1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Robert N. M. Watson under 11 * contract to Juniper Networks, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_ddb.h" 44 #include "opt_ipsec.h" 45 #include "opt_inet.h" 46 #include "opt_inet6.h" 47 #include "opt_ratelimit.h" 48 #include "opt_pcbgroup.h" 49 #include "opt_rss.h" 50 51 #include <sys/param.h> 52 #include <sys/systm.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/mbuf.h> 56 #include <sys/callout.h> 57 #include <sys/eventhandler.h> 58 #include <sys/domain.h> 59 #include <sys/protosw.h> 60 #include <sys/rmlock.h> 61 #include <sys/smp.h> 62 #include <sys/socket.h> 63 #include <sys/socketvar.h> 64 #include <sys/sockio.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/refcount.h> 68 #include <sys/jail.h> 69 #include <sys/kernel.h> 70 #include <sys/sysctl.h> 71 72 #ifdef DDB 73 #include <ddb/ddb.h> 74 #endif 75 76 #include <vm/uma.h> 77 78 #include <net/if.h> 79 #include <net/if_var.h> 80 #include <net/if_types.h> 81 #include <net/if_llatbl.h> 82 #include <net/route.h> 83 #include <net/rss_config.h> 84 #include <net/vnet.h> 85 86 #if defined(INET) || defined(INET6) 87 #include <netinet/in.h> 88 #include <netinet/in_pcb.h> 89 #ifdef INET 90 #include <netinet/in_var.h> 91 #endif 92 #include <netinet/ip_var.h> 93 #include <netinet/tcp_var.h> 94 #ifdef TCPHPTS 95 #include <netinet/tcp_hpts.h> 96 #endif 97 #include <netinet/udp.h> 98 #include <netinet/udp_var.h> 99 #ifdef INET6 100 #include <netinet/ip6.h> 101 #include <netinet6/in6_pcb.h> 102 #include <netinet6/in6_var.h> 103 #include <netinet6/ip6_var.h> 104 #endif /* INET6 */ 105 #endif 106 107 #include <netipsec/ipsec_support.h> 108 109 #include <security/mac/mac_framework.h> 110 111 #define INPCBLBGROUP_SIZMIN 8 112 #define INPCBLBGROUP_SIZMAX 256 113 114 static struct callout ipport_tick_callout; 115 116 /* 117 * These configure the range of local port addresses assigned to 118 * "unspecified" outgoing connections/packets/whatever. 119 */ 120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 126 127 /* 128 * Reserved ports accessible only to root. There are significant 129 * security considerations that must be accounted for when changing these, 130 * but the security benefits can be great. Please be careful. 131 */ 132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 133 VNET_DEFINE(int, ipport_reservedlow); 134 135 /* Variables dealing with random ephemeral port allocation. */ 136 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 137 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 138 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 139 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 140 VNET_DEFINE(int, ipport_tcpallocs); 141 VNET_DEFINE_STATIC(int, ipport_tcplastcount); 142 143 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 144 145 static void in_pcbremlists(struct inpcb *inp); 146 #ifdef INET 147 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 148 struct in_addr faddr, u_int fport_arg, 149 struct in_addr laddr, u_int lport_arg, 150 int lookupflags, struct ifnet *ifp); 151 152 #define RANGECHK(var, min, max) \ 153 if ((var) < (min)) { (var) = (min); } \ 154 else if ((var) > (max)) { (var) = (max); } 155 156 static int 157 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 158 { 159 int error; 160 161 error = sysctl_handle_int(oidp, arg1, arg2, req); 162 if (error == 0) { 163 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 164 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 165 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 166 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 167 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 168 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 169 } 170 return (error); 171 } 172 173 #undef RANGECHK 174 175 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, 176 "IP Ports"); 177 178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 179 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 180 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", ""); 181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 182 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 183 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", ""); 184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 185 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 186 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", ""); 187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 188 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 189 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", ""); 190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 191 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 192 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", ""); 193 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 194 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 195 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", ""); 196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 197 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 198 &VNET_NAME(ipport_reservedhigh), 0, ""); 199 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 200 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 202 CTLFLAG_VNET | CTLFLAG_RW, 203 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 204 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 205 CTLFLAG_VNET | CTLFLAG_RW, 206 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 207 "allocations before switching to a sequental one"); 208 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 209 CTLFLAG_VNET | CTLFLAG_RW, 210 &VNET_NAME(ipport_randomtime), 0, 211 "Minimum time to keep sequental port " 212 "allocation before switching to a random one"); 213 214 #ifdef RATELIMIT 215 counter_u64_t rate_limit_active; 216 counter_u64_t rate_limit_alloc_fail; 217 counter_u64_t rate_limit_set_ok; 218 219 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD, 0, 220 "IP Rate Limiting"); 221 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD, 222 &rate_limit_active, "Active rate limited connections"); 223 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD, 224 &rate_limit_alloc_fail, "Rate limited connection failures"); 225 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD, 226 &rate_limit_set_ok, "Rate limited setting succeeded"); 227 #endif /* RATELIMIT */ 228 229 #endif /* INET */ 230 231 /* 232 * in_pcb.c: manage the Protocol Control Blocks. 233 * 234 * NOTE: It is assumed that most of these functions will be called with 235 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 236 * functions often modify hash chains or addresses in pcbs. 237 */ 238 239 static struct inpcblbgroup * 240 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag, 241 uint16_t port, const union in_dependaddr *addr, int size) 242 { 243 struct inpcblbgroup *grp; 244 size_t bytes; 245 246 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 247 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 248 if (!grp) 249 return (NULL); 250 grp->il_vflag = vflag; 251 grp->il_lport = port; 252 grp->il_dependladdr = *addr; 253 grp->il_inpsiz = size; 254 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 255 return (grp); 256 } 257 258 static void 259 in_pcblbgroup_free_deferred(epoch_context_t ctx) 260 { 261 struct inpcblbgroup *grp; 262 263 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); 264 free(grp, M_PCB); 265 } 266 267 static void 268 in_pcblbgroup_free(struct inpcblbgroup *grp) 269 { 270 271 CK_LIST_REMOVE(grp, il_list); 272 NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx); 273 } 274 275 static struct inpcblbgroup * 276 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 277 struct inpcblbgroup *old_grp, int size) 278 { 279 struct inpcblbgroup *grp; 280 int i; 281 282 grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag, 283 old_grp->il_lport, &old_grp->il_dependladdr, size); 284 if (grp == NULL) 285 return (NULL); 286 287 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 288 ("invalid new local group size %d and old local group count %d", 289 grp->il_inpsiz, old_grp->il_inpcnt)); 290 291 for (i = 0; i < old_grp->il_inpcnt; ++i) 292 grp->il_inp[i] = old_grp->il_inp[i]; 293 grp->il_inpcnt = old_grp->il_inpcnt; 294 in_pcblbgroup_free(old_grp); 295 return (grp); 296 } 297 298 /* 299 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] 300 * and shrink group if possible. 301 */ 302 static void 303 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, 304 int i) 305 { 306 struct inpcblbgroup *grp, *new_grp; 307 308 grp = *grpp; 309 for (; i + 1 < grp->il_inpcnt; ++i) 310 grp->il_inp[i] = grp->il_inp[i + 1]; 311 grp->il_inpcnt--; 312 313 if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && 314 grp->il_inpcnt <= grp->il_inpsiz / 4) { 315 /* Shrink this group. */ 316 new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); 317 if (new_grp != NULL) 318 *grpp = new_grp; 319 } 320 } 321 322 /* 323 * Add PCB to load balance group for SO_REUSEPORT_LB option. 324 */ 325 static int 326 in_pcbinslbgrouphash(struct inpcb *inp) 327 { 328 const static struct timeval interval = { 60, 0 }; 329 static struct timeval lastprint; 330 struct inpcbinfo *pcbinfo; 331 struct inpcblbgrouphead *hdr; 332 struct inpcblbgroup *grp; 333 uint32_t idx; 334 335 pcbinfo = inp->inp_pcbinfo; 336 337 INP_WLOCK_ASSERT(inp); 338 INP_HASH_WLOCK_ASSERT(pcbinfo); 339 340 /* 341 * Don't allow jailed socket to join local group. 342 */ 343 if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred)) 344 return (0); 345 346 #ifdef INET6 347 /* 348 * Don't allow IPv4 mapped INET6 wild socket. 349 */ 350 if ((inp->inp_vflag & INP_IPV4) && 351 inp->inp_laddr.s_addr == INADDR_ANY && 352 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 353 return (0); 354 } 355 #endif 356 357 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); 358 hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; 359 CK_LIST_FOREACH(grp, hdr, il_list) { 360 if (grp->il_vflag == inp->inp_vflag && 361 grp->il_lport == inp->inp_lport && 362 memcmp(&grp->il_dependladdr, 363 &inp->inp_inc.inc_ie.ie_dependladdr, 364 sizeof(grp->il_dependladdr)) == 0) 365 break; 366 } 367 if (grp == NULL) { 368 /* Create new load balance group. */ 369 grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag, 370 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 371 INPCBLBGROUP_SIZMIN); 372 if (grp == NULL) 373 return (ENOBUFS); 374 } else if (grp->il_inpcnt == grp->il_inpsiz) { 375 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 376 if (ratecheck(&lastprint, &interval)) 377 printf("lb group port %d, limit reached\n", 378 ntohs(grp->il_lport)); 379 return (0); 380 } 381 382 /* Expand this local group. */ 383 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 384 if (grp == NULL) 385 return (ENOBUFS); 386 } 387 388 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 389 ("invalid local group size %d and count %d", grp->il_inpsiz, 390 grp->il_inpcnt)); 391 392 grp->il_inp[grp->il_inpcnt] = inp; 393 grp->il_inpcnt++; 394 return (0); 395 } 396 397 /* 398 * Remove PCB from load balance group. 399 */ 400 static void 401 in_pcbremlbgrouphash(struct inpcb *inp) 402 { 403 struct inpcbinfo *pcbinfo; 404 struct inpcblbgrouphead *hdr; 405 struct inpcblbgroup *grp; 406 int i; 407 408 pcbinfo = inp->inp_pcbinfo; 409 410 INP_WLOCK_ASSERT(inp); 411 INP_HASH_WLOCK_ASSERT(pcbinfo); 412 413 hdr = &pcbinfo->ipi_lbgrouphashbase[ 414 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 415 CK_LIST_FOREACH(grp, hdr, il_list) { 416 for (i = 0; i < grp->il_inpcnt; ++i) { 417 if (grp->il_inp[i] != inp) 418 continue; 419 420 if (grp->il_inpcnt == 1) { 421 /* We are the last, free this local group. */ 422 in_pcblbgroup_free(grp); 423 } else { 424 /* Pull up inpcbs, shrink group if possible. */ 425 in_pcblbgroup_reorder(hdr, &grp, i); 426 } 427 return; 428 } 429 } 430 } 431 432 /* 433 * Different protocols initialize their inpcbs differently - giving 434 * different name to the lock. But they all are disposed the same. 435 */ 436 static void 437 inpcb_fini(void *mem, int size) 438 { 439 struct inpcb *inp = mem; 440 441 INP_LOCK_DESTROY(inp); 442 } 443 444 /* 445 * Initialize an inpcbinfo -- we should be able to reduce the number of 446 * arguments in time. 447 */ 448 void 449 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 450 struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, 451 char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields) 452 { 453 454 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); 455 456 INP_INFO_LOCK_INIT(pcbinfo, name); 457 INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ 458 INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist"); 459 #ifdef VIMAGE 460 pcbinfo->ipi_vnet = curvnet; 461 #endif 462 pcbinfo->ipi_listhead = listhead; 463 CK_LIST_INIT(pcbinfo->ipi_listhead); 464 pcbinfo->ipi_count = 0; 465 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 466 &pcbinfo->ipi_hashmask); 467 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 468 &pcbinfo->ipi_porthashmask); 469 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, 470 &pcbinfo->ipi_lbgrouphashmask); 471 #ifdef PCBGROUP 472 in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); 473 #endif 474 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 475 NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0); 476 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 477 uma_zone_set_warning(pcbinfo->ipi_zone, 478 "kern.ipc.maxsockets limit reached"); 479 } 480 481 /* 482 * Destroy an inpcbinfo. 483 */ 484 void 485 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 486 { 487 488 KASSERT(pcbinfo->ipi_count == 0, 489 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 490 491 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 492 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 493 pcbinfo->ipi_porthashmask); 494 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 495 pcbinfo->ipi_lbgrouphashmask); 496 #ifdef PCBGROUP 497 in_pcbgroup_destroy(pcbinfo); 498 #endif 499 uma_zdestroy(pcbinfo->ipi_zone); 500 INP_LIST_LOCK_DESTROY(pcbinfo); 501 INP_HASH_LOCK_DESTROY(pcbinfo); 502 INP_INFO_LOCK_DESTROY(pcbinfo); 503 } 504 505 /* 506 * Allocate a PCB and associate it with the socket. 507 * On success return with the PCB locked. 508 */ 509 int 510 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 511 { 512 struct inpcb *inp; 513 int error; 514 515 error = 0; 516 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 517 if (inp == NULL) 518 return (ENOBUFS); 519 bzero(&inp->inp_start_zero, inp_zero_size); 520 #ifdef NUMA 521 inp->inp_numa_domain = M_NODOM; 522 #endif 523 inp->inp_pcbinfo = pcbinfo; 524 inp->inp_socket = so; 525 inp->inp_cred = crhold(so->so_cred); 526 inp->inp_inc.inc_fibnum = so->so_fibnum; 527 #ifdef MAC 528 error = mac_inpcb_init(inp, M_NOWAIT); 529 if (error != 0) 530 goto out; 531 mac_inpcb_create(so, inp); 532 #endif 533 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 534 error = ipsec_init_pcbpolicy(inp); 535 if (error != 0) { 536 #ifdef MAC 537 mac_inpcb_destroy(inp); 538 #endif 539 goto out; 540 } 541 #endif /*IPSEC*/ 542 #ifdef INET6 543 if (INP_SOCKAF(so) == AF_INET6) { 544 inp->inp_vflag |= INP_IPV6PROTO; 545 if (V_ip6_v6only) 546 inp->inp_flags |= IN6P_IPV6_V6ONLY; 547 } 548 #endif 549 INP_WLOCK(inp); 550 INP_LIST_WLOCK(pcbinfo); 551 CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 552 pcbinfo->ipi_count++; 553 so->so_pcb = (caddr_t)inp; 554 #ifdef INET6 555 if (V_ip6_auto_flowlabel) 556 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 557 #endif 558 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 559 refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ 560 561 /* 562 * Routes in inpcb's can cache L2 as well; they are guaranteed 563 * to be cleaned up. 564 */ 565 inp->inp_route.ro_flags = RT_LLE_CACHE; 566 INP_LIST_WUNLOCK(pcbinfo); 567 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 568 out: 569 if (error != 0) { 570 crfree(inp->inp_cred); 571 uma_zfree(pcbinfo->ipi_zone, inp); 572 } 573 #endif 574 return (error); 575 } 576 577 #ifdef INET 578 int 579 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 580 { 581 int anonport, error; 582 583 INP_WLOCK_ASSERT(inp); 584 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 585 586 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 587 return (EINVAL); 588 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 589 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 590 &inp->inp_lport, cred); 591 if (error) 592 return (error); 593 if (in_pcbinshash(inp) != 0) { 594 inp->inp_laddr.s_addr = INADDR_ANY; 595 inp->inp_lport = 0; 596 return (EAGAIN); 597 } 598 if (anonport) 599 inp->inp_flags |= INP_ANONPORT; 600 return (0); 601 } 602 #endif 603 604 /* 605 * Select a local port (number) to use. 606 */ 607 #if defined(INET) || defined(INET6) 608 int 609 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 610 struct ucred *cred, int lookupflags) 611 { 612 struct inpcbinfo *pcbinfo; 613 struct inpcb *tmpinp; 614 unsigned short *lastport; 615 int count, dorandom, error; 616 u_short aux, first, last, lport; 617 #ifdef INET 618 struct in_addr laddr; 619 #endif 620 621 pcbinfo = inp->inp_pcbinfo; 622 623 /* 624 * Because no actual state changes occur here, a global write lock on 625 * the pcbinfo isn't required. 626 */ 627 INP_LOCK_ASSERT(inp); 628 INP_HASH_LOCK_ASSERT(pcbinfo); 629 630 if (inp->inp_flags & INP_HIGHPORT) { 631 first = V_ipport_hifirstauto; /* sysctl */ 632 last = V_ipport_hilastauto; 633 lastport = &pcbinfo->ipi_lasthi; 634 } else if (inp->inp_flags & INP_LOWPORT) { 635 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); 636 if (error) 637 return (error); 638 first = V_ipport_lowfirstauto; /* 1023 */ 639 last = V_ipport_lowlastauto; /* 600 */ 640 lastport = &pcbinfo->ipi_lastlow; 641 } else { 642 first = V_ipport_firstauto; /* sysctl */ 643 last = V_ipport_lastauto; 644 lastport = &pcbinfo->ipi_lastport; 645 } 646 /* 647 * For UDP(-Lite), use random port allocation as long as the user 648 * allows it. For TCP (and as of yet unknown) connections, 649 * use random port allocation only if the user allows it AND 650 * ipport_tick() allows it. 651 */ 652 if (V_ipport_randomized && 653 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 654 pcbinfo == &V_ulitecbinfo)) 655 dorandom = 1; 656 else 657 dorandom = 0; 658 /* 659 * It makes no sense to do random port allocation if 660 * we have the only port available. 661 */ 662 if (first == last) 663 dorandom = 0; 664 /* Make sure to not include UDP(-Lite) packets in the count. */ 665 if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) 666 V_ipport_tcpallocs++; 667 /* 668 * Instead of having two loops further down counting up or down 669 * make sure that first is always <= last and go with only one 670 * code path implementing all logic. 671 */ 672 if (first > last) { 673 aux = first; 674 first = last; 675 last = aux; 676 } 677 678 #ifdef INET 679 /* Make the compiler happy. */ 680 laddr.s_addr = 0; 681 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 682 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p", 683 __func__, inp)); 684 laddr = *laddrp; 685 } 686 #endif 687 tmpinp = NULL; /* Make compiler happy. */ 688 lport = *lportp; 689 690 if (dorandom) 691 *lastport = first + (arc4random() % (last - first)); 692 693 count = last - first; 694 695 do { 696 if (count-- < 0) /* completely used? */ 697 return (EADDRNOTAVAIL); 698 ++*lastport; 699 if (*lastport < first || *lastport > last) 700 *lastport = first; 701 lport = htons(*lastport); 702 703 #ifdef INET6 704 if ((inp->inp_vflag & INP_IPV6) != 0) 705 tmpinp = in6_pcblookup_local(pcbinfo, 706 &inp->in6p_laddr, lport, lookupflags, cred); 707 #endif 708 #if defined(INET) && defined(INET6) 709 else 710 #endif 711 #ifdef INET 712 tmpinp = in_pcblookup_local(pcbinfo, laddr, 713 lport, lookupflags, cred); 714 #endif 715 } while (tmpinp != NULL); 716 717 #ifdef INET 718 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) 719 laddrp->s_addr = laddr.s_addr; 720 #endif 721 *lportp = lport; 722 723 return (0); 724 } 725 726 /* 727 * Return cached socket options. 728 */ 729 int 730 inp_so_options(const struct inpcb *inp) 731 { 732 int so_options; 733 734 so_options = 0; 735 736 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 737 so_options |= SO_REUSEPORT_LB; 738 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 739 so_options |= SO_REUSEPORT; 740 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 741 so_options |= SO_REUSEADDR; 742 return (so_options); 743 } 744 #endif /* INET || INET6 */ 745 746 /* 747 * Check if a new BINDMULTI socket is allowed to be created. 748 * 749 * ni points to the new inp. 750 * oi points to the exisitng inp. 751 * 752 * This checks whether the existing inp also has BINDMULTI and 753 * whether the credentials match. 754 */ 755 int 756 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 757 { 758 /* Check permissions match */ 759 if ((ni->inp_flags2 & INP_BINDMULTI) && 760 (ni->inp_cred->cr_uid != 761 oi->inp_cred->cr_uid)) 762 return (0); 763 764 /* Check the existing inp has BINDMULTI set */ 765 if ((ni->inp_flags2 & INP_BINDMULTI) && 766 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 767 return (0); 768 769 /* 770 * We're okay - either INP_BINDMULTI isn't set on ni, or 771 * it is and it matches the checks. 772 */ 773 return (1); 774 } 775 776 #ifdef INET 777 /* 778 * Set up a bind operation on a PCB, performing port allocation 779 * as required, but do not actually modify the PCB. Callers can 780 * either complete the bind by setting inp_laddr/inp_lport and 781 * calling in_pcbinshash(), or they can just use the resulting 782 * port and address to authorise the sending of a once-off packet. 783 * 784 * On error, the values of *laddrp and *lportp are not changed. 785 */ 786 int 787 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 788 u_short *lportp, struct ucred *cred) 789 { 790 struct socket *so = inp->inp_socket; 791 struct sockaddr_in *sin; 792 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 793 struct in_addr laddr; 794 u_short lport = 0; 795 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 796 int error; 797 798 /* 799 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here 800 * so that we don't have to add to the (already messy) code below. 801 */ 802 int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); 803 804 /* 805 * No state changes, so read locks are sufficient here. 806 */ 807 INP_LOCK_ASSERT(inp); 808 INP_HASH_LOCK_ASSERT(pcbinfo); 809 810 if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 811 return (EADDRNOTAVAIL); 812 laddr.s_addr = *laddrp; 813 if (nam != NULL && laddr.s_addr != INADDR_ANY) 814 return (EINVAL); 815 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) 816 lookupflags = INPLOOKUP_WILDCARD; 817 if (nam == NULL) { 818 if ((error = prison_local_ip4(cred, &laddr)) != 0) 819 return (error); 820 } else { 821 sin = (struct sockaddr_in *)nam; 822 if (nam->sa_len != sizeof (*sin)) 823 return (EINVAL); 824 #ifdef notdef 825 /* 826 * We should check the family, but old programs 827 * incorrectly fail to initialize it. 828 */ 829 if (sin->sin_family != AF_INET) 830 return (EAFNOSUPPORT); 831 #endif 832 error = prison_local_ip4(cred, &sin->sin_addr); 833 if (error) 834 return (error); 835 if (sin->sin_port != *lportp) { 836 /* Don't allow the port to change. */ 837 if (*lportp != 0) 838 return (EINVAL); 839 lport = sin->sin_port; 840 } 841 /* NB: lport is left as 0 if the port isn't being changed. */ 842 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 843 /* 844 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 845 * allow complete duplication of binding if 846 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 847 * and a multicast address is bound on both 848 * new and duplicated sockets. 849 */ 850 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 851 reuseport = SO_REUSEADDR|SO_REUSEPORT; 852 /* 853 * XXX: How to deal with SO_REUSEPORT_LB here? 854 * Treat same as SO_REUSEPORT for now. 855 */ 856 if ((so->so_options & 857 (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) 858 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; 859 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 860 sin->sin_port = 0; /* yech... */ 861 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 862 /* 863 * Is the address a local IP address? 864 * If INP_BINDANY is set, then the socket may be bound 865 * to any endpoint address, local or not. 866 */ 867 if ((inp->inp_flags & INP_BINDANY) == 0 && 868 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 869 return (EADDRNOTAVAIL); 870 } 871 laddr = sin->sin_addr; 872 if (lport) { 873 struct inpcb *t; 874 struct tcptw *tw; 875 876 /* GROSS */ 877 if (ntohs(lport) <= V_ipport_reservedhigh && 878 ntohs(lport) >= V_ipport_reservedlow && 879 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) 880 return (EACCES); 881 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 882 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { 883 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 884 lport, INPLOOKUP_WILDCARD, cred); 885 /* 886 * XXX 887 * This entire block sorely needs a rewrite. 888 */ 889 if (t && 890 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 891 ((t->inp_flags & INP_TIMEWAIT) == 0) && 892 (so->so_type != SOCK_STREAM || 893 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 894 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 895 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 896 (t->inp_flags2 & INP_REUSEPORT) || 897 (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && 898 (inp->inp_cred->cr_uid != 899 t->inp_cred->cr_uid)) 900 return (EADDRINUSE); 901 902 /* 903 * If the socket is a BINDMULTI socket, then 904 * the credentials need to match and the 905 * original socket also has to have been bound 906 * with BINDMULTI. 907 */ 908 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 909 return (EADDRINUSE); 910 } 911 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 912 lport, lookupflags, cred); 913 if (t && (t->inp_flags & INP_TIMEWAIT)) { 914 /* 915 * XXXRW: If an incpb has had its timewait 916 * state recycled, we treat the address as 917 * being in use (for now). This is better 918 * than a panic, but not desirable. 919 */ 920 tw = intotw(t); 921 if (tw == NULL || 922 ((reuseport & tw->tw_so_options) == 0 && 923 (reuseport_lb & 924 tw->tw_so_options) == 0)) { 925 return (EADDRINUSE); 926 } 927 } else if (t && 928 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 929 (reuseport & inp_so_options(t)) == 0 && 930 (reuseport_lb & inp_so_options(t)) == 0) { 931 #ifdef INET6 932 if (ntohl(sin->sin_addr.s_addr) != 933 INADDR_ANY || 934 ntohl(t->inp_laddr.s_addr) != 935 INADDR_ANY || 936 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 937 (t->inp_vflag & INP_IPV6PROTO) == 0) 938 #endif 939 return (EADDRINUSE); 940 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 941 return (EADDRINUSE); 942 } 943 } 944 } 945 if (*lportp != 0) 946 lport = *lportp; 947 if (lport == 0) { 948 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 949 if (error != 0) 950 return (error); 951 952 } 953 *laddrp = laddr.s_addr; 954 *lportp = lport; 955 return (0); 956 } 957 958 /* 959 * Connect from a socket to a specified address. 960 * Both address and port must be specified in argument sin. 961 * If don't have a local address for this socket yet, 962 * then pick one. 963 */ 964 int 965 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, 966 struct ucred *cred, struct mbuf *m, bool rehash) 967 { 968 u_short lport, fport; 969 in_addr_t laddr, faddr; 970 int anonport, error; 971 972 INP_WLOCK_ASSERT(inp); 973 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 974 975 lport = inp->inp_lport; 976 laddr = inp->inp_laddr.s_addr; 977 anonport = (lport == 0); 978 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 979 NULL, cred); 980 if (error) 981 return (error); 982 983 /* Do the initial binding of the local address if required. */ 984 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 985 KASSERT(rehash == true, 986 ("Rehashing required for unbound inps")); 987 inp->inp_lport = lport; 988 inp->inp_laddr.s_addr = laddr; 989 if (in_pcbinshash(inp) != 0) { 990 inp->inp_laddr.s_addr = INADDR_ANY; 991 inp->inp_lport = 0; 992 return (EAGAIN); 993 } 994 } 995 996 /* Commit the remaining changes. */ 997 inp->inp_lport = lport; 998 inp->inp_laddr.s_addr = laddr; 999 inp->inp_faddr.s_addr = faddr; 1000 inp->inp_fport = fport; 1001 if (rehash) { 1002 in_pcbrehash_mbuf(inp, m); 1003 } else { 1004 in_pcbinshash_mbuf(inp, m); 1005 } 1006 1007 if (anonport) 1008 inp->inp_flags |= INP_ANONPORT; 1009 return (0); 1010 } 1011 1012 int 1013 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 1014 { 1015 1016 return (in_pcbconnect_mbuf(inp, nam, cred, NULL, true)); 1017 } 1018 1019 /* 1020 * Do proper source address selection on an unbound socket in case 1021 * of connect. Take jails into account as well. 1022 */ 1023 int 1024 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 1025 struct ucred *cred) 1026 { 1027 struct ifaddr *ifa; 1028 struct sockaddr *sa; 1029 struct sockaddr_in *sin; 1030 struct route sro; 1031 int error; 1032 1033 NET_EPOCH_ASSERT(); 1034 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1035 /* 1036 * Bypass source address selection and use the primary jail IP 1037 * if requested. 1038 */ 1039 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 1040 return (0); 1041 1042 error = 0; 1043 bzero(&sro, sizeof(sro)); 1044 1045 sin = (struct sockaddr_in *)&sro.ro_dst; 1046 sin->sin_family = AF_INET; 1047 sin->sin_len = sizeof(struct sockaddr_in); 1048 sin->sin_addr.s_addr = faddr->s_addr; 1049 1050 /* 1051 * If route is known our src addr is taken from the i/f, 1052 * else punt. 1053 * 1054 * Find out route to destination. 1055 */ 1056 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1057 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); 1058 1059 /* 1060 * If we found a route, use the address corresponding to 1061 * the outgoing interface. 1062 * 1063 * Otherwise assume faddr is reachable on a directly connected 1064 * network and try to find a corresponding interface to take 1065 * the source address from. 1066 */ 1067 if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { 1068 struct in_ifaddr *ia; 1069 struct ifnet *ifp; 1070 1071 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1072 inp->inp_socket->so_fibnum)); 1073 if (ia == NULL) { 1074 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1075 inp->inp_socket->so_fibnum)); 1076 1077 } 1078 if (ia == NULL) { 1079 error = ENETUNREACH; 1080 goto done; 1081 } 1082 1083 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1084 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1085 goto done; 1086 } 1087 1088 ifp = ia->ia_ifp; 1089 ia = NULL; 1090 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1091 1092 sa = ifa->ifa_addr; 1093 if (sa->sa_family != AF_INET) 1094 continue; 1095 sin = (struct sockaddr_in *)sa; 1096 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1097 ia = (struct in_ifaddr *)ifa; 1098 break; 1099 } 1100 } 1101 if (ia != NULL) { 1102 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1103 goto done; 1104 } 1105 1106 /* 3. As a last resort return the 'default' jail address. */ 1107 error = prison_get_ip4(cred, laddr); 1108 goto done; 1109 } 1110 1111 /* 1112 * If the outgoing interface on the route found is not 1113 * a loopback interface, use the address from that interface. 1114 * In case of jails do those three steps: 1115 * 1. check if the interface address belongs to the jail. If so use it. 1116 * 2. check if we have any address on the outgoing interface 1117 * belonging to this jail. If so use it. 1118 * 3. as a last resort return the 'default' jail address. 1119 */ 1120 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { 1121 struct in_ifaddr *ia; 1122 struct ifnet *ifp; 1123 1124 /* If not jailed, use the default returned. */ 1125 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1126 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 1127 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1128 goto done; 1129 } 1130 1131 /* Jailed. */ 1132 /* 1. Check if the iface address belongs to the jail. */ 1133 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; 1134 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1135 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 1136 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1137 goto done; 1138 } 1139 1140 /* 1141 * 2. Check if we have any address on the outgoing interface 1142 * belonging to this jail. 1143 */ 1144 ia = NULL; 1145 ifp = sro.ro_rt->rt_ifp; 1146 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1147 sa = ifa->ifa_addr; 1148 if (sa->sa_family != AF_INET) 1149 continue; 1150 sin = (struct sockaddr_in *)sa; 1151 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1152 ia = (struct in_ifaddr *)ifa; 1153 break; 1154 } 1155 } 1156 if (ia != NULL) { 1157 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1158 goto done; 1159 } 1160 1161 /* 3. As a last resort return the 'default' jail address. */ 1162 error = prison_get_ip4(cred, laddr); 1163 goto done; 1164 } 1165 1166 /* 1167 * The outgoing interface is marked with 'loopback net', so a route 1168 * to ourselves is here. 1169 * Try to find the interface of the destination address and then 1170 * take the address from there. That interface is not necessarily 1171 * a loopback interface. 1172 * In case of jails, check that it is an address of the jail 1173 * and if we cannot find, fall back to the 'default' jail address. 1174 */ 1175 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 1176 struct sockaddr_in sain; 1177 struct in_ifaddr *ia; 1178 1179 bzero(&sain, sizeof(struct sockaddr_in)); 1180 sain.sin_family = AF_INET; 1181 sain.sin_len = sizeof(struct sockaddr_in); 1182 sain.sin_addr.s_addr = faddr->s_addr; 1183 1184 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain), 1185 inp->inp_socket->so_fibnum)); 1186 if (ia == NULL) 1187 ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0, 1188 inp->inp_socket->so_fibnum)); 1189 if (ia == NULL) 1190 ia = ifatoia(ifa_ifwithaddr(sintosa(&sain))); 1191 1192 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1193 if (ia == NULL) { 1194 error = ENETUNREACH; 1195 goto done; 1196 } 1197 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1198 goto done; 1199 } 1200 1201 /* Jailed. */ 1202 if (ia != NULL) { 1203 struct ifnet *ifp; 1204 1205 ifp = ia->ia_ifp; 1206 ia = NULL; 1207 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1208 sa = ifa->ifa_addr; 1209 if (sa->sa_family != AF_INET) 1210 continue; 1211 sin = (struct sockaddr_in *)sa; 1212 if (prison_check_ip4(cred, 1213 &sin->sin_addr) == 0) { 1214 ia = (struct in_ifaddr *)ifa; 1215 break; 1216 } 1217 } 1218 if (ia != NULL) { 1219 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1220 goto done; 1221 } 1222 } 1223 1224 /* 3. As a last resort return the 'default' jail address. */ 1225 error = prison_get_ip4(cred, laddr); 1226 goto done; 1227 } 1228 1229 done: 1230 if (sro.ro_rt != NULL) 1231 RTFREE(sro.ro_rt); 1232 return (error); 1233 } 1234 1235 /* 1236 * Set up for a connect from a socket to the specified address. 1237 * On entry, *laddrp and *lportp should contain the current local 1238 * address and port for the PCB; these are updated to the values 1239 * that should be placed in inp_laddr and inp_lport to complete 1240 * the connect. 1241 * 1242 * On success, *faddrp and *fportp will be set to the remote address 1243 * and port. These are not updated in the error case. 1244 * 1245 * If the operation fails because the connection already exists, 1246 * *oinpp will be set to the PCB of that connection so that the 1247 * caller can decide to override it. In all other cases, *oinpp 1248 * is set to NULL. 1249 */ 1250 int 1251 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1252 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1253 struct inpcb **oinpp, struct ucred *cred) 1254 { 1255 struct rm_priotracker in_ifa_tracker; 1256 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1257 struct in_ifaddr *ia; 1258 struct inpcb *oinp; 1259 struct in_addr laddr, faddr; 1260 u_short lport, fport; 1261 int error; 1262 1263 /* 1264 * Because a global state change doesn't actually occur here, a read 1265 * lock is sufficient. 1266 */ 1267 NET_EPOCH_ASSERT(); 1268 INP_LOCK_ASSERT(inp); 1269 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1270 1271 if (oinpp != NULL) 1272 *oinpp = NULL; 1273 if (nam->sa_len != sizeof (*sin)) 1274 return (EINVAL); 1275 if (sin->sin_family != AF_INET) 1276 return (EAFNOSUPPORT); 1277 if (sin->sin_port == 0) 1278 return (EADDRNOTAVAIL); 1279 laddr.s_addr = *laddrp; 1280 lport = *lportp; 1281 faddr = sin->sin_addr; 1282 fport = sin->sin_port; 1283 1284 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1285 /* 1286 * If the destination address is INADDR_ANY, 1287 * use the primary local address. 1288 * If the supplied address is INADDR_BROADCAST, 1289 * and the primary interface supports broadcast, 1290 * choose the broadcast address for that interface. 1291 */ 1292 if (faddr.s_addr == INADDR_ANY) { 1293 IN_IFADDR_RLOCK(&in_ifa_tracker); 1294 faddr = 1295 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1296 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1297 if (cred != NULL && 1298 (error = prison_get_ip4(cred, &faddr)) != 0) 1299 return (error); 1300 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1301 IN_IFADDR_RLOCK(&in_ifa_tracker); 1302 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1303 IFF_BROADCAST) 1304 faddr = satosin(&CK_STAILQ_FIRST( 1305 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1306 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1307 } 1308 } 1309 if (laddr.s_addr == INADDR_ANY) { 1310 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1311 /* 1312 * If the destination address is multicast and an outgoing 1313 * interface has been set as a multicast option, prefer the 1314 * address of that interface as our source address. 1315 */ 1316 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1317 inp->inp_moptions != NULL) { 1318 struct ip_moptions *imo; 1319 struct ifnet *ifp; 1320 1321 imo = inp->inp_moptions; 1322 if (imo->imo_multicast_ifp != NULL) { 1323 ifp = imo->imo_multicast_ifp; 1324 IN_IFADDR_RLOCK(&in_ifa_tracker); 1325 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1326 if ((ia->ia_ifp == ifp) && 1327 (cred == NULL || 1328 prison_check_ip4(cred, 1329 &ia->ia_addr.sin_addr) == 0)) 1330 break; 1331 } 1332 if (ia == NULL) 1333 error = EADDRNOTAVAIL; 1334 else { 1335 laddr = ia->ia_addr.sin_addr; 1336 error = 0; 1337 } 1338 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1339 } 1340 } 1341 if (error) 1342 return (error); 1343 } 1344 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport, 1345 laddr, lport, 0, NULL); 1346 if (oinp != NULL) { 1347 if (oinpp != NULL) 1348 *oinpp = oinp; 1349 return (EADDRINUSE); 1350 } 1351 if (lport == 0) { 1352 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 1353 cred); 1354 if (error) 1355 return (error); 1356 } 1357 *laddrp = laddr.s_addr; 1358 *lportp = lport; 1359 *faddrp = faddr.s_addr; 1360 *fportp = fport; 1361 return (0); 1362 } 1363 1364 void 1365 in_pcbdisconnect(struct inpcb *inp) 1366 { 1367 1368 INP_WLOCK_ASSERT(inp); 1369 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1370 1371 inp->inp_faddr.s_addr = INADDR_ANY; 1372 inp->inp_fport = 0; 1373 in_pcbrehash(inp); 1374 } 1375 #endif /* INET */ 1376 1377 /* 1378 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1379 * For most protocols, this will be invoked immediately prior to calling 1380 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1381 * socket, in which case in_pcbfree() is deferred. 1382 */ 1383 void 1384 in_pcbdetach(struct inpcb *inp) 1385 { 1386 1387 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1388 1389 #ifdef RATELIMIT 1390 if (inp->inp_snd_tag != NULL) 1391 in_pcbdetach_txrtlmt(inp); 1392 #endif 1393 inp->inp_socket->so_pcb = NULL; 1394 inp->inp_socket = NULL; 1395 } 1396 1397 /* 1398 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1399 * stability of an inpcb pointer despite the inpcb lock being released. This 1400 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 1401 * but where the inpcb lock may already held, or when acquiring a reference 1402 * via a pcbgroup. 1403 * 1404 * in_pcbref() should be used only to provide brief memory stability, and 1405 * must always be followed by a call to INP_WLOCK() and in_pcbrele() to 1406 * garbage collect the inpcb if it has been in_pcbfree()'d from another 1407 * context. Until in_pcbrele() has returned that the inpcb is still valid, 1408 * lock and rele are the *only* safe operations that may be performed on the 1409 * inpcb. 1410 * 1411 * While the inpcb will not be freed, releasing the inpcb lock means that the 1412 * connection's state may change, so the caller should be careful to 1413 * revalidate any cached state on reacquiring the lock. Drop the reference 1414 * using in_pcbrele(). 1415 */ 1416 void 1417 in_pcbref(struct inpcb *inp) 1418 { 1419 1420 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1421 1422 refcount_acquire(&inp->inp_refcount); 1423 } 1424 1425 /* 1426 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 1427 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 1428 * return a flag indicating whether or not the inpcb remains valid. If it is 1429 * valid, we return with the inpcb lock held. 1430 * 1431 * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a 1432 * reference on an inpcb. Historically more work was done here (actually, in 1433 * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the 1434 * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely 1435 * about memory stability (and continued use of the write lock). 1436 */ 1437 int 1438 in_pcbrele_rlocked(struct inpcb *inp) 1439 { 1440 struct inpcbinfo *pcbinfo; 1441 1442 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1443 1444 INP_RLOCK_ASSERT(inp); 1445 1446 if (refcount_release(&inp->inp_refcount) == 0) { 1447 /* 1448 * If the inpcb has been freed, let the caller know, even if 1449 * this isn't the last reference. 1450 */ 1451 if (inp->inp_flags2 & INP_FREED) { 1452 INP_RUNLOCK(inp); 1453 return (1); 1454 } 1455 return (0); 1456 } 1457 1458 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1459 #ifdef TCPHPTS 1460 if (inp->inp_in_hpts || inp->inp_in_input) { 1461 struct tcp_hpts_entry *hpts; 1462 /* 1463 * We should not be on the hpts at 1464 * this point in any form. we must 1465 * get the lock to be sure. 1466 */ 1467 hpts = tcp_hpts_lock(inp); 1468 if (inp->inp_in_hpts) 1469 panic("Hpts:%p inp:%p at free still on hpts", 1470 hpts, inp); 1471 mtx_unlock(&hpts->p_mtx); 1472 hpts = tcp_input_lock(inp); 1473 if (inp->inp_in_input) 1474 panic("Hpts:%p inp:%p at free still on input hpts", 1475 hpts, inp); 1476 mtx_unlock(&hpts->p_mtx); 1477 } 1478 #endif 1479 INP_RUNLOCK(inp); 1480 pcbinfo = inp->inp_pcbinfo; 1481 uma_zfree(pcbinfo->ipi_zone, inp); 1482 return (1); 1483 } 1484 1485 int 1486 in_pcbrele_wlocked(struct inpcb *inp) 1487 { 1488 struct inpcbinfo *pcbinfo; 1489 1490 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1491 1492 INP_WLOCK_ASSERT(inp); 1493 1494 if (refcount_release(&inp->inp_refcount) == 0) { 1495 /* 1496 * If the inpcb has been freed, let the caller know, even if 1497 * this isn't the last reference. 1498 */ 1499 if (inp->inp_flags2 & INP_FREED) { 1500 INP_WUNLOCK(inp); 1501 return (1); 1502 } 1503 return (0); 1504 } 1505 1506 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1507 #ifdef TCPHPTS 1508 if (inp->inp_in_hpts || inp->inp_in_input) { 1509 struct tcp_hpts_entry *hpts; 1510 /* 1511 * We should not be on the hpts at 1512 * this point in any form. we must 1513 * get the lock to be sure. 1514 */ 1515 hpts = tcp_hpts_lock(inp); 1516 if (inp->inp_in_hpts) 1517 panic("Hpts:%p inp:%p at free still on hpts", 1518 hpts, inp); 1519 mtx_unlock(&hpts->p_mtx); 1520 hpts = tcp_input_lock(inp); 1521 if (inp->inp_in_input) 1522 panic("Hpts:%p inp:%p at free still on input hpts", 1523 hpts, inp); 1524 mtx_unlock(&hpts->p_mtx); 1525 } 1526 #endif 1527 INP_WUNLOCK(inp); 1528 pcbinfo = inp->inp_pcbinfo; 1529 uma_zfree(pcbinfo->ipi_zone, inp); 1530 return (1); 1531 } 1532 1533 /* 1534 * Temporary wrapper. 1535 */ 1536 int 1537 in_pcbrele(struct inpcb *inp) 1538 { 1539 1540 return (in_pcbrele_wlocked(inp)); 1541 } 1542 1543 void 1544 in_pcblist_rele_rlocked(epoch_context_t ctx) 1545 { 1546 struct in_pcblist *il; 1547 struct inpcb *inp; 1548 struct inpcbinfo *pcbinfo; 1549 int i, n; 1550 1551 il = __containerof(ctx, struct in_pcblist, il_epoch_ctx); 1552 pcbinfo = il->il_pcbinfo; 1553 n = il->il_count; 1554 INP_INFO_WLOCK(pcbinfo); 1555 for (i = 0; i < n; i++) { 1556 inp = il->il_inp_list[i]; 1557 INP_RLOCK(inp); 1558 if (!in_pcbrele_rlocked(inp)) 1559 INP_RUNLOCK(inp); 1560 } 1561 INP_INFO_WUNLOCK(pcbinfo); 1562 free(il, M_TEMP); 1563 } 1564 1565 static void 1566 inpcbport_free(epoch_context_t ctx) 1567 { 1568 struct inpcbport *phd; 1569 1570 phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx); 1571 free(phd, M_PCB); 1572 } 1573 1574 static void 1575 in_pcbfree_deferred(epoch_context_t ctx) 1576 { 1577 struct inpcb *inp; 1578 int released __unused; 1579 1580 inp = __containerof(ctx, struct inpcb, inp_epoch_ctx); 1581 1582 INP_WLOCK(inp); 1583 CURVNET_SET(inp->inp_vnet); 1584 #ifdef INET 1585 struct ip_moptions *imo = inp->inp_moptions; 1586 inp->inp_moptions = NULL; 1587 #endif 1588 /* XXXRW: Do as much as possible here. */ 1589 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1590 if (inp->inp_sp != NULL) 1591 ipsec_delete_pcbpolicy(inp); 1592 #endif 1593 #ifdef INET6 1594 struct ip6_moptions *im6o = NULL; 1595 if (inp->inp_vflag & INP_IPV6PROTO) { 1596 ip6_freepcbopts(inp->in6p_outputopts); 1597 im6o = inp->in6p_moptions; 1598 inp->in6p_moptions = NULL; 1599 } 1600 #endif 1601 if (inp->inp_options) 1602 (void)m_free(inp->inp_options); 1603 inp->inp_vflag = 0; 1604 crfree(inp->inp_cred); 1605 #ifdef MAC 1606 mac_inpcb_destroy(inp); 1607 #endif 1608 released = in_pcbrele_wlocked(inp); 1609 MPASS(released); 1610 #ifdef INET6 1611 ip6_freemoptions(im6o); 1612 #endif 1613 #ifdef INET 1614 inp_freemoptions(imo); 1615 #endif 1616 CURVNET_RESTORE(); 1617 } 1618 1619 /* 1620 * Unconditionally schedule an inpcb to be freed by decrementing its 1621 * reference count, which should occur only after the inpcb has been detached 1622 * from its socket. If another thread holds a temporary reference (acquired 1623 * using in_pcbref()) then the free is deferred until that reference is 1624 * released using in_pcbrele(), but the inpcb is still unlocked. Almost all 1625 * work, including removal from global lists, is done in this context, where 1626 * the pcbinfo lock is held. 1627 */ 1628 void 1629 in_pcbfree(struct inpcb *inp) 1630 { 1631 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1632 1633 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1634 KASSERT((inp->inp_flags2 & INP_FREED) == 0, 1635 ("%s: called twice for pcb %p", __func__, inp)); 1636 if (inp->inp_flags2 & INP_FREED) { 1637 INP_WUNLOCK(inp); 1638 return; 1639 } 1640 1641 INP_WLOCK_ASSERT(inp); 1642 INP_LIST_WLOCK(pcbinfo); 1643 in_pcbremlists(inp); 1644 INP_LIST_WUNLOCK(pcbinfo); 1645 RO_INVALIDATE_CACHE(&inp->inp_route); 1646 /* mark as destruction in progress */ 1647 inp->inp_flags2 |= INP_FREED; 1648 INP_WUNLOCK(inp); 1649 NET_EPOCH_CALL(in_pcbfree_deferred, &inp->inp_epoch_ctx); 1650 } 1651 1652 /* 1653 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1654 * port reservation, and preventing it from being returned by inpcb lookups. 1655 * 1656 * It is used by TCP to mark an inpcb as unused and avoid future packet 1657 * delivery or event notification when a socket remains open but TCP has 1658 * closed. This might occur as a result of a shutdown()-initiated TCP close 1659 * or a RST on the wire, and allows the port binding to be reused while still 1660 * maintaining the invariant that so_pcb always points to a valid inpcb until 1661 * in_pcbdetach(). 1662 * 1663 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1664 * in_pcbnotifyall() and in_pcbpurgeif0()? 1665 */ 1666 void 1667 in_pcbdrop(struct inpcb *inp) 1668 { 1669 1670 INP_WLOCK_ASSERT(inp); 1671 #ifdef INVARIANTS 1672 if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) 1673 MPASS(inp->inp_refcount > 1); 1674 #endif 1675 1676 /* 1677 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1678 * the hash lock...? 1679 */ 1680 inp->inp_flags |= INP_DROPPED; 1681 if (inp->inp_flags & INP_INHASHLIST) { 1682 struct inpcbport *phd = inp->inp_phd; 1683 1684 INP_HASH_WLOCK(inp->inp_pcbinfo); 1685 in_pcbremlbgrouphash(inp); 1686 CK_LIST_REMOVE(inp, inp_hash); 1687 CK_LIST_REMOVE(inp, inp_portlist); 1688 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 1689 CK_LIST_REMOVE(phd, phd_hash); 1690 NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx); 1691 } 1692 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1693 inp->inp_flags &= ~INP_INHASHLIST; 1694 #ifdef PCBGROUP 1695 in_pcbgroup_remove(inp); 1696 #endif 1697 } 1698 } 1699 1700 #ifdef INET 1701 /* 1702 * Common routines to return the socket addresses associated with inpcbs. 1703 */ 1704 struct sockaddr * 1705 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1706 { 1707 struct sockaddr_in *sin; 1708 1709 sin = malloc(sizeof *sin, M_SONAME, 1710 M_WAITOK | M_ZERO); 1711 sin->sin_family = AF_INET; 1712 sin->sin_len = sizeof(*sin); 1713 sin->sin_addr = *addr_p; 1714 sin->sin_port = port; 1715 1716 return (struct sockaddr *)sin; 1717 } 1718 1719 int 1720 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1721 { 1722 struct inpcb *inp; 1723 struct in_addr addr; 1724 in_port_t port; 1725 1726 inp = sotoinpcb(so); 1727 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1728 1729 INP_RLOCK(inp); 1730 port = inp->inp_lport; 1731 addr = inp->inp_laddr; 1732 INP_RUNLOCK(inp); 1733 1734 *nam = in_sockaddr(port, &addr); 1735 return 0; 1736 } 1737 1738 int 1739 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1740 { 1741 struct inpcb *inp; 1742 struct in_addr addr; 1743 in_port_t port; 1744 1745 inp = sotoinpcb(so); 1746 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1747 1748 INP_RLOCK(inp); 1749 port = inp->inp_fport; 1750 addr = inp->inp_faddr; 1751 INP_RUNLOCK(inp); 1752 1753 *nam = in_sockaddr(port, &addr); 1754 return 0; 1755 } 1756 1757 void 1758 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1759 struct inpcb *(*notify)(struct inpcb *, int)) 1760 { 1761 struct inpcb *inp, *inp_temp; 1762 1763 INP_INFO_WLOCK(pcbinfo); 1764 CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1765 INP_WLOCK(inp); 1766 #ifdef INET6 1767 if ((inp->inp_vflag & INP_IPV4) == 0) { 1768 INP_WUNLOCK(inp); 1769 continue; 1770 } 1771 #endif 1772 if (inp->inp_faddr.s_addr != faddr.s_addr || 1773 inp->inp_socket == NULL) { 1774 INP_WUNLOCK(inp); 1775 continue; 1776 } 1777 if ((*notify)(inp, errno)) 1778 INP_WUNLOCK(inp); 1779 } 1780 INP_INFO_WUNLOCK(pcbinfo); 1781 } 1782 1783 void 1784 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1785 { 1786 struct inpcb *inp; 1787 struct in_multi *inm; 1788 struct in_mfilter *imf; 1789 struct ip_moptions *imo; 1790 1791 INP_INFO_WLOCK(pcbinfo); 1792 CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1793 INP_WLOCK(inp); 1794 imo = inp->inp_moptions; 1795 if ((inp->inp_vflag & INP_IPV4) && 1796 imo != NULL) { 1797 /* 1798 * Unselect the outgoing interface if it is being 1799 * detached. 1800 */ 1801 if (imo->imo_multicast_ifp == ifp) 1802 imo->imo_multicast_ifp = NULL; 1803 1804 /* 1805 * Drop multicast group membership if we joined 1806 * through the interface being detached. 1807 * 1808 * XXX This can all be deferred to an epoch_call 1809 */ 1810 restart: 1811 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 1812 if ((inm = imf->imf_inm) == NULL) 1813 continue; 1814 if (inm->inm_ifp != ifp) 1815 continue; 1816 ip_mfilter_remove(&imo->imo_head, imf); 1817 IN_MULTI_LOCK_ASSERT(); 1818 in_leavegroup_locked(inm, NULL); 1819 ip_mfilter_free(imf); 1820 goto restart; 1821 } 1822 } 1823 INP_WUNLOCK(inp); 1824 } 1825 INP_INFO_WUNLOCK(pcbinfo); 1826 } 1827 1828 /* 1829 * Lookup a PCB based on the local address and port. Caller must hold the 1830 * hash lock. No inpcb locks or references are acquired. 1831 */ 1832 #define INP_LOOKUP_MAPPED_PCB_COST 3 1833 struct inpcb * 1834 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1835 u_short lport, int lookupflags, struct ucred *cred) 1836 { 1837 struct inpcb *inp; 1838 #ifdef INET6 1839 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1840 #else 1841 int matchwild = 3; 1842 #endif 1843 int wildcard; 1844 1845 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1846 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1847 1848 INP_HASH_LOCK_ASSERT(pcbinfo); 1849 1850 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1851 struct inpcbhead *head; 1852 /* 1853 * Look for an unconnected (wildcard foreign addr) PCB that 1854 * matches the local address and port we're looking for. 1855 */ 1856 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1857 0, pcbinfo->ipi_hashmask)]; 1858 CK_LIST_FOREACH(inp, head, inp_hash) { 1859 #ifdef INET6 1860 /* XXX inp locking */ 1861 if ((inp->inp_vflag & INP_IPV4) == 0) 1862 continue; 1863 #endif 1864 if (inp->inp_faddr.s_addr == INADDR_ANY && 1865 inp->inp_laddr.s_addr == laddr.s_addr && 1866 inp->inp_lport == lport) { 1867 /* 1868 * Found? 1869 */ 1870 if (cred == NULL || 1871 prison_equal_ip4(cred->cr_prison, 1872 inp->inp_cred->cr_prison)) 1873 return (inp); 1874 } 1875 } 1876 /* 1877 * Not found. 1878 */ 1879 return (NULL); 1880 } else { 1881 struct inpcbporthead *porthash; 1882 struct inpcbport *phd; 1883 struct inpcb *match = NULL; 1884 /* 1885 * Best fit PCB lookup. 1886 * 1887 * First see if this local port is in use by looking on the 1888 * port hash list. 1889 */ 1890 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1891 pcbinfo->ipi_porthashmask)]; 1892 CK_LIST_FOREACH(phd, porthash, phd_hash) { 1893 if (phd->phd_port == lport) 1894 break; 1895 } 1896 if (phd != NULL) { 1897 /* 1898 * Port is in use by one or more PCBs. Look for best 1899 * fit. 1900 */ 1901 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1902 wildcard = 0; 1903 if (cred != NULL && 1904 !prison_equal_ip4(inp->inp_cred->cr_prison, 1905 cred->cr_prison)) 1906 continue; 1907 #ifdef INET6 1908 /* XXX inp locking */ 1909 if ((inp->inp_vflag & INP_IPV4) == 0) 1910 continue; 1911 /* 1912 * We never select the PCB that has 1913 * INP_IPV6 flag and is bound to :: if 1914 * we have another PCB which is bound 1915 * to 0.0.0.0. If a PCB has the 1916 * INP_IPV6 flag, then we set its cost 1917 * higher than IPv4 only PCBs. 1918 * 1919 * Note that the case only happens 1920 * when a socket is bound to ::, under 1921 * the condition that the use of the 1922 * mapped address is allowed. 1923 */ 1924 if ((inp->inp_vflag & INP_IPV6) != 0) 1925 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1926 #endif 1927 if (inp->inp_faddr.s_addr != INADDR_ANY) 1928 wildcard++; 1929 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1930 if (laddr.s_addr == INADDR_ANY) 1931 wildcard++; 1932 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1933 continue; 1934 } else { 1935 if (laddr.s_addr != INADDR_ANY) 1936 wildcard++; 1937 } 1938 if (wildcard < matchwild) { 1939 match = inp; 1940 matchwild = wildcard; 1941 if (matchwild == 0) 1942 break; 1943 } 1944 } 1945 } 1946 return (match); 1947 } 1948 } 1949 #undef INP_LOOKUP_MAPPED_PCB_COST 1950 1951 static struct inpcb * 1952 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 1953 const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr, 1954 uint16_t fport, int lookupflags) 1955 { 1956 struct inpcb *local_wild; 1957 const struct inpcblbgrouphead *hdr; 1958 struct inpcblbgroup *grp; 1959 uint32_t idx; 1960 1961 INP_HASH_LOCK_ASSERT(pcbinfo); 1962 1963 hdr = &pcbinfo->ipi_lbgrouphashbase[ 1964 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; 1965 1966 /* 1967 * Order of socket selection: 1968 * 1. non-wild. 1969 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD). 1970 * 1971 * NOTE: 1972 * - Load balanced group does not contain jailed sockets 1973 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets 1974 */ 1975 local_wild = NULL; 1976 CK_LIST_FOREACH(grp, hdr, il_list) { 1977 #ifdef INET6 1978 if (!(grp->il_vflag & INP_IPV4)) 1979 continue; 1980 #endif 1981 if (grp->il_lport != lport) 1982 continue; 1983 1984 idx = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport) % 1985 grp->il_inpcnt; 1986 if (grp->il_laddr.s_addr == laddr->s_addr) 1987 return (grp->il_inp[idx]); 1988 if (grp->il_laddr.s_addr == INADDR_ANY && 1989 (lookupflags & INPLOOKUP_WILDCARD) != 0) 1990 local_wild = grp->il_inp[idx]; 1991 } 1992 return (local_wild); 1993 } 1994 1995 #ifdef PCBGROUP 1996 /* 1997 * Lookup PCB in hash list, using pcbgroup tables. 1998 */ 1999 static struct inpcb * 2000 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, 2001 struct in_addr faddr, u_int fport_arg, struct in_addr laddr, 2002 u_int lport_arg, int lookupflags, struct ifnet *ifp) 2003 { 2004 struct inpcbhead *head; 2005 struct inpcb *inp, *tmpinp; 2006 u_short fport = fport_arg, lport = lport_arg; 2007 bool locked; 2008 2009 /* 2010 * First look for an exact match. 2011 */ 2012 tmpinp = NULL; 2013 INP_GROUP_LOCK(pcbgroup); 2014 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 2015 pcbgroup->ipg_hashmask)]; 2016 CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) { 2017 #ifdef INET6 2018 /* XXX inp locking */ 2019 if ((inp->inp_vflag & INP_IPV4) == 0) 2020 continue; 2021 #endif 2022 if (inp->inp_faddr.s_addr == faddr.s_addr && 2023 inp->inp_laddr.s_addr == laddr.s_addr && 2024 inp->inp_fport == fport && 2025 inp->inp_lport == lport) { 2026 /* 2027 * XXX We should be able to directly return 2028 * the inp here, without any checks. 2029 * Well unless both bound with SO_REUSEPORT? 2030 */ 2031 if (prison_flag(inp->inp_cred, PR_IP4)) 2032 goto found; 2033 if (tmpinp == NULL) 2034 tmpinp = inp; 2035 } 2036 } 2037 if (tmpinp != NULL) { 2038 inp = tmpinp; 2039 goto found; 2040 } 2041 2042 #ifdef RSS 2043 /* 2044 * For incoming connections, we may wish to do a wildcard 2045 * match for an RSS-local socket. 2046 */ 2047 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2048 struct inpcb *local_wild = NULL, *local_exact = NULL; 2049 #ifdef INET6 2050 struct inpcb *local_wild_mapped = NULL; 2051 #endif 2052 struct inpcb *jail_wild = NULL; 2053 struct inpcbhead *head; 2054 int injail; 2055 2056 /* 2057 * Order of socket selection - we always prefer jails. 2058 * 1. jailed, non-wild. 2059 * 2. jailed, wild. 2060 * 3. non-jailed, non-wild. 2061 * 4. non-jailed, wild. 2062 */ 2063 2064 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, 2065 lport, 0, pcbgroup->ipg_hashmask)]; 2066 CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) { 2067 #ifdef INET6 2068 /* XXX inp locking */ 2069 if ((inp->inp_vflag & INP_IPV4) == 0) 2070 continue; 2071 #endif 2072 if (inp->inp_faddr.s_addr != INADDR_ANY || 2073 inp->inp_lport != lport) 2074 continue; 2075 2076 injail = prison_flag(inp->inp_cred, PR_IP4); 2077 if (injail) { 2078 if (prison_check_ip4(inp->inp_cred, 2079 &laddr) != 0) 2080 continue; 2081 } else { 2082 if (local_exact != NULL) 2083 continue; 2084 } 2085 2086 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2087 if (injail) 2088 goto found; 2089 else 2090 local_exact = inp; 2091 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2092 #ifdef INET6 2093 /* XXX inp locking, NULL check */ 2094 if (inp->inp_vflag & INP_IPV6PROTO) 2095 local_wild_mapped = inp; 2096 else 2097 #endif 2098 if (injail) 2099 jail_wild = inp; 2100 else 2101 local_wild = inp; 2102 } 2103 } /* LIST_FOREACH */ 2104 2105 inp = jail_wild; 2106 if (inp == NULL) 2107 inp = local_exact; 2108 if (inp == NULL) 2109 inp = local_wild; 2110 #ifdef INET6 2111 if (inp == NULL) 2112 inp = local_wild_mapped; 2113 #endif 2114 if (inp != NULL) 2115 goto found; 2116 } 2117 #endif 2118 2119 /* 2120 * Then look for a wildcard match, if requested. 2121 */ 2122 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2123 struct inpcb *local_wild = NULL, *local_exact = NULL; 2124 #ifdef INET6 2125 struct inpcb *local_wild_mapped = NULL; 2126 #endif 2127 struct inpcb *jail_wild = NULL; 2128 struct inpcbhead *head; 2129 int injail; 2130 2131 /* 2132 * Order of socket selection - we always prefer jails. 2133 * 1. jailed, non-wild. 2134 * 2. jailed, wild. 2135 * 3. non-jailed, non-wild. 2136 * 4. non-jailed, wild. 2137 */ 2138 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 2139 0, pcbinfo->ipi_wildmask)]; 2140 CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) { 2141 #ifdef INET6 2142 /* XXX inp locking */ 2143 if ((inp->inp_vflag & INP_IPV4) == 0) 2144 continue; 2145 #endif 2146 if (inp->inp_faddr.s_addr != INADDR_ANY || 2147 inp->inp_lport != lport) 2148 continue; 2149 2150 injail = prison_flag(inp->inp_cred, PR_IP4); 2151 if (injail) { 2152 if (prison_check_ip4(inp->inp_cred, 2153 &laddr) != 0) 2154 continue; 2155 } else { 2156 if (local_exact != NULL) 2157 continue; 2158 } 2159 2160 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2161 if (injail) 2162 goto found; 2163 else 2164 local_exact = inp; 2165 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2166 #ifdef INET6 2167 /* XXX inp locking, NULL check */ 2168 if (inp->inp_vflag & INP_IPV6PROTO) 2169 local_wild_mapped = inp; 2170 else 2171 #endif 2172 if (injail) 2173 jail_wild = inp; 2174 else 2175 local_wild = inp; 2176 } 2177 } /* LIST_FOREACH */ 2178 inp = jail_wild; 2179 if (inp == NULL) 2180 inp = local_exact; 2181 if (inp == NULL) 2182 inp = local_wild; 2183 #ifdef INET6 2184 if (inp == NULL) 2185 inp = local_wild_mapped; 2186 #endif 2187 if (inp != NULL) 2188 goto found; 2189 } /* if (lookupflags & INPLOOKUP_WILDCARD) */ 2190 INP_GROUP_UNLOCK(pcbgroup); 2191 return (NULL); 2192 2193 found: 2194 if (lookupflags & INPLOOKUP_WLOCKPCB) 2195 locked = INP_TRY_WLOCK(inp); 2196 else if (lookupflags & INPLOOKUP_RLOCKPCB) 2197 locked = INP_TRY_RLOCK(inp); 2198 else 2199 panic("%s: locking bug", __func__); 2200 if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) { 2201 if (lookupflags & INPLOOKUP_WLOCKPCB) 2202 INP_WUNLOCK(inp); 2203 else 2204 INP_RUNLOCK(inp); 2205 return (NULL); 2206 } else if (!locked) 2207 in_pcbref(inp); 2208 INP_GROUP_UNLOCK(pcbgroup); 2209 if (!locked) { 2210 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2211 INP_WLOCK(inp); 2212 if (in_pcbrele_wlocked(inp)) 2213 return (NULL); 2214 } else { 2215 INP_RLOCK(inp); 2216 if (in_pcbrele_rlocked(inp)) 2217 return (NULL); 2218 } 2219 } 2220 #ifdef INVARIANTS 2221 if (lookupflags & INPLOOKUP_WLOCKPCB) 2222 INP_WLOCK_ASSERT(inp); 2223 else 2224 INP_RLOCK_ASSERT(inp); 2225 #endif 2226 return (inp); 2227 } 2228 #endif /* PCBGROUP */ 2229 2230 /* 2231 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2232 * that the caller has locked the hash list, and will not perform any further 2233 * locking or reference operations on either the hash list or the connection. 2234 */ 2235 static struct inpcb * 2236 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2237 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2238 struct ifnet *ifp) 2239 { 2240 struct inpcbhead *head; 2241 struct inpcb *inp, *tmpinp; 2242 u_short fport = fport_arg, lport = lport_arg; 2243 2244 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2245 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2246 INP_HASH_LOCK_ASSERT(pcbinfo); 2247 2248 /* 2249 * First look for an exact match. 2250 */ 2251 tmpinp = NULL; 2252 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 2253 pcbinfo->ipi_hashmask)]; 2254 CK_LIST_FOREACH(inp, head, inp_hash) { 2255 #ifdef INET6 2256 /* XXX inp locking */ 2257 if ((inp->inp_vflag & INP_IPV4) == 0) 2258 continue; 2259 #endif 2260 if (inp->inp_faddr.s_addr == faddr.s_addr && 2261 inp->inp_laddr.s_addr == laddr.s_addr && 2262 inp->inp_fport == fport && 2263 inp->inp_lport == lport) { 2264 /* 2265 * XXX We should be able to directly return 2266 * the inp here, without any checks. 2267 * Well unless both bound with SO_REUSEPORT? 2268 */ 2269 if (prison_flag(inp->inp_cred, PR_IP4)) 2270 return (inp); 2271 if (tmpinp == NULL) 2272 tmpinp = inp; 2273 } 2274 } 2275 if (tmpinp != NULL) 2276 return (tmpinp); 2277 2278 /* 2279 * Then look in lb group (for wildcard match). 2280 */ 2281 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2282 inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr, 2283 fport, lookupflags); 2284 if (inp != NULL) 2285 return (inp); 2286 } 2287 2288 /* 2289 * Then look for a wildcard match, if requested. 2290 */ 2291 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2292 struct inpcb *local_wild = NULL, *local_exact = NULL; 2293 #ifdef INET6 2294 struct inpcb *local_wild_mapped = NULL; 2295 #endif 2296 struct inpcb *jail_wild = NULL; 2297 int injail; 2298 2299 /* 2300 * Order of socket selection - we always prefer jails. 2301 * 1. jailed, non-wild. 2302 * 2. jailed, wild. 2303 * 3. non-jailed, non-wild. 2304 * 4. non-jailed, wild. 2305 */ 2306 2307 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 2308 0, pcbinfo->ipi_hashmask)]; 2309 CK_LIST_FOREACH(inp, head, inp_hash) { 2310 #ifdef INET6 2311 /* XXX inp locking */ 2312 if ((inp->inp_vflag & INP_IPV4) == 0) 2313 continue; 2314 #endif 2315 if (inp->inp_faddr.s_addr != INADDR_ANY || 2316 inp->inp_lport != lport) 2317 continue; 2318 2319 injail = prison_flag(inp->inp_cred, PR_IP4); 2320 if (injail) { 2321 if (prison_check_ip4(inp->inp_cred, 2322 &laddr) != 0) 2323 continue; 2324 } else { 2325 if (local_exact != NULL) 2326 continue; 2327 } 2328 2329 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2330 if (injail) 2331 return (inp); 2332 else 2333 local_exact = inp; 2334 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2335 #ifdef INET6 2336 /* XXX inp locking, NULL check */ 2337 if (inp->inp_vflag & INP_IPV6PROTO) 2338 local_wild_mapped = inp; 2339 else 2340 #endif 2341 if (injail) 2342 jail_wild = inp; 2343 else 2344 local_wild = inp; 2345 } 2346 } /* LIST_FOREACH */ 2347 if (jail_wild != NULL) 2348 return (jail_wild); 2349 if (local_exact != NULL) 2350 return (local_exact); 2351 if (local_wild != NULL) 2352 return (local_wild); 2353 #ifdef INET6 2354 if (local_wild_mapped != NULL) 2355 return (local_wild_mapped); 2356 #endif 2357 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 2358 2359 return (NULL); 2360 } 2361 2362 /* 2363 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 2364 * hash list lock, and will return the inpcb locked (i.e., requires 2365 * INPLOOKUP_LOCKPCB). 2366 */ 2367 static struct inpcb * 2368 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2369 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2370 struct ifnet *ifp) 2371 { 2372 struct inpcb *inp; 2373 2374 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2375 (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp); 2376 if (inp != NULL) { 2377 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2378 INP_WLOCK(inp); 2379 if (__predict_false(inp->inp_flags2 & INP_FREED)) { 2380 INP_WUNLOCK(inp); 2381 inp = NULL; 2382 } 2383 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 2384 INP_RLOCK(inp); 2385 if (__predict_false(inp->inp_flags2 & INP_FREED)) { 2386 INP_RUNLOCK(inp); 2387 inp = NULL; 2388 } 2389 } else 2390 panic("%s: locking bug", __func__); 2391 #ifdef INVARIANTS 2392 if (inp != NULL) { 2393 if (lookupflags & INPLOOKUP_WLOCKPCB) 2394 INP_WLOCK_ASSERT(inp); 2395 else 2396 INP_RLOCK_ASSERT(inp); 2397 } 2398 #endif 2399 } 2400 2401 return (inp); 2402 } 2403 2404 /* 2405 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2406 * from which a pre-calculated hash value may be extracted. 2407 * 2408 * Possibly more of this logic should be in in_pcbgroup.c. 2409 */ 2410 struct inpcb * 2411 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2412 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 2413 { 2414 #if defined(PCBGROUP) && !defined(RSS) 2415 struct inpcbgroup *pcbgroup; 2416 #endif 2417 2418 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2419 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2420 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2421 ("%s: LOCKPCB not set", __func__)); 2422 2423 /* 2424 * When not using RSS, use connection groups in preference to the 2425 * reservation table when looking up 4-tuples. When using RSS, just 2426 * use the reservation table, due to the cost of the Toeplitz hash 2427 * in software. 2428 * 2429 * XXXRW: This policy belongs in the pcbgroup code, as in principle 2430 * we could be doing RSS with a non-Toeplitz hash that is affordable 2431 * in software. 2432 */ 2433 #if defined(PCBGROUP) && !defined(RSS) 2434 if (in_pcbgroup_enabled(pcbinfo)) { 2435 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2436 fport); 2437 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2438 laddr, lport, lookupflags, ifp)); 2439 } 2440 #endif 2441 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2442 lookupflags, ifp)); 2443 } 2444 2445 struct inpcb * 2446 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2447 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2448 struct ifnet *ifp, struct mbuf *m) 2449 { 2450 #ifdef PCBGROUP 2451 struct inpcbgroup *pcbgroup; 2452 #endif 2453 2454 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2455 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2456 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2457 ("%s: LOCKPCB not set", __func__)); 2458 2459 #ifdef PCBGROUP 2460 /* 2461 * If we can use a hardware-generated hash to look up the connection 2462 * group, use that connection group to find the inpcb. Otherwise 2463 * fall back on a software hash -- or the reservation table if we're 2464 * using RSS. 2465 * 2466 * XXXRW: As above, that policy belongs in the pcbgroup code. 2467 */ 2468 if (in_pcbgroup_enabled(pcbinfo) && 2469 !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { 2470 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), 2471 m->m_pkthdr.flowid); 2472 if (pcbgroup != NULL) 2473 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, 2474 fport, laddr, lport, lookupflags, ifp)); 2475 #ifndef RSS 2476 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2477 fport); 2478 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2479 laddr, lport, lookupflags, ifp)); 2480 #endif 2481 } 2482 #endif 2483 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2484 lookupflags, ifp)); 2485 } 2486 #endif /* INET */ 2487 2488 /* 2489 * Insert PCB onto various hash lists. 2490 */ 2491 static int 2492 in_pcbinshash_internal(struct inpcb *inp, struct mbuf *m) 2493 { 2494 struct inpcbhead *pcbhash; 2495 struct inpcbporthead *pcbporthash; 2496 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2497 struct inpcbport *phd; 2498 u_int32_t hashkey_faddr; 2499 int so_options; 2500 2501 INP_WLOCK_ASSERT(inp); 2502 INP_HASH_WLOCK_ASSERT(pcbinfo); 2503 2504 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2505 ("in_pcbinshash: INP_INHASHLIST")); 2506 2507 #ifdef INET6 2508 if (inp->inp_vflag & INP_IPV6) 2509 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2510 else 2511 #endif 2512 hashkey_faddr = inp->inp_faddr.s_addr; 2513 2514 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2515 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2516 2517 pcbporthash = &pcbinfo->ipi_porthashbase[ 2518 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2519 2520 /* 2521 * Add entry to load balance group. 2522 * Only do this if SO_REUSEPORT_LB is set. 2523 */ 2524 so_options = inp_so_options(inp); 2525 if (so_options & SO_REUSEPORT_LB) { 2526 int ret = in_pcbinslbgrouphash(inp); 2527 if (ret) { 2528 /* pcb lb group malloc fail (ret=ENOBUFS). */ 2529 return (ret); 2530 } 2531 } 2532 2533 /* 2534 * Go through port list and look for a head for this lport. 2535 */ 2536 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2537 if (phd->phd_port == inp->inp_lport) 2538 break; 2539 } 2540 /* 2541 * If none exists, malloc one and tack it on. 2542 */ 2543 if (phd == NULL) { 2544 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 2545 if (phd == NULL) { 2546 return (ENOBUFS); /* XXX */ 2547 } 2548 bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context)); 2549 phd->phd_port = inp->inp_lport; 2550 CK_LIST_INIT(&phd->phd_pcblist); 2551 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2552 } 2553 inp->inp_phd = phd; 2554 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2555 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2556 inp->inp_flags |= INP_INHASHLIST; 2557 #ifdef PCBGROUP 2558 if (m != NULL) { 2559 in_pcbgroup_update_mbuf(inp, m); 2560 } else { 2561 in_pcbgroup_update(inp); 2562 } 2563 #endif 2564 return (0); 2565 } 2566 2567 int 2568 in_pcbinshash(struct inpcb *inp) 2569 { 2570 2571 return (in_pcbinshash_internal(inp, NULL)); 2572 } 2573 2574 int 2575 in_pcbinshash_mbuf(struct inpcb *inp, struct mbuf *m) 2576 { 2577 2578 return (in_pcbinshash_internal(inp, m)); 2579 } 2580 2581 /* 2582 * Move PCB to the proper hash bucket when { faddr, fport } have been 2583 * changed. NOTE: This does not handle the case of the lport changing (the 2584 * hashed port list would have to be updated as well), so the lport must 2585 * not change after in_pcbinshash() has been called. 2586 */ 2587 void 2588 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) 2589 { 2590 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2591 struct inpcbhead *head; 2592 u_int32_t hashkey_faddr; 2593 2594 INP_WLOCK_ASSERT(inp); 2595 INP_HASH_WLOCK_ASSERT(pcbinfo); 2596 2597 KASSERT(inp->inp_flags & INP_INHASHLIST, 2598 ("in_pcbrehash: !INP_INHASHLIST")); 2599 2600 #ifdef INET6 2601 if (inp->inp_vflag & INP_IPV6) 2602 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2603 else 2604 #endif 2605 hashkey_faddr = inp->inp_faddr.s_addr; 2606 2607 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2608 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2609 2610 CK_LIST_REMOVE(inp, inp_hash); 2611 CK_LIST_INSERT_HEAD(head, inp, inp_hash); 2612 2613 #ifdef PCBGROUP 2614 if (m != NULL) 2615 in_pcbgroup_update_mbuf(inp, m); 2616 else 2617 in_pcbgroup_update(inp); 2618 #endif 2619 } 2620 2621 void 2622 in_pcbrehash(struct inpcb *inp) 2623 { 2624 2625 in_pcbrehash_mbuf(inp, NULL); 2626 } 2627 2628 /* 2629 * Remove PCB from various lists. 2630 */ 2631 static void 2632 in_pcbremlists(struct inpcb *inp) 2633 { 2634 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2635 2636 INP_WLOCK_ASSERT(inp); 2637 INP_LIST_WLOCK_ASSERT(pcbinfo); 2638 2639 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 2640 if (inp->inp_flags & INP_INHASHLIST) { 2641 struct inpcbport *phd = inp->inp_phd; 2642 2643 INP_HASH_WLOCK(pcbinfo); 2644 2645 /* XXX: Only do if SO_REUSEPORT_LB set? */ 2646 in_pcbremlbgrouphash(inp); 2647 2648 CK_LIST_REMOVE(inp, inp_hash); 2649 CK_LIST_REMOVE(inp, inp_portlist); 2650 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 2651 CK_LIST_REMOVE(phd, phd_hash); 2652 NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx); 2653 } 2654 INP_HASH_WUNLOCK(pcbinfo); 2655 inp->inp_flags &= ~INP_INHASHLIST; 2656 } 2657 CK_LIST_REMOVE(inp, inp_list); 2658 pcbinfo->ipi_count--; 2659 #ifdef PCBGROUP 2660 in_pcbgroup_remove(inp); 2661 #endif 2662 } 2663 2664 /* 2665 * Check for alternatives when higher level complains 2666 * about service problems. For now, invalidate cached 2667 * routing information. If the route was created dynamically 2668 * (by a redirect), time to try a default gateway again. 2669 */ 2670 void 2671 in_losing(struct inpcb *inp) 2672 { 2673 2674 RO_INVALIDATE_CACHE(&inp->inp_route); 2675 return; 2676 } 2677 2678 /* 2679 * A set label operation has occurred at the socket layer, propagate the 2680 * label change into the in_pcb for the socket. 2681 */ 2682 void 2683 in_pcbsosetlabel(struct socket *so) 2684 { 2685 #ifdef MAC 2686 struct inpcb *inp; 2687 2688 inp = sotoinpcb(so); 2689 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2690 2691 INP_WLOCK(inp); 2692 SOCK_LOCK(so); 2693 mac_inpcb_sosetlabel(so, inp); 2694 SOCK_UNLOCK(so); 2695 INP_WUNLOCK(inp); 2696 #endif 2697 } 2698 2699 /* 2700 * ipport_tick runs once per second, determining if random port allocation 2701 * should be continued. If more than ipport_randomcps ports have been 2702 * allocated in the last second, then we return to sequential port 2703 * allocation. We return to random allocation only once we drop below 2704 * ipport_randomcps for at least ipport_randomtime seconds. 2705 */ 2706 static void 2707 ipport_tick(void *xtp) 2708 { 2709 VNET_ITERATOR_DECL(vnet_iter); 2710 2711 VNET_LIST_RLOCK_NOSLEEP(); 2712 VNET_FOREACH(vnet_iter) { 2713 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2714 if (V_ipport_tcpallocs <= 2715 V_ipport_tcplastcount + V_ipport_randomcps) { 2716 if (V_ipport_stoprandom > 0) 2717 V_ipport_stoprandom--; 2718 } else 2719 V_ipport_stoprandom = V_ipport_randomtime; 2720 V_ipport_tcplastcount = V_ipport_tcpallocs; 2721 CURVNET_RESTORE(); 2722 } 2723 VNET_LIST_RUNLOCK_NOSLEEP(); 2724 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2725 } 2726 2727 static void 2728 ip_fini(void *xtp) 2729 { 2730 2731 callout_stop(&ipport_tick_callout); 2732 } 2733 2734 /* 2735 * The ipport_callout should start running at about the time we attach the 2736 * inet or inet6 domains. 2737 */ 2738 static void 2739 ipport_tick_init(const void *unused __unused) 2740 { 2741 2742 /* Start ipport_tick. */ 2743 callout_init(&ipport_tick_callout, 1); 2744 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2745 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2746 SHUTDOWN_PRI_DEFAULT); 2747 } 2748 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2749 ipport_tick_init, NULL); 2750 2751 void 2752 inp_wlock(struct inpcb *inp) 2753 { 2754 2755 INP_WLOCK(inp); 2756 } 2757 2758 void 2759 inp_wunlock(struct inpcb *inp) 2760 { 2761 2762 INP_WUNLOCK(inp); 2763 } 2764 2765 void 2766 inp_rlock(struct inpcb *inp) 2767 { 2768 2769 INP_RLOCK(inp); 2770 } 2771 2772 void 2773 inp_runlock(struct inpcb *inp) 2774 { 2775 2776 INP_RUNLOCK(inp); 2777 } 2778 2779 #ifdef INVARIANT_SUPPORT 2780 void 2781 inp_lock_assert(struct inpcb *inp) 2782 { 2783 2784 INP_WLOCK_ASSERT(inp); 2785 } 2786 2787 void 2788 inp_unlock_assert(struct inpcb *inp) 2789 { 2790 2791 INP_UNLOCK_ASSERT(inp); 2792 } 2793 #endif 2794 2795 void 2796 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2797 { 2798 struct inpcb *inp; 2799 2800 INP_INFO_WLOCK(&V_tcbinfo); 2801 CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 2802 INP_WLOCK(inp); 2803 func(inp, arg); 2804 INP_WUNLOCK(inp); 2805 } 2806 INP_INFO_WUNLOCK(&V_tcbinfo); 2807 } 2808 2809 struct socket * 2810 inp_inpcbtosocket(struct inpcb *inp) 2811 { 2812 2813 INP_WLOCK_ASSERT(inp); 2814 return (inp->inp_socket); 2815 } 2816 2817 struct tcpcb * 2818 inp_inpcbtotcpcb(struct inpcb *inp) 2819 { 2820 2821 INP_WLOCK_ASSERT(inp); 2822 return ((struct tcpcb *)inp->inp_ppcb); 2823 } 2824 2825 int 2826 inp_ip_tos_get(const struct inpcb *inp) 2827 { 2828 2829 return (inp->inp_ip_tos); 2830 } 2831 2832 void 2833 inp_ip_tos_set(struct inpcb *inp, int val) 2834 { 2835 2836 inp->inp_ip_tos = val; 2837 } 2838 2839 void 2840 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2841 uint32_t *faddr, uint16_t *fp) 2842 { 2843 2844 INP_LOCK_ASSERT(inp); 2845 *laddr = inp->inp_laddr.s_addr; 2846 *faddr = inp->inp_faddr.s_addr; 2847 *lp = inp->inp_lport; 2848 *fp = inp->inp_fport; 2849 } 2850 2851 struct inpcb * 2852 so_sotoinpcb(struct socket *so) 2853 { 2854 2855 return (sotoinpcb(so)); 2856 } 2857 2858 struct tcpcb * 2859 so_sototcpcb(struct socket *so) 2860 { 2861 2862 return (sototcpcb(so)); 2863 } 2864 2865 /* 2866 * Create an external-format (``xinpcb'') structure using the information in 2867 * the kernel-format in_pcb structure pointed to by inp. This is done to 2868 * reduce the spew of irrelevant information over this interface, to isolate 2869 * user code from changes in the kernel structure, and potentially to provide 2870 * information-hiding if we decide that some of this information should be 2871 * hidden from users. 2872 */ 2873 void 2874 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2875 { 2876 2877 bzero(xi, sizeof(*xi)); 2878 xi->xi_len = sizeof(struct xinpcb); 2879 if (inp->inp_socket) 2880 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2881 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2882 xi->inp_gencnt = inp->inp_gencnt; 2883 xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; 2884 xi->inp_flow = inp->inp_flow; 2885 xi->inp_flowid = inp->inp_flowid; 2886 xi->inp_flowtype = inp->inp_flowtype; 2887 xi->inp_flags = inp->inp_flags; 2888 xi->inp_flags2 = inp->inp_flags2; 2889 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2890 xi->in6p_cksum = inp->in6p_cksum; 2891 xi->in6p_hops = inp->in6p_hops; 2892 xi->inp_ip_tos = inp->inp_ip_tos; 2893 xi->inp_vflag = inp->inp_vflag; 2894 xi->inp_ip_ttl = inp->inp_ip_ttl; 2895 xi->inp_ip_p = inp->inp_ip_p; 2896 xi->inp_ip_minttl = inp->inp_ip_minttl; 2897 } 2898 2899 #ifdef DDB 2900 static void 2901 db_print_indent(int indent) 2902 { 2903 int i; 2904 2905 for (i = 0; i < indent; i++) 2906 db_printf(" "); 2907 } 2908 2909 static void 2910 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2911 { 2912 char faddr_str[48], laddr_str[48]; 2913 2914 db_print_indent(indent); 2915 db_printf("%s at %p\n", name, inc); 2916 2917 indent += 2; 2918 2919 #ifdef INET6 2920 if (inc->inc_flags & INC_ISIPV6) { 2921 /* IPv6. */ 2922 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2923 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2924 } else 2925 #endif 2926 { 2927 /* IPv4. */ 2928 inet_ntoa_r(inc->inc_laddr, laddr_str); 2929 inet_ntoa_r(inc->inc_faddr, faddr_str); 2930 } 2931 db_print_indent(indent); 2932 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2933 ntohs(inc->inc_lport)); 2934 db_print_indent(indent); 2935 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2936 ntohs(inc->inc_fport)); 2937 } 2938 2939 static void 2940 db_print_inpflags(int inp_flags) 2941 { 2942 int comma; 2943 2944 comma = 0; 2945 if (inp_flags & INP_RECVOPTS) { 2946 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2947 comma = 1; 2948 } 2949 if (inp_flags & INP_RECVRETOPTS) { 2950 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2951 comma = 1; 2952 } 2953 if (inp_flags & INP_RECVDSTADDR) { 2954 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2955 comma = 1; 2956 } 2957 if (inp_flags & INP_ORIGDSTADDR) { 2958 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 2959 comma = 1; 2960 } 2961 if (inp_flags & INP_HDRINCL) { 2962 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2963 comma = 1; 2964 } 2965 if (inp_flags & INP_HIGHPORT) { 2966 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2967 comma = 1; 2968 } 2969 if (inp_flags & INP_LOWPORT) { 2970 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2971 comma = 1; 2972 } 2973 if (inp_flags & INP_ANONPORT) { 2974 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2975 comma = 1; 2976 } 2977 if (inp_flags & INP_RECVIF) { 2978 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2979 comma = 1; 2980 } 2981 if (inp_flags & INP_MTUDISC) { 2982 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2983 comma = 1; 2984 } 2985 if (inp_flags & INP_RECVTTL) { 2986 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 2987 comma = 1; 2988 } 2989 if (inp_flags & INP_DONTFRAG) { 2990 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 2991 comma = 1; 2992 } 2993 if (inp_flags & INP_RECVTOS) { 2994 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 2995 comma = 1; 2996 } 2997 if (inp_flags & IN6P_IPV6_V6ONLY) { 2998 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 2999 comma = 1; 3000 } 3001 if (inp_flags & IN6P_PKTINFO) { 3002 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 3003 comma = 1; 3004 } 3005 if (inp_flags & IN6P_HOPLIMIT) { 3006 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 3007 comma = 1; 3008 } 3009 if (inp_flags & IN6P_HOPOPTS) { 3010 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 3011 comma = 1; 3012 } 3013 if (inp_flags & IN6P_DSTOPTS) { 3014 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 3015 comma = 1; 3016 } 3017 if (inp_flags & IN6P_RTHDR) { 3018 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 3019 comma = 1; 3020 } 3021 if (inp_flags & IN6P_RTHDRDSTOPTS) { 3022 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 3023 comma = 1; 3024 } 3025 if (inp_flags & IN6P_TCLASS) { 3026 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 3027 comma = 1; 3028 } 3029 if (inp_flags & IN6P_AUTOFLOWLABEL) { 3030 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 3031 comma = 1; 3032 } 3033 if (inp_flags & INP_TIMEWAIT) { 3034 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 3035 comma = 1; 3036 } 3037 if (inp_flags & INP_ONESBCAST) { 3038 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 3039 comma = 1; 3040 } 3041 if (inp_flags & INP_DROPPED) { 3042 db_printf("%sINP_DROPPED", comma ? ", " : ""); 3043 comma = 1; 3044 } 3045 if (inp_flags & INP_SOCKREF) { 3046 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 3047 comma = 1; 3048 } 3049 if (inp_flags & IN6P_RFC2292) { 3050 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 3051 comma = 1; 3052 } 3053 if (inp_flags & IN6P_MTU) { 3054 db_printf("IN6P_MTU%s", comma ? ", " : ""); 3055 comma = 1; 3056 } 3057 } 3058 3059 static void 3060 db_print_inpvflag(u_char inp_vflag) 3061 { 3062 int comma; 3063 3064 comma = 0; 3065 if (inp_vflag & INP_IPV4) { 3066 db_printf("%sINP_IPV4", comma ? ", " : ""); 3067 comma = 1; 3068 } 3069 if (inp_vflag & INP_IPV6) { 3070 db_printf("%sINP_IPV6", comma ? ", " : ""); 3071 comma = 1; 3072 } 3073 if (inp_vflag & INP_IPV6PROTO) { 3074 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 3075 comma = 1; 3076 } 3077 } 3078 3079 static void 3080 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 3081 { 3082 3083 db_print_indent(indent); 3084 db_printf("%s at %p\n", name, inp); 3085 3086 indent += 2; 3087 3088 db_print_indent(indent); 3089 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 3090 3091 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 3092 3093 db_print_indent(indent); 3094 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 3095 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 3096 3097 db_print_indent(indent); 3098 db_printf("inp_label: %p inp_flags: 0x%x (", 3099 inp->inp_label, inp->inp_flags); 3100 db_print_inpflags(inp->inp_flags); 3101 db_printf(")\n"); 3102 3103 db_print_indent(indent); 3104 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 3105 inp->inp_vflag); 3106 db_print_inpvflag(inp->inp_vflag); 3107 db_printf(")\n"); 3108 3109 db_print_indent(indent); 3110 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 3111 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 3112 3113 db_print_indent(indent); 3114 #ifdef INET6 3115 if (inp->inp_vflag & INP_IPV6) { 3116 db_printf("in6p_options: %p in6p_outputopts: %p " 3117 "in6p_moptions: %p\n", inp->in6p_options, 3118 inp->in6p_outputopts, inp->in6p_moptions); 3119 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 3120 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 3121 inp->in6p_hops); 3122 } else 3123 #endif 3124 { 3125 db_printf("inp_ip_tos: %d inp_ip_options: %p " 3126 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 3127 inp->inp_options, inp->inp_moptions); 3128 } 3129 3130 db_print_indent(indent); 3131 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 3132 (uintmax_t)inp->inp_gencnt); 3133 } 3134 3135 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 3136 { 3137 struct inpcb *inp; 3138 3139 if (!have_addr) { 3140 db_printf("usage: show inpcb <addr>\n"); 3141 return; 3142 } 3143 inp = (struct inpcb *)addr; 3144 3145 db_print_inpcb(inp, "inpcb", 0); 3146 } 3147 #endif /* DDB */ 3148 3149 #ifdef RATELIMIT 3150 /* 3151 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 3152 * if any. 3153 */ 3154 int 3155 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 3156 { 3157 union if_snd_tag_modify_params params = { 3158 .rate_limit.max_rate = max_pacing_rate, 3159 .rate_limit.flags = M_NOWAIT, 3160 }; 3161 struct m_snd_tag *mst; 3162 struct ifnet *ifp; 3163 int error; 3164 3165 mst = inp->inp_snd_tag; 3166 if (mst == NULL) 3167 return (EINVAL); 3168 3169 ifp = mst->ifp; 3170 if (ifp == NULL) 3171 return (EINVAL); 3172 3173 if (ifp->if_snd_tag_modify == NULL) { 3174 error = EOPNOTSUPP; 3175 } else { 3176 error = ifp->if_snd_tag_modify(mst, ¶ms); 3177 } 3178 return (error); 3179 } 3180 3181 /* 3182 * Query existing TX rate limit based on the existing 3183 * "inp->inp_snd_tag", if any. 3184 */ 3185 int 3186 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3187 { 3188 union if_snd_tag_query_params params = { }; 3189 struct m_snd_tag *mst; 3190 struct ifnet *ifp; 3191 int error; 3192 3193 mst = inp->inp_snd_tag; 3194 if (mst == NULL) 3195 return (EINVAL); 3196 3197 ifp = mst->ifp; 3198 if (ifp == NULL) 3199 return (EINVAL); 3200 3201 if (ifp->if_snd_tag_query == NULL) { 3202 error = EOPNOTSUPP; 3203 } else { 3204 error = ifp->if_snd_tag_query(mst, ¶ms); 3205 if (error == 0 && p_max_pacing_rate != NULL) 3206 *p_max_pacing_rate = params.rate_limit.max_rate; 3207 } 3208 return (error); 3209 } 3210 3211 /* 3212 * Query existing TX queue level based on the existing 3213 * "inp->inp_snd_tag", if any. 3214 */ 3215 int 3216 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3217 { 3218 union if_snd_tag_query_params params = { }; 3219 struct m_snd_tag *mst; 3220 struct ifnet *ifp; 3221 int error; 3222 3223 mst = inp->inp_snd_tag; 3224 if (mst == NULL) 3225 return (EINVAL); 3226 3227 ifp = mst->ifp; 3228 if (ifp == NULL) 3229 return (EINVAL); 3230 3231 if (ifp->if_snd_tag_query == NULL) 3232 return (EOPNOTSUPP); 3233 3234 error = ifp->if_snd_tag_query(mst, ¶ms); 3235 if (error == 0 && p_txqueue_level != NULL) 3236 *p_txqueue_level = params.rate_limit.queue_level; 3237 return (error); 3238 } 3239 3240 /* 3241 * Allocate a new TX rate limit send tag from the network interface 3242 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3243 */ 3244 int 3245 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3246 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st) 3247 3248 { 3249 union if_snd_tag_alloc_params params = { 3250 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3251 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3252 .rate_limit.hdr.flowid = flowid, 3253 .rate_limit.hdr.flowtype = flowtype, 3254 .rate_limit.max_rate = max_pacing_rate, 3255 .rate_limit.flags = M_NOWAIT, 3256 }; 3257 int error; 3258 3259 INP_WLOCK_ASSERT(inp); 3260 3261 if (*st != NULL) 3262 return (EINVAL); 3263 3264 if (ifp->if_snd_tag_alloc == NULL) { 3265 error = EOPNOTSUPP; 3266 } else { 3267 error = ifp->if_snd_tag_alloc(ifp, ¶ms, &inp->inp_snd_tag); 3268 3269 #ifdef INET 3270 if (error == 0) { 3271 counter_u64_add(rate_limit_set_ok, 1); 3272 counter_u64_add(rate_limit_active, 1); 3273 } else 3274 counter_u64_add(rate_limit_alloc_fail, 1); 3275 #endif 3276 } 3277 return (error); 3278 } 3279 3280 void 3281 in_pcbdetach_tag(struct ifnet *ifp, struct m_snd_tag *mst) 3282 { 3283 if (ifp == NULL) 3284 return; 3285 3286 /* 3287 * If the device was detached while we still had reference(s) 3288 * on the ifp, we assume if_snd_tag_free() was replaced with 3289 * stubs. 3290 */ 3291 ifp->if_snd_tag_free(mst); 3292 3293 /* release reference count on network interface */ 3294 if_rele(ifp); 3295 #ifdef INET 3296 counter_u64_add(rate_limit_active, -1); 3297 #endif 3298 } 3299 3300 /* 3301 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3302 * if any: 3303 */ 3304 void 3305 in_pcbdetach_txrtlmt(struct inpcb *inp) 3306 { 3307 struct m_snd_tag *mst; 3308 3309 INP_WLOCK_ASSERT(inp); 3310 3311 mst = inp->inp_snd_tag; 3312 inp->inp_snd_tag = NULL; 3313 3314 if (mst == NULL) 3315 return; 3316 3317 m_snd_tag_rele(mst); 3318 } 3319 3320 int 3321 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate) 3322 { 3323 int error; 3324 3325 /* 3326 * If the existing send tag is for the wrong interface due to 3327 * a route change, first drop the existing tag. Set the 3328 * CHANGED flag so that we will keep trying to allocate a new 3329 * tag if we fail to allocate one this time. 3330 */ 3331 if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) { 3332 in_pcbdetach_txrtlmt(inp); 3333 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3334 } 3335 3336 /* 3337 * NOTE: When attaching to a network interface a reference is 3338 * made to ensure the network interface doesn't go away until 3339 * all ratelimit connections are gone. The network interface 3340 * pointers compared below represent valid network interfaces, 3341 * except when comparing towards NULL. 3342 */ 3343 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3344 error = 0; 3345 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3346 if (inp->inp_snd_tag != NULL) 3347 in_pcbdetach_txrtlmt(inp); 3348 error = 0; 3349 } else if (inp->inp_snd_tag == NULL) { 3350 /* 3351 * In order to utilize packet pacing with RSS, we need 3352 * to wait until there is a valid RSS hash before we 3353 * can proceed: 3354 */ 3355 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3356 error = EAGAIN; 3357 } else { 3358 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3359 mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag); 3360 } 3361 } else { 3362 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3363 } 3364 if (error == 0 || error == EOPNOTSUPP) 3365 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3366 3367 return (error); 3368 } 3369 3370 /* 3371 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3372 * is set in the fast path and will attach/detach/modify the TX rate 3373 * limit send tag based on the socket's so_max_pacing_rate value. 3374 */ 3375 void 3376 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3377 { 3378 struct socket *socket; 3379 uint32_t max_pacing_rate; 3380 bool did_upgrade; 3381 int error; 3382 3383 if (inp == NULL) 3384 return; 3385 3386 socket = inp->inp_socket; 3387 if (socket == NULL) 3388 return; 3389 3390 if (!INP_WLOCKED(inp)) { 3391 /* 3392 * NOTE: If the write locking fails, we need to bail 3393 * out and use the non-ratelimited ring for the 3394 * transmit until there is a new chance to get the 3395 * write lock. 3396 */ 3397 if (!INP_TRY_UPGRADE(inp)) 3398 return; 3399 did_upgrade = 1; 3400 } else { 3401 did_upgrade = 0; 3402 } 3403 3404 /* 3405 * NOTE: The so_max_pacing_rate value is read unlocked, 3406 * because atomic updates are not required since the variable 3407 * is checked at every mbuf we send. It is assumed that the 3408 * variable read itself will be atomic. 3409 */ 3410 max_pacing_rate = socket->so_max_pacing_rate; 3411 3412 error = in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate); 3413 3414 if (did_upgrade) 3415 INP_DOWNGRADE(inp); 3416 } 3417 3418 /* 3419 * Track route changes for TX rate limiting. 3420 */ 3421 void 3422 in_pcboutput_eagain(struct inpcb *inp) 3423 { 3424 bool did_upgrade; 3425 3426 if (inp == NULL) 3427 return; 3428 3429 if (inp->inp_snd_tag == NULL) 3430 return; 3431 3432 if (!INP_WLOCKED(inp)) { 3433 /* 3434 * NOTE: If the write locking fails, we need to bail 3435 * out and use the non-ratelimited ring for the 3436 * transmit until there is a new chance to get the 3437 * write lock. 3438 */ 3439 if (!INP_TRY_UPGRADE(inp)) 3440 return; 3441 did_upgrade = 1; 3442 } else { 3443 did_upgrade = 0; 3444 } 3445 3446 /* detach rate limiting */ 3447 in_pcbdetach_txrtlmt(inp); 3448 3449 /* make sure new mbuf send tag allocation is made */ 3450 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3451 3452 if (did_upgrade) 3453 INP_DOWNGRADE(inp); 3454 } 3455 3456 #ifdef INET 3457 static void 3458 rl_init(void *st) 3459 { 3460 rate_limit_active = counter_u64_alloc(M_WAITOK); 3461 rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK); 3462 rate_limit_set_ok = counter_u64_alloc(M_WAITOK); 3463 } 3464 3465 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL); 3466 #endif 3467 #endif /* RATELIMIT */ 3468