1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Robert N. M. Watson under 11 * contract to Juniper Networks, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_ddb.h" 44 #include "opt_ipsec.h" 45 #include "opt_inet.h" 46 #include "opt_inet6.h" 47 #include "opt_ratelimit.h" 48 #include "opt_route.h" 49 #include "opt_rss.h" 50 51 #include <sys/param.h> 52 #include <sys/hash.h> 53 #include <sys/systm.h> 54 #include <sys/libkern.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/mbuf.h> 58 #include <sys/callout.h> 59 #include <sys/eventhandler.h> 60 #include <sys/domain.h> 61 #include <sys/protosw.h> 62 #include <sys/smp.h> 63 #include <sys/socket.h> 64 #include <sys/socketvar.h> 65 #include <sys/sockio.h> 66 #include <sys/priv.h> 67 #include <sys/proc.h> 68 #include <sys/refcount.h> 69 #include <sys/jail.h> 70 #include <sys/kernel.h> 71 #include <sys/sysctl.h> 72 73 #ifdef DDB 74 #include <ddb/ddb.h> 75 #endif 76 77 #include <vm/uma.h> 78 #include <vm/vm.h> 79 80 #include <net/if.h> 81 #include <net/if_var.h> 82 #include <net/if_types.h> 83 #include <net/if_llatbl.h> 84 #include <net/route.h> 85 #include <net/rss_config.h> 86 #include <net/vnet.h> 87 88 #if defined(INET) || defined(INET6) 89 #include <netinet/in.h> 90 #include <netinet/in_pcb.h> 91 #include <netinet/in_pcb_var.h> 92 #ifdef INET 93 #include <netinet/in_var.h> 94 #include <netinet/in_fib.h> 95 #endif 96 #include <netinet/ip_var.h> 97 #include <netinet/tcp_var.h> 98 #ifdef TCPHPTS 99 #include <netinet/tcp_hpts.h> 100 #endif 101 #include <netinet/udp.h> 102 #include <netinet/udp_var.h> 103 #ifdef INET6 104 #include <netinet/ip6.h> 105 #include <netinet6/in6_pcb.h> 106 #include <netinet6/in6_var.h> 107 #include <netinet6/ip6_var.h> 108 #endif /* INET6 */ 109 #include <net/route/nhop.h> 110 #endif 111 112 #include <netipsec/ipsec_support.h> 113 114 #include <security/mac/mac_framework.h> 115 116 #define INPCBLBGROUP_SIZMIN 8 117 #define INPCBLBGROUP_SIZMAX 256 118 #define INP_FREED 0x00000200 /* See in_pcb.h. */ 119 120 static struct callout ipport_tick_callout; 121 122 /* 123 * These configure the range of local port addresses assigned to 124 * "unspecified" outgoing connections/packets/whatever. 125 */ 126 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 127 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 128 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 129 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 130 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 131 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 132 133 /* 134 * Reserved ports accessible only to root. There are significant 135 * security considerations that must be accounted for when changing these, 136 * but the security benefits can be great. Please be careful. 137 */ 138 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 139 VNET_DEFINE(int, ipport_reservedlow); 140 141 /* Variables dealing with random ephemeral port allocation. */ 142 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 143 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 144 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 145 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 146 VNET_DEFINE(int, ipport_tcpallocs); 147 VNET_DEFINE_STATIC(int, ipport_tcplastcount); 148 149 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 150 151 #ifdef INET 152 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 153 struct in_addr faddr, u_int fport_arg, 154 struct in_addr laddr, u_int lport_arg, 155 int lookupflags, struct ifnet *ifp, 156 uint8_t numa_domain); 157 158 #define RANGECHK(var, min, max) \ 159 if ((var) < (min)) { (var) = (min); } \ 160 else if ((var) > (max)) { (var) = (max); } 161 162 static int 163 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 164 { 165 int error; 166 167 error = sysctl_handle_int(oidp, arg1, arg2, req); 168 if (error == 0) { 169 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 170 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 171 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 172 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 173 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 174 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 175 } 176 return (error); 177 } 178 179 #undef RANGECHK 180 181 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, 182 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 183 "IP Ports"); 184 185 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 186 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 187 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", 188 ""); 189 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 190 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 191 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", 192 ""); 193 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 194 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 195 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", 196 ""); 197 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 198 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 199 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", 200 ""); 201 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 202 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 203 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", 204 ""); 205 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 206 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 207 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", 208 ""); 209 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 210 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 211 &VNET_NAME(ipport_reservedhigh), 0, ""); 212 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 213 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 214 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 215 CTLFLAG_VNET | CTLFLAG_RW, 216 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 217 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 218 CTLFLAG_VNET | CTLFLAG_RW, 219 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 220 "allocations before switching to a sequential one"); 221 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 222 CTLFLAG_VNET | CTLFLAG_RW, 223 &VNET_NAME(ipport_randomtime), 0, 224 "Minimum time to keep sequential port " 225 "allocation before switching to a random one"); 226 227 #ifdef RATELIMIT 228 counter_u64_t rate_limit_new; 229 counter_u64_t rate_limit_chg; 230 counter_u64_t rate_limit_active; 231 counter_u64_t rate_limit_alloc_fail; 232 counter_u64_t rate_limit_set_ok; 233 234 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 235 "IP Rate Limiting"); 236 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD, 237 &rate_limit_active, "Active rate limited connections"); 238 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD, 239 &rate_limit_alloc_fail, "Rate limited connection failures"); 240 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD, 241 &rate_limit_set_ok, "Rate limited setting succeeded"); 242 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD, 243 &rate_limit_new, "Total Rate limit new attempts"); 244 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD, 245 &rate_limit_chg, "Total Rate limited change attempts"); 246 247 #endif /* RATELIMIT */ 248 249 #endif /* INET */ 250 251 VNET_DEFINE(uint32_t, in_pcbhashseed); 252 static void 253 in_pcbhashseed_init(void) 254 { 255 256 V_in_pcbhashseed = arc4random(); 257 } 258 VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, 259 in_pcbhashseed_init, 0); 260 261 static void in_pcbremhash(struct inpcb *); 262 263 /* 264 * in_pcb.c: manage the Protocol Control Blocks. 265 * 266 * NOTE: It is assumed that most of these functions will be called with 267 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 268 * functions often modify hash chains or addresses in pcbs. 269 */ 270 271 static struct inpcblbgroup * 272 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag, 273 uint16_t port, const union in_dependaddr *addr, int size, 274 uint8_t numa_domain) 275 { 276 struct inpcblbgroup *grp; 277 size_t bytes; 278 279 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 280 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 281 if (!grp) 282 return (NULL); 283 grp->il_vflag = vflag; 284 grp->il_lport = port; 285 grp->il_numa_domain = numa_domain; 286 grp->il_dependladdr = *addr; 287 grp->il_inpsiz = size; 288 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 289 return (grp); 290 } 291 292 static void 293 in_pcblbgroup_free_deferred(epoch_context_t ctx) 294 { 295 struct inpcblbgroup *grp; 296 297 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); 298 free(grp, M_PCB); 299 } 300 301 static void 302 in_pcblbgroup_free(struct inpcblbgroup *grp) 303 { 304 305 CK_LIST_REMOVE(grp, il_list); 306 NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx); 307 } 308 309 static struct inpcblbgroup * 310 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 311 struct inpcblbgroup *old_grp, int size) 312 { 313 struct inpcblbgroup *grp; 314 int i; 315 316 grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag, 317 old_grp->il_lport, &old_grp->il_dependladdr, size, 318 old_grp->il_numa_domain); 319 if (grp == NULL) 320 return (NULL); 321 322 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 323 ("invalid new local group size %d and old local group count %d", 324 grp->il_inpsiz, old_grp->il_inpcnt)); 325 326 for (i = 0; i < old_grp->il_inpcnt; ++i) 327 grp->il_inp[i] = old_grp->il_inp[i]; 328 grp->il_inpcnt = old_grp->il_inpcnt; 329 in_pcblbgroup_free(old_grp); 330 return (grp); 331 } 332 333 /* 334 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] 335 * and shrink group if possible. 336 */ 337 static void 338 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, 339 int i) 340 { 341 struct inpcblbgroup *grp, *new_grp; 342 343 grp = *grpp; 344 for (; i + 1 < grp->il_inpcnt; ++i) 345 grp->il_inp[i] = grp->il_inp[i + 1]; 346 grp->il_inpcnt--; 347 348 if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && 349 grp->il_inpcnt <= grp->il_inpsiz / 4) { 350 /* Shrink this group. */ 351 new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); 352 if (new_grp != NULL) 353 *grpp = new_grp; 354 } 355 } 356 357 /* 358 * Add PCB to load balance group for SO_REUSEPORT_LB option. 359 */ 360 static int 361 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain) 362 { 363 const static struct timeval interval = { 60, 0 }; 364 static struct timeval lastprint; 365 struct inpcbinfo *pcbinfo; 366 struct inpcblbgrouphead *hdr; 367 struct inpcblbgroup *grp; 368 uint32_t idx; 369 370 pcbinfo = inp->inp_pcbinfo; 371 372 INP_WLOCK_ASSERT(inp); 373 INP_HASH_WLOCK_ASSERT(pcbinfo); 374 375 /* 376 * Don't allow jailed socket to join local group. 377 */ 378 if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred)) 379 return (0); 380 381 #ifdef INET6 382 /* 383 * Don't allow IPv4 mapped INET6 wild socket. 384 */ 385 if ((inp->inp_vflag & INP_IPV4) && 386 inp->inp_laddr.s_addr == INADDR_ANY && 387 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 388 return (0); 389 } 390 #endif 391 392 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); 393 hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; 394 CK_LIST_FOREACH(grp, hdr, il_list) { 395 if (grp->il_vflag == inp->inp_vflag && 396 grp->il_lport == inp->inp_lport && 397 grp->il_numa_domain == numa_domain && 398 memcmp(&grp->il_dependladdr, 399 &inp->inp_inc.inc_ie.ie_dependladdr, 400 sizeof(grp->il_dependladdr)) == 0) 401 break; 402 } 403 if (grp == NULL) { 404 /* Create new load balance group. */ 405 grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag, 406 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 407 INPCBLBGROUP_SIZMIN, numa_domain); 408 if (grp == NULL) 409 return (ENOBUFS); 410 } else if (grp->il_inpcnt == grp->il_inpsiz) { 411 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 412 if (ratecheck(&lastprint, &interval)) 413 printf("lb group port %d, limit reached\n", 414 ntohs(grp->il_lport)); 415 return (0); 416 } 417 418 /* Expand this local group. */ 419 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 420 if (grp == NULL) 421 return (ENOBUFS); 422 } 423 424 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 425 ("invalid local group size %d and count %d", grp->il_inpsiz, 426 grp->il_inpcnt)); 427 428 grp->il_inp[grp->il_inpcnt] = inp; 429 grp->il_inpcnt++; 430 return (0); 431 } 432 433 /* 434 * Remove PCB from load balance group. 435 */ 436 static void 437 in_pcbremlbgrouphash(struct inpcb *inp) 438 { 439 struct inpcbinfo *pcbinfo; 440 struct inpcblbgrouphead *hdr; 441 struct inpcblbgroup *grp; 442 int i; 443 444 pcbinfo = inp->inp_pcbinfo; 445 446 INP_WLOCK_ASSERT(inp); 447 INP_HASH_WLOCK_ASSERT(pcbinfo); 448 449 hdr = &pcbinfo->ipi_lbgrouphashbase[ 450 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 451 CK_LIST_FOREACH(grp, hdr, il_list) { 452 for (i = 0; i < grp->il_inpcnt; ++i) { 453 if (grp->il_inp[i] != inp) 454 continue; 455 456 if (grp->il_inpcnt == 1) { 457 /* We are the last, free this local group. */ 458 in_pcblbgroup_free(grp); 459 } else { 460 /* Pull up inpcbs, shrink group if possible. */ 461 in_pcblbgroup_reorder(hdr, &grp, i); 462 } 463 return; 464 } 465 } 466 } 467 468 int 469 in_pcblbgroup_numa(struct inpcb *inp, int arg) 470 { 471 struct inpcbinfo *pcbinfo; 472 struct inpcblbgrouphead *hdr; 473 struct inpcblbgroup *grp; 474 int err, i; 475 uint8_t numa_domain; 476 477 switch (arg) { 478 case TCP_REUSPORT_LB_NUMA_NODOM: 479 numa_domain = M_NODOM; 480 break; 481 case TCP_REUSPORT_LB_NUMA_CURDOM: 482 numa_domain = PCPU_GET(domain); 483 break; 484 default: 485 if (arg < 0 || arg >= vm_ndomains) 486 return (EINVAL); 487 numa_domain = arg; 488 } 489 490 err = 0; 491 pcbinfo = inp->inp_pcbinfo; 492 INP_WLOCK_ASSERT(inp); 493 INP_HASH_WLOCK(pcbinfo); 494 hdr = &pcbinfo->ipi_lbgrouphashbase[ 495 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 496 CK_LIST_FOREACH(grp, hdr, il_list) { 497 for (i = 0; i < grp->il_inpcnt; ++i) { 498 if (grp->il_inp[i] != inp) 499 continue; 500 501 if (grp->il_numa_domain == numa_domain) { 502 goto abort_with_hash_wlock; 503 } 504 505 /* Remove it from the old group. */ 506 in_pcbremlbgrouphash(inp); 507 508 /* Add it to the new group based on numa domain. */ 509 in_pcbinslbgrouphash(inp, numa_domain); 510 goto abort_with_hash_wlock; 511 } 512 } 513 err = ENOENT; 514 abort_with_hash_wlock: 515 INP_HASH_WUNLOCK(pcbinfo); 516 return (err); 517 } 518 519 /* Make sure it is safe to use hashinit(9) on CK_LIST. */ 520 CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb))); 521 522 /* 523 * Initialize an inpcbinfo - a per-VNET instance of connections db. 524 */ 525 void 526 in_pcbinfo_init(struct inpcbinfo *pcbinfo, struct inpcbstorage *pcbstor, 527 u_int hash_nelements, u_int porthash_nelements) 528 { 529 530 mtx_init(&pcbinfo->ipi_lock, pcbstor->ips_infolock_name, NULL, MTX_DEF); 531 mtx_init(&pcbinfo->ipi_hash_lock, pcbstor->ips_hashlock_name, 532 NULL, MTX_DEF); 533 #ifdef VIMAGE 534 pcbinfo->ipi_vnet = curvnet; 535 #endif 536 CK_LIST_INIT(&pcbinfo->ipi_listhead); 537 pcbinfo->ipi_count = 0; 538 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 539 &pcbinfo->ipi_hashmask); 540 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); 541 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 542 &pcbinfo->ipi_porthashmask); 543 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, 544 &pcbinfo->ipi_lbgrouphashmask); 545 pcbinfo->ipi_zone = pcbstor->ips_zone; 546 pcbinfo->ipi_portzone = pcbstor->ips_portzone; 547 pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone); 548 } 549 550 /* 551 * Destroy an inpcbinfo. 552 */ 553 void 554 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 555 { 556 557 KASSERT(pcbinfo->ipi_count == 0, 558 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 559 560 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 561 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 562 pcbinfo->ipi_porthashmask); 563 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 564 pcbinfo->ipi_lbgrouphashmask); 565 mtx_destroy(&pcbinfo->ipi_hash_lock); 566 mtx_destroy(&pcbinfo->ipi_lock); 567 } 568 569 /* 570 * Initialize a pcbstorage - per protocol zones to allocate inpcbs. 571 */ 572 static void inpcb_dtor(void *, int, void *); 573 static void inpcb_fini(void *, int); 574 void 575 in_pcbstorage_init(void *arg) 576 { 577 struct inpcbstorage *pcbstor = arg; 578 579 pcbstor->ips_zone = uma_zcreate(pcbstor->ips_zone_name, 580 sizeof(struct inpcb), NULL, inpcb_dtor, pcbstor->ips_pcbinit, 581 inpcb_fini, UMA_ALIGN_PTR, UMA_ZONE_SMR); 582 pcbstor->ips_portzone = uma_zcreate(pcbstor->ips_portzone_name, 583 sizeof(struct inpcbport), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 584 uma_zone_set_smr(pcbstor->ips_portzone, 585 uma_zone_get_smr(pcbstor->ips_zone)); 586 } 587 588 /* 589 * Destroy a pcbstorage - used by unloadable protocols. 590 */ 591 void 592 in_pcbstorage_destroy(void *arg) 593 { 594 struct inpcbstorage *pcbstor = arg; 595 596 uma_zdestroy(pcbstor->ips_zone); 597 uma_zdestroy(pcbstor->ips_portzone); 598 } 599 600 /* 601 * Allocate a PCB and associate it with the socket. 602 * On success return with the PCB locked. 603 */ 604 int 605 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 606 { 607 struct inpcb *inp; 608 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 609 int error; 610 #endif 611 612 inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT); 613 if (inp == NULL) 614 return (ENOBUFS); 615 bzero(&inp->inp_start_zero, inp_zero_size); 616 #ifdef NUMA 617 inp->inp_numa_domain = M_NODOM; 618 #endif 619 inp->inp_pcbinfo = pcbinfo; 620 inp->inp_socket = so; 621 inp->inp_cred = crhold(so->so_cred); 622 inp->inp_inc.inc_fibnum = so->so_fibnum; 623 #ifdef MAC 624 error = mac_inpcb_init(inp, M_NOWAIT); 625 if (error != 0) 626 goto out; 627 mac_inpcb_create(so, inp); 628 #endif 629 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 630 error = ipsec_init_pcbpolicy(inp); 631 if (error != 0) { 632 #ifdef MAC 633 mac_inpcb_destroy(inp); 634 #endif 635 goto out; 636 } 637 #endif /*IPSEC*/ 638 #ifdef INET6 639 if (INP_SOCKAF(so) == AF_INET6) { 640 inp->inp_vflag |= INP_IPV6PROTO | INP_IPV6; 641 if (V_ip6_v6only) 642 inp->inp_flags |= IN6P_IPV6_V6ONLY; 643 #ifdef INET 644 else 645 inp->inp_vflag |= INP_IPV4; 646 #endif 647 if (V_ip6_auto_flowlabel) 648 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 649 inp->in6p_hops = -1; /* use kernel default */ 650 } 651 #endif 652 #if defined(INET) && defined(INET6) 653 else 654 #endif 655 #ifdef INET 656 inp->inp_vflag |= INP_IPV4; 657 #endif 658 /* 659 * Routes in inpcb's can cache L2 as well; they are guaranteed 660 * to be cleaned up. 661 */ 662 inp->inp_route.ro_flags = RT_LLE_CACHE; 663 #ifdef TCPHPTS 664 /* 665 * If using hpts lets drop a random number in so 666 * not all new connections fall on the same CPU. 667 */ 668 inp->inp_hpts_cpu = hpts_random_cpu(inp); 669 #endif 670 refcount_init(&inp->inp_refcount, 1); /* Reference from socket. */ 671 INP_WLOCK(inp); 672 INP_INFO_WLOCK(pcbinfo); 673 pcbinfo->ipi_count++; 674 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 675 CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list); 676 INP_INFO_WUNLOCK(pcbinfo); 677 so->so_pcb = inp; 678 679 return (0); 680 681 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 682 out: 683 uma_zfree_smr(pcbinfo->ipi_zone, inp); 684 return (error); 685 #endif 686 } 687 688 #ifdef INET 689 int 690 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 691 { 692 int anonport, error; 693 694 KASSERT(nam == NULL || nam->sa_family == AF_INET, 695 ("%s: invalid address family for %p", __func__, nam)); 696 KASSERT(nam == NULL || nam->sa_len == sizeof(struct sockaddr_in), 697 ("%s: invalid address length for %p", __func__, nam)); 698 INP_WLOCK_ASSERT(inp); 699 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 700 701 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 702 return (EINVAL); 703 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 704 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 705 &inp->inp_lport, cred); 706 if (error) 707 return (error); 708 if (in_pcbinshash(inp) != 0) { 709 inp->inp_laddr.s_addr = INADDR_ANY; 710 inp->inp_lport = 0; 711 return (EAGAIN); 712 } 713 if (anonport) 714 inp->inp_flags |= INP_ANONPORT; 715 return (0); 716 } 717 #endif 718 719 #if defined(INET) || defined(INET6) 720 /* 721 * Assign a local port like in_pcb_lport(), but also used with connect() 722 * and a foreign address and port. If fsa is non-NULL, choose a local port 723 * that is unused with those, otherwise one that is completely unused. 724 * lsa can be NULL for IPv6. 725 */ 726 int 727 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp, 728 struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags) 729 { 730 struct inpcbinfo *pcbinfo; 731 struct inpcb *tmpinp; 732 unsigned short *lastport; 733 int count, dorandom, error; 734 u_short aux, first, last, lport; 735 #ifdef INET 736 struct in_addr laddr, faddr; 737 #endif 738 #ifdef INET6 739 struct in6_addr *laddr6, *faddr6; 740 #endif 741 742 pcbinfo = inp->inp_pcbinfo; 743 744 /* 745 * Because no actual state changes occur here, a global write lock on 746 * the pcbinfo isn't required. 747 */ 748 INP_LOCK_ASSERT(inp); 749 INP_HASH_LOCK_ASSERT(pcbinfo); 750 751 if (inp->inp_flags & INP_HIGHPORT) { 752 first = V_ipport_hifirstauto; /* sysctl */ 753 last = V_ipport_hilastauto; 754 lastport = &pcbinfo->ipi_lasthi; 755 } else if (inp->inp_flags & INP_LOWPORT) { 756 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); 757 if (error) 758 return (error); 759 first = V_ipport_lowfirstauto; /* 1023 */ 760 last = V_ipport_lowlastauto; /* 600 */ 761 lastport = &pcbinfo->ipi_lastlow; 762 } else { 763 first = V_ipport_firstauto; /* sysctl */ 764 last = V_ipport_lastauto; 765 lastport = &pcbinfo->ipi_lastport; 766 } 767 /* 768 * For UDP(-Lite), use random port allocation as long as the user 769 * allows it. For TCP (and as of yet unknown) connections, 770 * use random port allocation only if the user allows it AND 771 * ipport_tick() allows it. 772 */ 773 if (V_ipport_randomized && 774 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 775 pcbinfo == &V_ulitecbinfo)) 776 dorandom = 1; 777 else 778 dorandom = 0; 779 /* 780 * It makes no sense to do random port allocation if 781 * we have the only port available. 782 */ 783 if (first == last) 784 dorandom = 0; 785 /* Make sure to not include UDP(-Lite) packets in the count. */ 786 if (pcbinfo != &V_udbinfo && pcbinfo != &V_ulitecbinfo) 787 V_ipport_tcpallocs++; 788 /* 789 * Instead of having two loops further down counting up or down 790 * make sure that first is always <= last and go with only one 791 * code path implementing all logic. 792 */ 793 if (first > last) { 794 aux = first; 795 first = last; 796 last = aux; 797 } 798 799 #ifdef INET 800 laddr.s_addr = INADDR_ANY; /* used by INET6+INET below too */ 801 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 802 if (lsa != NULL) 803 laddr = ((struct sockaddr_in *)lsa)->sin_addr; 804 if (fsa != NULL) 805 faddr = ((struct sockaddr_in *)fsa)->sin_addr; 806 } 807 #endif 808 #ifdef INET6 809 laddr6 = NULL; 810 if ((inp->inp_vflag & INP_IPV6) != 0) { 811 if (lsa != NULL) 812 laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr; 813 if (fsa != NULL) 814 faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr; 815 } 816 #endif 817 818 tmpinp = NULL; 819 lport = *lportp; 820 821 if (dorandom) 822 *lastport = first + (arc4random() % (last - first)); 823 824 count = last - first; 825 826 do { 827 if (count-- < 0) /* completely used? */ 828 return (EADDRNOTAVAIL); 829 ++*lastport; 830 if (*lastport < first || *lastport > last) 831 *lastport = first; 832 lport = htons(*lastport); 833 834 if (fsa != NULL) { 835 #ifdef INET 836 if (lsa->sa_family == AF_INET) { 837 tmpinp = in_pcblookup_hash_locked(pcbinfo, 838 faddr, fport, laddr, lport, lookupflags, 839 NULL, M_NODOM); 840 } 841 #endif 842 #ifdef INET6 843 if (lsa->sa_family == AF_INET6) { 844 tmpinp = in6_pcblookup_hash_locked(pcbinfo, 845 faddr6, fport, laddr6, lport, lookupflags, 846 NULL, M_NODOM); 847 } 848 #endif 849 } else { 850 #ifdef INET6 851 if ((inp->inp_vflag & INP_IPV6) != 0) { 852 tmpinp = in6_pcblookup_local(pcbinfo, 853 &inp->in6p_laddr, lport, lookupflags, cred); 854 #ifdef INET 855 if (tmpinp == NULL && 856 (inp->inp_vflag & INP_IPV4)) 857 tmpinp = in_pcblookup_local(pcbinfo, 858 laddr, lport, lookupflags, cred); 859 #endif 860 } 861 #endif 862 #if defined(INET) && defined(INET6) 863 else 864 #endif 865 #ifdef INET 866 tmpinp = in_pcblookup_local(pcbinfo, laddr, 867 lport, lookupflags, cred); 868 #endif 869 } 870 } while (tmpinp != NULL); 871 872 *lportp = lport; 873 874 return (0); 875 } 876 877 /* 878 * Select a local port (number) to use. 879 */ 880 int 881 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 882 struct ucred *cred, int lookupflags) 883 { 884 struct sockaddr_in laddr; 885 886 if (laddrp) { 887 bzero(&laddr, sizeof(laddr)); 888 laddr.sin_family = AF_INET; 889 laddr.sin_addr = *laddrp; 890 } 891 return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr : 892 NULL, lportp, NULL, 0, cred, lookupflags)); 893 } 894 895 /* 896 * Return cached socket options. 897 */ 898 int 899 inp_so_options(const struct inpcb *inp) 900 { 901 int so_options; 902 903 so_options = 0; 904 905 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 906 so_options |= SO_REUSEPORT_LB; 907 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 908 so_options |= SO_REUSEPORT; 909 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 910 so_options |= SO_REUSEADDR; 911 return (so_options); 912 } 913 #endif /* INET || INET6 */ 914 915 /* 916 * Check if a new BINDMULTI socket is allowed to be created. 917 * 918 * ni points to the new inp. 919 * oi points to the existing inp. 920 * 921 * This checks whether the existing inp also has BINDMULTI and 922 * whether the credentials match. 923 */ 924 int 925 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 926 { 927 /* Check permissions match */ 928 if ((ni->inp_flags2 & INP_BINDMULTI) && 929 (ni->inp_cred->cr_uid != 930 oi->inp_cred->cr_uid)) 931 return (0); 932 933 /* Check the existing inp has BINDMULTI set */ 934 if ((ni->inp_flags2 & INP_BINDMULTI) && 935 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 936 return (0); 937 938 /* 939 * We're okay - either INP_BINDMULTI isn't set on ni, or 940 * it is and it matches the checks. 941 */ 942 return (1); 943 } 944 945 #ifdef INET 946 /* 947 * Set up a bind operation on a PCB, performing port allocation 948 * as required, but do not actually modify the PCB. Callers can 949 * either complete the bind by setting inp_laddr/inp_lport and 950 * calling in_pcbinshash(), or they can just use the resulting 951 * port and address to authorise the sending of a once-off packet. 952 * 953 * On error, the values of *laddrp and *lportp are not changed. 954 */ 955 int 956 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 957 u_short *lportp, struct ucred *cred) 958 { 959 struct socket *so = inp->inp_socket; 960 struct sockaddr_in *sin; 961 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 962 struct in_addr laddr; 963 u_short lport = 0; 964 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 965 int error; 966 967 /* 968 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here 969 * so that we don't have to add to the (already messy) code below. 970 */ 971 int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); 972 973 /* 974 * No state changes, so read locks are sufficient here. 975 */ 976 INP_LOCK_ASSERT(inp); 977 INP_HASH_LOCK_ASSERT(pcbinfo); 978 979 laddr.s_addr = *laddrp; 980 if (nam != NULL && laddr.s_addr != INADDR_ANY) 981 return (EINVAL); 982 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) 983 lookupflags = INPLOOKUP_WILDCARD; 984 if (nam == NULL) { 985 if ((error = prison_local_ip4(cred, &laddr)) != 0) 986 return (error); 987 } else { 988 sin = (struct sockaddr_in *)nam; 989 KASSERT(sin->sin_family == AF_INET, 990 ("%s: invalid family for address %p", __func__, sin)); 991 KASSERT(sin->sin_len == sizeof(*sin), 992 ("%s: invalid length for address %p", __func__, sin)); 993 994 error = prison_local_ip4(cred, &sin->sin_addr); 995 if (error) 996 return (error); 997 if (sin->sin_port != *lportp) { 998 /* Don't allow the port to change. */ 999 if (*lportp != 0) 1000 return (EINVAL); 1001 lport = sin->sin_port; 1002 } 1003 /* NB: lport is left as 0 if the port isn't being changed. */ 1004 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 1005 /* 1006 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 1007 * allow complete duplication of binding if 1008 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 1009 * and a multicast address is bound on both 1010 * new and duplicated sockets. 1011 */ 1012 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 1013 reuseport = SO_REUSEADDR|SO_REUSEPORT; 1014 /* 1015 * XXX: How to deal with SO_REUSEPORT_LB here? 1016 * Treat same as SO_REUSEPORT for now. 1017 */ 1018 if ((so->so_options & 1019 (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) 1020 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; 1021 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 1022 sin->sin_port = 0; /* yech... */ 1023 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 1024 /* 1025 * Is the address a local IP address? 1026 * If INP_BINDANY is set, then the socket may be bound 1027 * to any endpoint address, local or not. 1028 */ 1029 if ((inp->inp_flags & INP_BINDANY) == 0 && 1030 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 1031 return (EADDRNOTAVAIL); 1032 } 1033 laddr = sin->sin_addr; 1034 if (lport) { 1035 struct inpcb *t; 1036 1037 /* GROSS */ 1038 if (ntohs(lport) <= V_ipport_reservedhigh && 1039 ntohs(lport) >= V_ipport_reservedlow && 1040 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) 1041 return (EACCES); 1042 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 1043 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { 1044 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 1045 lport, INPLOOKUP_WILDCARD, cred); 1046 /* 1047 * XXX 1048 * This entire block sorely needs a rewrite. 1049 */ 1050 if (t && 1051 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 1052 (so->so_type != SOCK_STREAM || 1053 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 1054 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 1055 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 1056 (t->inp_flags2 & INP_REUSEPORT) || 1057 (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && 1058 (inp->inp_cred->cr_uid != 1059 t->inp_cred->cr_uid)) 1060 return (EADDRINUSE); 1061 1062 /* 1063 * If the socket is a BINDMULTI socket, then 1064 * the credentials need to match and the 1065 * original socket also has to have been bound 1066 * with BINDMULTI. 1067 */ 1068 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 1069 return (EADDRINUSE); 1070 } 1071 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 1072 lport, lookupflags, cred); 1073 if (t && ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 1074 (reuseport & inp_so_options(t)) == 0 && 1075 (reuseport_lb & inp_so_options(t)) == 0) { 1076 #ifdef INET6 1077 if (ntohl(sin->sin_addr.s_addr) != 1078 INADDR_ANY || 1079 ntohl(t->inp_laddr.s_addr) != 1080 INADDR_ANY || 1081 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 1082 (t->inp_vflag & INP_IPV6PROTO) == 0) 1083 #endif 1084 return (EADDRINUSE); 1085 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 1086 return (EADDRINUSE); 1087 } 1088 } 1089 } 1090 if (*lportp != 0) 1091 lport = *lportp; 1092 if (lport == 0) { 1093 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 1094 if (error != 0) 1095 return (error); 1096 } 1097 *laddrp = laddr.s_addr; 1098 *lportp = lport; 1099 return (0); 1100 } 1101 1102 /* 1103 * Connect from a socket to a specified address. 1104 * Both address and port must be specified in argument sin. 1105 * If don't have a local address for this socket yet, 1106 * then pick one. 1107 */ 1108 int 1109 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred, 1110 bool rehash) 1111 { 1112 u_short lport, fport; 1113 in_addr_t laddr, faddr; 1114 int anonport, error; 1115 1116 INP_WLOCK_ASSERT(inp); 1117 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1118 1119 lport = inp->inp_lport; 1120 laddr = inp->inp_laddr.s_addr; 1121 anonport = (lport == 0); 1122 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 1123 NULL, cred); 1124 if (error) 1125 return (error); 1126 1127 /* Do the initial binding of the local address if required. */ 1128 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 1129 KASSERT(rehash == true, 1130 ("Rehashing required for unbound inps")); 1131 inp->inp_lport = lport; 1132 inp->inp_laddr.s_addr = laddr; 1133 if (in_pcbinshash(inp) != 0) { 1134 inp->inp_laddr.s_addr = INADDR_ANY; 1135 inp->inp_lport = 0; 1136 return (EAGAIN); 1137 } 1138 } 1139 1140 /* Commit the remaining changes. */ 1141 inp->inp_lport = lport; 1142 inp->inp_laddr.s_addr = laddr; 1143 inp->inp_faddr.s_addr = faddr; 1144 inp->inp_fport = fport; 1145 if (rehash) { 1146 in_pcbrehash(inp); 1147 } else { 1148 in_pcbinshash(inp); 1149 } 1150 1151 if (anonport) 1152 inp->inp_flags |= INP_ANONPORT; 1153 return (0); 1154 } 1155 1156 /* 1157 * Do proper source address selection on an unbound socket in case 1158 * of connect. Take jails into account as well. 1159 */ 1160 int 1161 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 1162 struct ucred *cred) 1163 { 1164 struct ifaddr *ifa; 1165 struct sockaddr *sa; 1166 struct sockaddr_in *sin, dst; 1167 struct nhop_object *nh; 1168 int error; 1169 1170 NET_EPOCH_ASSERT(); 1171 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1172 /* 1173 * Bypass source address selection and use the primary jail IP 1174 * if requested. 1175 */ 1176 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 1177 return (0); 1178 1179 error = 0; 1180 1181 nh = NULL; 1182 bzero(&dst, sizeof(dst)); 1183 sin = &dst; 1184 sin->sin_family = AF_INET; 1185 sin->sin_len = sizeof(struct sockaddr_in); 1186 sin->sin_addr.s_addr = faddr->s_addr; 1187 1188 /* 1189 * If route is known our src addr is taken from the i/f, 1190 * else punt. 1191 * 1192 * Find out route to destination. 1193 */ 1194 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1195 nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr, 1196 0, NHR_NONE, 0); 1197 1198 /* 1199 * If we found a route, use the address corresponding to 1200 * the outgoing interface. 1201 * 1202 * Otherwise assume faddr is reachable on a directly connected 1203 * network and try to find a corresponding interface to take 1204 * the source address from. 1205 */ 1206 if (nh == NULL || nh->nh_ifp == NULL) { 1207 struct in_ifaddr *ia; 1208 struct ifnet *ifp; 1209 1210 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1211 inp->inp_socket->so_fibnum)); 1212 if (ia == NULL) { 1213 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1214 inp->inp_socket->so_fibnum)); 1215 } 1216 if (ia == NULL) { 1217 error = ENETUNREACH; 1218 goto done; 1219 } 1220 1221 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1222 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1223 goto done; 1224 } 1225 1226 ifp = ia->ia_ifp; 1227 ia = NULL; 1228 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1229 sa = ifa->ifa_addr; 1230 if (sa->sa_family != AF_INET) 1231 continue; 1232 sin = (struct sockaddr_in *)sa; 1233 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1234 ia = (struct in_ifaddr *)ifa; 1235 break; 1236 } 1237 } 1238 if (ia != NULL) { 1239 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1240 goto done; 1241 } 1242 1243 /* 3. As a last resort return the 'default' jail address. */ 1244 error = prison_get_ip4(cred, laddr); 1245 goto done; 1246 } 1247 1248 /* 1249 * If the outgoing interface on the route found is not 1250 * a loopback interface, use the address from that interface. 1251 * In case of jails do those three steps: 1252 * 1. check if the interface address belongs to the jail. If so use it. 1253 * 2. check if we have any address on the outgoing interface 1254 * belonging to this jail. If so use it. 1255 * 3. as a last resort return the 'default' jail address. 1256 */ 1257 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) { 1258 struct in_ifaddr *ia; 1259 struct ifnet *ifp; 1260 1261 /* If not jailed, use the default returned. */ 1262 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1263 ia = (struct in_ifaddr *)nh->nh_ifa; 1264 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1265 goto done; 1266 } 1267 1268 /* Jailed. */ 1269 /* 1. Check if the iface address belongs to the jail. */ 1270 sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr; 1271 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1272 ia = (struct in_ifaddr *)nh->nh_ifa; 1273 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1274 goto done; 1275 } 1276 1277 /* 1278 * 2. Check if we have any address on the outgoing interface 1279 * belonging to this jail. 1280 */ 1281 ia = NULL; 1282 ifp = nh->nh_ifp; 1283 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1284 sa = ifa->ifa_addr; 1285 if (sa->sa_family != AF_INET) 1286 continue; 1287 sin = (struct sockaddr_in *)sa; 1288 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1289 ia = (struct in_ifaddr *)ifa; 1290 break; 1291 } 1292 } 1293 if (ia != NULL) { 1294 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1295 goto done; 1296 } 1297 1298 /* 3. As a last resort return the 'default' jail address. */ 1299 error = prison_get_ip4(cred, laddr); 1300 goto done; 1301 } 1302 1303 /* 1304 * The outgoing interface is marked with 'loopback net', so a route 1305 * to ourselves is here. 1306 * Try to find the interface of the destination address and then 1307 * take the address from there. That interface is not necessarily 1308 * a loopback interface. 1309 * In case of jails, check that it is an address of the jail 1310 * and if we cannot find, fall back to the 'default' jail address. 1311 */ 1312 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) { 1313 struct in_ifaddr *ia; 1314 1315 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst), 1316 inp->inp_socket->so_fibnum)); 1317 if (ia == NULL) 1318 ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0, 1319 inp->inp_socket->so_fibnum)); 1320 if (ia == NULL) 1321 ia = ifatoia(ifa_ifwithaddr(sintosa(&dst))); 1322 1323 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1324 if (ia == NULL) { 1325 error = ENETUNREACH; 1326 goto done; 1327 } 1328 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1329 goto done; 1330 } 1331 1332 /* Jailed. */ 1333 if (ia != NULL) { 1334 struct ifnet *ifp; 1335 1336 ifp = ia->ia_ifp; 1337 ia = NULL; 1338 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1339 sa = ifa->ifa_addr; 1340 if (sa->sa_family != AF_INET) 1341 continue; 1342 sin = (struct sockaddr_in *)sa; 1343 if (prison_check_ip4(cred, 1344 &sin->sin_addr) == 0) { 1345 ia = (struct in_ifaddr *)ifa; 1346 break; 1347 } 1348 } 1349 if (ia != NULL) { 1350 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1351 goto done; 1352 } 1353 } 1354 1355 /* 3. As a last resort return the 'default' jail address. */ 1356 error = prison_get_ip4(cred, laddr); 1357 goto done; 1358 } 1359 1360 done: 1361 return (error); 1362 } 1363 1364 /* 1365 * Set up for a connect from a socket to the specified address. 1366 * On entry, *laddrp and *lportp should contain the current local 1367 * address and port for the PCB; these are updated to the values 1368 * that should be placed in inp_laddr and inp_lport to complete 1369 * the connect. 1370 * 1371 * On success, *faddrp and *fportp will be set to the remote address 1372 * and port. These are not updated in the error case. 1373 * 1374 * If the operation fails because the connection already exists, 1375 * *oinpp will be set to the PCB of that connection so that the 1376 * caller can decide to override it. In all other cases, *oinpp 1377 * is set to NULL. 1378 */ 1379 int 1380 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1381 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1382 struct inpcb **oinpp, struct ucred *cred) 1383 { 1384 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1385 struct in_ifaddr *ia; 1386 struct inpcb *oinp; 1387 struct in_addr laddr, faddr; 1388 u_short lport, fport; 1389 int error; 1390 1391 KASSERT(sin->sin_family == AF_INET, 1392 ("%s: invalid address family for %p", __func__, sin)); 1393 KASSERT(sin->sin_len == sizeof(*sin), 1394 ("%s: invalid address length for %p", __func__, sin)); 1395 1396 /* 1397 * Because a global state change doesn't actually occur here, a read 1398 * lock is sufficient. 1399 */ 1400 NET_EPOCH_ASSERT(); 1401 INP_LOCK_ASSERT(inp); 1402 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1403 1404 if (oinpp != NULL) 1405 *oinpp = NULL; 1406 if (sin->sin_port == 0) 1407 return (EADDRNOTAVAIL); 1408 laddr.s_addr = *laddrp; 1409 lport = *lportp; 1410 faddr = sin->sin_addr; 1411 fport = sin->sin_port; 1412 #ifdef ROUTE_MPATH 1413 if (CALC_FLOWID_OUTBOUND) { 1414 uint32_t hash_val, hash_type; 1415 1416 hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport, 1417 inp->inp_socket->so_proto->pr_protocol, &hash_type); 1418 1419 inp->inp_flowid = hash_val; 1420 inp->inp_flowtype = hash_type; 1421 } 1422 #endif 1423 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1424 /* 1425 * If the destination address is INADDR_ANY, 1426 * use the primary local address. 1427 * If the supplied address is INADDR_BROADCAST, 1428 * and the primary interface supports broadcast, 1429 * choose the broadcast address for that interface. 1430 */ 1431 if (faddr.s_addr == INADDR_ANY) { 1432 faddr = 1433 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1434 if (cred != NULL && 1435 (error = prison_get_ip4(cred, &faddr)) != 0) 1436 return (error); 1437 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1438 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1439 IFF_BROADCAST) 1440 faddr = satosin(&CK_STAILQ_FIRST( 1441 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1442 } 1443 } 1444 if (laddr.s_addr == INADDR_ANY) { 1445 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1446 /* 1447 * If the destination address is multicast and an outgoing 1448 * interface has been set as a multicast option, prefer the 1449 * address of that interface as our source address. 1450 */ 1451 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1452 inp->inp_moptions != NULL) { 1453 struct ip_moptions *imo; 1454 struct ifnet *ifp; 1455 1456 imo = inp->inp_moptions; 1457 if (imo->imo_multicast_ifp != NULL) { 1458 ifp = imo->imo_multicast_ifp; 1459 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1460 if ((ia->ia_ifp == ifp) && 1461 (cred == NULL || 1462 prison_check_ip4(cred, 1463 &ia->ia_addr.sin_addr) == 0)) 1464 break; 1465 } 1466 if (ia == NULL) 1467 error = EADDRNOTAVAIL; 1468 else { 1469 laddr = ia->ia_addr.sin_addr; 1470 error = 0; 1471 } 1472 } 1473 } 1474 if (error) 1475 return (error); 1476 } 1477 1478 if (lport != 0) { 1479 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, 1480 fport, laddr, lport, 0, NULL, M_NODOM); 1481 if (oinp != NULL) { 1482 if (oinpp != NULL) 1483 *oinpp = oinp; 1484 return (EADDRINUSE); 1485 } 1486 } else { 1487 struct sockaddr_in lsin, fsin; 1488 1489 bzero(&lsin, sizeof(lsin)); 1490 bzero(&fsin, sizeof(fsin)); 1491 lsin.sin_family = AF_INET; 1492 lsin.sin_addr = laddr; 1493 fsin.sin_family = AF_INET; 1494 fsin.sin_addr = faddr; 1495 error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin, 1496 &lport, (struct sockaddr *)& fsin, fport, cred, 1497 INPLOOKUP_WILDCARD); 1498 if (error) 1499 return (error); 1500 } 1501 *laddrp = laddr.s_addr; 1502 *lportp = lport; 1503 *faddrp = faddr.s_addr; 1504 *fportp = fport; 1505 return (0); 1506 } 1507 1508 void 1509 in_pcbdisconnect(struct inpcb *inp) 1510 { 1511 1512 INP_WLOCK_ASSERT(inp); 1513 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1514 1515 inp->inp_faddr.s_addr = INADDR_ANY; 1516 inp->inp_fport = 0; 1517 in_pcbrehash(inp); 1518 } 1519 #endif /* INET */ 1520 1521 /* 1522 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1523 * For most protocols, this will be invoked immediately prior to calling 1524 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1525 * socket, in which case in_pcbfree() is deferred. 1526 */ 1527 void 1528 in_pcbdetach(struct inpcb *inp) 1529 { 1530 1531 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1532 1533 #ifdef RATELIMIT 1534 if (inp->inp_snd_tag != NULL) 1535 in_pcbdetach_txrtlmt(inp); 1536 #endif 1537 inp->inp_socket->so_pcb = NULL; 1538 inp->inp_socket = NULL; 1539 } 1540 1541 /* 1542 * inpcb hash lookups are protected by SMR section. 1543 * 1544 * Once desired pcb has been found, switching from SMR section to a pcb 1545 * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK 1546 * here because SMR is a critical section. 1547 * In 99%+ cases inp_smr_lock() would obtain the lock immediately. 1548 */ 1549 static inline void 1550 inp_lock(struct inpcb *inp, const inp_lookup_t lock) 1551 { 1552 1553 lock == INPLOOKUP_RLOCKPCB ? 1554 rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock); 1555 } 1556 1557 static inline void 1558 inp_unlock(struct inpcb *inp, const inp_lookup_t lock) 1559 { 1560 1561 lock == INPLOOKUP_RLOCKPCB ? 1562 rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock); 1563 } 1564 1565 static inline int 1566 inp_trylock(struct inpcb *inp, const inp_lookup_t lock) 1567 { 1568 1569 return (lock == INPLOOKUP_RLOCKPCB ? 1570 rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock)); 1571 } 1572 1573 static inline bool 1574 in_pcbrele(struct inpcb *inp, const inp_lookup_t lock) 1575 { 1576 1577 return (lock == INPLOOKUP_RLOCKPCB ? 1578 in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp)); 1579 } 1580 1581 bool 1582 inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock) 1583 { 1584 1585 MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB); 1586 SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr); 1587 1588 if (__predict_true(inp_trylock(inp, lock))) { 1589 if (__predict_false(inp->inp_flags & INP_FREED)) { 1590 smr_exit(inp->inp_pcbinfo->ipi_smr); 1591 inp_unlock(inp, lock); 1592 return (false); 1593 } 1594 smr_exit(inp->inp_pcbinfo->ipi_smr); 1595 return (true); 1596 } 1597 1598 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1599 smr_exit(inp->inp_pcbinfo->ipi_smr); 1600 inp_lock(inp, lock); 1601 if (__predict_false(in_pcbrele(inp, lock))) 1602 return (false); 1603 /* 1604 * inp acquired through refcount & lock for sure didn't went 1605 * through uma_zfree(). However, it may have already went 1606 * through in_pcbfree() and has another reference, that 1607 * prevented its release by our in_pcbrele(). 1608 */ 1609 if (__predict_false(inp->inp_flags & INP_FREED)) { 1610 inp_unlock(inp, lock); 1611 return (false); 1612 } 1613 return (true); 1614 } else { 1615 smr_exit(inp->inp_pcbinfo->ipi_smr); 1616 return (false); 1617 } 1618 } 1619 1620 /* 1621 * inp_next() - inpcb hash/list traversal iterator 1622 * 1623 * Requires initialized struct inpcb_iterator for context. 1624 * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR(). 1625 * 1626 * - Iterator can have either write-lock or read-lock semantics, that can not 1627 * be changed later. 1628 * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through 1629 * a single hash slot. Note: only rip_input() does the latter. 1630 * - Iterator may have optional bool matching function. The matching function 1631 * will be executed for each inpcb in the SMR context, so it can not acquire 1632 * locks and can safely access only immutable fields of inpcb. 1633 * 1634 * A fresh initialized iterator has NULL inpcb in its context and that 1635 * means that inp_next() call would return the very first inpcb on the list 1636 * locked with desired semantic. In all following calls the context pointer 1637 * shall hold the current inpcb pointer. The KPI user is not supposed to 1638 * unlock the current inpcb! Upon end of traversal inp_next() will return NULL 1639 * and write NULL to its context. After end of traversal an iterator can be 1640 * reused. 1641 * 1642 * List traversals have the following features/constraints: 1643 * - New entries won't be seen, as they are always added to the head of a list. 1644 * - Removed entries won't stop traversal as long as they are not added to 1645 * a different list. This is violated by in_pcbrehash(). 1646 */ 1647 #define II_LIST_FIRST(ipi, hash) \ 1648 (((hash) == INP_ALL_LIST) ? \ 1649 CK_LIST_FIRST(&(ipi)->ipi_listhead) : \ 1650 CK_LIST_FIRST(&(ipi)->ipi_hashbase[(hash)])) 1651 #define II_LIST_NEXT(inp, hash) \ 1652 (((hash) == INP_ALL_LIST) ? \ 1653 CK_LIST_NEXT((inp), inp_list) : \ 1654 CK_LIST_NEXT((inp), inp_hash)) 1655 #define II_LOCK_ASSERT(inp, lock) \ 1656 rw_assert(&(inp)->inp_lock, \ 1657 (lock) == INPLOOKUP_RLOCKPCB ? RA_RLOCKED : RA_WLOCKED ) 1658 struct inpcb * 1659 inp_next(struct inpcb_iterator *ii) 1660 { 1661 const struct inpcbinfo *ipi = ii->ipi; 1662 inp_match_t *match = ii->match; 1663 void *ctx = ii->ctx; 1664 inp_lookup_t lock = ii->lock; 1665 int hash = ii->hash; 1666 struct inpcb *inp; 1667 1668 if (ii->inp == NULL) { /* First call. */ 1669 smr_enter(ipi->ipi_smr); 1670 /* This is unrolled CK_LIST_FOREACH(). */ 1671 for (inp = II_LIST_FIRST(ipi, hash); 1672 inp != NULL; 1673 inp = II_LIST_NEXT(inp, hash)) { 1674 if (match != NULL && (match)(inp, ctx) == false) 1675 continue; 1676 if (__predict_true(inp_smr_lock(inp, lock))) 1677 break; 1678 else { 1679 smr_enter(ipi->ipi_smr); 1680 MPASS(inp != II_LIST_FIRST(ipi, hash)); 1681 inp = II_LIST_FIRST(ipi, hash); 1682 if (inp == NULL) 1683 break; 1684 } 1685 } 1686 1687 if (inp == NULL) 1688 smr_exit(ipi->ipi_smr); 1689 else 1690 ii->inp = inp; 1691 1692 return (inp); 1693 } 1694 1695 /* Not a first call. */ 1696 smr_enter(ipi->ipi_smr); 1697 restart: 1698 inp = ii->inp; 1699 II_LOCK_ASSERT(inp, lock); 1700 next: 1701 inp = II_LIST_NEXT(inp, hash); 1702 if (inp == NULL) { 1703 smr_exit(ipi->ipi_smr); 1704 goto found; 1705 } 1706 1707 if (match != NULL && (match)(inp, ctx) == false) 1708 goto next; 1709 1710 if (__predict_true(inp_trylock(inp, lock))) { 1711 if (__predict_false(inp->inp_flags & INP_FREED)) { 1712 /* 1713 * Entries are never inserted in middle of a list, thus 1714 * as long as we are in SMR, we can continue traversal. 1715 * Jump to 'restart' should yield in the same result, 1716 * but could produce unnecessary looping. Could this 1717 * looping be unbound? 1718 */ 1719 inp_unlock(inp, lock); 1720 goto next; 1721 } else { 1722 smr_exit(ipi->ipi_smr); 1723 goto found; 1724 } 1725 } 1726 1727 /* 1728 * Can't obtain lock immediately, thus going hard. Once we exit the 1729 * SMR section we can no longer jump to 'next', and our only stable 1730 * anchoring point is ii->inp, which we keep locked for this case, so 1731 * we jump to 'restart'. 1732 */ 1733 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1734 smr_exit(ipi->ipi_smr); 1735 inp_lock(inp, lock); 1736 if (__predict_false(in_pcbrele(inp, lock))) { 1737 smr_enter(ipi->ipi_smr); 1738 goto restart; 1739 } 1740 /* 1741 * See comment in inp_smr_lock(). 1742 */ 1743 if (__predict_false(inp->inp_flags & INP_FREED)) { 1744 inp_unlock(inp, lock); 1745 smr_enter(ipi->ipi_smr); 1746 goto restart; 1747 } 1748 } else 1749 goto next; 1750 1751 found: 1752 inp_unlock(ii->inp, lock); 1753 ii->inp = inp; 1754 1755 return (ii->inp); 1756 } 1757 1758 /* 1759 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1760 * stability of an inpcb pointer despite the inpcb lock being released or 1761 * SMR section exited. 1762 * 1763 * To free a reference later in_pcbrele_(r|w)locked() must be performed. 1764 */ 1765 void 1766 in_pcbref(struct inpcb *inp) 1767 { 1768 u_int old __diagused; 1769 1770 old = refcount_acquire(&inp->inp_refcount); 1771 KASSERT(old > 0, ("%s: refcount 0", __func__)); 1772 } 1773 1774 /* 1775 * Drop a refcount on an inpcb elevated using in_pcbref(), potentially 1776 * freeing the pcb, if the reference was very last. 1777 */ 1778 bool 1779 in_pcbrele_rlocked(struct inpcb *inp) 1780 { 1781 1782 INP_RLOCK_ASSERT(inp); 1783 1784 if (refcount_release(&inp->inp_refcount) == 0) 1785 return (false); 1786 1787 MPASS(inp->inp_flags & INP_FREED); 1788 MPASS(inp->inp_socket == NULL); 1789 MPASS(inp->inp_in_hpts == 0); 1790 INP_RUNLOCK(inp); 1791 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1792 return (true); 1793 } 1794 1795 bool 1796 in_pcbrele_wlocked(struct inpcb *inp) 1797 { 1798 1799 INP_WLOCK_ASSERT(inp); 1800 1801 if (refcount_release(&inp->inp_refcount) == 0) 1802 return (false); 1803 1804 MPASS(inp->inp_flags & INP_FREED); 1805 MPASS(inp->inp_socket == NULL); 1806 MPASS(inp->inp_in_hpts == 0); 1807 INP_WUNLOCK(inp); 1808 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1809 return (true); 1810 } 1811 1812 /* 1813 * Unconditionally schedule an inpcb to be freed by decrementing its 1814 * reference count, which should occur only after the inpcb has been detached 1815 * from its socket. If another thread holds a temporary reference (acquired 1816 * using in_pcbref()) then the free is deferred until that reference is 1817 * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked. 1818 * Almost all work, including removal from global lists, is done in this 1819 * context, where the pcbinfo lock is held. 1820 */ 1821 void 1822 in_pcbfree(struct inpcb *inp) 1823 { 1824 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1825 #ifdef INET 1826 struct ip_moptions *imo; 1827 #endif 1828 #ifdef INET6 1829 struct ip6_moptions *im6o; 1830 #endif 1831 1832 INP_WLOCK_ASSERT(inp); 1833 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1834 KASSERT((inp->inp_flags & INP_FREED) == 0, 1835 ("%s: called twice for pcb %p", __func__, inp)); 1836 1837 inp->inp_flags |= INP_FREED; 1838 INP_INFO_WLOCK(pcbinfo); 1839 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1840 pcbinfo->ipi_count--; 1841 CK_LIST_REMOVE(inp, inp_list); 1842 INP_INFO_WUNLOCK(pcbinfo); 1843 1844 if (inp->inp_flags & INP_INHASHLIST) 1845 in_pcbremhash(inp); 1846 1847 RO_INVALIDATE_CACHE(&inp->inp_route); 1848 #ifdef MAC 1849 mac_inpcb_destroy(inp); 1850 #endif 1851 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1852 if (inp->inp_sp != NULL) 1853 ipsec_delete_pcbpolicy(inp); 1854 #endif 1855 #ifdef INET 1856 if (inp->inp_options) 1857 (void)m_free(inp->inp_options); 1858 imo = inp->inp_moptions; 1859 #endif 1860 #ifdef INET6 1861 if (inp->inp_vflag & INP_IPV6PROTO) { 1862 ip6_freepcbopts(inp->in6p_outputopts); 1863 im6o = inp->in6p_moptions; 1864 } else 1865 im6o = NULL; 1866 #endif 1867 1868 if (__predict_false(in_pcbrele_wlocked(inp) == false)) { 1869 INP_WUNLOCK(inp); 1870 } 1871 #ifdef INET6 1872 ip6_freemoptions(im6o); 1873 #endif 1874 #ifdef INET 1875 inp_freemoptions(imo); 1876 #endif 1877 /* Destruction is finalized in inpcb_dtor(). */ 1878 } 1879 1880 static void 1881 inpcb_dtor(void *mem, int size, void *arg) 1882 { 1883 struct inpcb *inp = mem; 1884 1885 crfree(inp->inp_cred); 1886 #ifdef INVARIANTS 1887 inp->inp_cred = NULL; 1888 #endif 1889 } 1890 1891 /* 1892 * Different protocols initialize their inpcbs differently - giving 1893 * different name to the lock. But they all are disposed the same. 1894 */ 1895 static void 1896 inpcb_fini(void *mem, int size) 1897 { 1898 struct inpcb *inp = mem; 1899 1900 INP_LOCK_DESTROY(inp); 1901 } 1902 1903 /* 1904 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1905 * port reservation, and preventing it from being returned by inpcb lookups. 1906 * 1907 * It is used by TCP to mark an inpcb as unused and avoid future packet 1908 * delivery or event notification when a socket remains open but TCP has 1909 * closed. This might occur as a result of a shutdown()-initiated TCP close 1910 * or a RST on the wire, and allows the port binding to be reused while still 1911 * maintaining the invariant that so_pcb always points to a valid inpcb until 1912 * in_pcbdetach(). 1913 * 1914 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1915 * in_pcbnotifyall() and in_pcbpurgeif0()? 1916 */ 1917 void 1918 in_pcbdrop(struct inpcb *inp) 1919 { 1920 1921 INP_WLOCK_ASSERT(inp); 1922 #ifdef INVARIANTS 1923 if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) 1924 MPASS(inp->inp_refcount > 1); 1925 #endif 1926 1927 inp->inp_flags |= INP_DROPPED; 1928 if (inp->inp_flags & INP_INHASHLIST) 1929 in_pcbremhash(inp); 1930 } 1931 1932 #ifdef INET 1933 /* 1934 * Common routines to return the socket addresses associated with inpcbs. 1935 */ 1936 struct sockaddr * 1937 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1938 { 1939 struct sockaddr_in *sin; 1940 1941 sin = malloc(sizeof *sin, M_SONAME, 1942 M_WAITOK | M_ZERO); 1943 sin->sin_family = AF_INET; 1944 sin->sin_len = sizeof(*sin); 1945 sin->sin_addr = *addr_p; 1946 sin->sin_port = port; 1947 1948 return (struct sockaddr *)sin; 1949 } 1950 1951 int 1952 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1953 { 1954 struct inpcb *inp; 1955 struct in_addr addr; 1956 in_port_t port; 1957 1958 inp = sotoinpcb(so); 1959 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1960 1961 INP_RLOCK(inp); 1962 port = inp->inp_lport; 1963 addr = inp->inp_laddr; 1964 INP_RUNLOCK(inp); 1965 1966 *nam = in_sockaddr(port, &addr); 1967 return 0; 1968 } 1969 1970 int 1971 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1972 { 1973 struct inpcb *inp; 1974 struct in_addr addr; 1975 in_port_t port; 1976 1977 inp = sotoinpcb(so); 1978 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1979 1980 INP_RLOCK(inp); 1981 port = inp->inp_fport; 1982 addr = inp->inp_faddr; 1983 INP_RUNLOCK(inp); 1984 1985 *nam = in_sockaddr(port, &addr); 1986 return 0; 1987 } 1988 1989 void 1990 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1991 struct inpcb *(*notify)(struct inpcb *, int)) 1992 { 1993 struct inpcb *inp, *inp_temp; 1994 1995 INP_INFO_WLOCK(pcbinfo); 1996 CK_LIST_FOREACH_SAFE(inp, &pcbinfo->ipi_listhead, inp_list, inp_temp) { 1997 INP_WLOCK(inp); 1998 #ifdef INET6 1999 if ((inp->inp_vflag & INP_IPV4) == 0) { 2000 INP_WUNLOCK(inp); 2001 continue; 2002 } 2003 #endif 2004 if (inp->inp_faddr.s_addr != faddr.s_addr || 2005 inp->inp_socket == NULL) { 2006 INP_WUNLOCK(inp); 2007 continue; 2008 } 2009 if ((*notify)(inp, errno)) 2010 INP_WUNLOCK(inp); 2011 } 2012 INP_INFO_WUNLOCK(pcbinfo); 2013 } 2014 2015 static bool 2016 inp_v4_multi_match(const struct inpcb *inp, void *v __unused) 2017 { 2018 2019 if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL) 2020 return (true); 2021 else 2022 return (false); 2023 } 2024 2025 void 2026 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 2027 { 2028 struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB, 2029 inp_v4_multi_match, NULL); 2030 struct inpcb *inp; 2031 struct in_multi *inm; 2032 struct in_mfilter *imf; 2033 struct ip_moptions *imo; 2034 2035 IN_MULTI_LOCK_ASSERT(); 2036 2037 while ((inp = inp_next(&inpi)) != NULL) { 2038 INP_WLOCK_ASSERT(inp); 2039 2040 imo = inp->inp_moptions; 2041 /* 2042 * Unselect the outgoing interface if it is being 2043 * detached. 2044 */ 2045 if (imo->imo_multicast_ifp == ifp) 2046 imo->imo_multicast_ifp = NULL; 2047 2048 /* 2049 * Drop multicast group membership if we joined 2050 * through the interface being detached. 2051 * 2052 * XXX This can all be deferred to an epoch_call 2053 */ 2054 restart: 2055 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 2056 if ((inm = imf->imf_inm) == NULL) 2057 continue; 2058 if (inm->inm_ifp != ifp) 2059 continue; 2060 ip_mfilter_remove(&imo->imo_head, imf); 2061 in_leavegroup_locked(inm, NULL); 2062 ip_mfilter_free(imf); 2063 goto restart; 2064 } 2065 } 2066 } 2067 2068 /* 2069 * Lookup a PCB based on the local address and port. Caller must hold the 2070 * hash lock. No inpcb locks or references are acquired. 2071 */ 2072 #define INP_LOOKUP_MAPPED_PCB_COST 3 2073 struct inpcb * 2074 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 2075 u_short lport, int lookupflags, struct ucred *cred) 2076 { 2077 struct inpcb *inp; 2078 #ifdef INET6 2079 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 2080 #else 2081 int matchwild = 3; 2082 #endif 2083 int wildcard; 2084 2085 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2086 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2087 INP_HASH_LOCK_ASSERT(pcbinfo); 2088 2089 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 2090 struct inpcbhead *head; 2091 /* 2092 * Look for an unconnected (wildcard foreign addr) PCB that 2093 * matches the local address and port we're looking for. 2094 */ 2095 head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport, 2096 pcbinfo->ipi_hashmask)]; 2097 CK_LIST_FOREACH(inp, head, inp_hash) { 2098 #ifdef INET6 2099 /* XXX inp locking */ 2100 if ((inp->inp_vflag & INP_IPV4) == 0) 2101 continue; 2102 #endif 2103 if (inp->inp_faddr.s_addr == INADDR_ANY && 2104 inp->inp_laddr.s_addr == laddr.s_addr && 2105 inp->inp_lport == lport) { 2106 /* 2107 * Found? 2108 */ 2109 if (cred == NULL || 2110 prison_equal_ip4(cred->cr_prison, 2111 inp->inp_cred->cr_prison)) 2112 return (inp); 2113 } 2114 } 2115 /* 2116 * Not found. 2117 */ 2118 return (NULL); 2119 } else { 2120 struct inpcbporthead *porthash; 2121 struct inpcbport *phd; 2122 struct inpcb *match = NULL; 2123 /* 2124 * Best fit PCB lookup. 2125 * 2126 * First see if this local port is in use by looking on the 2127 * port hash list. 2128 */ 2129 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 2130 pcbinfo->ipi_porthashmask)]; 2131 CK_LIST_FOREACH(phd, porthash, phd_hash) { 2132 if (phd->phd_port == lport) 2133 break; 2134 } 2135 if (phd != NULL) { 2136 /* 2137 * Port is in use by one or more PCBs. Look for best 2138 * fit. 2139 */ 2140 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 2141 wildcard = 0; 2142 if (cred != NULL && 2143 !prison_equal_ip4(inp->inp_cred->cr_prison, 2144 cred->cr_prison)) 2145 continue; 2146 #ifdef INET6 2147 /* XXX inp locking */ 2148 if ((inp->inp_vflag & INP_IPV4) == 0) 2149 continue; 2150 /* 2151 * We never select the PCB that has 2152 * INP_IPV6 flag and is bound to :: if 2153 * we have another PCB which is bound 2154 * to 0.0.0.0. If a PCB has the 2155 * INP_IPV6 flag, then we set its cost 2156 * higher than IPv4 only PCBs. 2157 * 2158 * Note that the case only happens 2159 * when a socket is bound to ::, under 2160 * the condition that the use of the 2161 * mapped address is allowed. 2162 */ 2163 if ((inp->inp_vflag & INP_IPV6) != 0) 2164 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 2165 #endif 2166 if (inp->inp_faddr.s_addr != INADDR_ANY) 2167 wildcard++; 2168 if (inp->inp_laddr.s_addr != INADDR_ANY) { 2169 if (laddr.s_addr == INADDR_ANY) 2170 wildcard++; 2171 else if (inp->inp_laddr.s_addr != laddr.s_addr) 2172 continue; 2173 } else { 2174 if (laddr.s_addr != INADDR_ANY) 2175 wildcard++; 2176 } 2177 if (wildcard < matchwild) { 2178 match = inp; 2179 matchwild = wildcard; 2180 if (matchwild == 0) 2181 break; 2182 } 2183 } 2184 } 2185 return (match); 2186 } 2187 } 2188 #undef INP_LOOKUP_MAPPED_PCB_COST 2189 2190 static struct inpcb * 2191 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 2192 const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr, 2193 uint16_t fport, int lookupflags, int numa_domain) 2194 { 2195 struct inpcb *local_wild, *numa_wild; 2196 const struct inpcblbgrouphead *hdr; 2197 struct inpcblbgroup *grp; 2198 uint32_t idx; 2199 2200 INP_HASH_LOCK_ASSERT(pcbinfo); 2201 2202 hdr = &pcbinfo->ipi_lbgrouphashbase[ 2203 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; 2204 2205 /* 2206 * Order of socket selection: 2207 * 1. non-wild. 2208 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD). 2209 * 2210 * NOTE: 2211 * - Load balanced group does not contain jailed sockets 2212 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets 2213 */ 2214 local_wild = NULL; 2215 numa_wild = NULL; 2216 CK_LIST_FOREACH(grp, hdr, il_list) { 2217 #ifdef INET6 2218 if (!(grp->il_vflag & INP_IPV4)) 2219 continue; 2220 #endif 2221 if (grp->il_lport != lport) 2222 continue; 2223 2224 idx = INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) % 2225 grp->il_inpcnt; 2226 if (grp->il_laddr.s_addr == laddr->s_addr) { 2227 if (numa_domain == M_NODOM || 2228 grp->il_numa_domain == numa_domain) { 2229 return (grp->il_inp[idx]); 2230 } else { 2231 numa_wild = grp->il_inp[idx]; 2232 } 2233 } 2234 if (grp->il_laddr.s_addr == INADDR_ANY && 2235 (lookupflags & INPLOOKUP_WILDCARD) != 0 && 2236 (local_wild == NULL || numa_domain == M_NODOM || 2237 grp->il_numa_domain == numa_domain)) { 2238 local_wild = grp->il_inp[idx]; 2239 } 2240 } 2241 if (numa_wild != NULL) 2242 return (numa_wild); 2243 2244 return (local_wild); 2245 } 2246 2247 /* 2248 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2249 * that the caller has either locked the hash list, which usually happens 2250 * for bind(2) operations, or is in SMR section, which happens when sorting 2251 * out incoming packets. 2252 */ 2253 static struct inpcb * 2254 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2255 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2256 struct ifnet *ifp, uint8_t numa_domain) 2257 { 2258 struct inpcbhead *head; 2259 struct inpcb *inp, *tmpinp; 2260 u_short fport = fport_arg, lport = lport_arg; 2261 2262 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2263 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2264 INP_HASH_LOCK_ASSERT(pcbinfo); 2265 2266 /* 2267 * First look for an exact match. 2268 */ 2269 tmpinp = NULL; 2270 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&faddr, lport, fport, 2271 pcbinfo->ipi_hashmask)]; 2272 CK_LIST_FOREACH(inp, head, inp_hash) { 2273 #ifdef INET6 2274 /* XXX inp locking */ 2275 if ((inp->inp_vflag & INP_IPV4) == 0) 2276 continue; 2277 #endif 2278 if (inp->inp_faddr.s_addr == faddr.s_addr && 2279 inp->inp_laddr.s_addr == laddr.s_addr && 2280 inp->inp_fport == fport && 2281 inp->inp_lport == lport) { 2282 /* 2283 * XXX We should be able to directly return 2284 * the inp here, without any checks. 2285 * Well unless both bound with SO_REUSEPORT? 2286 */ 2287 if (prison_flag(inp->inp_cred, PR_IP4)) 2288 return (inp); 2289 if (tmpinp == NULL) 2290 tmpinp = inp; 2291 } 2292 } 2293 if (tmpinp != NULL) 2294 return (tmpinp); 2295 2296 /* 2297 * Then look in lb group (for wildcard match). 2298 */ 2299 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2300 inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr, 2301 fport, lookupflags, numa_domain); 2302 if (inp != NULL) 2303 return (inp); 2304 } 2305 2306 /* 2307 * Then look for a wildcard match, if requested. 2308 */ 2309 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2310 struct inpcb *local_wild = NULL, *local_exact = NULL; 2311 #ifdef INET6 2312 struct inpcb *local_wild_mapped = NULL; 2313 #endif 2314 struct inpcb *jail_wild = NULL; 2315 int injail; 2316 2317 /* 2318 * Order of socket selection - we always prefer jails. 2319 * 1. jailed, non-wild. 2320 * 2. jailed, wild. 2321 * 3. non-jailed, non-wild. 2322 * 4. non-jailed, wild. 2323 */ 2324 2325 head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport, 2326 pcbinfo->ipi_hashmask)]; 2327 CK_LIST_FOREACH(inp, head, inp_hash) { 2328 #ifdef INET6 2329 /* XXX inp locking */ 2330 if ((inp->inp_vflag & INP_IPV4) == 0) 2331 continue; 2332 #endif 2333 if (inp->inp_faddr.s_addr != INADDR_ANY || 2334 inp->inp_lport != lport) 2335 continue; 2336 2337 injail = prison_flag(inp->inp_cred, PR_IP4); 2338 if (injail) { 2339 if (prison_check_ip4_locked( 2340 inp->inp_cred->cr_prison, &laddr) != 0) 2341 continue; 2342 } else { 2343 if (local_exact != NULL) 2344 continue; 2345 } 2346 2347 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2348 if (injail) 2349 return (inp); 2350 else 2351 local_exact = inp; 2352 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2353 #ifdef INET6 2354 /* XXX inp locking, NULL check */ 2355 if (inp->inp_vflag & INP_IPV6PROTO) 2356 local_wild_mapped = inp; 2357 else 2358 #endif 2359 if (injail) 2360 jail_wild = inp; 2361 else 2362 local_wild = inp; 2363 } 2364 } /* LIST_FOREACH */ 2365 if (jail_wild != NULL) 2366 return (jail_wild); 2367 if (local_exact != NULL) 2368 return (local_exact); 2369 if (local_wild != NULL) 2370 return (local_wild); 2371 #ifdef INET6 2372 if (local_wild_mapped != NULL) 2373 return (local_wild_mapped); 2374 #endif 2375 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 2376 2377 return (NULL); 2378 } 2379 2380 /* 2381 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 2382 * hash list lock, and will return the inpcb locked (i.e., requires 2383 * INPLOOKUP_LOCKPCB). 2384 */ 2385 static struct inpcb * 2386 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2387 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2388 struct ifnet *ifp, uint8_t numa_domain) 2389 { 2390 struct inpcb *inp; 2391 2392 smr_enter(pcbinfo->ipi_smr); 2393 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2394 lookupflags & INPLOOKUP_WILDCARD, ifp, numa_domain); 2395 if (inp != NULL) { 2396 if (__predict_false(inp_smr_lock(inp, 2397 (lookupflags & INPLOOKUP_LOCKMASK)) == false)) 2398 inp = NULL; 2399 } else 2400 smr_exit(pcbinfo->ipi_smr); 2401 2402 return (inp); 2403 } 2404 2405 /* 2406 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2407 * from which a pre-calculated hash value may be extracted. 2408 */ 2409 struct inpcb * 2410 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2411 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 2412 { 2413 2414 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2415 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2416 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2417 ("%s: LOCKPCB not set", __func__)); 2418 2419 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2420 lookupflags, ifp, M_NODOM)); 2421 } 2422 2423 struct inpcb * 2424 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2425 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2426 struct ifnet *ifp, struct mbuf *m) 2427 { 2428 2429 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2430 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2431 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2432 ("%s: LOCKPCB not set", __func__)); 2433 2434 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2435 lookupflags, ifp, m->m_pkthdr.numa_domain)); 2436 } 2437 #endif /* INET */ 2438 2439 /* 2440 * Insert PCB onto various hash lists. 2441 */ 2442 int 2443 in_pcbinshash(struct inpcb *inp) 2444 { 2445 struct inpcbhead *pcbhash; 2446 struct inpcbporthead *pcbporthash; 2447 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2448 struct inpcbport *phd; 2449 int so_options; 2450 2451 INP_WLOCK_ASSERT(inp); 2452 INP_HASH_WLOCK_ASSERT(pcbinfo); 2453 2454 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2455 ("in_pcbinshash: INP_INHASHLIST")); 2456 2457 #ifdef INET6 2458 if (inp->inp_vflag & INP_IPV6) 2459 pcbhash = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr, 2460 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2461 else 2462 #endif 2463 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr, 2464 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2465 2466 pcbporthash = &pcbinfo->ipi_porthashbase[ 2467 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2468 2469 /* 2470 * Add entry to load balance group. 2471 * Only do this if SO_REUSEPORT_LB is set. 2472 */ 2473 so_options = inp_so_options(inp); 2474 if (so_options & SO_REUSEPORT_LB) { 2475 int ret = in_pcbinslbgrouphash(inp, M_NODOM); 2476 if (ret) { 2477 /* pcb lb group malloc fail (ret=ENOBUFS). */ 2478 return (ret); 2479 } 2480 } 2481 2482 /* 2483 * Go through port list and look for a head for this lport. 2484 */ 2485 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2486 if (phd->phd_port == inp->inp_lport) 2487 break; 2488 } 2489 /* 2490 * If none exists, malloc one and tack it on. 2491 */ 2492 if (phd == NULL) { 2493 phd = uma_zalloc_smr(pcbinfo->ipi_portzone, M_NOWAIT); 2494 if (phd == NULL) { 2495 return (ENOBUFS); /* XXX */ 2496 } 2497 phd->phd_port = inp->inp_lport; 2498 CK_LIST_INIT(&phd->phd_pcblist); 2499 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2500 } 2501 inp->inp_phd = phd; 2502 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2503 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2504 inp->inp_flags |= INP_INHASHLIST; 2505 2506 return (0); 2507 } 2508 2509 static void 2510 in_pcbremhash(struct inpcb *inp) 2511 { 2512 struct inpcbport *phd = inp->inp_phd; 2513 2514 INP_WLOCK_ASSERT(inp); 2515 MPASS(inp->inp_flags & INP_INHASHLIST); 2516 2517 INP_HASH_WLOCK(inp->inp_pcbinfo); 2518 /* XXX: Only do if SO_REUSEPORT_LB set? */ 2519 in_pcbremlbgrouphash(inp); 2520 CK_LIST_REMOVE(inp, inp_hash); 2521 CK_LIST_REMOVE(inp, inp_portlist); 2522 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 2523 CK_LIST_REMOVE(phd, phd_hash); 2524 uma_zfree_smr(inp->inp_pcbinfo->ipi_portzone, phd); 2525 } 2526 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 2527 inp->inp_flags &= ~INP_INHASHLIST; 2528 } 2529 2530 /* 2531 * Move PCB to the proper hash bucket when { faddr, fport } have been 2532 * changed. NOTE: This does not handle the case of the lport changing (the 2533 * hashed port list would have to be updated as well), so the lport must 2534 * not change after in_pcbinshash() has been called. 2535 * 2536 * XXXGL: a race between this function and SMR-protected hash iterator 2537 * will lead to iterator traversing a possibly wrong hash list. However, 2538 * this race should have been here since change from rwlock to epoch. 2539 */ 2540 void 2541 in_pcbrehash(struct inpcb *inp) 2542 { 2543 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2544 struct inpcbhead *head; 2545 2546 INP_WLOCK_ASSERT(inp); 2547 INP_HASH_WLOCK_ASSERT(pcbinfo); 2548 2549 KASSERT(inp->inp_flags & INP_INHASHLIST, 2550 ("in_pcbrehash: !INP_INHASHLIST")); 2551 2552 #ifdef INET6 2553 if (inp->inp_vflag & INP_IPV6) 2554 head = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr, 2555 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2556 else 2557 #endif 2558 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr, 2559 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2560 2561 CK_LIST_REMOVE(inp, inp_hash); 2562 CK_LIST_INSERT_HEAD(head, inp, inp_hash); 2563 } 2564 2565 /* 2566 * Check for alternatives when higher level complains 2567 * about service problems. For now, invalidate cached 2568 * routing information. If the route was created dynamically 2569 * (by a redirect), time to try a default gateway again. 2570 */ 2571 void 2572 in_losing(struct inpcb *inp) 2573 { 2574 2575 RO_INVALIDATE_CACHE(&inp->inp_route); 2576 return; 2577 } 2578 2579 /* 2580 * A set label operation has occurred at the socket layer, propagate the 2581 * label change into the in_pcb for the socket. 2582 */ 2583 void 2584 in_pcbsosetlabel(struct socket *so) 2585 { 2586 #ifdef MAC 2587 struct inpcb *inp; 2588 2589 inp = sotoinpcb(so); 2590 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2591 2592 INP_WLOCK(inp); 2593 SOCK_LOCK(so); 2594 mac_inpcb_sosetlabel(so, inp); 2595 SOCK_UNLOCK(so); 2596 INP_WUNLOCK(inp); 2597 #endif 2598 } 2599 2600 /* 2601 * ipport_tick runs once per second, determining if random port allocation 2602 * should be continued. If more than ipport_randomcps ports have been 2603 * allocated in the last second, then we return to sequential port 2604 * allocation. We return to random allocation only once we drop below 2605 * ipport_randomcps for at least ipport_randomtime seconds. 2606 */ 2607 static void 2608 ipport_tick(void *xtp) 2609 { 2610 VNET_ITERATOR_DECL(vnet_iter); 2611 2612 VNET_LIST_RLOCK_NOSLEEP(); 2613 VNET_FOREACH(vnet_iter) { 2614 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2615 if (V_ipport_tcpallocs - V_ipport_tcplastcount <= 2616 V_ipport_randomcps) { 2617 if (V_ipport_stoprandom > 0) 2618 V_ipport_stoprandom--; 2619 } else 2620 V_ipport_stoprandom = V_ipport_randomtime; 2621 V_ipport_tcplastcount = V_ipport_tcpallocs; 2622 CURVNET_RESTORE(); 2623 } 2624 VNET_LIST_RUNLOCK_NOSLEEP(); 2625 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2626 } 2627 2628 static void 2629 ip_fini(void *xtp) 2630 { 2631 2632 callout_stop(&ipport_tick_callout); 2633 } 2634 2635 /* 2636 * The ipport_callout should start running at about the time we attach the 2637 * inet or inet6 domains. 2638 */ 2639 static void 2640 ipport_tick_init(const void *unused __unused) 2641 { 2642 2643 /* Start ipport_tick. */ 2644 callout_init(&ipport_tick_callout, 1); 2645 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2646 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2647 SHUTDOWN_PRI_DEFAULT); 2648 } 2649 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2650 ipport_tick_init, NULL); 2651 2652 void 2653 inp_wlock(struct inpcb *inp) 2654 { 2655 2656 INP_WLOCK(inp); 2657 } 2658 2659 void 2660 inp_wunlock(struct inpcb *inp) 2661 { 2662 2663 INP_WUNLOCK(inp); 2664 } 2665 2666 void 2667 inp_rlock(struct inpcb *inp) 2668 { 2669 2670 INP_RLOCK(inp); 2671 } 2672 2673 void 2674 inp_runlock(struct inpcb *inp) 2675 { 2676 2677 INP_RUNLOCK(inp); 2678 } 2679 2680 #ifdef INVARIANT_SUPPORT 2681 void 2682 inp_lock_assert(struct inpcb *inp) 2683 { 2684 2685 INP_WLOCK_ASSERT(inp); 2686 } 2687 2688 void 2689 inp_unlock_assert(struct inpcb *inp) 2690 { 2691 2692 INP_UNLOCK_ASSERT(inp); 2693 } 2694 #endif 2695 2696 void 2697 inp_apply_all(struct inpcbinfo *pcbinfo, 2698 void (*func)(struct inpcb *, void *), void *arg) 2699 { 2700 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, 2701 INPLOOKUP_WLOCKPCB); 2702 struct inpcb *inp; 2703 2704 while ((inp = inp_next(&inpi)) != NULL) 2705 func(inp, arg); 2706 } 2707 2708 struct socket * 2709 inp_inpcbtosocket(struct inpcb *inp) 2710 { 2711 2712 INP_WLOCK_ASSERT(inp); 2713 return (inp->inp_socket); 2714 } 2715 2716 struct tcpcb * 2717 inp_inpcbtotcpcb(struct inpcb *inp) 2718 { 2719 2720 INP_WLOCK_ASSERT(inp); 2721 return ((struct tcpcb *)inp->inp_ppcb); 2722 } 2723 2724 int 2725 inp_ip_tos_get(const struct inpcb *inp) 2726 { 2727 2728 return (inp->inp_ip_tos); 2729 } 2730 2731 void 2732 inp_ip_tos_set(struct inpcb *inp, int val) 2733 { 2734 2735 inp->inp_ip_tos = val; 2736 } 2737 2738 void 2739 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2740 uint32_t *faddr, uint16_t *fp) 2741 { 2742 2743 INP_LOCK_ASSERT(inp); 2744 *laddr = inp->inp_laddr.s_addr; 2745 *faddr = inp->inp_faddr.s_addr; 2746 *lp = inp->inp_lport; 2747 *fp = inp->inp_fport; 2748 } 2749 2750 struct inpcb * 2751 so_sotoinpcb(struct socket *so) 2752 { 2753 2754 return (sotoinpcb(so)); 2755 } 2756 2757 /* 2758 * Create an external-format (``xinpcb'') structure using the information in 2759 * the kernel-format in_pcb structure pointed to by inp. This is done to 2760 * reduce the spew of irrelevant information over this interface, to isolate 2761 * user code from changes in the kernel structure, and potentially to provide 2762 * information-hiding if we decide that some of this information should be 2763 * hidden from users. 2764 */ 2765 void 2766 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2767 { 2768 2769 bzero(xi, sizeof(*xi)); 2770 xi->xi_len = sizeof(struct xinpcb); 2771 if (inp->inp_socket) 2772 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2773 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2774 xi->inp_gencnt = inp->inp_gencnt; 2775 xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; 2776 xi->inp_flow = inp->inp_flow; 2777 xi->inp_flowid = inp->inp_flowid; 2778 xi->inp_flowtype = inp->inp_flowtype; 2779 xi->inp_flags = inp->inp_flags; 2780 xi->inp_flags2 = inp->inp_flags2; 2781 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2782 xi->in6p_cksum = inp->in6p_cksum; 2783 xi->in6p_hops = inp->in6p_hops; 2784 xi->inp_ip_tos = inp->inp_ip_tos; 2785 xi->inp_vflag = inp->inp_vflag; 2786 xi->inp_ip_ttl = inp->inp_ip_ttl; 2787 xi->inp_ip_p = inp->inp_ip_p; 2788 xi->inp_ip_minttl = inp->inp_ip_minttl; 2789 } 2790 2791 int 2792 sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo, 2793 int (*ctloutput_set)(struct inpcb *, struct sockopt *)) 2794 { 2795 struct sockopt sopt; 2796 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, 2797 INPLOOKUP_WLOCKPCB); 2798 struct inpcb *inp; 2799 struct sockopt_parameters *params; 2800 struct socket *so; 2801 int error; 2802 char buf[1024]; 2803 2804 if (req->oldptr != NULL || req->oldlen != 0) 2805 return (EINVAL); 2806 if (req->newptr == NULL) 2807 return (EPERM); 2808 if (req->newlen > sizeof(buf)) 2809 return (ENOMEM); 2810 error = SYSCTL_IN(req, buf, req->newlen); 2811 if (error != 0) 2812 return (error); 2813 if (req->newlen < sizeof(struct sockopt_parameters)) 2814 return (EINVAL); 2815 params = (struct sockopt_parameters *)buf; 2816 sopt.sopt_level = params->sop_level; 2817 sopt.sopt_name = params->sop_optname; 2818 sopt.sopt_dir = SOPT_SET; 2819 sopt.sopt_val = params->sop_optval; 2820 sopt.sopt_valsize = req->newlen - sizeof(struct sockopt_parameters); 2821 sopt.sopt_td = NULL; 2822 #ifdef INET6 2823 if (params->sop_inc.inc_flags & INC_ISIPV6) { 2824 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_laddr)) 2825 params->sop_inc.inc6_laddr.s6_addr16[1] = 2826 htons(params->sop_inc.inc6_zoneid & 0xffff); 2827 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_faddr)) 2828 params->sop_inc.inc6_faddr.s6_addr16[1] = 2829 htons(params->sop_inc.inc6_zoneid & 0xffff); 2830 } 2831 #endif 2832 if (params->sop_inc.inc_lport != htons(0)) { 2833 if (params->sop_inc.inc_fport == htons(0)) 2834 inpi.hash = INP_PCBHASH_WILD(params->sop_inc.inc_lport, 2835 pcbinfo->ipi_hashmask); 2836 else 2837 #ifdef INET6 2838 if (params->sop_inc.inc_flags & INC_ISIPV6) 2839 inpi.hash = INP6_PCBHASH( 2840 ¶ms->sop_inc.inc6_faddr, 2841 params->sop_inc.inc_lport, 2842 params->sop_inc.inc_fport, 2843 pcbinfo->ipi_hashmask); 2844 else 2845 #endif 2846 inpi.hash = INP_PCBHASH( 2847 ¶ms->sop_inc.inc_faddr, 2848 params->sop_inc.inc_lport, 2849 params->sop_inc.inc_fport, 2850 pcbinfo->ipi_hashmask); 2851 } 2852 while ((inp = inp_next(&inpi)) != NULL) 2853 if (inp->inp_gencnt == params->sop_id) { 2854 if (inp->inp_flags & INP_DROPPED) { 2855 INP_WUNLOCK(inp); 2856 return (ECONNRESET); 2857 } 2858 so = inp->inp_socket; 2859 KASSERT(so != NULL, ("inp_socket == NULL")); 2860 soref(so); 2861 error = (*ctloutput_set)(inp, &sopt); 2862 sorele(so); 2863 break; 2864 } 2865 if (inp == NULL) 2866 error = ESRCH; 2867 return (error); 2868 } 2869 2870 #ifdef DDB 2871 static void 2872 db_print_indent(int indent) 2873 { 2874 int i; 2875 2876 for (i = 0; i < indent; i++) 2877 db_printf(" "); 2878 } 2879 2880 static void 2881 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2882 { 2883 char faddr_str[48], laddr_str[48]; 2884 2885 db_print_indent(indent); 2886 db_printf("%s at %p\n", name, inc); 2887 2888 indent += 2; 2889 2890 #ifdef INET6 2891 if (inc->inc_flags & INC_ISIPV6) { 2892 /* IPv6. */ 2893 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2894 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2895 } else 2896 #endif 2897 { 2898 /* IPv4. */ 2899 inet_ntoa_r(inc->inc_laddr, laddr_str); 2900 inet_ntoa_r(inc->inc_faddr, faddr_str); 2901 } 2902 db_print_indent(indent); 2903 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2904 ntohs(inc->inc_lport)); 2905 db_print_indent(indent); 2906 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2907 ntohs(inc->inc_fport)); 2908 } 2909 2910 static void 2911 db_print_inpflags(int inp_flags) 2912 { 2913 int comma; 2914 2915 comma = 0; 2916 if (inp_flags & INP_RECVOPTS) { 2917 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2918 comma = 1; 2919 } 2920 if (inp_flags & INP_RECVRETOPTS) { 2921 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2922 comma = 1; 2923 } 2924 if (inp_flags & INP_RECVDSTADDR) { 2925 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2926 comma = 1; 2927 } 2928 if (inp_flags & INP_ORIGDSTADDR) { 2929 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 2930 comma = 1; 2931 } 2932 if (inp_flags & INP_HDRINCL) { 2933 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2934 comma = 1; 2935 } 2936 if (inp_flags & INP_HIGHPORT) { 2937 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2938 comma = 1; 2939 } 2940 if (inp_flags & INP_LOWPORT) { 2941 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2942 comma = 1; 2943 } 2944 if (inp_flags & INP_ANONPORT) { 2945 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2946 comma = 1; 2947 } 2948 if (inp_flags & INP_RECVIF) { 2949 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2950 comma = 1; 2951 } 2952 if (inp_flags & INP_MTUDISC) { 2953 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2954 comma = 1; 2955 } 2956 if (inp_flags & INP_RECVTTL) { 2957 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 2958 comma = 1; 2959 } 2960 if (inp_flags & INP_DONTFRAG) { 2961 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 2962 comma = 1; 2963 } 2964 if (inp_flags & INP_RECVTOS) { 2965 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 2966 comma = 1; 2967 } 2968 if (inp_flags & IN6P_IPV6_V6ONLY) { 2969 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 2970 comma = 1; 2971 } 2972 if (inp_flags & IN6P_PKTINFO) { 2973 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 2974 comma = 1; 2975 } 2976 if (inp_flags & IN6P_HOPLIMIT) { 2977 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 2978 comma = 1; 2979 } 2980 if (inp_flags & IN6P_HOPOPTS) { 2981 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 2982 comma = 1; 2983 } 2984 if (inp_flags & IN6P_DSTOPTS) { 2985 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 2986 comma = 1; 2987 } 2988 if (inp_flags & IN6P_RTHDR) { 2989 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 2990 comma = 1; 2991 } 2992 if (inp_flags & IN6P_RTHDRDSTOPTS) { 2993 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 2994 comma = 1; 2995 } 2996 if (inp_flags & IN6P_TCLASS) { 2997 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 2998 comma = 1; 2999 } 3000 if (inp_flags & IN6P_AUTOFLOWLABEL) { 3001 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 3002 comma = 1; 3003 } 3004 if (inp_flags & INP_ONESBCAST) { 3005 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 3006 comma = 1; 3007 } 3008 if (inp_flags & INP_DROPPED) { 3009 db_printf("%sINP_DROPPED", comma ? ", " : ""); 3010 comma = 1; 3011 } 3012 if (inp_flags & INP_SOCKREF) { 3013 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 3014 comma = 1; 3015 } 3016 if (inp_flags & IN6P_RFC2292) { 3017 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 3018 comma = 1; 3019 } 3020 if (inp_flags & IN6P_MTU) { 3021 db_printf("IN6P_MTU%s", comma ? ", " : ""); 3022 comma = 1; 3023 } 3024 } 3025 3026 static void 3027 db_print_inpvflag(u_char inp_vflag) 3028 { 3029 int comma; 3030 3031 comma = 0; 3032 if (inp_vflag & INP_IPV4) { 3033 db_printf("%sINP_IPV4", comma ? ", " : ""); 3034 comma = 1; 3035 } 3036 if (inp_vflag & INP_IPV6) { 3037 db_printf("%sINP_IPV6", comma ? ", " : ""); 3038 comma = 1; 3039 } 3040 if (inp_vflag & INP_IPV6PROTO) { 3041 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 3042 comma = 1; 3043 } 3044 } 3045 3046 static void 3047 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 3048 { 3049 3050 db_print_indent(indent); 3051 db_printf("%s at %p\n", name, inp); 3052 3053 indent += 2; 3054 3055 db_print_indent(indent); 3056 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 3057 3058 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 3059 3060 db_print_indent(indent); 3061 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 3062 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 3063 3064 db_print_indent(indent); 3065 db_printf("inp_label: %p inp_flags: 0x%x (", 3066 inp->inp_label, inp->inp_flags); 3067 db_print_inpflags(inp->inp_flags); 3068 db_printf(")\n"); 3069 3070 db_print_indent(indent); 3071 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 3072 inp->inp_vflag); 3073 db_print_inpvflag(inp->inp_vflag); 3074 db_printf(")\n"); 3075 3076 db_print_indent(indent); 3077 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 3078 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 3079 3080 db_print_indent(indent); 3081 #ifdef INET6 3082 if (inp->inp_vflag & INP_IPV6) { 3083 db_printf("in6p_options: %p in6p_outputopts: %p " 3084 "in6p_moptions: %p\n", inp->in6p_options, 3085 inp->in6p_outputopts, inp->in6p_moptions); 3086 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 3087 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 3088 inp->in6p_hops); 3089 } else 3090 #endif 3091 { 3092 db_printf("inp_ip_tos: %d inp_ip_options: %p " 3093 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 3094 inp->inp_options, inp->inp_moptions); 3095 } 3096 3097 db_print_indent(indent); 3098 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 3099 (uintmax_t)inp->inp_gencnt); 3100 } 3101 3102 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 3103 { 3104 struct inpcb *inp; 3105 3106 if (!have_addr) { 3107 db_printf("usage: show inpcb <addr>\n"); 3108 return; 3109 } 3110 inp = (struct inpcb *)addr; 3111 3112 db_print_inpcb(inp, "inpcb", 0); 3113 } 3114 #endif /* DDB */ 3115 3116 #ifdef RATELIMIT 3117 /* 3118 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 3119 * if any. 3120 */ 3121 int 3122 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 3123 { 3124 union if_snd_tag_modify_params params = { 3125 .rate_limit.max_rate = max_pacing_rate, 3126 .rate_limit.flags = M_NOWAIT, 3127 }; 3128 struct m_snd_tag *mst; 3129 int error; 3130 3131 mst = inp->inp_snd_tag; 3132 if (mst == NULL) 3133 return (EINVAL); 3134 3135 if (mst->sw->snd_tag_modify == NULL) { 3136 error = EOPNOTSUPP; 3137 } else { 3138 error = mst->sw->snd_tag_modify(mst, ¶ms); 3139 } 3140 return (error); 3141 } 3142 3143 /* 3144 * Query existing TX rate limit based on the existing 3145 * "inp->inp_snd_tag", if any. 3146 */ 3147 int 3148 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3149 { 3150 union if_snd_tag_query_params params = { }; 3151 struct m_snd_tag *mst; 3152 int error; 3153 3154 mst = inp->inp_snd_tag; 3155 if (mst == NULL) 3156 return (EINVAL); 3157 3158 if (mst->sw->snd_tag_query == NULL) { 3159 error = EOPNOTSUPP; 3160 } else { 3161 error = mst->sw->snd_tag_query(mst, ¶ms); 3162 if (error == 0 && p_max_pacing_rate != NULL) 3163 *p_max_pacing_rate = params.rate_limit.max_rate; 3164 } 3165 return (error); 3166 } 3167 3168 /* 3169 * Query existing TX queue level based on the existing 3170 * "inp->inp_snd_tag", if any. 3171 */ 3172 int 3173 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3174 { 3175 union if_snd_tag_query_params params = { }; 3176 struct m_snd_tag *mst; 3177 int error; 3178 3179 mst = inp->inp_snd_tag; 3180 if (mst == NULL) 3181 return (EINVAL); 3182 3183 if (mst->sw->snd_tag_query == NULL) 3184 return (EOPNOTSUPP); 3185 3186 error = mst->sw->snd_tag_query(mst, ¶ms); 3187 if (error == 0 && p_txqueue_level != NULL) 3188 *p_txqueue_level = params.rate_limit.queue_level; 3189 return (error); 3190 } 3191 3192 /* 3193 * Allocate a new TX rate limit send tag from the network interface 3194 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3195 */ 3196 int 3197 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3198 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st) 3199 3200 { 3201 union if_snd_tag_alloc_params params = { 3202 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3203 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3204 .rate_limit.hdr.flowid = flowid, 3205 .rate_limit.hdr.flowtype = flowtype, 3206 .rate_limit.hdr.numa_domain = inp->inp_numa_domain, 3207 .rate_limit.max_rate = max_pacing_rate, 3208 .rate_limit.flags = M_NOWAIT, 3209 }; 3210 int error; 3211 3212 INP_WLOCK_ASSERT(inp); 3213 3214 /* 3215 * If there is already a send tag, or the INP is being torn 3216 * down, allocating a new send tag is not allowed. Else send 3217 * tags may leak. 3218 */ 3219 if (*st != NULL || (inp->inp_flags & INP_DROPPED) != 0) 3220 return (EINVAL); 3221 3222 error = m_snd_tag_alloc(ifp, ¶ms, st); 3223 #ifdef INET 3224 if (error == 0) { 3225 counter_u64_add(rate_limit_set_ok, 1); 3226 counter_u64_add(rate_limit_active, 1); 3227 } else if (error != EOPNOTSUPP) 3228 counter_u64_add(rate_limit_alloc_fail, 1); 3229 #endif 3230 return (error); 3231 } 3232 3233 void 3234 in_pcbdetach_tag(struct m_snd_tag *mst) 3235 { 3236 3237 m_snd_tag_rele(mst); 3238 #ifdef INET 3239 counter_u64_add(rate_limit_active, -1); 3240 #endif 3241 } 3242 3243 /* 3244 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3245 * if any: 3246 */ 3247 void 3248 in_pcbdetach_txrtlmt(struct inpcb *inp) 3249 { 3250 struct m_snd_tag *mst; 3251 3252 INP_WLOCK_ASSERT(inp); 3253 3254 mst = inp->inp_snd_tag; 3255 inp->inp_snd_tag = NULL; 3256 3257 if (mst == NULL) 3258 return; 3259 3260 m_snd_tag_rele(mst); 3261 #ifdef INET 3262 counter_u64_add(rate_limit_active, -1); 3263 #endif 3264 } 3265 3266 int 3267 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate) 3268 { 3269 int error; 3270 3271 /* 3272 * If the existing send tag is for the wrong interface due to 3273 * a route change, first drop the existing tag. Set the 3274 * CHANGED flag so that we will keep trying to allocate a new 3275 * tag if we fail to allocate one this time. 3276 */ 3277 if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) { 3278 in_pcbdetach_txrtlmt(inp); 3279 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3280 } 3281 3282 /* 3283 * NOTE: When attaching to a network interface a reference is 3284 * made to ensure the network interface doesn't go away until 3285 * all ratelimit connections are gone. The network interface 3286 * pointers compared below represent valid network interfaces, 3287 * except when comparing towards NULL. 3288 */ 3289 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3290 error = 0; 3291 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3292 if (inp->inp_snd_tag != NULL) 3293 in_pcbdetach_txrtlmt(inp); 3294 error = 0; 3295 } else if (inp->inp_snd_tag == NULL) { 3296 /* 3297 * In order to utilize packet pacing with RSS, we need 3298 * to wait until there is a valid RSS hash before we 3299 * can proceed: 3300 */ 3301 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3302 error = EAGAIN; 3303 } else { 3304 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3305 mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag); 3306 } 3307 } else { 3308 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3309 } 3310 if (error == 0 || error == EOPNOTSUPP) 3311 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3312 3313 return (error); 3314 } 3315 3316 /* 3317 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3318 * is set in the fast path and will attach/detach/modify the TX rate 3319 * limit send tag based on the socket's so_max_pacing_rate value. 3320 */ 3321 void 3322 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3323 { 3324 struct socket *socket; 3325 uint32_t max_pacing_rate; 3326 bool did_upgrade; 3327 3328 if (inp == NULL) 3329 return; 3330 3331 socket = inp->inp_socket; 3332 if (socket == NULL) 3333 return; 3334 3335 if (!INP_WLOCKED(inp)) { 3336 /* 3337 * NOTE: If the write locking fails, we need to bail 3338 * out and use the non-ratelimited ring for the 3339 * transmit until there is a new chance to get the 3340 * write lock. 3341 */ 3342 if (!INP_TRY_UPGRADE(inp)) 3343 return; 3344 did_upgrade = 1; 3345 } else { 3346 did_upgrade = 0; 3347 } 3348 3349 /* 3350 * NOTE: The so_max_pacing_rate value is read unlocked, 3351 * because atomic updates are not required since the variable 3352 * is checked at every mbuf we send. It is assumed that the 3353 * variable read itself will be atomic. 3354 */ 3355 max_pacing_rate = socket->so_max_pacing_rate; 3356 3357 in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate); 3358 3359 if (did_upgrade) 3360 INP_DOWNGRADE(inp); 3361 } 3362 3363 /* 3364 * Track route changes for TX rate limiting. 3365 */ 3366 void 3367 in_pcboutput_eagain(struct inpcb *inp) 3368 { 3369 bool did_upgrade; 3370 3371 if (inp == NULL) 3372 return; 3373 3374 if (inp->inp_snd_tag == NULL) 3375 return; 3376 3377 if (!INP_WLOCKED(inp)) { 3378 /* 3379 * NOTE: If the write locking fails, we need to bail 3380 * out and use the non-ratelimited ring for the 3381 * transmit until there is a new chance to get the 3382 * write lock. 3383 */ 3384 if (!INP_TRY_UPGRADE(inp)) 3385 return; 3386 did_upgrade = 1; 3387 } else { 3388 did_upgrade = 0; 3389 } 3390 3391 /* detach rate limiting */ 3392 in_pcbdetach_txrtlmt(inp); 3393 3394 /* make sure new mbuf send tag allocation is made */ 3395 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3396 3397 if (did_upgrade) 3398 INP_DOWNGRADE(inp); 3399 } 3400 3401 #ifdef INET 3402 static void 3403 rl_init(void *st) 3404 { 3405 rate_limit_new = counter_u64_alloc(M_WAITOK); 3406 rate_limit_chg = counter_u64_alloc(M_WAITOK); 3407 rate_limit_active = counter_u64_alloc(M_WAITOK); 3408 rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK); 3409 rate_limit_set_ok = counter_u64_alloc(M_WAITOK); 3410 } 3411 3412 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL); 3413 #endif 3414 #endif /* RATELIMIT */ 3415