xref: /freebsd/sys/netinet/in_pcb.c (revision 6c05f3a74f30934ee60919cc97e16ec69b542b06)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2007-2009 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * Copyright (c) 2021-2022 Gleb Smirnoff <glebius@FreeBSD.org>
9  * All rights reserved.
10  *
11  * Portions of this software were developed by Robert N. M. Watson under
12  * contract to Juniper Networks, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38 
39 #include <sys/cdefs.h>
40 #include "opt_ddb.h"
41 #include "opt_ipsec.h"
42 #include "opt_inet.h"
43 #include "opt_inet6.h"
44 #include "opt_ratelimit.h"
45 #include "opt_route.h"
46 #include "opt_rss.h"
47 
48 #include <sys/param.h>
49 #include <sys/hash.h>
50 #include <sys/systm.h>
51 #include <sys/libkern.h>
52 #include <sys/lock.h>
53 #include <sys/malloc.h>
54 #include <sys/mbuf.h>
55 #include <sys/eventhandler.h>
56 #include <sys/domain.h>
57 #include <sys/proc.h>
58 #include <sys/protosw.h>
59 #include <sys/smp.h>
60 #include <sys/smr.h>
61 #include <sys/socket.h>
62 #include <sys/socketvar.h>
63 #include <sys/sockio.h>
64 #include <sys/priv.h>
65 #include <sys/proc.h>
66 #include <sys/refcount.h>
67 #include <sys/jail.h>
68 #include <sys/kernel.h>
69 #include <sys/sysctl.h>
70 
71 #ifdef DDB
72 #include <ddb/ddb.h>
73 #endif
74 
75 #include <vm/uma.h>
76 #include <vm/vm.h>
77 
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/if_private.h>
81 #include <net/if_types.h>
82 #include <net/if_llatbl.h>
83 #include <net/route.h>
84 #include <net/rss_config.h>
85 #include <net/vnet.h>
86 
87 #if defined(INET) || defined(INET6)
88 #include <netinet/in.h>
89 #include <netinet/in_pcb.h>
90 #include <netinet/in_pcb_var.h>
91 #include <netinet/tcp.h>
92 #ifdef INET
93 #include <netinet/in_var.h>
94 #include <netinet/in_fib.h>
95 #endif
96 #include <netinet/ip_var.h>
97 #ifdef INET6
98 #include <netinet/ip6.h>
99 #include <netinet6/in6_pcb.h>
100 #include <netinet6/in6_var.h>
101 #include <netinet6/ip6_var.h>
102 #endif /* INET6 */
103 #include <net/route/nhop.h>
104 #endif
105 
106 #include <netipsec/ipsec_support.h>
107 
108 #include <security/mac/mac_framework.h>
109 
110 #define	INPCBLBGROUP_SIZMIN	8
111 #define	INPCBLBGROUP_SIZMAX	256
112 
113 #define	INP_FREED	0x00000200	/* Went through in_pcbfree(). */
114 #define	INP_INLBGROUP	0x01000000	/* Inserted into inpcblbgroup. */
115 
116 /*
117  * These configure the range of local port addresses assigned to
118  * "unspecified" outgoing connections/packets/whatever.
119  */
120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
126 
127 /*
128  * Reserved ports accessible only to root. There are significant
129  * security considerations that must be accounted for when changing these,
130  * but the security benefits can be great. Please be careful.
131  */
132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
133 VNET_DEFINE(int, ipport_reservedlow);
134 
135 /* Enable random ephemeral port allocation by default. */
136 VNET_DEFINE(int, ipport_randomized) = 1;
137 
138 #ifdef INET
139 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
140 			    struct in_addr faddr, u_int fport_arg,
141 			    struct in_addr laddr, u_int lport_arg,
142 			    int lookupflags, uint8_t numa_domain);
143 
144 #define RANGECHK(var, min, max) \
145 	if ((var) < (min)) { (var) = (min); } \
146 	else if ((var) > (max)) { (var) = (max); }
147 
148 static int
149 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
150 {
151 	int error;
152 
153 	error = sysctl_handle_int(oidp, arg1, arg2, req);
154 	if (error == 0) {
155 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
156 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
157 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
158 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
159 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
160 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
161 	}
162 	return (error);
163 }
164 
165 #undef RANGECHK
166 
167 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange,
168     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
169     "IP Ports");
170 
171 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
172     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
173     &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I",
174     "");
175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
176     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
177     &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I",
178     "");
179 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
180     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
181     &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I",
182     "");
183 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
184     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
185     &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I",
186     "");
187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
188     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
189     &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I",
190     "");
191 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
192     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
193     &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I",
194     "");
195 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
196 	CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
197 	&VNET_NAME(ipport_reservedhigh), 0, "");
198 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
199 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
200 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
201 	CTLFLAG_VNET | CTLFLAG_RW,
202 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
203 
204 #ifdef RATELIMIT
205 counter_u64_t rate_limit_new;
206 counter_u64_t rate_limit_chg;
207 counter_u64_t rate_limit_active;
208 counter_u64_t rate_limit_alloc_fail;
209 counter_u64_t rate_limit_set_ok;
210 
211 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
212     "IP Rate Limiting");
213 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD,
214     &rate_limit_active, "Active rate limited connections");
215 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD,
216    &rate_limit_alloc_fail, "Rate limited connection failures");
217 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD,
218    &rate_limit_set_ok, "Rate limited setting succeeded");
219 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD,
220    &rate_limit_new, "Total Rate limit new attempts");
221 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD,
222    &rate_limit_chg, "Total Rate limited change attempts");
223 #endif /* RATELIMIT */
224 
225 #endif /* INET */
226 
227 VNET_DEFINE(uint32_t, in_pcbhashseed);
228 static void
229 in_pcbhashseed_init(void)
230 {
231 
232 	V_in_pcbhashseed = arc4random();
233 }
234 VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST,
235     in_pcbhashseed_init, NULL);
236 
237 #ifdef INET
238 VNET_DEFINE_STATIC(int, connect_inaddr_wild) = 1;
239 #define	V_connect_inaddr_wild	VNET(connect_inaddr_wild)
240 SYSCTL_INT(_net_inet_ip, OID_AUTO, connect_inaddr_wild,
241     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(connect_inaddr_wild), 0,
242     "Allow connecting to INADDR_ANY or INADDR_BROADCAST for connect(2)");
243 #endif
244 
245 static void in_pcbremhash(struct inpcb *);
246 
247 /*
248  * in_pcb.c: manage the Protocol Control Blocks.
249  *
250  * NOTE: It is assumed that most of these functions will be called with
251  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
252  * functions often modify hash chains or addresses in pcbs.
253  */
254 
255 static struct inpcblbgroup *
256 in_pcblbgroup_alloc(struct ucred *cred, u_char vflag, uint16_t port,
257     const union in_dependaddr *addr, int size, uint8_t numa_domain)
258 {
259 	struct inpcblbgroup *grp;
260 	size_t bytes;
261 
262 	bytes = __offsetof(struct inpcblbgroup, il_inp[size]);
263 	grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT);
264 	if (grp == NULL)
265 		return (NULL);
266 	grp->il_cred = crhold(cred);
267 	grp->il_vflag = vflag;
268 	grp->il_lport = port;
269 	grp->il_numa_domain = numa_domain;
270 	grp->il_dependladdr = *addr;
271 	grp->il_inpsiz = size;
272 	return (grp);
273 }
274 
275 static void
276 in_pcblbgroup_free_deferred(epoch_context_t ctx)
277 {
278 	struct inpcblbgroup *grp;
279 
280 	grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx);
281 	crfree(grp->il_cred);
282 	free(grp, M_PCB);
283 }
284 
285 static void
286 in_pcblbgroup_free(struct inpcblbgroup *grp)
287 {
288 
289 	CK_LIST_REMOVE(grp, il_list);
290 	NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx);
291 }
292 
293 static void
294 in_pcblbgroup_insert(struct inpcblbgroup *grp, struct inpcb *inp)
295 {
296 	KASSERT(grp->il_inpcnt < grp->il_inpsiz,
297 	    ("invalid local group size %d and count %d", grp->il_inpsiz,
298 	    grp->il_inpcnt));
299 	INP_WLOCK_ASSERT(inp);
300 
301 	inp->inp_flags |= INP_INLBGROUP;
302 	grp->il_inp[grp->il_inpcnt] = inp;
303 
304 	/*
305 	 * Synchronize with in_pcblookup_lbgroup(): make sure that we don't
306 	 * expose a null slot to the lookup path.
307 	 */
308 	atomic_store_rel_int(&grp->il_inpcnt, grp->il_inpcnt + 1);
309 }
310 
311 static struct inpcblbgroup *
312 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr,
313     struct inpcblbgroup *old_grp, int size)
314 {
315 	struct inpcblbgroup *grp;
316 	int i;
317 
318 	grp = in_pcblbgroup_alloc(old_grp->il_cred, old_grp->il_vflag,
319 	    old_grp->il_lport, &old_grp->il_dependladdr, size,
320 	    old_grp->il_numa_domain);
321 	if (grp == NULL)
322 		return (NULL);
323 
324 	KASSERT(old_grp->il_inpcnt < grp->il_inpsiz,
325 	    ("invalid new local group size %d and old local group count %d",
326 	     grp->il_inpsiz, old_grp->il_inpcnt));
327 
328 	for (i = 0; i < old_grp->il_inpcnt; ++i)
329 		grp->il_inp[i] = old_grp->il_inp[i];
330 	grp->il_inpcnt = old_grp->il_inpcnt;
331 	CK_LIST_INSERT_HEAD(hdr, grp, il_list);
332 	in_pcblbgroup_free(old_grp);
333 	return (grp);
334 }
335 
336 /*
337  * Add PCB to load balance group for SO_REUSEPORT_LB option.
338  */
339 static int
340 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain)
341 {
342 	const static struct timeval interval = { 60, 0 };
343 	static struct timeval lastprint;
344 	struct inpcbinfo *pcbinfo;
345 	struct inpcblbgrouphead *hdr;
346 	struct inpcblbgroup *grp;
347 	uint32_t idx;
348 
349 	pcbinfo = inp->inp_pcbinfo;
350 
351 	INP_WLOCK_ASSERT(inp);
352 	INP_HASH_WLOCK_ASSERT(pcbinfo);
353 
354 #ifdef INET6
355 	/*
356 	 * Don't allow IPv4 mapped INET6 wild socket.
357 	 */
358 	if ((inp->inp_vflag & INP_IPV4) &&
359 	    inp->inp_laddr.s_addr == INADDR_ANY &&
360 	    INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) {
361 		return (0);
362 	}
363 #endif
364 
365 	idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask);
366 	hdr = &pcbinfo->ipi_lbgrouphashbase[idx];
367 	CK_LIST_FOREACH(grp, hdr, il_list) {
368 		if (grp->il_cred->cr_prison == inp->inp_cred->cr_prison &&
369 		    grp->il_vflag == inp->inp_vflag &&
370 		    grp->il_lport == inp->inp_lport &&
371 		    grp->il_numa_domain == numa_domain &&
372 		    memcmp(&grp->il_dependladdr,
373 		    &inp->inp_inc.inc_ie.ie_dependladdr,
374 		    sizeof(grp->il_dependladdr)) == 0) {
375 			break;
376 		}
377 	}
378 	if (grp == NULL) {
379 		/* Create new load balance group. */
380 		grp = in_pcblbgroup_alloc(inp->inp_cred, inp->inp_vflag,
381 		    inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr,
382 		    INPCBLBGROUP_SIZMIN, numa_domain);
383 		if (grp == NULL)
384 			return (ENOBUFS);
385 		in_pcblbgroup_insert(grp, inp);
386 		CK_LIST_INSERT_HEAD(hdr, grp, il_list);
387 	} else if (grp->il_inpcnt == grp->il_inpsiz) {
388 		if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) {
389 			if (ratecheck(&lastprint, &interval))
390 				printf("lb group port %d, limit reached\n",
391 				    ntohs(grp->il_lport));
392 			return (0);
393 		}
394 
395 		/* Expand this local group. */
396 		grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2);
397 		if (grp == NULL)
398 			return (ENOBUFS);
399 		in_pcblbgroup_insert(grp, inp);
400 	} else {
401 		in_pcblbgroup_insert(grp, inp);
402 	}
403 	return (0);
404 }
405 
406 /*
407  * Remove PCB from load balance group.
408  */
409 static void
410 in_pcbremlbgrouphash(struct inpcb *inp)
411 {
412 	struct inpcbinfo *pcbinfo;
413 	struct inpcblbgrouphead *hdr;
414 	struct inpcblbgroup *grp;
415 	int i;
416 
417 	pcbinfo = inp->inp_pcbinfo;
418 
419 	INP_WLOCK_ASSERT(inp);
420 	MPASS(inp->inp_flags & INP_INLBGROUP);
421 	INP_HASH_WLOCK_ASSERT(pcbinfo);
422 
423 	hdr = &pcbinfo->ipi_lbgrouphashbase[
424 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
425 	CK_LIST_FOREACH(grp, hdr, il_list) {
426 		for (i = 0; i < grp->il_inpcnt; ++i) {
427 			if (grp->il_inp[i] != inp)
428 				continue;
429 
430 			if (grp->il_inpcnt == 1) {
431 				/* We are the last, free this local group. */
432 				in_pcblbgroup_free(grp);
433 			} else {
434 				KASSERT(grp->il_inpcnt >= 2,
435 				    ("invalid local group count %d",
436 				    grp->il_inpcnt));
437 				grp->il_inp[i] =
438 				    grp->il_inp[grp->il_inpcnt - 1];
439 
440 				/*
441 				 * Synchronize with in_pcblookup_lbgroup().
442 				 */
443 				atomic_store_rel_int(&grp->il_inpcnt,
444 				    grp->il_inpcnt - 1);
445 			}
446 			inp->inp_flags &= ~INP_INLBGROUP;
447 			return;
448 		}
449 	}
450 	KASSERT(0, ("%s: did not find %p", __func__, inp));
451 }
452 
453 int
454 in_pcblbgroup_numa(struct inpcb *inp, int arg)
455 {
456 	struct inpcbinfo *pcbinfo;
457 	struct inpcblbgrouphead *hdr;
458 	struct inpcblbgroup *grp;
459 	int err, i;
460 	uint8_t numa_domain;
461 
462 	switch (arg) {
463 	case TCP_REUSPORT_LB_NUMA_NODOM:
464 		numa_domain = M_NODOM;
465 		break;
466 	case TCP_REUSPORT_LB_NUMA_CURDOM:
467 		numa_domain = PCPU_GET(domain);
468 		break;
469 	default:
470 		if (arg < 0 || arg >= vm_ndomains)
471 			return (EINVAL);
472 		numa_domain = arg;
473 	}
474 
475 	err = 0;
476 	pcbinfo = inp->inp_pcbinfo;
477 	INP_WLOCK_ASSERT(inp);
478 	INP_HASH_WLOCK(pcbinfo);
479 	hdr = &pcbinfo->ipi_lbgrouphashbase[
480 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
481 	CK_LIST_FOREACH(grp, hdr, il_list) {
482 		for (i = 0; i < grp->il_inpcnt; ++i) {
483 			if (grp->il_inp[i] != inp)
484 				continue;
485 
486 			if (grp->il_numa_domain == numa_domain) {
487 				goto abort_with_hash_wlock;
488 			}
489 
490 			/* Remove it from the old group. */
491 			in_pcbremlbgrouphash(inp);
492 
493 			/* Add it to the new group based on numa domain. */
494 			in_pcbinslbgrouphash(inp, numa_domain);
495 			goto abort_with_hash_wlock;
496 		}
497 	}
498 	err = ENOENT;
499 abort_with_hash_wlock:
500 	INP_HASH_WUNLOCK(pcbinfo);
501 	return (err);
502 }
503 
504 /* Make sure it is safe to use hashinit(9) on CK_LIST. */
505 CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb)));
506 
507 /*
508  * Initialize an inpcbinfo - a per-VNET instance of connections db.
509  */
510 void
511 in_pcbinfo_init(struct inpcbinfo *pcbinfo, struct inpcbstorage *pcbstor,
512     u_int hash_nelements, u_int porthash_nelements)
513 {
514 
515 	mtx_init(&pcbinfo->ipi_lock, pcbstor->ips_infolock_name, NULL, MTX_DEF);
516 	mtx_init(&pcbinfo->ipi_hash_lock, pcbstor->ips_hashlock_name,
517 	    NULL, MTX_DEF);
518 #ifdef VIMAGE
519 	pcbinfo->ipi_vnet = curvnet;
520 #endif
521 	CK_LIST_INIT(&pcbinfo->ipi_listhead);
522 	pcbinfo->ipi_count = 0;
523 	pcbinfo->ipi_hash_exact = hashinit(hash_nelements, M_PCB,
524 	    &pcbinfo->ipi_hashmask);
525 	pcbinfo->ipi_hash_wild = hashinit(hash_nelements, M_PCB,
526 	    &pcbinfo->ipi_hashmask);
527 	porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1);
528 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
529 	    &pcbinfo->ipi_porthashmask);
530 	pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB,
531 	    &pcbinfo->ipi_lbgrouphashmask);
532 	pcbinfo->ipi_zone = pcbstor->ips_zone;
533 	pcbinfo->ipi_portzone = pcbstor->ips_portzone;
534 	pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone);
535 }
536 
537 /*
538  * Destroy an inpcbinfo.
539  */
540 void
541 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
542 {
543 
544 	KASSERT(pcbinfo->ipi_count == 0,
545 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
546 
547 	hashdestroy(pcbinfo->ipi_hash_exact, M_PCB, pcbinfo->ipi_hashmask);
548 	hashdestroy(pcbinfo->ipi_hash_wild, M_PCB, pcbinfo->ipi_hashmask);
549 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
550 	    pcbinfo->ipi_porthashmask);
551 	hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB,
552 	    pcbinfo->ipi_lbgrouphashmask);
553 	mtx_destroy(&pcbinfo->ipi_hash_lock);
554 	mtx_destroy(&pcbinfo->ipi_lock);
555 }
556 
557 /*
558  * Initialize a pcbstorage - per protocol zones to allocate inpcbs.
559  */
560 static void inpcb_fini(void *, int);
561 void
562 in_pcbstorage_init(void *arg)
563 {
564 	struct inpcbstorage *pcbstor = arg;
565 
566 	pcbstor->ips_zone = uma_zcreate(pcbstor->ips_zone_name,
567 	    pcbstor->ips_size, NULL, NULL, pcbstor->ips_pcbinit,
568 	    inpcb_fini, UMA_ALIGN_CACHE, UMA_ZONE_SMR);
569 	pcbstor->ips_portzone = uma_zcreate(pcbstor->ips_portzone_name,
570 	    sizeof(struct inpcbport), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
571 	uma_zone_set_smr(pcbstor->ips_portzone,
572 	    uma_zone_get_smr(pcbstor->ips_zone));
573 }
574 
575 /*
576  * Destroy a pcbstorage - used by unloadable protocols.
577  */
578 void
579 in_pcbstorage_destroy(void *arg)
580 {
581 	struct inpcbstorage *pcbstor = arg;
582 
583 	uma_zdestroy(pcbstor->ips_zone);
584 	uma_zdestroy(pcbstor->ips_portzone);
585 }
586 
587 /*
588  * Allocate a PCB and associate it with the socket.
589  * On success return with the PCB locked.
590  */
591 int
592 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
593 {
594 	struct inpcb *inp;
595 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
596 	int error;
597 #endif
598 
599 	inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT);
600 	if (inp == NULL)
601 		return (ENOBUFS);
602 	bzero(&inp->inp_start_zero, inp_zero_size);
603 #ifdef NUMA
604 	inp->inp_numa_domain = M_NODOM;
605 #endif
606 	inp->inp_pcbinfo = pcbinfo;
607 	inp->inp_socket = so;
608 	inp->inp_cred = crhold(so->so_cred);
609 	inp->inp_inc.inc_fibnum = so->so_fibnum;
610 #ifdef MAC
611 	error = mac_inpcb_init(inp, M_NOWAIT);
612 	if (error != 0)
613 		goto out;
614 	mac_inpcb_create(so, inp);
615 #endif
616 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
617 	error = ipsec_init_pcbpolicy(inp);
618 	if (error != 0) {
619 #ifdef MAC
620 		mac_inpcb_destroy(inp);
621 #endif
622 		goto out;
623 	}
624 #endif /*IPSEC*/
625 #ifdef INET6
626 	if (INP_SOCKAF(so) == AF_INET6) {
627 		inp->inp_vflag |= INP_IPV6PROTO | INP_IPV6;
628 		if (V_ip6_v6only)
629 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
630 #ifdef INET
631 		else
632 			inp->inp_vflag |= INP_IPV4;
633 #endif
634 		if (V_ip6_auto_flowlabel)
635 			inp->inp_flags |= IN6P_AUTOFLOWLABEL;
636 		inp->in6p_hops = -1;	/* use kernel default */
637 	}
638 #endif
639 #if defined(INET) && defined(INET6)
640 	else
641 #endif
642 #ifdef INET
643 		inp->inp_vflag |= INP_IPV4;
644 #endif
645 	inp->inp_smr = SMR_SEQ_INVALID;
646 
647 	/*
648 	 * Routes in inpcb's can cache L2 as well; they are guaranteed
649 	 * to be cleaned up.
650 	 */
651 	inp->inp_route.ro_flags = RT_LLE_CACHE;
652 	refcount_init(&inp->inp_refcount, 1);   /* Reference from socket. */
653 	INP_WLOCK(inp);
654 	INP_INFO_WLOCK(pcbinfo);
655 	pcbinfo->ipi_count++;
656 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
657 	CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list);
658 	INP_INFO_WUNLOCK(pcbinfo);
659 	so->so_pcb = inp;
660 
661 	return (0);
662 
663 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
664 out:
665 	crfree(inp->inp_cred);
666 #ifdef INVARIANTS
667 	inp->inp_cred = NULL;
668 #endif
669 	uma_zfree_smr(pcbinfo->ipi_zone, inp);
670 	return (error);
671 #endif
672 }
673 
674 #ifdef INET
675 int
676 in_pcbbind(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred)
677 {
678 	int anonport, error;
679 
680 	KASSERT(sin == NULL || sin->sin_family == AF_INET,
681 	    ("%s: invalid address family for %p", __func__, sin));
682 	KASSERT(sin == NULL || sin->sin_len == sizeof(struct sockaddr_in),
683 	    ("%s: invalid address length for %p", __func__, sin));
684 	INP_WLOCK_ASSERT(inp);
685 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
686 
687 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
688 		return (EINVAL);
689 	anonport = sin == NULL || sin->sin_port == 0;
690 	error = in_pcbbind_setup(inp, sin, &inp->inp_laddr.s_addr,
691 	    &inp->inp_lport, cred);
692 	if (error)
693 		return (error);
694 	if (in_pcbinshash(inp) != 0) {
695 		inp->inp_laddr.s_addr = INADDR_ANY;
696 		inp->inp_lport = 0;
697 		return (EAGAIN);
698 	}
699 	if (anonport)
700 		inp->inp_flags |= INP_ANONPORT;
701 	return (0);
702 }
703 #endif
704 
705 #if defined(INET) || defined(INET6)
706 /*
707  * Assign a local port like in_pcb_lport(), but also used with connect()
708  * and a foreign address and port.  If fsa is non-NULL, choose a local port
709  * that is unused with those, otherwise one that is completely unused.
710  * lsa can be NULL for IPv6.
711  */
712 int
713 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp,
714     struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags)
715 {
716 	struct inpcbinfo *pcbinfo;
717 	struct inpcb *tmpinp;
718 	unsigned short *lastport;
719 	int count, error;
720 	u_short aux, first, last, lport;
721 #ifdef INET
722 	struct in_addr laddr, faddr;
723 #endif
724 #ifdef INET6
725 	struct in6_addr *laddr6, *faddr6;
726 #endif
727 
728 	pcbinfo = inp->inp_pcbinfo;
729 
730 	/*
731 	 * Because no actual state changes occur here, a global write lock on
732 	 * the pcbinfo isn't required.
733 	 */
734 	INP_LOCK_ASSERT(inp);
735 	INP_HASH_LOCK_ASSERT(pcbinfo);
736 
737 	if (inp->inp_flags & INP_HIGHPORT) {
738 		first = V_ipport_hifirstauto;	/* sysctl */
739 		last  = V_ipport_hilastauto;
740 		lastport = &pcbinfo->ipi_lasthi;
741 	} else if (inp->inp_flags & INP_LOWPORT) {
742 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT);
743 		if (error)
744 			return (error);
745 		first = V_ipport_lowfirstauto;	/* 1023 */
746 		last  = V_ipport_lowlastauto;	/* 600 */
747 		lastport = &pcbinfo->ipi_lastlow;
748 	} else {
749 		first = V_ipport_firstauto;	/* sysctl */
750 		last  = V_ipport_lastauto;
751 		lastport = &pcbinfo->ipi_lastport;
752 	}
753 
754 	/*
755 	 * Instead of having two loops further down counting up or down
756 	 * make sure that first is always <= last and go with only one
757 	 * code path implementing all logic.
758 	 */
759 	if (first > last) {
760 		aux = first;
761 		first = last;
762 		last = aux;
763 	}
764 
765 #ifdef INET
766 	laddr.s_addr = INADDR_ANY;	/* used by INET6+INET below too */
767 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
768 		if (lsa != NULL)
769 			laddr = ((struct sockaddr_in *)lsa)->sin_addr;
770 		if (fsa != NULL)
771 			faddr = ((struct sockaddr_in *)fsa)->sin_addr;
772 	}
773 #endif
774 #ifdef INET6
775 	laddr6 = NULL;
776 	if ((inp->inp_vflag & INP_IPV6) != 0) {
777 		if (lsa != NULL)
778 			laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr;
779 		if (fsa != NULL)
780 			faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr;
781 	}
782 #endif
783 
784 	tmpinp = NULL;
785 	lport = *lportp;
786 
787 	if (V_ipport_randomized)
788 		*lastport = first + (arc4random() % (last - first));
789 
790 	count = last - first;
791 
792 	do {
793 		if (count-- < 0)	/* completely used? */
794 			return (EADDRNOTAVAIL);
795 		++*lastport;
796 		if (*lastport < first || *lastport > last)
797 			*lastport = first;
798 		lport = htons(*lastport);
799 
800 		if (fsa != NULL) {
801 #ifdef INET
802 			if (lsa->sa_family == AF_INET) {
803 				tmpinp = in_pcblookup_hash_locked(pcbinfo,
804 				    faddr, fport, laddr, lport, lookupflags,
805 				    M_NODOM);
806 			}
807 #endif
808 #ifdef INET6
809 			if (lsa->sa_family == AF_INET6) {
810 				tmpinp = in6_pcblookup_hash_locked(pcbinfo,
811 				    faddr6, fport, laddr6, lport, lookupflags,
812 				    M_NODOM);
813 			}
814 #endif
815 		} else {
816 #ifdef INET6
817 			if ((inp->inp_vflag & INP_IPV6) != 0) {
818 				tmpinp = in6_pcblookup_local(pcbinfo,
819 				    &inp->in6p_laddr, lport, lookupflags, cred);
820 #ifdef INET
821 				if (tmpinp == NULL &&
822 				    (inp->inp_vflag & INP_IPV4))
823 					tmpinp = in_pcblookup_local(pcbinfo,
824 					    laddr, lport, lookupflags, cred);
825 #endif
826 			}
827 #endif
828 #if defined(INET) && defined(INET6)
829 			else
830 #endif
831 #ifdef INET
832 				tmpinp = in_pcblookup_local(pcbinfo, laddr,
833 				    lport, lookupflags, cred);
834 #endif
835 		}
836 	} while (tmpinp != NULL);
837 
838 	*lportp = lport;
839 
840 	return (0);
841 }
842 
843 /*
844  * Select a local port (number) to use.
845  */
846 int
847 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
848     struct ucred *cred, int lookupflags)
849 {
850 	struct sockaddr_in laddr;
851 
852 	if (laddrp) {
853 		bzero(&laddr, sizeof(laddr));
854 		laddr.sin_family = AF_INET;
855 		laddr.sin_addr = *laddrp;
856 	}
857 	return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr :
858 	    NULL, lportp, NULL, 0, cred, lookupflags));
859 }
860 #endif /* INET || INET6 */
861 
862 #ifdef INET
863 /*
864  * Determine whether the inpcb can be bound to the specified address/port tuple.
865  */
866 static int
867 in_pcbbind_avail(struct inpcb *inp, const struct in_addr laddr,
868     const u_short lport, int sooptions, int lookupflags, struct ucred *cred)
869 {
870 	int reuseport, reuseport_lb;
871 
872 	INP_LOCK_ASSERT(inp);
873 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
874 
875 	reuseport = (sooptions & SO_REUSEPORT);
876 	reuseport_lb = (sooptions & SO_REUSEPORT_LB);
877 
878 	if (IN_MULTICAST(ntohl(laddr.s_addr))) {
879 		/*
880 		 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
881 		 * allow complete duplication of binding if
882 		 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
883 		 * and a multicast address is bound on both
884 		 * new and duplicated sockets.
885 		 */
886 		if ((sooptions & (SO_REUSEADDR | SO_REUSEPORT)) != 0)
887 			reuseport = SO_REUSEADDR | SO_REUSEPORT;
888 		/*
889 		 * XXX: How to deal with SO_REUSEPORT_LB here?
890 		 * Treat same as SO_REUSEPORT for now.
891 		 */
892 		if ((sooptions & (SO_REUSEADDR | SO_REUSEPORT_LB)) != 0)
893 			reuseport_lb = SO_REUSEADDR | SO_REUSEPORT_LB;
894 	} else if (!in_nullhost(laddr)) {
895 		struct sockaddr_in sin;
896 
897 		memset(&sin, 0, sizeof(sin));
898 		sin.sin_family = AF_INET;
899 		sin.sin_len = sizeof(sin);
900 		sin.sin_addr = laddr;
901 
902 		/*
903 		 * Is the address a local IP address?
904 		 * If INP_BINDANY is set, then the socket may be bound
905 		 * to any endpoint address, local or not.
906 		 */
907 		if ((inp->inp_flags & INP_BINDANY) == 0 &&
908 		    ifa_ifwithaddr_check((const struct sockaddr *)&sin) == 0)
909 			return (EADDRNOTAVAIL);
910 	}
911 
912 	if (lport != 0) {
913 		struct inpcb *t;
914 
915 		if (ntohs(lport) <= V_ipport_reservedhigh &&
916 		    ntohs(lport) >= V_ipport_reservedlow &&
917 		    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT))
918 			return (EACCES);
919 
920 		if (!IN_MULTICAST(ntohl(laddr.s_addr)) &&
921 		    priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) {
922 			/*
923 			 * If a socket owned by a different user is already
924 			 * bound to this port, fail.  In particular, SO_REUSE*
925 			 * can only be used to share a port among sockets owned
926 			 * by the same user.
927 			 *
928 			 * However, we can share a port with a connected socket
929 			 * which has a unique 4-tuple.
930 			 */
931 			t = in_pcblookup_local(inp->inp_pcbinfo, laddr, lport,
932 			    INPLOOKUP_WILDCARD, cred);
933 			if (t != NULL &&
934 			    (inp->inp_socket->so_type != SOCK_STREAM ||
935 			     in_nullhost(t->inp_faddr)) &&
936 			    (inp->inp_cred->cr_uid != t->inp_cred->cr_uid))
937 				return (EADDRINUSE);
938 		}
939 		t = in_pcblookup_local(inp->inp_pcbinfo, laddr, lport,
940 		    lookupflags, cred);
941 		if (t != NULL && ((reuseport | reuseport_lb) &
942 		    t->inp_socket->so_options) == 0) {
943 #ifdef INET6
944 			if (!in_nullhost(laddr) ||
945 			    !in_nullhost(t->inp_laddr) ||
946 			    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
947 			    (t->inp_vflag & INP_IPV6PROTO) == 0)
948 #endif
949 				return (EADDRINUSE);
950 		}
951 	}
952 	return (0);
953 }
954 
955 /*
956  * Set up a bind operation on a PCB, performing port allocation
957  * as required, but do not actually modify the PCB. Callers can
958  * either complete the bind by setting inp_laddr/inp_lport and
959  * calling in_pcbinshash(), or they can just use the resulting
960  * port and address to authorise the sending of a once-off packet.
961  *
962  * On error, the values of *laddrp and *lportp are not changed.
963  */
964 int
965 in_pcbbind_setup(struct inpcb *inp, struct sockaddr_in *sin, in_addr_t *laddrp,
966     u_short *lportp, struct ucred *cred)
967 {
968 	struct socket *so = inp->inp_socket;
969 	struct in_addr laddr;
970 	u_short lport = 0;
971 	int lookupflags, sooptions;
972 	int error;
973 
974 	/*
975 	 * No state changes, so read locks are sufficient here.
976 	 */
977 	INP_LOCK_ASSERT(inp);
978 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
979 
980 	laddr.s_addr = *laddrp;
981 	if (sin != NULL && laddr.s_addr != INADDR_ANY)
982 		return (EINVAL);
983 
984 	lookupflags = 0;
985 	sooptions = atomic_load_int(&so->so_options);
986 	if ((sooptions & (SO_REUSEADDR | SO_REUSEPORT | SO_REUSEPORT_LB)) == 0)
987 		lookupflags = INPLOOKUP_WILDCARD;
988 	if (sin == NULL) {
989 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
990 			return (error);
991 	} else {
992 		KASSERT(sin->sin_family == AF_INET,
993 		    ("%s: invalid family for address %p", __func__, sin));
994 		KASSERT(sin->sin_len == sizeof(*sin),
995 		    ("%s: invalid length for address %p", __func__, sin));
996 
997 		error = prison_local_ip4(cred, &sin->sin_addr);
998 		if (error)
999 			return (error);
1000 		if (sin->sin_port != *lportp) {
1001 			/* Don't allow the port to change. */
1002 			if (*lportp != 0)
1003 				return (EINVAL);
1004 			lport = sin->sin_port;
1005 		}
1006 		laddr = sin->sin_addr;
1007 
1008 		/* See if this address/port combo is available. */
1009 		error = in_pcbbind_avail(inp, laddr, lport, sooptions,
1010 		    lookupflags, cred);
1011 		if (error != 0)
1012 			return (error);
1013 	}
1014 	if (*lportp != 0)
1015 		lport = *lportp;
1016 	if (lport == 0) {
1017 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
1018 		if (error != 0)
1019 			return (error);
1020 	}
1021 	*laddrp = laddr.s_addr;
1022 	*lportp = lport;
1023 	return (0);
1024 }
1025 
1026 /*
1027  * Connect from a socket to a specified address.
1028  * Both address and port must be specified in argument sin.
1029  * If don't have a local address for this socket yet,
1030  * then pick one.
1031  */
1032 int
1033 in_pcbconnect(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred)
1034 {
1035 	u_short lport, fport;
1036 	in_addr_t laddr, faddr;
1037 	int anonport, error;
1038 
1039 	INP_WLOCK_ASSERT(inp);
1040 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1041 	KASSERT(in_nullhost(inp->inp_faddr),
1042 	    ("%s: inp is already connected", __func__));
1043 
1044 	lport = inp->inp_lport;
1045 	laddr = inp->inp_laddr.s_addr;
1046 	anonport = (lport == 0);
1047 	error = in_pcbconnect_setup(inp, sin, &laddr, &lport, &faddr, &fport,
1048 	    cred);
1049 	if (error)
1050 		return (error);
1051 
1052 	inp->inp_faddr.s_addr = faddr;
1053 	inp->inp_fport = fport;
1054 
1055 	/* Do the initial binding of the local address if required. */
1056 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
1057 		inp->inp_lport = lport;
1058 		inp->inp_laddr.s_addr = laddr;
1059 		if (in_pcbinshash(inp) != 0) {
1060 			inp->inp_laddr.s_addr = inp->inp_faddr.s_addr =
1061 			    INADDR_ANY;
1062 			inp->inp_lport = inp->inp_fport = 0;
1063 			return (EAGAIN);
1064 		}
1065 	} else {
1066 		inp->inp_lport = lport;
1067 		inp->inp_laddr.s_addr = laddr;
1068 		if ((inp->inp_flags & INP_INHASHLIST) != 0)
1069 			in_pcbrehash(inp);
1070 		else
1071 			in_pcbinshash(inp);
1072 	}
1073 
1074 	if (anonport)
1075 		inp->inp_flags |= INP_ANONPORT;
1076 	return (0);
1077 }
1078 
1079 /*
1080  * Do proper source address selection on an unbound socket in case
1081  * of connect. Take jails into account as well.
1082  */
1083 int
1084 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
1085     struct ucred *cred)
1086 {
1087 	struct ifaddr *ifa;
1088 	struct sockaddr *sa;
1089 	struct sockaddr_in *sin, dst;
1090 	struct nhop_object *nh;
1091 	int error;
1092 
1093 	NET_EPOCH_ASSERT();
1094 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
1095 
1096 	/*
1097 	 * Bypass source address selection and use the primary jail IP
1098 	 * if requested.
1099 	 */
1100 	if (!prison_saddrsel_ip4(cred, laddr))
1101 		return (0);
1102 
1103 	error = 0;
1104 
1105 	nh = NULL;
1106 	bzero(&dst, sizeof(dst));
1107 	sin = &dst;
1108 	sin->sin_family = AF_INET;
1109 	sin->sin_len = sizeof(struct sockaddr_in);
1110 	sin->sin_addr.s_addr = faddr->s_addr;
1111 
1112 	/*
1113 	 * If route is known our src addr is taken from the i/f,
1114 	 * else punt.
1115 	 *
1116 	 * Find out route to destination.
1117 	 */
1118 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
1119 		nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr,
1120 		    0, NHR_NONE, 0);
1121 
1122 	/*
1123 	 * If we found a route, use the address corresponding to
1124 	 * the outgoing interface.
1125 	 *
1126 	 * Otherwise assume faddr is reachable on a directly connected
1127 	 * network and try to find a corresponding interface to take
1128 	 * the source address from.
1129 	 */
1130 	if (nh == NULL || nh->nh_ifp == NULL) {
1131 		struct in_ifaddr *ia;
1132 		struct ifnet *ifp;
1133 
1134 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
1135 					inp->inp_socket->so_fibnum));
1136 		if (ia == NULL) {
1137 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
1138 						inp->inp_socket->so_fibnum));
1139 		}
1140 		if (ia == NULL) {
1141 			error = ENETUNREACH;
1142 			goto done;
1143 		}
1144 
1145 		if (!prison_flag(cred, PR_IP4)) {
1146 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1147 			goto done;
1148 		}
1149 
1150 		ifp = ia->ia_ifp;
1151 		ia = NULL;
1152 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1153 			sa = ifa->ifa_addr;
1154 			if (sa->sa_family != AF_INET)
1155 				continue;
1156 			sin = (struct sockaddr_in *)sa;
1157 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1158 				ia = (struct in_ifaddr *)ifa;
1159 				break;
1160 			}
1161 		}
1162 		if (ia != NULL) {
1163 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1164 			goto done;
1165 		}
1166 
1167 		/* 3. As a last resort return the 'default' jail address. */
1168 		error = prison_get_ip4(cred, laddr);
1169 		goto done;
1170 	}
1171 
1172 	/*
1173 	 * If the outgoing interface on the route found is not
1174 	 * a loopback interface, use the address from that interface.
1175 	 * In case of jails do those three steps:
1176 	 * 1. check if the interface address belongs to the jail. If so use it.
1177 	 * 2. check if we have any address on the outgoing interface
1178 	 *    belonging to this jail. If so use it.
1179 	 * 3. as a last resort return the 'default' jail address.
1180 	 */
1181 	if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) {
1182 		struct in_ifaddr *ia;
1183 		struct ifnet *ifp;
1184 
1185 		/* If not jailed, use the default returned. */
1186 		if (!prison_flag(cred, PR_IP4)) {
1187 			ia = (struct in_ifaddr *)nh->nh_ifa;
1188 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1189 			goto done;
1190 		}
1191 
1192 		/* Jailed. */
1193 		/* 1. Check if the iface address belongs to the jail. */
1194 		sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr;
1195 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1196 			ia = (struct in_ifaddr *)nh->nh_ifa;
1197 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1198 			goto done;
1199 		}
1200 
1201 		/*
1202 		 * 2. Check if we have any address on the outgoing interface
1203 		 *    belonging to this jail.
1204 		 */
1205 		ia = NULL;
1206 		ifp = nh->nh_ifp;
1207 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1208 			sa = ifa->ifa_addr;
1209 			if (sa->sa_family != AF_INET)
1210 				continue;
1211 			sin = (struct sockaddr_in *)sa;
1212 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1213 				ia = (struct in_ifaddr *)ifa;
1214 				break;
1215 			}
1216 		}
1217 		if (ia != NULL) {
1218 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1219 			goto done;
1220 		}
1221 
1222 		/* 3. As a last resort return the 'default' jail address. */
1223 		error = prison_get_ip4(cred, laddr);
1224 		goto done;
1225 	}
1226 
1227 	/*
1228 	 * The outgoing interface is marked with 'loopback net', so a route
1229 	 * to ourselves is here.
1230 	 * Try to find the interface of the destination address and then
1231 	 * take the address from there. That interface is not necessarily
1232 	 * a loopback interface.
1233 	 * In case of jails, check that it is an address of the jail
1234 	 * and if we cannot find, fall back to the 'default' jail address.
1235 	 */
1236 	if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) {
1237 		struct in_ifaddr *ia;
1238 
1239 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst),
1240 					inp->inp_socket->so_fibnum));
1241 		if (ia == NULL)
1242 			ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0,
1243 						inp->inp_socket->so_fibnum));
1244 		if (ia == NULL)
1245 			ia = ifatoia(ifa_ifwithaddr(sintosa(&dst)));
1246 
1247 		if (!prison_flag(cred, PR_IP4)) {
1248 			if (ia == NULL) {
1249 				error = ENETUNREACH;
1250 				goto done;
1251 			}
1252 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1253 			goto done;
1254 		}
1255 
1256 		/* Jailed. */
1257 		if (ia != NULL) {
1258 			struct ifnet *ifp;
1259 
1260 			ifp = ia->ia_ifp;
1261 			ia = NULL;
1262 			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1263 				sa = ifa->ifa_addr;
1264 				if (sa->sa_family != AF_INET)
1265 					continue;
1266 				sin = (struct sockaddr_in *)sa;
1267 				if (prison_check_ip4(cred,
1268 				    &sin->sin_addr) == 0) {
1269 					ia = (struct in_ifaddr *)ifa;
1270 					break;
1271 				}
1272 			}
1273 			if (ia != NULL) {
1274 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1275 				goto done;
1276 			}
1277 		}
1278 
1279 		/* 3. As a last resort return the 'default' jail address. */
1280 		error = prison_get_ip4(cred, laddr);
1281 		goto done;
1282 	}
1283 
1284 done:
1285 	if (error == 0 && laddr->s_addr == INADDR_ANY)
1286 		return (EHOSTUNREACH);
1287 	return (error);
1288 }
1289 
1290 /*
1291  * Set up for a connect from a socket to the specified address.
1292  * On entry, *laddrp and *lportp should contain the current local
1293  * address and port for the PCB; these are updated to the values
1294  * that should be placed in inp_laddr and inp_lport to complete
1295  * the connect.
1296  *
1297  * On success, *faddrp and *fportp will be set to the remote address
1298  * and port. These are not updated in the error case.
1299  */
1300 int
1301 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr_in *sin,
1302     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1303     struct ucred *cred)
1304 {
1305 	struct in_ifaddr *ia;
1306 	struct in_addr laddr, faddr;
1307 	u_short lport, fport;
1308 	int error;
1309 
1310 	KASSERT(sin->sin_family == AF_INET,
1311 	    ("%s: invalid address family for %p", __func__, sin));
1312 	KASSERT(sin->sin_len == sizeof(*sin),
1313 	    ("%s: invalid address length for %p", __func__, sin));
1314 
1315 	/*
1316 	 * Because a global state change doesn't actually occur here, a read
1317 	 * lock is sufficient.
1318 	 */
1319 	NET_EPOCH_ASSERT();
1320 	INP_LOCK_ASSERT(inp);
1321 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1322 
1323 	if (sin->sin_port == 0)
1324 		return (EADDRNOTAVAIL);
1325 	laddr.s_addr = *laddrp;
1326 	lport = *lportp;
1327 	faddr = sin->sin_addr;
1328 	fport = sin->sin_port;
1329 #ifdef ROUTE_MPATH
1330 	if (CALC_FLOWID_OUTBOUND) {
1331 		uint32_t hash_val, hash_type;
1332 
1333 		hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport,
1334 		    inp->inp_socket->so_proto->pr_protocol, &hash_type);
1335 
1336 		inp->inp_flowid = hash_val;
1337 		inp->inp_flowtype = hash_type;
1338 	}
1339 #endif
1340 	if (V_connect_inaddr_wild && !CK_STAILQ_EMPTY(&V_in_ifaddrhead)) {
1341 		/*
1342 		 * If the destination address is INADDR_ANY,
1343 		 * use the primary local address.
1344 		 * If the supplied address is INADDR_BROADCAST,
1345 		 * and the primary interface supports broadcast,
1346 		 * choose the broadcast address for that interface.
1347 		 */
1348 		if (faddr.s_addr == INADDR_ANY) {
1349 			faddr =
1350 			    IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1351 			if ((error = prison_get_ip4(cred, &faddr)) != 0)
1352 				return (error);
1353 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1354 			if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1355 			    IFF_BROADCAST)
1356 				faddr = satosin(&CK_STAILQ_FIRST(
1357 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1358 		}
1359 	} else if (faddr.s_addr == INADDR_ANY) {
1360 		return (ENETUNREACH);
1361 	}
1362 	if (laddr.s_addr == INADDR_ANY) {
1363 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
1364 		/*
1365 		 * If the destination address is multicast and an outgoing
1366 		 * interface has been set as a multicast option, prefer the
1367 		 * address of that interface as our source address.
1368 		 */
1369 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1370 		    inp->inp_moptions != NULL) {
1371 			struct ip_moptions *imo;
1372 			struct ifnet *ifp;
1373 
1374 			imo = inp->inp_moptions;
1375 			if (imo->imo_multicast_ifp != NULL) {
1376 				ifp = imo->imo_multicast_ifp;
1377 				CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1378 					if (ia->ia_ifp == ifp &&
1379 					    prison_check_ip4(cred,
1380 					    &ia->ia_addr.sin_addr) == 0)
1381 						break;
1382 				}
1383 				if (ia == NULL)
1384 					error = EADDRNOTAVAIL;
1385 				else {
1386 					laddr = ia->ia_addr.sin_addr;
1387 					error = 0;
1388 				}
1389 			}
1390 		}
1391 		if (error)
1392 			return (error);
1393 	}
1394 
1395 	if (lport != 0) {
1396 		if (in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr,
1397 		    fport, laddr, lport, 0, M_NODOM) != NULL)
1398 			return (EADDRINUSE);
1399 	} else {
1400 		struct sockaddr_in lsin, fsin;
1401 
1402 		bzero(&lsin, sizeof(lsin));
1403 		bzero(&fsin, sizeof(fsin));
1404 		lsin.sin_family = AF_INET;
1405 		lsin.sin_addr = laddr;
1406 		fsin.sin_family = AF_INET;
1407 		fsin.sin_addr = faddr;
1408 		error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin,
1409 		    &lport, (struct sockaddr *)& fsin, fport, cred,
1410 		    INPLOOKUP_WILDCARD);
1411 		if (error)
1412 			return (error);
1413 	}
1414 	*laddrp = laddr.s_addr;
1415 	*lportp = lport;
1416 	*faddrp = faddr.s_addr;
1417 	*fportp = fport;
1418 	return (0);
1419 }
1420 
1421 void
1422 in_pcbdisconnect(struct inpcb *inp)
1423 {
1424 
1425 	INP_WLOCK_ASSERT(inp);
1426 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1427 	KASSERT(inp->inp_smr == SMR_SEQ_INVALID,
1428 	    ("%s: inp %p was already disconnected", __func__, inp));
1429 
1430 	in_pcbremhash_locked(inp);
1431 
1432 	/* See the comment in in_pcbinshash(). */
1433 	inp->inp_smr = smr_advance(inp->inp_pcbinfo->ipi_smr);
1434 	inp->inp_laddr.s_addr = INADDR_ANY;
1435 	inp->inp_faddr.s_addr = INADDR_ANY;
1436 	inp->inp_fport = 0;
1437 }
1438 #endif /* INET */
1439 
1440 /*
1441  * inpcb hash lookups are protected by SMR section.
1442  *
1443  * Once desired pcb has been found, switching from SMR section to a pcb
1444  * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK
1445  * here because SMR is a critical section.
1446  * In 99%+ cases inp_smr_lock() would obtain the lock immediately.
1447  */
1448 void
1449 inp_lock(struct inpcb *inp, const inp_lookup_t lock)
1450 {
1451 
1452 	lock == INPLOOKUP_RLOCKPCB ?
1453 	    rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock);
1454 }
1455 
1456 void
1457 inp_unlock(struct inpcb *inp, const inp_lookup_t lock)
1458 {
1459 
1460 	lock == INPLOOKUP_RLOCKPCB ?
1461 	    rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock);
1462 }
1463 
1464 int
1465 inp_trylock(struct inpcb *inp, const inp_lookup_t lock)
1466 {
1467 
1468 	return (lock == INPLOOKUP_RLOCKPCB ?
1469 	    rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock));
1470 }
1471 
1472 static inline bool
1473 _inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock, const int ignflags)
1474 {
1475 
1476 	MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB);
1477 	SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr);
1478 
1479 	if (__predict_true(inp_trylock(inp, lock))) {
1480 		if (__predict_false(inp->inp_flags & ignflags)) {
1481 			smr_exit(inp->inp_pcbinfo->ipi_smr);
1482 			inp_unlock(inp, lock);
1483 			return (false);
1484 		}
1485 		smr_exit(inp->inp_pcbinfo->ipi_smr);
1486 		return (true);
1487 	}
1488 
1489 	if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) {
1490 		smr_exit(inp->inp_pcbinfo->ipi_smr);
1491 		inp_lock(inp, lock);
1492 		if (__predict_false(in_pcbrele(inp, lock)))
1493 			return (false);
1494 		/*
1495 		 * inp acquired through refcount & lock for sure didn't went
1496 		 * through uma_zfree().  However, it may have already went
1497 		 * through in_pcbfree() and has another reference, that
1498 		 * prevented its release by our in_pcbrele().
1499 		 */
1500 		if (__predict_false(inp->inp_flags & ignflags)) {
1501 			inp_unlock(inp, lock);
1502 			return (false);
1503 		}
1504 		return (true);
1505 	} else {
1506 		smr_exit(inp->inp_pcbinfo->ipi_smr);
1507 		return (false);
1508 	}
1509 }
1510 
1511 bool
1512 inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock)
1513 {
1514 
1515 	/*
1516 	 * in_pcblookup() family of functions ignore not only freed entries,
1517 	 * that may be found due to lockless access to the hash, but dropped
1518 	 * entries, too.
1519 	 */
1520 	return (_inp_smr_lock(inp, lock, INP_FREED | INP_DROPPED));
1521 }
1522 
1523 /*
1524  * inp_next() - inpcb hash/list traversal iterator
1525  *
1526  * Requires initialized struct inpcb_iterator for context.
1527  * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR().
1528  *
1529  * - Iterator can have either write-lock or read-lock semantics, that can not
1530  *   be changed later.
1531  * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through
1532  *   a single hash slot.  Note: only rip_input() does the latter.
1533  * - Iterator may have optional bool matching function.  The matching function
1534  *   will be executed for each inpcb in the SMR context, so it can not acquire
1535  *   locks and can safely access only immutable fields of inpcb.
1536  *
1537  * A fresh initialized iterator has NULL inpcb in its context and that
1538  * means that inp_next() call would return the very first inpcb on the list
1539  * locked with desired semantic.  In all following calls the context pointer
1540  * shall hold the current inpcb pointer.  The KPI user is not supposed to
1541  * unlock the current inpcb!  Upon end of traversal inp_next() will return NULL
1542  * and write NULL to its context.  After end of traversal an iterator can be
1543  * reused.
1544  *
1545  * List traversals have the following features/constraints:
1546  * - New entries won't be seen, as they are always added to the head of a list.
1547  * - Removed entries won't stop traversal as long as they are not added to
1548  *   a different list. This is violated by in_pcbrehash().
1549  */
1550 #define	II_LIST_FIRST(ipi, hash)					\
1551 		(((hash) == INP_ALL_LIST) ?				\
1552 		    CK_LIST_FIRST(&(ipi)->ipi_listhead) :		\
1553 		    CK_LIST_FIRST(&(ipi)->ipi_hash_exact[(hash)]))
1554 #define	II_LIST_NEXT(inp, hash)						\
1555 		(((hash) == INP_ALL_LIST) ?				\
1556 		    CK_LIST_NEXT((inp), inp_list) :			\
1557 		    CK_LIST_NEXT((inp), inp_hash_exact))
1558 #define	II_LOCK_ASSERT(inp, lock)					\
1559 		rw_assert(&(inp)->inp_lock,				\
1560 		    (lock) == INPLOOKUP_RLOCKPCB ?  RA_RLOCKED : RA_WLOCKED )
1561 struct inpcb *
1562 inp_next(struct inpcb_iterator *ii)
1563 {
1564 	const struct inpcbinfo *ipi = ii->ipi;
1565 	inp_match_t *match = ii->match;
1566 	void *ctx = ii->ctx;
1567 	inp_lookup_t lock = ii->lock;
1568 	int hash = ii->hash;
1569 	struct inpcb *inp;
1570 
1571 	if (ii->inp == NULL) {		/* First call. */
1572 		smr_enter(ipi->ipi_smr);
1573 		/* This is unrolled CK_LIST_FOREACH(). */
1574 		for (inp = II_LIST_FIRST(ipi, hash);
1575 		    inp != NULL;
1576 		    inp = II_LIST_NEXT(inp, hash)) {
1577 			if (match != NULL && (match)(inp, ctx) == false)
1578 				continue;
1579 			if (__predict_true(_inp_smr_lock(inp, lock, INP_FREED)))
1580 				break;
1581 			else {
1582 				smr_enter(ipi->ipi_smr);
1583 				MPASS(inp != II_LIST_FIRST(ipi, hash));
1584 				inp = II_LIST_FIRST(ipi, hash);
1585 				if (inp == NULL)
1586 					break;
1587 			}
1588 		}
1589 
1590 		if (inp == NULL)
1591 			smr_exit(ipi->ipi_smr);
1592 		else
1593 			ii->inp = inp;
1594 
1595 		return (inp);
1596 	}
1597 
1598 	/* Not a first call. */
1599 	smr_enter(ipi->ipi_smr);
1600 restart:
1601 	inp = ii->inp;
1602 	II_LOCK_ASSERT(inp, lock);
1603 next:
1604 	inp = II_LIST_NEXT(inp, hash);
1605 	if (inp == NULL) {
1606 		smr_exit(ipi->ipi_smr);
1607 		goto found;
1608 	}
1609 
1610 	if (match != NULL && (match)(inp, ctx) == false)
1611 		goto next;
1612 
1613 	if (__predict_true(inp_trylock(inp, lock))) {
1614 		if (__predict_false(inp->inp_flags & INP_FREED)) {
1615 			/*
1616 			 * Entries are never inserted in middle of a list, thus
1617 			 * as long as we are in SMR, we can continue traversal.
1618 			 * Jump to 'restart' should yield in the same result,
1619 			 * but could produce unnecessary looping.  Could this
1620 			 * looping be unbound?
1621 			 */
1622 			inp_unlock(inp, lock);
1623 			goto next;
1624 		} else {
1625 			smr_exit(ipi->ipi_smr);
1626 			goto found;
1627 		}
1628 	}
1629 
1630 	/*
1631 	 * Can't obtain lock immediately, thus going hard.  Once we exit the
1632 	 * SMR section we can no longer jump to 'next', and our only stable
1633 	 * anchoring point is ii->inp, which we keep locked for this case, so
1634 	 * we jump to 'restart'.
1635 	 */
1636 	if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) {
1637 		smr_exit(ipi->ipi_smr);
1638 		inp_lock(inp, lock);
1639 		if (__predict_false(in_pcbrele(inp, lock))) {
1640 			smr_enter(ipi->ipi_smr);
1641 			goto restart;
1642 		}
1643 		/*
1644 		 * See comment in inp_smr_lock().
1645 		 */
1646 		if (__predict_false(inp->inp_flags & INP_FREED)) {
1647 			inp_unlock(inp, lock);
1648 			smr_enter(ipi->ipi_smr);
1649 			goto restart;
1650 		}
1651 	} else
1652 		goto next;
1653 
1654 found:
1655 	inp_unlock(ii->inp, lock);
1656 	ii->inp = inp;
1657 
1658 	return (ii->inp);
1659 }
1660 
1661 /*
1662  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1663  * stability of an inpcb pointer despite the inpcb lock being released or
1664  * SMR section exited.
1665  *
1666  * To free a reference later in_pcbrele_(r|w)locked() must be performed.
1667  */
1668 void
1669 in_pcbref(struct inpcb *inp)
1670 {
1671 	u_int old __diagused;
1672 
1673 	old = refcount_acquire(&inp->inp_refcount);
1674 	KASSERT(old > 0, ("%s: refcount 0", __func__));
1675 }
1676 
1677 /*
1678  * Drop a refcount on an inpcb elevated using in_pcbref(), potentially
1679  * freeing the pcb, if the reference was very last.
1680  */
1681 bool
1682 in_pcbrele_rlocked(struct inpcb *inp)
1683 {
1684 
1685 	INP_RLOCK_ASSERT(inp);
1686 
1687 	if (!refcount_release(&inp->inp_refcount))
1688 		return (false);
1689 
1690 	MPASS(inp->inp_flags & INP_FREED);
1691 	MPASS(inp->inp_socket == NULL);
1692 	crfree(inp->inp_cred);
1693 #ifdef INVARIANTS
1694 	inp->inp_cred = NULL;
1695 #endif
1696 	INP_RUNLOCK(inp);
1697 	uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp);
1698 	return (true);
1699 }
1700 
1701 bool
1702 in_pcbrele_wlocked(struct inpcb *inp)
1703 {
1704 
1705 	INP_WLOCK_ASSERT(inp);
1706 
1707 	if (!refcount_release(&inp->inp_refcount))
1708 		return (false);
1709 
1710 	MPASS(inp->inp_flags & INP_FREED);
1711 	MPASS(inp->inp_socket == NULL);
1712 	crfree(inp->inp_cred);
1713 #ifdef INVARIANTS
1714 	inp->inp_cred = NULL;
1715 #endif
1716 	INP_WUNLOCK(inp);
1717 	uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp);
1718 	return (true);
1719 }
1720 
1721 bool
1722 in_pcbrele(struct inpcb *inp, const inp_lookup_t lock)
1723 {
1724 
1725 	return (lock == INPLOOKUP_RLOCKPCB ?
1726 	    in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp));
1727 }
1728 
1729 /*
1730  * Unconditionally schedule an inpcb to be freed by decrementing its
1731  * reference count, which should occur only after the inpcb has been detached
1732  * from its socket.  If another thread holds a temporary reference (acquired
1733  * using in_pcbref()) then the free is deferred until that reference is
1734  * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked.
1735  *  Almost all work, including removal from global lists, is done in this
1736  * context, where the pcbinfo lock is held.
1737  */
1738 void
1739 in_pcbfree(struct inpcb *inp)
1740 {
1741 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1742 #ifdef INET
1743 	struct ip_moptions *imo;
1744 #endif
1745 #ifdef INET6
1746 	struct ip6_moptions *im6o;
1747 #endif
1748 
1749 	INP_WLOCK_ASSERT(inp);
1750 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1751 	KASSERT((inp->inp_flags & INP_FREED) == 0,
1752 	    ("%s: called twice for pcb %p", __func__, inp));
1753 
1754 	/*
1755 	 * in_pcblookup_local() and in6_pcblookup_local() may return an inpcb
1756 	 * from the hash without acquiring inpcb lock, they rely on the hash
1757 	 * lock, thus in_pcbremhash() should be the first action.
1758 	 */
1759 	if (inp->inp_flags & INP_INHASHLIST)
1760 		in_pcbremhash(inp);
1761 	INP_INFO_WLOCK(pcbinfo);
1762 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1763 	pcbinfo->ipi_count--;
1764 	CK_LIST_REMOVE(inp, inp_list);
1765 	INP_INFO_WUNLOCK(pcbinfo);
1766 
1767 #ifdef RATELIMIT
1768 	if (inp->inp_snd_tag != NULL)
1769 		in_pcbdetach_txrtlmt(inp);
1770 #endif
1771 	inp->inp_flags |= INP_FREED;
1772 	inp->inp_socket->so_pcb = NULL;
1773 	inp->inp_socket = NULL;
1774 
1775 	RO_INVALIDATE_CACHE(&inp->inp_route);
1776 #ifdef MAC
1777 	mac_inpcb_destroy(inp);
1778 #endif
1779 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1780 	if (inp->inp_sp != NULL)
1781 		ipsec_delete_pcbpolicy(inp);
1782 #endif
1783 #ifdef INET
1784 	if (inp->inp_options)
1785 		(void)m_free(inp->inp_options);
1786 	DEBUG_POISON_POINTER(inp->inp_options);
1787 	imo = inp->inp_moptions;
1788 	DEBUG_POISON_POINTER(inp->inp_moptions);
1789 #endif
1790 #ifdef INET6
1791 	if (inp->inp_vflag & INP_IPV6PROTO) {
1792 		ip6_freepcbopts(inp->in6p_outputopts);
1793 		DEBUG_POISON_POINTER(inp->in6p_outputopts);
1794 		im6o = inp->in6p_moptions;
1795 		DEBUG_POISON_POINTER(inp->in6p_moptions);
1796 	} else
1797 		im6o = NULL;
1798 #endif
1799 
1800 	if (__predict_false(in_pcbrele_wlocked(inp) == false)) {
1801 		INP_WUNLOCK(inp);
1802 	}
1803 #ifdef INET6
1804 	ip6_freemoptions(im6o);
1805 #endif
1806 #ifdef INET
1807 	inp_freemoptions(imo);
1808 #endif
1809 }
1810 
1811 /*
1812  * Different protocols initialize their inpcbs differently - giving
1813  * different name to the lock.  But they all are disposed the same.
1814  */
1815 static void
1816 inpcb_fini(void *mem, int size)
1817 {
1818 	struct inpcb *inp = mem;
1819 
1820 	INP_LOCK_DESTROY(inp);
1821 }
1822 
1823 /*
1824  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1825  * port reservation, and preventing it from being returned by inpcb lookups.
1826  *
1827  * It is used by TCP to mark an inpcb as unused and avoid future packet
1828  * delivery or event notification when a socket remains open but TCP has
1829  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1830  * or a RST on the wire, and allows the port binding to be reused while still
1831  * maintaining the invariant that so_pcb always points to a valid inpcb until
1832  * in_pcbdetach().
1833  *
1834  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1835  * in_pcbpurgeif0()?
1836  */
1837 void
1838 in_pcbdrop(struct inpcb *inp)
1839 {
1840 
1841 	INP_WLOCK_ASSERT(inp);
1842 
1843 	inp->inp_flags |= INP_DROPPED;
1844 	if (inp->inp_flags & INP_INHASHLIST)
1845 		in_pcbremhash(inp);
1846 }
1847 
1848 #ifdef INET
1849 /*
1850  * Common routines to return the socket addresses associated with inpcbs.
1851  */
1852 int
1853 in_getsockaddr(struct socket *so, struct sockaddr *sa)
1854 {
1855 	struct inpcb *inp;
1856 
1857 	inp = sotoinpcb(so);
1858 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1859 
1860 	*(struct sockaddr_in *)sa = (struct sockaddr_in ){
1861 		.sin_len = sizeof(struct sockaddr_in),
1862 		.sin_family = AF_INET,
1863 		.sin_port = inp->inp_lport,
1864 		.sin_addr = inp->inp_laddr,
1865 	};
1866 
1867 	return (0);
1868 }
1869 
1870 int
1871 in_getpeeraddr(struct socket *so, struct sockaddr *sa)
1872 {
1873 	struct inpcb *inp;
1874 
1875 	inp = sotoinpcb(so);
1876 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1877 
1878 	*(struct sockaddr_in *)sa = (struct sockaddr_in ){
1879 		.sin_len = sizeof(struct sockaddr_in),
1880 		.sin_family = AF_INET,
1881 		.sin_port = inp->inp_fport,
1882 		.sin_addr = inp->inp_faddr,
1883 	};
1884 
1885 	return (0);
1886 }
1887 
1888 static bool
1889 inp_v4_multi_match(const struct inpcb *inp, void *v __unused)
1890 {
1891 
1892 	if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL)
1893 		return (true);
1894 	else
1895 		return (false);
1896 }
1897 
1898 void
1899 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1900 {
1901 	struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB,
1902 	    inp_v4_multi_match, NULL);
1903 	struct inpcb *inp;
1904 	struct in_multi *inm;
1905 	struct in_mfilter *imf;
1906 	struct ip_moptions *imo;
1907 
1908 	IN_MULTI_LOCK_ASSERT();
1909 
1910 	while ((inp = inp_next(&inpi)) != NULL) {
1911 		INP_WLOCK_ASSERT(inp);
1912 
1913 		imo = inp->inp_moptions;
1914 		/*
1915 		 * Unselect the outgoing interface if it is being
1916 		 * detached.
1917 		 */
1918 		if (imo->imo_multicast_ifp == ifp)
1919 			imo->imo_multicast_ifp = NULL;
1920 
1921 		/*
1922 		 * Drop multicast group membership if we joined
1923 		 * through the interface being detached.
1924 		 *
1925 		 * XXX This can all be deferred to an epoch_call
1926 		 */
1927 restart:
1928 		IP_MFILTER_FOREACH(imf, &imo->imo_head) {
1929 			if ((inm = imf->imf_inm) == NULL)
1930 				continue;
1931 			if (inm->inm_ifp != ifp)
1932 				continue;
1933 			ip_mfilter_remove(&imo->imo_head, imf);
1934 			in_leavegroup_locked(inm, NULL);
1935 			ip_mfilter_free(imf);
1936 			goto restart;
1937 		}
1938 	}
1939 }
1940 
1941 /*
1942  * Lookup a PCB based on the local address and port.  Caller must hold the
1943  * hash lock.  No inpcb locks or references are acquired.
1944  */
1945 #define INP_LOOKUP_MAPPED_PCB_COST	3
1946 struct inpcb *
1947 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1948     u_short lport, int lookupflags, struct ucred *cred)
1949 {
1950 	struct inpcb *inp;
1951 #ifdef INET6
1952 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1953 #else
1954 	int matchwild = 3;
1955 #endif
1956 	int wildcard;
1957 
1958 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1959 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1960 	INP_HASH_LOCK_ASSERT(pcbinfo);
1961 
1962 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1963 		struct inpcbhead *head;
1964 		/*
1965 		 * Look for an unconnected (wildcard foreign addr) PCB that
1966 		 * matches the local address and port we're looking for.
1967 		 */
1968 		head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport,
1969 		    pcbinfo->ipi_hashmask)];
1970 		CK_LIST_FOREACH(inp, head, inp_hash_wild) {
1971 #ifdef INET6
1972 			/* XXX inp locking */
1973 			if ((inp->inp_vflag & INP_IPV4) == 0)
1974 				continue;
1975 #endif
1976 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1977 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1978 			    inp->inp_lport == lport) {
1979 				/*
1980 				 * Found?
1981 				 */
1982 				if (prison_equal_ip4(cred->cr_prison,
1983 				    inp->inp_cred->cr_prison))
1984 					return (inp);
1985 			}
1986 		}
1987 		/*
1988 		 * Not found.
1989 		 */
1990 		return (NULL);
1991 	} else {
1992 		struct inpcbporthead *porthash;
1993 		struct inpcbport *phd;
1994 		struct inpcb *match = NULL;
1995 		/*
1996 		 * Best fit PCB lookup.
1997 		 *
1998 		 * First see if this local port is in use by looking on the
1999 		 * port hash list.
2000 		 */
2001 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
2002 		    pcbinfo->ipi_porthashmask)];
2003 		CK_LIST_FOREACH(phd, porthash, phd_hash) {
2004 			if (phd->phd_port == lport)
2005 				break;
2006 		}
2007 		if (phd != NULL) {
2008 			/*
2009 			 * Port is in use by one or more PCBs. Look for best
2010 			 * fit.
2011 			 */
2012 			CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
2013 				wildcard = 0;
2014 				if (!prison_equal_ip4(inp->inp_cred->cr_prison,
2015 				    cred->cr_prison))
2016 					continue;
2017 #ifdef INET6
2018 				/* XXX inp locking */
2019 				if ((inp->inp_vflag & INP_IPV4) == 0)
2020 					continue;
2021 				/*
2022 				 * We never select the PCB that has
2023 				 * INP_IPV6 flag and is bound to :: if
2024 				 * we have another PCB which is bound
2025 				 * to 0.0.0.0.  If a PCB has the
2026 				 * INP_IPV6 flag, then we set its cost
2027 				 * higher than IPv4 only PCBs.
2028 				 *
2029 				 * Note that the case only happens
2030 				 * when a socket is bound to ::, under
2031 				 * the condition that the use of the
2032 				 * mapped address is allowed.
2033 				 */
2034 				if ((inp->inp_vflag & INP_IPV6) != 0)
2035 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
2036 #endif
2037 				if (inp->inp_faddr.s_addr != INADDR_ANY)
2038 					wildcard++;
2039 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
2040 					if (laddr.s_addr == INADDR_ANY)
2041 						wildcard++;
2042 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
2043 						continue;
2044 				} else {
2045 					if (laddr.s_addr != INADDR_ANY)
2046 						wildcard++;
2047 				}
2048 				if (wildcard < matchwild) {
2049 					match = inp;
2050 					matchwild = wildcard;
2051 					if (matchwild == 0)
2052 						break;
2053 				}
2054 			}
2055 		}
2056 		return (match);
2057 	}
2058 }
2059 #undef INP_LOOKUP_MAPPED_PCB_COST
2060 
2061 static bool
2062 in_pcblookup_lb_numa_match(const struct inpcblbgroup *grp, int domain)
2063 {
2064 	return (domain == M_NODOM || domain == grp->il_numa_domain);
2065 }
2066 
2067 static struct inpcb *
2068 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo,
2069     const struct in_addr *faddr, uint16_t fport, const struct in_addr *laddr,
2070     uint16_t lport, int domain)
2071 {
2072 	const struct inpcblbgrouphead *hdr;
2073 	struct inpcblbgroup *grp;
2074 	struct inpcblbgroup *jail_exact, *jail_wild, *local_exact, *local_wild;
2075 	struct inpcb *inp;
2076 	u_int count;
2077 
2078 	INP_HASH_LOCK_ASSERT(pcbinfo);
2079 	NET_EPOCH_ASSERT();
2080 
2081 	hdr = &pcbinfo->ipi_lbgrouphashbase[
2082 	    INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)];
2083 
2084 	/*
2085 	 * Search for an LB group match based on the following criteria:
2086 	 * - prefer jailed groups to non-jailed groups
2087 	 * - prefer exact source address matches to wildcard matches
2088 	 * - prefer groups bound to the specified NUMA domain
2089 	 */
2090 	jail_exact = jail_wild = local_exact = local_wild = NULL;
2091 	CK_LIST_FOREACH(grp, hdr, il_list) {
2092 		bool injail;
2093 
2094 #ifdef INET6
2095 		if (!(grp->il_vflag & INP_IPV4))
2096 			continue;
2097 #endif
2098 		if (grp->il_lport != lport)
2099 			continue;
2100 
2101 		injail = prison_flag(grp->il_cred, PR_IP4) != 0;
2102 		if (injail && prison_check_ip4_locked(grp->il_cred->cr_prison,
2103 		    laddr) != 0)
2104 			continue;
2105 
2106 		if (grp->il_laddr.s_addr == laddr->s_addr) {
2107 			if (injail) {
2108 				jail_exact = grp;
2109 				if (in_pcblookup_lb_numa_match(grp, domain))
2110 					/* This is a perfect match. */
2111 					goto out;
2112 			} else if (local_exact == NULL ||
2113 			    in_pcblookup_lb_numa_match(grp, domain)) {
2114 				local_exact = grp;
2115 			}
2116 		} else if (grp->il_laddr.s_addr == INADDR_ANY) {
2117 			if (injail) {
2118 				if (jail_wild == NULL ||
2119 				    in_pcblookup_lb_numa_match(grp, domain))
2120 					jail_wild = grp;
2121 			} else if (local_wild == NULL ||
2122 			    in_pcblookup_lb_numa_match(grp, domain)) {
2123 				local_wild = grp;
2124 			}
2125 		}
2126 	}
2127 
2128 	if (jail_exact != NULL)
2129 		grp = jail_exact;
2130 	else if (jail_wild != NULL)
2131 		grp = jail_wild;
2132 	else if (local_exact != NULL)
2133 		grp = local_exact;
2134 	else
2135 		grp = local_wild;
2136 	if (grp == NULL)
2137 		return (NULL);
2138 
2139 out:
2140 	/*
2141 	 * Synchronize with in_pcblbgroup_insert().
2142 	 */
2143 	count = atomic_load_acq_int(&grp->il_inpcnt);
2144 	if (count == 0)
2145 		return (NULL);
2146 	inp = grp->il_inp[INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) % count];
2147 	KASSERT(inp != NULL, ("%s: inp == NULL", __func__));
2148 	return (inp);
2149 }
2150 
2151 static bool
2152 in_pcblookup_exact_match(const struct inpcb *inp, struct in_addr faddr,
2153     u_short fport, struct in_addr laddr, u_short lport)
2154 {
2155 #ifdef INET6
2156 	/* XXX inp locking */
2157 	if ((inp->inp_vflag & INP_IPV4) == 0)
2158 		return (false);
2159 #endif
2160 	if (inp->inp_faddr.s_addr == faddr.s_addr &&
2161 	    inp->inp_laddr.s_addr == laddr.s_addr &&
2162 	    inp->inp_fport == fport &&
2163 	    inp->inp_lport == lport)
2164 		return (true);
2165 	return (false);
2166 }
2167 
2168 static struct inpcb *
2169 in_pcblookup_hash_exact(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2170     u_short fport, struct in_addr laddr, u_short lport)
2171 {
2172 	struct inpcbhead *head;
2173 	struct inpcb *inp;
2174 
2175 	INP_HASH_LOCK_ASSERT(pcbinfo);
2176 
2177 	head = &pcbinfo->ipi_hash_exact[INP_PCBHASH(&faddr, lport, fport,
2178 	    pcbinfo->ipi_hashmask)];
2179 	CK_LIST_FOREACH(inp, head, inp_hash_exact) {
2180 		if (in_pcblookup_exact_match(inp, faddr, fport, laddr, lport))
2181 			return (inp);
2182 	}
2183 	return (NULL);
2184 }
2185 
2186 typedef enum {
2187 	INPLOOKUP_MATCH_NONE = 0,
2188 	INPLOOKUP_MATCH_WILD = 1,
2189 	INPLOOKUP_MATCH_LADDR = 2,
2190 } inp_lookup_match_t;
2191 
2192 static inp_lookup_match_t
2193 in_pcblookup_wild_match(const struct inpcb *inp, struct in_addr laddr,
2194     u_short lport)
2195 {
2196 #ifdef INET6
2197 	/* XXX inp locking */
2198 	if ((inp->inp_vflag & INP_IPV4) == 0)
2199 		return (INPLOOKUP_MATCH_NONE);
2200 #endif
2201 	if (inp->inp_faddr.s_addr != INADDR_ANY || inp->inp_lport != lport)
2202 		return (INPLOOKUP_MATCH_NONE);
2203 	if (inp->inp_laddr.s_addr == INADDR_ANY)
2204 		return (INPLOOKUP_MATCH_WILD);
2205 	if (inp->inp_laddr.s_addr == laddr.s_addr)
2206 		return (INPLOOKUP_MATCH_LADDR);
2207 	return (INPLOOKUP_MATCH_NONE);
2208 }
2209 
2210 #define	INP_LOOKUP_AGAIN	((struct inpcb *)(uintptr_t)-1)
2211 
2212 static struct inpcb *
2213 in_pcblookup_hash_wild_smr(struct inpcbinfo *pcbinfo, struct in_addr laddr,
2214     u_short lport, const inp_lookup_t lockflags)
2215 {
2216 	struct inpcbhead *head;
2217 	struct inpcb *inp;
2218 
2219 	KASSERT(SMR_ENTERED(pcbinfo->ipi_smr),
2220 	    ("%s: not in SMR read section", __func__));
2221 
2222 	head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport,
2223 	    pcbinfo->ipi_hashmask)];
2224 	CK_LIST_FOREACH(inp, head, inp_hash_wild) {
2225 		inp_lookup_match_t match;
2226 
2227 		match = in_pcblookup_wild_match(inp, laddr, lport);
2228 		if (match == INPLOOKUP_MATCH_NONE)
2229 			continue;
2230 
2231 		if (__predict_true(inp_smr_lock(inp, lockflags))) {
2232 			match = in_pcblookup_wild_match(inp, laddr, lport);
2233 			if (match != INPLOOKUP_MATCH_NONE &&
2234 			    prison_check_ip4_locked(inp->inp_cred->cr_prison,
2235 			    &laddr) == 0)
2236 				return (inp);
2237 			inp_unlock(inp, lockflags);
2238 		}
2239 
2240 		/*
2241 		 * The matching socket disappeared out from under us.  Fall back
2242 		 * to a serialized lookup.
2243 		 */
2244 		return (INP_LOOKUP_AGAIN);
2245 	}
2246 	return (NULL);
2247 }
2248 
2249 static struct inpcb *
2250 in_pcblookup_hash_wild_locked(struct inpcbinfo *pcbinfo, struct in_addr laddr,
2251     u_short lport)
2252 {
2253 	struct inpcbhead *head;
2254 	struct inpcb *inp, *local_wild, *local_exact, *jail_wild;
2255 #ifdef INET6
2256 	struct inpcb *local_wild_mapped;
2257 #endif
2258 
2259 	INP_HASH_LOCK_ASSERT(pcbinfo);
2260 
2261 	/*
2262 	 * Order of socket selection - we always prefer jails.
2263 	 *      1. jailed, non-wild.
2264 	 *      2. jailed, wild.
2265 	 *      3. non-jailed, non-wild.
2266 	 *      4. non-jailed, wild.
2267 	 */
2268 	head = &pcbinfo->ipi_hash_wild[INP_PCBHASH_WILD(lport,
2269 	    pcbinfo->ipi_hashmask)];
2270 	local_wild = local_exact = jail_wild = NULL;
2271 #ifdef INET6
2272 	local_wild_mapped = NULL;
2273 #endif
2274 	CK_LIST_FOREACH(inp, head, inp_hash_wild) {
2275 		inp_lookup_match_t match;
2276 		bool injail;
2277 
2278 		match = in_pcblookup_wild_match(inp, laddr, lport);
2279 		if (match == INPLOOKUP_MATCH_NONE)
2280 			continue;
2281 
2282 		injail = prison_flag(inp->inp_cred, PR_IP4) != 0;
2283 		if (injail) {
2284 			if (prison_check_ip4_locked(inp->inp_cred->cr_prison,
2285 			    &laddr) != 0)
2286 				continue;
2287 		} else {
2288 			if (local_exact != NULL)
2289 				continue;
2290 		}
2291 
2292 		if (match == INPLOOKUP_MATCH_LADDR) {
2293 			if (injail)
2294 				return (inp);
2295 			local_exact = inp;
2296 		} else {
2297 #ifdef INET6
2298 			/* XXX inp locking, NULL check */
2299 			if (inp->inp_vflag & INP_IPV6PROTO)
2300 				local_wild_mapped = inp;
2301 			else
2302 #endif
2303 				if (injail)
2304 					jail_wild = inp;
2305 				else
2306 					local_wild = inp;
2307 		}
2308 	}
2309 	if (jail_wild != NULL)
2310 		return (jail_wild);
2311 	if (local_exact != NULL)
2312 		return (local_exact);
2313 	if (local_wild != NULL)
2314 		return (local_wild);
2315 #ifdef INET6
2316 	if (local_wild_mapped != NULL)
2317 		return (local_wild_mapped);
2318 #endif
2319 	return (NULL);
2320 }
2321 
2322 /*
2323  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
2324  * that the caller has either locked the hash list, which usually happens
2325  * for bind(2) operations, or is in SMR section, which happens when sorting
2326  * out incoming packets.
2327  */
2328 static struct inpcb *
2329 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2330     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2331     uint8_t numa_domain)
2332 {
2333 	struct inpcb *inp;
2334 	const u_short fport = fport_arg, lport = lport_arg;
2335 
2336 	KASSERT((lookupflags & ~INPLOOKUP_WILDCARD) == 0,
2337 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2338 	KASSERT(faddr.s_addr != INADDR_ANY,
2339 	    ("%s: invalid foreign address", __func__));
2340 	KASSERT(laddr.s_addr != INADDR_ANY,
2341 	    ("%s: invalid local address", __func__));
2342 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2343 
2344 	inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport);
2345 	if (inp != NULL)
2346 		return (inp);
2347 
2348 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2349 		inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport,
2350 		    &laddr, lport, numa_domain);
2351 		if (inp == NULL) {
2352 			inp = in_pcblookup_hash_wild_locked(pcbinfo, laddr,
2353 			    lport);
2354 		}
2355 	}
2356 
2357 	return (inp);
2358 }
2359 
2360 static struct inpcb *
2361 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2362     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2363     uint8_t numa_domain)
2364 {
2365 	struct inpcb *inp;
2366 	const inp_lookup_t lockflags = lookupflags & INPLOOKUP_LOCKMASK;
2367 
2368 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2369 	    ("%s: LOCKPCB not set", __func__));
2370 
2371 	INP_HASH_WLOCK(pcbinfo);
2372 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2373 	    lookupflags & ~INPLOOKUP_LOCKMASK, numa_domain);
2374 	if (inp != NULL && !inp_trylock(inp, lockflags)) {
2375 		in_pcbref(inp);
2376 		INP_HASH_WUNLOCK(pcbinfo);
2377 		inp_lock(inp, lockflags);
2378 		if (in_pcbrele(inp, lockflags))
2379 			/* XXX-MJ or retry until we get a negative match? */
2380 			inp = NULL;
2381 	} else {
2382 		INP_HASH_WUNLOCK(pcbinfo);
2383 	}
2384 	return (inp);
2385 }
2386 
2387 static struct inpcb *
2388 in_pcblookup_hash_smr(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2389     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2390     uint8_t numa_domain)
2391 {
2392 	struct inpcb *inp;
2393 	const inp_lookup_t lockflags = lookupflags & INPLOOKUP_LOCKMASK;
2394 	const u_short fport = fport_arg, lport = lport_arg;
2395 
2396 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2397 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2398 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2399 	    ("%s: LOCKPCB not set", __func__));
2400 
2401 	smr_enter(pcbinfo->ipi_smr);
2402 	inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport);
2403 	if (inp != NULL) {
2404 		if (__predict_true(inp_smr_lock(inp, lockflags))) {
2405 			/*
2406 			 * Revalidate the 4-tuple, the socket could have been
2407 			 * disconnected.
2408 			 */
2409 			if (__predict_true(in_pcblookup_exact_match(inp,
2410 			    faddr, fport, laddr, lport)))
2411 				return (inp);
2412 			inp_unlock(inp, lockflags);
2413 		}
2414 
2415 		/*
2416 		 * We failed to lock the inpcb, or its connection state changed
2417 		 * out from under us.  Fall back to a precise search.
2418 		 */
2419 		return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2420 		    lookupflags, numa_domain));
2421 	}
2422 
2423 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2424 		inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport,
2425 		    &laddr, lport, numa_domain);
2426 		if (inp != NULL) {
2427 			if (__predict_true(inp_smr_lock(inp, lockflags))) {
2428 				if (__predict_true(in_pcblookup_wild_match(inp,
2429 				    laddr, lport) != INPLOOKUP_MATCH_NONE))
2430 					return (inp);
2431 				inp_unlock(inp, lockflags);
2432 			}
2433 			inp = INP_LOOKUP_AGAIN;
2434 		} else {
2435 			inp = in_pcblookup_hash_wild_smr(pcbinfo, laddr, lport,
2436 			    lockflags);
2437 		}
2438 		if (inp == INP_LOOKUP_AGAIN) {
2439 			return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr,
2440 			    lport, lookupflags, numa_domain));
2441 		}
2442 	}
2443 
2444 	if (inp == NULL)
2445 		smr_exit(pcbinfo->ipi_smr);
2446 
2447 	return (inp);
2448 }
2449 
2450 /*
2451  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2452  * from which a pre-calculated hash value may be extracted.
2453  */
2454 struct inpcb *
2455 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2456     struct in_addr laddr, u_int lport, int lookupflags,
2457     struct ifnet *ifp __unused)
2458 {
2459 	return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport,
2460 	    lookupflags, M_NODOM));
2461 }
2462 
2463 struct inpcb *
2464 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2465     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2466     struct ifnet *ifp __unused, struct mbuf *m)
2467 {
2468 	return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport,
2469 	    lookupflags, m->m_pkthdr.numa_domain));
2470 }
2471 #endif /* INET */
2472 
2473 static bool
2474 in_pcbjailed(const struct inpcb *inp, unsigned int flag)
2475 {
2476 	return (prison_flag(inp->inp_cred, flag) != 0);
2477 }
2478 
2479 /*
2480  * Insert the PCB into a hash chain using ordering rules which ensure that
2481  * in_pcblookup_hash_wild_*() always encounter the highest-ranking PCB first.
2482  *
2483  * Specifically, keep jailed PCBs in front of non-jailed PCBs, and keep PCBs
2484  * with exact local addresses ahead of wildcard PCBs.  Unbound v4-mapped v6 PCBs
2485  * always appear last no matter whether they are jailed.
2486  */
2487 static void
2488 _in_pcbinshash_wild(struct inpcbhead *pcbhash, struct inpcb *inp)
2489 {
2490 	struct inpcb *last;
2491 	bool bound, injail;
2492 
2493 	INP_LOCK_ASSERT(inp);
2494 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
2495 
2496 	last = NULL;
2497 	bound = inp->inp_laddr.s_addr != INADDR_ANY;
2498 	if (!bound && (inp->inp_vflag & INP_IPV6PROTO) != 0) {
2499 		CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) {
2500 			if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2501 				CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2502 				return;
2503 			}
2504 		}
2505 		CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2506 		return;
2507 	}
2508 
2509 	injail = in_pcbjailed(inp, PR_IP4);
2510 	if (!injail) {
2511 		CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) {
2512 			if (!in_pcbjailed(last, PR_IP4))
2513 				break;
2514 			if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2515 				CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2516 				return;
2517 			}
2518 		}
2519 	} else if (!CK_LIST_EMPTY(pcbhash) &&
2520 	    !in_pcbjailed(CK_LIST_FIRST(pcbhash), PR_IP4)) {
2521 		CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2522 		return;
2523 	}
2524 	if (!bound) {
2525 		CK_LIST_FOREACH_FROM(last, pcbhash, inp_hash_wild) {
2526 			if (last->inp_laddr.s_addr == INADDR_ANY)
2527 				break;
2528 			if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2529 				CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2530 				return;
2531 			}
2532 		}
2533 	}
2534 	if (last == NULL)
2535 		CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2536 	else
2537 		CK_LIST_INSERT_BEFORE(last, inp, inp_hash_wild);
2538 }
2539 
2540 #ifdef INET6
2541 /*
2542  * See the comment above _in_pcbinshash_wild().
2543  */
2544 static void
2545 _in6_pcbinshash_wild(struct inpcbhead *pcbhash, struct inpcb *inp)
2546 {
2547 	struct inpcb *last;
2548 	bool bound, injail;
2549 
2550 	INP_LOCK_ASSERT(inp);
2551 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
2552 
2553 	last = NULL;
2554 	bound = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr);
2555 	injail = in_pcbjailed(inp, PR_IP6);
2556 	if (!injail) {
2557 		CK_LIST_FOREACH(last, pcbhash, inp_hash_wild) {
2558 			if (!in_pcbjailed(last, PR_IP6))
2559 				break;
2560 			if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2561 				CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2562 				return;
2563 			}
2564 		}
2565 	} else if (!CK_LIST_EMPTY(pcbhash) &&
2566 	    !in_pcbjailed(CK_LIST_FIRST(pcbhash), PR_IP6)) {
2567 		CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2568 		return;
2569 	}
2570 	if (!bound) {
2571 		CK_LIST_FOREACH_FROM(last, pcbhash, inp_hash_wild) {
2572 			if (IN6_IS_ADDR_UNSPECIFIED(&last->in6p_laddr))
2573 				break;
2574 			if (CK_LIST_NEXT(last, inp_hash_wild) == NULL) {
2575 				CK_LIST_INSERT_AFTER(last, inp, inp_hash_wild);
2576 				return;
2577 			}
2578 		}
2579 	}
2580 	if (last == NULL)
2581 		CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_wild);
2582 	else
2583 		CK_LIST_INSERT_BEFORE(last, inp, inp_hash_wild);
2584 }
2585 #endif
2586 
2587 /*
2588  * Insert PCB onto various hash lists.
2589  */
2590 int
2591 in_pcbinshash(struct inpcb *inp)
2592 {
2593 	struct inpcbhead *pcbhash;
2594 	struct inpcbporthead *pcbporthash;
2595 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2596 	struct inpcbport *phd;
2597 	uint32_t hash;
2598 	bool connected;
2599 
2600 	INP_WLOCK_ASSERT(inp);
2601 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2602 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2603 	    ("in_pcbinshash: INP_INHASHLIST"));
2604 
2605 #ifdef INET6
2606 	if (inp->inp_vflag & INP_IPV6) {
2607 		hash = INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport,
2608 		    inp->inp_fport, pcbinfo->ipi_hashmask);
2609 		connected = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr);
2610 	} else
2611 #endif
2612 	{
2613 		hash = INP_PCBHASH(&inp->inp_faddr, inp->inp_lport,
2614 		    inp->inp_fport, pcbinfo->ipi_hashmask);
2615 		connected = !in_nullhost(inp->inp_faddr);
2616 	}
2617 
2618 	if (connected)
2619 		pcbhash = &pcbinfo->ipi_hash_exact[hash];
2620 	else
2621 		pcbhash = &pcbinfo->ipi_hash_wild[hash];
2622 
2623 	pcbporthash = &pcbinfo->ipi_porthashbase[
2624 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2625 
2626 	/*
2627 	 * Add entry to load balance group.
2628 	 * Only do this if SO_REUSEPORT_LB is set.
2629 	 */
2630 	if ((inp->inp_socket->so_options & SO_REUSEPORT_LB) != 0) {
2631 		int error = in_pcbinslbgrouphash(inp, M_NODOM);
2632 		if (error != 0)
2633 			return (error);
2634 	}
2635 
2636 	/*
2637 	 * Go through port list and look for a head for this lport.
2638 	 */
2639 	CK_LIST_FOREACH(phd, pcbporthash, phd_hash) {
2640 		if (phd->phd_port == inp->inp_lport)
2641 			break;
2642 	}
2643 
2644 	/*
2645 	 * If none exists, malloc one and tack it on.
2646 	 */
2647 	if (phd == NULL) {
2648 		phd = uma_zalloc_smr(pcbinfo->ipi_portzone, M_NOWAIT);
2649 		if (phd == NULL) {
2650 			if ((inp->inp_flags & INP_INLBGROUP) != 0)
2651 				in_pcbremlbgrouphash(inp);
2652 			return (ENOMEM);
2653 		}
2654 		phd->phd_port = inp->inp_lport;
2655 		CK_LIST_INIT(&phd->phd_pcblist);
2656 		CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2657 	}
2658 	inp->inp_phd = phd;
2659 	CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2660 
2661 	/*
2662 	 * The PCB may have been disconnected in the past.  Before we can safely
2663 	 * make it visible in the hash table, we must wait for all readers which
2664 	 * may be traversing this PCB to finish.
2665 	 */
2666 	if (inp->inp_smr != SMR_SEQ_INVALID) {
2667 		smr_wait(pcbinfo->ipi_smr, inp->inp_smr);
2668 		inp->inp_smr = SMR_SEQ_INVALID;
2669 	}
2670 
2671 	if (connected)
2672 		CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash_exact);
2673 	else {
2674 #ifdef INET6
2675 		if ((inp->inp_vflag & INP_IPV6) != 0)
2676 			_in6_pcbinshash_wild(pcbhash, inp);
2677 		else
2678 #endif
2679 			_in_pcbinshash_wild(pcbhash, inp);
2680 	}
2681 	inp->inp_flags |= INP_INHASHLIST;
2682 
2683 	return (0);
2684 }
2685 
2686 void
2687 in_pcbremhash_locked(struct inpcb *inp)
2688 {
2689 	struct inpcbport *phd = inp->inp_phd;
2690 
2691 	INP_WLOCK_ASSERT(inp);
2692 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
2693 	MPASS(inp->inp_flags & INP_INHASHLIST);
2694 
2695 	if ((inp->inp_flags & INP_INLBGROUP) != 0)
2696 		in_pcbremlbgrouphash(inp);
2697 #ifdef INET6
2698 	if (inp->inp_vflag & INP_IPV6) {
2699 		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr))
2700 			CK_LIST_REMOVE(inp, inp_hash_wild);
2701 		else
2702 			CK_LIST_REMOVE(inp, inp_hash_exact);
2703 	} else
2704 #endif
2705 	{
2706 		if (in_nullhost(inp->inp_faddr))
2707 			CK_LIST_REMOVE(inp, inp_hash_wild);
2708 		else
2709 			CK_LIST_REMOVE(inp, inp_hash_exact);
2710 	}
2711 	CK_LIST_REMOVE(inp, inp_portlist);
2712 	if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
2713 		CK_LIST_REMOVE(phd, phd_hash);
2714 		uma_zfree_smr(inp->inp_pcbinfo->ipi_portzone, phd);
2715 	}
2716 	inp->inp_flags &= ~INP_INHASHLIST;
2717 }
2718 
2719 static void
2720 in_pcbremhash(struct inpcb *inp)
2721 {
2722 	INP_HASH_WLOCK(inp->inp_pcbinfo);
2723 	in_pcbremhash_locked(inp);
2724 	INP_HASH_WUNLOCK(inp->inp_pcbinfo);
2725 }
2726 
2727 /*
2728  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2729  * changed. NOTE: This does not handle the case of the lport changing (the
2730  * hashed port list would have to be updated as well), so the lport must
2731  * not change after in_pcbinshash() has been called.
2732  */
2733 void
2734 in_pcbrehash(struct inpcb *inp)
2735 {
2736 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2737 	struct inpcbhead *head;
2738 	uint32_t hash;
2739 	bool connected;
2740 
2741 	INP_WLOCK_ASSERT(inp);
2742 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2743 	KASSERT(inp->inp_flags & INP_INHASHLIST,
2744 	    ("%s: !INP_INHASHLIST", __func__));
2745 	KASSERT(inp->inp_smr == SMR_SEQ_INVALID,
2746 	    ("%s: inp was disconnected", __func__));
2747 
2748 #ifdef INET6
2749 	if (inp->inp_vflag & INP_IPV6) {
2750 		hash = INP6_PCBHASH(&inp->in6p_faddr, inp->inp_lport,
2751 		    inp->inp_fport, pcbinfo->ipi_hashmask);
2752 		connected = !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr);
2753 	} else
2754 #endif
2755 	{
2756 		hash = INP_PCBHASH(&inp->inp_faddr, inp->inp_lport,
2757 		    inp->inp_fport, pcbinfo->ipi_hashmask);
2758 		connected = !in_nullhost(inp->inp_faddr);
2759 	}
2760 
2761 	/*
2762 	 * When rehashing, the caller must ensure that either the new or the old
2763 	 * foreign address was unspecified.
2764 	 */
2765 	if (connected)
2766 		CK_LIST_REMOVE(inp, inp_hash_wild);
2767 	else
2768 		CK_LIST_REMOVE(inp, inp_hash_exact);
2769 
2770 	if (connected) {
2771 		head = &pcbinfo->ipi_hash_exact[hash];
2772 		CK_LIST_INSERT_HEAD(head, inp, inp_hash_exact);
2773 	} else {
2774 		head = &pcbinfo->ipi_hash_wild[hash];
2775 		CK_LIST_INSERT_HEAD(head, inp, inp_hash_wild);
2776 	}
2777 }
2778 
2779 /*
2780  * Check for alternatives when higher level complains
2781  * about service problems.  For now, invalidate cached
2782  * routing information.  If the route was created dynamically
2783  * (by a redirect), time to try a default gateway again.
2784  */
2785 void
2786 in_losing(struct inpcb *inp)
2787 {
2788 
2789 	RO_INVALIDATE_CACHE(&inp->inp_route);
2790 	return;
2791 }
2792 
2793 /*
2794  * A set label operation has occurred at the socket layer, propagate the
2795  * label change into the in_pcb for the socket.
2796  */
2797 void
2798 in_pcbsosetlabel(struct socket *so)
2799 {
2800 #ifdef MAC
2801 	struct inpcb *inp;
2802 
2803 	inp = sotoinpcb(so);
2804 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2805 
2806 	INP_WLOCK(inp);
2807 	SOCK_LOCK(so);
2808 	mac_inpcb_sosetlabel(so, inp);
2809 	SOCK_UNLOCK(so);
2810 	INP_WUNLOCK(inp);
2811 #endif
2812 }
2813 
2814 void
2815 inp_wlock(struct inpcb *inp)
2816 {
2817 
2818 	INP_WLOCK(inp);
2819 }
2820 
2821 void
2822 inp_wunlock(struct inpcb *inp)
2823 {
2824 
2825 	INP_WUNLOCK(inp);
2826 }
2827 
2828 void
2829 inp_rlock(struct inpcb *inp)
2830 {
2831 
2832 	INP_RLOCK(inp);
2833 }
2834 
2835 void
2836 inp_runlock(struct inpcb *inp)
2837 {
2838 
2839 	INP_RUNLOCK(inp);
2840 }
2841 
2842 #ifdef INVARIANT_SUPPORT
2843 void
2844 inp_lock_assert(struct inpcb *inp)
2845 {
2846 
2847 	INP_WLOCK_ASSERT(inp);
2848 }
2849 
2850 void
2851 inp_unlock_assert(struct inpcb *inp)
2852 {
2853 
2854 	INP_UNLOCK_ASSERT(inp);
2855 }
2856 #endif
2857 
2858 void
2859 inp_apply_all(struct inpcbinfo *pcbinfo,
2860     void (*func)(struct inpcb *, void *), void *arg)
2861 {
2862 	struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo,
2863 	    INPLOOKUP_WLOCKPCB);
2864 	struct inpcb *inp;
2865 
2866 	while ((inp = inp_next(&inpi)) != NULL)
2867 		func(inp, arg);
2868 }
2869 
2870 struct socket *
2871 inp_inpcbtosocket(struct inpcb *inp)
2872 {
2873 
2874 	INP_WLOCK_ASSERT(inp);
2875 	return (inp->inp_socket);
2876 }
2877 
2878 void
2879 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2880     uint32_t *faddr, uint16_t *fp)
2881 {
2882 
2883 	INP_LOCK_ASSERT(inp);
2884 	*laddr = inp->inp_laddr.s_addr;
2885 	*faddr = inp->inp_faddr.s_addr;
2886 	*lp = inp->inp_lport;
2887 	*fp = inp->inp_fport;
2888 }
2889 
2890 /*
2891  * Create an external-format (``xinpcb'') structure using the information in
2892  * the kernel-format in_pcb structure pointed to by inp.  This is done to
2893  * reduce the spew of irrelevant information over this interface, to isolate
2894  * user code from changes in the kernel structure, and potentially to provide
2895  * information-hiding if we decide that some of this information should be
2896  * hidden from users.
2897  */
2898 void
2899 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2900 {
2901 
2902 	bzero(xi, sizeof(*xi));
2903 	xi->xi_len = sizeof(struct xinpcb);
2904 	if (inp->inp_socket)
2905 		sotoxsocket(inp->inp_socket, &xi->xi_socket);
2906 	bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2907 	xi->inp_gencnt = inp->inp_gencnt;
2908 	xi->inp_flow = inp->inp_flow;
2909 	xi->inp_flowid = inp->inp_flowid;
2910 	xi->inp_flowtype = inp->inp_flowtype;
2911 	xi->inp_flags = inp->inp_flags;
2912 	xi->inp_flags2 = inp->inp_flags2;
2913 	xi->in6p_cksum = inp->in6p_cksum;
2914 	xi->in6p_hops = inp->in6p_hops;
2915 	xi->inp_ip_tos = inp->inp_ip_tos;
2916 	xi->inp_vflag = inp->inp_vflag;
2917 	xi->inp_ip_ttl = inp->inp_ip_ttl;
2918 	xi->inp_ip_p = inp->inp_ip_p;
2919 	xi->inp_ip_minttl = inp->inp_ip_minttl;
2920 }
2921 
2922 int
2923 sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo,
2924     int (*ctloutput_set)(struct inpcb *, struct sockopt *))
2925 {
2926 	struct sockopt sopt;
2927 	struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo,
2928 	    INPLOOKUP_WLOCKPCB);
2929 	struct inpcb *inp;
2930 	struct sockopt_parameters *params;
2931 	struct socket *so;
2932 	int error;
2933 	char buf[1024];
2934 
2935 	if (req->oldptr != NULL || req->oldlen != 0)
2936 		return (EINVAL);
2937 	if (req->newptr == NULL)
2938 		return (EPERM);
2939 	if (req->newlen > sizeof(buf))
2940 		return (ENOMEM);
2941 	error = SYSCTL_IN(req, buf, req->newlen);
2942 	if (error != 0)
2943 		return (error);
2944 	if (req->newlen < sizeof(struct sockopt_parameters))
2945 		return (EINVAL);
2946 	params = (struct sockopt_parameters *)buf;
2947 	sopt.sopt_level = params->sop_level;
2948 	sopt.sopt_name = params->sop_optname;
2949 	sopt.sopt_dir = SOPT_SET;
2950 	sopt.sopt_val = params->sop_optval;
2951 	sopt.sopt_valsize = req->newlen - sizeof(struct sockopt_parameters);
2952 	sopt.sopt_td = NULL;
2953 #ifdef INET6
2954 	if (params->sop_inc.inc_flags & INC_ISIPV6) {
2955 		if (IN6_IS_SCOPE_LINKLOCAL(&params->sop_inc.inc6_laddr))
2956 			params->sop_inc.inc6_laddr.s6_addr16[1] =
2957 			    htons(params->sop_inc.inc6_zoneid & 0xffff);
2958 		if (IN6_IS_SCOPE_LINKLOCAL(&params->sop_inc.inc6_faddr))
2959 			params->sop_inc.inc6_faddr.s6_addr16[1] =
2960 			    htons(params->sop_inc.inc6_zoneid & 0xffff);
2961 	}
2962 #endif
2963 	if (params->sop_inc.inc_lport != htons(0) &&
2964 	    params->sop_inc.inc_fport != htons(0)) {
2965 #ifdef INET6
2966 		if (params->sop_inc.inc_flags & INC_ISIPV6)
2967 			inpi.hash = INP6_PCBHASH(
2968 			    &params->sop_inc.inc6_faddr,
2969 			    params->sop_inc.inc_lport,
2970 			    params->sop_inc.inc_fport,
2971 			    pcbinfo->ipi_hashmask);
2972 		else
2973 #endif
2974 			inpi.hash = INP_PCBHASH(
2975 			    &params->sop_inc.inc_faddr,
2976 			    params->sop_inc.inc_lport,
2977 			    params->sop_inc.inc_fport,
2978 			    pcbinfo->ipi_hashmask);
2979 	}
2980 	while ((inp = inp_next(&inpi)) != NULL)
2981 		if (inp->inp_gencnt == params->sop_id) {
2982 			if (inp->inp_flags & INP_DROPPED) {
2983 				INP_WUNLOCK(inp);
2984 				return (ECONNRESET);
2985 			}
2986 			so = inp->inp_socket;
2987 			KASSERT(so != NULL, ("inp_socket == NULL"));
2988 			soref(so);
2989 			if (params->sop_level == SOL_SOCKET) {
2990 				INP_WUNLOCK(inp);
2991 				error = sosetopt(so, &sopt);
2992 			} else
2993 				error = (*ctloutput_set)(inp, &sopt);
2994 			sorele(so);
2995 			break;
2996 		}
2997 	if (inp == NULL)
2998 		error = ESRCH;
2999 	return (error);
3000 }
3001 
3002 #ifdef DDB
3003 static void
3004 db_print_indent(int indent)
3005 {
3006 	int i;
3007 
3008 	for (i = 0; i < indent; i++)
3009 		db_printf(" ");
3010 }
3011 
3012 static void
3013 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
3014 {
3015 	char faddr_str[48], laddr_str[48];
3016 
3017 	db_print_indent(indent);
3018 	db_printf("%s at %p\n", name, inc);
3019 
3020 	indent += 2;
3021 
3022 #ifdef INET6
3023 	if (inc->inc_flags & INC_ISIPV6) {
3024 		/* IPv6. */
3025 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
3026 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
3027 	} else
3028 #endif
3029 	{
3030 		/* IPv4. */
3031 		inet_ntoa_r(inc->inc_laddr, laddr_str);
3032 		inet_ntoa_r(inc->inc_faddr, faddr_str);
3033 	}
3034 	db_print_indent(indent);
3035 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
3036 	    ntohs(inc->inc_lport));
3037 	db_print_indent(indent);
3038 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
3039 	    ntohs(inc->inc_fport));
3040 }
3041 
3042 static void
3043 db_print_inpflags(int inp_flags)
3044 {
3045 	int comma;
3046 
3047 	comma = 0;
3048 	if (inp_flags & INP_RECVOPTS) {
3049 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
3050 		comma = 1;
3051 	}
3052 	if (inp_flags & INP_RECVRETOPTS) {
3053 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
3054 		comma = 1;
3055 	}
3056 	if (inp_flags & INP_RECVDSTADDR) {
3057 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
3058 		comma = 1;
3059 	}
3060 	if (inp_flags & INP_ORIGDSTADDR) {
3061 		db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
3062 		comma = 1;
3063 	}
3064 	if (inp_flags & INP_HDRINCL) {
3065 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
3066 		comma = 1;
3067 	}
3068 	if (inp_flags & INP_HIGHPORT) {
3069 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
3070 		comma = 1;
3071 	}
3072 	if (inp_flags & INP_LOWPORT) {
3073 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
3074 		comma = 1;
3075 	}
3076 	if (inp_flags & INP_ANONPORT) {
3077 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
3078 		comma = 1;
3079 	}
3080 	if (inp_flags & INP_RECVIF) {
3081 		db_printf("%sINP_RECVIF", comma ? ", " : "");
3082 		comma = 1;
3083 	}
3084 	if (inp_flags & INP_MTUDISC) {
3085 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
3086 		comma = 1;
3087 	}
3088 	if (inp_flags & INP_RECVTTL) {
3089 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
3090 		comma = 1;
3091 	}
3092 	if (inp_flags & INP_DONTFRAG) {
3093 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
3094 		comma = 1;
3095 	}
3096 	if (inp_flags & INP_RECVTOS) {
3097 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
3098 		comma = 1;
3099 	}
3100 	if (inp_flags & IN6P_IPV6_V6ONLY) {
3101 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
3102 		comma = 1;
3103 	}
3104 	if (inp_flags & IN6P_PKTINFO) {
3105 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
3106 		comma = 1;
3107 	}
3108 	if (inp_flags & IN6P_HOPLIMIT) {
3109 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
3110 		comma = 1;
3111 	}
3112 	if (inp_flags & IN6P_HOPOPTS) {
3113 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
3114 		comma = 1;
3115 	}
3116 	if (inp_flags & IN6P_DSTOPTS) {
3117 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
3118 		comma = 1;
3119 	}
3120 	if (inp_flags & IN6P_RTHDR) {
3121 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
3122 		comma = 1;
3123 	}
3124 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
3125 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
3126 		comma = 1;
3127 	}
3128 	if (inp_flags & IN6P_TCLASS) {
3129 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
3130 		comma = 1;
3131 	}
3132 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
3133 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
3134 		comma = 1;
3135 	}
3136 	if (inp_flags & INP_ONESBCAST) {
3137 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
3138 		comma  = 1;
3139 	}
3140 	if (inp_flags & INP_DROPPED) {
3141 		db_printf("%sINP_DROPPED", comma ? ", " : "");
3142 		comma  = 1;
3143 	}
3144 	if (inp_flags & INP_SOCKREF) {
3145 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
3146 		comma  = 1;
3147 	}
3148 	if (inp_flags & IN6P_RFC2292) {
3149 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
3150 		comma = 1;
3151 	}
3152 	if (inp_flags & IN6P_MTU) {
3153 		db_printf("IN6P_MTU%s", comma ? ", " : "");
3154 		comma = 1;
3155 	}
3156 }
3157 
3158 static void
3159 db_print_inpvflag(u_char inp_vflag)
3160 {
3161 	int comma;
3162 
3163 	comma = 0;
3164 	if (inp_vflag & INP_IPV4) {
3165 		db_printf("%sINP_IPV4", comma ? ", " : "");
3166 		comma  = 1;
3167 	}
3168 	if (inp_vflag & INP_IPV6) {
3169 		db_printf("%sINP_IPV6", comma ? ", " : "");
3170 		comma  = 1;
3171 	}
3172 	if (inp_vflag & INP_IPV6PROTO) {
3173 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
3174 		comma  = 1;
3175 	}
3176 }
3177 
3178 static void
3179 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
3180 {
3181 
3182 	db_print_indent(indent);
3183 	db_printf("%s at %p\n", name, inp);
3184 
3185 	indent += 2;
3186 
3187 	db_print_indent(indent);
3188 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
3189 
3190 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
3191 
3192 	db_print_indent(indent);
3193 	db_printf("inp_label: %p   inp_flags: 0x%x (",
3194 	   inp->inp_label, inp->inp_flags);
3195 	db_print_inpflags(inp->inp_flags);
3196 	db_printf(")\n");
3197 
3198 	db_print_indent(indent);
3199 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
3200 	    inp->inp_vflag);
3201 	db_print_inpvflag(inp->inp_vflag);
3202 	db_printf(")\n");
3203 
3204 	db_print_indent(indent);
3205 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
3206 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
3207 
3208 	db_print_indent(indent);
3209 #ifdef INET6
3210 	if (inp->inp_vflag & INP_IPV6) {
3211 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
3212 		    "in6p_moptions: %p\n", inp->in6p_options,
3213 		    inp->in6p_outputopts, inp->in6p_moptions);
3214 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
3215 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
3216 		    inp->in6p_hops);
3217 	} else
3218 #endif
3219 	{
3220 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
3221 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
3222 		    inp->inp_options, inp->inp_moptions);
3223 	}
3224 
3225 	db_print_indent(indent);
3226 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
3227 	    (uintmax_t)inp->inp_gencnt);
3228 }
3229 
3230 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
3231 {
3232 	struct inpcb *inp;
3233 
3234 	if (!have_addr) {
3235 		db_printf("usage: show inpcb <addr>\n");
3236 		return;
3237 	}
3238 	inp = (struct inpcb *)addr;
3239 
3240 	db_print_inpcb(inp, "inpcb", 0);
3241 }
3242 #endif /* DDB */
3243 
3244 #ifdef RATELIMIT
3245 /*
3246  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
3247  * if any.
3248  */
3249 int
3250 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
3251 {
3252 	union if_snd_tag_modify_params params = {
3253 		.rate_limit.max_rate = max_pacing_rate,
3254 		.rate_limit.flags = M_NOWAIT,
3255 	};
3256 	struct m_snd_tag *mst;
3257 	int error;
3258 
3259 	mst = inp->inp_snd_tag;
3260 	if (mst == NULL)
3261 		return (EINVAL);
3262 
3263 	if (mst->sw->snd_tag_modify == NULL) {
3264 		error = EOPNOTSUPP;
3265 	} else {
3266 		error = mst->sw->snd_tag_modify(mst, &params);
3267 	}
3268 	return (error);
3269 }
3270 
3271 /*
3272  * Query existing TX rate limit based on the existing
3273  * "inp->inp_snd_tag", if any.
3274  */
3275 int
3276 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
3277 {
3278 	union if_snd_tag_query_params params = { };
3279 	struct m_snd_tag *mst;
3280 	int error;
3281 
3282 	mst = inp->inp_snd_tag;
3283 	if (mst == NULL)
3284 		return (EINVAL);
3285 
3286 	if (mst->sw->snd_tag_query == NULL) {
3287 		error = EOPNOTSUPP;
3288 	} else {
3289 		error = mst->sw->snd_tag_query(mst, &params);
3290 		if (error == 0 && p_max_pacing_rate != NULL)
3291 			*p_max_pacing_rate = params.rate_limit.max_rate;
3292 	}
3293 	return (error);
3294 }
3295 
3296 /*
3297  * Query existing TX queue level based on the existing
3298  * "inp->inp_snd_tag", if any.
3299  */
3300 int
3301 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
3302 {
3303 	union if_snd_tag_query_params params = { };
3304 	struct m_snd_tag *mst;
3305 	int error;
3306 
3307 	mst = inp->inp_snd_tag;
3308 	if (mst == NULL)
3309 		return (EINVAL);
3310 
3311 	if (mst->sw->snd_tag_query == NULL)
3312 		return (EOPNOTSUPP);
3313 
3314 	error = mst->sw->snd_tag_query(mst, &params);
3315 	if (error == 0 && p_txqueue_level != NULL)
3316 		*p_txqueue_level = params.rate_limit.queue_level;
3317 	return (error);
3318 }
3319 
3320 /*
3321  * Allocate a new TX rate limit send tag from the network interface
3322  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
3323  */
3324 int
3325 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
3326     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st)
3327 
3328 {
3329 	union if_snd_tag_alloc_params params = {
3330 		.rate_limit.hdr.type = (max_pacing_rate == -1U) ?
3331 		    IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
3332 		.rate_limit.hdr.flowid = flowid,
3333 		.rate_limit.hdr.flowtype = flowtype,
3334 		.rate_limit.hdr.numa_domain = inp->inp_numa_domain,
3335 		.rate_limit.max_rate = max_pacing_rate,
3336 		.rate_limit.flags = M_NOWAIT,
3337 	};
3338 	int error;
3339 
3340 	INP_WLOCK_ASSERT(inp);
3341 
3342 	/*
3343 	 * If there is already a send tag, or the INP is being torn
3344 	 * down, allocating a new send tag is not allowed. Else send
3345 	 * tags may leak.
3346 	 */
3347 	if (*st != NULL || (inp->inp_flags & INP_DROPPED) != 0)
3348 		return (EINVAL);
3349 
3350 	error = m_snd_tag_alloc(ifp, &params, st);
3351 #ifdef INET
3352 	if (error == 0) {
3353 		counter_u64_add(rate_limit_set_ok, 1);
3354 		counter_u64_add(rate_limit_active, 1);
3355 	} else if (error != EOPNOTSUPP)
3356 		  counter_u64_add(rate_limit_alloc_fail, 1);
3357 #endif
3358 	return (error);
3359 }
3360 
3361 void
3362 in_pcbdetach_tag(struct m_snd_tag *mst)
3363 {
3364 
3365 	m_snd_tag_rele(mst);
3366 #ifdef INET
3367 	counter_u64_add(rate_limit_active, -1);
3368 #endif
3369 }
3370 
3371 /*
3372  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
3373  * if any:
3374  */
3375 void
3376 in_pcbdetach_txrtlmt(struct inpcb *inp)
3377 {
3378 	struct m_snd_tag *mst;
3379 
3380 	INP_WLOCK_ASSERT(inp);
3381 
3382 	mst = inp->inp_snd_tag;
3383 	inp->inp_snd_tag = NULL;
3384 
3385 	if (mst == NULL)
3386 		return;
3387 
3388 	m_snd_tag_rele(mst);
3389 #ifdef INET
3390 	counter_u64_add(rate_limit_active, -1);
3391 #endif
3392 }
3393 
3394 int
3395 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate)
3396 {
3397 	int error;
3398 
3399 	/*
3400 	 * If the existing send tag is for the wrong interface due to
3401 	 * a route change, first drop the existing tag.  Set the
3402 	 * CHANGED flag so that we will keep trying to allocate a new
3403 	 * tag if we fail to allocate one this time.
3404 	 */
3405 	if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) {
3406 		in_pcbdetach_txrtlmt(inp);
3407 		inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3408 	}
3409 
3410 	/*
3411 	 * NOTE: When attaching to a network interface a reference is
3412 	 * made to ensure the network interface doesn't go away until
3413 	 * all ratelimit connections are gone. The network interface
3414 	 * pointers compared below represent valid network interfaces,
3415 	 * except when comparing towards NULL.
3416 	 */
3417 	if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3418 		error = 0;
3419 	} else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3420 		if (inp->inp_snd_tag != NULL)
3421 			in_pcbdetach_txrtlmt(inp);
3422 		error = 0;
3423 	} else if (inp->inp_snd_tag == NULL) {
3424 		/*
3425 		 * In order to utilize packet pacing with RSS, we need
3426 		 * to wait until there is a valid RSS hash before we
3427 		 * can proceed:
3428 		 */
3429 		if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3430 			error = EAGAIN;
3431 		} else {
3432 			error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3433 			    mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag);
3434 		}
3435 	} else {
3436 		error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3437 	}
3438 	if (error == 0 || error == EOPNOTSUPP)
3439 		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3440 
3441 	return (error);
3442 }
3443 
3444 /*
3445  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
3446  * is set in the fast path and will attach/detach/modify the TX rate
3447  * limit send tag based on the socket's so_max_pacing_rate value.
3448  */
3449 void
3450 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
3451 {
3452 	struct socket *socket;
3453 	uint32_t max_pacing_rate;
3454 	bool did_upgrade;
3455 
3456 	if (inp == NULL)
3457 		return;
3458 
3459 	socket = inp->inp_socket;
3460 	if (socket == NULL)
3461 		return;
3462 
3463 	if (!INP_WLOCKED(inp)) {
3464 		/*
3465 		 * NOTE: If the write locking fails, we need to bail
3466 		 * out and use the non-ratelimited ring for the
3467 		 * transmit until there is a new chance to get the
3468 		 * write lock.
3469 		 */
3470 		if (!INP_TRY_UPGRADE(inp))
3471 			return;
3472 		did_upgrade = 1;
3473 	} else {
3474 		did_upgrade = 0;
3475 	}
3476 
3477 	/*
3478 	 * NOTE: The so_max_pacing_rate value is read unlocked,
3479 	 * because atomic updates are not required since the variable
3480 	 * is checked at every mbuf we send. It is assumed that the
3481 	 * variable read itself will be atomic.
3482 	 */
3483 	max_pacing_rate = socket->so_max_pacing_rate;
3484 
3485 	in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate);
3486 
3487 	if (did_upgrade)
3488 		INP_DOWNGRADE(inp);
3489 }
3490 
3491 /*
3492  * Track route changes for TX rate limiting.
3493  */
3494 void
3495 in_pcboutput_eagain(struct inpcb *inp)
3496 {
3497 	bool did_upgrade;
3498 
3499 	if (inp == NULL)
3500 		return;
3501 
3502 	if (inp->inp_snd_tag == NULL)
3503 		return;
3504 
3505 	if (!INP_WLOCKED(inp)) {
3506 		/*
3507 		 * NOTE: If the write locking fails, we need to bail
3508 		 * out and use the non-ratelimited ring for the
3509 		 * transmit until there is a new chance to get the
3510 		 * write lock.
3511 		 */
3512 		if (!INP_TRY_UPGRADE(inp))
3513 			return;
3514 		did_upgrade = 1;
3515 	} else {
3516 		did_upgrade = 0;
3517 	}
3518 
3519 	/* detach rate limiting */
3520 	in_pcbdetach_txrtlmt(inp);
3521 
3522 	/* make sure new mbuf send tag allocation is made */
3523 	inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3524 
3525 	if (did_upgrade)
3526 		INP_DOWNGRADE(inp);
3527 }
3528 
3529 #ifdef INET
3530 static void
3531 rl_init(void *st)
3532 {
3533 	rate_limit_new = counter_u64_alloc(M_WAITOK);
3534 	rate_limit_chg = counter_u64_alloc(M_WAITOK);
3535 	rate_limit_active = counter_u64_alloc(M_WAITOK);
3536 	rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK);
3537 	rate_limit_set_ok = counter_u64_alloc(M_WAITOK);
3538 }
3539 
3540 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL);
3541 #endif
3542 #endif /* RATELIMIT */
3543