xref: /freebsd/sys/netinet/in_pcb.c (revision 6871d4882591c9a8fcab24d084c93f0a2972e1af)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2007-2009 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * All rights reserved.
9  *
10  * Portions of this software were developed by Robert N. M. Watson under
11  * contract to Juniper Networks, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include "opt_ddb.h"
44 #include "opt_ipsec.h"
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 #include "opt_ratelimit.h"
48 #include "opt_pcbgroup.h"
49 #include "opt_rss.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/callout.h>
57 #include <sys/eventhandler.h>
58 #include <sys/domain.h>
59 #include <sys/protosw.h>
60 #include <sys/rmlock.h>
61 #include <sys/smp.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/sockio.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/refcount.h>
68 #include <sys/jail.h>
69 #include <sys/kernel.h>
70 #include <sys/sysctl.h>
71 
72 #ifdef DDB
73 #include <ddb/ddb.h>
74 #endif
75 
76 #include <vm/uma.h>
77 
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/if_types.h>
81 #include <net/if_llatbl.h>
82 #include <net/route.h>
83 #include <net/rss_config.h>
84 #include <net/vnet.h>
85 
86 #if defined(INET) || defined(INET6)
87 #include <netinet/in.h>
88 #include <netinet/in_pcb.h>
89 #include <netinet/ip_var.h>
90 #include <netinet/tcp_var.h>
91 #ifdef TCPHPTS
92 #include <netinet/tcp_hpts.h>
93 #endif
94 #include <netinet/udp.h>
95 #include <netinet/udp_var.h>
96 #endif
97 #ifdef INET
98 #include <netinet/in_var.h>
99 #endif
100 #ifdef INET6
101 #include <netinet/ip6.h>
102 #include <netinet6/in6_pcb.h>
103 #include <netinet6/in6_var.h>
104 #include <netinet6/ip6_var.h>
105 #endif /* INET6 */
106 
107 #include <netipsec/ipsec_support.h>
108 
109 #include <security/mac/mac_framework.h>
110 
111 #define	INPCBLBGROUP_SIZMIN	8
112 #define	INPCBLBGROUP_SIZMAX	256
113 
114 static struct callout	ipport_tick_callout;
115 
116 /*
117  * These configure the range of local port addresses assigned to
118  * "unspecified" outgoing connections/packets/whatever.
119  */
120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
126 
127 /*
128  * Reserved ports accessible only to root. There are significant
129  * security considerations that must be accounted for when changing these,
130  * but the security benefits can be great. Please be careful.
131  */
132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
133 VNET_DEFINE(int, ipport_reservedlow);
134 
135 /* Variables dealing with random ephemeral port allocation. */
136 VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
137 VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
138 VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
139 VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
140 VNET_DEFINE(int, ipport_tcpallocs);
141 VNET_DEFINE_STATIC(int, ipport_tcplastcount);
142 
143 #define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
144 
145 static void	in_pcbremlists(struct inpcb *inp);
146 #ifdef INET
147 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
148 			    struct in_addr faddr, u_int fport_arg,
149 			    struct in_addr laddr, u_int lport_arg,
150 			    int lookupflags, struct ifnet *ifp);
151 
152 #define RANGECHK(var, min, max) \
153 	if ((var) < (min)) { (var) = (min); } \
154 	else if ((var) > (max)) { (var) = (max); }
155 
156 static int
157 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
158 {
159 	int error;
160 
161 	error = sysctl_handle_int(oidp, arg1, arg2, req);
162 	if (error == 0) {
163 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
164 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
165 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
166 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
167 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
168 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
169 	}
170 	return (error);
171 }
172 
173 #undef RANGECHK
174 
175 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
176     "IP Ports");
177 
178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
179 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
180 	&VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", "");
181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
182 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
183 	&VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", "");
184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
185 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
186 	&VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", "");
187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
188 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
189 	&VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", "");
190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
191 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
192 	&VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", "");
193 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
194 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
195 	&VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", "");
196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
197 	CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
198 	&VNET_NAME(ipport_reservedhigh), 0, "");
199 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
200 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
202 	CTLFLAG_VNET | CTLFLAG_RW,
203 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
204 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
205 	CTLFLAG_VNET | CTLFLAG_RW,
206 	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
207 	"allocations before switching to a sequental one");
208 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
209 	CTLFLAG_VNET | CTLFLAG_RW,
210 	&VNET_NAME(ipport_randomtime), 0,
211 	"Minimum time to keep sequental port "
212 	"allocation before switching to a random one");
213 #endif /* INET */
214 
215 /*
216  * in_pcb.c: manage the Protocol Control Blocks.
217  *
218  * NOTE: It is assumed that most of these functions will be called with
219  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
220  * functions often modify hash chains or addresses in pcbs.
221  */
222 
223 static struct inpcblbgroup *
224 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag,
225     uint16_t port, const union in_dependaddr *addr, int size)
226 {
227 	struct inpcblbgroup *grp;
228 	size_t bytes;
229 
230 	bytes = __offsetof(struct inpcblbgroup, il_inp[size]);
231 	grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT);
232 	if (!grp)
233 		return (NULL);
234 	grp->il_vflag = vflag;
235 	grp->il_lport = port;
236 	grp->il_dependladdr = *addr;
237 	grp->il_inpsiz = size;
238 	CK_LIST_INSERT_HEAD(hdr, grp, il_list);
239 	return (grp);
240 }
241 
242 static void
243 in_pcblbgroup_free_deferred(epoch_context_t ctx)
244 {
245 	struct inpcblbgroup *grp;
246 
247 	grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx);
248 	free(grp, M_PCB);
249 }
250 
251 static void
252 in_pcblbgroup_free(struct inpcblbgroup *grp)
253 {
254 
255 	CK_LIST_REMOVE(grp, il_list);
256 	epoch_call(net_epoch_preempt, &grp->il_epoch_ctx,
257 	    in_pcblbgroup_free_deferred);
258 }
259 
260 static struct inpcblbgroup *
261 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr,
262     struct inpcblbgroup *old_grp, int size)
263 {
264 	struct inpcblbgroup *grp;
265 	int i;
266 
267 	grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag,
268 	    old_grp->il_lport, &old_grp->il_dependladdr, size);
269 	if (grp == NULL)
270 		return (NULL);
271 
272 	KASSERT(old_grp->il_inpcnt < grp->il_inpsiz,
273 	    ("invalid new local group size %d and old local group count %d",
274 	     grp->il_inpsiz, old_grp->il_inpcnt));
275 
276 	for (i = 0; i < old_grp->il_inpcnt; ++i)
277 		grp->il_inp[i] = old_grp->il_inp[i];
278 	grp->il_inpcnt = old_grp->il_inpcnt;
279 	in_pcblbgroup_free(old_grp);
280 	return (grp);
281 }
282 
283 /*
284  * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i]
285  * and shrink group if possible.
286  */
287 static void
288 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp,
289     int i)
290 {
291 	struct inpcblbgroup *grp, *new_grp;
292 
293 	grp = *grpp;
294 	for (; i + 1 < grp->il_inpcnt; ++i)
295 		grp->il_inp[i] = grp->il_inp[i + 1];
296 	grp->il_inpcnt--;
297 
298 	if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN &&
299 	    grp->il_inpcnt <= grp->il_inpsiz / 4) {
300 		/* Shrink this group. */
301 		new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2);
302 		if (new_grp != NULL)
303 			*grpp = new_grp;
304 	}
305 }
306 
307 /*
308  * Add PCB to load balance group for SO_REUSEPORT_LB option.
309  */
310 static int
311 in_pcbinslbgrouphash(struct inpcb *inp)
312 {
313 	const static struct timeval interval = { 60, 0 };
314 	static struct timeval lastprint;
315 	struct inpcbinfo *pcbinfo;
316 	struct inpcblbgrouphead *hdr;
317 	struct inpcblbgroup *grp;
318 	uint32_t idx;
319 
320 	pcbinfo = inp->inp_pcbinfo;
321 
322 	INP_WLOCK_ASSERT(inp);
323 	INP_HASH_WLOCK_ASSERT(pcbinfo);
324 
325 	/*
326 	 * Don't allow jailed socket to join local group.
327 	 */
328 	if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred))
329 		return (0);
330 
331 #ifdef INET6
332 	/*
333 	 * Don't allow IPv4 mapped INET6 wild socket.
334 	 */
335 	if ((inp->inp_vflag & INP_IPV4) &&
336 	    inp->inp_laddr.s_addr == INADDR_ANY &&
337 	    INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) {
338 		return (0);
339 	}
340 #endif
341 
342 	idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask);
343 	hdr = &pcbinfo->ipi_lbgrouphashbase[idx];
344 	CK_LIST_FOREACH(grp, hdr, il_list) {
345 		if (grp->il_vflag == inp->inp_vflag &&
346 		    grp->il_lport == inp->inp_lport &&
347 		    memcmp(&grp->il_dependladdr,
348 		    &inp->inp_inc.inc_ie.ie_dependladdr,
349 		    sizeof(grp->il_dependladdr)) == 0)
350 			break;
351 	}
352 	if (grp == NULL) {
353 		/* Create new load balance group. */
354 		grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag,
355 		    inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr,
356 		    INPCBLBGROUP_SIZMIN);
357 		if (grp == NULL)
358 			return (ENOBUFS);
359 	} else if (grp->il_inpcnt == grp->il_inpsiz) {
360 		if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) {
361 			if (ratecheck(&lastprint, &interval))
362 				printf("lb group port %d, limit reached\n",
363 				    ntohs(grp->il_lport));
364 			return (0);
365 		}
366 
367 		/* Expand this local group. */
368 		grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2);
369 		if (grp == NULL)
370 			return (ENOBUFS);
371 	}
372 
373 	KASSERT(grp->il_inpcnt < grp->il_inpsiz,
374 	    ("invalid local group size %d and count %d", grp->il_inpsiz,
375 	    grp->il_inpcnt));
376 
377 	grp->il_inp[grp->il_inpcnt] = inp;
378 	grp->il_inpcnt++;
379 	return (0);
380 }
381 
382 /*
383  * Remove PCB from load balance group.
384  */
385 static void
386 in_pcbremlbgrouphash(struct inpcb *inp)
387 {
388 	struct inpcbinfo *pcbinfo;
389 	struct inpcblbgrouphead *hdr;
390 	struct inpcblbgroup *grp;
391 	int i;
392 
393 	pcbinfo = inp->inp_pcbinfo;
394 
395 	INP_WLOCK_ASSERT(inp);
396 	INP_HASH_WLOCK_ASSERT(pcbinfo);
397 
398 	hdr = &pcbinfo->ipi_lbgrouphashbase[
399 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
400 	CK_LIST_FOREACH(grp, hdr, il_list) {
401 		for (i = 0; i < grp->il_inpcnt; ++i) {
402 			if (grp->il_inp[i] != inp)
403 				continue;
404 
405 			if (grp->il_inpcnt == 1) {
406 				/* We are the last, free this local group. */
407 				in_pcblbgroup_free(grp);
408 			} else {
409 				/* Pull up inpcbs, shrink group if possible. */
410 				in_pcblbgroup_reorder(hdr, &grp, i);
411 			}
412 			return;
413 		}
414 	}
415 }
416 
417 /*
418  * Different protocols initialize their inpcbs differently - giving
419  * different name to the lock.  But they all are disposed the same.
420  */
421 static void
422 inpcb_fini(void *mem, int size)
423 {
424 	struct inpcb *inp = mem;
425 
426 	INP_LOCK_DESTROY(inp);
427 }
428 
429 /*
430  * Initialize an inpcbinfo -- we should be able to reduce the number of
431  * arguments in time.
432  */
433 void
434 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
435     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
436     char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields)
437 {
438 
439 	porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1);
440 
441 	INP_INFO_LOCK_INIT(pcbinfo, name);
442 	INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");	/* XXXRW: argument? */
443 	INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist");
444 #ifdef VIMAGE
445 	pcbinfo->ipi_vnet = curvnet;
446 #endif
447 	pcbinfo->ipi_listhead = listhead;
448 	CK_LIST_INIT(pcbinfo->ipi_listhead);
449 	pcbinfo->ipi_count = 0;
450 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
451 	    &pcbinfo->ipi_hashmask);
452 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
453 	    &pcbinfo->ipi_porthashmask);
454 	pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB,
455 	    &pcbinfo->ipi_lbgrouphashmask);
456 #ifdef PCBGROUP
457 	in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
458 #endif
459 	pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
460 	    NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0);
461 	uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
462 	uma_zone_set_warning(pcbinfo->ipi_zone,
463 	    "kern.ipc.maxsockets limit reached");
464 }
465 
466 /*
467  * Destroy an inpcbinfo.
468  */
469 void
470 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
471 {
472 
473 	KASSERT(pcbinfo->ipi_count == 0,
474 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
475 
476 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
477 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
478 	    pcbinfo->ipi_porthashmask);
479 	hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB,
480 	    pcbinfo->ipi_lbgrouphashmask);
481 #ifdef PCBGROUP
482 	in_pcbgroup_destroy(pcbinfo);
483 #endif
484 	uma_zdestroy(pcbinfo->ipi_zone);
485 	INP_LIST_LOCK_DESTROY(pcbinfo);
486 	INP_HASH_LOCK_DESTROY(pcbinfo);
487 	INP_INFO_LOCK_DESTROY(pcbinfo);
488 }
489 
490 /*
491  * Allocate a PCB and associate it with the socket.
492  * On success return with the PCB locked.
493  */
494 int
495 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
496 {
497 	struct inpcb *inp;
498 	int error;
499 
500 #ifdef INVARIANTS
501 	if (pcbinfo == &V_tcbinfo) {
502 		INP_INFO_RLOCK_ASSERT(pcbinfo);
503 	} else {
504 		INP_INFO_WLOCK_ASSERT(pcbinfo);
505 	}
506 #endif
507 
508 	error = 0;
509 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
510 	if (inp == NULL)
511 		return (ENOBUFS);
512 	bzero(&inp->inp_start_zero, inp_zero_size);
513 	inp->inp_pcbinfo = pcbinfo;
514 	inp->inp_socket = so;
515 	inp->inp_cred = crhold(so->so_cred);
516 	inp->inp_inc.inc_fibnum = so->so_fibnum;
517 #ifdef MAC
518 	error = mac_inpcb_init(inp, M_NOWAIT);
519 	if (error != 0)
520 		goto out;
521 	mac_inpcb_create(so, inp);
522 #endif
523 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
524 	error = ipsec_init_pcbpolicy(inp);
525 	if (error != 0) {
526 #ifdef MAC
527 		mac_inpcb_destroy(inp);
528 #endif
529 		goto out;
530 	}
531 #endif /*IPSEC*/
532 #ifdef INET6
533 	if (INP_SOCKAF(so) == AF_INET6) {
534 		inp->inp_vflag |= INP_IPV6PROTO;
535 		if (V_ip6_v6only)
536 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
537 	}
538 #endif
539 	INP_WLOCK(inp);
540 	INP_LIST_WLOCK(pcbinfo);
541 	CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
542 	pcbinfo->ipi_count++;
543 	so->so_pcb = (caddr_t)inp;
544 #ifdef INET6
545 	if (V_ip6_auto_flowlabel)
546 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
547 #endif
548 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
549 	refcount_init(&inp->inp_refcount, 1);	/* Reference from inpcbinfo */
550 
551 	/*
552 	 * Routes in inpcb's can cache L2 as well; they are guaranteed
553 	 * to be cleaned up.
554 	 */
555 	inp->inp_route.ro_flags = RT_LLE_CACHE;
556 	INP_LIST_WUNLOCK(pcbinfo);
557 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
558 out:
559 	if (error != 0) {
560 		crfree(inp->inp_cred);
561 		uma_zfree(pcbinfo->ipi_zone, inp);
562 	}
563 #endif
564 	return (error);
565 }
566 
567 #ifdef INET
568 int
569 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
570 {
571 	int anonport, error;
572 
573 	INP_WLOCK_ASSERT(inp);
574 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
575 
576 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
577 		return (EINVAL);
578 	anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
579 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
580 	    &inp->inp_lport, cred);
581 	if (error)
582 		return (error);
583 	if (in_pcbinshash(inp) != 0) {
584 		inp->inp_laddr.s_addr = INADDR_ANY;
585 		inp->inp_lport = 0;
586 		return (EAGAIN);
587 	}
588 	if (anonport)
589 		inp->inp_flags |= INP_ANONPORT;
590 	return (0);
591 }
592 #endif
593 
594 /*
595  * Select a local port (number) to use.
596  */
597 #if defined(INET) || defined(INET6)
598 int
599 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
600     struct ucred *cred, int lookupflags)
601 {
602 	struct inpcbinfo *pcbinfo;
603 	struct inpcb *tmpinp;
604 	unsigned short *lastport;
605 	int count, dorandom, error;
606 	u_short aux, first, last, lport;
607 #ifdef INET
608 	struct in_addr laddr;
609 #endif
610 
611 	pcbinfo = inp->inp_pcbinfo;
612 
613 	/*
614 	 * Because no actual state changes occur here, a global write lock on
615 	 * the pcbinfo isn't required.
616 	 */
617 	INP_LOCK_ASSERT(inp);
618 	INP_HASH_LOCK_ASSERT(pcbinfo);
619 
620 	if (inp->inp_flags & INP_HIGHPORT) {
621 		first = V_ipport_hifirstauto;	/* sysctl */
622 		last  = V_ipport_hilastauto;
623 		lastport = &pcbinfo->ipi_lasthi;
624 	} else if (inp->inp_flags & INP_LOWPORT) {
625 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT);
626 		if (error)
627 			return (error);
628 		first = V_ipport_lowfirstauto;	/* 1023 */
629 		last  = V_ipport_lowlastauto;	/* 600 */
630 		lastport = &pcbinfo->ipi_lastlow;
631 	} else {
632 		first = V_ipport_firstauto;	/* sysctl */
633 		last  = V_ipport_lastauto;
634 		lastport = &pcbinfo->ipi_lastport;
635 	}
636 	/*
637 	 * For UDP(-Lite), use random port allocation as long as the user
638 	 * allows it.  For TCP (and as of yet unknown) connections,
639 	 * use random port allocation only if the user allows it AND
640 	 * ipport_tick() allows it.
641 	 */
642 	if (V_ipport_randomized &&
643 		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
644 		pcbinfo == &V_ulitecbinfo))
645 		dorandom = 1;
646 	else
647 		dorandom = 0;
648 	/*
649 	 * It makes no sense to do random port allocation if
650 	 * we have the only port available.
651 	 */
652 	if (first == last)
653 		dorandom = 0;
654 	/* Make sure to not include UDP(-Lite) packets in the count. */
655 	if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
656 		V_ipport_tcpallocs++;
657 	/*
658 	 * Instead of having two loops further down counting up or down
659 	 * make sure that first is always <= last and go with only one
660 	 * code path implementing all logic.
661 	 */
662 	if (first > last) {
663 		aux = first;
664 		first = last;
665 		last = aux;
666 	}
667 
668 #ifdef INET
669 	/* Make the compiler happy. */
670 	laddr.s_addr = 0;
671 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
672 		KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
673 		    __func__, inp));
674 		laddr = *laddrp;
675 	}
676 #endif
677 	tmpinp = NULL;	/* Make compiler happy. */
678 	lport = *lportp;
679 
680 	if (dorandom)
681 		*lastport = first + (arc4random() % (last - first));
682 
683 	count = last - first;
684 
685 	do {
686 		if (count-- < 0)	/* completely used? */
687 			return (EADDRNOTAVAIL);
688 		++*lastport;
689 		if (*lastport < first || *lastport > last)
690 			*lastport = first;
691 		lport = htons(*lastport);
692 
693 #ifdef INET6
694 		if ((inp->inp_vflag & INP_IPV6) != 0)
695 			tmpinp = in6_pcblookup_local(pcbinfo,
696 			    &inp->in6p_laddr, lport, lookupflags, cred);
697 #endif
698 #if defined(INET) && defined(INET6)
699 		else
700 #endif
701 #ifdef INET
702 			tmpinp = in_pcblookup_local(pcbinfo, laddr,
703 			    lport, lookupflags, cred);
704 #endif
705 	} while (tmpinp != NULL);
706 
707 #ifdef INET
708 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
709 		laddrp->s_addr = laddr.s_addr;
710 #endif
711 	*lportp = lport;
712 
713 	return (0);
714 }
715 
716 /*
717  * Return cached socket options.
718  */
719 int
720 inp_so_options(const struct inpcb *inp)
721 {
722 	int so_options;
723 
724 	so_options = 0;
725 
726 	if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0)
727 		so_options |= SO_REUSEPORT_LB;
728 	if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
729 		so_options |= SO_REUSEPORT;
730 	if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
731 		so_options |= SO_REUSEADDR;
732 	return (so_options);
733 }
734 #endif /* INET || INET6 */
735 
736 /*
737  * Check if a new BINDMULTI socket is allowed to be created.
738  *
739  * ni points to the new inp.
740  * oi points to the exisitng inp.
741  *
742  * This checks whether the existing inp also has BINDMULTI and
743  * whether the credentials match.
744  */
745 int
746 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
747 {
748 	/* Check permissions match */
749 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
750 	    (ni->inp_cred->cr_uid !=
751 	    oi->inp_cred->cr_uid))
752 		return (0);
753 
754 	/* Check the existing inp has BINDMULTI set */
755 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
756 	    ((oi->inp_flags2 & INP_BINDMULTI) == 0))
757 		return (0);
758 
759 	/*
760 	 * We're okay - either INP_BINDMULTI isn't set on ni, or
761 	 * it is and it matches the checks.
762 	 */
763 	return (1);
764 }
765 
766 #ifdef INET
767 /*
768  * Set up a bind operation on a PCB, performing port allocation
769  * as required, but do not actually modify the PCB. Callers can
770  * either complete the bind by setting inp_laddr/inp_lport and
771  * calling in_pcbinshash(), or they can just use the resulting
772  * port and address to authorise the sending of a once-off packet.
773  *
774  * On error, the values of *laddrp and *lportp are not changed.
775  */
776 int
777 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
778     u_short *lportp, struct ucred *cred)
779 {
780 	struct socket *so = inp->inp_socket;
781 	struct sockaddr_in *sin;
782 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
783 	struct in_addr laddr;
784 	u_short lport = 0;
785 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
786 	int error;
787 
788 	/*
789 	 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here
790 	 * so that we don't have to add to the (already messy) code below.
791 	 */
792 	int reuseport_lb = (so->so_options & SO_REUSEPORT_LB);
793 
794 	/*
795 	 * No state changes, so read locks are sufficient here.
796 	 */
797 	INP_LOCK_ASSERT(inp);
798 	INP_HASH_LOCK_ASSERT(pcbinfo);
799 
800 	if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
801 		return (EADDRNOTAVAIL);
802 	laddr.s_addr = *laddrp;
803 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
804 		return (EINVAL);
805 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0)
806 		lookupflags = INPLOOKUP_WILDCARD;
807 	if (nam == NULL) {
808 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
809 			return (error);
810 	} else {
811 		sin = (struct sockaddr_in *)nam;
812 		if (nam->sa_len != sizeof (*sin))
813 			return (EINVAL);
814 #ifdef notdef
815 		/*
816 		 * We should check the family, but old programs
817 		 * incorrectly fail to initialize it.
818 		 */
819 		if (sin->sin_family != AF_INET)
820 			return (EAFNOSUPPORT);
821 #endif
822 		error = prison_local_ip4(cred, &sin->sin_addr);
823 		if (error)
824 			return (error);
825 		if (sin->sin_port != *lportp) {
826 			/* Don't allow the port to change. */
827 			if (*lportp != 0)
828 				return (EINVAL);
829 			lport = sin->sin_port;
830 		}
831 		/* NB: lport is left as 0 if the port isn't being changed. */
832 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
833 			/*
834 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
835 			 * allow complete duplication of binding if
836 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
837 			 * and a multicast address is bound on both
838 			 * new and duplicated sockets.
839 			 */
840 			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
841 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
842 			/*
843 			 * XXX: How to deal with SO_REUSEPORT_LB here?
844 			 * Treat same as SO_REUSEPORT for now.
845 			 */
846 			if ((so->so_options &
847 			    (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0)
848 				reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB;
849 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
850 			sin->sin_port = 0;		/* yech... */
851 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
852 			/*
853 			 * Is the address a local IP address?
854 			 * If INP_BINDANY is set, then the socket may be bound
855 			 * to any endpoint address, local or not.
856 			 */
857 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
858 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
859 				return (EADDRNOTAVAIL);
860 		}
861 		laddr = sin->sin_addr;
862 		if (lport) {
863 			struct inpcb *t;
864 			struct tcptw *tw;
865 
866 			/* GROSS */
867 			if (ntohs(lport) <= V_ipport_reservedhigh &&
868 			    ntohs(lport) >= V_ipport_reservedlow &&
869 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT))
870 				return (EACCES);
871 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
872 			    priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) {
873 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
874 				    lport, INPLOOKUP_WILDCARD, cred);
875 	/*
876 	 * XXX
877 	 * This entire block sorely needs a rewrite.
878 	 */
879 				if (t &&
880 				    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
881 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
882 				    (so->so_type != SOCK_STREAM ||
883 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
884 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
885 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
886 				     (t->inp_flags2 & INP_REUSEPORT) ||
887 				     (t->inp_flags2 & INP_REUSEPORT_LB) == 0) &&
888 				    (inp->inp_cred->cr_uid !=
889 				     t->inp_cred->cr_uid))
890 					return (EADDRINUSE);
891 
892 				/*
893 				 * If the socket is a BINDMULTI socket, then
894 				 * the credentials need to match and the
895 				 * original socket also has to have been bound
896 				 * with BINDMULTI.
897 				 */
898 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
899 					return (EADDRINUSE);
900 			}
901 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
902 			    lport, lookupflags, cred);
903 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
904 				/*
905 				 * XXXRW: If an incpb has had its timewait
906 				 * state recycled, we treat the address as
907 				 * being in use (for now).  This is better
908 				 * than a panic, but not desirable.
909 				 */
910 				tw = intotw(t);
911 				if (tw == NULL ||
912 				    ((reuseport & tw->tw_so_options) == 0 &&
913 					(reuseport_lb &
914 				            tw->tw_so_options) == 0)) {
915 					return (EADDRINUSE);
916 				}
917 			} else if (t &&
918 				   ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
919 				   (reuseport & inp_so_options(t)) == 0 &&
920 				   (reuseport_lb & inp_so_options(t)) == 0) {
921 #ifdef INET6
922 				if (ntohl(sin->sin_addr.s_addr) !=
923 				    INADDR_ANY ||
924 				    ntohl(t->inp_laddr.s_addr) !=
925 				    INADDR_ANY ||
926 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
927 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
928 #endif
929 						return (EADDRINUSE);
930 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
931 					return (EADDRINUSE);
932 			}
933 		}
934 	}
935 	if (*lportp != 0)
936 		lport = *lportp;
937 	if (lport == 0) {
938 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
939 		if (error != 0)
940 			return (error);
941 
942 	}
943 	*laddrp = laddr.s_addr;
944 	*lportp = lport;
945 	return (0);
946 }
947 
948 /*
949  * Connect from a socket to a specified address.
950  * Both address and port must be specified in argument sin.
951  * If don't have a local address for this socket yet,
952  * then pick one.
953  */
954 int
955 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
956     struct ucred *cred, struct mbuf *m)
957 {
958 	u_short lport, fport;
959 	in_addr_t laddr, faddr;
960 	int anonport, error;
961 
962 	INP_WLOCK_ASSERT(inp);
963 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
964 
965 	lport = inp->inp_lport;
966 	laddr = inp->inp_laddr.s_addr;
967 	anonport = (lport == 0);
968 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
969 	    NULL, cred);
970 	if (error)
971 		return (error);
972 
973 	/* Do the initial binding of the local address if required. */
974 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
975 		inp->inp_lport = lport;
976 		inp->inp_laddr.s_addr = laddr;
977 		if (in_pcbinshash(inp) != 0) {
978 			inp->inp_laddr.s_addr = INADDR_ANY;
979 			inp->inp_lport = 0;
980 			return (EAGAIN);
981 		}
982 	}
983 
984 	/* Commit the remaining changes. */
985 	inp->inp_lport = lport;
986 	inp->inp_laddr.s_addr = laddr;
987 	inp->inp_faddr.s_addr = faddr;
988 	inp->inp_fport = fport;
989 	in_pcbrehash_mbuf(inp, m);
990 
991 	if (anonport)
992 		inp->inp_flags |= INP_ANONPORT;
993 	return (0);
994 }
995 
996 int
997 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
998 {
999 
1000 	return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
1001 }
1002 
1003 /*
1004  * Do proper source address selection on an unbound socket in case
1005  * of connect. Take jails into account as well.
1006  */
1007 int
1008 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
1009     struct ucred *cred)
1010 {
1011 	struct ifaddr *ifa;
1012 	struct sockaddr *sa;
1013 	struct sockaddr_in *sin;
1014 	struct route sro;
1015 	int error;
1016 
1017 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
1018 	/*
1019 	 * Bypass source address selection and use the primary jail IP
1020 	 * if requested.
1021 	 */
1022 	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
1023 		return (0);
1024 
1025 	error = 0;
1026 	bzero(&sro, sizeof(sro));
1027 
1028 	sin = (struct sockaddr_in *)&sro.ro_dst;
1029 	sin->sin_family = AF_INET;
1030 	sin->sin_len = sizeof(struct sockaddr_in);
1031 	sin->sin_addr.s_addr = faddr->s_addr;
1032 
1033 	/*
1034 	 * If route is known our src addr is taken from the i/f,
1035 	 * else punt.
1036 	 *
1037 	 * Find out route to destination.
1038 	 */
1039 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
1040 		in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
1041 
1042 	/*
1043 	 * If we found a route, use the address corresponding to
1044 	 * the outgoing interface.
1045 	 *
1046 	 * Otherwise assume faddr is reachable on a directly connected
1047 	 * network and try to find a corresponding interface to take
1048 	 * the source address from.
1049 	 */
1050 	NET_EPOCH_ENTER();
1051 	if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
1052 		struct in_ifaddr *ia;
1053 		struct ifnet *ifp;
1054 
1055 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
1056 					inp->inp_socket->so_fibnum));
1057 		if (ia == NULL) {
1058 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
1059 						inp->inp_socket->so_fibnum));
1060 
1061 		}
1062 		if (ia == NULL) {
1063 			error = ENETUNREACH;
1064 			goto done;
1065 		}
1066 
1067 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1068 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1069 			goto done;
1070 		}
1071 
1072 		ifp = ia->ia_ifp;
1073 		ia = NULL;
1074 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1075 
1076 			sa = ifa->ifa_addr;
1077 			if (sa->sa_family != AF_INET)
1078 				continue;
1079 			sin = (struct sockaddr_in *)sa;
1080 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1081 				ia = (struct in_ifaddr *)ifa;
1082 				break;
1083 			}
1084 		}
1085 		if (ia != NULL) {
1086 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1087 			goto done;
1088 		}
1089 
1090 		/* 3. As a last resort return the 'default' jail address. */
1091 		error = prison_get_ip4(cred, laddr);
1092 		goto done;
1093 	}
1094 
1095 	/*
1096 	 * If the outgoing interface on the route found is not
1097 	 * a loopback interface, use the address from that interface.
1098 	 * In case of jails do those three steps:
1099 	 * 1. check if the interface address belongs to the jail. If so use it.
1100 	 * 2. check if we have any address on the outgoing interface
1101 	 *    belonging to this jail. If so use it.
1102 	 * 3. as a last resort return the 'default' jail address.
1103 	 */
1104 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
1105 		struct in_ifaddr *ia;
1106 		struct ifnet *ifp;
1107 
1108 		/* If not jailed, use the default returned. */
1109 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1110 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
1111 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1112 			goto done;
1113 		}
1114 
1115 		/* Jailed. */
1116 		/* 1. Check if the iface address belongs to the jail. */
1117 		sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
1118 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1119 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
1120 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1121 			goto done;
1122 		}
1123 
1124 		/*
1125 		 * 2. Check if we have any address on the outgoing interface
1126 		 *    belonging to this jail.
1127 		 */
1128 		ia = NULL;
1129 		ifp = sro.ro_rt->rt_ifp;
1130 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1131 			sa = ifa->ifa_addr;
1132 			if (sa->sa_family != AF_INET)
1133 				continue;
1134 			sin = (struct sockaddr_in *)sa;
1135 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1136 				ia = (struct in_ifaddr *)ifa;
1137 				break;
1138 			}
1139 		}
1140 		if (ia != NULL) {
1141 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1142 			goto done;
1143 		}
1144 
1145 		/* 3. As a last resort return the 'default' jail address. */
1146 		error = prison_get_ip4(cred, laddr);
1147 		goto done;
1148 	}
1149 
1150 	/*
1151 	 * The outgoing interface is marked with 'loopback net', so a route
1152 	 * to ourselves is here.
1153 	 * Try to find the interface of the destination address and then
1154 	 * take the address from there. That interface is not necessarily
1155 	 * a loopback interface.
1156 	 * In case of jails, check that it is an address of the jail
1157 	 * and if we cannot find, fall back to the 'default' jail address.
1158 	 */
1159 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
1160 		struct sockaddr_in sain;
1161 		struct in_ifaddr *ia;
1162 
1163 		bzero(&sain, sizeof(struct sockaddr_in));
1164 		sain.sin_family = AF_INET;
1165 		sain.sin_len = sizeof(struct sockaddr_in);
1166 		sain.sin_addr.s_addr = faddr->s_addr;
1167 
1168 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain),
1169 					inp->inp_socket->so_fibnum));
1170 		if (ia == NULL)
1171 			ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0,
1172 						inp->inp_socket->so_fibnum));
1173 		if (ia == NULL)
1174 			ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
1175 
1176 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1177 			if (ia == NULL) {
1178 				error = ENETUNREACH;
1179 				goto done;
1180 			}
1181 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1182 			goto done;
1183 		}
1184 
1185 		/* Jailed. */
1186 		if (ia != NULL) {
1187 			struct ifnet *ifp;
1188 
1189 			ifp = ia->ia_ifp;
1190 			ia = NULL;
1191 			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1192 				sa = ifa->ifa_addr;
1193 				if (sa->sa_family != AF_INET)
1194 					continue;
1195 				sin = (struct sockaddr_in *)sa;
1196 				if (prison_check_ip4(cred,
1197 				    &sin->sin_addr) == 0) {
1198 					ia = (struct in_ifaddr *)ifa;
1199 					break;
1200 				}
1201 			}
1202 			if (ia != NULL) {
1203 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1204 				goto done;
1205 			}
1206 		}
1207 
1208 		/* 3. As a last resort return the 'default' jail address. */
1209 		error = prison_get_ip4(cred, laddr);
1210 		goto done;
1211 	}
1212 
1213 done:
1214 	NET_EPOCH_EXIT();
1215 	if (sro.ro_rt != NULL)
1216 		RTFREE(sro.ro_rt);
1217 	return (error);
1218 }
1219 
1220 /*
1221  * Set up for a connect from a socket to the specified address.
1222  * On entry, *laddrp and *lportp should contain the current local
1223  * address and port for the PCB; these are updated to the values
1224  * that should be placed in inp_laddr and inp_lport to complete
1225  * the connect.
1226  *
1227  * On success, *faddrp and *fportp will be set to the remote address
1228  * and port. These are not updated in the error case.
1229  *
1230  * If the operation fails because the connection already exists,
1231  * *oinpp will be set to the PCB of that connection so that the
1232  * caller can decide to override it. In all other cases, *oinpp
1233  * is set to NULL.
1234  */
1235 int
1236 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
1237     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1238     struct inpcb **oinpp, struct ucred *cred)
1239 {
1240 	struct rm_priotracker in_ifa_tracker;
1241 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1242 	struct in_ifaddr *ia;
1243 	struct inpcb *oinp;
1244 	struct in_addr laddr, faddr;
1245 	u_short lport, fport;
1246 	int error;
1247 
1248 	/*
1249 	 * Because a global state change doesn't actually occur here, a read
1250 	 * lock is sufficient.
1251 	 */
1252 	INP_LOCK_ASSERT(inp);
1253 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1254 
1255 	if (oinpp != NULL)
1256 		*oinpp = NULL;
1257 	if (nam->sa_len != sizeof (*sin))
1258 		return (EINVAL);
1259 	if (sin->sin_family != AF_INET)
1260 		return (EAFNOSUPPORT);
1261 	if (sin->sin_port == 0)
1262 		return (EADDRNOTAVAIL);
1263 	laddr.s_addr = *laddrp;
1264 	lport = *lportp;
1265 	faddr = sin->sin_addr;
1266 	fport = sin->sin_port;
1267 
1268 	if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) {
1269 		/*
1270 		 * If the destination address is INADDR_ANY,
1271 		 * use the primary local address.
1272 		 * If the supplied address is INADDR_BROADCAST,
1273 		 * and the primary interface supports broadcast,
1274 		 * choose the broadcast address for that interface.
1275 		 */
1276 		if (faddr.s_addr == INADDR_ANY) {
1277 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1278 			faddr =
1279 			    IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1280 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1281 			if (cred != NULL &&
1282 			    (error = prison_get_ip4(cred, &faddr)) != 0)
1283 				return (error);
1284 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1285 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1286 			if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1287 			    IFF_BROADCAST)
1288 				faddr = satosin(&CK_STAILQ_FIRST(
1289 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1290 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1291 		}
1292 	}
1293 	if (laddr.s_addr == INADDR_ANY) {
1294 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
1295 		/*
1296 		 * If the destination address is multicast and an outgoing
1297 		 * interface has been set as a multicast option, prefer the
1298 		 * address of that interface as our source address.
1299 		 */
1300 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1301 		    inp->inp_moptions != NULL) {
1302 			struct ip_moptions *imo;
1303 			struct ifnet *ifp;
1304 
1305 			imo = inp->inp_moptions;
1306 			if (imo->imo_multicast_ifp != NULL) {
1307 				ifp = imo->imo_multicast_ifp;
1308 				IN_IFADDR_RLOCK(&in_ifa_tracker);
1309 				CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1310 					if ((ia->ia_ifp == ifp) &&
1311 					    (cred == NULL ||
1312 					    prison_check_ip4(cred,
1313 					    &ia->ia_addr.sin_addr) == 0))
1314 						break;
1315 				}
1316 				if (ia == NULL)
1317 					error = EADDRNOTAVAIL;
1318 				else {
1319 					laddr = ia->ia_addr.sin_addr;
1320 					error = 0;
1321 				}
1322 				IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1323 			}
1324 		}
1325 		if (error)
1326 			return (error);
1327 	}
1328 	oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1329 	    laddr, lport, 0, NULL);
1330 	if (oinp != NULL) {
1331 		if (oinpp != NULL)
1332 			*oinpp = oinp;
1333 		return (EADDRINUSE);
1334 	}
1335 	if (lport == 0) {
1336 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1337 		    cred);
1338 		if (error)
1339 			return (error);
1340 	}
1341 	*laddrp = laddr.s_addr;
1342 	*lportp = lport;
1343 	*faddrp = faddr.s_addr;
1344 	*fportp = fport;
1345 	return (0);
1346 }
1347 
1348 void
1349 in_pcbdisconnect(struct inpcb *inp)
1350 {
1351 
1352 	INP_WLOCK_ASSERT(inp);
1353 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1354 
1355 	inp->inp_faddr.s_addr = INADDR_ANY;
1356 	inp->inp_fport = 0;
1357 	in_pcbrehash(inp);
1358 }
1359 #endif /* INET */
1360 
1361 /*
1362  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1363  * For most protocols, this will be invoked immediately prior to calling
1364  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1365  * socket, in which case in_pcbfree() is deferred.
1366  */
1367 void
1368 in_pcbdetach(struct inpcb *inp)
1369 {
1370 
1371 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1372 
1373 #ifdef RATELIMIT
1374 	if (inp->inp_snd_tag != NULL)
1375 		in_pcbdetach_txrtlmt(inp);
1376 #endif
1377 	inp->inp_socket->so_pcb = NULL;
1378 	inp->inp_socket = NULL;
1379 }
1380 
1381 /*
1382  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1383  * stability of an inpcb pointer despite the inpcb lock being released.  This
1384  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1385  * but where the inpcb lock may already held, or when acquiring a reference
1386  * via a pcbgroup.
1387  *
1388  * in_pcbref() should be used only to provide brief memory stability, and
1389  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1390  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1391  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1392  * lock and rele are the *only* safe operations that may be performed on the
1393  * inpcb.
1394  *
1395  * While the inpcb will not be freed, releasing the inpcb lock means that the
1396  * connection's state may change, so the caller should be careful to
1397  * revalidate any cached state on reacquiring the lock.  Drop the reference
1398  * using in_pcbrele().
1399  */
1400 void
1401 in_pcbref(struct inpcb *inp)
1402 {
1403 
1404 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1405 
1406 	refcount_acquire(&inp->inp_refcount);
1407 }
1408 
1409 /*
1410  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1411  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1412  * return a flag indicating whether or not the inpcb remains valid.  If it is
1413  * valid, we return with the inpcb lock held.
1414  *
1415  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1416  * reference on an inpcb.  Historically more work was done here (actually, in
1417  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1418  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1419  * about memory stability (and continued use of the write lock).
1420  */
1421 int
1422 in_pcbrele_rlocked(struct inpcb *inp)
1423 {
1424 	struct inpcbinfo *pcbinfo;
1425 
1426 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1427 
1428 	INP_RLOCK_ASSERT(inp);
1429 
1430 	if (refcount_release(&inp->inp_refcount) == 0) {
1431 		/*
1432 		 * If the inpcb has been freed, let the caller know, even if
1433 		 * this isn't the last reference.
1434 		 */
1435 		if (inp->inp_flags2 & INP_FREED) {
1436 			INP_RUNLOCK(inp);
1437 			return (1);
1438 		}
1439 		return (0);
1440 	}
1441 
1442 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1443 #ifdef TCPHPTS
1444 	if (inp->inp_in_hpts || inp->inp_in_input) {
1445 		struct tcp_hpts_entry *hpts;
1446 		/*
1447 		 * We should not be on the hpts at
1448 		 * this point in any form. we must
1449 		 * get the lock to be sure.
1450 		 */
1451 		hpts = tcp_hpts_lock(inp);
1452 		if (inp->inp_in_hpts)
1453 			panic("Hpts:%p inp:%p at free still on hpts",
1454 			      hpts, inp);
1455 		mtx_unlock(&hpts->p_mtx);
1456 		hpts = tcp_input_lock(inp);
1457 		if (inp->inp_in_input)
1458 			panic("Hpts:%p inp:%p at free still on input hpts",
1459 			      hpts, inp);
1460 		mtx_unlock(&hpts->p_mtx);
1461 	}
1462 #endif
1463 	INP_RUNLOCK(inp);
1464 	pcbinfo = inp->inp_pcbinfo;
1465 	uma_zfree(pcbinfo->ipi_zone, inp);
1466 	return (1);
1467 }
1468 
1469 int
1470 in_pcbrele_wlocked(struct inpcb *inp)
1471 {
1472 	struct inpcbinfo *pcbinfo;
1473 
1474 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1475 
1476 	INP_WLOCK_ASSERT(inp);
1477 
1478 	if (refcount_release(&inp->inp_refcount) == 0) {
1479 		/*
1480 		 * If the inpcb has been freed, let the caller know, even if
1481 		 * this isn't the last reference.
1482 		 */
1483 		if (inp->inp_flags2 & INP_FREED) {
1484 			INP_WUNLOCK(inp);
1485 			return (1);
1486 		}
1487 		return (0);
1488 	}
1489 
1490 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1491 #ifdef TCPHPTS
1492 	if (inp->inp_in_hpts || inp->inp_in_input) {
1493 		struct tcp_hpts_entry *hpts;
1494 		/*
1495 		 * We should not be on the hpts at
1496 		 * this point in any form. we must
1497 		 * get the lock to be sure.
1498 		 */
1499 		hpts = tcp_hpts_lock(inp);
1500 		if (inp->inp_in_hpts)
1501 			panic("Hpts:%p inp:%p at free still on hpts",
1502 			      hpts, inp);
1503 		mtx_unlock(&hpts->p_mtx);
1504 		hpts = tcp_input_lock(inp);
1505 		if (inp->inp_in_input)
1506 			panic("Hpts:%p inp:%p at free still on input hpts",
1507 			      hpts, inp);
1508 		mtx_unlock(&hpts->p_mtx);
1509 	}
1510 #endif
1511 	INP_WUNLOCK(inp);
1512 	pcbinfo = inp->inp_pcbinfo;
1513 	uma_zfree(pcbinfo->ipi_zone, inp);
1514 	return (1);
1515 }
1516 
1517 /*
1518  * Temporary wrapper.
1519  */
1520 int
1521 in_pcbrele(struct inpcb *inp)
1522 {
1523 
1524 	return (in_pcbrele_wlocked(inp));
1525 }
1526 
1527 void
1528 in_pcblist_rele_rlocked(epoch_context_t ctx)
1529 {
1530 	struct in_pcblist *il;
1531 	struct inpcb *inp;
1532 	struct inpcbinfo *pcbinfo;
1533 	int i, n;
1534 
1535 	il = __containerof(ctx, struct in_pcblist, il_epoch_ctx);
1536 	pcbinfo = il->il_pcbinfo;
1537 	n = il->il_count;
1538 	INP_INFO_WLOCK(pcbinfo);
1539 	for (i = 0; i < n; i++) {
1540 		inp = il->il_inp_list[i];
1541 		INP_RLOCK(inp);
1542 		if (!in_pcbrele_rlocked(inp))
1543 			INP_RUNLOCK(inp);
1544 	}
1545 	INP_INFO_WUNLOCK(pcbinfo);
1546 	free(il, M_TEMP);
1547 }
1548 
1549 static void
1550 inpcbport_free(epoch_context_t ctx)
1551 {
1552 	struct inpcbport *phd;
1553 
1554 	phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx);
1555 	free(phd, M_PCB);
1556 }
1557 
1558 static void
1559 in_pcbfree_deferred(epoch_context_t ctx)
1560 {
1561 	struct inpcb *inp;
1562 	int released __unused;
1563 
1564 	inp = __containerof(ctx, struct inpcb, inp_epoch_ctx);
1565 
1566 	INP_WLOCK(inp);
1567 #ifdef INET
1568 	struct ip_moptions *imo = inp->inp_moptions;
1569 	inp->inp_moptions = NULL;
1570 #endif
1571 	/* XXXRW: Do as much as possible here. */
1572 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1573 	if (inp->inp_sp != NULL)
1574 		ipsec_delete_pcbpolicy(inp);
1575 #endif
1576 #ifdef INET6
1577 	struct ip6_moptions *im6o = NULL;
1578 	if (inp->inp_vflag & INP_IPV6PROTO) {
1579 		ip6_freepcbopts(inp->in6p_outputopts);
1580 		im6o = inp->in6p_moptions;
1581 		inp->in6p_moptions = NULL;
1582 	}
1583 #endif
1584 	if (inp->inp_options)
1585 		(void)m_free(inp->inp_options);
1586 	inp->inp_vflag = 0;
1587 	crfree(inp->inp_cred);
1588 #ifdef MAC
1589 	mac_inpcb_destroy(inp);
1590 #endif
1591 	released = in_pcbrele_wlocked(inp);
1592 	MPASS(released);
1593 #ifdef INET6
1594 	ip6_freemoptions(im6o);
1595 #endif
1596 #ifdef INET
1597 	inp_freemoptions(imo);
1598 #endif
1599 }
1600 
1601 /*
1602  * Unconditionally schedule an inpcb to be freed by decrementing its
1603  * reference count, which should occur only after the inpcb has been detached
1604  * from its socket.  If another thread holds a temporary reference (acquired
1605  * using in_pcbref()) then the free is deferred until that reference is
1606  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1607  * work, including removal from global lists, is done in this context, where
1608  * the pcbinfo lock is held.
1609  */
1610 void
1611 in_pcbfree(struct inpcb *inp)
1612 {
1613 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1614 
1615 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1616 	KASSERT((inp->inp_flags2 & INP_FREED) == 0,
1617 	    ("%s: called twice for pcb %p", __func__, inp));
1618 	if (inp->inp_flags2 & INP_FREED) {
1619 		INP_WUNLOCK(inp);
1620 		return;
1621 	}
1622 
1623 #ifdef INVARIANTS
1624 	if (pcbinfo == &V_tcbinfo) {
1625 		INP_INFO_LOCK_ASSERT(pcbinfo);
1626 	} else {
1627 		INP_INFO_WLOCK_ASSERT(pcbinfo);
1628 	}
1629 #endif
1630 	INP_WLOCK_ASSERT(inp);
1631 	INP_LIST_WLOCK(pcbinfo);
1632 	in_pcbremlists(inp);
1633 	INP_LIST_WUNLOCK(pcbinfo);
1634 	RO_INVALIDATE_CACHE(&inp->inp_route);
1635 	/* mark as destruction in progress */
1636 	inp->inp_flags2 |= INP_FREED;
1637 	INP_WUNLOCK(inp);
1638 	epoch_call(net_epoch_preempt, &inp->inp_epoch_ctx, in_pcbfree_deferred);
1639 }
1640 
1641 /*
1642  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1643  * port reservation, and preventing it from being returned by inpcb lookups.
1644  *
1645  * It is used by TCP to mark an inpcb as unused and avoid future packet
1646  * delivery or event notification when a socket remains open but TCP has
1647  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1648  * or a RST on the wire, and allows the port binding to be reused while still
1649  * maintaining the invariant that so_pcb always points to a valid inpcb until
1650  * in_pcbdetach().
1651  *
1652  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1653  * in_pcbnotifyall() and in_pcbpurgeif0()?
1654  */
1655 void
1656 in_pcbdrop(struct inpcb *inp)
1657 {
1658 
1659 	INP_WLOCK_ASSERT(inp);
1660 #ifdef INVARIANTS
1661 	if (inp->inp_socket != NULL && inp->inp_ppcb != NULL)
1662 		MPASS(inp->inp_refcount > 1);
1663 #endif
1664 
1665 	/*
1666 	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1667 	 * the hash lock...?
1668 	 */
1669 	inp->inp_flags |= INP_DROPPED;
1670 	if (inp->inp_flags & INP_INHASHLIST) {
1671 		struct inpcbport *phd = inp->inp_phd;
1672 
1673 		INP_HASH_WLOCK(inp->inp_pcbinfo);
1674 		in_pcbremlbgrouphash(inp);
1675 		CK_LIST_REMOVE(inp, inp_hash);
1676 		CK_LIST_REMOVE(inp, inp_portlist);
1677 		if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
1678 			CK_LIST_REMOVE(phd, phd_hash);
1679 			epoch_call(net_epoch_preempt, &phd->phd_epoch_ctx, inpcbport_free);
1680 		}
1681 		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1682 		inp->inp_flags &= ~INP_INHASHLIST;
1683 #ifdef PCBGROUP
1684 		in_pcbgroup_remove(inp);
1685 #endif
1686 	}
1687 }
1688 
1689 #ifdef INET
1690 /*
1691  * Common routines to return the socket addresses associated with inpcbs.
1692  */
1693 struct sockaddr *
1694 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1695 {
1696 	struct sockaddr_in *sin;
1697 
1698 	sin = malloc(sizeof *sin, M_SONAME,
1699 		M_WAITOK | M_ZERO);
1700 	sin->sin_family = AF_INET;
1701 	sin->sin_len = sizeof(*sin);
1702 	sin->sin_addr = *addr_p;
1703 	sin->sin_port = port;
1704 
1705 	return (struct sockaddr *)sin;
1706 }
1707 
1708 int
1709 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1710 {
1711 	struct inpcb *inp;
1712 	struct in_addr addr;
1713 	in_port_t port;
1714 
1715 	inp = sotoinpcb(so);
1716 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1717 
1718 	INP_RLOCK(inp);
1719 	port = inp->inp_lport;
1720 	addr = inp->inp_laddr;
1721 	INP_RUNLOCK(inp);
1722 
1723 	*nam = in_sockaddr(port, &addr);
1724 	return 0;
1725 }
1726 
1727 int
1728 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1729 {
1730 	struct inpcb *inp;
1731 	struct in_addr addr;
1732 	in_port_t port;
1733 
1734 	inp = sotoinpcb(so);
1735 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1736 
1737 	INP_RLOCK(inp);
1738 	port = inp->inp_fport;
1739 	addr = inp->inp_faddr;
1740 	INP_RUNLOCK(inp);
1741 
1742 	*nam = in_sockaddr(port, &addr);
1743 	return 0;
1744 }
1745 
1746 void
1747 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1748     struct inpcb *(*notify)(struct inpcb *, int))
1749 {
1750 	struct inpcb *inp, *inp_temp;
1751 
1752 	INP_INFO_WLOCK(pcbinfo);
1753 	CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1754 		INP_WLOCK(inp);
1755 #ifdef INET6
1756 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1757 			INP_WUNLOCK(inp);
1758 			continue;
1759 		}
1760 #endif
1761 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1762 		    inp->inp_socket == NULL) {
1763 			INP_WUNLOCK(inp);
1764 			continue;
1765 		}
1766 		if ((*notify)(inp, errno))
1767 			INP_WUNLOCK(inp);
1768 	}
1769 	INP_INFO_WUNLOCK(pcbinfo);
1770 }
1771 
1772 void
1773 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1774 {
1775 	struct inpcb *inp;
1776 	struct ip_moptions *imo;
1777 	int i, gap;
1778 
1779 	INP_INFO_WLOCK(pcbinfo);
1780 	CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1781 		INP_WLOCK(inp);
1782 		imo = inp->inp_moptions;
1783 		if ((inp->inp_vflag & INP_IPV4) &&
1784 		    imo != NULL) {
1785 			/*
1786 			 * Unselect the outgoing interface if it is being
1787 			 * detached.
1788 			 */
1789 			if (imo->imo_multicast_ifp == ifp)
1790 				imo->imo_multicast_ifp = NULL;
1791 
1792 			/*
1793 			 * Drop multicast group membership if we joined
1794 			 * through the interface being detached.
1795 			 *
1796 			 * XXX This can all be deferred to an epoch_call
1797 			 */
1798 			for (i = 0, gap = 0; i < imo->imo_num_memberships;
1799 			    i++) {
1800 				if (imo->imo_membership[i]->inm_ifp == ifp) {
1801 					IN_MULTI_LOCK_ASSERT();
1802 					in_leavegroup_locked(imo->imo_membership[i], NULL);
1803 					gap++;
1804 				} else if (gap != 0)
1805 					imo->imo_membership[i - gap] =
1806 					    imo->imo_membership[i];
1807 			}
1808 			imo->imo_num_memberships -= gap;
1809 		}
1810 		INP_WUNLOCK(inp);
1811 	}
1812 	INP_INFO_WUNLOCK(pcbinfo);
1813 }
1814 
1815 /*
1816  * Lookup a PCB based on the local address and port.  Caller must hold the
1817  * hash lock.  No inpcb locks or references are acquired.
1818  */
1819 #define INP_LOOKUP_MAPPED_PCB_COST	3
1820 struct inpcb *
1821 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1822     u_short lport, int lookupflags, struct ucred *cred)
1823 {
1824 	struct inpcb *inp;
1825 #ifdef INET6
1826 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1827 #else
1828 	int matchwild = 3;
1829 #endif
1830 	int wildcard;
1831 
1832 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1833 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1834 
1835 	INP_HASH_LOCK_ASSERT(pcbinfo);
1836 
1837 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1838 		struct inpcbhead *head;
1839 		/*
1840 		 * Look for an unconnected (wildcard foreign addr) PCB that
1841 		 * matches the local address and port we're looking for.
1842 		 */
1843 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1844 		    0, pcbinfo->ipi_hashmask)];
1845 		CK_LIST_FOREACH(inp, head, inp_hash) {
1846 #ifdef INET6
1847 			/* XXX inp locking */
1848 			if ((inp->inp_vflag & INP_IPV4) == 0)
1849 				continue;
1850 #endif
1851 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1852 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1853 			    inp->inp_lport == lport) {
1854 				/*
1855 				 * Found?
1856 				 */
1857 				if (cred == NULL ||
1858 				    prison_equal_ip4(cred->cr_prison,
1859 					inp->inp_cred->cr_prison))
1860 					return (inp);
1861 			}
1862 		}
1863 		/*
1864 		 * Not found.
1865 		 */
1866 		return (NULL);
1867 	} else {
1868 		struct inpcbporthead *porthash;
1869 		struct inpcbport *phd;
1870 		struct inpcb *match = NULL;
1871 		/*
1872 		 * Best fit PCB lookup.
1873 		 *
1874 		 * First see if this local port is in use by looking on the
1875 		 * port hash list.
1876 		 */
1877 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1878 		    pcbinfo->ipi_porthashmask)];
1879 		CK_LIST_FOREACH(phd, porthash, phd_hash) {
1880 			if (phd->phd_port == lport)
1881 				break;
1882 		}
1883 		if (phd != NULL) {
1884 			/*
1885 			 * Port is in use by one or more PCBs. Look for best
1886 			 * fit.
1887 			 */
1888 			CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1889 				wildcard = 0;
1890 				if (cred != NULL &&
1891 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
1892 					cred->cr_prison))
1893 					continue;
1894 #ifdef INET6
1895 				/* XXX inp locking */
1896 				if ((inp->inp_vflag & INP_IPV4) == 0)
1897 					continue;
1898 				/*
1899 				 * We never select the PCB that has
1900 				 * INP_IPV6 flag and is bound to :: if
1901 				 * we have another PCB which is bound
1902 				 * to 0.0.0.0.  If a PCB has the
1903 				 * INP_IPV6 flag, then we set its cost
1904 				 * higher than IPv4 only PCBs.
1905 				 *
1906 				 * Note that the case only happens
1907 				 * when a socket is bound to ::, under
1908 				 * the condition that the use of the
1909 				 * mapped address is allowed.
1910 				 */
1911 				if ((inp->inp_vflag & INP_IPV6) != 0)
1912 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1913 #endif
1914 				if (inp->inp_faddr.s_addr != INADDR_ANY)
1915 					wildcard++;
1916 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
1917 					if (laddr.s_addr == INADDR_ANY)
1918 						wildcard++;
1919 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
1920 						continue;
1921 				} else {
1922 					if (laddr.s_addr != INADDR_ANY)
1923 						wildcard++;
1924 				}
1925 				if (wildcard < matchwild) {
1926 					match = inp;
1927 					matchwild = wildcard;
1928 					if (matchwild == 0)
1929 						break;
1930 				}
1931 			}
1932 		}
1933 		return (match);
1934 	}
1935 }
1936 #undef INP_LOOKUP_MAPPED_PCB_COST
1937 
1938 static struct inpcb *
1939 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo,
1940     const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr,
1941     uint16_t fport, int lookupflags)
1942 {
1943 	struct inpcb *local_wild;
1944 	const struct inpcblbgrouphead *hdr;
1945 	struct inpcblbgroup *grp;
1946 	uint32_t idx;
1947 
1948 	INP_HASH_LOCK_ASSERT(pcbinfo);
1949 
1950 	hdr = &pcbinfo->ipi_lbgrouphashbase[
1951 	    INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)];
1952 
1953 	/*
1954 	 * Order of socket selection:
1955 	 * 1. non-wild.
1956 	 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD).
1957 	 *
1958 	 * NOTE:
1959 	 * - Load balanced group does not contain jailed sockets
1960 	 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets
1961 	 */
1962 	local_wild = NULL;
1963 	CK_LIST_FOREACH(grp, hdr, il_list) {
1964 #ifdef INET6
1965 		if (!(grp->il_vflag & INP_IPV4))
1966 			continue;
1967 #endif
1968 		if (grp->il_lport != lport)
1969 			continue;
1970 
1971 		idx = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport) %
1972 		    grp->il_inpcnt;
1973 		if (grp->il_laddr.s_addr == laddr->s_addr)
1974 			return (grp->il_inp[idx]);
1975 		if (grp->il_laddr.s_addr == INADDR_ANY &&
1976 		    (lookupflags & INPLOOKUP_WILDCARD) != 0)
1977 			local_wild = grp->il_inp[idx];
1978 	}
1979 	return (local_wild);
1980 }
1981 
1982 #ifdef PCBGROUP
1983 /*
1984  * Lookup PCB in hash list, using pcbgroup tables.
1985  */
1986 static struct inpcb *
1987 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
1988     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
1989     u_int lport_arg, int lookupflags, struct ifnet *ifp)
1990 {
1991 	struct inpcbhead *head;
1992 	struct inpcb *inp, *tmpinp;
1993 	u_short fport = fport_arg, lport = lport_arg;
1994 	bool locked;
1995 
1996 	/*
1997 	 * First look for an exact match.
1998 	 */
1999 	tmpinp = NULL;
2000 	INP_GROUP_LOCK(pcbgroup);
2001 	head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
2002 	    pcbgroup->ipg_hashmask)];
2003 	CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
2004 #ifdef INET6
2005 		/* XXX inp locking */
2006 		if ((inp->inp_vflag & INP_IPV4) == 0)
2007 			continue;
2008 #endif
2009 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
2010 		    inp->inp_laddr.s_addr == laddr.s_addr &&
2011 		    inp->inp_fport == fport &&
2012 		    inp->inp_lport == lport) {
2013 			/*
2014 			 * XXX We should be able to directly return
2015 			 * the inp here, without any checks.
2016 			 * Well unless both bound with SO_REUSEPORT?
2017 			 */
2018 			if (prison_flag(inp->inp_cred, PR_IP4))
2019 				goto found;
2020 			if (tmpinp == NULL)
2021 				tmpinp = inp;
2022 		}
2023 	}
2024 	if (tmpinp != NULL) {
2025 		inp = tmpinp;
2026 		goto found;
2027 	}
2028 
2029 #ifdef	RSS
2030 	/*
2031 	 * For incoming connections, we may wish to do a wildcard
2032 	 * match for an RSS-local socket.
2033 	 */
2034 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2035 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2036 #ifdef INET6
2037 		struct inpcb *local_wild_mapped = NULL;
2038 #endif
2039 		struct inpcb *jail_wild = NULL;
2040 		struct inpcbhead *head;
2041 		int injail;
2042 
2043 		/*
2044 		 * Order of socket selection - we always prefer jails.
2045 		 *      1. jailed, non-wild.
2046 		 *      2. jailed, wild.
2047 		 *      3. non-jailed, non-wild.
2048 		 *      4. non-jailed, wild.
2049 		 */
2050 
2051 		head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
2052 		    lport, 0, pcbgroup->ipg_hashmask)];
2053 		CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) {
2054 #ifdef INET6
2055 			/* XXX inp locking */
2056 			if ((inp->inp_vflag & INP_IPV4) == 0)
2057 				continue;
2058 #endif
2059 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2060 			    inp->inp_lport != lport)
2061 				continue;
2062 
2063 			injail = prison_flag(inp->inp_cred, PR_IP4);
2064 			if (injail) {
2065 				if (prison_check_ip4(inp->inp_cred,
2066 				    &laddr) != 0)
2067 					continue;
2068 			} else {
2069 				if (local_exact != NULL)
2070 					continue;
2071 			}
2072 
2073 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2074 				if (injail)
2075 					goto found;
2076 				else
2077 					local_exact = inp;
2078 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2079 #ifdef INET6
2080 				/* XXX inp locking, NULL check */
2081 				if (inp->inp_vflag & INP_IPV6PROTO)
2082 					local_wild_mapped = inp;
2083 				else
2084 #endif
2085 					if (injail)
2086 						jail_wild = inp;
2087 					else
2088 						local_wild = inp;
2089 			}
2090 		} /* LIST_FOREACH */
2091 
2092 		inp = jail_wild;
2093 		if (inp == NULL)
2094 			inp = local_exact;
2095 		if (inp == NULL)
2096 			inp = local_wild;
2097 #ifdef INET6
2098 		if (inp == NULL)
2099 			inp = local_wild_mapped;
2100 #endif
2101 		if (inp != NULL)
2102 			goto found;
2103 	}
2104 #endif
2105 
2106 	/*
2107 	 * Then look for a wildcard match, if requested.
2108 	 */
2109 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2110 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2111 #ifdef INET6
2112 		struct inpcb *local_wild_mapped = NULL;
2113 #endif
2114 		struct inpcb *jail_wild = NULL;
2115 		struct inpcbhead *head;
2116 		int injail;
2117 
2118 		/*
2119 		 * Order of socket selection - we always prefer jails.
2120 		 *      1. jailed, non-wild.
2121 		 *      2. jailed, wild.
2122 		 *      3. non-jailed, non-wild.
2123 		 *      4. non-jailed, wild.
2124 		 */
2125 		head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
2126 		    0, pcbinfo->ipi_wildmask)];
2127 		CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
2128 #ifdef INET6
2129 			/* XXX inp locking */
2130 			if ((inp->inp_vflag & INP_IPV4) == 0)
2131 				continue;
2132 #endif
2133 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2134 			    inp->inp_lport != lport)
2135 				continue;
2136 
2137 			injail = prison_flag(inp->inp_cred, PR_IP4);
2138 			if (injail) {
2139 				if (prison_check_ip4(inp->inp_cred,
2140 				    &laddr) != 0)
2141 					continue;
2142 			} else {
2143 				if (local_exact != NULL)
2144 					continue;
2145 			}
2146 
2147 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2148 				if (injail)
2149 					goto found;
2150 				else
2151 					local_exact = inp;
2152 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2153 #ifdef INET6
2154 				/* XXX inp locking, NULL check */
2155 				if (inp->inp_vflag & INP_IPV6PROTO)
2156 					local_wild_mapped = inp;
2157 				else
2158 #endif
2159 					if (injail)
2160 						jail_wild = inp;
2161 					else
2162 						local_wild = inp;
2163 			}
2164 		} /* LIST_FOREACH */
2165 		inp = jail_wild;
2166 		if (inp == NULL)
2167 			inp = local_exact;
2168 		if (inp == NULL)
2169 			inp = local_wild;
2170 #ifdef INET6
2171 		if (inp == NULL)
2172 			inp = local_wild_mapped;
2173 #endif
2174 		if (inp != NULL)
2175 			goto found;
2176 	} /* if (lookupflags & INPLOOKUP_WILDCARD) */
2177 	INP_GROUP_UNLOCK(pcbgroup);
2178 	return (NULL);
2179 
2180 found:
2181 	if (lookupflags & INPLOOKUP_WLOCKPCB)
2182 		locked = INP_TRY_WLOCK(inp);
2183 	else if (lookupflags & INPLOOKUP_RLOCKPCB)
2184 		locked = INP_TRY_RLOCK(inp);
2185 	else
2186 		panic("%s: locking bug", __func__);
2187 	if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) {
2188 		if (lookupflags & INPLOOKUP_WLOCKPCB)
2189 			INP_WUNLOCK(inp);
2190 		else
2191 			INP_RUNLOCK(inp);
2192 		return (NULL);
2193 	} else if (!locked)
2194 		in_pcbref(inp);
2195 	INP_GROUP_UNLOCK(pcbgroup);
2196 	if (!locked) {
2197 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
2198 			INP_WLOCK(inp);
2199 			if (in_pcbrele_wlocked(inp))
2200 				return (NULL);
2201 		} else {
2202 			INP_RLOCK(inp);
2203 			if (in_pcbrele_rlocked(inp))
2204 				return (NULL);
2205 		}
2206 	}
2207 #ifdef INVARIANTS
2208 	if (lookupflags & INPLOOKUP_WLOCKPCB)
2209 		INP_WLOCK_ASSERT(inp);
2210 	else
2211 		INP_RLOCK_ASSERT(inp);
2212 #endif
2213 	return (inp);
2214 }
2215 #endif /* PCBGROUP */
2216 
2217 /*
2218  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
2219  * that the caller has locked the hash list, and will not perform any further
2220  * locking or reference operations on either the hash list or the connection.
2221  */
2222 static struct inpcb *
2223 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2224     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2225     struct ifnet *ifp)
2226 {
2227 	struct inpcbhead *head;
2228 	struct inpcb *inp, *tmpinp;
2229 	u_short fport = fport_arg, lport = lport_arg;
2230 
2231 #ifdef INVARIANTS
2232 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
2233 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2234 	if (!mtx_owned(&pcbinfo->ipi_hash_lock))
2235 		MPASS(in_epoch_verbose(net_epoch_preempt, 1));
2236 #endif
2237 	/*
2238 	 * First look for an exact match.
2239 	 */
2240 	tmpinp = NULL;
2241 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
2242 	    pcbinfo->ipi_hashmask)];
2243 	CK_LIST_FOREACH(inp, head, inp_hash) {
2244 #ifdef INET6
2245 		/* XXX inp locking */
2246 		if ((inp->inp_vflag & INP_IPV4) == 0)
2247 			continue;
2248 #endif
2249 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
2250 		    inp->inp_laddr.s_addr == laddr.s_addr &&
2251 		    inp->inp_fport == fport &&
2252 		    inp->inp_lport == lport) {
2253 			/*
2254 			 * XXX We should be able to directly return
2255 			 * the inp here, without any checks.
2256 			 * Well unless both bound with SO_REUSEPORT?
2257 			 */
2258 			if (prison_flag(inp->inp_cred, PR_IP4))
2259 				return (inp);
2260 			if (tmpinp == NULL)
2261 				tmpinp = inp;
2262 		}
2263 	}
2264 	if (tmpinp != NULL)
2265 		return (tmpinp);
2266 
2267 	/*
2268 	 * Then look in lb group (for wildcard match).
2269 	 */
2270 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2271 		inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr,
2272 		    fport, lookupflags);
2273 		if (inp != NULL)
2274 			return (inp);
2275 	}
2276 
2277 	/*
2278 	 * Then look for a wildcard match, if requested.
2279 	 */
2280 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2281 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2282 #ifdef INET6
2283 		struct inpcb *local_wild_mapped = NULL;
2284 #endif
2285 		struct inpcb *jail_wild = NULL;
2286 		int injail;
2287 
2288 		/*
2289 		 * Order of socket selection - we always prefer jails.
2290 		 *      1. jailed, non-wild.
2291 		 *      2. jailed, wild.
2292 		 *      3. non-jailed, non-wild.
2293 		 *      4. non-jailed, wild.
2294 		 */
2295 
2296 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
2297 		    0, pcbinfo->ipi_hashmask)];
2298 		CK_LIST_FOREACH(inp, head, inp_hash) {
2299 #ifdef INET6
2300 			/* XXX inp locking */
2301 			if ((inp->inp_vflag & INP_IPV4) == 0)
2302 				continue;
2303 #endif
2304 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2305 			    inp->inp_lport != lport)
2306 				continue;
2307 
2308 			injail = prison_flag(inp->inp_cred, PR_IP4);
2309 			if (injail) {
2310 				if (prison_check_ip4(inp->inp_cred,
2311 				    &laddr) != 0)
2312 					continue;
2313 			} else {
2314 				if (local_exact != NULL)
2315 					continue;
2316 			}
2317 
2318 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2319 				if (injail)
2320 					return (inp);
2321 				else
2322 					local_exact = inp;
2323 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2324 #ifdef INET6
2325 				/* XXX inp locking, NULL check */
2326 				if (inp->inp_vflag & INP_IPV6PROTO)
2327 					local_wild_mapped = inp;
2328 				else
2329 #endif
2330 					if (injail)
2331 						jail_wild = inp;
2332 					else
2333 						local_wild = inp;
2334 			}
2335 		} /* LIST_FOREACH */
2336 		if (jail_wild != NULL)
2337 			return (jail_wild);
2338 		if (local_exact != NULL)
2339 			return (local_exact);
2340 		if (local_wild != NULL)
2341 			return (local_wild);
2342 #ifdef INET6
2343 		if (local_wild_mapped != NULL)
2344 			return (local_wild_mapped);
2345 #endif
2346 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
2347 
2348 	return (NULL);
2349 }
2350 
2351 /*
2352  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
2353  * hash list lock, and will return the inpcb locked (i.e., requires
2354  * INPLOOKUP_LOCKPCB).
2355  */
2356 static struct inpcb *
2357 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2358     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2359     struct ifnet *ifp)
2360 {
2361 	struct inpcb *inp;
2362 
2363 	INP_HASH_RLOCK(pcbinfo);
2364 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2365 	    (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
2366 	if (inp != NULL) {
2367 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
2368 			INP_WLOCK(inp);
2369 			if (__predict_false(inp->inp_flags2 & INP_FREED)) {
2370 				INP_WUNLOCK(inp);
2371 				inp = NULL;
2372 			}
2373 		} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
2374 			INP_RLOCK(inp);
2375 			if (__predict_false(inp->inp_flags2 & INP_FREED)) {
2376 				INP_RUNLOCK(inp);
2377 				inp = NULL;
2378 			}
2379 		} else
2380 			panic("%s: locking bug", __func__);
2381 #ifdef INVARIANTS
2382 		if (inp != NULL) {
2383 			if (lookupflags & INPLOOKUP_WLOCKPCB)
2384 				INP_WLOCK_ASSERT(inp);
2385 			else
2386 				INP_RLOCK_ASSERT(inp);
2387 		}
2388 #endif
2389 	}
2390 	INP_HASH_RUNLOCK(pcbinfo);
2391 	return (inp);
2392 }
2393 
2394 /*
2395  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2396  * from which a pre-calculated hash value may be extracted.
2397  *
2398  * Possibly more of this logic should be in in_pcbgroup.c.
2399  */
2400 struct inpcb *
2401 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2402     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
2403 {
2404 #if defined(PCBGROUP) && !defined(RSS)
2405 	struct inpcbgroup *pcbgroup;
2406 #endif
2407 
2408 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2409 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2410 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2411 	    ("%s: LOCKPCB not set", __func__));
2412 
2413 	/*
2414 	 * When not using RSS, use connection groups in preference to the
2415 	 * reservation table when looking up 4-tuples.  When using RSS, just
2416 	 * use the reservation table, due to the cost of the Toeplitz hash
2417 	 * in software.
2418 	 *
2419 	 * XXXRW: This policy belongs in the pcbgroup code, as in principle
2420 	 * we could be doing RSS with a non-Toeplitz hash that is affordable
2421 	 * in software.
2422 	 */
2423 #if defined(PCBGROUP) && !defined(RSS)
2424 	if (in_pcbgroup_enabled(pcbinfo)) {
2425 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2426 		    fport);
2427 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2428 		    laddr, lport, lookupflags, ifp));
2429 	}
2430 #endif
2431 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2432 	    lookupflags, ifp));
2433 }
2434 
2435 struct inpcb *
2436 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2437     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2438     struct ifnet *ifp, struct mbuf *m)
2439 {
2440 #ifdef PCBGROUP
2441 	struct inpcbgroup *pcbgroup;
2442 #endif
2443 
2444 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2445 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2446 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2447 	    ("%s: LOCKPCB not set", __func__));
2448 
2449 #ifdef PCBGROUP
2450 	/*
2451 	 * If we can use a hardware-generated hash to look up the connection
2452 	 * group, use that connection group to find the inpcb.  Otherwise
2453 	 * fall back on a software hash -- or the reservation table if we're
2454 	 * using RSS.
2455 	 *
2456 	 * XXXRW: As above, that policy belongs in the pcbgroup code.
2457 	 */
2458 	if (in_pcbgroup_enabled(pcbinfo) &&
2459 	    !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
2460 		pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
2461 		    m->m_pkthdr.flowid);
2462 		if (pcbgroup != NULL)
2463 			return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
2464 			    fport, laddr, lport, lookupflags, ifp));
2465 #ifndef RSS
2466 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2467 		    fport);
2468 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2469 		    laddr, lport, lookupflags, ifp));
2470 #endif
2471 	}
2472 #endif
2473 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2474 	    lookupflags, ifp));
2475 }
2476 #endif /* INET */
2477 
2478 /*
2479  * Insert PCB onto various hash lists.
2480  */
2481 static int
2482 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
2483 {
2484 	struct inpcbhead *pcbhash;
2485 	struct inpcbporthead *pcbporthash;
2486 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2487 	struct inpcbport *phd;
2488 	u_int32_t hashkey_faddr;
2489 	int so_options;
2490 
2491 	INP_WLOCK_ASSERT(inp);
2492 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2493 
2494 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2495 	    ("in_pcbinshash: INP_INHASHLIST"));
2496 
2497 #ifdef INET6
2498 	if (inp->inp_vflag & INP_IPV6)
2499 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2500 	else
2501 #endif
2502 	hashkey_faddr = inp->inp_faddr.s_addr;
2503 
2504 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2505 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2506 
2507 	pcbporthash = &pcbinfo->ipi_porthashbase[
2508 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2509 
2510 	/*
2511 	 * Add entry to load balance group.
2512 	 * Only do this if SO_REUSEPORT_LB is set.
2513 	 */
2514 	so_options = inp_so_options(inp);
2515 	if (so_options & SO_REUSEPORT_LB) {
2516 		int ret = in_pcbinslbgrouphash(inp);
2517 		if (ret) {
2518 			/* pcb lb group malloc fail (ret=ENOBUFS). */
2519 			return (ret);
2520 		}
2521 	}
2522 
2523 	/*
2524 	 * Go through port list and look for a head for this lport.
2525 	 */
2526 	CK_LIST_FOREACH(phd, pcbporthash, phd_hash) {
2527 		if (phd->phd_port == inp->inp_lport)
2528 			break;
2529 	}
2530 	/*
2531 	 * If none exists, malloc one and tack it on.
2532 	 */
2533 	if (phd == NULL) {
2534 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
2535 		if (phd == NULL) {
2536 			return (ENOBUFS); /* XXX */
2537 		}
2538 		bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context));
2539 		phd->phd_port = inp->inp_lport;
2540 		CK_LIST_INIT(&phd->phd_pcblist);
2541 		CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2542 	}
2543 	inp->inp_phd = phd;
2544 	CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2545 	CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2546 	inp->inp_flags |= INP_INHASHLIST;
2547 #ifdef PCBGROUP
2548 	if (do_pcbgroup_update)
2549 		in_pcbgroup_update(inp);
2550 #endif
2551 	return (0);
2552 }
2553 
2554 /*
2555  * For now, there are two public interfaces to insert an inpcb into the hash
2556  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
2557  * is used only in the TCP syncache, where in_pcbinshash is called before the
2558  * full 4-tuple is set for the inpcb, and we don't want to install in the
2559  * pcbgroup until later.
2560  *
2561  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
2562  * connection groups, and partially initialised inpcbs should not be exposed
2563  * to either reservation hash tables or pcbgroups.
2564  */
2565 int
2566 in_pcbinshash(struct inpcb *inp)
2567 {
2568 
2569 	return (in_pcbinshash_internal(inp, 1));
2570 }
2571 
2572 int
2573 in_pcbinshash_nopcbgroup(struct inpcb *inp)
2574 {
2575 
2576 	return (in_pcbinshash_internal(inp, 0));
2577 }
2578 
2579 /*
2580  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2581  * changed. NOTE: This does not handle the case of the lport changing (the
2582  * hashed port list would have to be updated as well), so the lport must
2583  * not change after in_pcbinshash() has been called.
2584  */
2585 void
2586 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
2587 {
2588 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2589 	struct inpcbhead *head;
2590 	u_int32_t hashkey_faddr;
2591 
2592 	INP_WLOCK_ASSERT(inp);
2593 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2594 
2595 	KASSERT(inp->inp_flags & INP_INHASHLIST,
2596 	    ("in_pcbrehash: !INP_INHASHLIST"));
2597 
2598 #ifdef INET6
2599 	if (inp->inp_vflag & INP_IPV6)
2600 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2601 	else
2602 #endif
2603 	hashkey_faddr = inp->inp_faddr.s_addr;
2604 
2605 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2606 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2607 
2608 	CK_LIST_REMOVE(inp, inp_hash);
2609 	CK_LIST_INSERT_HEAD(head, inp, inp_hash);
2610 
2611 #ifdef PCBGROUP
2612 	if (m != NULL)
2613 		in_pcbgroup_update_mbuf(inp, m);
2614 	else
2615 		in_pcbgroup_update(inp);
2616 #endif
2617 }
2618 
2619 void
2620 in_pcbrehash(struct inpcb *inp)
2621 {
2622 
2623 	in_pcbrehash_mbuf(inp, NULL);
2624 }
2625 
2626 /*
2627  * Remove PCB from various lists.
2628  */
2629 static void
2630 in_pcbremlists(struct inpcb *inp)
2631 {
2632 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2633 
2634 #ifdef INVARIANTS
2635 	if (pcbinfo == &V_tcbinfo) {
2636 		INP_INFO_RLOCK_ASSERT(pcbinfo);
2637 	} else {
2638 		INP_INFO_WLOCK_ASSERT(pcbinfo);
2639 	}
2640 #endif
2641 
2642 	INP_WLOCK_ASSERT(inp);
2643 	INP_LIST_WLOCK_ASSERT(pcbinfo);
2644 
2645 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2646 	if (inp->inp_flags & INP_INHASHLIST) {
2647 		struct inpcbport *phd = inp->inp_phd;
2648 
2649 		INP_HASH_WLOCK(pcbinfo);
2650 
2651 		/* XXX: Only do if SO_REUSEPORT_LB set? */
2652 		in_pcbremlbgrouphash(inp);
2653 
2654 		CK_LIST_REMOVE(inp, inp_hash);
2655 		CK_LIST_REMOVE(inp, inp_portlist);
2656 		if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
2657 			CK_LIST_REMOVE(phd, phd_hash);
2658 			epoch_call(net_epoch_preempt, &phd->phd_epoch_ctx, inpcbport_free);
2659 		}
2660 		INP_HASH_WUNLOCK(pcbinfo);
2661 		inp->inp_flags &= ~INP_INHASHLIST;
2662 	}
2663 	CK_LIST_REMOVE(inp, inp_list);
2664 	pcbinfo->ipi_count--;
2665 #ifdef PCBGROUP
2666 	in_pcbgroup_remove(inp);
2667 #endif
2668 }
2669 
2670 /*
2671  * Check for alternatives when higher level complains
2672  * about service problems.  For now, invalidate cached
2673  * routing information.  If the route was created dynamically
2674  * (by a redirect), time to try a default gateway again.
2675  */
2676 void
2677 in_losing(struct inpcb *inp)
2678 {
2679 
2680 	RO_INVALIDATE_CACHE(&inp->inp_route);
2681 	return;
2682 }
2683 
2684 /*
2685  * A set label operation has occurred at the socket layer, propagate the
2686  * label change into the in_pcb for the socket.
2687  */
2688 void
2689 in_pcbsosetlabel(struct socket *so)
2690 {
2691 #ifdef MAC
2692 	struct inpcb *inp;
2693 
2694 	inp = sotoinpcb(so);
2695 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2696 
2697 	INP_WLOCK(inp);
2698 	SOCK_LOCK(so);
2699 	mac_inpcb_sosetlabel(so, inp);
2700 	SOCK_UNLOCK(so);
2701 	INP_WUNLOCK(inp);
2702 #endif
2703 }
2704 
2705 /*
2706  * ipport_tick runs once per second, determining if random port allocation
2707  * should be continued.  If more than ipport_randomcps ports have been
2708  * allocated in the last second, then we return to sequential port
2709  * allocation. We return to random allocation only once we drop below
2710  * ipport_randomcps for at least ipport_randomtime seconds.
2711  */
2712 static void
2713 ipport_tick(void *xtp)
2714 {
2715 	VNET_ITERATOR_DECL(vnet_iter);
2716 
2717 	VNET_LIST_RLOCK_NOSLEEP();
2718 	VNET_FOREACH(vnet_iter) {
2719 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
2720 		if (V_ipport_tcpallocs <=
2721 		    V_ipport_tcplastcount + V_ipport_randomcps) {
2722 			if (V_ipport_stoprandom > 0)
2723 				V_ipport_stoprandom--;
2724 		} else
2725 			V_ipport_stoprandom = V_ipport_randomtime;
2726 		V_ipport_tcplastcount = V_ipport_tcpallocs;
2727 		CURVNET_RESTORE();
2728 	}
2729 	VNET_LIST_RUNLOCK_NOSLEEP();
2730 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2731 }
2732 
2733 static void
2734 ip_fini(void *xtp)
2735 {
2736 
2737 	callout_stop(&ipport_tick_callout);
2738 }
2739 
2740 /*
2741  * The ipport_callout should start running at about the time we attach the
2742  * inet or inet6 domains.
2743  */
2744 static void
2745 ipport_tick_init(const void *unused __unused)
2746 {
2747 
2748 	/* Start ipport_tick. */
2749 	callout_init(&ipport_tick_callout, 1);
2750 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2751 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2752 		SHUTDOWN_PRI_DEFAULT);
2753 }
2754 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
2755     ipport_tick_init, NULL);
2756 
2757 void
2758 inp_wlock(struct inpcb *inp)
2759 {
2760 
2761 	INP_WLOCK(inp);
2762 }
2763 
2764 void
2765 inp_wunlock(struct inpcb *inp)
2766 {
2767 
2768 	INP_WUNLOCK(inp);
2769 }
2770 
2771 void
2772 inp_rlock(struct inpcb *inp)
2773 {
2774 
2775 	INP_RLOCK(inp);
2776 }
2777 
2778 void
2779 inp_runlock(struct inpcb *inp)
2780 {
2781 
2782 	INP_RUNLOCK(inp);
2783 }
2784 
2785 #ifdef INVARIANT_SUPPORT
2786 void
2787 inp_lock_assert(struct inpcb *inp)
2788 {
2789 
2790 	INP_WLOCK_ASSERT(inp);
2791 }
2792 
2793 void
2794 inp_unlock_assert(struct inpcb *inp)
2795 {
2796 
2797 	INP_UNLOCK_ASSERT(inp);
2798 }
2799 #endif
2800 
2801 void
2802 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2803 {
2804 	struct inpcb *inp;
2805 
2806 	INP_INFO_WLOCK(&V_tcbinfo);
2807 	CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2808 		INP_WLOCK(inp);
2809 		func(inp, arg);
2810 		INP_WUNLOCK(inp);
2811 	}
2812 	INP_INFO_WUNLOCK(&V_tcbinfo);
2813 }
2814 
2815 struct socket *
2816 inp_inpcbtosocket(struct inpcb *inp)
2817 {
2818 
2819 	INP_WLOCK_ASSERT(inp);
2820 	return (inp->inp_socket);
2821 }
2822 
2823 struct tcpcb *
2824 inp_inpcbtotcpcb(struct inpcb *inp)
2825 {
2826 
2827 	INP_WLOCK_ASSERT(inp);
2828 	return ((struct tcpcb *)inp->inp_ppcb);
2829 }
2830 
2831 int
2832 inp_ip_tos_get(const struct inpcb *inp)
2833 {
2834 
2835 	return (inp->inp_ip_tos);
2836 }
2837 
2838 void
2839 inp_ip_tos_set(struct inpcb *inp, int val)
2840 {
2841 
2842 	inp->inp_ip_tos = val;
2843 }
2844 
2845 void
2846 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2847     uint32_t *faddr, uint16_t *fp)
2848 {
2849 
2850 	INP_LOCK_ASSERT(inp);
2851 	*laddr = inp->inp_laddr.s_addr;
2852 	*faddr = inp->inp_faddr.s_addr;
2853 	*lp = inp->inp_lport;
2854 	*fp = inp->inp_fport;
2855 }
2856 
2857 struct inpcb *
2858 so_sotoinpcb(struct socket *so)
2859 {
2860 
2861 	return (sotoinpcb(so));
2862 }
2863 
2864 struct tcpcb *
2865 so_sototcpcb(struct socket *so)
2866 {
2867 
2868 	return (sototcpcb(so));
2869 }
2870 
2871 /*
2872  * Create an external-format (``xinpcb'') structure using the information in
2873  * the kernel-format in_pcb structure pointed to by inp.  This is done to
2874  * reduce the spew of irrelevant information over this interface, to isolate
2875  * user code from changes in the kernel structure, and potentially to provide
2876  * information-hiding if we decide that some of this information should be
2877  * hidden from users.
2878  */
2879 void
2880 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2881 {
2882 
2883 	bzero(xi, sizeof(*xi));
2884 	xi->xi_len = sizeof(struct xinpcb);
2885 	if (inp->inp_socket)
2886 		sotoxsocket(inp->inp_socket, &xi->xi_socket);
2887 	bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2888 	xi->inp_gencnt = inp->inp_gencnt;
2889 	xi->inp_ppcb = (uintptr_t)inp->inp_ppcb;
2890 	xi->inp_flow = inp->inp_flow;
2891 	xi->inp_flowid = inp->inp_flowid;
2892 	xi->inp_flowtype = inp->inp_flowtype;
2893 	xi->inp_flags = inp->inp_flags;
2894 	xi->inp_flags2 = inp->inp_flags2;
2895 	xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket;
2896 	xi->in6p_cksum = inp->in6p_cksum;
2897 	xi->in6p_hops = inp->in6p_hops;
2898 	xi->inp_ip_tos = inp->inp_ip_tos;
2899 	xi->inp_vflag = inp->inp_vflag;
2900 	xi->inp_ip_ttl = inp->inp_ip_ttl;
2901 	xi->inp_ip_p = inp->inp_ip_p;
2902 	xi->inp_ip_minttl = inp->inp_ip_minttl;
2903 }
2904 
2905 #ifdef DDB
2906 static void
2907 db_print_indent(int indent)
2908 {
2909 	int i;
2910 
2911 	for (i = 0; i < indent; i++)
2912 		db_printf(" ");
2913 }
2914 
2915 static void
2916 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2917 {
2918 	char faddr_str[48], laddr_str[48];
2919 
2920 	db_print_indent(indent);
2921 	db_printf("%s at %p\n", name, inc);
2922 
2923 	indent += 2;
2924 
2925 #ifdef INET6
2926 	if (inc->inc_flags & INC_ISIPV6) {
2927 		/* IPv6. */
2928 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
2929 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
2930 	} else
2931 #endif
2932 	{
2933 		/* IPv4. */
2934 		inet_ntoa_r(inc->inc_laddr, laddr_str);
2935 		inet_ntoa_r(inc->inc_faddr, faddr_str);
2936 	}
2937 	db_print_indent(indent);
2938 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2939 	    ntohs(inc->inc_lport));
2940 	db_print_indent(indent);
2941 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2942 	    ntohs(inc->inc_fport));
2943 }
2944 
2945 static void
2946 db_print_inpflags(int inp_flags)
2947 {
2948 	int comma;
2949 
2950 	comma = 0;
2951 	if (inp_flags & INP_RECVOPTS) {
2952 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2953 		comma = 1;
2954 	}
2955 	if (inp_flags & INP_RECVRETOPTS) {
2956 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2957 		comma = 1;
2958 	}
2959 	if (inp_flags & INP_RECVDSTADDR) {
2960 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2961 		comma = 1;
2962 	}
2963 	if (inp_flags & INP_ORIGDSTADDR) {
2964 		db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
2965 		comma = 1;
2966 	}
2967 	if (inp_flags & INP_HDRINCL) {
2968 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
2969 		comma = 1;
2970 	}
2971 	if (inp_flags & INP_HIGHPORT) {
2972 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2973 		comma = 1;
2974 	}
2975 	if (inp_flags & INP_LOWPORT) {
2976 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
2977 		comma = 1;
2978 	}
2979 	if (inp_flags & INP_ANONPORT) {
2980 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
2981 		comma = 1;
2982 	}
2983 	if (inp_flags & INP_RECVIF) {
2984 		db_printf("%sINP_RECVIF", comma ? ", " : "");
2985 		comma = 1;
2986 	}
2987 	if (inp_flags & INP_MTUDISC) {
2988 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
2989 		comma = 1;
2990 	}
2991 	if (inp_flags & INP_RECVTTL) {
2992 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
2993 		comma = 1;
2994 	}
2995 	if (inp_flags & INP_DONTFRAG) {
2996 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2997 		comma = 1;
2998 	}
2999 	if (inp_flags & INP_RECVTOS) {
3000 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
3001 		comma = 1;
3002 	}
3003 	if (inp_flags & IN6P_IPV6_V6ONLY) {
3004 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
3005 		comma = 1;
3006 	}
3007 	if (inp_flags & IN6P_PKTINFO) {
3008 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
3009 		comma = 1;
3010 	}
3011 	if (inp_flags & IN6P_HOPLIMIT) {
3012 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
3013 		comma = 1;
3014 	}
3015 	if (inp_flags & IN6P_HOPOPTS) {
3016 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
3017 		comma = 1;
3018 	}
3019 	if (inp_flags & IN6P_DSTOPTS) {
3020 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
3021 		comma = 1;
3022 	}
3023 	if (inp_flags & IN6P_RTHDR) {
3024 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
3025 		comma = 1;
3026 	}
3027 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
3028 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
3029 		comma = 1;
3030 	}
3031 	if (inp_flags & IN6P_TCLASS) {
3032 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
3033 		comma = 1;
3034 	}
3035 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
3036 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
3037 		comma = 1;
3038 	}
3039 	if (inp_flags & INP_TIMEWAIT) {
3040 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
3041 		comma  = 1;
3042 	}
3043 	if (inp_flags & INP_ONESBCAST) {
3044 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
3045 		comma  = 1;
3046 	}
3047 	if (inp_flags & INP_DROPPED) {
3048 		db_printf("%sINP_DROPPED", comma ? ", " : "");
3049 		comma  = 1;
3050 	}
3051 	if (inp_flags & INP_SOCKREF) {
3052 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
3053 		comma  = 1;
3054 	}
3055 	if (inp_flags & IN6P_RFC2292) {
3056 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
3057 		comma = 1;
3058 	}
3059 	if (inp_flags & IN6P_MTU) {
3060 		db_printf("IN6P_MTU%s", comma ? ", " : "");
3061 		comma = 1;
3062 	}
3063 }
3064 
3065 static void
3066 db_print_inpvflag(u_char inp_vflag)
3067 {
3068 	int comma;
3069 
3070 	comma = 0;
3071 	if (inp_vflag & INP_IPV4) {
3072 		db_printf("%sINP_IPV4", comma ? ", " : "");
3073 		comma  = 1;
3074 	}
3075 	if (inp_vflag & INP_IPV6) {
3076 		db_printf("%sINP_IPV6", comma ? ", " : "");
3077 		comma  = 1;
3078 	}
3079 	if (inp_vflag & INP_IPV6PROTO) {
3080 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
3081 		comma  = 1;
3082 	}
3083 }
3084 
3085 static void
3086 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
3087 {
3088 
3089 	db_print_indent(indent);
3090 	db_printf("%s at %p\n", name, inp);
3091 
3092 	indent += 2;
3093 
3094 	db_print_indent(indent);
3095 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
3096 
3097 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
3098 
3099 	db_print_indent(indent);
3100 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
3101 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
3102 
3103 	db_print_indent(indent);
3104 	db_printf("inp_label: %p   inp_flags: 0x%x (",
3105 	   inp->inp_label, inp->inp_flags);
3106 	db_print_inpflags(inp->inp_flags);
3107 	db_printf(")\n");
3108 
3109 	db_print_indent(indent);
3110 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
3111 	    inp->inp_vflag);
3112 	db_print_inpvflag(inp->inp_vflag);
3113 	db_printf(")\n");
3114 
3115 	db_print_indent(indent);
3116 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
3117 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
3118 
3119 	db_print_indent(indent);
3120 #ifdef INET6
3121 	if (inp->inp_vflag & INP_IPV6) {
3122 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
3123 		    "in6p_moptions: %p\n", inp->in6p_options,
3124 		    inp->in6p_outputopts, inp->in6p_moptions);
3125 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
3126 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
3127 		    inp->in6p_hops);
3128 	} else
3129 #endif
3130 	{
3131 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
3132 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
3133 		    inp->inp_options, inp->inp_moptions);
3134 	}
3135 
3136 	db_print_indent(indent);
3137 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
3138 	    (uintmax_t)inp->inp_gencnt);
3139 }
3140 
3141 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
3142 {
3143 	struct inpcb *inp;
3144 
3145 	if (!have_addr) {
3146 		db_printf("usage: show inpcb <addr>\n");
3147 		return;
3148 	}
3149 	inp = (struct inpcb *)addr;
3150 
3151 	db_print_inpcb(inp, "inpcb", 0);
3152 }
3153 #endif /* DDB */
3154 
3155 #ifdef RATELIMIT
3156 /*
3157  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
3158  * if any.
3159  */
3160 int
3161 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
3162 {
3163 	union if_snd_tag_modify_params params = {
3164 		.rate_limit.max_rate = max_pacing_rate,
3165 	};
3166 	struct m_snd_tag *mst;
3167 	struct ifnet *ifp;
3168 	int error;
3169 
3170 	mst = inp->inp_snd_tag;
3171 	if (mst == NULL)
3172 		return (EINVAL);
3173 
3174 	ifp = mst->ifp;
3175 	if (ifp == NULL)
3176 		return (EINVAL);
3177 
3178 	if (ifp->if_snd_tag_modify == NULL) {
3179 		error = EOPNOTSUPP;
3180 	} else {
3181 		error = ifp->if_snd_tag_modify(mst, &params);
3182 	}
3183 	return (error);
3184 }
3185 
3186 /*
3187  * Query existing TX rate limit based on the existing
3188  * "inp->inp_snd_tag", if any.
3189  */
3190 int
3191 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
3192 {
3193 	union if_snd_tag_query_params params = { };
3194 	struct m_snd_tag *mst;
3195 	struct ifnet *ifp;
3196 	int error;
3197 
3198 	mst = inp->inp_snd_tag;
3199 	if (mst == NULL)
3200 		return (EINVAL);
3201 
3202 	ifp = mst->ifp;
3203 	if (ifp == NULL)
3204 		return (EINVAL);
3205 
3206 	if (ifp->if_snd_tag_query == NULL) {
3207 		error = EOPNOTSUPP;
3208 	} else {
3209 		error = ifp->if_snd_tag_query(mst, &params);
3210 		if (error == 0 &&  p_max_pacing_rate != NULL)
3211 			*p_max_pacing_rate = params.rate_limit.max_rate;
3212 	}
3213 	return (error);
3214 }
3215 
3216 /*
3217  * Query existing TX queue level based on the existing
3218  * "inp->inp_snd_tag", if any.
3219  */
3220 int
3221 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
3222 {
3223 	union if_snd_tag_query_params params = { };
3224 	struct m_snd_tag *mst;
3225 	struct ifnet *ifp;
3226 	int error;
3227 
3228 	mst = inp->inp_snd_tag;
3229 	if (mst == NULL)
3230 		return (EINVAL);
3231 
3232 	ifp = mst->ifp;
3233 	if (ifp == NULL)
3234 		return (EINVAL);
3235 
3236 	if (ifp->if_snd_tag_query == NULL)
3237 		return (EOPNOTSUPP);
3238 
3239 	error = ifp->if_snd_tag_query(mst, &params);
3240 	if (error == 0 &&  p_txqueue_level != NULL)
3241 		*p_txqueue_level = params.rate_limit.queue_level;
3242 	return (error);
3243 }
3244 
3245 /*
3246  * Allocate a new TX rate limit send tag from the network interface
3247  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
3248  */
3249 int
3250 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
3251     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate)
3252 {
3253 	union if_snd_tag_alloc_params params = {
3254 		.rate_limit.hdr.type = (max_pacing_rate == -1U) ?
3255 		    IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
3256 		.rate_limit.hdr.flowid = flowid,
3257 		.rate_limit.hdr.flowtype = flowtype,
3258 		.rate_limit.max_rate = max_pacing_rate,
3259 	};
3260 	int error;
3261 
3262 	INP_WLOCK_ASSERT(inp);
3263 
3264 	if (inp->inp_snd_tag != NULL)
3265 		return (EINVAL);
3266 
3267 	if (ifp->if_snd_tag_alloc == NULL) {
3268 		error = EOPNOTSUPP;
3269 	} else {
3270 		error = ifp->if_snd_tag_alloc(ifp, &params, &inp->inp_snd_tag);
3271 
3272 		/*
3273 		 * At success increment the refcount on
3274 		 * the send tag's network interface:
3275 		 */
3276 		if (error == 0)
3277 			if_ref(inp->inp_snd_tag->ifp);
3278 	}
3279 	return (error);
3280 }
3281 
3282 /*
3283  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
3284  * if any:
3285  */
3286 void
3287 in_pcbdetach_txrtlmt(struct inpcb *inp)
3288 {
3289 	struct m_snd_tag *mst;
3290 	struct ifnet *ifp;
3291 
3292 	INP_WLOCK_ASSERT(inp);
3293 
3294 	mst = inp->inp_snd_tag;
3295 	inp->inp_snd_tag = NULL;
3296 
3297 	if (mst == NULL)
3298 		return;
3299 
3300 	ifp = mst->ifp;
3301 	if (ifp == NULL)
3302 		return;
3303 
3304 	/*
3305 	 * If the device was detached while we still had reference(s)
3306 	 * on the ifp, we assume if_snd_tag_free() was replaced with
3307 	 * stubs.
3308 	 */
3309 	ifp->if_snd_tag_free(mst);
3310 
3311 	/* release reference count on network interface */
3312 	if_rele(ifp);
3313 }
3314 
3315 /*
3316  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
3317  * is set in the fast path and will attach/detach/modify the TX rate
3318  * limit send tag based on the socket's so_max_pacing_rate value.
3319  */
3320 void
3321 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
3322 {
3323 	struct socket *socket;
3324 	uint32_t max_pacing_rate;
3325 	bool did_upgrade;
3326 	int error;
3327 
3328 	if (inp == NULL)
3329 		return;
3330 
3331 	socket = inp->inp_socket;
3332 	if (socket == NULL)
3333 		return;
3334 
3335 	if (!INP_WLOCKED(inp)) {
3336 		/*
3337 		 * NOTE: If the write locking fails, we need to bail
3338 		 * out and use the non-ratelimited ring for the
3339 		 * transmit until there is a new chance to get the
3340 		 * write lock.
3341 		 */
3342 		if (!INP_TRY_UPGRADE(inp))
3343 			return;
3344 		did_upgrade = 1;
3345 	} else {
3346 		did_upgrade = 0;
3347 	}
3348 
3349 	/*
3350 	 * NOTE: The so_max_pacing_rate value is read unlocked,
3351 	 * because atomic updates are not required since the variable
3352 	 * is checked at every mbuf we send. It is assumed that the
3353 	 * variable read itself will be atomic.
3354 	 */
3355 	max_pacing_rate = socket->so_max_pacing_rate;
3356 
3357 	/*
3358 	 * NOTE: When attaching to a network interface a reference is
3359 	 * made to ensure the network interface doesn't go away until
3360 	 * all ratelimit connections are gone. The network interface
3361 	 * pointers compared below represent valid network interfaces,
3362 	 * except when comparing towards NULL.
3363 	 */
3364 	if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3365 		error = 0;
3366 	} else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3367 		if (inp->inp_snd_tag != NULL)
3368 			in_pcbdetach_txrtlmt(inp);
3369 		error = 0;
3370 	} else if (inp->inp_snd_tag == NULL) {
3371 		/*
3372 		 * In order to utilize packet pacing with RSS, we need
3373 		 * to wait until there is a valid RSS hash before we
3374 		 * can proceed:
3375 		 */
3376 		if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3377 			error = EAGAIN;
3378 		} else {
3379 			error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3380 			    mb->m_pkthdr.flowid, max_pacing_rate);
3381 		}
3382 	} else {
3383 		error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3384 	}
3385 	if (error == 0 || error == EOPNOTSUPP)
3386 		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3387 	if (did_upgrade)
3388 		INP_DOWNGRADE(inp);
3389 }
3390 
3391 /*
3392  * Track route changes for TX rate limiting.
3393  */
3394 void
3395 in_pcboutput_eagain(struct inpcb *inp)
3396 {
3397 	struct socket *socket;
3398 	bool did_upgrade;
3399 
3400 	if (inp == NULL)
3401 		return;
3402 
3403 	socket = inp->inp_socket;
3404 	if (socket == NULL)
3405 		return;
3406 
3407 	if (inp->inp_snd_tag == NULL)
3408 		return;
3409 
3410 	if (!INP_WLOCKED(inp)) {
3411 		/*
3412 		 * NOTE: If the write locking fails, we need to bail
3413 		 * out and use the non-ratelimited ring for the
3414 		 * transmit until there is a new chance to get the
3415 		 * write lock.
3416 		 */
3417 		if (!INP_TRY_UPGRADE(inp))
3418 			return;
3419 		did_upgrade = 1;
3420 	} else {
3421 		did_upgrade = 0;
3422 	}
3423 
3424 	/* detach rate limiting */
3425 	in_pcbdetach_txrtlmt(inp);
3426 
3427 	/* make sure new mbuf send tag allocation is made */
3428 	inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3429 
3430 	if (did_upgrade)
3431 		INP_DOWNGRADE(inp);
3432 }
3433 #endif /* RATELIMIT */
3434