xref: /freebsd/sys/netinet/in_pcb.c (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2007-2009 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * All rights reserved.
9  *
10  * Portions of this software were developed by Robert N. M. Watson under
11  * contract to Juniper Networks, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include "opt_ddb.h"
44 #include "opt_ipsec.h"
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 #include "opt_ratelimit.h"
48 #include "opt_route.h"
49 #include "opt_rss.h"
50 
51 #include <sys/param.h>
52 #include <sys/hash.h>
53 #include <sys/systm.h>
54 #include <sys/libkern.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/mbuf.h>
58 #include <sys/callout.h>
59 #include <sys/eventhandler.h>
60 #include <sys/domain.h>
61 #include <sys/protosw.h>
62 #include <sys/smp.h>
63 #include <sys/socket.h>
64 #include <sys/socketvar.h>
65 #include <sys/sockio.h>
66 #include <sys/priv.h>
67 #include <sys/proc.h>
68 #include <sys/refcount.h>
69 #include <sys/jail.h>
70 #include <sys/kernel.h>
71 #include <sys/sysctl.h>
72 
73 #ifdef DDB
74 #include <ddb/ddb.h>
75 #endif
76 
77 #include <vm/uma.h>
78 #include <vm/vm.h>
79 
80 #include <net/if.h>
81 #include <net/if_var.h>
82 #include <net/if_types.h>
83 #include <net/if_llatbl.h>
84 #include <net/route.h>
85 #include <net/rss_config.h>
86 #include <net/vnet.h>
87 
88 #if defined(INET) || defined(INET6)
89 #include <netinet/in.h>
90 #include <netinet/in_pcb.h>
91 #include <netinet/in_pcb_var.h>
92 #ifdef INET
93 #include <netinet/in_var.h>
94 #include <netinet/in_fib.h>
95 #endif
96 #include <netinet/ip_var.h>
97 #include <netinet/tcp_var.h>
98 #ifdef TCPHPTS
99 #include <netinet/tcp_hpts.h>
100 #endif
101 #include <netinet/udp.h>
102 #include <netinet/udp_var.h>
103 #ifdef INET6
104 #include <netinet/ip6.h>
105 #include <netinet6/in6_pcb.h>
106 #include <netinet6/in6_var.h>
107 #include <netinet6/ip6_var.h>
108 #endif /* INET6 */
109 #include <net/route/nhop.h>
110 #endif
111 
112 #include <netipsec/ipsec_support.h>
113 
114 #include <security/mac/mac_framework.h>
115 
116 #define	INPCBLBGROUP_SIZMIN	8
117 #define	INPCBLBGROUP_SIZMAX	256
118 #define	INP_FREED	0x00000200	/* See in_pcb.h. */
119 
120 static struct callout	ipport_tick_callout;
121 
122 /*
123  * These configure the range of local port addresses assigned to
124  * "unspecified" outgoing connections/packets/whatever.
125  */
126 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
127 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
128 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
129 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
130 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
131 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
132 
133 /*
134  * Reserved ports accessible only to root. There are significant
135  * security considerations that must be accounted for when changing these,
136  * but the security benefits can be great. Please be careful.
137  */
138 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
139 VNET_DEFINE(int, ipport_reservedlow);
140 
141 /* Variables dealing with random ephemeral port allocation. */
142 VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
143 VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
144 VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
145 VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
146 VNET_DEFINE(int, ipport_tcpallocs);
147 VNET_DEFINE_STATIC(int, ipport_tcplastcount);
148 
149 #define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
150 
151 #ifdef INET
152 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
153 			    struct in_addr faddr, u_int fport_arg,
154 			    struct in_addr laddr, u_int lport_arg,
155 			    int lookupflags, struct ifnet *ifp,
156 			    uint8_t numa_domain);
157 
158 #define RANGECHK(var, min, max) \
159 	if ((var) < (min)) { (var) = (min); } \
160 	else if ((var) > (max)) { (var) = (max); }
161 
162 static int
163 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
164 {
165 	int error;
166 
167 	error = sysctl_handle_int(oidp, arg1, arg2, req);
168 	if (error == 0) {
169 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
170 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
171 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
172 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
173 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
174 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
175 	}
176 	return (error);
177 }
178 
179 #undef RANGECHK
180 
181 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange,
182     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
183     "IP Ports");
184 
185 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
186     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
187     &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I",
188     "");
189 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
190     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
191     &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I",
192     "");
193 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
194     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
195     &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I",
196     "");
197 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
198     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
199     &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I",
200     "");
201 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
202     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
203     &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I",
204     "");
205 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
206     CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
207     &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I",
208     "");
209 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
210 	CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
211 	&VNET_NAME(ipport_reservedhigh), 0, "");
212 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
213 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
214 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
215 	CTLFLAG_VNET | CTLFLAG_RW,
216 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
217 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
218 	CTLFLAG_VNET | CTLFLAG_RW,
219 	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
220 	"allocations before switching to a sequential one");
221 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
222 	CTLFLAG_VNET | CTLFLAG_RW,
223 	&VNET_NAME(ipport_randomtime), 0,
224 	"Minimum time to keep sequential port "
225 	"allocation before switching to a random one");
226 
227 #ifdef RATELIMIT
228 counter_u64_t rate_limit_new;
229 counter_u64_t rate_limit_chg;
230 counter_u64_t rate_limit_active;
231 counter_u64_t rate_limit_alloc_fail;
232 counter_u64_t rate_limit_set_ok;
233 
234 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
235     "IP Rate Limiting");
236 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD,
237     &rate_limit_active, "Active rate limited connections");
238 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD,
239    &rate_limit_alloc_fail, "Rate limited connection failures");
240 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD,
241    &rate_limit_set_ok, "Rate limited setting succeeded");
242 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD,
243    &rate_limit_new, "Total Rate limit new attempts");
244 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD,
245    &rate_limit_chg, "Total Rate limited change attempts");
246 
247 #endif /* RATELIMIT */
248 
249 #endif /* INET */
250 
251 VNET_DEFINE(uint32_t, in_pcbhashseed);
252 static void
253 in_pcbhashseed_init(void)
254 {
255 
256 	V_in_pcbhashseed = arc4random();
257 }
258 VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST,
259     in_pcbhashseed_init, 0);
260 
261 /*
262  * in_pcb.c: manage the Protocol Control Blocks.
263  *
264  * NOTE: It is assumed that most of these functions will be called with
265  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
266  * functions often modify hash chains or addresses in pcbs.
267  */
268 
269 static struct inpcblbgroup *
270 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag,
271     uint16_t port, const union in_dependaddr *addr, int size,
272     uint8_t numa_domain)
273 {
274 	struct inpcblbgroup *grp;
275 	size_t bytes;
276 
277 	bytes = __offsetof(struct inpcblbgroup, il_inp[size]);
278 	grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT);
279 	if (!grp)
280 		return (NULL);
281 	grp->il_vflag = vflag;
282 	grp->il_lport = port;
283 	grp->il_numa_domain = numa_domain;
284 	grp->il_dependladdr = *addr;
285 	grp->il_inpsiz = size;
286 	CK_LIST_INSERT_HEAD(hdr, grp, il_list);
287 	return (grp);
288 }
289 
290 static void
291 in_pcblbgroup_free_deferred(epoch_context_t ctx)
292 {
293 	struct inpcblbgroup *grp;
294 
295 	grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx);
296 	free(grp, M_PCB);
297 }
298 
299 static void
300 in_pcblbgroup_free(struct inpcblbgroup *grp)
301 {
302 
303 	CK_LIST_REMOVE(grp, il_list);
304 	NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx);
305 }
306 
307 static struct inpcblbgroup *
308 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr,
309     struct inpcblbgroup *old_grp, int size)
310 {
311 	struct inpcblbgroup *grp;
312 	int i;
313 
314 	grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag,
315 	    old_grp->il_lport, &old_grp->il_dependladdr, size,
316 	    old_grp->il_numa_domain);
317 	if (grp == NULL)
318 		return (NULL);
319 
320 	KASSERT(old_grp->il_inpcnt < grp->il_inpsiz,
321 	    ("invalid new local group size %d and old local group count %d",
322 	     grp->il_inpsiz, old_grp->il_inpcnt));
323 
324 	for (i = 0; i < old_grp->il_inpcnt; ++i)
325 		grp->il_inp[i] = old_grp->il_inp[i];
326 	grp->il_inpcnt = old_grp->il_inpcnt;
327 	in_pcblbgroup_free(old_grp);
328 	return (grp);
329 }
330 
331 /*
332  * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i]
333  * and shrink group if possible.
334  */
335 static void
336 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp,
337     int i)
338 {
339 	struct inpcblbgroup *grp, *new_grp;
340 
341 	grp = *grpp;
342 	for (; i + 1 < grp->il_inpcnt; ++i)
343 		grp->il_inp[i] = grp->il_inp[i + 1];
344 	grp->il_inpcnt--;
345 
346 	if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN &&
347 	    grp->il_inpcnt <= grp->il_inpsiz / 4) {
348 		/* Shrink this group. */
349 		new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2);
350 		if (new_grp != NULL)
351 			*grpp = new_grp;
352 	}
353 }
354 
355 /*
356  * Add PCB to load balance group for SO_REUSEPORT_LB option.
357  */
358 static int
359 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain)
360 {
361 	const static struct timeval interval = { 60, 0 };
362 	static struct timeval lastprint;
363 	struct inpcbinfo *pcbinfo;
364 	struct inpcblbgrouphead *hdr;
365 	struct inpcblbgroup *grp;
366 	uint32_t idx;
367 
368 	pcbinfo = inp->inp_pcbinfo;
369 
370 	INP_WLOCK_ASSERT(inp);
371 	INP_HASH_WLOCK_ASSERT(pcbinfo);
372 
373 	/*
374 	 * Don't allow jailed socket to join local group.
375 	 */
376 	if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred))
377 		return (0);
378 
379 #ifdef INET6
380 	/*
381 	 * Don't allow IPv4 mapped INET6 wild socket.
382 	 */
383 	if ((inp->inp_vflag & INP_IPV4) &&
384 	    inp->inp_laddr.s_addr == INADDR_ANY &&
385 	    INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) {
386 		return (0);
387 	}
388 #endif
389 
390 	idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask);
391 	hdr = &pcbinfo->ipi_lbgrouphashbase[idx];
392 	CK_LIST_FOREACH(grp, hdr, il_list) {
393 		if (grp->il_vflag == inp->inp_vflag &&
394 		    grp->il_lport == inp->inp_lport &&
395 		    grp->il_numa_domain == numa_domain &&
396 		    memcmp(&grp->il_dependladdr,
397 		    &inp->inp_inc.inc_ie.ie_dependladdr,
398 		    sizeof(grp->il_dependladdr)) == 0)
399 			break;
400 	}
401 	if (grp == NULL) {
402 		/* Create new load balance group. */
403 		grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag,
404 		    inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr,
405 		    INPCBLBGROUP_SIZMIN, numa_domain);
406 		if (grp == NULL)
407 			return (ENOBUFS);
408 	} else if (grp->il_inpcnt == grp->il_inpsiz) {
409 		if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) {
410 			if (ratecheck(&lastprint, &interval))
411 				printf("lb group port %d, limit reached\n",
412 				    ntohs(grp->il_lport));
413 			return (0);
414 		}
415 
416 		/* Expand this local group. */
417 		grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2);
418 		if (grp == NULL)
419 			return (ENOBUFS);
420 	}
421 
422 	KASSERT(grp->il_inpcnt < grp->il_inpsiz,
423 	    ("invalid local group size %d and count %d", grp->il_inpsiz,
424 	    grp->il_inpcnt));
425 
426 	grp->il_inp[grp->il_inpcnt] = inp;
427 	grp->il_inpcnt++;
428 	return (0);
429 }
430 
431 /*
432  * Remove PCB from load balance group.
433  */
434 static void
435 in_pcbremlbgrouphash(struct inpcb *inp)
436 {
437 	struct inpcbinfo *pcbinfo;
438 	struct inpcblbgrouphead *hdr;
439 	struct inpcblbgroup *grp;
440 	int i;
441 
442 	pcbinfo = inp->inp_pcbinfo;
443 
444 	INP_WLOCK_ASSERT(inp);
445 	INP_HASH_WLOCK_ASSERT(pcbinfo);
446 
447 	hdr = &pcbinfo->ipi_lbgrouphashbase[
448 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
449 	CK_LIST_FOREACH(grp, hdr, il_list) {
450 		for (i = 0; i < grp->il_inpcnt; ++i) {
451 			if (grp->il_inp[i] != inp)
452 				continue;
453 
454 			if (grp->il_inpcnt == 1) {
455 				/* We are the last, free this local group. */
456 				in_pcblbgroup_free(grp);
457 			} else {
458 				/* Pull up inpcbs, shrink group if possible. */
459 				in_pcblbgroup_reorder(hdr, &grp, i);
460 			}
461 			return;
462 		}
463 	}
464 }
465 
466 int
467 in_pcblbgroup_numa(struct inpcb *inp, int arg)
468 {
469 	struct inpcbinfo *pcbinfo;
470 	struct inpcblbgrouphead *hdr;
471 	struct inpcblbgroup *grp;
472 	int err, i;
473 	uint8_t numa_domain;
474 
475 	switch (arg) {
476 	case TCP_REUSPORT_LB_NUMA_NODOM:
477 		numa_domain = M_NODOM;
478 		break;
479 	case TCP_REUSPORT_LB_NUMA_CURDOM:
480 		numa_domain = PCPU_GET(domain);
481 		break;
482 	default:
483 		if (arg < 0 || arg >= vm_ndomains)
484 			return (EINVAL);
485 		numa_domain = arg;
486 	}
487 
488 	err = 0;
489 	pcbinfo = inp->inp_pcbinfo;
490 	INP_WLOCK_ASSERT(inp);
491 	INP_HASH_WLOCK(pcbinfo);
492 	hdr = &pcbinfo->ipi_lbgrouphashbase[
493 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)];
494 	CK_LIST_FOREACH(grp, hdr, il_list) {
495 		for (i = 0; i < grp->il_inpcnt; ++i) {
496 			if (grp->il_inp[i] != inp)
497 				continue;
498 
499 			if (grp->il_numa_domain == numa_domain) {
500 				goto abort_with_hash_wlock;
501 			}
502 
503 			/* Remove it from the old group. */
504 			in_pcbremlbgrouphash(inp);
505 
506 			/* Add it to the new group based on numa domain. */
507 			in_pcbinslbgrouphash(inp, numa_domain);
508 			goto abort_with_hash_wlock;
509 		}
510 	}
511 	err = ENOENT;
512 abort_with_hash_wlock:
513 	INP_HASH_WUNLOCK(pcbinfo);
514 	return (err);
515 }
516 
517 /* Make sure it is safe to use hashinit(9) on CK_LIST. */
518 CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb)));
519 
520 /*
521  * Initialize an inpcbinfo - a per-VNET instance of connections db.
522  */
523 void
524 in_pcbinfo_init(struct inpcbinfo *pcbinfo, struct inpcbstorage *pcbstor,
525     u_int hash_nelements, u_int porthash_nelements)
526 {
527 
528 	mtx_init(&pcbinfo->ipi_lock, pcbstor->ips_infolock_name, NULL, MTX_DEF);
529 	mtx_init(&pcbinfo->ipi_hash_lock, pcbstor->ips_hashlock_name,
530 	    NULL, MTX_DEF);
531 #ifdef VIMAGE
532 	pcbinfo->ipi_vnet = curvnet;
533 #endif
534 	CK_LIST_INIT(&pcbinfo->ipi_listhead);
535 	pcbinfo->ipi_count = 0;
536 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
537 	    &pcbinfo->ipi_hashmask);
538 	porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1);
539 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
540 	    &pcbinfo->ipi_porthashmask);
541 	pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB,
542 	    &pcbinfo->ipi_lbgrouphashmask);
543 	pcbinfo->ipi_zone = pcbstor->ips_zone;
544 	pcbinfo->ipi_portzone = pcbstor->ips_portzone;
545 	pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone);
546 }
547 
548 /*
549  * Destroy an inpcbinfo.
550  */
551 void
552 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
553 {
554 
555 	KASSERT(pcbinfo->ipi_count == 0,
556 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
557 
558 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
559 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
560 	    pcbinfo->ipi_porthashmask);
561 	hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB,
562 	    pcbinfo->ipi_lbgrouphashmask);
563 	mtx_destroy(&pcbinfo->ipi_hash_lock);
564 	mtx_destroy(&pcbinfo->ipi_lock);
565 }
566 
567 /*
568  * Initialize a pcbstorage - per protocol zones to allocate inpcbs.
569  */
570 static void inpcb_dtor(void *, int, void *);
571 static void inpcb_fini(void *, int);
572 void
573 in_pcbstorage_init(void *arg)
574 {
575 	struct inpcbstorage *pcbstor = arg;
576 
577 	pcbstor->ips_zone = uma_zcreate(pcbstor->ips_zone_name,
578 	    sizeof(struct inpcb), NULL, inpcb_dtor, pcbstor->ips_pcbinit,
579 	    inpcb_fini, UMA_ALIGN_PTR, UMA_ZONE_SMR);
580 	pcbstor->ips_portzone = uma_zcreate(pcbstor->ips_portzone_name,
581 	    sizeof(struct inpcbport), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
582 	uma_zone_set_smr(pcbstor->ips_portzone,
583 	    uma_zone_get_smr(pcbstor->ips_zone));
584 }
585 
586 /*
587  * Destroy a pcbstorage - used by unloadable protocols.
588  */
589 void
590 in_pcbstorage_destroy(void *arg)
591 {
592 	struct inpcbstorage *pcbstor = arg;
593 
594 	uma_zdestroy(pcbstor->ips_zone);
595 	uma_zdestroy(pcbstor->ips_portzone);
596 }
597 
598 /*
599  * Allocate a PCB and associate it with the socket.
600  * On success return with the PCB locked.
601  */
602 int
603 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
604 {
605 	struct inpcb *inp;
606 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
607 	int error;
608 #endif
609 
610 	inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT);
611 	if (inp == NULL)
612 		return (ENOBUFS);
613 	bzero(&inp->inp_start_zero, inp_zero_size);
614 #ifdef NUMA
615 	inp->inp_numa_domain = M_NODOM;
616 #endif
617 	inp->inp_pcbinfo = pcbinfo;
618 	inp->inp_socket = so;
619 	inp->inp_cred = crhold(so->so_cred);
620 	inp->inp_inc.inc_fibnum = so->so_fibnum;
621 #ifdef MAC
622 	error = mac_inpcb_init(inp, M_NOWAIT);
623 	if (error != 0)
624 		goto out;
625 	mac_inpcb_create(so, inp);
626 #endif
627 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
628 	error = ipsec_init_pcbpolicy(inp);
629 	if (error != 0) {
630 #ifdef MAC
631 		mac_inpcb_destroy(inp);
632 #endif
633 		goto out;
634 	}
635 #endif /*IPSEC*/
636 #ifdef INET6
637 	if (INP_SOCKAF(so) == AF_INET6) {
638 		inp->inp_vflag |= INP_IPV6PROTO;
639 		if (V_ip6_v6only)
640 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
641 	}
642 	if (V_ip6_auto_flowlabel)
643 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
644 #endif
645 	/*
646 	 * Routes in inpcb's can cache L2 as well; they are guaranteed
647 	 * to be cleaned up.
648 	 */
649 	inp->inp_route.ro_flags = RT_LLE_CACHE;
650 #ifdef TCPHPTS
651 	/*
652 	 * If using hpts lets drop a random number in so
653 	 * not all new connections fall on the same CPU.
654 	 */
655 	inp->inp_hpts_cpu = hpts_random_cpu(inp);
656 #endif
657 	refcount_init(&inp->inp_refcount, 1);   /* Reference from socket. */
658 	INP_WLOCK(inp);
659 	INP_INFO_WLOCK(pcbinfo);
660 	pcbinfo->ipi_count++;
661 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
662 	CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list);
663 	INP_INFO_WUNLOCK(pcbinfo);
664 	so->so_pcb = inp;
665 
666 	return (0);
667 
668 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
669 out:
670 	uma_zfree_smr(pcbinfo->ipi_zone, inp);
671 	return (error);
672 #endif
673 }
674 
675 #ifdef INET
676 int
677 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
678 {
679 	int anonport, error;
680 
681 	KASSERT(nam == NULL || nam->sa_family == AF_INET,
682 	    ("%s: invalid address family for %p", __func__, nam));
683 	KASSERT(nam == NULL || nam->sa_len == sizeof(struct sockaddr_in),
684 	    ("%s: invalid address length for %p", __func__, nam));
685 	INP_WLOCK_ASSERT(inp);
686 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
687 
688 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
689 		return (EINVAL);
690 	anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
691 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
692 	    &inp->inp_lport, cred);
693 	if (error)
694 		return (error);
695 	if (in_pcbinshash(inp) != 0) {
696 		inp->inp_laddr.s_addr = INADDR_ANY;
697 		inp->inp_lport = 0;
698 		return (EAGAIN);
699 	}
700 	if (anonport)
701 		inp->inp_flags |= INP_ANONPORT;
702 	return (0);
703 }
704 #endif
705 
706 #if defined(INET) || defined(INET6)
707 /*
708  * Assign a local port like in_pcb_lport(), but also used with connect()
709  * and a foreign address and port.  If fsa is non-NULL, choose a local port
710  * that is unused with those, otherwise one that is completely unused.
711  * lsa can be NULL for IPv6.
712  */
713 int
714 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp,
715     struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags)
716 {
717 	struct inpcbinfo *pcbinfo;
718 	struct inpcb *tmpinp;
719 	unsigned short *lastport;
720 	int count, dorandom, error;
721 	u_short aux, first, last, lport;
722 #ifdef INET
723 	struct in_addr laddr, faddr;
724 #endif
725 #ifdef INET6
726 	struct in6_addr *laddr6, *faddr6;
727 #endif
728 
729 	pcbinfo = inp->inp_pcbinfo;
730 
731 	/*
732 	 * Because no actual state changes occur here, a global write lock on
733 	 * the pcbinfo isn't required.
734 	 */
735 	INP_LOCK_ASSERT(inp);
736 	INP_HASH_LOCK_ASSERT(pcbinfo);
737 
738 	if (inp->inp_flags & INP_HIGHPORT) {
739 		first = V_ipport_hifirstauto;	/* sysctl */
740 		last  = V_ipport_hilastauto;
741 		lastport = &pcbinfo->ipi_lasthi;
742 	} else if (inp->inp_flags & INP_LOWPORT) {
743 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT);
744 		if (error)
745 			return (error);
746 		first = V_ipport_lowfirstauto;	/* 1023 */
747 		last  = V_ipport_lowlastauto;	/* 600 */
748 		lastport = &pcbinfo->ipi_lastlow;
749 	} else {
750 		first = V_ipport_firstauto;	/* sysctl */
751 		last  = V_ipport_lastauto;
752 		lastport = &pcbinfo->ipi_lastport;
753 	}
754 	/*
755 	 * For UDP(-Lite), use random port allocation as long as the user
756 	 * allows it.  For TCP (and as of yet unknown) connections,
757 	 * use random port allocation only if the user allows it AND
758 	 * ipport_tick() allows it.
759 	 */
760 	if (V_ipport_randomized &&
761 		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
762 		pcbinfo == &V_ulitecbinfo))
763 		dorandom = 1;
764 	else
765 		dorandom = 0;
766 	/*
767 	 * It makes no sense to do random port allocation if
768 	 * we have the only port available.
769 	 */
770 	if (first == last)
771 		dorandom = 0;
772 	/* Make sure to not include UDP(-Lite) packets in the count. */
773 	if (pcbinfo != &V_udbinfo && pcbinfo != &V_ulitecbinfo)
774 		V_ipport_tcpallocs++;
775 	/*
776 	 * Instead of having two loops further down counting up or down
777 	 * make sure that first is always <= last and go with only one
778 	 * code path implementing all logic.
779 	 */
780 	if (first > last) {
781 		aux = first;
782 		first = last;
783 		last = aux;
784 	}
785 
786 #ifdef INET
787 	laddr.s_addr = INADDR_ANY;
788 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
789 		if (lsa != NULL)
790 			laddr = ((struct sockaddr_in *)lsa)->sin_addr;
791 		if (fsa != NULL)
792 			faddr = ((struct sockaddr_in *)fsa)->sin_addr;
793 	}
794 #endif
795 #ifdef INET6
796 	laddr6 = NULL;
797 	if ((inp->inp_vflag & INP_IPV6) != 0) {
798 		if (lsa != NULL)
799 			laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr;
800 		if (fsa != NULL)
801 			faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr;
802 	}
803 #endif
804 
805 	tmpinp = NULL;
806 	lport = *lportp;
807 
808 	if (dorandom)
809 		*lastport = first + (arc4random() % (last - first));
810 
811 	count = last - first;
812 
813 	do {
814 		if (count-- < 0)	/* completely used? */
815 			return (EADDRNOTAVAIL);
816 		++*lastport;
817 		if (*lastport < first || *lastport > last)
818 			*lastport = first;
819 		lport = htons(*lastport);
820 
821 		if (fsa != NULL) {
822 #ifdef INET
823 			if (lsa->sa_family == AF_INET) {
824 				tmpinp = in_pcblookup_hash_locked(pcbinfo,
825 				    faddr, fport, laddr, lport, lookupflags,
826 				    NULL, M_NODOM);
827 			}
828 #endif
829 #ifdef INET6
830 			if (lsa->sa_family == AF_INET6) {
831 				tmpinp = in6_pcblookup_hash_locked(pcbinfo,
832 				    faddr6, fport, laddr6, lport, lookupflags,
833 				    NULL, M_NODOM);
834 			}
835 #endif
836 		} else {
837 #ifdef INET6
838 			if ((inp->inp_vflag & INP_IPV6) != 0)
839 				tmpinp = in6_pcblookup_local(pcbinfo,
840 				    &inp->in6p_laddr, lport, lookupflags, cred);
841 #endif
842 #if defined(INET) && defined(INET6)
843 			else
844 #endif
845 #ifdef INET
846 				tmpinp = in_pcblookup_local(pcbinfo, laddr,
847 				    lport, lookupflags, cred);
848 #endif
849 		}
850 	} while (tmpinp != NULL);
851 
852 	*lportp = lport;
853 
854 	return (0);
855 }
856 
857 /*
858  * Select a local port (number) to use.
859  */
860 int
861 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
862     struct ucred *cred, int lookupflags)
863 {
864 	struct sockaddr_in laddr;
865 
866 	if (laddrp) {
867 		bzero(&laddr, sizeof(laddr));
868 		laddr.sin_family = AF_INET;
869 		laddr.sin_addr = *laddrp;
870 	}
871 	return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr :
872 	    NULL, lportp, NULL, 0, cred, lookupflags));
873 }
874 
875 /*
876  * Return cached socket options.
877  */
878 int
879 inp_so_options(const struct inpcb *inp)
880 {
881 	int so_options;
882 
883 	so_options = 0;
884 
885 	if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0)
886 		so_options |= SO_REUSEPORT_LB;
887 	if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
888 		so_options |= SO_REUSEPORT;
889 	if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
890 		so_options |= SO_REUSEADDR;
891 	return (so_options);
892 }
893 #endif /* INET || INET6 */
894 
895 /*
896  * Check if a new BINDMULTI socket is allowed to be created.
897  *
898  * ni points to the new inp.
899  * oi points to the existing inp.
900  *
901  * This checks whether the existing inp also has BINDMULTI and
902  * whether the credentials match.
903  */
904 int
905 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
906 {
907 	/* Check permissions match */
908 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
909 	    (ni->inp_cred->cr_uid !=
910 	    oi->inp_cred->cr_uid))
911 		return (0);
912 
913 	/* Check the existing inp has BINDMULTI set */
914 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
915 	    ((oi->inp_flags2 & INP_BINDMULTI) == 0))
916 		return (0);
917 
918 	/*
919 	 * We're okay - either INP_BINDMULTI isn't set on ni, or
920 	 * it is and it matches the checks.
921 	 */
922 	return (1);
923 }
924 
925 #ifdef INET
926 /*
927  * Set up a bind operation on a PCB, performing port allocation
928  * as required, but do not actually modify the PCB. Callers can
929  * either complete the bind by setting inp_laddr/inp_lport and
930  * calling in_pcbinshash(), or they can just use the resulting
931  * port and address to authorise the sending of a once-off packet.
932  *
933  * On error, the values of *laddrp and *lportp are not changed.
934  */
935 int
936 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
937     u_short *lportp, struct ucred *cred)
938 {
939 	struct socket *so = inp->inp_socket;
940 	struct sockaddr_in *sin;
941 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
942 	struct in_addr laddr;
943 	u_short lport = 0;
944 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
945 	int error;
946 
947 	/*
948 	 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here
949 	 * so that we don't have to add to the (already messy) code below.
950 	 */
951 	int reuseport_lb = (so->so_options & SO_REUSEPORT_LB);
952 
953 	/*
954 	 * No state changes, so read locks are sufficient here.
955 	 */
956 	INP_LOCK_ASSERT(inp);
957 	INP_HASH_LOCK_ASSERT(pcbinfo);
958 
959 	laddr.s_addr = *laddrp;
960 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
961 		return (EINVAL);
962 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0)
963 		lookupflags = INPLOOKUP_WILDCARD;
964 	if (nam == NULL) {
965 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
966 			return (error);
967 	} else {
968 		sin = (struct sockaddr_in *)nam;
969 		KASSERT(sin->sin_family == AF_INET,
970 		    ("%s: invalid family for address %p", __func__, sin));
971 		KASSERT(sin->sin_len == sizeof(*sin),
972 		    ("%s: invalid length for address %p", __func__, sin));
973 
974 		error = prison_local_ip4(cred, &sin->sin_addr);
975 		if (error)
976 			return (error);
977 		if (sin->sin_port != *lportp) {
978 			/* Don't allow the port to change. */
979 			if (*lportp != 0)
980 				return (EINVAL);
981 			lport = sin->sin_port;
982 		}
983 		/* NB: lport is left as 0 if the port isn't being changed. */
984 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
985 			/*
986 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
987 			 * allow complete duplication of binding if
988 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
989 			 * and a multicast address is bound on both
990 			 * new and duplicated sockets.
991 			 */
992 			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
993 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
994 			/*
995 			 * XXX: How to deal with SO_REUSEPORT_LB here?
996 			 * Treat same as SO_REUSEPORT for now.
997 			 */
998 			if ((so->so_options &
999 			    (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0)
1000 				reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB;
1001 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
1002 			sin->sin_port = 0;		/* yech... */
1003 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
1004 			/*
1005 			 * Is the address a local IP address?
1006 			 * If INP_BINDANY is set, then the socket may be bound
1007 			 * to any endpoint address, local or not.
1008 			 */
1009 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
1010 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
1011 				return (EADDRNOTAVAIL);
1012 		}
1013 		laddr = sin->sin_addr;
1014 		if (lport) {
1015 			struct inpcb *t;
1016 			struct tcptw *tw;
1017 
1018 			/* GROSS */
1019 			if (ntohs(lport) <= V_ipport_reservedhigh &&
1020 			    ntohs(lport) >= V_ipport_reservedlow &&
1021 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT))
1022 				return (EACCES);
1023 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
1024 			    priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) {
1025 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
1026 				    lport, INPLOOKUP_WILDCARD, cred);
1027 	/*
1028 	 * XXX
1029 	 * This entire block sorely needs a rewrite.
1030 	 */
1031 				if (t &&
1032 				    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
1033 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
1034 				    (so->so_type != SOCK_STREAM ||
1035 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
1036 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
1037 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
1038 				     (t->inp_flags2 & INP_REUSEPORT) ||
1039 				     (t->inp_flags2 & INP_REUSEPORT_LB) == 0) &&
1040 				    (inp->inp_cred->cr_uid !=
1041 				     t->inp_cred->cr_uid))
1042 					return (EADDRINUSE);
1043 
1044 				/*
1045 				 * If the socket is a BINDMULTI socket, then
1046 				 * the credentials need to match and the
1047 				 * original socket also has to have been bound
1048 				 * with BINDMULTI.
1049 				 */
1050 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
1051 					return (EADDRINUSE);
1052 			}
1053 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
1054 			    lport, lookupflags, cred);
1055 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
1056 				/*
1057 				 * XXXRW: If an incpb has had its timewait
1058 				 * state recycled, we treat the address as
1059 				 * being in use (for now).  This is better
1060 				 * than a panic, but not desirable.
1061 				 */
1062 				tw = intotw(t);
1063 				if (tw == NULL ||
1064 				    ((reuseport & tw->tw_so_options) == 0 &&
1065 					(reuseport_lb &
1066 				            tw->tw_so_options) == 0)) {
1067 					return (EADDRINUSE);
1068 				}
1069 			} else if (t &&
1070 				   ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
1071 				   (reuseport & inp_so_options(t)) == 0 &&
1072 				   (reuseport_lb & inp_so_options(t)) == 0) {
1073 #ifdef INET6
1074 				if (ntohl(sin->sin_addr.s_addr) !=
1075 				    INADDR_ANY ||
1076 				    ntohl(t->inp_laddr.s_addr) !=
1077 				    INADDR_ANY ||
1078 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
1079 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
1080 #endif
1081 						return (EADDRINUSE);
1082 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
1083 					return (EADDRINUSE);
1084 			}
1085 		}
1086 	}
1087 	if (*lportp != 0)
1088 		lport = *lportp;
1089 	if (lport == 0) {
1090 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
1091 		if (error != 0)
1092 			return (error);
1093 	}
1094 	*laddrp = laddr.s_addr;
1095 	*lportp = lport;
1096 	return (0);
1097 }
1098 
1099 /*
1100  * Connect from a socket to a specified address.
1101  * Both address and port must be specified in argument sin.
1102  * If don't have a local address for this socket yet,
1103  * then pick one.
1104  */
1105 int
1106 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred,
1107     bool rehash)
1108 {
1109 	u_short lport, fport;
1110 	in_addr_t laddr, faddr;
1111 	int anonport, error;
1112 
1113 	INP_WLOCK_ASSERT(inp);
1114 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1115 
1116 	lport = inp->inp_lport;
1117 	laddr = inp->inp_laddr.s_addr;
1118 	anonport = (lport == 0);
1119 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
1120 	    NULL, cred);
1121 	if (error)
1122 		return (error);
1123 
1124 	/* Do the initial binding of the local address if required. */
1125 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
1126 		KASSERT(rehash == true,
1127 		    ("Rehashing required for unbound inps"));
1128 		inp->inp_lport = lport;
1129 		inp->inp_laddr.s_addr = laddr;
1130 		if (in_pcbinshash(inp) != 0) {
1131 			inp->inp_laddr.s_addr = INADDR_ANY;
1132 			inp->inp_lport = 0;
1133 			return (EAGAIN);
1134 		}
1135 	}
1136 
1137 	/* Commit the remaining changes. */
1138 	inp->inp_lport = lport;
1139 	inp->inp_laddr.s_addr = laddr;
1140 	inp->inp_faddr.s_addr = faddr;
1141 	inp->inp_fport = fport;
1142 	if (rehash) {
1143 		in_pcbrehash(inp);
1144 	} else {
1145 		in_pcbinshash(inp);
1146 	}
1147 
1148 	if (anonport)
1149 		inp->inp_flags |= INP_ANONPORT;
1150 	return (0);
1151 }
1152 
1153 /*
1154  * Do proper source address selection on an unbound socket in case
1155  * of connect. Take jails into account as well.
1156  */
1157 int
1158 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
1159     struct ucred *cred)
1160 {
1161 	struct ifaddr *ifa;
1162 	struct sockaddr *sa;
1163 	struct sockaddr_in *sin, dst;
1164 	struct nhop_object *nh;
1165 	int error;
1166 
1167 	NET_EPOCH_ASSERT();
1168 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
1169 	/*
1170 	 * Bypass source address selection and use the primary jail IP
1171 	 * if requested.
1172 	 */
1173 	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
1174 		return (0);
1175 
1176 	error = 0;
1177 
1178 	nh = NULL;
1179 	bzero(&dst, sizeof(dst));
1180 	sin = &dst;
1181 	sin->sin_family = AF_INET;
1182 	sin->sin_len = sizeof(struct sockaddr_in);
1183 	sin->sin_addr.s_addr = faddr->s_addr;
1184 
1185 	/*
1186 	 * If route is known our src addr is taken from the i/f,
1187 	 * else punt.
1188 	 *
1189 	 * Find out route to destination.
1190 	 */
1191 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
1192 		nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr,
1193 		    0, NHR_NONE, 0);
1194 
1195 	/*
1196 	 * If we found a route, use the address corresponding to
1197 	 * the outgoing interface.
1198 	 *
1199 	 * Otherwise assume faddr is reachable on a directly connected
1200 	 * network and try to find a corresponding interface to take
1201 	 * the source address from.
1202 	 */
1203 	if (nh == NULL || nh->nh_ifp == NULL) {
1204 		struct in_ifaddr *ia;
1205 		struct ifnet *ifp;
1206 
1207 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
1208 					inp->inp_socket->so_fibnum));
1209 		if (ia == NULL) {
1210 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
1211 						inp->inp_socket->so_fibnum));
1212 		}
1213 		if (ia == NULL) {
1214 			error = ENETUNREACH;
1215 			goto done;
1216 		}
1217 
1218 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1219 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1220 			goto done;
1221 		}
1222 
1223 		ifp = ia->ia_ifp;
1224 		ia = NULL;
1225 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1226 			sa = ifa->ifa_addr;
1227 			if (sa->sa_family != AF_INET)
1228 				continue;
1229 			sin = (struct sockaddr_in *)sa;
1230 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1231 				ia = (struct in_ifaddr *)ifa;
1232 				break;
1233 			}
1234 		}
1235 		if (ia != NULL) {
1236 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1237 			goto done;
1238 		}
1239 
1240 		/* 3. As a last resort return the 'default' jail address. */
1241 		error = prison_get_ip4(cred, laddr);
1242 		goto done;
1243 	}
1244 
1245 	/*
1246 	 * If the outgoing interface on the route found is not
1247 	 * a loopback interface, use the address from that interface.
1248 	 * In case of jails do those three steps:
1249 	 * 1. check if the interface address belongs to the jail. If so use it.
1250 	 * 2. check if we have any address on the outgoing interface
1251 	 *    belonging to this jail. If so use it.
1252 	 * 3. as a last resort return the 'default' jail address.
1253 	 */
1254 	if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) {
1255 		struct in_ifaddr *ia;
1256 		struct ifnet *ifp;
1257 
1258 		/* If not jailed, use the default returned. */
1259 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1260 			ia = (struct in_ifaddr *)nh->nh_ifa;
1261 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1262 			goto done;
1263 		}
1264 
1265 		/* Jailed. */
1266 		/* 1. Check if the iface address belongs to the jail. */
1267 		sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr;
1268 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1269 			ia = (struct in_ifaddr *)nh->nh_ifa;
1270 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1271 			goto done;
1272 		}
1273 
1274 		/*
1275 		 * 2. Check if we have any address on the outgoing interface
1276 		 *    belonging to this jail.
1277 		 */
1278 		ia = NULL;
1279 		ifp = nh->nh_ifp;
1280 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1281 			sa = ifa->ifa_addr;
1282 			if (sa->sa_family != AF_INET)
1283 				continue;
1284 			sin = (struct sockaddr_in *)sa;
1285 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
1286 				ia = (struct in_ifaddr *)ifa;
1287 				break;
1288 			}
1289 		}
1290 		if (ia != NULL) {
1291 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1292 			goto done;
1293 		}
1294 
1295 		/* 3. As a last resort return the 'default' jail address. */
1296 		error = prison_get_ip4(cred, laddr);
1297 		goto done;
1298 	}
1299 
1300 	/*
1301 	 * The outgoing interface is marked with 'loopback net', so a route
1302 	 * to ourselves is here.
1303 	 * Try to find the interface of the destination address and then
1304 	 * take the address from there. That interface is not necessarily
1305 	 * a loopback interface.
1306 	 * In case of jails, check that it is an address of the jail
1307 	 * and if we cannot find, fall back to the 'default' jail address.
1308 	 */
1309 	if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) {
1310 		struct in_ifaddr *ia;
1311 
1312 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst),
1313 					inp->inp_socket->so_fibnum));
1314 		if (ia == NULL)
1315 			ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0,
1316 						inp->inp_socket->so_fibnum));
1317 		if (ia == NULL)
1318 			ia = ifatoia(ifa_ifwithaddr(sintosa(&dst)));
1319 
1320 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
1321 			if (ia == NULL) {
1322 				error = ENETUNREACH;
1323 				goto done;
1324 			}
1325 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1326 			goto done;
1327 		}
1328 
1329 		/* Jailed. */
1330 		if (ia != NULL) {
1331 			struct ifnet *ifp;
1332 
1333 			ifp = ia->ia_ifp;
1334 			ia = NULL;
1335 			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1336 				sa = ifa->ifa_addr;
1337 				if (sa->sa_family != AF_INET)
1338 					continue;
1339 				sin = (struct sockaddr_in *)sa;
1340 				if (prison_check_ip4(cred,
1341 				    &sin->sin_addr) == 0) {
1342 					ia = (struct in_ifaddr *)ifa;
1343 					break;
1344 				}
1345 			}
1346 			if (ia != NULL) {
1347 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
1348 				goto done;
1349 			}
1350 		}
1351 
1352 		/* 3. As a last resort return the 'default' jail address. */
1353 		error = prison_get_ip4(cred, laddr);
1354 		goto done;
1355 	}
1356 
1357 done:
1358 	return (error);
1359 }
1360 
1361 /*
1362  * Set up for a connect from a socket to the specified address.
1363  * On entry, *laddrp and *lportp should contain the current local
1364  * address and port for the PCB; these are updated to the values
1365  * that should be placed in inp_laddr and inp_lport to complete
1366  * the connect.
1367  *
1368  * On success, *faddrp and *fportp will be set to the remote address
1369  * and port. These are not updated in the error case.
1370  *
1371  * If the operation fails because the connection already exists,
1372  * *oinpp will be set to the PCB of that connection so that the
1373  * caller can decide to override it. In all other cases, *oinpp
1374  * is set to NULL.
1375  */
1376 int
1377 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
1378     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1379     struct inpcb **oinpp, struct ucred *cred)
1380 {
1381 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1382 	struct in_ifaddr *ia;
1383 	struct inpcb *oinp;
1384 	struct in_addr laddr, faddr;
1385 	u_short lport, fport;
1386 	int error;
1387 
1388 	KASSERT(sin->sin_family == AF_INET,
1389 	    ("%s: invalid address family for %p", __func__, sin));
1390 	KASSERT(sin->sin_len == sizeof(*sin),
1391 	    ("%s: invalid address length for %p", __func__, sin));
1392 
1393 	/*
1394 	 * Because a global state change doesn't actually occur here, a read
1395 	 * lock is sufficient.
1396 	 */
1397 	NET_EPOCH_ASSERT();
1398 	INP_LOCK_ASSERT(inp);
1399 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1400 
1401 	if (oinpp != NULL)
1402 		*oinpp = NULL;
1403 	if (sin->sin_port == 0)
1404 		return (EADDRNOTAVAIL);
1405 	laddr.s_addr = *laddrp;
1406 	lport = *lportp;
1407 	faddr = sin->sin_addr;
1408 	fport = sin->sin_port;
1409 #ifdef ROUTE_MPATH
1410 	if (CALC_FLOWID_OUTBOUND) {
1411 		uint32_t hash_val, hash_type;
1412 
1413 		hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport,
1414 		    inp->inp_socket->so_proto->pr_protocol, &hash_type);
1415 
1416 		inp->inp_flowid = hash_val;
1417 		inp->inp_flowtype = hash_type;
1418 	}
1419 #endif
1420 	if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) {
1421 		/*
1422 		 * If the destination address is INADDR_ANY,
1423 		 * use the primary local address.
1424 		 * If the supplied address is INADDR_BROADCAST,
1425 		 * and the primary interface supports broadcast,
1426 		 * choose the broadcast address for that interface.
1427 		 */
1428 		if (faddr.s_addr == INADDR_ANY) {
1429 			faddr =
1430 			    IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1431 			if (cred != NULL &&
1432 			    (error = prison_get_ip4(cred, &faddr)) != 0)
1433 				return (error);
1434 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1435 			if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1436 			    IFF_BROADCAST)
1437 				faddr = satosin(&CK_STAILQ_FIRST(
1438 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1439 		}
1440 	}
1441 	if (laddr.s_addr == INADDR_ANY) {
1442 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
1443 		/*
1444 		 * If the destination address is multicast and an outgoing
1445 		 * interface has been set as a multicast option, prefer the
1446 		 * address of that interface as our source address.
1447 		 */
1448 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1449 		    inp->inp_moptions != NULL) {
1450 			struct ip_moptions *imo;
1451 			struct ifnet *ifp;
1452 
1453 			imo = inp->inp_moptions;
1454 			if (imo->imo_multicast_ifp != NULL) {
1455 				ifp = imo->imo_multicast_ifp;
1456 				CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1457 					if ((ia->ia_ifp == ifp) &&
1458 					    (cred == NULL ||
1459 					    prison_check_ip4(cred,
1460 					    &ia->ia_addr.sin_addr) == 0))
1461 						break;
1462 				}
1463 				if (ia == NULL)
1464 					error = EADDRNOTAVAIL;
1465 				else {
1466 					laddr = ia->ia_addr.sin_addr;
1467 					error = 0;
1468 				}
1469 			}
1470 		}
1471 		if (error)
1472 			return (error);
1473 	}
1474 
1475 	if (lport != 0) {
1476 		oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr,
1477 		    fport, laddr, lport, 0, NULL, M_NODOM);
1478 		if (oinp != NULL) {
1479 			if (oinpp != NULL)
1480 				*oinpp = oinp;
1481 			return (EADDRINUSE);
1482 		}
1483 	} else {
1484 		struct sockaddr_in lsin, fsin;
1485 
1486 		bzero(&lsin, sizeof(lsin));
1487 		bzero(&fsin, sizeof(fsin));
1488 		lsin.sin_family = AF_INET;
1489 		lsin.sin_addr = laddr;
1490 		fsin.sin_family = AF_INET;
1491 		fsin.sin_addr = faddr;
1492 		error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin,
1493 		    &lport, (struct sockaddr *)& fsin, fport, cred,
1494 		    INPLOOKUP_WILDCARD);
1495 		if (error)
1496 			return (error);
1497 	}
1498 	*laddrp = laddr.s_addr;
1499 	*lportp = lport;
1500 	*faddrp = faddr.s_addr;
1501 	*fportp = fport;
1502 	return (0);
1503 }
1504 
1505 void
1506 in_pcbdisconnect(struct inpcb *inp)
1507 {
1508 
1509 	INP_WLOCK_ASSERT(inp);
1510 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1511 
1512 	inp->inp_faddr.s_addr = INADDR_ANY;
1513 	inp->inp_fport = 0;
1514 	in_pcbrehash(inp);
1515 }
1516 #endif /* INET */
1517 
1518 /*
1519  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1520  * For most protocols, this will be invoked immediately prior to calling
1521  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1522  * socket, in which case in_pcbfree() is deferred.
1523  */
1524 void
1525 in_pcbdetach(struct inpcb *inp)
1526 {
1527 
1528 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1529 
1530 #ifdef RATELIMIT
1531 	if (inp->inp_snd_tag != NULL)
1532 		in_pcbdetach_txrtlmt(inp);
1533 #endif
1534 	inp->inp_socket->so_pcb = NULL;
1535 	inp->inp_socket = NULL;
1536 }
1537 
1538 /*
1539  * inpcb hash lookups are protected by SMR section.
1540  *
1541  * Once desired pcb has been found, switching from SMR section to a pcb
1542  * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK
1543  * here because SMR is a critical section.
1544  * In 99%+ cases inp_smr_lock() would obtain the lock immediately.
1545  */
1546 static inline void
1547 inp_lock(struct inpcb *inp, const inp_lookup_t lock)
1548 {
1549 
1550 	lock == INPLOOKUP_RLOCKPCB ?
1551 	    rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock);
1552 }
1553 
1554 static inline void
1555 inp_unlock(struct inpcb *inp, const inp_lookup_t lock)
1556 {
1557 
1558 	lock == INPLOOKUP_RLOCKPCB ?
1559 	    rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock);
1560 }
1561 
1562 static inline int
1563 inp_trylock(struct inpcb *inp, const inp_lookup_t lock)
1564 {
1565 
1566 	return (lock == INPLOOKUP_RLOCKPCB ?
1567 	    rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock));
1568 }
1569 
1570 static inline bool
1571 in_pcbrele(struct inpcb *inp, const inp_lookup_t lock)
1572 {
1573 
1574 	return (lock == INPLOOKUP_RLOCKPCB ?
1575 	    in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp));
1576 }
1577 
1578 bool
1579 inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock)
1580 {
1581 
1582 	MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB);
1583 	SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr);
1584 
1585 	if (__predict_true(inp_trylock(inp, lock))) {
1586 		if (__predict_false(inp->inp_flags & INP_FREED)) {
1587 			smr_exit(inp->inp_pcbinfo->ipi_smr);
1588 			inp_unlock(inp, lock);
1589 			return (false);
1590 		}
1591 		smr_exit(inp->inp_pcbinfo->ipi_smr);
1592 		return (true);
1593 	}
1594 
1595 	if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) {
1596 		smr_exit(inp->inp_pcbinfo->ipi_smr);
1597 		inp_lock(inp, lock);
1598 		if (__predict_false(in_pcbrele(inp, lock)))
1599 			return (false);
1600 		/*
1601 		 * inp acquired through refcount & lock for sure didn't went
1602 		 * through uma_zfree().  However, it may have already went
1603 		 * through in_pcbfree() and has another reference, that
1604 		 * prevented its release by our in_pcbrele().
1605 		 */
1606 		if (__predict_false(inp->inp_flags & INP_FREED)) {
1607 			inp_unlock(inp, lock);
1608 			return (false);
1609 		}
1610 		return (true);
1611 	} else {
1612 		smr_exit(inp->inp_pcbinfo->ipi_smr);
1613 		return (false);
1614 	}
1615 }
1616 
1617 /*
1618  * inp_next() - inpcb hash/list traversal iterator
1619  *
1620  * Requires initialized struct inpcb_iterator for context.
1621  * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR().
1622  *
1623  * - Iterator can have either write-lock or read-lock semantics, that can not
1624  *   be changed later.
1625  * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through
1626  *   a single hash slot.  Note: only rip_input() does the latter.
1627  * - Iterator may have optional bool matching function.  The matching function
1628  *   will be executed for each inpcb in the SMR context, so it can not acquire
1629  *   locks and can safely access only immutable fields of inpcb.
1630  *
1631  * A fresh initialized iterator has NULL inpcb in its context and that
1632  * means that inp_next() call would return the very first inpcb on the list
1633  * locked with desired semantic.  In all following calls the context pointer
1634  * shall hold the current inpcb pointer.  The KPI user is not supposed to
1635  * unlock the current inpcb!  Upon end of traversal inp_next() will return NULL
1636  * and write NULL to its context.  After end of traversal an iterator can be
1637  * reused.
1638  *
1639  * List traversals have the following features/constraints:
1640  * - New entries won't be seen, as they are always added to the head of a list.
1641  * - Removed entries won't stop traversal as long as they are not added to
1642  *   a different list. This is violated by in_pcbrehash().
1643  */
1644 #define	II_LIST_FIRST(ipi, hash)					\
1645 		(((hash) == INP_ALL_LIST) ?				\
1646 		    CK_LIST_FIRST(&(ipi)->ipi_listhead) :		\
1647 		    CK_LIST_FIRST(&(ipi)->ipi_hashbase[(hash)]))
1648 #define	II_LIST_NEXT(inp, hash)						\
1649 		(((hash) == INP_ALL_LIST) ?				\
1650 		    CK_LIST_NEXT((inp), inp_list) :			\
1651 		    CK_LIST_NEXT((inp), inp_hash))
1652 #define	II_LOCK_ASSERT(inp, lock)					\
1653 		rw_assert(&(inp)->inp_lock,				\
1654 		    (lock) == INPLOOKUP_RLOCKPCB ?  RA_RLOCKED : RA_WLOCKED )
1655 struct inpcb *
1656 inp_next(struct inpcb_iterator *ii)
1657 {
1658 	const struct inpcbinfo *ipi = ii->ipi;
1659 	inp_match_t *match = ii->match;
1660 	void *ctx = ii->ctx;
1661 	inp_lookup_t lock = ii->lock;
1662 	int hash = ii->hash;
1663 	struct inpcb *inp;
1664 
1665 	if (ii->inp == NULL) {		/* First call. */
1666 		smr_enter(ipi->ipi_smr);
1667 		/* This is unrolled CK_LIST_FOREACH(). */
1668 		for (inp = II_LIST_FIRST(ipi, hash);
1669 		    inp != NULL;
1670 		    inp = II_LIST_NEXT(inp, hash)) {
1671 			if (match != NULL && (match)(inp, ctx) == false)
1672 				continue;
1673 			if (__predict_true(inp_smr_lock(inp, lock)))
1674 				break;
1675 			else {
1676 				smr_enter(ipi->ipi_smr);
1677 				MPASS(inp != II_LIST_FIRST(ipi, hash));
1678 				inp = II_LIST_FIRST(ipi, hash);
1679 				if (inp == NULL)
1680 					break;
1681 			}
1682 		}
1683 
1684 		if (inp == NULL)
1685 			smr_exit(ipi->ipi_smr);
1686 		else
1687 			ii->inp = inp;
1688 
1689 		return (inp);
1690 	}
1691 
1692 	/* Not a first call. */
1693 	smr_enter(ipi->ipi_smr);
1694 restart:
1695 	inp = ii->inp;
1696 	II_LOCK_ASSERT(inp, lock);
1697 next:
1698 	inp = II_LIST_NEXT(inp, hash);
1699 	if (inp == NULL) {
1700 		smr_exit(ipi->ipi_smr);
1701 		goto found;
1702 	}
1703 
1704 	if (match != NULL && (match)(inp, ctx) == false)
1705 		goto next;
1706 
1707 	if (__predict_true(inp_trylock(inp, lock))) {
1708 		if (__predict_false(inp->inp_flags & INP_FREED)) {
1709 			/*
1710 			 * Entries are never inserted in middle of a list, thus
1711 			 * as long as we are in SMR, we can continue traversal.
1712 			 * Jump to 'restart' should yield in the same result,
1713 			 * but could produce unnecessary looping.  Could this
1714 			 * looping be unbound?
1715 			 */
1716 			inp_unlock(inp, lock);
1717 			goto next;
1718 		} else {
1719 			smr_exit(ipi->ipi_smr);
1720 			goto found;
1721 		}
1722 	}
1723 
1724 	/*
1725 	 * Can't obtain lock immediately, thus going hard.  Once we exit the
1726 	 * SMR section we can no longer jump to 'next', and our only stable
1727 	 * anchoring point is ii->inp, which we keep locked for this case, so
1728 	 * we jump to 'restart'.
1729 	 */
1730 	if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) {
1731 		smr_exit(ipi->ipi_smr);
1732 		inp_lock(inp, lock);
1733 		if (__predict_false(in_pcbrele(inp, lock))) {
1734 			smr_enter(ipi->ipi_smr);
1735 			goto restart;
1736 		}
1737 		/*
1738 		 * See comment in inp_smr_lock().
1739 		 */
1740 		if (__predict_false(inp->inp_flags & INP_FREED)) {
1741 			inp_unlock(inp, lock);
1742 			smr_enter(ipi->ipi_smr);
1743 			goto restart;
1744 		}
1745 	} else
1746 		goto next;
1747 
1748 found:
1749 	inp_unlock(ii->inp, lock);
1750 	ii->inp = inp;
1751 
1752 	return (ii->inp);
1753 }
1754 
1755 /*
1756  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1757  * stability of an inpcb pointer despite the inpcb lock being released or
1758  * SMR section exited.
1759  *
1760  * To free a reference later in_pcbrele_(r|w)locked() must be performed.
1761  */
1762 void
1763 in_pcbref(struct inpcb *inp)
1764 {
1765 	u_int old __diagused;
1766 
1767 	old = refcount_acquire(&inp->inp_refcount);
1768 	KASSERT(old > 0, ("%s: refcount 0", __func__));
1769 }
1770 
1771 /*
1772  * Drop a refcount on an inpcb elevated using in_pcbref(), potentially
1773  * freeing the pcb, if the reference was very last.
1774  */
1775 bool
1776 in_pcbrele_rlocked(struct inpcb *inp)
1777 {
1778 
1779 	INP_RLOCK_ASSERT(inp);
1780 
1781 	if (refcount_release(&inp->inp_refcount) == 0)
1782 		return (false);
1783 
1784 	MPASS(inp->inp_flags & INP_FREED);
1785 	MPASS(inp->inp_socket == NULL);
1786 	MPASS(inp->inp_in_hpts == 0);
1787 	INP_RUNLOCK(inp);
1788 	uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp);
1789 	return (true);
1790 }
1791 
1792 bool
1793 in_pcbrele_wlocked(struct inpcb *inp)
1794 {
1795 
1796 	INP_WLOCK_ASSERT(inp);
1797 
1798 	if (refcount_release(&inp->inp_refcount) == 0)
1799 		return (false);
1800 
1801 	MPASS(inp->inp_flags & INP_FREED);
1802 	MPASS(inp->inp_socket == NULL);
1803 	MPASS(inp->inp_in_hpts == 0);
1804 	INP_WUNLOCK(inp);
1805 	uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp);
1806 	return (true);
1807 }
1808 
1809 /*
1810  * Unconditionally schedule an inpcb to be freed by decrementing its
1811  * reference count, which should occur only after the inpcb has been detached
1812  * from its socket.  If another thread holds a temporary reference (acquired
1813  * using in_pcbref()) then the free is deferred until that reference is
1814  * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked.
1815  *  Almost all work, including removal from global lists, is done in this
1816  * context, where the pcbinfo lock is held.
1817  */
1818 void
1819 in_pcbfree(struct inpcb *inp)
1820 {
1821 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1822 #ifdef INET
1823 	struct ip_moptions *imo;
1824 #endif
1825 #ifdef INET6
1826 	struct ip6_moptions *im6o;
1827 #endif
1828 
1829 	INP_WLOCK_ASSERT(inp);
1830 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1831 	KASSERT((inp->inp_flags & INP_FREED) == 0,
1832 	    ("%s: called twice for pcb %p", __func__, inp));
1833 
1834 	inp->inp_flags |= INP_FREED;
1835 	INP_INFO_WLOCK(pcbinfo);
1836 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1837 	pcbinfo->ipi_count--;
1838 	CK_LIST_REMOVE(inp, inp_list);
1839 	INP_INFO_WUNLOCK(pcbinfo);
1840 
1841 	if (inp->inp_flags & INP_INHASHLIST) {
1842 		struct inpcbport *phd = inp->inp_phd;
1843 
1844 		INP_HASH_WLOCK(pcbinfo);
1845 		/* XXX: Only do if SO_REUSEPORT_LB set? */
1846 		in_pcbremlbgrouphash(inp);
1847 
1848 		CK_LIST_REMOVE(inp, inp_hash);
1849 		CK_LIST_REMOVE(inp, inp_portlist);
1850 		if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
1851 			CK_LIST_REMOVE(phd, phd_hash);
1852 			uma_zfree_smr(pcbinfo->ipi_portzone, phd);
1853 		}
1854 		INP_HASH_WUNLOCK(pcbinfo);
1855 		inp->inp_flags &= ~INP_INHASHLIST;
1856 	}
1857 
1858 	RO_INVALIDATE_CACHE(&inp->inp_route);
1859 #ifdef MAC
1860 	mac_inpcb_destroy(inp);
1861 #endif
1862 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1863 	if (inp->inp_sp != NULL)
1864 		ipsec_delete_pcbpolicy(inp);
1865 #endif
1866 #ifdef INET
1867 	if (inp->inp_options)
1868 		(void)m_free(inp->inp_options);
1869 	imo = inp->inp_moptions;
1870 #endif
1871 #ifdef INET6
1872 	if (inp->inp_vflag & INP_IPV6PROTO) {
1873 		ip6_freepcbopts(inp->in6p_outputopts);
1874 		im6o = inp->in6p_moptions;
1875 	} else
1876 		im6o = NULL;
1877 #endif
1878 
1879 	if (__predict_false(in_pcbrele_wlocked(inp) == false)) {
1880 		INP_WUNLOCK(inp);
1881 	}
1882 #ifdef INET6
1883 	ip6_freemoptions(im6o);
1884 #endif
1885 #ifdef INET
1886 	inp_freemoptions(imo);
1887 #endif
1888 	/* Destruction is finalized in inpcb_dtor(). */
1889 }
1890 
1891 static void
1892 inpcb_dtor(void *mem, int size, void *arg)
1893 {
1894 	struct inpcb *inp = mem;
1895 
1896 	crfree(inp->inp_cred);
1897 #ifdef INVARIANTS
1898 	inp->inp_cred = NULL;
1899 #endif
1900 }
1901 
1902 /*
1903  * Different protocols initialize their inpcbs differently - giving
1904  * different name to the lock.  But they all are disposed the same.
1905  */
1906 static void
1907 inpcb_fini(void *mem, int size)
1908 {
1909 	struct inpcb *inp = mem;
1910 
1911 	INP_LOCK_DESTROY(inp);
1912 }
1913 
1914 /*
1915  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1916  * port reservation, and preventing it from being returned by inpcb lookups.
1917  *
1918  * It is used by TCP to mark an inpcb as unused and avoid future packet
1919  * delivery or event notification when a socket remains open but TCP has
1920  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1921  * or a RST on the wire, and allows the port binding to be reused while still
1922  * maintaining the invariant that so_pcb always points to a valid inpcb until
1923  * in_pcbdetach().
1924  *
1925  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1926  * in_pcbnotifyall() and in_pcbpurgeif0()?
1927  */
1928 void
1929 in_pcbdrop(struct inpcb *inp)
1930 {
1931 
1932 	INP_WLOCK_ASSERT(inp);
1933 #ifdef INVARIANTS
1934 	if (inp->inp_socket != NULL && inp->inp_ppcb != NULL)
1935 		MPASS(inp->inp_refcount > 1);
1936 #endif
1937 
1938 	/*
1939 	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1940 	 * the hash lock...?
1941 	 */
1942 	inp->inp_flags |= INP_DROPPED;
1943 	if (inp->inp_flags & INP_INHASHLIST) {
1944 		struct inpcbport *phd = inp->inp_phd;
1945 
1946 		INP_HASH_WLOCK(inp->inp_pcbinfo);
1947 		in_pcbremlbgrouphash(inp);
1948 		CK_LIST_REMOVE(inp, inp_hash);
1949 		CK_LIST_REMOVE(inp, inp_portlist);
1950 		if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) {
1951 			CK_LIST_REMOVE(phd, phd_hash);
1952 			uma_zfree_smr(inp->inp_pcbinfo->ipi_portzone, phd);
1953 		}
1954 		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1955 		inp->inp_flags &= ~INP_INHASHLIST;
1956 	}
1957 }
1958 
1959 #ifdef INET
1960 /*
1961  * Common routines to return the socket addresses associated with inpcbs.
1962  */
1963 struct sockaddr *
1964 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1965 {
1966 	struct sockaddr_in *sin;
1967 
1968 	sin = malloc(sizeof *sin, M_SONAME,
1969 		M_WAITOK | M_ZERO);
1970 	sin->sin_family = AF_INET;
1971 	sin->sin_len = sizeof(*sin);
1972 	sin->sin_addr = *addr_p;
1973 	sin->sin_port = port;
1974 
1975 	return (struct sockaddr *)sin;
1976 }
1977 
1978 int
1979 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1980 {
1981 	struct inpcb *inp;
1982 	struct in_addr addr;
1983 	in_port_t port;
1984 
1985 	inp = sotoinpcb(so);
1986 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1987 
1988 	INP_RLOCK(inp);
1989 	port = inp->inp_lport;
1990 	addr = inp->inp_laddr;
1991 	INP_RUNLOCK(inp);
1992 
1993 	*nam = in_sockaddr(port, &addr);
1994 	return 0;
1995 }
1996 
1997 int
1998 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1999 {
2000 	struct inpcb *inp;
2001 	struct in_addr addr;
2002 	in_port_t port;
2003 
2004 	inp = sotoinpcb(so);
2005 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
2006 
2007 	INP_RLOCK(inp);
2008 	port = inp->inp_fport;
2009 	addr = inp->inp_faddr;
2010 	INP_RUNLOCK(inp);
2011 
2012 	*nam = in_sockaddr(port, &addr);
2013 	return 0;
2014 }
2015 
2016 void
2017 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
2018     struct inpcb *(*notify)(struct inpcb *, int))
2019 {
2020 	struct inpcb *inp, *inp_temp;
2021 
2022 	INP_INFO_WLOCK(pcbinfo);
2023 	CK_LIST_FOREACH_SAFE(inp, &pcbinfo->ipi_listhead, inp_list, inp_temp) {
2024 		INP_WLOCK(inp);
2025 #ifdef INET6
2026 		if ((inp->inp_vflag & INP_IPV4) == 0) {
2027 			INP_WUNLOCK(inp);
2028 			continue;
2029 		}
2030 #endif
2031 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
2032 		    inp->inp_socket == NULL) {
2033 			INP_WUNLOCK(inp);
2034 			continue;
2035 		}
2036 		if ((*notify)(inp, errno))
2037 			INP_WUNLOCK(inp);
2038 	}
2039 	INP_INFO_WUNLOCK(pcbinfo);
2040 }
2041 
2042 static bool
2043 inp_v4_multi_match(const struct inpcb *inp, void *v __unused)
2044 {
2045 
2046 	if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL)
2047 		return (true);
2048 	else
2049 		return (false);
2050 }
2051 
2052 void
2053 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
2054 {
2055 	struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB,
2056 	    inp_v4_multi_match, NULL);
2057 	struct inpcb *inp;
2058 	struct in_multi *inm;
2059 	struct in_mfilter *imf;
2060 	struct ip_moptions *imo;
2061 
2062 	IN_MULTI_LOCK_ASSERT();
2063 
2064 	while ((inp = inp_next(&inpi)) != NULL) {
2065 		INP_WLOCK_ASSERT(inp);
2066 
2067 		imo = inp->inp_moptions;
2068 		/*
2069 		 * Unselect the outgoing interface if it is being
2070 		 * detached.
2071 		 */
2072 		if (imo->imo_multicast_ifp == ifp)
2073 			imo->imo_multicast_ifp = NULL;
2074 
2075 		/*
2076 		 * Drop multicast group membership if we joined
2077 		 * through the interface being detached.
2078 		 *
2079 		 * XXX This can all be deferred to an epoch_call
2080 		 */
2081 restart:
2082 		IP_MFILTER_FOREACH(imf, &imo->imo_head) {
2083 			if ((inm = imf->imf_inm) == NULL)
2084 				continue;
2085 			if (inm->inm_ifp != ifp)
2086 				continue;
2087 			ip_mfilter_remove(&imo->imo_head, imf);
2088 			in_leavegroup_locked(inm, NULL);
2089 			ip_mfilter_free(imf);
2090 			goto restart;
2091 		}
2092 	}
2093 }
2094 
2095 /*
2096  * Lookup a PCB based on the local address and port.  Caller must hold the
2097  * hash lock.  No inpcb locks or references are acquired.
2098  */
2099 #define INP_LOOKUP_MAPPED_PCB_COST	3
2100 struct inpcb *
2101 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
2102     u_short lport, int lookupflags, struct ucred *cred)
2103 {
2104 	struct inpcb *inp;
2105 #ifdef INET6
2106 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
2107 #else
2108 	int matchwild = 3;
2109 #endif
2110 	int wildcard;
2111 
2112 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
2113 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2114 	INP_HASH_LOCK_ASSERT(pcbinfo);
2115 
2116 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
2117 		struct inpcbhead *head;
2118 		/*
2119 		 * Look for an unconnected (wildcard foreign addr) PCB that
2120 		 * matches the local address and port we're looking for.
2121 		 */
2122 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport,
2123 		    pcbinfo->ipi_hashmask)];
2124 		CK_LIST_FOREACH(inp, head, inp_hash) {
2125 #ifdef INET6
2126 			/* XXX inp locking */
2127 			if ((inp->inp_vflag & INP_IPV4) == 0)
2128 				continue;
2129 #endif
2130 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
2131 			    inp->inp_laddr.s_addr == laddr.s_addr &&
2132 			    inp->inp_lport == lport) {
2133 				/*
2134 				 * Found?
2135 				 */
2136 				if (cred == NULL ||
2137 				    prison_equal_ip4(cred->cr_prison,
2138 					inp->inp_cred->cr_prison))
2139 					return (inp);
2140 			}
2141 		}
2142 		/*
2143 		 * Not found.
2144 		 */
2145 		return (NULL);
2146 	} else {
2147 		struct inpcbporthead *porthash;
2148 		struct inpcbport *phd;
2149 		struct inpcb *match = NULL;
2150 		/*
2151 		 * Best fit PCB lookup.
2152 		 *
2153 		 * First see if this local port is in use by looking on the
2154 		 * port hash list.
2155 		 */
2156 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
2157 		    pcbinfo->ipi_porthashmask)];
2158 		CK_LIST_FOREACH(phd, porthash, phd_hash) {
2159 			if (phd->phd_port == lport)
2160 				break;
2161 		}
2162 		if (phd != NULL) {
2163 			/*
2164 			 * Port is in use by one or more PCBs. Look for best
2165 			 * fit.
2166 			 */
2167 			CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
2168 				wildcard = 0;
2169 				if (cred != NULL &&
2170 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
2171 					cred->cr_prison))
2172 					continue;
2173 #ifdef INET6
2174 				/* XXX inp locking */
2175 				if ((inp->inp_vflag & INP_IPV4) == 0)
2176 					continue;
2177 				/*
2178 				 * We never select the PCB that has
2179 				 * INP_IPV6 flag and is bound to :: if
2180 				 * we have another PCB which is bound
2181 				 * to 0.0.0.0.  If a PCB has the
2182 				 * INP_IPV6 flag, then we set its cost
2183 				 * higher than IPv4 only PCBs.
2184 				 *
2185 				 * Note that the case only happens
2186 				 * when a socket is bound to ::, under
2187 				 * the condition that the use of the
2188 				 * mapped address is allowed.
2189 				 */
2190 				if ((inp->inp_vflag & INP_IPV6) != 0)
2191 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
2192 #endif
2193 				if (inp->inp_faddr.s_addr != INADDR_ANY)
2194 					wildcard++;
2195 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
2196 					if (laddr.s_addr == INADDR_ANY)
2197 						wildcard++;
2198 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
2199 						continue;
2200 				} else {
2201 					if (laddr.s_addr != INADDR_ANY)
2202 						wildcard++;
2203 				}
2204 				if (wildcard < matchwild) {
2205 					match = inp;
2206 					matchwild = wildcard;
2207 					if (matchwild == 0)
2208 						break;
2209 				}
2210 			}
2211 		}
2212 		return (match);
2213 	}
2214 }
2215 #undef INP_LOOKUP_MAPPED_PCB_COST
2216 
2217 static struct inpcb *
2218 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo,
2219     const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr,
2220     uint16_t fport, int lookupflags, int numa_domain)
2221 {
2222 	struct inpcb *local_wild, *numa_wild;
2223 	const struct inpcblbgrouphead *hdr;
2224 	struct inpcblbgroup *grp;
2225 	uint32_t idx;
2226 
2227 	INP_HASH_LOCK_ASSERT(pcbinfo);
2228 
2229 	hdr = &pcbinfo->ipi_lbgrouphashbase[
2230 	    INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)];
2231 
2232 	/*
2233 	 * Order of socket selection:
2234 	 * 1. non-wild.
2235 	 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD).
2236 	 *
2237 	 * NOTE:
2238 	 * - Load balanced group does not contain jailed sockets
2239 	 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets
2240 	 */
2241 	local_wild = NULL;
2242 	numa_wild = NULL;
2243 	CK_LIST_FOREACH(grp, hdr, il_list) {
2244 #ifdef INET6
2245 		if (!(grp->il_vflag & INP_IPV4))
2246 			continue;
2247 #endif
2248 		if (grp->il_lport != lport)
2249 			continue;
2250 
2251 		idx = INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) %
2252 		    grp->il_inpcnt;
2253 		if (grp->il_laddr.s_addr == laddr->s_addr) {
2254 			if (numa_domain == M_NODOM ||
2255 			    grp->il_numa_domain == numa_domain) {
2256 				return (grp->il_inp[idx]);
2257 			} else {
2258 				numa_wild = grp->il_inp[idx];
2259 			}
2260 		}
2261 		if (grp->il_laddr.s_addr == INADDR_ANY &&
2262 		    (lookupflags & INPLOOKUP_WILDCARD) != 0 &&
2263 		    (local_wild == NULL || numa_domain == M_NODOM ||
2264 			grp->il_numa_domain == numa_domain)) {
2265 			local_wild = grp->il_inp[idx];
2266 		}
2267 	}
2268 	if (numa_wild != NULL)
2269 		return (numa_wild);
2270 
2271 	return (local_wild);
2272 }
2273 
2274 /*
2275  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
2276  * that the caller has either locked the hash list, which usually happens
2277  * for bind(2) operations, or is in SMR section, which happens when sorting
2278  * out incoming packets.
2279  */
2280 static struct inpcb *
2281 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2282     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
2283     struct ifnet *ifp, uint8_t numa_domain)
2284 {
2285 	struct inpcbhead *head;
2286 	struct inpcb *inp, *tmpinp;
2287 	u_short fport = fport_arg, lport = lport_arg;
2288 
2289 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
2290 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2291 	INP_HASH_LOCK_ASSERT(pcbinfo);
2292 
2293 	/*
2294 	 * First look for an exact match.
2295 	 */
2296 	tmpinp = NULL;
2297 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&faddr, lport, fport,
2298 	    pcbinfo->ipi_hashmask)];
2299 	CK_LIST_FOREACH(inp, head, inp_hash) {
2300 #ifdef INET6
2301 		/* XXX inp locking */
2302 		if ((inp->inp_vflag & INP_IPV4) == 0)
2303 			continue;
2304 #endif
2305 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
2306 		    inp->inp_laddr.s_addr == laddr.s_addr &&
2307 		    inp->inp_fport == fport &&
2308 		    inp->inp_lport == lport) {
2309 			/*
2310 			 * XXX We should be able to directly return
2311 			 * the inp here, without any checks.
2312 			 * Well unless both bound with SO_REUSEPORT?
2313 			 */
2314 			if (prison_flag(inp->inp_cred, PR_IP4))
2315 				return (inp);
2316 			if (tmpinp == NULL)
2317 				tmpinp = inp;
2318 		}
2319 	}
2320 	if (tmpinp != NULL)
2321 		return (tmpinp);
2322 
2323 	/*
2324 	 * Then look in lb group (for wildcard match).
2325 	 */
2326 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2327 		inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr,
2328 		    fport, lookupflags, numa_domain);
2329 		if (inp != NULL)
2330 			return (inp);
2331 	}
2332 
2333 	/*
2334 	 * Then look for a wildcard match, if requested.
2335 	 */
2336 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2337 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2338 #ifdef INET6
2339 		struct inpcb *local_wild_mapped = NULL;
2340 #endif
2341 		struct inpcb *jail_wild = NULL;
2342 		int injail;
2343 
2344 		/*
2345 		 * Order of socket selection - we always prefer jails.
2346 		 *      1. jailed, non-wild.
2347 		 *      2. jailed, wild.
2348 		 *      3. non-jailed, non-wild.
2349 		 *      4. non-jailed, wild.
2350 		 */
2351 
2352 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport,
2353 		    pcbinfo->ipi_hashmask)];
2354 		CK_LIST_FOREACH(inp, head, inp_hash) {
2355 #ifdef INET6
2356 			/* XXX inp locking */
2357 			if ((inp->inp_vflag & INP_IPV4) == 0)
2358 				continue;
2359 #endif
2360 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2361 			    inp->inp_lport != lport)
2362 				continue;
2363 
2364 			injail = prison_flag(inp->inp_cred, PR_IP4);
2365 			if (injail) {
2366 				if (prison_check_ip4_locked(
2367 				    inp->inp_cred->cr_prison, &laddr) != 0)
2368 					continue;
2369 			} else {
2370 				if (local_exact != NULL)
2371 					continue;
2372 			}
2373 
2374 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2375 				if (injail)
2376 					return (inp);
2377 				else
2378 					local_exact = inp;
2379 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2380 #ifdef INET6
2381 				/* XXX inp locking, NULL check */
2382 				if (inp->inp_vflag & INP_IPV6PROTO)
2383 					local_wild_mapped = inp;
2384 				else
2385 #endif
2386 					if (injail)
2387 						jail_wild = inp;
2388 					else
2389 						local_wild = inp;
2390 			}
2391 		} /* LIST_FOREACH */
2392 		if (jail_wild != NULL)
2393 			return (jail_wild);
2394 		if (local_exact != NULL)
2395 			return (local_exact);
2396 		if (local_wild != NULL)
2397 			return (local_wild);
2398 #ifdef INET6
2399 		if (local_wild_mapped != NULL)
2400 			return (local_wild_mapped);
2401 #endif
2402 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
2403 
2404 	return (NULL);
2405 }
2406 
2407 /*
2408  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
2409  * hash list lock, and will return the inpcb locked (i.e., requires
2410  * INPLOOKUP_LOCKPCB).
2411  */
2412 static struct inpcb *
2413 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2414     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2415     struct ifnet *ifp, uint8_t numa_domain)
2416 {
2417 	struct inpcb *inp;
2418 
2419 	smr_enter(pcbinfo->ipi_smr);
2420 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2421 	    lookupflags & INPLOOKUP_WILDCARD, ifp, numa_domain);
2422 	if (inp != NULL) {
2423 		if (__predict_false(inp_smr_lock(inp,
2424 		    (lookupflags & INPLOOKUP_LOCKMASK)) == false))
2425 			inp = NULL;
2426 	} else
2427 		smr_exit(pcbinfo->ipi_smr);
2428 
2429 	return (inp);
2430 }
2431 
2432 /*
2433  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2434  * from which a pre-calculated hash value may be extracted.
2435  */
2436 struct inpcb *
2437 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2438     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
2439 {
2440 
2441 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2442 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2443 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2444 	    ("%s: LOCKPCB not set", __func__));
2445 
2446 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2447 	    lookupflags, ifp, M_NODOM));
2448 }
2449 
2450 struct inpcb *
2451 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2452     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2453     struct ifnet *ifp, struct mbuf *m)
2454 {
2455 
2456 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2457 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2458 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2459 	    ("%s: LOCKPCB not set", __func__));
2460 
2461 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2462 	    lookupflags, ifp, m->m_pkthdr.numa_domain));
2463 }
2464 #endif /* INET */
2465 
2466 /*
2467  * Insert PCB onto various hash lists.
2468  */
2469 int
2470 in_pcbinshash(struct inpcb *inp)
2471 {
2472 	struct inpcbhead *pcbhash;
2473 	struct inpcbporthead *pcbporthash;
2474 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2475 	struct inpcbport *phd;
2476 	int so_options;
2477 
2478 	INP_WLOCK_ASSERT(inp);
2479 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2480 
2481 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2482 	    ("in_pcbinshash: INP_INHASHLIST"));
2483 
2484 #ifdef INET6
2485 	if (inp->inp_vflag & INP_IPV6)
2486 		pcbhash = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr,
2487 		    inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2488 	else
2489 #endif
2490 		pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr,
2491 		    inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2492 
2493 	pcbporthash = &pcbinfo->ipi_porthashbase[
2494 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2495 
2496 	/*
2497 	 * Add entry to load balance group.
2498 	 * Only do this if SO_REUSEPORT_LB is set.
2499 	 */
2500 	so_options = inp_so_options(inp);
2501 	if (so_options & SO_REUSEPORT_LB) {
2502 		int ret = in_pcbinslbgrouphash(inp, M_NODOM);
2503 		if (ret) {
2504 			/* pcb lb group malloc fail (ret=ENOBUFS). */
2505 			return (ret);
2506 		}
2507 	}
2508 
2509 	/*
2510 	 * Go through port list and look for a head for this lport.
2511 	 */
2512 	CK_LIST_FOREACH(phd, pcbporthash, phd_hash) {
2513 		if (phd->phd_port == inp->inp_lport)
2514 			break;
2515 	}
2516 	/*
2517 	 * If none exists, malloc one and tack it on.
2518 	 */
2519 	if (phd == NULL) {
2520 		phd = uma_zalloc_smr(pcbinfo->ipi_portzone, M_NOWAIT);
2521 		if (phd == NULL) {
2522 			return (ENOBUFS); /* XXX */
2523 		}
2524 		phd->phd_port = inp->inp_lport;
2525 		CK_LIST_INIT(&phd->phd_pcblist);
2526 		CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2527 	}
2528 	inp->inp_phd = phd;
2529 	CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2530 	CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2531 	inp->inp_flags |= INP_INHASHLIST;
2532 
2533 	return (0);
2534 }
2535 
2536 /*
2537  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2538  * changed. NOTE: This does not handle the case of the lport changing (the
2539  * hashed port list would have to be updated as well), so the lport must
2540  * not change after in_pcbinshash() has been called.
2541  *
2542  * XXXGL: a race between this function and SMR-protected hash iterator
2543  * will lead to iterator traversing a possibly wrong hash list. However,
2544  * this race should have been here since change from rwlock to epoch.
2545  */
2546 void
2547 in_pcbrehash(struct inpcb *inp)
2548 {
2549 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2550 	struct inpcbhead *head;
2551 
2552 	INP_WLOCK_ASSERT(inp);
2553 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2554 
2555 	KASSERT(inp->inp_flags & INP_INHASHLIST,
2556 	    ("in_pcbrehash: !INP_INHASHLIST"));
2557 
2558 #ifdef INET6
2559 	if (inp->inp_vflag & INP_IPV6)
2560 		head = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr,
2561 		    inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2562 	else
2563 #endif
2564 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr,
2565 		    inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2566 
2567 	CK_LIST_REMOVE(inp, inp_hash);
2568 	CK_LIST_INSERT_HEAD(head, inp, inp_hash);
2569 }
2570 
2571 /*
2572  * Check for alternatives when higher level complains
2573  * about service problems.  For now, invalidate cached
2574  * routing information.  If the route was created dynamically
2575  * (by a redirect), time to try a default gateway again.
2576  */
2577 void
2578 in_losing(struct inpcb *inp)
2579 {
2580 
2581 	RO_INVALIDATE_CACHE(&inp->inp_route);
2582 	return;
2583 }
2584 
2585 /*
2586  * A set label operation has occurred at the socket layer, propagate the
2587  * label change into the in_pcb for the socket.
2588  */
2589 void
2590 in_pcbsosetlabel(struct socket *so)
2591 {
2592 #ifdef MAC
2593 	struct inpcb *inp;
2594 
2595 	inp = sotoinpcb(so);
2596 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2597 
2598 	INP_WLOCK(inp);
2599 	SOCK_LOCK(so);
2600 	mac_inpcb_sosetlabel(so, inp);
2601 	SOCK_UNLOCK(so);
2602 	INP_WUNLOCK(inp);
2603 #endif
2604 }
2605 
2606 /*
2607  * ipport_tick runs once per second, determining if random port allocation
2608  * should be continued.  If more than ipport_randomcps ports have been
2609  * allocated in the last second, then we return to sequential port
2610  * allocation. We return to random allocation only once we drop below
2611  * ipport_randomcps for at least ipport_randomtime seconds.
2612  */
2613 static void
2614 ipport_tick(void *xtp)
2615 {
2616 	VNET_ITERATOR_DECL(vnet_iter);
2617 
2618 	VNET_LIST_RLOCK_NOSLEEP();
2619 	VNET_FOREACH(vnet_iter) {
2620 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
2621 		if (V_ipport_tcpallocs - V_ipport_tcplastcount <=
2622 		    V_ipport_randomcps) {
2623 			if (V_ipport_stoprandom > 0)
2624 				V_ipport_stoprandom--;
2625 		} else
2626 			V_ipport_stoprandom = V_ipport_randomtime;
2627 		V_ipport_tcplastcount = V_ipport_tcpallocs;
2628 		CURVNET_RESTORE();
2629 	}
2630 	VNET_LIST_RUNLOCK_NOSLEEP();
2631 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2632 }
2633 
2634 static void
2635 ip_fini(void *xtp)
2636 {
2637 
2638 	callout_stop(&ipport_tick_callout);
2639 }
2640 
2641 /*
2642  * The ipport_callout should start running at about the time we attach the
2643  * inet or inet6 domains.
2644  */
2645 static void
2646 ipport_tick_init(const void *unused __unused)
2647 {
2648 
2649 	/* Start ipport_tick. */
2650 	callout_init(&ipport_tick_callout, 1);
2651 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2652 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2653 		SHUTDOWN_PRI_DEFAULT);
2654 }
2655 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
2656     ipport_tick_init, NULL);
2657 
2658 void
2659 inp_wlock(struct inpcb *inp)
2660 {
2661 
2662 	INP_WLOCK(inp);
2663 }
2664 
2665 void
2666 inp_wunlock(struct inpcb *inp)
2667 {
2668 
2669 	INP_WUNLOCK(inp);
2670 }
2671 
2672 void
2673 inp_rlock(struct inpcb *inp)
2674 {
2675 
2676 	INP_RLOCK(inp);
2677 }
2678 
2679 void
2680 inp_runlock(struct inpcb *inp)
2681 {
2682 
2683 	INP_RUNLOCK(inp);
2684 }
2685 
2686 #ifdef INVARIANT_SUPPORT
2687 void
2688 inp_lock_assert(struct inpcb *inp)
2689 {
2690 
2691 	INP_WLOCK_ASSERT(inp);
2692 }
2693 
2694 void
2695 inp_unlock_assert(struct inpcb *inp)
2696 {
2697 
2698 	INP_UNLOCK_ASSERT(inp);
2699 }
2700 #endif
2701 
2702 void
2703 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2704 {
2705 	struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo,
2706 	    INPLOOKUP_WLOCKPCB);
2707 	struct inpcb *inp;
2708 
2709 	while ((inp = inp_next(&inpi)) != NULL)
2710 		func(inp, arg);
2711 }
2712 
2713 struct socket *
2714 inp_inpcbtosocket(struct inpcb *inp)
2715 {
2716 
2717 	INP_WLOCK_ASSERT(inp);
2718 	return (inp->inp_socket);
2719 }
2720 
2721 struct tcpcb *
2722 inp_inpcbtotcpcb(struct inpcb *inp)
2723 {
2724 
2725 	INP_WLOCK_ASSERT(inp);
2726 	return ((struct tcpcb *)inp->inp_ppcb);
2727 }
2728 
2729 int
2730 inp_ip_tos_get(const struct inpcb *inp)
2731 {
2732 
2733 	return (inp->inp_ip_tos);
2734 }
2735 
2736 void
2737 inp_ip_tos_set(struct inpcb *inp, int val)
2738 {
2739 
2740 	inp->inp_ip_tos = val;
2741 }
2742 
2743 void
2744 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2745     uint32_t *faddr, uint16_t *fp)
2746 {
2747 
2748 	INP_LOCK_ASSERT(inp);
2749 	*laddr = inp->inp_laddr.s_addr;
2750 	*faddr = inp->inp_faddr.s_addr;
2751 	*lp = inp->inp_lport;
2752 	*fp = inp->inp_fport;
2753 }
2754 
2755 struct inpcb *
2756 so_sotoinpcb(struct socket *so)
2757 {
2758 
2759 	return (sotoinpcb(so));
2760 }
2761 
2762 struct tcpcb *
2763 so_sototcpcb(struct socket *so)
2764 {
2765 
2766 	return (sototcpcb(so));
2767 }
2768 
2769 /*
2770  * Create an external-format (``xinpcb'') structure using the information in
2771  * the kernel-format in_pcb structure pointed to by inp.  This is done to
2772  * reduce the spew of irrelevant information over this interface, to isolate
2773  * user code from changes in the kernel structure, and potentially to provide
2774  * information-hiding if we decide that some of this information should be
2775  * hidden from users.
2776  */
2777 void
2778 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2779 {
2780 
2781 	bzero(xi, sizeof(*xi));
2782 	xi->xi_len = sizeof(struct xinpcb);
2783 	if (inp->inp_socket)
2784 		sotoxsocket(inp->inp_socket, &xi->xi_socket);
2785 	bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2786 	xi->inp_gencnt = inp->inp_gencnt;
2787 	xi->inp_ppcb = (uintptr_t)inp->inp_ppcb;
2788 	xi->inp_flow = inp->inp_flow;
2789 	xi->inp_flowid = inp->inp_flowid;
2790 	xi->inp_flowtype = inp->inp_flowtype;
2791 	xi->inp_flags = inp->inp_flags;
2792 	xi->inp_flags2 = inp->inp_flags2;
2793 	xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket;
2794 	xi->in6p_cksum = inp->in6p_cksum;
2795 	xi->in6p_hops = inp->in6p_hops;
2796 	xi->inp_ip_tos = inp->inp_ip_tos;
2797 	xi->inp_vflag = inp->inp_vflag;
2798 	xi->inp_ip_ttl = inp->inp_ip_ttl;
2799 	xi->inp_ip_p = inp->inp_ip_p;
2800 	xi->inp_ip_minttl = inp->inp_ip_minttl;
2801 }
2802 
2803 int
2804 sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo,
2805     int (*ctloutput_set)(struct inpcb *, struct sockopt *))
2806 {
2807 	struct sockopt sopt;
2808 	struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo,
2809 	    INPLOOKUP_WLOCKPCB);
2810 	struct inpcb *inp;
2811 	struct sockopt_parameters *params;
2812 	struct socket *so;
2813 	int error;
2814 	char buf[1024];
2815 
2816 	if (req->oldptr != NULL || req->oldlen != 0)
2817 		return (EINVAL);
2818 	if (req->newptr == NULL)
2819 		return (EPERM);
2820 	if (req->newlen > sizeof(buf))
2821 		return (ENOMEM);
2822 	error = SYSCTL_IN(req, buf, req->newlen);
2823 	if (error != 0)
2824 		return (error);
2825 	if (req->newlen < sizeof(struct sockopt_parameters))
2826 		return (EINVAL);
2827 	params = (struct sockopt_parameters *)buf;
2828 	sopt.sopt_level = params->sop_level;
2829 	sopt.sopt_name = params->sop_optname;
2830 	sopt.sopt_dir = SOPT_SET;
2831 	sopt.sopt_val = params->sop_optval;
2832 	sopt.sopt_valsize = req->newlen - sizeof(struct sockopt_parameters);
2833 	sopt.sopt_td = NULL;
2834 #ifdef INET6
2835 	if (params->sop_inc.inc_flags & INC_ISIPV6) {
2836 		if (IN6_IS_SCOPE_LINKLOCAL(&params->sop_inc.inc6_laddr))
2837 			params->sop_inc.inc6_laddr.s6_addr16[1] =
2838 			    htons(params->sop_inc.inc6_zoneid & 0xffff);
2839 		if (IN6_IS_SCOPE_LINKLOCAL(&params->sop_inc.inc6_faddr))
2840 			params->sop_inc.inc6_faddr.s6_addr16[1] =
2841 			    htons(params->sop_inc.inc6_zoneid & 0xffff);
2842 	}
2843 #endif
2844 	if (params->sop_inc.inc_lport != htons(0)) {
2845 		if (params->sop_inc.inc_fport == htons(0))
2846 			inpi.hash = INP_PCBHASH_WILD(params->sop_inc.inc_lport,
2847 			    pcbinfo->ipi_hashmask);
2848 		else
2849 #ifdef INET6
2850 			if (params->sop_inc.inc_flags & INC_ISIPV6)
2851 				inpi.hash = INP6_PCBHASH(
2852 				    &params->sop_inc.inc6_faddr,
2853 				    params->sop_inc.inc_lport,
2854 				    params->sop_inc.inc_fport,
2855 				    pcbinfo->ipi_hashmask);
2856 			else
2857 #endif
2858 				inpi.hash = INP_PCBHASH(
2859 				    &params->sop_inc.inc_faddr,
2860 				    params->sop_inc.inc_lport,
2861 				    params->sop_inc.inc_fport,
2862 				    pcbinfo->ipi_hashmask);
2863 	}
2864 	while ((inp = inp_next(&inpi)) != NULL)
2865 		if (inp->inp_gencnt == params->sop_id) {
2866 			if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
2867 				INP_WUNLOCK(inp);
2868 				return (ECONNRESET);
2869 			}
2870 			so = inp->inp_socket;
2871 			KASSERT(so != NULL, ("inp_socket == NULL"));
2872 			soref(so);
2873 			error = (*ctloutput_set)(inp, &sopt);
2874 			sorele(so);
2875 			break;
2876 		}
2877 	if (inp == NULL)
2878 		error = ESRCH;
2879 	return (error);
2880 }
2881 
2882 #ifdef DDB
2883 static void
2884 db_print_indent(int indent)
2885 {
2886 	int i;
2887 
2888 	for (i = 0; i < indent; i++)
2889 		db_printf(" ");
2890 }
2891 
2892 static void
2893 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2894 {
2895 	char faddr_str[48], laddr_str[48];
2896 
2897 	db_print_indent(indent);
2898 	db_printf("%s at %p\n", name, inc);
2899 
2900 	indent += 2;
2901 
2902 #ifdef INET6
2903 	if (inc->inc_flags & INC_ISIPV6) {
2904 		/* IPv6. */
2905 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
2906 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
2907 	} else
2908 #endif
2909 	{
2910 		/* IPv4. */
2911 		inet_ntoa_r(inc->inc_laddr, laddr_str);
2912 		inet_ntoa_r(inc->inc_faddr, faddr_str);
2913 	}
2914 	db_print_indent(indent);
2915 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2916 	    ntohs(inc->inc_lport));
2917 	db_print_indent(indent);
2918 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2919 	    ntohs(inc->inc_fport));
2920 }
2921 
2922 static void
2923 db_print_inpflags(int inp_flags)
2924 {
2925 	int comma;
2926 
2927 	comma = 0;
2928 	if (inp_flags & INP_RECVOPTS) {
2929 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2930 		comma = 1;
2931 	}
2932 	if (inp_flags & INP_RECVRETOPTS) {
2933 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2934 		comma = 1;
2935 	}
2936 	if (inp_flags & INP_RECVDSTADDR) {
2937 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2938 		comma = 1;
2939 	}
2940 	if (inp_flags & INP_ORIGDSTADDR) {
2941 		db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
2942 		comma = 1;
2943 	}
2944 	if (inp_flags & INP_HDRINCL) {
2945 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
2946 		comma = 1;
2947 	}
2948 	if (inp_flags & INP_HIGHPORT) {
2949 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2950 		comma = 1;
2951 	}
2952 	if (inp_flags & INP_LOWPORT) {
2953 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
2954 		comma = 1;
2955 	}
2956 	if (inp_flags & INP_ANONPORT) {
2957 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
2958 		comma = 1;
2959 	}
2960 	if (inp_flags & INP_RECVIF) {
2961 		db_printf("%sINP_RECVIF", comma ? ", " : "");
2962 		comma = 1;
2963 	}
2964 	if (inp_flags & INP_MTUDISC) {
2965 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
2966 		comma = 1;
2967 	}
2968 	if (inp_flags & INP_RECVTTL) {
2969 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
2970 		comma = 1;
2971 	}
2972 	if (inp_flags & INP_DONTFRAG) {
2973 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2974 		comma = 1;
2975 	}
2976 	if (inp_flags & INP_RECVTOS) {
2977 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
2978 		comma = 1;
2979 	}
2980 	if (inp_flags & IN6P_IPV6_V6ONLY) {
2981 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
2982 		comma = 1;
2983 	}
2984 	if (inp_flags & IN6P_PKTINFO) {
2985 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
2986 		comma = 1;
2987 	}
2988 	if (inp_flags & IN6P_HOPLIMIT) {
2989 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
2990 		comma = 1;
2991 	}
2992 	if (inp_flags & IN6P_HOPOPTS) {
2993 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
2994 		comma = 1;
2995 	}
2996 	if (inp_flags & IN6P_DSTOPTS) {
2997 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
2998 		comma = 1;
2999 	}
3000 	if (inp_flags & IN6P_RTHDR) {
3001 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
3002 		comma = 1;
3003 	}
3004 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
3005 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
3006 		comma = 1;
3007 	}
3008 	if (inp_flags & IN6P_TCLASS) {
3009 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
3010 		comma = 1;
3011 	}
3012 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
3013 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
3014 		comma = 1;
3015 	}
3016 	if (inp_flags & INP_TIMEWAIT) {
3017 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
3018 		comma  = 1;
3019 	}
3020 	if (inp_flags & INP_ONESBCAST) {
3021 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
3022 		comma  = 1;
3023 	}
3024 	if (inp_flags & INP_DROPPED) {
3025 		db_printf("%sINP_DROPPED", comma ? ", " : "");
3026 		comma  = 1;
3027 	}
3028 	if (inp_flags & INP_SOCKREF) {
3029 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
3030 		comma  = 1;
3031 	}
3032 	if (inp_flags & IN6P_RFC2292) {
3033 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
3034 		comma = 1;
3035 	}
3036 	if (inp_flags & IN6P_MTU) {
3037 		db_printf("IN6P_MTU%s", comma ? ", " : "");
3038 		comma = 1;
3039 	}
3040 }
3041 
3042 static void
3043 db_print_inpvflag(u_char inp_vflag)
3044 {
3045 	int comma;
3046 
3047 	comma = 0;
3048 	if (inp_vflag & INP_IPV4) {
3049 		db_printf("%sINP_IPV4", comma ? ", " : "");
3050 		comma  = 1;
3051 	}
3052 	if (inp_vflag & INP_IPV6) {
3053 		db_printf("%sINP_IPV6", comma ? ", " : "");
3054 		comma  = 1;
3055 	}
3056 	if (inp_vflag & INP_IPV6PROTO) {
3057 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
3058 		comma  = 1;
3059 	}
3060 }
3061 
3062 static void
3063 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
3064 {
3065 
3066 	db_print_indent(indent);
3067 	db_printf("%s at %p\n", name, inp);
3068 
3069 	indent += 2;
3070 
3071 	db_print_indent(indent);
3072 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
3073 
3074 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
3075 
3076 	db_print_indent(indent);
3077 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
3078 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
3079 
3080 	db_print_indent(indent);
3081 	db_printf("inp_label: %p   inp_flags: 0x%x (",
3082 	   inp->inp_label, inp->inp_flags);
3083 	db_print_inpflags(inp->inp_flags);
3084 	db_printf(")\n");
3085 
3086 	db_print_indent(indent);
3087 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
3088 	    inp->inp_vflag);
3089 	db_print_inpvflag(inp->inp_vflag);
3090 	db_printf(")\n");
3091 
3092 	db_print_indent(indent);
3093 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
3094 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
3095 
3096 	db_print_indent(indent);
3097 #ifdef INET6
3098 	if (inp->inp_vflag & INP_IPV6) {
3099 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
3100 		    "in6p_moptions: %p\n", inp->in6p_options,
3101 		    inp->in6p_outputopts, inp->in6p_moptions);
3102 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
3103 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
3104 		    inp->in6p_hops);
3105 	} else
3106 #endif
3107 	{
3108 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
3109 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
3110 		    inp->inp_options, inp->inp_moptions);
3111 	}
3112 
3113 	db_print_indent(indent);
3114 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
3115 	    (uintmax_t)inp->inp_gencnt);
3116 }
3117 
3118 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
3119 {
3120 	struct inpcb *inp;
3121 
3122 	if (!have_addr) {
3123 		db_printf("usage: show inpcb <addr>\n");
3124 		return;
3125 	}
3126 	inp = (struct inpcb *)addr;
3127 
3128 	db_print_inpcb(inp, "inpcb", 0);
3129 }
3130 #endif /* DDB */
3131 
3132 #ifdef RATELIMIT
3133 /*
3134  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
3135  * if any.
3136  */
3137 int
3138 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
3139 {
3140 	union if_snd_tag_modify_params params = {
3141 		.rate_limit.max_rate = max_pacing_rate,
3142 		.rate_limit.flags = M_NOWAIT,
3143 	};
3144 	struct m_snd_tag *mst;
3145 	int error;
3146 
3147 	mst = inp->inp_snd_tag;
3148 	if (mst == NULL)
3149 		return (EINVAL);
3150 
3151 	if (mst->sw->snd_tag_modify == NULL) {
3152 		error = EOPNOTSUPP;
3153 	} else {
3154 		error = mst->sw->snd_tag_modify(mst, &params);
3155 	}
3156 	return (error);
3157 }
3158 
3159 /*
3160  * Query existing TX rate limit based on the existing
3161  * "inp->inp_snd_tag", if any.
3162  */
3163 int
3164 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
3165 {
3166 	union if_snd_tag_query_params params = { };
3167 	struct m_snd_tag *mst;
3168 	int error;
3169 
3170 	mst = inp->inp_snd_tag;
3171 	if (mst == NULL)
3172 		return (EINVAL);
3173 
3174 	if (mst->sw->snd_tag_query == NULL) {
3175 		error = EOPNOTSUPP;
3176 	} else {
3177 		error = mst->sw->snd_tag_query(mst, &params);
3178 		if (error == 0 && p_max_pacing_rate != NULL)
3179 			*p_max_pacing_rate = params.rate_limit.max_rate;
3180 	}
3181 	return (error);
3182 }
3183 
3184 /*
3185  * Query existing TX queue level based on the existing
3186  * "inp->inp_snd_tag", if any.
3187  */
3188 int
3189 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
3190 {
3191 	union if_snd_tag_query_params params = { };
3192 	struct m_snd_tag *mst;
3193 	int error;
3194 
3195 	mst = inp->inp_snd_tag;
3196 	if (mst == NULL)
3197 		return (EINVAL);
3198 
3199 	if (mst->sw->snd_tag_query == NULL)
3200 		return (EOPNOTSUPP);
3201 
3202 	error = mst->sw->snd_tag_query(mst, &params);
3203 	if (error == 0 && p_txqueue_level != NULL)
3204 		*p_txqueue_level = params.rate_limit.queue_level;
3205 	return (error);
3206 }
3207 
3208 /*
3209  * Allocate a new TX rate limit send tag from the network interface
3210  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
3211  */
3212 int
3213 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
3214     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st)
3215 
3216 {
3217 	union if_snd_tag_alloc_params params = {
3218 		.rate_limit.hdr.type = (max_pacing_rate == -1U) ?
3219 		    IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
3220 		.rate_limit.hdr.flowid = flowid,
3221 		.rate_limit.hdr.flowtype = flowtype,
3222 		.rate_limit.hdr.numa_domain = inp->inp_numa_domain,
3223 		.rate_limit.max_rate = max_pacing_rate,
3224 		.rate_limit.flags = M_NOWAIT,
3225 	};
3226 	int error;
3227 
3228 	INP_WLOCK_ASSERT(inp);
3229 
3230 	/*
3231 	 * If there is already a send tag, or the INP is being torn
3232 	 * down, allocating a new send tag is not allowed. Else send
3233 	 * tags may leak.
3234 	 */
3235 	if (*st != NULL || (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) != 0)
3236 		return (EINVAL);
3237 
3238 	error = m_snd_tag_alloc(ifp, &params, st);
3239 #ifdef INET
3240 	if (error == 0) {
3241 		counter_u64_add(rate_limit_set_ok, 1);
3242 		counter_u64_add(rate_limit_active, 1);
3243 	} else if (error != EOPNOTSUPP)
3244 		  counter_u64_add(rate_limit_alloc_fail, 1);
3245 #endif
3246 	return (error);
3247 }
3248 
3249 void
3250 in_pcbdetach_tag(struct m_snd_tag *mst)
3251 {
3252 
3253 	m_snd_tag_rele(mst);
3254 #ifdef INET
3255 	counter_u64_add(rate_limit_active, -1);
3256 #endif
3257 }
3258 
3259 /*
3260  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
3261  * if any:
3262  */
3263 void
3264 in_pcbdetach_txrtlmt(struct inpcb *inp)
3265 {
3266 	struct m_snd_tag *mst;
3267 
3268 	INP_WLOCK_ASSERT(inp);
3269 
3270 	mst = inp->inp_snd_tag;
3271 	inp->inp_snd_tag = NULL;
3272 
3273 	if (mst == NULL)
3274 		return;
3275 
3276 	m_snd_tag_rele(mst);
3277 #ifdef INET
3278 	counter_u64_add(rate_limit_active, -1);
3279 #endif
3280 }
3281 
3282 int
3283 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate)
3284 {
3285 	int error;
3286 
3287 	/*
3288 	 * If the existing send tag is for the wrong interface due to
3289 	 * a route change, first drop the existing tag.  Set the
3290 	 * CHANGED flag so that we will keep trying to allocate a new
3291 	 * tag if we fail to allocate one this time.
3292 	 */
3293 	if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) {
3294 		in_pcbdetach_txrtlmt(inp);
3295 		inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3296 	}
3297 
3298 	/*
3299 	 * NOTE: When attaching to a network interface a reference is
3300 	 * made to ensure the network interface doesn't go away until
3301 	 * all ratelimit connections are gone. The network interface
3302 	 * pointers compared below represent valid network interfaces,
3303 	 * except when comparing towards NULL.
3304 	 */
3305 	if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3306 		error = 0;
3307 	} else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3308 		if (inp->inp_snd_tag != NULL)
3309 			in_pcbdetach_txrtlmt(inp);
3310 		error = 0;
3311 	} else if (inp->inp_snd_tag == NULL) {
3312 		/*
3313 		 * In order to utilize packet pacing with RSS, we need
3314 		 * to wait until there is a valid RSS hash before we
3315 		 * can proceed:
3316 		 */
3317 		if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3318 			error = EAGAIN;
3319 		} else {
3320 			error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3321 			    mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag);
3322 		}
3323 	} else {
3324 		error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3325 	}
3326 	if (error == 0 || error == EOPNOTSUPP)
3327 		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3328 
3329 	return (error);
3330 }
3331 
3332 /*
3333  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
3334  * is set in the fast path and will attach/detach/modify the TX rate
3335  * limit send tag based on the socket's so_max_pacing_rate value.
3336  */
3337 void
3338 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
3339 {
3340 	struct socket *socket;
3341 	uint32_t max_pacing_rate;
3342 	bool did_upgrade;
3343 
3344 	if (inp == NULL)
3345 		return;
3346 
3347 	socket = inp->inp_socket;
3348 	if (socket == NULL)
3349 		return;
3350 
3351 	if (!INP_WLOCKED(inp)) {
3352 		/*
3353 		 * NOTE: If the write locking fails, we need to bail
3354 		 * out and use the non-ratelimited ring for the
3355 		 * transmit until there is a new chance to get the
3356 		 * write lock.
3357 		 */
3358 		if (!INP_TRY_UPGRADE(inp))
3359 			return;
3360 		did_upgrade = 1;
3361 	} else {
3362 		did_upgrade = 0;
3363 	}
3364 
3365 	/*
3366 	 * NOTE: The so_max_pacing_rate value is read unlocked,
3367 	 * because atomic updates are not required since the variable
3368 	 * is checked at every mbuf we send. It is assumed that the
3369 	 * variable read itself will be atomic.
3370 	 */
3371 	max_pacing_rate = socket->so_max_pacing_rate;
3372 
3373 	in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate);
3374 
3375 	if (did_upgrade)
3376 		INP_DOWNGRADE(inp);
3377 }
3378 
3379 /*
3380  * Track route changes for TX rate limiting.
3381  */
3382 void
3383 in_pcboutput_eagain(struct inpcb *inp)
3384 {
3385 	bool did_upgrade;
3386 
3387 	if (inp == NULL)
3388 		return;
3389 
3390 	if (inp->inp_snd_tag == NULL)
3391 		return;
3392 
3393 	if (!INP_WLOCKED(inp)) {
3394 		/*
3395 		 * NOTE: If the write locking fails, we need to bail
3396 		 * out and use the non-ratelimited ring for the
3397 		 * transmit until there is a new chance to get the
3398 		 * write lock.
3399 		 */
3400 		if (!INP_TRY_UPGRADE(inp))
3401 			return;
3402 		did_upgrade = 1;
3403 	} else {
3404 		did_upgrade = 0;
3405 	}
3406 
3407 	/* detach rate limiting */
3408 	in_pcbdetach_txrtlmt(inp);
3409 
3410 	/* make sure new mbuf send tag allocation is made */
3411 	inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3412 
3413 	if (did_upgrade)
3414 		INP_DOWNGRADE(inp);
3415 }
3416 
3417 #ifdef INET
3418 static void
3419 rl_init(void *st)
3420 {
3421 	rate_limit_new = counter_u64_alloc(M_WAITOK);
3422 	rate_limit_chg = counter_u64_alloc(M_WAITOK);
3423 	rate_limit_active = counter_u64_alloc(M_WAITOK);
3424 	rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK);
3425 	rate_limit_set_ok = counter_u64_alloc(M_WAITOK);
3426 }
3427 
3428 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL);
3429 #endif
3430 #endif /* RATELIMIT */
3431