirstauto), 0,
182 	&sysctl_net_ipport_check, "I", "");
183 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
184 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hilastauto), 0,
185 	&sysctl_net_ipport_check, "I", "");
186 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
187 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedhigh), 0, "");
188 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
189 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
190 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW,
191 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
192 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW,
193 	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
194 	"allocations before switching to a sequental one");
195 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW,
196 	&VNET_NAME(ipport_randomtime), 0,
197 	"Minimum time to keep sequental port "
198 	"allocation before switching to a random one");
199 #endif
200 
201 /*
202  * in_pcb.c: manage the Protocol Control Blocks.
203  *
204  * NOTE: It is assumed that most of these functions will be called with
205  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
206  * functions often modify hash chains or addresses in pcbs.
207  */
208 
209 /*
210  * Initialize an inpcbinfo -- we should be able to reduce the number of
211  * arguments in time.
212  */
213 void
214 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
215     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
216     char *inpcbzone_name, uma_init inpcbzone_init, uma_fini inpcbzone_fini,
217     uint32_t inpcbzone_flags, u_int hashfields)
218 {
219 
220 	INP_INFO_LOCK_INIT(pcbinfo, name);
221 	INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");	/* XXXRW: argument? */
222 #ifdef VIMAGE
223 	pcbinfo->ipi_vnet = curvnet;
224 #endif
225 	pcbinfo->ipi_listhead = listhead;
226 	LIST_INIT(pcbinfo->ipi_listhead);
227 	pcbinfo->ipi_count = 0;
228 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
229 	    &pcbinfo->ipi_hashmask);
230 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
231 	    &pcbinfo->ipi_porthashmask);
232 #ifdef PCBGROUP
233 	in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
234 #endif
235 	pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
236 	    NULL, NULL, inpcbzone_init, inpcbzone_fini, UMA_ALIGN_PTR,
237 	    inpcbzone_flags);
238 	uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
239 }
240 
241 /*
242  * Destroy an inpcbinfo.
243  */
244 void
245 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
246 {
247 
248 	KASSERT(pcbinfo->ipi_count == 0,
249 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
250 
251 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
252 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
253 	    pcbinfo->ipi_porthashmask);
254 #ifdef PCBGROUP
255 	in_pcbgroup_destroy(pcbinfo);
256 #endif
257 	uma_zdestroy(pcbinfo->ipi_zone);
258 	INP_HASH_LOCK_DESTROY(pcbinfo);
259 	INP_INFO_LOCK_DESTROY(pcbinfo);
260 }
261 
262 /*
263  * Allocate a PCB and associate it with the socket.
264  * On success return with the PCB locked.
265  */
266 int
267 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
268 {
269 	struct inpcb *inp;
270 	int error;
271 
272 	INP_INFO_WLOCK_ASSERT(pcbinfo);
273 	error = 0;
274 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
275 	if (inp == NULL)
276 		return (ENOBUFS);
277 	bzero(inp, inp_zero_size);
278 	inp->inp_pcbinfo = pcbinfo;
279 	inp->inp_socket = so;
280 	inp->inp_cred = crhold(so->so_cred);
281 	inp->inp_inc.inc_fibnum = so->so_fibnum;
282 #ifdef MAC
283 	error = mac_inpcb_init(inp, M_NOWAIT);
284 	if (error != 0)
285 		goto out;
286 	mac_inpcb_create(so, inp);
287 #endif
288 #ifdef IPSEC
289 	error = ipsec_init_policy(so, &inp->inp_sp);
290 	if (error != 0) {
291 #ifdef MAC
292 		mac_inpcb_destroy(inp);
293 #endif
294 		goto out;
295 	}
296 #endif /*IPSEC*/
297 #ifdef INET6
298 	if (INP_SOCKAF(so) == AF_INET6) {
299 		inp->inp_vflag |= INP_IPV6PROTO;
300 		if (V_ip6_v6only)
301 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
302 	}
303 #endif
304 	LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
305 	pcbinfo->ipi_count++;
306 	so->so_pcb = (caddr_t)inp;
307 #ifdef INET6
308 	if (V_ip6_auto_flowlabel)
309 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
310 #endif
311 	INP_WLOCK(inp);
312 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
313 	refcount_init(&inp->inp_refcount, 1);	/* Reference from inpcbinfo */
314 #if defined(IPSEC) || defined(MAC)
315 out:
316 	if (error != 0) {
317 		crfree(inp->inp_cred);
318 		uma_zfree(pcbinfo->ipi_zone, inp);
319 	}
320 #endif
321 	return (error);
322 }
323 
324 #ifdef INET
325 int
326 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
327 {
328 	int anonport, error;
329 
330 	INP_WLOCK_ASSERT(inp);
331 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
332 
333 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
334 		return (EINVAL);
335 	anonport = inp->inp_lport == 0 && (nam == NULL ||
336 	    ((struct sockaddr_in *)nam)->sin_port == 0);
337 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
338 	    &inp->inp_lport, cred);
339 	if (error)
340 		return (error);
341 	if (in_pcbinshash(inp) != 0) {
342 		inp->inp_laddr.s_addr = INADDR_ANY;
343 		inp->inp_lport = 0;
344 		return (EAGAIN);
345 	}
346 	if (anonport)
347 		inp->inp_flags |= INP_ANONPORT;
348 	return (0);
349 }
350 #endif
351 
352 #if defined(INET) || defined(INET6)
353 int
354 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
355     struct ucred *cred, int lookupflags)
356 {
357 	struct inpcbinfo *pcbinfo;
358 	struct inpcb *tmpinp;
359 	unsigned short *lastport;
360 	int count, dorandom, error;
361 	u_short aux, first, last, lport;
362 #ifdef INET
363 	struct in_addr laddr;
364 #endif
365 
366 	pcbinfo = inp->inp_pcbinfo;
367 
368 	/*
369 	 * Because no actual state changes occur here, a global write lock on
370 	 * the pcbinfo isn't required.
371 	 */
372 	INP_LOCK_ASSERT(inp);
373 	INP_HASH_LOCK_ASSERT(pcbinfo);
374 
375 	if (inp->inp_flags & INP_HIGHPORT) {
376 		first = V_ipport_hifirstauto;	/* sysctl */
377 		last  = V_ipport_hilastauto;
378 		lastport = &pcbinfo->ipi_lasthi;
379 	} else if (inp->inp_flags & INP_LOWPORT) {
380 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
381 		if (error)
382 			return (error);
383 		first = V_ipport_lowfirstauto;	/* 1023 */
384 		last  = V_ipport_lowlastauto;	/* 600 */
385 		lastport = &pcbinfo->ipi_lastlow;
386 	} else {
387 		first = V_ipport_firstauto;	/* sysctl */
388 		last  = V_ipport_lastauto;
389 		lastport = &pcbinfo->ipi_lastport;
390 	}
391 	/*
392 	 * For UDP, use random port allocation as long as the user
393 	 * allows it.  For TCP (and as of yet unknown) connections,
394 	 * use random port allocation only if the user allows it AND
395 	 * ipport_tick() allows it.
396 	 */
397 	if (V_ipport_randomized &&
398 		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo))
399 		dorandom = 1;
400 	else
401 		dorandom = 0;
402 	/*
403 	 * It makes no sense to do random port allocation if
404 	 * we have the only port available.
405 	 */
406 	if (first == last)
407 		dorandom = 0;
408 	/* Make sure to not include UDP packets in the count. */
409 	if (pcbinfo != &V_udbinfo)
410 		V_ipport_tcpallocs++;
411 	/*
412 	 * Instead of having two loops further down counting up or down
413 	 * make sure that first is always <= last and go with only one
414 	 * code path implementing all logic.
415 	 */
416 	if (first > last) {
417 		aux = first;
418 		first = last;
419 		last = aux;
420 	}
421 
422 #ifdef INET
423 	/* Make the compiler happy. */
424 	laddr.s_addr = 0;
425 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
426 		KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
427 		    __func__, inp));
428 		laddr = *laddrp;
429 	}
430 #endif
431 	tmpinp = NULL;	/* Make compiler happy. */
432 	lport = *lportp;
433 
434 	if (dorandom)
435 		*lastport = first + (arc4random() % (last - first));
436 
437 	count = last - first;
438 
439 	do {
440 		if (count-- < 0)	/* completely used? */
441 			return (EADDRNOTAVAIL);
442 		++*lastport;
443 		if (*lastport < first || *lastport > last)
444 			*lastport = first;
445 		lport = htons(*lastport);
446 
447 #ifdef INET6
448 		if ((inp->inp_vflag & INP_IPV6) != 0)
449 			tmpinp = in6_pcblookup_local(pcbinfo,
450 			    &inp->in6p_laddr, lport, lookupflags, cred);
451 #endif
452 #if defined(INET) && defined(INET6)
453 		else
454 #endif
455 #ifdef INET
456 			tmpinp = in_pcblookup_local(pcbinfo, laddr,
457 			    lport, lookupflags, cred);
458 #endif
459 	} while (tmpinp != NULL);
460 
461 #ifdef INET
462 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
463 		laddrp->s_addr = laddr.s_addr;
464 #endif
465 	*lportp = lport;
466 
467 	return (0);
468 }
469 #endif /* INET || INET6 */
470 
471 #ifdef INET
472 /*
473  * Set up a bind operation on a PCB, performing port allocation
474  * as required, but do not actually modify the PCB. Callers can
475  * either complete the bind by setting inp_laddr/inp_lport and
476  * calling in_pcbinshash(), or they can just use the resulting
477  * port and address to authorise the sending of a once-off packet.
478  *
479  * On error, the values of *laddrp and *lportp are not changed.
480  */
481 int
482 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
483     u_short *lportp, struct ucred *cred)
484 {
485 	struct socket *so = inp->inp_socket;
486 	struct sockaddr_in *sin;
487 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
488 	struct in_addr laddr;
489 	u_short lport = 0;
490 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
491 	int error;
492 
493 	/*
494 	 * No state changes, so read locks are sufficient here.
495 	 */
496 	INP_LOCK_ASSERT(inp);
497 	INP_HASH_LOCK_ASSERT(pcbinfo);
498 
499 	if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
500 		return (EADDRNOTAVAIL);
501 	laddr.s_addr = *laddrp;
502 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
503 		return (EINVAL);
504 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
505 		lookupflags = INPLOOKUP_WILDCARD;
506 	if (nam == NULL) {
507 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
508 			return (error);
509 	} else {
510 		sin = (struct sockaddr_in *)nam;
511 		if (nam->sa_len != sizeof (*sin))
512 			return (EINVAL);
513 #ifdef notdef
514 		/*
515 		 * We should check the family, but old programs
516 		 * incorrectly fail to initialize it.
517 		 */
518 		if (sin->sin_family != AF_INET)
519 			return (EAFNOSUPPORT);
520 #endif
521 		error = prison_local_ip4(cred, &sin->sin_addr);
522 		if (error)
523 			return (error);
524 		if (sin->sin_port != *lportp) {
525 			/* Don't allow the port to change. */
526 			if (*lportp != 0)
527 				return (EINVAL);
528 			lport = sin->sin_port;
529 		}
530 		/* NB: lport is left as 0 if the port isn't being changed. */
531 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
532 			/*
533 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
534 			 * allow complete duplication of binding if
535 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
536 			 * and a multicast address is bound on both
537 			 * new and duplicated sockets.
538 			 */
539 			if (so->so_options & SO_REUSEADDR)
540 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
541 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
542 			sin->sin_port = 0;		/* yech... */
543 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
544 			/*
545 			 * Is the address a local IP address?
546 			 * If INP_BINDANY is set, then the socket may be bound
547 			 * to any endpoint address, local or not.
548 			 */
549 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
550 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
551 				return (EADDRNOTAVAIL);
552 		}
553 		laddr = sin->sin_addr;
554 		if (lport) {
555 			struct inpcb *t;
556 			struct tcptw *tw;
557 
558 			/* GROSS */
559 			if (ntohs(lport) <= V_ipport_reservedhigh &&
560 			    ntohs(lport) >= V_ipport_reservedlow &&
561 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
562 			    0))
563 				return (EACCES);
564 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
565 			    priv_check_cred(inp->inp_cred,
566 			    PRIV_NETINET_REUSEPORT, 0) != 0) {
567 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
568 				    lport, INPLOOKUP_WILDCARD, cred);
569 	/*
570 	 * XXX
571 	 * This entire block sorely needs a rewrite.
572 	 */
573 				if (t &&
574 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
575 				    (so->so_type != SOCK_STREAM ||
576 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
577 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
578 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
579 				     (t->inp_flags2 & INP_REUSEPORT) == 0) &&
580 				    (inp->inp_cred->cr_uid !=
581 				     t->inp_cred->cr_uid))
582 					return (EADDRINUSE);
583 			}
584 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
585 			    lport, lookupflags, cred);
586 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
587 				/*
588 				 * XXXRW: If an incpb has had its timewait
589 				 * state recycled, we treat the address as
590 				 * being in use (for now).  This is better
591 				 * than a panic, but not desirable.
592 				 */
593 				tw = intotw(t);
594 				if (tw == NULL ||
595 				    (reuseport & tw->tw_so_options) == 0)
596 					return (EADDRINUSE);
597 			} else if (t && (reuseport == 0 ||
598 			    (t->inp_flags2 & INP_REUSEPORT) == 0)) {
599 #ifdef INET6
600 				if (ntohl(sin->sin_addr.s_addr) !=
601 				    INADDR_ANY ||
602 				    ntohl(t->inp_laddr.s_addr) !=
603 				    INADDR_ANY ||
604 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
605 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
606 #endif
607 				return (EADDRINUSE);
608 			}
609 		}
610 	}
611 	if (*lportp != 0)
612 		lport = *lportp;
613 	if (lport == 0) {
614 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
615 		if (error != 0)
616 			return (error);
617 
618 	}
619 	*laddrp = laddr.s_addr;
620 	*lportp = lport;
621 	return (0);
622 }
623 
624 /*
625  * Connect from a socket to a specified address.
626  * Both address and port must be specified in argument sin.
627  * If don't have a local address for this socket yet,
628  * then pick one.
629  */
630 int
631 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
632     struct ucred *cred, struct mbuf *m)
633 {
634 	u_short lport, fport;
635 	in_addr_t laddr, faddr;
636 	int anonport, error;
637 
638 	INP_WLOCK_ASSERT(inp);
639 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
640 
641 	lport = inp->inp_lport;
642 	laddr = inp->inp_laddr.s_addr;
643 	anonport = (lport == 0);
644 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
645 	    NULL, cred);
646 	if (error)
647 		return (error);
648 
649 	/* Do the initial binding of the local address if required. */
650 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
651 		inp->inp_lport = lport;
652 		inp->inp_laddr.s_addr = laddr;
653 		if (in_pcbinshash(inp) != 0) {
654 			inp->inp_laddr.s_addr = INADDR_ANY;
655 			inp->inp_lport = 0;
656 			return (EAGAIN);
657 		}
658 	}
659 
660 	/* Commit the remaining changes. */
661 	inp->inp_lport = lport;
662 	inp->inp_laddr.s_addr = laddr;
663 	inp->inp_faddr.s_addr = faddr;
664 	inp->inp_fport = fport;
665 	in_pcbrehash_mbuf(inp, m);
666 
667 	if (anonport)
668 		inp->inp_flags |= INP_ANONPORT;
669 	return (0);
670 }
671 
672 int
673 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
674 {
675 
676 	return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
677 }
678 
679 /*
680  * Do proper source address selection on an unbound socket in case
681  * of connect. Take jails into account as well.
682  */
683 static int
684 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
685     struct ucred *cred)
686 {
687 	struct ifaddr *ifa;
688 	struct sockaddr *sa;
689 	struct sockaddr_in *sin;
690 	struct route sro;
691 	int error;
692 
693 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
694 
695 	/*
696 	 * Bypass source address selection and use the primary jail IP
697 	 * if requested.
698 	 */
699 	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
700 		return (0);
701 
702 	error = 0;
703 	bzero(&sro, sizeof(sro));
704 
705 	sin = (struct sockaddr_in *)&sro.ro_dst;
706 	sin->sin_family = AF_INET;
707 	sin->sin_len = sizeof(struct sockaddr_in);
708 	sin->sin_addr.s_addr = faddr->s_addr;
709 
710 	/*
711 	 * If route is known our src addr is taken from the i/f,
712 	 * else punt.
713 	 *
714 	 * Find out route to destination.
715 	 */
716 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
717 		in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
718 
719 	/*
720 	 * If we found a route, use the address corresponding to
721 	 * the outgoing interface.
722 	 *
723 	 * Otherwise assume faddr is reachable on a directly connected
724 	 * network and try to find a corresponding interface to take
725 	 * the source address from.
726 	 */
727 	if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
728 		struct in_ifaddr *ia;
729 		struct ifnet *ifp;
730 
731 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin));
732 		if (ia == NULL)
733 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0));
734 		if (ia == NULL) {
735 			error = ENETUNREACH;
736 			goto done;
737 		}
738 
739 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
740 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
741 			ifa_free(&ia->ia_ifa);
742 			goto done;
743 		}
744 
745 		ifp = ia->ia_ifp;
746 		ifa_free(&ia->ia_ifa);
747 		ia = NULL;
748 		IF_ADDR_RLOCK(ifp);
749 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
750 
751 			sa = ifa->ifa_addr;
752 			if (sa->sa_family != AF_INET)
753 				continue;
754 			sin = (struct sockaddr_in *)sa;
755 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
756 				ia = (struct in_ifaddr *)ifa;
757 				break;
758 			}
759 		}
760 		if (ia != NULL) {
761 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
762 			IF_ADDR_RUNLOCK(ifp);
763 			goto done;
764 		}
765 		IF_ADDR_RUNLOCK(ifp);
766 
767 		/* 3. As a last resort return the 'default' jail address. */
768 		error = prison_get_ip4(cred, laddr);
769 		goto done;
770 	}
771 
772 	/*
773 	 * If the outgoing interface on the route found is not
774 	 * a loopback interface, use the address from that interface.
775 	 * In case of jails do those three steps:
776 	 * 1. check if the interface address belongs to the jail. If so use it.
777 	 * 2. check if we have any address on the outgoing interface
778 	 *    belonging to this jail. If so use it.
779 	 * 3. as a last resort return the 'default' jail address.
780 	 */
781 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
782 		struct in_ifaddr *ia;
783 		struct ifnet *ifp;
784 
785 		/* If not jailed, use the default returned. */
786 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
787 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
788 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
789 			goto done;
790 		}
791 
792 		/* Jailed. */
793 		/* 1. Check if the iface address belongs to the jail. */
794 		sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
795 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
796 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
797 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
798 			goto done;
799 		}
800 
801 		/*
802 		 * 2. Check if we have any address on the outgoing interface
803 		 *    belonging to this jail.
804 		 */
805 		ia = NULL;
806 		ifp = sro.ro_rt->rt_ifp;
807 		IF_ADDR_RLOCK(ifp);
808 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
809 			sa = ifa->ifa_addr;
810 			if (sa->sa_family != AF_INET)
811 				continue;
812 			sin = (struct sockaddr_in *)sa;
813 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
814 				ia = (struct in_ifaddr *)ifa;
815 				break;
816 			}
817 		}
818 		if (ia != NULL) {
819 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
820 			IF_ADDR_RUNLOCK(ifp);
821 			goto done;
822 		}
823 		IF_ADDR_RUNLOCK(ifp);
824 
825 		/* 3. As a last resort return the 'default' jail address. */
826 		error = prison_get_ip4(cred, laddr);
827 		goto done;
828 	}
829 
830 	/*
831 	 * The outgoing interface is marked with 'loopback net', so a route
832 	 * to ourselves is here.
833 	 * Try to find the interface of the destination address and then
834 	 * take the address from there. That interface is not necessarily
835 	 * a loopback interface.
836 	 * In case of jails, check that it is an address of the jail
837 	 * and if we cannot find, fall back to the 'default' jail address.
838 	 */
839 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
840 		struct sockaddr_in sain;
841 		struct in_ifaddr *ia;
842 
843 		bzero(&sain, sizeof(struct sockaddr_in));
844 		sain.sin_family = AF_INET;
845 		sain.sin_len = sizeof(struct sockaddr_in);
846 		sain.sin_addr.s_addr = faddr->s_addr;
847 
848 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain)));
849 		if (ia == NULL)
850 			ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0));
851 		if (ia == NULL)
852 			ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
853 
854 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
855 			if (ia == NULL) {
856 				error = ENETUNREACH;
857 				goto done;
858 			}
859 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
860 			ifa_free(&ia->ia_ifa);
861 			goto done;
862 		}
863 
864 		/* Jailed. */
865 		if (ia != NULL) {
866 			struct ifnet *ifp;
867 
868 			ifp = ia->ia_ifp;
869 			ifa_free(&ia->ia_ifa);
870 			ia = NULL;
871 			IF_ADDR_RLOCK(ifp);
872 			TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
873 
874 				sa = ifa->ifa_addr;
875 				if (sa->sa_family != AF_INET)
876 					continue;
877 				sin = (struct sockaddr_in *)sa;
878 				if (prison_check_ip4(cred,
879 				    &sin->sin_addr) == 0) {
880 					ia = (struct in_ifaddr *)ifa;
881 					break;
882 				}
883 			}
884 			if (ia != NULL) {
885 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
886 				IF_ADDR_RUNLOCK(ifp);
887 				goto done;
888 			}
889 			IF_ADDR_RUNLOCK(ifp);
890 		}
891 
892 		/* 3. As a last resort return the 'default' jail address. */
893 		error = prison_get_ip4(cred, laddr);
894 		goto done;
895 	}
896 
897 done:
898 	if (sro.ro_rt != NULL)
899 		RTFREE(sro.ro_rt);
900 	return (error);
901 }
902 
903 /*
904  * Set up for a connect from a socket to the specified address.
905  * On entry, *laddrp and *lportp should contain the current local
906  * address and port for the PCB; these are updated to the values
907  * that should be placed in inp_laddr and inp_lport to complete
908  * the connect.
909  *
910  * On success, *faddrp and *fportp will be set to the remote address
911  * and port. These are not updated in the error case.
912  *
913  * If the operation fails because the connection already exists,
914  * *oinpp will be set to the PCB of that connection so that the
915  * caller can decide to override it. In all other cases, *oinpp
916  * is set to NULL.
917  */
918 int
919 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
920     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
921     struct inpcb **oinpp, struct ucred *cred)
922 {
923 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
924 	struct in_ifaddr *ia;
925 	struct inpcb *oinp;
926 	struct in_addr laddr, faddr;
927 	u_short lport, fport;
928 	int error;
929 
930 	/*
931 	 * Because a global state change doesn't actually occur here, a read
932 	 * lock is sufficient.
933 	 */
934 	INP_LOCK_ASSERT(inp);
935 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
936 
937 	if (oinpp != NULL)
938 		*oinpp = NULL;
939 	if (nam->sa_len != sizeof (*sin))
940 		return (EINVAL);
941 	if (sin->sin_family != AF_INET)
942 		return (EAFNOSUPPORT);
943 	if (sin->sin_port == 0)
944 		return (EADDRNOTAVAIL);
945 	laddr.s_addr = *laddrp;
946 	lport = *lportp;
947 	faddr = sin->sin_addr;
948 	fport = sin->sin_port;
949 
950 	if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
951 		/*
952 		 * If the destination address is INADDR_ANY,
953 		 * use the primary local address.
954 		 * If the supplied address is INADDR_BROADCAST,
955 		 * and the primary interface supports broadcast,
956 		 * choose the broadcast address for that interface.
957 		 */
958 		if (faddr.s_addr == INADDR_ANY) {
959 			IN_IFADDR_RLOCK();
960 			faddr =
961 			    IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
962 			IN_IFADDR_RUNLOCK();
963 			if (cred != NULL &&
964 			    (error = prison_get_ip4(cred, &faddr)) != 0)
965 				return (error);
966 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
967 			IN_IFADDR_RLOCK();
968 			if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
969 			    IFF_BROADCAST)
970 				faddr = satosin(&TAILQ_FIRST(
971 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
972 			IN_IFADDR_RUNLOCK();
973 		}
974 	}
975 	if (laddr.s_addr == INADDR_ANY) {
976 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
977 		/*
978 		 * If the destination address is multicast and an outgoing
979 		 * interface has been set as a multicast option, prefer the
980 		 * address of that interface as our source address.
981 		 */
982 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
983 		    inp->inp_moptions != NULL) {
984 			struct ip_moptions *imo;
985 			struct ifnet *ifp;
986 
987 			imo = inp->inp_moptions;
988 			if (imo->imo_multicast_ifp != NULL) {
989 				ifp = imo->imo_multicast_ifp;
990 				IN_IFADDR_RLOCK();
991 				TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
992 					if ((ia->ia_ifp == ifp) &&
993 					    (cred == NULL ||
994 					    prison_check_ip4(cred,
995 					    &ia->ia_addr.sin_addr) == 0))
996 						break;
997 				}
998 				if (ia == NULL)
999 					error = EADDRNOTAVAIL;
1000 				else {
1001 					laddr = ia->ia_addr.sin_addr;
1002 					error = 0;
1003 				}
1004 				IN_IFADDR_RUNLOCK();
1005 			}
1006 		}
1007 		if (error)
1008 			return (error);
1009 	}
1010 	oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1011 	    laddr, lport, 0, NULL);
1012 	if (oinp != NULL) {
1013 		if (oinpp != NULL)
1014 			*oinpp = oinp;
1015 		return (EADDRINUSE);
1016 	}
1017 	if (lport == 0) {
1018 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1019 		    cred);
1020 		if (error)
1021 			return (error);
1022 	}
1023 	*laddrp = laddr.s_addr;
1024 	*lportp = lport;
1025 	*faddrp = faddr.s_addr;
1026 	*fportp = fport;
1027 	return (0);
1028 }
1029 
1030 void
1031 in_pcbdisconnect(struct inpcb *inp)
1032 {
1033 
1034 	INP_WLOCK_ASSERT(inp);
1035 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1036 
1037 	inp->inp_faddr.s_addr = INADDR_ANY;
1038 	inp->inp_fport = 0;
1039 	in_pcbrehash(inp);
1040 }
1041 #endif
1042 
1043 /*
1044  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1045  * For most protocols, this will be invoked immediately prior to calling
1046  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1047  * socket, in which case in_pcbfree() is deferred.
1048  */
1049 void
1050 in_pcbdetach(struct inpcb *inp)
1051 {
1052 
1053 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1054 
1055 	inp->inp_socket->so_pcb = NULL;
1056 	inp->inp_socket = NULL;
1057 }
1058 
1059 /*
1060  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1061  * stability of an inpcb pointer despite the inpcb lock being released.  This
1062  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1063  * but where the inpcb lock may already held, or when acquiring a reference
1064  * via a pcbgroup.
1065  *
1066  * in_pcbref() should be used only to provide brief memory stability, and
1067  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1068  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1069  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1070  * lock and rele are the *only* safe operations that may be performed on the
1071  * inpcb.
1072  *
1073  * While the inpcb will not be freed, releasing the inpcb lock means that the
1074  * connection's state may change, so the caller should be careful to
1075  * revalidate any cached state on reacquiring the lock.  Drop the reference
1076  * using in_pcbrele().
1077  */
1078 void
1079 in_pcbref(struct inpcb *inp)
1080 {
1081 
1082 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1083 
1084 	refcount_acquire(&inp->inp_refcount);
1085 }
1086 
1087 /*
1088  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1089  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1090  * return a flag indicating whether or not the inpcb remains valid.  If it is
1091  * valid, we return with the inpcb lock held.
1092  *
1093  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1094  * reference on an inpcb.  Historically more work was done here (actually, in
1095  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1096  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1097  * about memory stability (and continued use of the write lock).
1098  */
1099 int
1100 in_pcbrele_rlocked(struct inpcb *inp)
1101 {
1102 	struct inpcbinfo *pcbinfo;
1103 
1104 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1105 
1106 	INP_RLOCK_ASSERT(inp);
1107 
1108 	if (refcount_release(&inp->inp_refcount) == 0)
1109 		return (0);
1110 
1111 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1112 
1113 	INP_RUNLOCK(inp);
1114 	pcbinfo = inp->inp_pcbinfo;
1115 	uma_zfree(pcbinfo->ipi_zone, inp);
1116 	return (1);
1117 }
1118 
1119 int
1120 in_pcbrele_wlocked(struct inpcb *inp)
1121 {
1122 	struct inpcbinfo *pcbinfo;
1123 
1124 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1125 
1126 	INP_WLOCK_ASSERT(inp);
1127 
1128 	if (refcount_release(&inp->inp_refcount) == 0)
1129 		return (0);
1130 
1131 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1132 
1133 	INP_WUNLOCK(inp);
1134 	pcbinfo = inp->inp_pcbinfo;
1135 	uma_zfree(pcbinfo->ipi_zone, inp);
1136 	return (1);
1137 }
1138 
1139 /*
1140  * Temporary wrapper.
1141  */
1142 int
1143 in_pcbrele(struct inpcb *inp)
1144 {
1145 
1146 	return (in_pcbrele_wlocked(inp));
1147 }
1148 
1149 /*
1150  * Unconditionally schedule an inpcb to be freed by decrementing its
1151  * reference count, which should occur only after the inpcb has been detached
1152  * from its socket.  If another thread holds a temporary reference (acquired
1153  * using in_pcbref()) then the free is deferred until that reference is
1154  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1155  * work, including removal from global lists, is done in this context, where
1156  * the pcbinfo lock is held.
1157  */
1158 void
1159 in_pcbfree(struct inpcb *inp)
1160 {
1161 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1162 
1163 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1164 
1165 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1166 	INP_WLOCK_ASSERT(inp);
1167 
1168 	/* XXXRW: Do as much as possible here. */
1169 #ifdef IPSEC
1170 	if (inp->inp_sp != NULL)
1171 		ipsec_delete_pcbpolicy(inp);
1172 #endif /* IPSEC */
1173 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1174 	in_pcbremlists(inp);
1175 #ifdef INET6
1176 	if (inp->inp_vflag & INP_IPV6PROTO) {
1177 		ip6_freepcbopts(inp->in6p_outputopts);
1178 		if (inp->in6p_moptions != NULL)
1179 			ip6_freemoptions(inp->in6p_moptions);
1180 	}
1181 #endif
1182 	if (inp->inp_options)
1183 		(void)m_free(inp->inp_options);
1184 #ifdef INET
1185 	if (inp->inp_moptions != NULL)
1186 		inp_freemoptions(inp->inp_moptions);
1187 #endif
1188 	inp->inp_vflag = 0;
1189 	crfree(inp->inp_cred);
1190 #ifdef MAC
1191 	mac_inpcb_destroy(inp);
1192 #endif
1193 	if (!in_pcbrele_wlocked(inp))
1194 		INP_WUNLOCK(inp);
1195 }
1196 
1197 /*
1198  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1199  * port reservation, and preventing it from being returned by inpcb lookups.
1200  *
1201  * It is used by TCP to mark an inpcb as unused and avoid future packet
1202  * delivery or event notification when a socket remains open but TCP has
1203  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1204  * or a RST on the wire, and allows the port binding to be reused while still
1205  * maintaining the invariant that so_pcb always points to a valid inpcb until
1206  * in_pcbdetach().
1207  *
1208  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1209  * in_pcbnotifyall() and in_pcbpurgeif0()?
1210  */
1211 void
1212 in_pcbdrop(struct inpcb *inp)
1213 {
1214 
1215 	INP_WLOCK_ASSERT(inp);
1216 
1217 	/*
1218 	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1219 	 * the hash lock...?
1220 	 */
1221 	inp->inp_flags |= INP_DROPPED;
1222 	if (inp->inp_flags & INP_INHASHLIST) {
1223 		struct inpcbport *phd = inp->inp_phd;
1224 
1225 		INP_HASH_WLOCK(inp->inp_pcbinfo);
1226 		LIST_REMOVE(inp, inp_hash);
1227 		LIST_REMOVE(inp, inp_portlist);
1228 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1229 			LIST_REMOVE(phd, phd_hash);
1230 			free(phd, M_PCB);
1231 		}
1232 		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1233 		inp->inp_flags &= ~INP_INHASHLIST;
1234 #ifdef PCBGROUP
1235 		in_pcbgroup_remove(inp);
1236 #endif
1237 	}
1238 }
1239 
1240 #ifdef INET
1241 /*
1242  * Common routines to return the socket addresses associated with inpcbs.
1243  */
1244 struct sockaddr *
1245 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1246 {
1247 	struct sockaddr_in *sin;
1248 
1249 	sin = malloc(sizeof *sin, M_SONAME,
1250 		M_WAITOK | M_ZERO);
1251 	sin->sin_family = AF_INET;
1252 	sin->sin_len = sizeof(*sin);
1253 	sin->sin_addr = *addr_p;
1254 	sin->sin_port = port;
1255 
1256 	return (struct sockaddr *)sin;
1257 }
1258 
1259 int
1260 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1261 {
1262 	struct inpcb *inp;
1263 	struct in_addr addr;
1264 	in_port_t port;
1265 
1266 	inp = sotoinpcb(so);
1267 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1268 
1269 	INP_RLOCK(inp);
1270 	port = inp->inp_lport;
1271 	addr = inp->inp_laddr;
1272 	INP_RUNLOCK(inp);
1273 
1274 	*nam = in_sockaddr(port, &addr);
1275 	return 0;
1276 }
1277 
1278 int
1279 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1280 {
1281 	struct inpcb *inp;
1282 	struct in_addr addr;
1283 	in_port_t port;
1284 
1285 	inp = sotoinpcb(so);
1286 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1287 
1288 	INP_RLOCK(inp);
1289 	port = inp->inp_fport;
1290 	addr = inp->inp_faddr;
1291 	INP_RUNLOCK(inp);
1292 
1293 	*nam = in_sockaddr(port, &addr);
1294 	return 0;
1295 }
1296 
1297 void
1298 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1299     struct inpcb *(*notify)(struct inpcb *, int))
1300 {
1301 	struct inpcb *inp, *inp_temp;
1302 
1303 	INP_INFO_WLOCK(pcbinfo);
1304 	LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1305 		INP_WLOCK(inp);
1306 #ifdef INET6
1307 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1308 			INP_WUNLOCK(inp);
1309 			continue;
1310 		}
1311 #endif
1312 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1313 		    inp->inp_socket == NULL) {
1314 			INP_WUNLOCK(inp);
1315 			continue;
1316 		}
1317 		if ((*notify)(inp, errno))
1318 			INP_WUNLOCK(inp);
1319 	}
1320 	INP_INFO_WUNLOCK(pcbinfo);
1321 }
1322 
1323 void
1324 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1325 {
1326 	struct inpcb *inp;
1327 	struct ip_moptions *imo;
1328 	int i, gap;
1329 
1330 	INP_INFO_RLOCK(pcbinfo);
1331 	LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1332 		INP_WLOCK(inp);
1333 		imo = inp->inp_moptions;
1334 		if ((inp->inp_vflag & INP_IPV4) &&
1335 		    imo != NULL) {
1336 			/*
1337 			 * Unselect the outgoing interface if it is being
1338 			 * detached.
1339 			 */
1340 			if (imo->imo_multicast_ifp == ifp)
1341 				imo->imo_multicast_ifp = NULL;
1342 
1343 			/*
1344 			 * Drop multicast group membership if we joined
1345 			 * through the interface being detached.
1346 			 */
1347 			for (i = 0, gap = 0; i < imo->imo_num_memberships;
1348 			    i++) {
1349 				if (imo->imo_membership[i]->inm_ifp == ifp) {
1350 					in_delmulti(imo->imo_membership[i]);
1351 					gap++;
1352 				} else if (gap != 0)
1353 					imo->imo_membership[i - gap] =
1354 					    imo->imo_membership[i];
1355 			}
1356 			imo->imo_num_memberships -= gap;
1357 		}
1358 		INP_WUNLOCK(inp);
1359 	}
1360 	INP_INFO_RUNLOCK(pcbinfo);
1361 }
1362 
1363 /*
1364  * Lookup a PCB based on the local address and port.  Caller must hold the
1365  * hash lock.  No inpcb locks or references are acquired.
1366  */
1367 #define INP_LOOKUP_MAPPED_PCB_COST	3
1368 struct inpcb *
1369 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1370     u_short lport, int lookupflags, struct ucred *cred)
1371 {
1372 	struct inpcb *inp;
1373 #ifdef INET6
1374 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1375 #else
1376 	int matchwild = 3;
1377 #endif
1378 	int wildcard;
1379 
1380 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1381 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1382 
1383 	INP_HASH_LOCK_ASSERT(pcbinfo);
1384 
1385 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1386 		struct inpcbhead *head;
1387 		/*
1388 		 * Look for an unconnected (wildcard foreign addr) PCB that
1389 		 * matches the local address and port we're looking for.
1390 		 */
1391 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1392 		    0, pcbinfo->ipi_hashmask)];
1393 		LIST_FOREACH(inp, head, inp_hash) {
1394 #ifdef INET6
1395 			/* XXX inp locking */
1396 			if ((inp->inp_vflag & INP_IPV4) == 0)
1397 				continue;
1398 #endif
1399 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1400 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1401 			    inp->inp_lport == lport) {
1402 				/*
1403 				 * Found?
1404 				 */
1405 				if (cred == NULL ||
1406 				    prison_equal_ip4(cred->cr_prison,
1407 					inp->inp_cred->cr_prison))
1408 					return (inp);
1409 			}
1410 		}
1411 		/*
1412 		 * Not found.
1413 		 */
1414 		return (NULL);
1415 	} else {
1416 		struct inpcbporthead *porthash;
1417 		struct inpcbport *phd;
1418 		struct inpcb *match = NULL;
1419 		/*
1420 		 * Best fit PCB lookup.
1421 		 *
1422 		 * First see if this local port is in use by looking on the
1423 		 * port hash list.
1424 		 */
1425 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1426 		    pcbinfo->ipi_porthashmask)];
1427 		LIST_FOREACH(phd, porthash, phd_hash) {
1428 			if (phd->phd_port == lport)
1429 				break;
1430 		}
1431 		if (phd != NULL) {
1432 			/*
1433 			 * Port is in use by one or more PCBs. Look for best
1434 			 * fit.
1435 			 */
1436 			LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1437 				wildcard = 0;
1438 				if (cred != NULL &&
1439 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
1440 					cred->cr_prison))
1441 					continue;
1442 #ifdef INET6
1443 				/* XXX inp locking */
1444 				if ((inp->inp_vflag & INP_IPV4) == 0)
1445 					continue;
1446 				/*
1447 				 * We never select the PCB that has
1448 				 * INP_IPV6 flag and is bound to :: if
1449 				 * we have another PCB which is bound
1450 				 * to 0.0.0.0.  If a PCB has the
1451 				 * INP_IPV6 flag, then we set its cost
1452 				 * higher than IPv4 only PCBs.
1453 				 *
1454 				 * Note that the case only happens
1455 				 * when a socket is bound to ::, under
1456 				 * the condition that the use of the
1457 				 * mapped address is allowed.
1458 				 */
1459 				if ((inp->inp_vflag & INP_IPV6) != 0)
1460 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1461 #endif
1462 				if (inp->inp_faddr.s_addr != INADDR_ANY)
1463 					wildcard++;
1464 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
1465 					if (laddr.s_addr == INADDR_ANY)
1466 						wildcard++;
1467 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
1468 						continue;
1469 				} else {
1470 					if (laddr.s_addr != INADDR_ANY)
1471 						wildcard++;
1472 				}
1473 				if (wildcard < matchwild) {
1474 					match = inp;
1475 					matchwild = wildcard;
1476 					if (matchwild == 0)
1477 						break;
1478 				}
1479 			}
1480 		}
1481 		return (match);
1482 	}
1483 }
1484 #undef INP_LOOKUP_MAPPED_PCB_COST
1485 
1486 #ifdef PCBGROUP
1487 /*
1488  * Lookup PCB in hash list, using pcbgroup tables.
1489  */
1490 static struct inpcb *
1491 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
1492     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
1493     u_int lport_arg, int lookupflags, struct ifnet *ifp)
1494 {
1495 	struct inpcbhead *head;
1496 	struct inpcb *inp, *tmpinp;
1497 	u_short fport = fport_arg, lport = lport_arg;
1498 
1499 	/*
1500 	 * First look for an exact match.
1501 	 */
1502 	tmpinp = NULL;
1503 	INP_GROUP_LOCK(pcbgroup);
1504 	head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1505 	    pcbgroup->ipg_hashmask)];
1506 	LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1507 #ifdef INET6
1508 		/* XXX inp locking */
1509 		if ((inp->inp_vflag & INP_IPV4) == 0)
1510 			continue;
1511 #endif
1512 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1513 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1514 		    inp->inp_fport == fport &&
1515 		    inp->inp_lport == lport) {
1516 			/*
1517 			 * XXX We should be able to directly return
1518 			 * the inp here, without any checks.
1519 			 * Well unless both bound with SO_REUSEPORT?
1520 			 */
1521 			if (prison_flag(inp->inp_cred, PR_IP4))
1522 				goto found;
1523 			if (tmpinp == NULL)
1524 				tmpinp = inp;
1525 		}
1526 	}
1527 	if (tmpinp != NULL) {
1528 		inp = tmpinp;
1529 		goto found;
1530 	}
1531 
1532 	/*
1533 	 * Then look for a wildcard match, if requested.
1534 	 */
1535 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1536 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1537 #ifdef INET6
1538 		struct inpcb *local_wild_mapped = NULL;
1539 #endif
1540 		struct inpcb *jail_wild = NULL;
1541 		struct inpcbhead *head;
1542 		int injail;
1543 
1544 		/*
1545 		 * Order of socket selection - we always prefer jails.
1546 		 *      1. jailed, non-wild.
1547 		 *      2. jailed, wild.
1548 		 *      3. non-jailed, non-wild.
1549 		 *      4. non-jailed, wild.
1550 		 */
1551 		head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
1552 		    0, pcbinfo->ipi_wildmask)];
1553 		LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
1554 #ifdef INET6
1555 			/* XXX inp locking */
1556 			if ((inp->inp_vflag & INP_IPV4) == 0)
1557 				continue;
1558 #endif
1559 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1560 			    inp->inp_lport != lport)
1561 				continue;
1562 
1563 			/* XXX inp locking */
1564 			if (ifp && ifp->if_type == IFT_FAITH &&
1565 			    (inp->inp_flags & INP_FAITH) == 0)
1566 				continue;
1567 
1568 			injail = prison_flag(inp->inp_cred, PR_IP4);
1569 			if (injail) {
1570 				if (prison_check_ip4(inp->inp_cred,
1571 				    &laddr) != 0)
1572 					continue;
1573 			} else {
1574 				if (local_exact != NULL)
1575 					continue;
1576 			}
1577 
1578 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1579 				if (injail)
1580 					goto found;
1581 				else
1582 					local_exact = inp;
1583 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1584 #ifdef INET6
1585 				/* XXX inp locking, NULL check */
1586 				if (inp->inp_vflag & INP_IPV6PROTO)
1587 					local_wild_mapped = inp;
1588 				else
1589 #endif /* INET6 */
1590 					if (injail)
1591 						jail_wild = inp;
1592 					else
1593 						local_wild = inp;
1594 			}
1595 		} /* LIST_FOREACH */
1596 		inp = jail_wild;
1597 		if (inp == NULL)
1598 			inp = local_exact;
1599 		if (inp == NULL)
1600 			inp = local_wild;
1601 #ifdef INET6
1602 		if (inp == NULL)
1603 			inp = local_wild_mapped;
1604 #endif /* defined(INET6) */
1605 		if (inp != NULL)
1606 			goto found;
1607 	} /* if (lookupflags & INPLOOKUP_WILDCARD) */
1608 	INP_GROUP_UNLOCK(pcbgroup);
1609 	return (NULL);
1610 
1611 found:
1612 	in_pcbref(inp);
1613 	INP_GROUP_UNLOCK(pcbgroup);
1614 	if (lookupflags & INPLOOKUP_WLOCKPCB) {
1615 		INP_WLOCK(inp);
1616 		if (in_pcbrele_wlocked(inp))
1617 			return (NULL);
1618 	} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1619 		INP_RLOCK(inp);
1620 		if (in_pcbrele_rlocked(inp))
1621 			return (NULL);
1622 	} else
1623 		panic("%s: locking bug", __func__);
1624 	return (inp);
1625 }
1626 #endif /* PCBGROUP */
1627 
1628 /*
1629  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
1630  * that the caller has locked the hash list, and will not perform any further
1631  * locking or reference operations on either the hash list or the connection.
1632  */
1633 static struct inpcb *
1634 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1635     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
1636     struct ifnet *ifp)
1637 {
1638 	struct inpcbhead *head;
1639 	struct inpcb *inp, *tmpinp;
1640 	u_short fport = fport_arg, lport = lport_arg;
1641 
1642 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1643 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1644 
1645 	INP_HASH_LOCK_ASSERT(pcbinfo);
1646 
1647 	/*
1648 	 * First look for an exact match.
1649 	 */
1650 	tmpinp = NULL;
1651 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1652 	    pcbinfo->ipi_hashmask)];
1653 	LIST_FOREACH(inp, head, inp_hash) {
1654 #ifdef INET6
1655 		/* XXX inp locking */
1656 		if ((inp->inp_vflag & INP_IPV4) == 0)
1657 			continue;
1658 #endif
1659 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1660 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1661 		    inp->inp_fport == fport &&
1662 		    inp->inp_lport == lport) {
1663 			/*
1664 			 * XXX We should be able to directly return
1665 			 * the inp here, without any checks.
1666 			 * Well unless both bound with SO_REUSEPORT?
1667 			 */
1668 			if (prison_flag(inp->inp_cred, PR_IP4))
1669 				return (inp);
1670 			if (tmpinp == NULL)
1671 				tmpinp = inp;
1672 		}
1673 	}
1674 	if (tmpinp != NULL)
1675 		return (tmpinp);
1676 
1677 	/*
1678 	 * Then look for a wildcard match, if requested.
1679 	 */
1680 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1681 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1682 #ifdef INET6
1683 		struct inpcb *local_wild_mapped = NULL;
1684 #endif
1685 		struct inpcb *jail_wild = NULL;
1686 		int injail;
1687 
1688 		/*
1689 		 * Order of socket selection - we always prefer jails.
1690 		 *      1. jailed, non-wild.
1691 		 *      2. jailed, wild.
1692 		 *      3. non-jailed, non-wild.
1693 		 *      4. non-jailed, wild.
1694 		 */
1695 
1696 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1697 		    0, pcbinfo->ipi_hashmask)];
1698 		LIST_FOREACH(inp, head, inp_hash) {
1699 #ifdef INET6
1700 			/* XXX inp locking */
1701 			if ((inp->inp_vflag & INP_IPV4) == 0)
1702 				continue;
1703 #endif
1704 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1705 			    inp->inp_lport != lport)
1706 				continue;
1707 
1708 			/* XXX inp locking */
1709 			if (ifp && ifp->if_type == IFT_FAITH &&
1710 			    (inp->inp_flags & INP_FAITH) == 0)
1711 				continue;
1712 
1713 			injail = prison_flag(inp->inp_cred, PR_IP4);
1714 			if (injail) {
1715 				if (prison_check_ip4(inp->inp_cred,
1716 				    &laddr) != 0)
1717 					continue;
1718 			} else {
1719 				if (local_exact != NULL)
1720 					continue;
1721 			}
1722 
1723 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1724 				if (injail)
1725 					return (inp);
1726 				else
1727 					local_exact = inp;
1728 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1729 #ifdef INET6
1730 				/* XXX inp locking, NULL check */
1731 				if (inp->inp_vflag & INP_IPV6PROTO)
1732 					local_wild_mapped = inp;
1733 				else
1734 #endif /* INET6 */
1735 					if (injail)
1736 						jail_wild = inp;
1737 					else
1738 						local_wild = inp;
1739 			}
1740 		} /* LIST_FOREACH */
1741 		if (jail_wild != NULL)
1742 			return (jail_wild);
1743 		if (local_exact != NULL)
1744 			return (local_exact);
1745 		if (local_wild != NULL)
1746 			return (local_wild);
1747 #ifdef INET6
1748 		if (local_wild_mapped != NULL)
1749 			return (local_wild_mapped);
1750 #endif /* defined(INET6) */
1751 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
1752 
1753 	return (NULL);
1754 }
1755 
1756 /*
1757  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
1758  * hash list lock, and will return the inpcb locked (i.e., requires
1759  * INPLOOKUP_LOCKPCB).
1760  */
1761 static struct inpcb *
1762 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1763     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
1764     struct ifnet *ifp)
1765 {
1766 	struct inpcb *inp;
1767 
1768 	INP_HASH_RLOCK(pcbinfo);
1769 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
1770 	    (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
1771 	if (inp != NULL) {
1772 		in_pcbref(inp);
1773 		INP_HASH_RUNLOCK(pcbinfo);
1774 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
1775 			INP_WLOCK(inp);
1776 			if (in_pcbrele_wlocked(inp))
1777 				return (NULL);
1778 		} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1779 			INP_RLOCK(inp);
1780 			if (in_pcbrele_rlocked(inp))
1781 				return (NULL);
1782 		} else
1783 			panic("%s: locking bug", __func__);
1784 	} else
1785 		INP_HASH_RUNLOCK(pcbinfo);
1786 	return (inp);
1787 }
1788 
1789 /*
1790  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
1791  * from which a pre-calculated hash value may be extracted.
1792  *
1793  * Possibly more of this logic should be in in_pcbgroup.c.
1794  */
1795 struct inpcb *
1796 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
1797     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
1798 {
1799 #if defined(PCBGROUP)
1800 	struct inpcbgroup *pcbgroup;
1801 #endif
1802 
1803 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
1804 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1805 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
1806 	    ("%s: LOCKPCB not set", __func__));
1807 
1808 #if defined(PCBGROUP)
1809 	if (in_pcbgroup_enabled(pcbinfo)) {
1810 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
1811 		    fport);
1812 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
1813 		    laddr, lport, lookupflags, ifp));
1814 	}
1815 #endif
1816 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
1817 	    lookupflags, ifp));
1818 }
1819 
1820 struct inpcb *
1821 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1822     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
1823     struct ifnet *ifp, struct mbuf *m)
1824 {
1825 #ifdef PCBGROUP
1826 	struct inpcbgroup *pcbgroup;
1827 #endif
1828 
1829 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
1830 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1831 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
1832 	    ("%s: LOCKPCB not set", __func__));
1833 
1834 #ifdef PCBGROUP
1835 	if (in_pcbgroup_enabled(pcbinfo)) {
1836 		pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
1837 		    m->m_pkthdr.flowid);
1838 		if (pcbgroup != NULL)
1839 			return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
1840 			    fport, laddr, lport, lookupflags, ifp));
1841 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
1842 		    fport);
1843 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
1844 		    laddr, lport, lookupflags, ifp));
1845 	}
1846 #endif
1847 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
1848 	    lookupflags, ifp));
1849 }
1850 #endif /* INET */
1851 
1852 /*
1853  * Insert PCB onto various hash lists.
1854  */
1855 static int
1856 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
1857 {
1858 	struct inpcbhead *pcbhash;
1859 	struct inpcbporthead *pcbporthash;
1860 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1861 	struct inpcbport *phd;
1862 	u_int32_t hashkey_faddr;
1863 
1864 	INP_WLOCK_ASSERT(inp);
1865 	INP_HASH_WLOCK_ASSERT(pcbinfo);
1866 
1867 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
1868 	    ("in_pcbinshash: INP_INHASHLIST"));
1869 
1870 #ifdef INET6
1871 	if (inp->inp_vflag & INP_IPV6)
1872 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1873 	else
1874 #endif /* INET6 */
1875 	hashkey_faddr = inp->inp_faddr.s_addr;
1876 
1877 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
1878 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
1879 
1880 	pcbporthash = &pcbinfo->ipi_porthashbase[
1881 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
1882 
1883 	/*
1884 	 * Go through port list and look for a head for this lport.
1885 	 */
1886 	LIST_FOREACH(phd, pcbporthash, phd_hash) {
1887 		if (phd->phd_port == inp->inp_lport)
1888 			break;
1889 	}
1890 	/*
1891 	 * If none exists, malloc one and tack it on.
1892 	 */
1893 	if (phd == NULL) {
1894 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
1895 		if (phd == NULL) {
1896 			return (ENOBUFS); /* XXX */
1897 		}
1898 		phd->phd_port = inp->inp_lport;
1899 		LIST_INIT(&phd->phd_pcblist);
1900 		LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
1901 	}
1902 	inp->inp_phd = phd;
1903 	LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
1904 	LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
1905 	inp->inp_flags |= INP_INHASHLIST;
1906 #ifdef PCBGROUP
1907 	if (do_pcbgroup_update)
1908 		in_pcbgroup_update(inp);
1909 #endif
1910 	return (0);
1911 }
1912 
1913 /*
1914  * For now, there are two public interfaces to insert an inpcb into the hash
1915  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
1916  * is used only in the TCP syncache, where in_pcbinshash is called before the
1917  * full 4-tuple is set for the inpcb, and we don't want to install in the
1918  * pcbgroup until later.
1919  *
1920  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
1921  * connection groups, and partially initialised inpcbs should not be exposed
1922  * to either reservation hash tables or pcbgroups.
1923  */
1924 int
1925 in_pcbinshash(struct inpcb *inp)
1926 {
1927 
1928 	return (in_pcbinshash_internal(inp, 1));
1929 }
1930 
1931 int
1932 in_pcbinshash_nopcbgroup(struct inpcb *inp)
1933 {
1934 
1935 	return (in_pcbinshash_internal(inp, 0));
1936 }
1937 
1938 /*
1939  * Move PCB to the proper hash bucket when { faddr, fport } have  been
1940  * changed. NOTE: This does not handle the case of the lport changing (the
1941  * hashed port list would have to be updated as well), so the lport must
1942  * not change after in_pcbinshash() has been called.
1943  */
1944 void
1945 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
1946 {
1947 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1948 	struct inpcbhead *head;
1949 	u_int32_t hashkey_faddr;
1950 
1951 	INP_WLOCK_ASSERT(inp);
1952 	INP_HASH_WLOCK_ASSERT(pcbinfo);
1953 
1954 	KASSERT(inp->inp_flags & INP_INHASHLIST,
1955 	    ("in_pcbrehash: !INP_INHASHLIST"));
1956 
1957 #ifdef INET6
1958 	if (inp->inp_vflag & INP_IPV6)
1959 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1960 	else
1961 #endif /* INET6 */
1962 	hashkey_faddr = inp->inp_faddr.s_addr;
1963 
1964 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
1965 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
1966 
1967 	LIST_REMOVE(inp, inp_hash);
1968 	LIST_INSERT_HEAD(head, inp, inp_hash);
1969 
1970 #ifdef PCBGROUP
1971 	if (m != NULL)
1972 		in_pcbgroup_update_mbuf(inp, m);
1973 	else
1974 		in_pcbgroup_update(inp);
1975 #endif
1976 }
1977 
1978 void
1979 in_pcbrehash(struct inpcb *inp)
1980 {
1981 
1982 	in_pcbrehash_mbuf(inp, NULL);
1983 }
1984 
1985 /*
1986  * Remove PCB from various lists.
1987  */
1988 static void
1989 in_pcbremlists(struct inpcb *inp)
1990 {
1991 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1992 
1993 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1994 	INP_WLOCK_ASSERT(inp);
1995 
1996 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1997 	if (inp->inp_flags & INP_INHASHLIST) {
1998 		struct inpcbport *phd = inp->inp_phd;
1999 
2000 		INP_HASH_WLOCK(pcbinfo);
2001 		LIST_REMOVE(inp, inp_hash);
2002 		LIST_REMOVE(inp, inp_portlist);
2003 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
2004 			LIST_REMOVE(phd, phd_hash);
2005 			free(phd, M_PCB);
2006 		}
2007 		INP_HASH_WUNLOCK(pcbinfo);
2008 		inp->inp_flags &= ~INP_INHASHLIST;
2009 	}
2010 	LIST_REMOVE(inp, inp_list);
2011 	pcbinfo->ipi_count--;
2012 #ifdef PCBGROUP
2013 	in_pcbgroup_remove(inp);
2014 #endif
2015 }
2016 
2017 /*
2018  * A set label operation has occurred at the socket layer, propagate the
2019  * label change into the in_pcb for the socket.
2020  */
2021 void
2022 in_pcbsosetlabel(struct socket *so)
2023 {
2024 #ifdef MAC
2025 	struct inpcb *inp;
2026 
2027 	inp = sotoinpcb(so);
2028 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2029 
2030 	INP_WLOCK(inp);
2031 	SOCK_LOCK(so);
2032 	mac_inpcb_sosetlabel(so, inp);
2033 	SOCK_UNLOCK(so);
2034 	INP_WUNLOCK(inp);
2035 #endif
2036 }
2037 
2038 /*
2039  * ipport_tick runs once per second, determining if random port allocation
2040  * should be continued.  If more than ipport_randomcps ports have been
2041  * allocated in the last second, then we return to sequential port
2042  * allocation. We return to random allocation only once we drop below
2043  * ipport_randomcps for at least ipport_randomtime seconds.
2044  */
2045 static void
2046 ipport_tick(void *xtp)
2047 {
2048 	VNET_ITERATOR_DECL(vnet_iter);
2049 
2050 	VNET_LIST_RLOCK_NOSLEEP();
2051 	VNET_FOREACH(vnet_iter) {
2052 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
2053 		if (V_ipport_tcpallocs <=
2054 		    V_ipport_tcplastcount + V_ipport_randomcps) {
2055 			if (V_ipport_stoprandom > 0)
2056 				V_ipport_stoprandom--;
2057 		} else
2058 			V_ipport_stoprandom = V_ipport_randomtime;
2059 		V_ipport_tcplastcount = V_ipport_tcpallocs;
2060 		CURVNET_RESTORE();
2061 	}
2062 	VNET_LIST_RUNLOCK_NOSLEEP();
2063 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2064 }
2065 
2066 static void
2067 ip_fini(void *xtp)
2068 {
2069 
2070 	callout_stop(&ipport_tick_callout);
2071 }
2072 
2073 /*
2074  * The ipport_callout should start running at about the time we attach the
2075  * inet or inet6 domains.
2076  */
2077 static void
2078 ipport_tick_init(const void *unused __unused)
2079 {
2080 
2081 	/* Start ipport_tick. */
2082 	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
2083 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2084 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2085 		SHUTDOWN_PRI_DEFAULT);
2086 }
2087 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
2088     ipport_tick_init, NULL);
2089 
2090 void
2091 inp_wlock(struct inpcb *inp)
2092 {
2093 
2094 	INP_WLOCK(inp);
2095 }
2096 
2097 void
2098 inp_wunlock(struct inpcb *inp)
2099 {
2100 
2101 	INP_WUNLOCK(inp);
2102 }
2103 
2104 void
2105 inp_rlock(struct inpcb *inp)
2106 {
2107 
2108 	INP_RLOCK(inp);
2109 }
2110 
2111 void
2112 inp_runlock(struct inpcb *inp)
2113 {
2114 
2115 	INP_RUNLOCK(inp);
2116 }
2117 
2118 #ifdef INVARIANTS
2119 void
2120 inp_lock_assert(struct inpcb *inp)
2121 {
2122 
2123 	INP_WLOCK_ASSERT(inp);
2124 }
2125 
2126 void
2127 inp_unlock_assert(struct inpcb *inp)
2128 {
2129 
2130 	INP_UNLOCK_ASSERT(inp);
2131 }
2132 #endif
2133 
2134 void
2135 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2136 {
2137 	struct inpcb *inp;
2138 
2139 	INP_INFO_RLOCK(&V_tcbinfo);
2140 	LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2141 		INP_WLOCK(inp);
2142 		func(inp, arg);
2143 		INP_WUNLOCK(inp);
2144 	}
2145 	INP_INFO_RUNLOCK(&V_tcbinfo);
2146 }
2147 
2148 struct socket *
2149 inp_inpcbtosocket(struct inpcb *inp)
2150 {
2151 
2152 	INP_WLOCK_ASSERT(inp);
2153 	return (inp->inp_socket);
2154 }
2155 
2156 struct tcpcb *
2157 inp_inpcbtotcpcb(struct inpcb *inp)
2158 {
2159 
2160 	INP_WLOCK_ASSERT(inp);
2161 	return ((struct tcpcb *)inp->inp_ppcb);
2162 }
2163 
2164 int
2165 inp_ip_tos_get(const struct inpcb *inp)
2166 {
2167 
2168 	return (inp->inp_ip_tos);
2169 }
2170 
2171 void
2172 inp_ip_tos_set(struct inpcb *inp, int val)
2173 {
2174 
2175 	inp->inp_ip_tos = val;
2176 }
2177 
2178 void
2179 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2180     uint32_t *faddr, uint16_t *fp)
2181 {
2182 
2183 	INP_LOCK_ASSERT(inp);
2184 	*laddr = inp->inp_laddr.s_addr;
2185 	*faddr = inp->inp_faddr.s_addr;
2186 	*lp = inp->inp_lport;
2187 	*fp = inp->inp_fport;
2188 }
2189 
2190 struct inpcb *
2191 so_sotoinpcb(struct socket *so)
2192 {
2193 
2194 	return (sotoinpcb(so));
2195 }
2196 
2197 struct tcpcb *
2198 so_sototcpcb(struct socket *so)
2199 {
2200 
2201 	return (sototcpcb(so));
2202 }
2203 
2204 #ifdef DDB
2205 static void
2206 db_print_indent(int indent)
2207 {
2208 	int i;
2209 
2210 	for (i = 0; i < indent; i++)
2211 		db_printf(" ");
2212 }
2213 
2214 static void
2215 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2216 {
2217 	char faddr_str[48], laddr_str[48];
2218 
2219 	db_print_indent(indent);
2220 	db_printf("%s at %p\n", name, inc);
2221 
2222 	indent += 2;
2223 
2224 #ifdef INET6
2225 	if (inc->inc_flags & INC_ISIPV6) {
2226 		/* IPv6. */
2227 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
2228 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
2229 	} else {
2230 #endif
2231 		/* IPv4. */
2232 		inet_ntoa_r(inc->inc_laddr, laddr_str);
2233 		inet_ntoa_r(inc->inc_faddr, faddr_str);
2234 #ifdef INET6
2235 	}
2236 #endif
2237 	db_print_indent(indent);
2238 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2239 	    ntohs(inc->inc_lport));
2240 	db_print_indent(indent);
2241 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2242 	    ntohs(inc->inc_fport));
2243 }
2244 
2245 static void
2246 db_print_inpflags(int inp_flags)
2247 {
2248 	int comma;
2249 
2250 	comma = 0;
2251 	if (inp_flags & INP_RECVOPTS) {
2252 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2253 		comma = 1;
2254 	}
2255 	if (inp_flags & INP_RECVRETOPTS) {
2256 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2257 		comma = 1;
2258 	}
2259 	if (inp_flags & INP_RECVDSTADDR) {
2260 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2261 		comma = 1;
2262 	}
2263 	if (inp_flags & INP_HDRINCL) {
2264 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
2265 		comma = 1;
2266 	}
2267 	if (inp_flags & INP_HIGHPORT) {
2268 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2269 		comma = 1;
2270 	}
2271 	if (inp_flags & INP_LOWPORT) {
2272 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
2273 		comma = 1;
2274 	}
2275 	if (inp_flags & INP_ANONPORT) {
2276 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
2277 		comma = 1;
2278 	}
2279 	if (inp_flags & INP_RECVIF) {
2280 		db_printf("%sINP_RECVIF", comma ? ", " : "");
2281 		comma = 1;
2282 	}
2283 	if (inp_flags & INP_MTUDISC) {
2284 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
2285 		comma = 1;
2286 	}
2287 	if (inp_flags & INP_FAITH) {
2288 		db_printf("%sINP_FAITH", comma ? ", " : "");
2289 		comma = 1;
2290 	}
2291 	if (inp_flags & INP_RECVTTL) {
2292 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
2293 		comma = 1;
2294 	}
2295 	if (inp_flags & INP_DONTFRAG) {
2296 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2297 		comma = 1;
2298 	}
2299 	if (inp_flags & IN6P_IPV6_V6ONLY) {
2300 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
2301 		comma = 1;
2302 	}
2303 	if (inp_flags & IN6P_PKTINFO) {
2304 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
2305 		comma = 1;
2306 	}
2307 	if (inp_flags & IN6P_HOPLIMIT) {
2308 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
2309 		comma = 1;
2310 	}
2311 	if (inp_flags & IN6P_HOPOPTS) {
2312 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
2313 		comma = 1;
2314 	}
2315 	if (inp_flags & IN6P_DSTOPTS) {
2316 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
2317 		comma = 1;
2318 	}
2319 	if (inp_flags & IN6P_RTHDR) {
2320 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
2321 		comma = 1;
2322 	}
2323 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
2324 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
2325 		comma = 1;
2326 	}
2327 	if (inp_flags & IN6P_TCLASS) {
2328 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
2329 		comma = 1;
2330 	}
2331 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
2332 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
2333 		comma = 1;
2334 	}
2335 	if (inp_flags & INP_TIMEWAIT) {
2336 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
2337 		comma  = 1;
2338 	}
2339 	if (inp_flags & INP_ONESBCAST) {
2340 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
2341 		comma  = 1;
2342 	}
2343 	if (inp_flags & INP_DROPPED) {
2344 		db_printf("%sINP_DROPPED", comma ? ", " : "");
2345 		comma  = 1;
2346 	}
2347 	if (inp_flags & INP_SOCKREF) {
2348 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
2349 		comma  = 1;
2350 	}
2351 	if (inp_flags & IN6P_RFC2292) {
2352 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
2353 		comma = 1;
2354 	}
2355 	if (inp_flags & IN6P_MTU) {
2356 		db_printf("IN6P_MTU%s", comma ? ", " : "");
2357 		comma = 1;
2358 	}
2359 }
2360 
2361 static void
2362 db_print_inpvflag(u_char inp_vflag)
2363 {
2364 	int comma;
2365 
2366 	comma = 0;
2367 	if (inp_vflag & INP_IPV4) {
2368 		db_printf("%sINP_IPV4", comma ? ", " : "");
2369 		comma  = 1;
2370 	}
2371 	if (inp_vflag & INP_IPV6) {
2372 		db_printf("%sINP_IPV6", comma ? ", " : "");
2373 		comma  = 1;
2374 	}
2375 	if (inp_vflag & INP_IPV6PROTO) {
2376 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
2377 		comma  = 1;
2378 	}
2379 }
2380 
2381 static void
2382 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
2383 {
2384 
2385 	db_print_indent(indent);
2386 	db_printf("%s at %p\n", name, inp);
2387 
2388 	indent += 2;
2389 
2390 	db_print_indent(indent);
2391 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
2392 
2393 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
2394 
2395 	db_print_indent(indent);
2396 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
2397 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
2398 
2399 	db_print_indent(indent);
2400 	db_printf("inp_label: %p   inp_flags: 0x%x (",
2401 	   inp->inp_label, inp->inp_flags);
2402 	db_print_inpflags(inp->inp_flags);
2403 	db_printf(")\n");
2404 
2405 	db_print_indent(indent);
2406 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
2407 	    inp->inp_vflag);
2408 	db_print_inpvflag(inp->inp_vflag);
2409 	db_printf(")\n");
2410 
2411 	db_print_indent(indent);
2412 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
2413 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
2414 
2415 	db_print_indent(indent);
2416 #ifdef INET6
2417 	if (inp->inp_vflag & INP_IPV6) {
2418 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
2419 		    "in6p_moptions: %p\n", inp->in6p_options,
2420 		    inp->in6p_outputopts, inp->in6p_moptions);
2421 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
2422 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
2423 		    inp->in6p_hops);
2424 	} else
2425 #endif
2426 	{
2427 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
2428 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
2429 		    inp->inp_options, inp->inp_moptions);
2430 	}
2431 
2432 	db_print_indent(indent);
2433 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
2434 	    (uintmax_t)inp->inp_gencnt);
2435 }
2436 
2437 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
2438 {
2439 	struct inpcb *inp;
2440 
2441 	if (!have_addr) {
2442 		db_printf("usage: show inpcb <addr>\n");
2443 		return;
2444 	}
2445 	inp = (struct inpcb *)addr;
2446 
2447 	db_print_inpcb(inp, "inpcb", 0);
2448 }
2449 #endif
2450