1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Robert N. M. Watson under 11 * contract to Juniper Networks, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_ddb.h" 44 #include "opt_ipsec.h" 45 #include "opt_inet.h" 46 #include "opt_inet6.h" 47 #include "opt_ratelimit.h" 48 #include "opt_pcbgroup.h" 49 #include "opt_rss.h" 50 51 #include <sys/param.h> 52 #include <sys/systm.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/mbuf.h> 56 #include <sys/callout.h> 57 #include <sys/eventhandler.h> 58 #include <sys/domain.h> 59 #include <sys/protosw.h> 60 #include <sys/rmlock.h> 61 #include <sys/smp.h> 62 #include <sys/socket.h> 63 #include <sys/socketvar.h> 64 #include <sys/sockio.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/refcount.h> 68 #include <sys/jail.h> 69 #include <sys/kernel.h> 70 #include <sys/sysctl.h> 71 72 #ifdef DDB 73 #include <ddb/ddb.h> 74 #endif 75 76 #include <vm/uma.h> 77 78 #include <net/if.h> 79 #include <net/if_var.h> 80 #include <net/if_types.h> 81 #include <net/if_llatbl.h> 82 #include <net/route.h> 83 #include <net/rss_config.h> 84 #include <net/vnet.h> 85 86 #if defined(INET) || defined(INET6) 87 #include <netinet/in.h> 88 #include <netinet/in_pcb.h> 89 #ifdef INET 90 #include <netinet/in_var.h> 91 #endif 92 #include <netinet/ip_var.h> 93 #include <netinet/tcp_var.h> 94 #ifdef TCPHPTS 95 #include <netinet/tcp_hpts.h> 96 #endif 97 #include <netinet/udp.h> 98 #include <netinet/udp_var.h> 99 #ifdef INET6 100 #include <netinet/ip6.h> 101 #include <netinet6/in6_pcb.h> 102 #include <netinet6/in6_var.h> 103 #include <netinet6/ip6_var.h> 104 #endif /* INET6 */ 105 #endif 106 107 #include <netipsec/ipsec_support.h> 108 109 #include <security/mac/mac_framework.h> 110 111 #define INPCBLBGROUP_SIZMIN 8 112 #define INPCBLBGROUP_SIZMAX 256 113 114 static struct callout ipport_tick_callout; 115 116 /* 117 * These configure the range of local port addresses assigned to 118 * "unspecified" outgoing connections/packets/whatever. 119 */ 120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 126 127 /* 128 * Reserved ports accessible only to root. There are significant 129 * security considerations that must be accounted for when changing these, 130 * but the security benefits can be great. Please be careful. 131 */ 132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 133 VNET_DEFINE(int, ipport_reservedlow); 134 135 /* Variables dealing with random ephemeral port allocation. */ 136 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 137 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 138 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 139 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 140 VNET_DEFINE(int, ipport_tcpallocs); 141 VNET_DEFINE_STATIC(int, ipport_tcplastcount); 142 143 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 144 145 static void in_pcbremlists(struct inpcb *inp); 146 #ifdef INET 147 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 148 struct in_addr faddr, u_int fport_arg, 149 struct in_addr laddr, u_int lport_arg, 150 int lookupflags, struct ifnet *ifp); 151 152 #define RANGECHK(var, min, max) \ 153 if ((var) < (min)) { (var) = (min); } \ 154 else if ((var) > (max)) { (var) = (max); } 155 156 static int 157 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 158 { 159 int error; 160 161 error = sysctl_handle_int(oidp, arg1, arg2, req); 162 if (error == 0) { 163 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 164 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 165 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 166 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 167 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 168 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 169 } 170 return (error); 171 } 172 173 #undef RANGECHK 174 175 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, 176 "IP Ports"); 177 178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 179 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 180 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", ""); 181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 182 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 183 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", ""); 184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 185 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 186 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", ""); 187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 188 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 189 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", ""); 190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 191 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 192 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", ""); 193 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 194 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 195 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", ""); 196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 197 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 198 &VNET_NAME(ipport_reservedhigh), 0, ""); 199 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 200 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 202 CTLFLAG_VNET | CTLFLAG_RW, 203 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 204 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 205 CTLFLAG_VNET | CTLFLAG_RW, 206 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 207 "allocations before switching to a sequental one"); 208 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 209 CTLFLAG_VNET | CTLFLAG_RW, 210 &VNET_NAME(ipport_randomtime), 0, 211 "Minimum time to keep sequental port " 212 "allocation before switching to a random one"); 213 #endif /* INET */ 214 215 /* 216 * in_pcb.c: manage the Protocol Control Blocks. 217 * 218 * NOTE: It is assumed that most of these functions will be called with 219 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 220 * functions often modify hash chains or addresses in pcbs. 221 */ 222 223 static struct inpcblbgroup * 224 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag, 225 uint16_t port, const union in_dependaddr *addr, int size) 226 { 227 struct inpcblbgroup *grp; 228 size_t bytes; 229 230 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 231 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 232 if (!grp) 233 return (NULL); 234 grp->il_vflag = vflag; 235 grp->il_lport = port; 236 grp->il_dependladdr = *addr; 237 grp->il_inpsiz = size; 238 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 239 return (grp); 240 } 241 242 static void 243 in_pcblbgroup_free_deferred(epoch_context_t ctx) 244 { 245 struct inpcblbgroup *grp; 246 247 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); 248 free(grp, M_PCB); 249 } 250 251 static void 252 in_pcblbgroup_free(struct inpcblbgroup *grp) 253 { 254 255 CK_LIST_REMOVE(grp, il_list); 256 epoch_call(net_epoch_preempt, &grp->il_epoch_ctx, 257 in_pcblbgroup_free_deferred); 258 } 259 260 static struct inpcblbgroup * 261 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 262 struct inpcblbgroup *old_grp, int size) 263 { 264 struct inpcblbgroup *grp; 265 int i; 266 267 grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag, 268 old_grp->il_lport, &old_grp->il_dependladdr, size); 269 if (grp == NULL) 270 return (NULL); 271 272 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 273 ("invalid new local group size %d and old local group count %d", 274 grp->il_inpsiz, old_grp->il_inpcnt)); 275 276 for (i = 0; i < old_grp->il_inpcnt; ++i) 277 grp->il_inp[i] = old_grp->il_inp[i]; 278 grp->il_inpcnt = old_grp->il_inpcnt; 279 in_pcblbgroup_free(old_grp); 280 return (grp); 281 } 282 283 /* 284 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] 285 * and shrink group if possible. 286 */ 287 static void 288 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, 289 int i) 290 { 291 struct inpcblbgroup *grp, *new_grp; 292 293 grp = *grpp; 294 for (; i + 1 < grp->il_inpcnt; ++i) 295 grp->il_inp[i] = grp->il_inp[i + 1]; 296 grp->il_inpcnt--; 297 298 if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && 299 grp->il_inpcnt <= grp->il_inpsiz / 4) { 300 /* Shrink this group. */ 301 new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); 302 if (new_grp != NULL) 303 *grpp = new_grp; 304 } 305 } 306 307 /* 308 * Add PCB to load balance group for SO_REUSEPORT_LB option. 309 */ 310 static int 311 in_pcbinslbgrouphash(struct inpcb *inp) 312 { 313 const static struct timeval interval = { 60, 0 }; 314 static struct timeval lastprint; 315 struct inpcbinfo *pcbinfo; 316 struct inpcblbgrouphead *hdr; 317 struct inpcblbgroup *grp; 318 uint32_t idx; 319 320 pcbinfo = inp->inp_pcbinfo; 321 322 INP_WLOCK_ASSERT(inp); 323 INP_HASH_WLOCK_ASSERT(pcbinfo); 324 325 /* 326 * Don't allow jailed socket to join local group. 327 */ 328 if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred)) 329 return (0); 330 331 #ifdef INET6 332 /* 333 * Don't allow IPv4 mapped INET6 wild socket. 334 */ 335 if ((inp->inp_vflag & INP_IPV4) && 336 inp->inp_laddr.s_addr == INADDR_ANY && 337 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 338 return (0); 339 } 340 #endif 341 342 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); 343 hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; 344 CK_LIST_FOREACH(grp, hdr, il_list) { 345 if (grp->il_vflag == inp->inp_vflag && 346 grp->il_lport == inp->inp_lport && 347 memcmp(&grp->il_dependladdr, 348 &inp->inp_inc.inc_ie.ie_dependladdr, 349 sizeof(grp->il_dependladdr)) == 0) 350 break; 351 } 352 if (grp == NULL) { 353 /* Create new load balance group. */ 354 grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag, 355 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 356 INPCBLBGROUP_SIZMIN); 357 if (grp == NULL) 358 return (ENOBUFS); 359 } else if (grp->il_inpcnt == grp->il_inpsiz) { 360 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 361 if (ratecheck(&lastprint, &interval)) 362 printf("lb group port %d, limit reached\n", 363 ntohs(grp->il_lport)); 364 return (0); 365 } 366 367 /* Expand this local group. */ 368 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 369 if (grp == NULL) 370 return (ENOBUFS); 371 } 372 373 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 374 ("invalid local group size %d and count %d", grp->il_inpsiz, 375 grp->il_inpcnt)); 376 377 grp->il_inp[grp->il_inpcnt] = inp; 378 grp->il_inpcnt++; 379 return (0); 380 } 381 382 /* 383 * Remove PCB from load balance group. 384 */ 385 static void 386 in_pcbremlbgrouphash(struct inpcb *inp) 387 { 388 struct inpcbinfo *pcbinfo; 389 struct inpcblbgrouphead *hdr; 390 struct inpcblbgroup *grp; 391 int i; 392 393 pcbinfo = inp->inp_pcbinfo; 394 395 INP_WLOCK_ASSERT(inp); 396 INP_HASH_WLOCK_ASSERT(pcbinfo); 397 398 hdr = &pcbinfo->ipi_lbgrouphashbase[ 399 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 400 CK_LIST_FOREACH(grp, hdr, il_list) { 401 for (i = 0; i < grp->il_inpcnt; ++i) { 402 if (grp->il_inp[i] != inp) 403 continue; 404 405 if (grp->il_inpcnt == 1) { 406 /* We are the last, free this local group. */ 407 in_pcblbgroup_free(grp); 408 } else { 409 /* Pull up inpcbs, shrink group if possible. */ 410 in_pcblbgroup_reorder(hdr, &grp, i); 411 } 412 return; 413 } 414 } 415 } 416 417 /* 418 * Different protocols initialize their inpcbs differently - giving 419 * different name to the lock. But they all are disposed the same. 420 */ 421 static void 422 inpcb_fini(void *mem, int size) 423 { 424 struct inpcb *inp = mem; 425 426 INP_LOCK_DESTROY(inp); 427 } 428 429 /* 430 * Initialize an inpcbinfo -- we should be able to reduce the number of 431 * arguments in time. 432 */ 433 void 434 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 435 struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, 436 char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields) 437 { 438 439 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); 440 441 INP_INFO_LOCK_INIT(pcbinfo, name); 442 INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ 443 INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist"); 444 #ifdef VIMAGE 445 pcbinfo->ipi_vnet = curvnet; 446 #endif 447 pcbinfo->ipi_listhead = listhead; 448 CK_LIST_INIT(pcbinfo->ipi_listhead); 449 pcbinfo->ipi_count = 0; 450 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 451 &pcbinfo->ipi_hashmask); 452 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 453 &pcbinfo->ipi_porthashmask); 454 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, 455 &pcbinfo->ipi_lbgrouphashmask); 456 #ifdef PCBGROUP 457 in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); 458 #endif 459 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 460 NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0); 461 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 462 uma_zone_set_warning(pcbinfo->ipi_zone, 463 "kern.ipc.maxsockets limit reached"); 464 } 465 466 /* 467 * Destroy an inpcbinfo. 468 */ 469 void 470 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 471 { 472 473 KASSERT(pcbinfo->ipi_count == 0, 474 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 475 476 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 477 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 478 pcbinfo->ipi_porthashmask); 479 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 480 pcbinfo->ipi_lbgrouphashmask); 481 #ifdef PCBGROUP 482 in_pcbgroup_destroy(pcbinfo); 483 #endif 484 uma_zdestroy(pcbinfo->ipi_zone); 485 INP_LIST_LOCK_DESTROY(pcbinfo); 486 INP_HASH_LOCK_DESTROY(pcbinfo); 487 INP_INFO_LOCK_DESTROY(pcbinfo); 488 } 489 490 /* 491 * Allocate a PCB and associate it with the socket. 492 * On success return with the PCB locked. 493 */ 494 int 495 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 496 { 497 struct inpcb *inp; 498 int error; 499 500 #ifdef INVARIANTS 501 if (pcbinfo == &V_tcbinfo) { 502 INP_INFO_RLOCK_ASSERT(pcbinfo); 503 } else { 504 INP_INFO_WLOCK_ASSERT(pcbinfo); 505 } 506 #endif 507 508 error = 0; 509 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 510 if (inp == NULL) 511 return (ENOBUFS); 512 bzero(&inp->inp_start_zero, inp_zero_size); 513 #ifdef NUMA 514 inp->inp_numa_domain = M_NODOM; 515 #endif 516 inp->inp_pcbinfo = pcbinfo; 517 inp->inp_socket = so; 518 inp->inp_cred = crhold(so->so_cred); 519 inp->inp_inc.inc_fibnum = so->so_fibnum; 520 #ifdef MAC 521 error = mac_inpcb_init(inp, M_NOWAIT); 522 if (error != 0) 523 goto out; 524 mac_inpcb_create(so, inp); 525 #endif 526 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 527 error = ipsec_init_pcbpolicy(inp); 528 if (error != 0) { 529 #ifdef MAC 530 mac_inpcb_destroy(inp); 531 #endif 532 goto out; 533 } 534 #endif /*IPSEC*/ 535 #ifdef INET6 536 if (INP_SOCKAF(so) == AF_INET6) { 537 inp->inp_vflag |= INP_IPV6PROTO; 538 if (V_ip6_v6only) 539 inp->inp_flags |= IN6P_IPV6_V6ONLY; 540 } 541 #endif 542 INP_WLOCK(inp); 543 INP_LIST_WLOCK(pcbinfo); 544 CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 545 pcbinfo->ipi_count++; 546 so->so_pcb = (caddr_t)inp; 547 #ifdef INET6 548 if (V_ip6_auto_flowlabel) 549 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 550 #endif 551 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 552 refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ 553 554 /* 555 * Routes in inpcb's can cache L2 as well; they are guaranteed 556 * to be cleaned up. 557 */ 558 inp->inp_route.ro_flags = RT_LLE_CACHE; 559 INP_LIST_WUNLOCK(pcbinfo); 560 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 561 out: 562 if (error != 0) { 563 crfree(inp->inp_cred); 564 uma_zfree(pcbinfo->ipi_zone, inp); 565 } 566 #endif 567 return (error); 568 } 569 570 #ifdef INET 571 int 572 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 573 { 574 int anonport, error; 575 576 INP_WLOCK_ASSERT(inp); 577 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 578 579 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 580 return (EINVAL); 581 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 582 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 583 &inp->inp_lport, cred); 584 if (error) 585 return (error); 586 if (in_pcbinshash(inp) != 0) { 587 inp->inp_laddr.s_addr = INADDR_ANY; 588 inp->inp_lport = 0; 589 return (EAGAIN); 590 } 591 if (anonport) 592 inp->inp_flags |= INP_ANONPORT; 593 return (0); 594 } 595 #endif 596 597 /* 598 * Select a local port (number) to use. 599 */ 600 #if defined(INET) || defined(INET6) 601 int 602 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 603 struct ucred *cred, int lookupflags) 604 { 605 struct inpcbinfo *pcbinfo; 606 struct inpcb *tmpinp; 607 unsigned short *lastport; 608 int count, dorandom, error; 609 u_short aux, first, last, lport; 610 #ifdef INET 611 struct in_addr laddr; 612 #endif 613 614 pcbinfo = inp->inp_pcbinfo; 615 616 /* 617 * Because no actual state changes occur here, a global write lock on 618 * the pcbinfo isn't required. 619 */ 620 INP_LOCK_ASSERT(inp); 621 INP_HASH_LOCK_ASSERT(pcbinfo); 622 623 if (inp->inp_flags & INP_HIGHPORT) { 624 first = V_ipport_hifirstauto; /* sysctl */ 625 last = V_ipport_hilastauto; 626 lastport = &pcbinfo->ipi_lasthi; 627 } else if (inp->inp_flags & INP_LOWPORT) { 628 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); 629 if (error) 630 return (error); 631 first = V_ipport_lowfirstauto; /* 1023 */ 632 last = V_ipport_lowlastauto; /* 600 */ 633 lastport = &pcbinfo->ipi_lastlow; 634 } else { 635 first = V_ipport_firstauto; /* sysctl */ 636 last = V_ipport_lastauto; 637 lastport = &pcbinfo->ipi_lastport; 638 } 639 /* 640 * For UDP(-Lite), use random port allocation as long as the user 641 * allows it. For TCP (and as of yet unknown) connections, 642 * use random port allocation only if the user allows it AND 643 * ipport_tick() allows it. 644 */ 645 if (V_ipport_randomized && 646 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 647 pcbinfo == &V_ulitecbinfo)) 648 dorandom = 1; 649 else 650 dorandom = 0; 651 /* 652 * It makes no sense to do random port allocation if 653 * we have the only port available. 654 */ 655 if (first == last) 656 dorandom = 0; 657 /* Make sure to not include UDP(-Lite) packets in the count. */ 658 if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) 659 V_ipport_tcpallocs++; 660 /* 661 * Instead of having two loops further down counting up or down 662 * make sure that first is always <= last and go with only one 663 * code path implementing all logic. 664 */ 665 if (first > last) { 666 aux = first; 667 first = last; 668 last = aux; 669 } 670 671 #ifdef INET 672 /* Make the compiler happy. */ 673 laddr.s_addr = 0; 674 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 675 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p", 676 __func__, inp)); 677 laddr = *laddrp; 678 } 679 #endif 680 tmpinp = NULL; /* Make compiler happy. */ 681 lport = *lportp; 682 683 if (dorandom) 684 *lastport = first + (arc4random() % (last - first)); 685 686 count = last - first; 687 688 do { 689 if (count-- < 0) /* completely used? */ 690 return (EADDRNOTAVAIL); 691 ++*lastport; 692 if (*lastport < first || *lastport > last) 693 *lastport = first; 694 lport = htons(*lastport); 695 696 #ifdef INET6 697 if ((inp->inp_vflag & INP_IPV6) != 0) 698 tmpinp = in6_pcblookup_local(pcbinfo, 699 &inp->in6p_laddr, lport, lookupflags, cred); 700 #endif 701 #if defined(INET) && defined(INET6) 702 else 703 #endif 704 #ifdef INET 705 tmpinp = in_pcblookup_local(pcbinfo, laddr, 706 lport, lookupflags, cred); 707 #endif 708 } while (tmpinp != NULL); 709 710 #ifdef INET 711 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) 712 laddrp->s_addr = laddr.s_addr; 713 #endif 714 *lportp = lport; 715 716 return (0); 717 } 718 719 /* 720 * Return cached socket options. 721 */ 722 int 723 inp_so_options(const struct inpcb *inp) 724 { 725 int so_options; 726 727 so_options = 0; 728 729 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 730 so_options |= SO_REUSEPORT_LB; 731 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 732 so_options |= SO_REUSEPORT; 733 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 734 so_options |= SO_REUSEADDR; 735 return (so_options); 736 } 737 #endif /* INET || INET6 */ 738 739 /* 740 * Check if a new BINDMULTI socket is allowed to be created. 741 * 742 * ni points to the new inp. 743 * oi points to the exisitng inp. 744 * 745 * This checks whether the existing inp also has BINDMULTI and 746 * whether the credentials match. 747 */ 748 int 749 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 750 { 751 /* Check permissions match */ 752 if ((ni->inp_flags2 & INP_BINDMULTI) && 753 (ni->inp_cred->cr_uid != 754 oi->inp_cred->cr_uid)) 755 return (0); 756 757 /* Check the existing inp has BINDMULTI set */ 758 if ((ni->inp_flags2 & INP_BINDMULTI) && 759 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 760 return (0); 761 762 /* 763 * We're okay - either INP_BINDMULTI isn't set on ni, or 764 * it is and it matches the checks. 765 */ 766 return (1); 767 } 768 769 #ifdef INET 770 /* 771 * Set up a bind operation on a PCB, performing port allocation 772 * as required, but do not actually modify the PCB. Callers can 773 * either complete the bind by setting inp_laddr/inp_lport and 774 * calling in_pcbinshash(), or they can just use the resulting 775 * port and address to authorise the sending of a once-off packet. 776 * 777 * On error, the values of *laddrp and *lportp are not changed. 778 */ 779 int 780 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 781 u_short *lportp, struct ucred *cred) 782 { 783 struct socket *so = inp->inp_socket; 784 struct sockaddr_in *sin; 785 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 786 struct in_addr laddr; 787 u_short lport = 0; 788 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 789 int error; 790 791 /* 792 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here 793 * so that we don't have to add to the (already messy) code below. 794 */ 795 int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); 796 797 /* 798 * No state changes, so read locks are sufficient here. 799 */ 800 INP_LOCK_ASSERT(inp); 801 INP_HASH_LOCK_ASSERT(pcbinfo); 802 803 if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 804 return (EADDRNOTAVAIL); 805 laddr.s_addr = *laddrp; 806 if (nam != NULL && laddr.s_addr != INADDR_ANY) 807 return (EINVAL); 808 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) 809 lookupflags = INPLOOKUP_WILDCARD; 810 if (nam == NULL) { 811 if ((error = prison_local_ip4(cred, &laddr)) != 0) 812 return (error); 813 } else { 814 sin = (struct sockaddr_in *)nam; 815 if (nam->sa_len != sizeof (*sin)) 816 return (EINVAL); 817 #ifdef notdef 818 /* 819 * We should check the family, but old programs 820 * incorrectly fail to initialize it. 821 */ 822 if (sin->sin_family != AF_INET) 823 return (EAFNOSUPPORT); 824 #endif 825 error = prison_local_ip4(cred, &sin->sin_addr); 826 if (error) 827 return (error); 828 if (sin->sin_port != *lportp) { 829 /* Don't allow the port to change. */ 830 if (*lportp != 0) 831 return (EINVAL); 832 lport = sin->sin_port; 833 } 834 /* NB: lport is left as 0 if the port isn't being changed. */ 835 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 836 /* 837 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 838 * allow complete duplication of binding if 839 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 840 * and a multicast address is bound on both 841 * new and duplicated sockets. 842 */ 843 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 844 reuseport = SO_REUSEADDR|SO_REUSEPORT; 845 /* 846 * XXX: How to deal with SO_REUSEPORT_LB here? 847 * Treat same as SO_REUSEPORT for now. 848 */ 849 if ((so->so_options & 850 (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) 851 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; 852 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 853 sin->sin_port = 0; /* yech... */ 854 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 855 /* 856 * Is the address a local IP address? 857 * If INP_BINDANY is set, then the socket may be bound 858 * to any endpoint address, local or not. 859 */ 860 if ((inp->inp_flags & INP_BINDANY) == 0 && 861 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 862 return (EADDRNOTAVAIL); 863 } 864 laddr = sin->sin_addr; 865 if (lport) { 866 struct inpcb *t; 867 struct tcptw *tw; 868 869 /* GROSS */ 870 if (ntohs(lport) <= V_ipport_reservedhigh && 871 ntohs(lport) >= V_ipport_reservedlow && 872 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) 873 return (EACCES); 874 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 875 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { 876 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 877 lport, INPLOOKUP_WILDCARD, cred); 878 /* 879 * XXX 880 * This entire block sorely needs a rewrite. 881 */ 882 if (t && 883 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 884 ((t->inp_flags & INP_TIMEWAIT) == 0) && 885 (so->so_type != SOCK_STREAM || 886 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 887 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 888 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 889 (t->inp_flags2 & INP_REUSEPORT) || 890 (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && 891 (inp->inp_cred->cr_uid != 892 t->inp_cred->cr_uid)) 893 return (EADDRINUSE); 894 895 /* 896 * If the socket is a BINDMULTI socket, then 897 * the credentials need to match and the 898 * original socket also has to have been bound 899 * with BINDMULTI. 900 */ 901 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 902 return (EADDRINUSE); 903 } 904 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 905 lport, lookupflags, cred); 906 if (t && (t->inp_flags & INP_TIMEWAIT)) { 907 /* 908 * XXXRW: If an incpb has had its timewait 909 * state recycled, we treat the address as 910 * being in use (for now). This is better 911 * than a panic, but not desirable. 912 */ 913 tw = intotw(t); 914 if (tw == NULL || 915 ((reuseport & tw->tw_so_options) == 0 && 916 (reuseport_lb & 917 tw->tw_so_options) == 0)) { 918 return (EADDRINUSE); 919 } 920 } else if (t && 921 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 922 (reuseport & inp_so_options(t)) == 0 && 923 (reuseport_lb & inp_so_options(t)) == 0) { 924 #ifdef INET6 925 if (ntohl(sin->sin_addr.s_addr) != 926 INADDR_ANY || 927 ntohl(t->inp_laddr.s_addr) != 928 INADDR_ANY || 929 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 930 (t->inp_vflag & INP_IPV6PROTO) == 0) 931 #endif 932 return (EADDRINUSE); 933 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 934 return (EADDRINUSE); 935 } 936 } 937 } 938 if (*lportp != 0) 939 lport = *lportp; 940 if (lport == 0) { 941 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 942 if (error != 0) 943 return (error); 944 945 } 946 *laddrp = laddr.s_addr; 947 *lportp = lport; 948 return (0); 949 } 950 951 /* 952 * Connect from a socket to a specified address. 953 * Both address and port must be specified in argument sin. 954 * If don't have a local address for this socket yet, 955 * then pick one. 956 */ 957 int 958 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, 959 struct ucred *cred, struct mbuf *m) 960 { 961 u_short lport, fport; 962 in_addr_t laddr, faddr; 963 int anonport, error; 964 965 INP_WLOCK_ASSERT(inp); 966 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 967 968 lport = inp->inp_lport; 969 laddr = inp->inp_laddr.s_addr; 970 anonport = (lport == 0); 971 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 972 NULL, cred); 973 if (error) 974 return (error); 975 976 /* Do the initial binding of the local address if required. */ 977 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 978 inp->inp_lport = lport; 979 inp->inp_laddr.s_addr = laddr; 980 if (in_pcbinshash(inp) != 0) { 981 inp->inp_laddr.s_addr = INADDR_ANY; 982 inp->inp_lport = 0; 983 return (EAGAIN); 984 } 985 } 986 987 /* Commit the remaining changes. */ 988 inp->inp_lport = lport; 989 inp->inp_laddr.s_addr = laddr; 990 inp->inp_faddr.s_addr = faddr; 991 inp->inp_fport = fport; 992 in_pcbrehash_mbuf(inp, m); 993 994 if (anonport) 995 inp->inp_flags |= INP_ANONPORT; 996 return (0); 997 } 998 999 int 1000 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 1001 { 1002 1003 return (in_pcbconnect_mbuf(inp, nam, cred, NULL)); 1004 } 1005 1006 /* 1007 * Do proper source address selection on an unbound socket in case 1008 * of connect. Take jails into account as well. 1009 */ 1010 int 1011 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 1012 struct ucred *cred) 1013 { 1014 struct ifaddr *ifa; 1015 struct sockaddr *sa; 1016 struct sockaddr_in *sin; 1017 struct route sro; 1018 struct epoch_tracker et; 1019 int error; 1020 1021 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1022 /* 1023 * Bypass source address selection and use the primary jail IP 1024 * if requested. 1025 */ 1026 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 1027 return (0); 1028 1029 error = 0; 1030 bzero(&sro, sizeof(sro)); 1031 1032 sin = (struct sockaddr_in *)&sro.ro_dst; 1033 sin->sin_family = AF_INET; 1034 sin->sin_len = sizeof(struct sockaddr_in); 1035 sin->sin_addr.s_addr = faddr->s_addr; 1036 1037 /* 1038 * If route is known our src addr is taken from the i/f, 1039 * else punt. 1040 * 1041 * Find out route to destination. 1042 */ 1043 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1044 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); 1045 1046 /* 1047 * If we found a route, use the address corresponding to 1048 * the outgoing interface. 1049 * 1050 * Otherwise assume faddr is reachable on a directly connected 1051 * network and try to find a corresponding interface to take 1052 * the source address from. 1053 */ 1054 NET_EPOCH_ENTER(et); 1055 if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { 1056 struct in_ifaddr *ia; 1057 struct ifnet *ifp; 1058 1059 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1060 inp->inp_socket->so_fibnum)); 1061 if (ia == NULL) { 1062 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1063 inp->inp_socket->so_fibnum)); 1064 1065 } 1066 if (ia == NULL) { 1067 error = ENETUNREACH; 1068 goto done; 1069 } 1070 1071 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1072 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1073 goto done; 1074 } 1075 1076 ifp = ia->ia_ifp; 1077 ia = NULL; 1078 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1079 1080 sa = ifa->ifa_addr; 1081 if (sa->sa_family != AF_INET) 1082 continue; 1083 sin = (struct sockaddr_in *)sa; 1084 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1085 ia = (struct in_ifaddr *)ifa; 1086 break; 1087 } 1088 } 1089 if (ia != NULL) { 1090 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1091 goto done; 1092 } 1093 1094 /* 3. As a last resort return the 'default' jail address. */ 1095 error = prison_get_ip4(cred, laddr); 1096 goto done; 1097 } 1098 1099 /* 1100 * If the outgoing interface on the route found is not 1101 * a loopback interface, use the address from that interface. 1102 * In case of jails do those three steps: 1103 * 1. check if the interface address belongs to the jail. If so use it. 1104 * 2. check if we have any address on the outgoing interface 1105 * belonging to this jail. If so use it. 1106 * 3. as a last resort return the 'default' jail address. 1107 */ 1108 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { 1109 struct in_ifaddr *ia; 1110 struct ifnet *ifp; 1111 1112 /* If not jailed, use the default returned. */ 1113 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1114 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 1115 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1116 goto done; 1117 } 1118 1119 /* Jailed. */ 1120 /* 1. Check if the iface address belongs to the jail. */ 1121 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; 1122 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1123 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 1124 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1125 goto done; 1126 } 1127 1128 /* 1129 * 2. Check if we have any address on the outgoing interface 1130 * belonging to this jail. 1131 */ 1132 ia = NULL; 1133 ifp = sro.ro_rt->rt_ifp; 1134 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1135 sa = ifa->ifa_addr; 1136 if (sa->sa_family != AF_INET) 1137 continue; 1138 sin = (struct sockaddr_in *)sa; 1139 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1140 ia = (struct in_ifaddr *)ifa; 1141 break; 1142 } 1143 } 1144 if (ia != NULL) { 1145 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1146 goto done; 1147 } 1148 1149 /* 3. As a last resort return the 'default' jail address. */ 1150 error = prison_get_ip4(cred, laddr); 1151 goto done; 1152 } 1153 1154 /* 1155 * The outgoing interface is marked with 'loopback net', so a route 1156 * to ourselves is here. 1157 * Try to find the interface of the destination address and then 1158 * take the address from there. That interface is not necessarily 1159 * a loopback interface. 1160 * In case of jails, check that it is an address of the jail 1161 * and if we cannot find, fall back to the 'default' jail address. 1162 */ 1163 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 1164 struct sockaddr_in sain; 1165 struct in_ifaddr *ia; 1166 1167 bzero(&sain, sizeof(struct sockaddr_in)); 1168 sain.sin_family = AF_INET; 1169 sain.sin_len = sizeof(struct sockaddr_in); 1170 sain.sin_addr.s_addr = faddr->s_addr; 1171 1172 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain), 1173 inp->inp_socket->so_fibnum)); 1174 if (ia == NULL) 1175 ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0, 1176 inp->inp_socket->so_fibnum)); 1177 if (ia == NULL) 1178 ia = ifatoia(ifa_ifwithaddr(sintosa(&sain))); 1179 1180 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1181 if (ia == NULL) { 1182 error = ENETUNREACH; 1183 goto done; 1184 } 1185 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1186 goto done; 1187 } 1188 1189 /* Jailed. */ 1190 if (ia != NULL) { 1191 struct ifnet *ifp; 1192 1193 ifp = ia->ia_ifp; 1194 ia = NULL; 1195 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1196 sa = ifa->ifa_addr; 1197 if (sa->sa_family != AF_INET) 1198 continue; 1199 sin = (struct sockaddr_in *)sa; 1200 if (prison_check_ip4(cred, 1201 &sin->sin_addr) == 0) { 1202 ia = (struct in_ifaddr *)ifa; 1203 break; 1204 } 1205 } 1206 if (ia != NULL) { 1207 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1208 goto done; 1209 } 1210 } 1211 1212 /* 3. As a last resort return the 'default' jail address. */ 1213 error = prison_get_ip4(cred, laddr); 1214 goto done; 1215 } 1216 1217 done: 1218 NET_EPOCH_EXIT(et); 1219 if (sro.ro_rt != NULL) 1220 RTFREE(sro.ro_rt); 1221 return (error); 1222 } 1223 1224 /* 1225 * Set up for a connect from a socket to the specified address. 1226 * On entry, *laddrp and *lportp should contain the current local 1227 * address and port for the PCB; these are updated to the values 1228 * that should be placed in inp_laddr and inp_lport to complete 1229 * the connect. 1230 * 1231 * On success, *faddrp and *fportp will be set to the remote address 1232 * and port. These are not updated in the error case. 1233 * 1234 * If the operation fails because the connection already exists, 1235 * *oinpp will be set to the PCB of that connection so that the 1236 * caller can decide to override it. In all other cases, *oinpp 1237 * is set to NULL. 1238 */ 1239 int 1240 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1241 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1242 struct inpcb **oinpp, struct ucred *cred) 1243 { 1244 struct rm_priotracker in_ifa_tracker; 1245 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1246 struct in_ifaddr *ia; 1247 struct inpcb *oinp; 1248 struct in_addr laddr, faddr; 1249 u_short lport, fport; 1250 int error; 1251 1252 /* 1253 * Because a global state change doesn't actually occur here, a read 1254 * lock is sufficient. 1255 */ 1256 INP_LOCK_ASSERT(inp); 1257 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1258 1259 if (oinpp != NULL) 1260 *oinpp = NULL; 1261 if (nam->sa_len != sizeof (*sin)) 1262 return (EINVAL); 1263 if (sin->sin_family != AF_INET) 1264 return (EAFNOSUPPORT); 1265 if (sin->sin_port == 0) 1266 return (EADDRNOTAVAIL); 1267 laddr.s_addr = *laddrp; 1268 lport = *lportp; 1269 faddr = sin->sin_addr; 1270 fport = sin->sin_port; 1271 1272 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1273 /* 1274 * If the destination address is INADDR_ANY, 1275 * use the primary local address. 1276 * If the supplied address is INADDR_BROADCAST, 1277 * and the primary interface supports broadcast, 1278 * choose the broadcast address for that interface. 1279 */ 1280 if (faddr.s_addr == INADDR_ANY) { 1281 IN_IFADDR_RLOCK(&in_ifa_tracker); 1282 faddr = 1283 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1284 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1285 if (cred != NULL && 1286 (error = prison_get_ip4(cred, &faddr)) != 0) 1287 return (error); 1288 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1289 IN_IFADDR_RLOCK(&in_ifa_tracker); 1290 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1291 IFF_BROADCAST) 1292 faddr = satosin(&CK_STAILQ_FIRST( 1293 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1294 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1295 } 1296 } 1297 if (laddr.s_addr == INADDR_ANY) { 1298 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1299 /* 1300 * If the destination address is multicast and an outgoing 1301 * interface has been set as a multicast option, prefer the 1302 * address of that interface as our source address. 1303 */ 1304 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1305 inp->inp_moptions != NULL) { 1306 struct ip_moptions *imo; 1307 struct ifnet *ifp; 1308 1309 imo = inp->inp_moptions; 1310 if (imo->imo_multicast_ifp != NULL) { 1311 ifp = imo->imo_multicast_ifp; 1312 IN_IFADDR_RLOCK(&in_ifa_tracker); 1313 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1314 if ((ia->ia_ifp == ifp) && 1315 (cred == NULL || 1316 prison_check_ip4(cred, 1317 &ia->ia_addr.sin_addr) == 0)) 1318 break; 1319 } 1320 if (ia == NULL) 1321 error = EADDRNOTAVAIL; 1322 else { 1323 laddr = ia->ia_addr.sin_addr; 1324 error = 0; 1325 } 1326 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1327 } 1328 } 1329 if (error) 1330 return (error); 1331 } 1332 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport, 1333 laddr, lport, 0, NULL); 1334 if (oinp != NULL) { 1335 if (oinpp != NULL) 1336 *oinpp = oinp; 1337 return (EADDRINUSE); 1338 } 1339 if (lport == 0) { 1340 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 1341 cred); 1342 if (error) 1343 return (error); 1344 } 1345 *laddrp = laddr.s_addr; 1346 *lportp = lport; 1347 *faddrp = faddr.s_addr; 1348 *fportp = fport; 1349 return (0); 1350 } 1351 1352 void 1353 in_pcbdisconnect(struct inpcb *inp) 1354 { 1355 1356 INP_WLOCK_ASSERT(inp); 1357 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1358 1359 inp->inp_faddr.s_addr = INADDR_ANY; 1360 inp->inp_fport = 0; 1361 in_pcbrehash(inp); 1362 } 1363 #endif /* INET */ 1364 1365 /* 1366 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1367 * For most protocols, this will be invoked immediately prior to calling 1368 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1369 * socket, in which case in_pcbfree() is deferred. 1370 */ 1371 void 1372 in_pcbdetach(struct inpcb *inp) 1373 { 1374 1375 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1376 1377 #ifdef RATELIMIT 1378 if (inp->inp_snd_tag != NULL) 1379 in_pcbdetach_txrtlmt(inp); 1380 #endif 1381 inp->inp_socket->so_pcb = NULL; 1382 inp->inp_socket = NULL; 1383 } 1384 1385 /* 1386 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1387 * stability of an inpcb pointer despite the inpcb lock being released. This 1388 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 1389 * but where the inpcb lock may already held, or when acquiring a reference 1390 * via a pcbgroup. 1391 * 1392 * in_pcbref() should be used only to provide brief memory stability, and 1393 * must always be followed by a call to INP_WLOCK() and in_pcbrele() to 1394 * garbage collect the inpcb if it has been in_pcbfree()'d from another 1395 * context. Until in_pcbrele() has returned that the inpcb is still valid, 1396 * lock and rele are the *only* safe operations that may be performed on the 1397 * inpcb. 1398 * 1399 * While the inpcb will not be freed, releasing the inpcb lock means that the 1400 * connection's state may change, so the caller should be careful to 1401 * revalidate any cached state on reacquiring the lock. Drop the reference 1402 * using in_pcbrele(). 1403 */ 1404 void 1405 in_pcbref(struct inpcb *inp) 1406 { 1407 1408 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1409 1410 refcount_acquire(&inp->inp_refcount); 1411 } 1412 1413 /* 1414 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 1415 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 1416 * return a flag indicating whether or not the inpcb remains valid. If it is 1417 * valid, we return with the inpcb lock held. 1418 * 1419 * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a 1420 * reference on an inpcb. Historically more work was done here (actually, in 1421 * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the 1422 * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely 1423 * about memory stability (and continued use of the write lock). 1424 */ 1425 int 1426 in_pcbrele_rlocked(struct inpcb *inp) 1427 { 1428 struct inpcbinfo *pcbinfo; 1429 1430 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1431 1432 INP_RLOCK_ASSERT(inp); 1433 1434 if (refcount_release(&inp->inp_refcount) == 0) { 1435 /* 1436 * If the inpcb has been freed, let the caller know, even if 1437 * this isn't the last reference. 1438 */ 1439 if (inp->inp_flags2 & INP_FREED) { 1440 INP_RUNLOCK(inp); 1441 return (1); 1442 } 1443 return (0); 1444 } 1445 1446 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1447 #ifdef TCPHPTS 1448 if (inp->inp_in_hpts || inp->inp_in_input) { 1449 struct tcp_hpts_entry *hpts; 1450 /* 1451 * We should not be on the hpts at 1452 * this point in any form. we must 1453 * get the lock to be sure. 1454 */ 1455 hpts = tcp_hpts_lock(inp); 1456 if (inp->inp_in_hpts) 1457 panic("Hpts:%p inp:%p at free still on hpts", 1458 hpts, inp); 1459 mtx_unlock(&hpts->p_mtx); 1460 hpts = tcp_input_lock(inp); 1461 if (inp->inp_in_input) 1462 panic("Hpts:%p inp:%p at free still on input hpts", 1463 hpts, inp); 1464 mtx_unlock(&hpts->p_mtx); 1465 } 1466 #endif 1467 INP_RUNLOCK(inp); 1468 pcbinfo = inp->inp_pcbinfo; 1469 uma_zfree(pcbinfo->ipi_zone, inp); 1470 return (1); 1471 } 1472 1473 int 1474 in_pcbrele_wlocked(struct inpcb *inp) 1475 { 1476 struct inpcbinfo *pcbinfo; 1477 1478 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1479 1480 INP_WLOCK_ASSERT(inp); 1481 1482 if (refcount_release(&inp->inp_refcount) == 0) { 1483 /* 1484 * If the inpcb has been freed, let the caller know, even if 1485 * this isn't the last reference. 1486 */ 1487 if (inp->inp_flags2 & INP_FREED) { 1488 INP_WUNLOCK(inp); 1489 return (1); 1490 } 1491 return (0); 1492 } 1493 1494 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1495 #ifdef TCPHPTS 1496 if (inp->inp_in_hpts || inp->inp_in_input) { 1497 struct tcp_hpts_entry *hpts; 1498 /* 1499 * We should not be on the hpts at 1500 * this point in any form. we must 1501 * get the lock to be sure. 1502 */ 1503 hpts = tcp_hpts_lock(inp); 1504 if (inp->inp_in_hpts) 1505 panic("Hpts:%p inp:%p at free still on hpts", 1506 hpts, inp); 1507 mtx_unlock(&hpts->p_mtx); 1508 hpts = tcp_input_lock(inp); 1509 if (inp->inp_in_input) 1510 panic("Hpts:%p inp:%p at free still on input hpts", 1511 hpts, inp); 1512 mtx_unlock(&hpts->p_mtx); 1513 } 1514 #endif 1515 INP_WUNLOCK(inp); 1516 pcbinfo = inp->inp_pcbinfo; 1517 uma_zfree(pcbinfo->ipi_zone, inp); 1518 return (1); 1519 } 1520 1521 /* 1522 * Temporary wrapper. 1523 */ 1524 int 1525 in_pcbrele(struct inpcb *inp) 1526 { 1527 1528 return (in_pcbrele_wlocked(inp)); 1529 } 1530 1531 void 1532 in_pcblist_rele_rlocked(epoch_context_t ctx) 1533 { 1534 struct in_pcblist *il; 1535 struct inpcb *inp; 1536 struct inpcbinfo *pcbinfo; 1537 int i, n; 1538 1539 il = __containerof(ctx, struct in_pcblist, il_epoch_ctx); 1540 pcbinfo = il->il_pcbinfo; 1541 n = il->il_count; 1542 INP_INFO_WLOCK(pcbinfo); 1543 for (i = 0; i < n; i++) { 1544 inp = il->il_inp_list[i]; 1545 INP_RLOCK(inp); 1546 if (!in_pcbrele_rlocked(inp)) 1547 INP_RUNLOCK(inp); 1548 } 1549 INP_INFO_WUNLOCK(pcbinfo); 1550 free(il, M_TEMP); 1551 } 1552 1553 static void 1554 inpcbport_free(epoch_context_t ctx) 1555 { 1556 struct inpcbport *phd; 1557 1558 phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx); 1559 free(phd, M_PCB); 1560 } 1561 1562 static void 1563 in_pcbfree_deferred(epoch_context_t ctx) 1564 { 1565 struct inpcb *inp; 1566 int released __unused; 1567 1568 inp = __containerof(ctx, struct inpcb, inp_epoch_ctx); 1569 1570 INP_WLOCK(inp); 1571 CURVNET_SET(inp->inp_vnet); 1572 #ifdef INET 1573 struct ip_moptions *imo = inp->inp_moptions; 1574 inp->inp_moptions = NULL; 1575 #endif 1576 /* XXXRW: Do as much as possible here. */ 1577 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1578 if (inp->inp_sp != NULL) 1579 ipsec_delete_pcbpolicy(inp); 1580 #endif 1581 #ifdef INET6 1582 struct ip6_moptions *im6o = NULL; 1583 if (inp->inp_vflag & INP_IPV6PROTO) { 1584 ip6_freepcbopts(inp->in6p_outputopts); 1585 im6o = inp->in6p_moptions; 1586 inp->in6p_moptions = NULL; 1587 } 1588 #endif 1589 if (inp->inp_options) 1590 (void)m_free(inp->inp_options); 1591 inp->inp_vflag = 0; 1592 crfree(inp->inp_cred); 1593 #ifdef MAC 1594 mac_inpcb_destroy(inp); 1595 #endif 1596 released = in_pcbrele_wlocked(inp); 1597 MPASS(released); 1598 #ifdef INET6 1599 ip6_freemoptions(im6o); 1600 #endif 1601 #ifdef INET 1602 inp_freemoptions(imo); 1603 #endif 1604 CURVNET_RESTORE(); 1605 } 1606 1607 /* 1608 * Unconditionally schedule an inpcb to be freed by decrementing its 1609 * reference count, which should occur only after the inpcb has been detached 1610 * from its socket. If another thread holds a temporary reference (acquired 1611 * using in_pcbref()) then the free is deferred until that reference is 1612 * released using in_pcbrele(), but the inpcb is still unlocked. Almost all 1613 * work, including removal from global lists, is done in this context, where 1614 * the pcbinfo lock is held. 1615 */ 1616 void 1617 in_pcbfree(struct inpcb *inp) 1618 { 1619 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1620 1621 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1622 KASSERT((inp->inp_flags2 & INP_FREED) == 0, 1623 ("%s: called twice for pcb %p", __func__, inp)); 1624 if (inp->inp_flags2 & INP_FREED) { 1625 INP_WUNLOCK(inp); 1626 return; 1627 } 1628 1629 #ifdef INVARIANTS 1630 if (pcbinfo == &V_tcbinfo) { 1631 INP_INFO_LOCK_ASSERT(pcbinfo); 1632 } else { 1633 INP_INFO_WLOCK_ASSERT(pcbinfo); 1634 } 1635 #endif 1636 INP_WLOCK_ASSERT(inp); 1637 INP_LIST_WLOCK(pcbinfo); 1638 in_pcbremlists(inp); 1639 INP_LIST_WUNLOCK(pcbinfo); 1640 RO_INVALIDATE_CACHE(&inp->inp_route); 1641 /* mark as destruction in progress */ 1642 inp->inp_flags2 |= INP_FREED; 1643 INP_WUNLOCK(inp); 1644 epoch_call(net_epoch_preempt, &inp->inp_epoch_ctx, in_pcbfree_deferred); 1645 } 1646 1647 /* 1648 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1649 * port reservation, and preventing it from being returned by inpcb lookups. 1650 * 1651 * It is used by TCP to mark an inpcb as unused and avoid future packet 1652 * delivery or event notification when a socket remains open but TCP has 1653 * closed. This might occur as a result of a shutdown()-initiated TCP close 1654 * or a RST on the wire, and allows the port binding to be reused while still 1655 * maintaining the invariant that so_pcb always points to a valid inpcb until 1656 * in_pcbdetach(). 1657 * 1658 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1659 * in_pcbnotifyall() and in_pcbpurgeif0()? 1660 */ 1661 void 1662 in_pcbdrop(struct inpcb *inp) 1663 { 1664 1665 INP_WLOCK_ASSERT(inp); 1666 #ifdef INVARIANTS 1667 if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) 1668 MPASS(inp->inp_refcount > 1); 1669 #endif 1670 1671 /* 1672 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1673 * the hash lock...? 1674 */ 1675 inp->inp_flags |= INP_DROPPED; 1676 if (inp->inp_flags & INP_INHASHLIST) { 1677 struct inpcbport *phd = inp->inp_phd; 1678 1679 INP_HASH_WLOCK(inp->inp_pcbinfo); 1680 in_pcbremlbgrouphash(inp); 1681 CK_LIST_REMOVE(inp, inp_hash); 1682 CK_LIST_REMOVE(inp, inp_portlist); 1683 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 1684 CK_LIST_REMOVE(phd, phd_hash); 1685 epoch_call(net_epoch_preempt, &phd->phd_epoch_ctx, inpcbport_free); 1686 } 1687 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1688 inp->inp_flags &= ~INP_INHASHLIST; 1689 #ifdef PCBGROUP 1690 in_pcbgroup_remove(inp); 1691 #endif 1692 } 1693 } 1694 1695 #ifdef INET 1696 /* 1697 * Common routines to return the socket addresses associated with inpcbs. 1698 */ 1699 struct sockaddr * 1700 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1701 { 1702 struct sockaddr_in *sin; 1703 1704 sin = malloc(sizeof *sin, M_SONAME, 1705 M_WAITOK | M_ZERO); 1706 sin->sin_family = AF_INET; 1707 sin->sin_len = sizeof(*sin); 1708 sin->sin_addr = *addr_p; 1709 sin->sin_port = port; 1710 1711 return (struct sockaddr *)sin; 1712 } 1713 1714 int 1715 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1716 { 1717 struct inpcb *inp; 1718 struct in_addr addr; 1719 in_port_t port; 1720 1721 inp = sotoinpcb(so); 1722 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1723 1724 INP_RLOCK(inp); 1725 port = inp->inp_lport; 1726 addr = inp->inp_laddr; 1727 INP_RUNLOCK(inp); 1728 1729 *nam = in_sockaddr(port, &addr); 1730 return 0; 1731 } 1732 1733 int 1734 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1735 { 1736 struct inpcb *inp; 1737 struct in_addr addr; 1738 in_port_t port; 1739 1740 inp = sotoinpcb(so); 1741 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1742 1743 INP_RLOCK(inp); 1744 port = inp->inp_fport; 1745 addr = inp->inp_faddr; 1746 INP_RUNLOCK(inp); 1747 1748 *nam = in_sockaddr(port, &addr); 1749 return 0; 1750 } 1751 1752 void 1753 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1754 struct inpcb *(*notify)(struct inpcb *, int)) 1755 { 1756 struct inpcb *inp, *inp_temp; 1757 1758 INP_INFO_WLOCK(pcbinfo); 1759 CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1760 INP_WLOCK(inp); 1761 #ifdef INET6 1762 if ((inp->inp_vflag & INP_IPV4) == 0) { 1763 INP_WUNLOCK(inp); 1764 continue; 1765 } 1766 #endif 1767 if (inp->inp_faddr.s_addr != faddr.s_addr || 1768 inp->inp_socket == NULL) { 1769 INP_WUNLOCK(inp); 1770 continue; 1771 } 1772 if ((*notify)(inp, errno)) 1773 INP_WUNLOCK(inp); 1774 } 1775 INP_INFO_WUNLOCK(pcbinfo); 1776 } 1777 1778 void 1779 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1780 { 1781 struct inpcb *inp; 1782 struct in_multi *inm; 1783 struct in_mfilter *imf; 1784 struct ip_moptions *imo; 1785 1786 INP_INFO_WLOCK(pcbinfo); 1787 CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1788 INP_WLOCK(inp); 1789 imo = inp->inp_moptions; 1790 if ((inp->inp_vflag & INP_IPV4) && 1791 imo != NULL) { 1792 /* 1793 * Unselect the outgoing interface if it is being 1794 * detached. 1795 */ 1796 if (imo->imo_multicast_ifp == ifp) 1797 imo->imo_multicast_ifp = NULL; 1798 1799 /* 1800 * Drop multicast group membership if we joined 1801 * through the interface being detached. 1802 * 1803 * XXX This can all be deferred to an epoch_call 1804 */ 1805 restart: 1806 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 1807 if ((inm = imf->imf_inm) == NULL) 1808 continue; 1809 if (inm->inm_ifp != ifp) 1810 continue; 1811 ip_mfilter_remove(&imo->imo_head, imf); 1812 IN_MULTI_LOCK_ASSERT(); 1813 in_leavegroup_locked(inm, NULL); 1814 ip_mfilter_free(imf); 1815 goto restart; 1816 } 1817 } 1818 INP_WUNLOCK(inp); 1819 } 1820 INP_INFO_WUNLOCK(pcbinfo); 1821 } 1822 1823 /* 1824 * Lookup a PCB based on the local address and port. Caller must hold the 1825 * hash lock. No inpcb locks or references are acquired. 1826 */ 1827 #define INP_LOOKUP_MAPPED_PCB_COST 3 1828 struct inpcb * 1829 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1830 u_short lport, int lookupflags, struct ucred *cred) 1831 { 1832 struct inpcb *inp; 1833 #ifdef INET6 1834 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1835 #else 1836 int matchwild = 3; 1837 #endif 1838 int wildcard; 1839 1840 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1841 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1842 1843 INP_HASH_LOCK_ASSERT(pcbinfo); 1844 1845 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1846 struct inpcbhead *head; 1847 /* 1848 * Look for an unconnected (wildcard foreign addr) PCB that 1849 * matches the local address and port we're looking for. 1850 */ 1851 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1852 0, pcbinfo->ipi_hashmask)]; 1853 CK_LIST_FOREACH(inp, head, inp_hash) { 1854 #ifdef INET6 1855 /* XXX inp locking */ 1856 if ((inp->inp_vflag & INP_IPV4) == 0) 1857 continue; 1858 #endif 1859 if (inp->inp_faddr.s_addr == INADDR_ANY && 1860 inp->inp_laddr.s_addr == laddr.s_addr && 1861 inp->inp_lport == lport) { 1862 /* 1863 * Found? 1864 */ 1865 if (cred == NULL || 1866 prison_equal_ip4(cred->cr_prison, 1867 inp->inp_cred->cr_prison)) 1868 return (inp); 1869 } 1870 } 1871 /* 1872 * Not found. 1873 */ 1874 return (NULL); 1875 } else { 1876 struct inpcbporthead *porthash; 1877 struct inpcbport *phd; 1878 struct inpcb *match = NULL; 1879 /* 1880 * Best fit PCB lookup. 1881 * 1882 * First see if this local port is in use by looking on the 1883 * port hash list. 1884 */ 1885 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1886 pcbinfo->ipi_porthashmask)]; 1887 CK_LIST_FOREACH(phd, porthash, phd_hash) { 1888 if (phd->phd_port == lport) 1889 break; 1890 } 1891 if (phd != NULL) { 1892 /* 1893 * Port is in use by one or more PCBs. Look for best 1894 * fit. 1895 */ 1896 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1897 wildcard = 0; 1898 if (cred != NULL && 1899 !prison_equal_ip4(inp->inp_cred->cr_prison, 1900 cred->cr_prison)) 1901 continue; 1902 #ifdef INET6 1903 /* XXX inp locking */ 1904 if ((inp->inp_vflag & INP_IPV4) == 0) 1905 continue; 1906 /* 1907 * We never select the PCB that has 1908 * INP_IPV6 flag and is bound to :: if 1909 * we have another PCB which is bound 1910 * to 0.0.0.0. If a PCB has the 1911 * INP_IPV6 flag, then we set its cost 1912 * higher than IPv4 only PCBs. 1913 * 1914 * Note that the case only happens 1915 * when a socket is bound to ::, under 1916 * the condition that the use of the 1917 * mapped address is allowed. 1918 */ 1919 if ((inp->inp_vflag & INP_IPV6) != 0) 1920 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1921 #endif 1922 if (inp->inp_faddr.s_addr != INADDR_ANY) 1923 wildcard++; 1924 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1925 if (laddr.s_addr == INADDR_ANY) 1926 wildcard++; 1927 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1928 continue; 1929 } else { 1930 if (laddr.s_addr != INADDR_ANY) 1931 wildcard++; 1932 } 1933 if (wildcard < matchwild) { 1934 match = inp; 1935 matchwild = wildcard; 1936 if (matchwild == 0) 1937 break; 1938 } 1939 } 1940 } 1941 return (match); 1942 } 1943 } 1944 #undef INP_LOOKUP_MAPPED_PCB_COST 1945 1946 static struct inpcb * 1947 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 1948 const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr, 1949 uint16_t fport, int lookupflags) 1950 { 1951 struct inpcb *local_wild; 1952 const struct inpcblbgrouphead *hdr; 1953 struct inpcblbgroup *grp; 1954 uint32_t idx; 1955 1956 INP_HASH_LOCK_ASSERT(pcbinfo); 1957 1958 hdr = &pcbinfo->ipi_lbgrouphashbase[ 1959 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; 1960 1961 /* 1962 * Order of socket selection: 1963 * 1. non-wild. 1964 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD). 1965 * 1966 * NOTE: 1967 * - Load balanced group does not contain jailed sockets 1968 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets 1969 */ 1970 local_wild = NULL; 1971 CK_LIST_FOREACH(grp, hdr, il_list) { 1972 #ifdef INET6 1973 if (!(grp->il_vflag & INP_IPV4)) 1974 continue; 1975 #endif 1976 if (grp->il_lport != lport) 1977 continue; 1978 1979 idx = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport) % 1980 grp->il_inpcnt; 1981 if (grp->il_laddr.s_addr == laddr->s_addr) 1982 return (grp->il_inp[idx]); 1983 if (grp->il_laddr.s_addr == INADDR_ANY && 1984 (lookupflags & INPLOOKUP_WILDCARD) != 0) 1985 local_wild = grp->il_inp[idx]; 1986 } 1987 return (local_wild); 1988 } 1989 1990 #ifdef PCBGROUP 1991 /* 1992 * Lookup PCB in hash list, using pcbgroup tables. 1993 */ 1994 static struct inpcb * 1995 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, 1996 struct in_addr faddr, u_int fport_arg, struct in_addr laddr, 1997 u_int lport_arg, int lookupflags, struct ifnet *ifp) 1998 { 1999 struct inpcbhead *head; 2000 struct inpcb *inp, *tmpinp; 2001 u_short fport = fport_arg, lport = lport_arg; 2002 bool locked; 2003 2004 /* 2005 * First look for an exact match. 2006 */ 2007 tmpinp = NULL; 2008 INP_GROUP_LOCK(pcbgroup); 2009 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 2010 pcbgroup->ipg_hashmask)]; 2011 CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) { 2012 #ifdef INET6 2013 /* XXX inp locking */ 2014 if ((inp->inp_vflag & INP_IPV4) == 0) 2015 continue; 2016 #endif 2017 if (inp->inp_faddr.s_addr == faddr.s_addr && 2018 inp->inp_laddr.s_addr == laddr.s_addr && 2019 inp->inp_fport == fport && 2020 inp->inp_lport == lport) { 2021 /* 2022 * XXX We should be able to directly return 2023 * the inp here, without any checks. 2024 * Well unless both bound with SO_REUSEPORT? 2025 */ 2026 if (prison_flag(inp->inp_cred, PR_IP4)) 2027 goto found; 2028 if (tmpinp == NULL) 2029 tmpinp = inp; 2030 } 2031 } 2032 if (tmpinp != NULL) { 2033 inp = tmpinp; 2034 goto found; 2035 } 2036 2037 #ifdef RSS 2038 /* 2039 * For incoming connections, we may wish to do a wildcard 2040 * match for an RSS-local socket. 2041 */ 2042 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2043 struct inpcb *local_wild = NULL, *local_exact = NULL; 2044 #ifdef INET6 2045 struct inpcb *local_wild_mapped = NULL; 2046 #endif 2047 struct inpcb *jail_wild = NULL; 2048 struct inpcbhead *head; 2049 int injail; 2050 2051 /* 2052 * Order of socket selection - we always prefer jails. 2053 * 1. jailed, non-wild. 2054 * 2. jailed, wild. 2055 * 3. non-jailed, non-wild. 2056 * 4. non-jailed, wild. 2057 */ 2058 2059 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, 2060 lport, 0, pcbgroup->ipg_hashmask)]; 2061 CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) { 2062 #ifdef INET6 2063 /* XXX inp locking */ 2064 if ((inp->inp_vflag & INP_IPV4) == 0) 2065 continue; 2066 #endif 2067 if (inp->inp_faddr.s_addr != INADDR_ANY || 2068 inp->inp_lport != lport) 2069 continue; 2070 2071 injail = prison_flag(inp->inp_cred, PR_IP4); 2072 if (injail) { 2073 if (prison_check_ip4(inp->inp_cred, 2074 &laddr) != 0) 2075 continue; 2076 } else { 2077 if (local_exact != NULL) 2078 continue; 2079 } 2080 2081 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2082 if (injail) 2083 goto found; 2084 else 2085 local_exact = inp; 2086 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2087 #ifdef INET6 2088 /* XXX inp locking, NULL check */ 2089 if (inp->inp_vflag & INP_IPV6PROTO) 2090 local_wild_mapped = inp; 2091 else 2092 #endif 2093 if (injail) 2094 jail_wild = inp; 2095 else 2096 local_wild = inp; 2097 } 2098 } /* LIST_FOREACH */ 2099 2100 inp = jail_wild; 2101 if (inp == NULL) 2102 inp = local_exact; 2103 if (inp == NULL) 2104 inp = local_wild; 2105 #ifdef INET6 2106 if (inp == NULL) 2107 inp = local_wild_mapped; 2108 #endif 2109 if (inp != NULL) 2110 goto found; 2111 } 2112 #endif 2113 2114 /* 2115 * Then look for a wildcard match, if requested. 2116 */ 2117 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2118 struct inpcb *local_wild = NULL, *local_exact = NULL; 2119 #ifdef INET6 2120 struct inpcb *local_wild_mapped = NULL; 2121 #endif 2122 struct inpcb *jail_wild = NULL; 2123 struct inpcbhead *head; 2124 int injail; 2125 2126 /* 2127 * Order of socket selection - we always prefer jails. 2128 * 1. jailed, non-wild. 2129 * 2. jailed, wild. 2130 * 3. non-jailed, non-wild. 2131 * 4. non-jailed, wild. 2132 */ 2133 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 2134 0, pcbinfo->ipi_wildmask)]; 2135 CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) { 2136 #ifdef INET6 2137 /* XXX inp locking */ 2138 if ((inp->inp_vflag & INP_IPV4) == 0) 2139 continue; 2140 #endif 2141 if (inp->inp_faddr.s_addr != INADDR_ANY || 2142 inp->inp_lport != lport) 2143 continue; 2144 2145 injail = prison_flag(inp->inp_cred, PR_IP4); 2146 if (injail) { 2147 if (prison_check_ip4(inp->inp_cred, 2148 &laddr) != 0) 2149 continue; 2150 } else { 2151 if (local_exact != NULL) 2152 continue; 2153 } 2154 2155 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2156 if (injail) 2157 goto found; 2158 else 2159 local_exact = inp; 2160 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2161 #ifdef INET6 2162 /* XXX inp locking, NULL check */ 2163 if (inp->inp_vflag & INP_IPV6PROTO) 2164 local_wild_mapped = inp; 2165 else 2166 #endif 2167 if (injail) 2168 jail_wild = inp; 2169 else 2170 local_wild = inp; 2171 } 2172 } /* LIST_FOREACH */ 2173 inp = jail_wild; 2174 if (inp == NULL) 2175 inp = local_exact; 2176 if (inp == NULL) 2177 inp = local_wild; 2178 #ifdef INET6 2179 if (inp == NULL) 2180 inp = local_wild_mapped; 2181 #endif 2182 if (inp != NULL) 2183 goto found; 2184 } /* if (lookupflags & INPLOOKUP_WILDCARD) */ 2185 INP_GROUP_UNLOCK(pcbgroup); 2186 return (NULL); 2187 2188 found: 2189 if (lookupflags & INPLOOKUP_WLOCKPCB) 2190 locked = INP_TRY_WLOCK(inp); 2191 else if (lookupflags & INPLOOKUP_RLOCKPCB) 2192 locked = INP_TRY_RLOCK(inp); 2193 else 2194 panic("%s: locking bug", __func__); 2195 if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) { 2196 if (lookupflags & INPLOOKUP_WLOCKPCB) 2197 INP_WUNLOCK(inp); 2198 else 2199 INP_RUNLOCK(inp); 2200 return (NULL); 2201 } else if (!locked) 2202 in_pcbref(inp); 2203 INP_GROUP_UNLOCK(pcbgroup); 2204 if (!locked) { 2205 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2206 INP_WLOCK(inp); 2207 if (in_pcbrele_wlocked(inp)) 2208 return (NULL); 2209 } else { 2210 INP_RLOCK(inp); 2211 if (in_pcbrele_rlocked(inp)) 2212 return (NULL); 2213 } 2214 } 2215 #ifdef INVARIANTS 2216 if (lookupflags & INPLOOKUP_WLOCKPCB) 2217 INP_WLOCK_ASSERT(inp); 2218 else 2219 INP_RLOCK_ASSERT(inp); 2220 #endif 2221 return (inp); 2222 } 2223 #endif /* PCBGROUP */ 2224 2225 /* 2226 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2227 * that the caller has locked the hash list, and will not perform any further 2228 * locking or reference operations on either the hash list or the connection. 2229 */ 2230 static struct inpcb * 2231 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2232 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2233 struct ifnet *ifp) 2234 { 2235 struct inpcbhead *head; 2236 struct inpcb *inp, *tmpinp; 2237 u_short fport = fport_arg, lport = lport_arg; 2238 2239 #ifdef INVARIANTS 2240 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2241 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2242 if (!mtx_owned(&pcbinfo->ipi_hash_lock)) 2243 MPASS(in_epoch_verbose(net_epoch_preempt, 1)); 2244 #endif 2245 /* 2246 * First look for an exact match. 2247 */ 2248 tmpinp = NULL; 2249 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 2250 pcbinfo->ipi_hashmask)]; 2251 CK_LIST_FOREACH(inp, head, inp_hash) { 2252 #ifdef INET6 2253 /* XXX inp locking */ 2254 if ((inp->inp_vflag & INP_IPV4) == 0) 2255 continue; 2256 #endif 2257 if (inp->inp_faddr.s_addr == faddr.s_addr && 2258 inp->inp_laddr.s_addr == laddr.s_addr && 2259 inp->inp_fport == fport && 2260 inp->inp_lport == lport) { 2261 /* 2262 * XXX We should be able to directly return 2263 * the inp here, without any checks. 2264 * Well unless both bound with SO_REUSEPORT? 2265 */ 2266 if (prison_flag(inp->inp_cred, PR_IP4)) 2267 return (inp); 2268 if (tmpinp == NULL) 2269 tmpinp = inp; 2270 } 2271 } 2272 if (tmpinp != NULL) 2273 return (tmpinp); 2274 2275 /* 2276 * Then look in lb group (for wildcard match). 2277 */ 2278 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2279 inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr, 2280 fport, lookupflags); 2281 if (inp != NULL) 2282 return (inp); 2283 } 2284 2285 /* 2286 * Then look for a wildcard match, if requested. 2287 */ 2288 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2289 struct inpcb *local_wild = NULL, *local_exact = NULL; 2290 #ifdef INET6 2291 struct inpcb *local_wild_mapped = NULL; 2292 #endif 2293 struct inpcb *jail_wild = NULL; 2294 int injail; 2295 2296 /* 2297 * Order of socket selection - we always prefer jails. 2298 * 1. jailed, non-wild. 2299 * 2. jailed, wild. 2300 * 3. non-jailed, non-wild. 2301 * 4. non-jailed, wild. 2302 */ 2303 2304 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 2305 0, pcbinfo->ipi_hashmask)]; 2306 CK_LIST_FOREACH(inp, head, inp_hash) { 2307 #ifdef INET6 2308 /* XXX inp locking */ 2309 if ((inp->inp_vflag & INP_IPV4) == 0) 2310 continue; 2311 #endif 2312 if (inp->inp_faddr.s_addr != INADDR_ANY || 2313 inp->inp_lport != lport) 2314 continue; 2315 2316 injail = prison_flag(inp->inp_cred, PR_IP4); 2317 if (injail) { 2318 if (prison_check_ip4(inp->inp_cred, 2319 &laddr) != 0) 2320 continue; 2321 } else { 2322 if (local_exact != NULL) 2323 continue; 2324 } 2325 2326 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2327 if (injail) 2328 return (inp); 2329 else 2330 local_exact = inp; 2331 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2332 #ifdef INET6 2333 /* XXX inp locking, NULL check */ 2334 if (inp->inp_vflag & INP_IPV6PROTO) 2335 local_wild_mapped = inp; 2336 else 2337 #endif 2338 if (injail) 2339 jail_wild = inp; 2340 else 2341 local_wild = inp; 2342 } 2343 } /* LIST_FOREACH */ 2344 if (jail_wild != NULL) 2345 return (jail_wild); 2346 if (local_exact != NULL) 2347 return (local_exact); 2348 if (local_wild != NULL) 2349 return (local_wild); 2350 #ifdef INET6 2351 if (local_wild_mapped != NULL) 2352 return (local_wild_mapped); 2353 #endif 2354 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 2355 2356 return (NULL); 2357 } 2358 2359 /* 2360 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 2361 * hash list lock, and will return the inpcb locked (i.e., requires 2362 * INPLOOKUP_LOCKPCB). 2363 */ 2364 static struct inpcb * 2365 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2366 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2367 struct ifnet *ifp) 2368 { 2369 struct inpcb *inp; 2370 2371 INP_HASH_RLOCK(pcbinfo); 2372 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2373 (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp); 2374 if (inp != NULL) { 2375 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2376 INP_WLOCK(inp); 2377 if (__predict_false(inp->inp_flags2 & INP_FREED)) { 2378 INP_WUNLOCK(inp); 2379 inp = NULL; 2380 } 2381 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 2382 INP_RLOCK(inp); 2383 if (__predict_false(inp->inp_flags2 & INP_FREED)) { 2384 INP_RUNLOCK(inp); 2385 inp = NULL; 2386 } 2387 } else 2388 panic("%s: locking bug", __func__); 2389 #ifdef INVARIANTS 2390 if (inp != NULL) { 2391 if (lookupflags & INPLOOKUP_WLOCKPCB) 2392 INP_WLOCK_ASSERT(inp); 2393 else 2394 INP_RLOCK_ASSERT(inp); 2395 } 2396 #endif 2397 } 2398 INP_HASH_RUNLOCK(pcbinfo); 2399 return (inp); 2400 } 2401 2402 /* 2403 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2404 * from which a pre-calculated hash value may be extracted. 2405 * 2406 * Possibly more of this logic should be in in_pcbgroup.c. 2407 */ 2408 struct inpcb * 2409 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2410 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 2411 { 2412 #if defined(PCBGROUP) && !defined(RSS) 2413 struct inpcbgroup *pcbgroup; 2414 #endif 2415 2416 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2417 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2418 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2419 ("%s: LOCKPCB not set", __func__)); 2420 2421 /* 2422 * When not using RSS, use connection groups in preference to the 2423 * reservation table when looking up 4-tuples. When using RSS, just 2424 * use the reservation table, due to the cost of the Toeplitz hash 2425 * in software. 2426 * 2427 * XXXRW: This policy belongs in the pcbgroup code, as in principle 2428 * we could be doing RSS with a non-Toeplitz hash that is affordable 2429 * in software. 2430 */ 2431 #if defined(PCBGROUP) && !defined(RSS) 2432 if (in_pcbgroup_enabled(pcbinfo)) { 2433 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2434 fport); 2435 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2436 laddr, lport, lookupflags, ifp)); 2437 } 2438 #endif 2439 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2440 lookupflags, ifp)); 2441 } 2442 2443 struct inpcb * 2444 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2445 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2446 struct ifnet *ifp, struct mbuf *m) 2447 { 2448 #ifdef PCBGROUP 2449 struct inpcbgroup *pcbgroup; 2450 #endif 2451 2452 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2453 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2454 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2455 ("%s: LOCKPCB not set", __func__)); 2456 2457 #ifdef PCBGROUP 2458 /* 2459 * If we can use a hardware-generated hash to look up the connection 2460 * group, use that connection group to find the inpcb. Otherwise 2461 * fall back on a software hash -- or the reservation table if we're 2462 * using RSS. 2463 * 2464 * XXXRW: As above, that policy belongs in the pcbgroup code. 2465 */ 2466 if (in_pcbgroup_enabled(pcbinfo) && 2467 !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { 2468 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), 2469 m->m_pkthdr.flowid); 2470 if (pcbgroup != NULL) 2471 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, 2472 fport, laddr, lport, lookupflags, ifp)); 2473 #ifndef RSS 2474 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2475 fport); 2476 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2477 laddr, lport, lookupflags, ifp)); 2478 #endif 2479 } 2480 #endif 2481 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2482 lookupflags, ifp)); 2483 } 2484 #endif /* INET */ 2485 2486 /* 2487 * Insert PCB onto various hash lists. 2488 */ 2489 static int 2490 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update) 2491 { 2492 struct inpcbhead *pcbhash; 2493 struct inpcbporthead *pcbporthash; 2494 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2495 struct inpcbport *phd; 2496 u_int32_t hashkey_faddr; 2497 int so_options; 2498 2499 INP_WLOCK_ASSERT(inp); 2500 INP_HASH_WLOCK_ASSERT(pcbinfo); 2501 2502 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2503 ("in_pcbinshash: INP_INHASHLIST")); 2504 2505 #ifdef INET6 2506 if (inp->inp_vflag & INP_IPV6) 2507 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2508 else 2509 #endif 2510 hashkey_faddr = inp->inp_faddr.s_addr; 2511 2512 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2513 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2514 2515 pcbporthash = &pcbinfo->ipi_porthashbase[ 2516 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2517 2518 /* 2519 * Add entry to load balance group. 2520 * Only do this if SO_REUSEPORT_LB is set. 2521 */ 2522 so_options = inp_so_options(inp); 2523 if (so_options & SO_REUSEPORT_LB) { 2524 int ret = in_pcbinslbgrouphash(inp); 2525 if (ret) { 2526 /* pcb lb group malloc fail (ret=ENOBUFS). */ 2527 return (ret); 2528 } 2529 } 2530 2531 /* 2532 * Go through port list and look for a head for this lport. 2533 */ 2534 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2535 if (phd->phd_port == inp->inp_lport) 2536 break; 2537 } 2538 /* 2539 * If none exists, malloc one and tack it on. 2540 */ 2541 if (phd == NULL) { 2542 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 2543 if (phd == NULL) { 2544 return (ENOBUFS); /* XXX */ 2545 } 2546 bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context)); 2547 phd->phd_port = inp->inp_lport; 2548 CK_LIST_INIT(&phd->phd_pcblist); 2549 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2550 } 2551 inp->inp_phd = phd; 2552 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2553 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2554 inp->inp_flags |= INP_INHASHLIST; 2555 #ifdef PCBGROUP 2556 if (do_pcbgroup_update) 2557 in_pcbgroup_update(inp); 2558 #endif 2559 return (0); 2560 } 2561 2562 /* 2563 * For now, there are two public interfaces to insert an inpcb into the hash 2564 * lists -- one that does update pcbgroups, and one that doesn't. The latter 2565 * is used only in the TCP syncache, where in_pcbinshash is called before the 2566 * full 4-tuple is set for the inpcb, and we don't want to install in the 2567 * pcbgroup until later. 2568 * 2569 * XXXRW: This seems like a misfeature. in_pcbinshash should always update 2570 * connection groups, and partially initialised inpcbs should not be exposed 2571 * to either reservation hash tables or pcbgroups. 2572 */ 2573 int 2574 in_pcbinshash(struct inpcb *inp) 2575 { 2576 2577 return (in_pcbinshash_internal(inp, 1)); 2578 } 2579 2580 int 2581 in_pcbinshash_nopcbgroup(struct inpcb *inp) 2582 { 2583 2584 return (in_pcbinshash_internal(inp, 0)); 2585 } 2586 2587 /* 2588 * Move PCB to the proper hash bucket when { faddr, fport } have been 2589 * changed. NOTE: This does not handle the case of the lport changing (the 2590 * hashed port list would have to be updated as well), so the lport must 2591 * not change after in_pcbinshash() has been called. 2592 */ 2593 void 2594 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) 2595 { 2596 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2597 struct inpcbhead *head; 2598 u_int32_t hashkey_faddr; 2599 2600 INP_WLOCK_ASSERT(inp); 2601 INP_HASH_WLOCK_ASSERT(pcbinfo); 2602 2603 KASSERT(inp->inp_flags & INP_INHASHLIST, 2604 ("in_pcbrehash: !INP_INHASHLIST")); 2605 2606 #ifdef INET6 2607 if (inp->inp_vflag & INP_IPV6) 2608 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2609 else 2610 #endif 2611 hashkey_faddr = inp->inp_faddr.s_addr; 2612 2613 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2614 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2615 2616 CK_LIST_REMOVE(inp, inp_hash); 2617 CK_LIST_INSERT_HEAD(head, inp, inp_hash); 2618 2619 #ifdef PCBGROUP 2620 if (m != NULL) 2621 in_pcbgroup_update_mbuf(inp, m); 2622 else 2623 in_pcbgroup_update(inp); 2624 #endif 2625 } 2626 2627 void 2628 in_pcbrehash(struct inpcb *inp) 2629 { 2630 2631 in_pcbrehash_mbuf(inp, NULL); 2632 } 2633 2634 /* 2635 * Remove PCB from various lists. 2636 */ 2637 static void 2638 in_pcbremlists(struct inpcb *inp) 2639 { 2640 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2641 2642 #ifdef INVARIANTS 2643 if (pcbinfo == &V_tcbinfo) { 2644 INP_INFO_RLOCK_ASSERT(pcbinfo); 2645 } else { 2646 INP_INFO_WLOCK_ASSERT(pcbinfo); 2647 } 2648 #endif 2649 2650 INP_WLOCK_ASSERT(inp); 2651 INP_LIST_WLOCK_ASSERT(pcbinfo); 2652 2653 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 2654 if (inp->inp_flags & INP_INHASHLIST) { 2655 struct inpcbport *phd = inp->inp_phd; 2656 2657 INP_HASH_WLOCK(pcbinfo); 2658 2659 /* XXX: Only do if SO_REUSEPORT_LB set? */ 2660 in_pcbremlbgrouphash(inp); 2661 2662 CK_LIST_REMOVE(inp, inp_hash); 2663 CK_LIST_REMOVE(inp, inp_portlist); 2664 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 2665 CK_LIST_REMOVE(phd, phd_hash); 2666 epoch_call(net_epoch_preempt, &phd->phd_epoch_ctx, inpcbport_free); 2667 } 2668 INP_HASH_WUNLOCK(pcbinfo); 2669 inp->inp_flags &= ~INP_INHASHLIST; 2670 } 2671 CK_LIST_REMOVE(inp, inp_list); 2672 pcbinfo->ipi_count--; 2673 #ifdef PCBGROUP 2674 in_pcbgroup_remove(inp); 2675 #endif 2676 } 2677 2678 /* 2679 * Check for alternatives when higher level complains 2680 * about service problems. For now, invalidate cached 2681 * routing information. If the route was created dynamically 2682 * (by a redirect), time to try a default gateway again. 2683 */ 2684 void 2685 in_losing(struct inpcb *inp) 2686 { 2687 2688 RO_INVALIDATE_CACHE(&inp->inp_route); 2689 return; 2690 } 2691 2692 /* 2693 * A set label operation has occurred at the socket layer, propagate the 2694 * label change into the in_pcb for the socket. 2695 */ 2696 void 2697 in_pcbsosetlabel(struct socket *so) 2698 { 2699 #ifdef MAC 2700 struct inpcb *inp; 2701 2702 inp = sotoinpcb(so); 2703 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2704 2705 INP_WLOCK(inp); 2706 SOCK_LOCK(so); 2707 mac_inpcb_sosetlabel(so, inp); 2708 SOCK_UNLOCK(so); 2709 INP_WUNLOCK(inp); 2710 #endif 2711 } 2712 2713 /* 2714 * ipport_tick runs once per second, determining if random port allocation 2715 * should be continued. If more than ipport_randomcps ports have been 2716 * allocated in the last second, then we return to sequential port 2717 * allocation. We return to random allocation only once we drop below 2718 * ipport_randomcps for at least ipport_randomtime seconds. 2719 */ 2720 static void 2721 ipport_tick(void *xtp) 2722 { 2723 VNET_ITERATOR_DECL(vnet_iter); 2724 2725 VNET_LIST_RLOCK_NOSLEEP(); 2726 VNET_FOREACH(vnet_iter) { 2727 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2728 if (V_ipport_tcpallocs <= 2729 V_ipport_tcplastcount + V_ipport_randomcps) { 2730 if (V_ipport_stoprandom > 0) 2731 V_ipport_stoprandom--; 2732 } else 2733 V_ipport_stoprandom = V_ipport_randomtime; 2734 V_ipport_tcplastcount = V_ipport_tcpallocs; 2735 CURVNET_RESTORE(); 2736 } 2737 VNET_LIST_RUNLOCK_NOSLEEP(); 2738 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2739 } 2740 2741 static void 2742 ip_fini(void *xtp) 2743 { 2744 2745 callout_stop(&ipport_tick_callout); 2746 } 2747 2748 /* 2749 * The ipport_callout should start running at about the time we attach the 2750 * inet or inet6 domains. 2751 */ 2752 static void 2753 ipport_tick_init(const void *unused __unused) 2754 { 2755 2756 /* Start ipport_tick. */ 2757 callout_init(&ipport_tick_callout, 1); 2758 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2759 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2760 SHUTDOWN_PRI_DEFAULT); 2761 } 2762 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2763 ipport_tick_init, NULL); 2764 2765 void 2766 inp_wlock(struct inpcb *inp) 2767 { 2768 2769 INP_WLOCK(inp); 2770 } 2771 2772 void 2773 inp_wunlock(struct inpcb *inp) 2774 { 2775 2776 INP_WUNLOCK(inp); 2777 } 2778 2779 void 2780 inp_rlock(struct inpcb *inp) 2781 { 2782 2783 INP_RLOCK(inp); 2784 } 2785 2786 void 2787 inp_runlock(struct inpcb *inp) 2788 { 2789 2790 INP_RUNLOCK(inp); 2791 } 2792 2793 #ifdef INVARIANT_SUPPORT 2794 void 2795 inp_lock_assert(struct inpcb *inp) 2796 { 2797 2798 INP_WLOCK_ASSERT(inp); 2799 } 2800 2801 void 2802 inp_unlock_assert(struct inpcb *inp) 2803 { 2804 2805 INP_UNLOCK_ASSERT(inp); 2806 } 2807 #endif 2808 2809 void 2810 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2811 { 2812 struct inpcb *inp; 2813 2814 INP_INFO_WLOCK(&V_tcbinfo); 2815 CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 2816 INP_WLOCK(inp); 2817 func(inp, arg); 2818 INP_WUNLOCK(inp); 2819 } 2820 INP_INFO_WUNLOCK(&V_tcbinfo); 2821 } 2822 2823 struct socket * 2824 inp_inpcbtosocket(struct inpcb *inp) 2825 { 2826 2827 INP_WLOCK_ASSERT(inp); 2828 return (inp->inp_socket); 2829 } 2830 2831 struct tcpcb * 2832 inp_inpcbtotcpcb(struct inpcb *inp) 2833 { 2834 2835 INP_WLOCK_ASSERT(inp); 2836 return ((struct tcpcb *)inp->inp_ppcb); 2837 } 2838 2839 int 2840 inp_ip_tos_get(const struct inpcb *inp) 2841 { 2842 2843 return (inp->inp_ip_tos); 2844 } 2845 2846 void 2847 inp_ip_tos_set(struct inpcb *inp, int val) 2848 { 2849 2850 inp->inp_ip_tos = val; 2851 } 2852 2853 void 2854 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2855 uint32_t *faddr, uint16_t *fp) 2856 { 2857 2858 INP_LOCK_ASSERT(inp); 2859 *laddr = inp->inp_laddr.s_addr; 2860 *faddr = inp->inp_faddr.s_addr; 2861 *lp = inp->inp_lport; 2862 *fp = inp->inp_fport; 2863 } 2864 2865 struct inpcb * 2866 so_sotoinpcb(struct socket *so) 2867 { 2868 2869 return (sotoinpcb(so)); 2870 } 2871 2872 struct tcpcb * 2873 so_sototcpcb(struct socket *so) 2874 { 2875 2876 return (sototcpcb(so)); 2877 } 2878 2879 /* 2880 * Create an external-format (``xinpcb'') structure using the information in 2881 * the kernel-format in_pcb structure pointed to by inp. This is done to 2882 * reduce the spew of irrelevant information over this interface, to isolate 2883 * user code from changes in the kernel structure, and potentially to provide 2884 * information-hiding if we decide that some of this information should be 2885 * hidden from users. 2886 */ 2887 void 2888 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2889 { 2890 2891 bzero(xi, sizeof(*xi)); 2892 xi->xi_len = sizeof(struct xinpcb); 2893 if (inp->inp_socket) 2894 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2895 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2896 xi->inp_gencnt = inp->inp_gencnt; 2897 xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; 2898 xi->inp_flow = inp->inp_flow; 2899 xi->inp_flowid = inp->inp_flowid; 2900 xi->inp_flowtype = inp->inp_flowtype; 2901 xi->inp_flags = inp->inp_flags; 2902 xi->inp_flags2 = inp->inp_flags2; 2903 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2904 xi->in6p_cksum = inp->in6p_cksum; 2905 xi->in6p_hops = inp->in6p_hops; 2906 xi->inp_ip_tos = inp->inp_ip_tos; 2907 xi->inp_vflag = inp->inp_vflag; 2908 xi->inp_ip_ttl = inp->inp_ip_ttl; 2909 xi->inp_ip_p = inp->inp_ip_p; 2910 xi->inp_ip_minttl = inp->inp_ip_minttl; 2911 } 2912 2913 #ifdef DDB 2914 static void 2915 db_print_indent(int indent) 2916 { 2917 int i; 2918 2919 for (i = 0; i < indent; i++) 2920 db_printf(" "); 2921 } 2922 2923 static void 2924 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2925 { 2926 char faddr_str[48], laddr_str[48]; 2927 2928 db_print_indent(indent); 2929 db_printf("%s at %p\n", name, inc); 2930 2931 indent += 2; 2932 2933 #ifdef INET6 2934 if (inc->inc_flags & INC_ISIPV6) { 2935 /* IPv6. */ 2936 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2937 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2938 } else 2939 #endif 2940 { 2941 /* IPv4. */ 2942 inet_ntoa_r(inc->inc_laddr, laddr_str); 2943 inet_ntoa_r(inc->inc_faddr, faddr_str); 2944 } 2945 db_print_indent(indent); 2946 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2947 ntohs(inc->inc_lport)); 2948 db_print_indent(indent); 2949 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2950 ntohs(inc->inc_fport)); 2951 } 2952 2953 static void 2954 db_print_inpflags(int inp_flags) 2955 { 2956 int comma; 2957 2958 comma = 0; 2959 if (inp_flags & INP_RECVOPTS) { 2960 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2961 comma = 1; 2962 } 2963 if (inp_flags & INP_RECVRETOPTS) { 2964 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2965 comma = 1; 2966 } 2967 if (inp_flags & INP_RECVDSTADDR) { 2968 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2969 comma = 1; 2970 } 2971 if (inp_flags & INP_ORIGDSTADDR) { 2972 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 2973 comma = 1; 2974 } 2975 if (inp_flags & INP_HDRINCL) { 2976 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2977 comma = 1; 2978 } 2979 if (inp_flags & INP_HIGHPORT) { 2980 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2981 comma = 1; 2982 } 2983 if (inp_flags & INP_LOWPORT) { 2984 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2985 comma = 1; 2986 } 2987 if (inp_flags & INP_ANONPORT) { 2988 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2989 comma = 1; 2990 } 2991 if (inp_flags & INP_RECVIF) { 2992 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2993 comma = 1; 2994 } 2995 if (inp_flags & INP_MTUDISC) { 2996 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2997 comma = 1; 2998 } 2999 if (inp_flags & INP_RECVTTL) { 3000 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 3001 comma = 1; 3002 } 3003 if (inp_flags & INP_DONTFRAG) { 3004 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 3005 comma = 1; 3006 } 3007 if (inp_flags & INP_RECVTOS) { 3008 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 3009 comma = 1; 3010 } 3011 if (inp_flags & IN6P_IPV6_V6ONLY) { 3012 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 3013 comma = 1; 3014 } 3015 if (inp_flags & IN6P_PKTINFO) { 3016 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 3017 comma = 1; 3018 } 3019 if (inp_flags & IN6P_HOPLIMIT) { 3020 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 3021 comma = 1; 3022 } 3023 if (inp_flags & IN6P_HOPOPTS) { 3024 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 3025 comma = 1; 3026 } 3027 if (inp_flags & IN6P_DSTOPTS) { 3028 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 3029 comma = 1; 3030 } 3031 if (inp_flags & IN6P_RTHDR) { 3032 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 3033 comma = 1; 3034 } 3035 if (inp_flags & IN6P_RTHDRDSTOPTS) { 3036 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 3037 comma = 1; 3038 } 3039 if (inp_flags & IN6P_TCLASS) { 3040 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 3041 comma = 1; 3042 } 3043 if (inp_flags & IN6P_AUTOFLOWLABEL) { 3044 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 3045 comma = 1; 3046 } 3047 if (inp_flags & INP_TIMEWAIT) { 3048 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 3049 comma = 1; 3050 } 3051 if (inp_flags & INP_ONESBCAST) { 3052 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 3053 comma = 1; 3054 } 3055 if (inp_flags & INP_DROPPED) { 3056 db_printf("%sINP_DROPPED", comma ? ", " : ""); 3057 comma = 1; 3058 } 3059 if (inp_flags & INP_SOCKREF) { 3060 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 3061 comma = 1; 3062 } 3063 if (inp_flags & IN6P_RFC2292) { 3064 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 3065 comma = 1; 3066 } 3067 if (inp_flags & IN6P_MTU) { 3068 db_printf("IN6P_MTU%s", comma ? ", " : ""); 3069 comma = 1; 3070 } 3071 } 3072 3073 static void 3074 db_print_inpvflag(u_char inp_vflag) 3075 { 3076 int comma; 3077 3078 comma = 0; 3079 if (inp_vflag & INP_IPV4) { 3080 db_printf("%sINP_IPV4", comma ? ", " : ""); 3081 comma = 1; 3082 } 3083 if (inp_vflag & INP_IPV6) { 3084 db_printf("%sINP_IPV6", comma ? ", " : ""); 3085 comma = 1; 3086 } 3087 if (inp_vflag & INP_IPV6PROTO) { 3088 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 3089 comma = 1; 3090 } 3091 } 3092 3093 static void 3094 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 3095 { 3096 3097 db_print_indent(indent); 3098 db_printf("%s at %p\n", name, inp); 3099 3100 indent += 2; 3101 3102 db_print_indent(indent); 3103 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 3104 3105 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 3106 3107 db_print_indent(indent); 3108 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 3109 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 3110 3111 db_print_indent(indent); 3112 db_printf("inp_label: %p inp_flags: 0x%x (", 3113 inp->inp_label, inp->inp_flags); 3114 db_print_inpflags(inp->inp_flags); 3115 db_printf(")\n"); 3116 3117 db_print_indent(indent); 3118 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 3119 inp->inp_vflag); 3120 db_print_inpvflag(inp->inp_vflag); 3121 db_printf(")\n"); 3122 3123 db_print_indent(indent); 3124 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 3125 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 3126 3127 db_print_indent(indent); 3128 #ifdef INET6 3129 if (inp->inp_vflag & INP_IPV6) { 3130 db_printf("in6p_options: %p in6p_outputopts: %p " 3131 "in6p_moptions: %p\n", inp->in6p_options, 3132 inp->in6p_outputopts, inp->in6p_moptions); 3133 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 3134 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 3135 inp->in6p_hops); 3136 } else 3137 #endif 3138 { 3139 db_printf("inp_ip_tos: %d inp_ip_options: %p " 3140 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 3141 inp->inp_options, inp->inp_moptions); 3142 } 3143 3144 db_print_indent(indent); 3145 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 3146 (uintmax_t)inp->inp_gencnt); 3147 } 3148 3149 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 3150 { 3151 struct inpcb *inp; 3152 3153 if (!have_addr) { 3154 db_printf("usage: show inpcb <addr>\n"); 3155 return; 3156 } 3157 inp = (struct inpcb *)addr; 3158 3159 db_print_inpcb(inp, "inpcb", 0); 3160 } 3161 #endif /* DDB */ 3162 3163 #ifdef RATELIMIT 3164 /* 3165 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 3166 * if any. 3167 */ 3168 int 3169 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 3170 { 3171 union if_snd_tag_modify_params params = { 3172 .rate_limit.max_rate = max_pacing_rate, 3173 }; 3174 struct m_snd_tag *mst; 3175 struct ifnet *ifp; 3176 int error; 3177 3178 mst = inp->inp_snd_tag; 3179 if (mst == NULL) 3180 return (EINVAL); 3181 3182 ifp = mst->ifp; 3183 if (ifp == NULL) 3184 return (EINVAL); 3185 3186 if (ifp->if_snd_tag_modify == NULL) { 3187 error = EOPNOTSUPP; 3188 } else { 3189 error = ifp->if_snd_tag_modify(mst, ¶ms); 3190 } 3191 return (error); 3192 } 3193 3194 /* 3195 * Query existing TX rate limit based on the existing 3196 * "inp->inp_snd_tag", if any. 3197 */ 3198 int 3199 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3200 { 3201 union if_snd_tag_query_params params = { }; 3202 struct m_snd_tag *mst; 3203 struct ifnet *ifp; 3204 int error; 3205 3206 mst = inp->inp_snd_tag; 3207 if (mst == NULL) 3208 return (EINVAL); 3209 3210 ifp = mst->ifp; 3211 if (ifp == NULL) 3212 return (EINVAL); 3213 3214 if (ifp->if_snd_tag_query == NULL) { 3215 error = EOPNOTSUPP; 3216 } else { 3217 error = ifp->if_snd_tag_query(mst, ¶ms); 3218 if (error == 0 && p_max_pacing_rate != NULL) 3219 *p_max_pacing_rate = params.rate_limit.max_rate; 3220 } 3221 return (error); 3222 } 3223 3224 /* 3225 * Query existing TX queue level based on the existing 3226 * "inp->inp_snd_tag", if any. 3227 */ 3228 int 3229 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3230 { 3231 union if_snd_tag_query_params params = { }; 3232 struct m_snd_tag *mst; 3233 struct ifnet *ifp; 3234 int error; 3235 3236 mst = inp->inp_snd_tag; 3237 if (mst == NULL) 3238 return (EINVAL); 3239 3240 ifp = mst->ifp; 3241 if (ifp == NULL) 3242 return (EINVAL); 3243 3244 if (ifp->if_snd_tag_query == NULL) 3245 return (EOPNOTSUPP); 3246 3247 error = ifp->if_snd_tag_query(mst, ¶ms); 3248 if (error == 0 && p_txqueue_level != NULL) 3249 *p_txqueue_level = params.rate_limit.queue_level; 3250 return (error); 3251 } 3252 3253 /* 3254 * Allocate a new TX rate limit send tag from the network interface 3255 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3256 */ 3257 int 3258 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3259 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate) 3260 { 3261 union if_snd_tag_alloc_params params = { 3262 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3263 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3264 .rate_limit.hdr.flowid = flowid, 3265 .rate_limit.hdr.flowtype = flowtype, 3266 .rate_limit.max_rate = max_pacing_rate, 3267 }; 3268 int error; 3269 3270 INP_WLOCK_ASSERT(inp); 3271 3272 if (inp->inp_snd_tag != NULL) 3273 return (EINVAL); 3274 3275 if (ifp->if_snd_tag_alloc == NULL) { 3276 error = EOPNOTSUPP; 3277 } else { 3278 error = ifp->if_snd_tag_alloc(ifp, ¶ms, &inp->inp_snd_tag); 3279 } 3280 return (error); 3281 } 3282 3283 /* 3284 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3285 * if any: 3286 */ 3287 void 3288 in_pcbdetach_txrtlmt(struct inpcb *inp) 3289 { 3290 struct m_snd_tag *mst; 3291 3292 INP_WLOCK_ASSERT(inp); 3293 3294 mst = inp->inp_snd_tag; 3295 inp->inp_snd_tag = NULL; 3296 3297 if (mst == NULL) 3298 return; 3299 3300 m_snd_tag_rele(mst); 3301 } 3302 3303 /* 3304 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3305 * is set in the fast path and will attach/detach/modify the TX rate 3306 * limit send tag based on the socket's so_max_pacing_rate value. 3307 */ 3308 void 3309 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3310 { 3311 struct socket *socket; 3312 uint32_t max_pacing_rate; 3313 bool did_upgrade; 3314 int error; 3315 3316 if (inp == NULL) 3317 return; 3318 3319 socket = inp->inp_socket; 3320 if (socket == NULL) 3321 return; 3322 3323 if (!INP_WLOCKED(inp)) { 3324 /* 3325 * NOTE: If the write locking fails, we need to bail 3326 * out and use the non-ratelimited ring for the 3327 * transmit until there is a new chance to get the 3328 * write lock. 3329 */ 3330 if (!INP_TRY_UPGRADE(inp)) 3331 return; 3332 did_upgrade = 1; 3333 } else { 3334 did_upgrade = 0; 3335 } 3336 3337 /* 3338 * NOTE: The so_max_pacing_rate value is read unlocked, 3339 * because atomic updates are not required since the variable 3340 * is checked at every mbuf we send. It is assumed that the 3341 * variable read itself will be atomic. 3342 */ 3343 max_pacing_rate = socket->so_max_pacing_rate; 3344 3345 /* 3346 * If the existing send tag is for the wrong interface due to 3347 * a route change, first drop the existing tag. Set the 3348 * CHANGED flag so that we will keep trying to allocate a new 3349 * tag if we fail to allocate one this time. 3350 */ 3351 if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) { 3352 in_pcbdetach_txrtlmt(inp); 3353 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3354 } 3355 3356 /* 3357 * NOTE: When attaching to a network interface a reference is 3358 * made to ensure the network interface doesn't go away until 3359 * all ratelimit connections are gone. The network interface 3360 * pointers compared below represent valid network interfaces, 3361 * except when comparing towards NULL. 3362 */ 3363 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3364 error = 0; 3365 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3366 if (inp->inp_snd_tag != NULL) 3367 in_pcbdetach_txrtlmt(inp); 3368 error = 0; 3369 } else if (inp->inp_snd_tag == NULL) { 3370 /* 3371 * In order to utilize packet pacing with RSS, we need 3372 * to wait until there is a valid RSS hash before we 3373 * can proceed: 3374 */ 3375 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3376 error = EAGAIN; 3377 } else { 3378 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3379 mb->m_pkthdr.flowid, max_pacing_rate); 3380 } 3381 } else { 3382 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3383 } 3384 if (error == 0 || error == EOPNOTSUPP) 3385 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3386 if (did_upgrade) 3387 INP_DOWNGRADE(inp); 3388 } 3389 3390 /* 3391 * Track route changes for TX rate limiting. 3392 */ 3393 void 3394 in_pcboutput_eagain(struct inpcb *inp) 3395 { 3396 bool did_upgrade; 3397 3398 if (inp == NULL) 3399 return; 3400 3401 if (inp->inp_snd_tag == NULL) 3402 return; 3403 3404 if (!INP_WLOCKED(inp)) { 3405 /* 3406 * NOTE: If the write locking fails, we need to bail 3407 * out and use the non-ratelimited ring for the 3408 * transmit until there is a new chance to get the 3409 * write lock. 3410 */ 3411 if (!INP_TRY_UPGRADE(inp)) 3412 return; 3413 did_upgrade = 1; 3414 } else { 3415 did_upgrade = 0; 3416 } 3417 3418 /* detach rate limiting */ 3419 in_pcbdetach_txrtlmt(inp); 3420 3421 /* make sure new mbuf send tag allocation is made */ 3422 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3423 3424 if (did_upgrade) 3425 INP_DOWNGRADE(inp); 3426 } 3427 #endif /* RATELIMIT */ 3428