1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Robert N. M. Watson under 11 * contract to Juniper Networks, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_ddb.h" 44 #include "opt_ipsec.h" 45 #include "opt_inet.h" 46 #include "opt_inet6.h" 47 #include "opt_ratelimit.h" 48 #include "opt_pcbgroup.h" 49 #include "opt_rss.h" 50 51 #include <sys/param.h> 52 #include <sys/systm.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/mbuf.h> 56 #include <sys/callout.h> 57 #include <sys/eventhandler.h> 58 #include <sys/domain.h> 59 #include <sys/protosw.h> 60 #include <sys/rmlock.h> 61 #include <sys/smp.h> 62 #include <sys/socket.h> 63 #include <sys/socketvar.h> 64 #include <sys/sockio.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/refcount.h> 68 #include <sys/jail.h> 69 #include <sys/kernel.h> 70 #include <sys/sysctl.h> 71 72 #ifdef DDB 73 #include <ddb/ddb.h> 74 #endif 75 76 #include <vm/uma.h> 77 78 #include <net/if.h> 79 #include <net/if_var.h> 80 #include <net/if_types.h> 81 #include <net/if_llatbl.h> 82 #include <net/route.h> 83 #include <net/rss_config.h> 84 #include <net/vnet.h> 85 86 #if defined(INET) || defined(INET6) 87 #include <netinet/in.h> 88 #include <netinet/in_pcb.h> 89 #include <netinet/ip_var.h> 90 #include <netinet/tcp_var.h> 91 #ifdef TCPHPTS 92 #include <netinet/tcp_hpts.h> 93 #endif 94 #include <netinet/udp.h> 95 #include <netinet/udp_var.h> 96 #endif 97 #ifdef INET 98 #include <netinet/in_var.h> 99 #endif 100 #ifdef INET6 101 #include <netinet/ip6.h> 102 #include <netinet6/in6_pcb.h> 103 #include <netinet6/in6_var.h> 104 #include <netinet6/ip6_var.h> 105 #endif /* INET6 */ 106 107 #include <netipsec/ipsec_support.h> 108 109 #include <security/mac/mac_framework.h> 110 111 static struct callout ipport_tick_callout; 112 113 /* 114 * These configure the range of local port addresses assigned to 115 * "unspecified" outgoing connections/packets/whatever. 116 */ 117 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 118 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 119 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 120 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 121 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 122 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 123 124 /* 125 * Reserved ports accessible only to root. There are significant 126 * security considerations that must be accounted for when changing these, 127 * but the security benefits can be great. Please be careful. 128 */ 129 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 130 VNET_DEFINE(int, ipport_reservedlow); 131 132 /* Variables dealing with random ephemeral port allocation. */ 133 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 134 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 135 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 136 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 137 VNET_DEFINE(int, ipport_tcpallocs); 138 static VNET_DEFINE(int, ipport_tcplastcount); 139 140 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 141 142 static void in_pcbremlists(struct inpcb *inp); 143 #ifdef INET 144 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 145 struct in_addr faddr, u_int fport_arg, 146 struct in_addr laddr, u_int lport_arg, 147 int lookupflags, struct ifnet *ifp); 148 149 #define RANGECHK(var, min, max) \ 150 if ((var) < (min)) { (var) = (min); } \ 151 else if ((var) > (max)) { (var) = (max); } 152 153 static int 154 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 155 { 156 int error; 157 158 error = sysctl_handle_int(oidp, arg1, arg2, req); 159 if (error == 0) { 160 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 161 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 162 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 163 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 164 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 165 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 166 } 167 return (error); 168 } 169 170 #undef RANGECHK 171 172 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, 173 "IP Ports"); 174 175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 176 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 177 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", ""); 178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 179 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 180 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", ""); 181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 182 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 183 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", ""); 184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 185 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 186 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", ""); 187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 188 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 189 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", ""); 190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 191 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 192 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", ""); 193 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 194 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 195 &VNET_NAME(ipport_reservedhigh), 0, ""); 196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 197 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 198 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 199 CTLFLAG_VNET | CTLFLAG_RW, 200 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 202 CTLFLAG_VNET | CTLFLAG_RW, 203 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 204 "allocations before switching to a sequental one"); 205 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 206 CTLFLAG_VNET | CTLFLAG_RW, 207 &VNET_NAME(ipport_randomtime), 0, 208 "Minimum time to keep sequental port " 209 "allocation before switching to a random one"); 210 #endif /* INET */ 211 212 /* 213 * in_pcb.c: manage the Protocol Control Blocks. 214 * 215 * NOTE: It is assumed that most of these functions will be called with 216 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 217 * functions often modify hash chains or addresses in pcbs. 218 */ 219 220 /* 221 * Different protocols initialize their inpcbs differently - giving 222 * different name to the lock. But they all are disposed the same. 223 */ 224 static void 225 inpcb_fini(void *mem, int size) 226 { 227 struct inpcb *inp = mem; 228 229 INP_LOCK_DESTROY(inp); 230 } 231 232 /* 233 * Initialize an inpcbinfo -- we should be able to reduce the number of 234 * arguments in time. 235 */ 236 void 237 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 238 struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, 239 char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields) 240 { 241 242 INP_INFO_LOCK_INIT(pcbinfo, name); 243 INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ 244 INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist"); 245 #ifdef VIMAGE 246 pcbinfo->ipi_vnet = curvnet; 247 #endif 248 pcbinfo->ipi_listhead = listhead; 249 LIST_INIT(pcbinfo->ipi_listhead); 250 pcbinfo->ipi_count = 0; 251 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 252 &pcbinfo->ipi_hashmask); 253 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 254 &pcbinfo->ipi_porthashmask); 255 #ifdef PCBGROUP 256 in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); 257 #endif 258 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 259 NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0); 260 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 261 uma_zone_set_warning(pcbinfo->ipi_zone, 262 "kern.ipc.maxsockets limit reached"); 263 } 264 265 /* 266 * Destroy an inpcbinfo. 267 */ 268 void 269 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 270 { 271 272 KASSERT(pcbinfo->ipi_count == 0, 273 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 274 275 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 276 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 277 pcbinfo->ipi_porthashmask); 278 #ifdef PCBGROUP 279 in_pcbgroup_destroy(pcbinfo); 280 #endif 281 uma_zdestroy(pcbinfo->ipi_zone); 282 INP_LIST_LOCK_DESTROY(pcbinfo); 283 INP_HASH_LOCK_DESTROY(pcbinfo); 284 INP_INFO_LOCK_DESTROY(pcbinfo); 285 } 286 287 /* 288 * Allocate a PCB and associate it with the socket. 289 * On success return with the PCB locked. 290 */ 291 int 292 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 293 { 294 struct inpcb *inp; 295 int error; 296 297 #ifdef INVARIANTS 298 if (pcbinfo == &V_tcbinfo) { 299 INP_INFO_RLOCK_ASSERT(pcbinfo); 300 } else { 301 INP_INFO_WLOCK_ASSERT(pcbinfo); 302 } 303 #endif 304 305 error = 0; 306 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 307 if (inp == NULL) 308 return (ENOBUFS); 309 bzero(&inp->inp_start_zero, inp_zero_size); 310 inp->inp_pcbinfo = pcbinfo; 311 inp->inp_socket = so; 312 inp->inp_cred = crhold(so->so_cred); 313 inp->inp_inc.inc_fibnum = so->so_fibnum; 314 #ifdef MAC 315 error = mac_inpcb_init(inp, M_NOWAIT); 316 if (error != 0) 317 goto out; 318 mac_inpcb_create(so, inp); 319 #endif 320 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 321 error = ipsec_init_pcbpolicy(inp); 322 if (error != 0) { 323 #ifdef MAC 324 mac_inpcb_destroy(inp); 325 #endif 326 goto out; 327 } 328 #endif /*IPSEC*/ 329 #ifdef INET6 330 if (INP_SOCKAF(so) == AF_INET6) { 331 inp->inp_vflag |= INP_IPV6PROTO; 332 if (V_ip6_v6only) 333 inp->inp_flags |= IN6P_IPV6_V6ONLY; 334 } 335 #endif 336 INP_WLOCK(inp); 337 INP_LIST_WLOCK(pcbinfo); 338 LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 339 pcbinfo->ipi_count++; 340 so->so_pcb = (caddr_t)inp; 341 #ifdef INET6 342 if (V_ip6_auto_flowlabel) 343 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 344 #endif 345 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 346 refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ 347 348 /* 349 * Routes in inpcb's can cache L2 as well; they are guaranteed 350 * to be cleaned up. 351 */ 352 inp->inp_route.ro_flags = RT_LLE_CACHE; 353 INP_LIST_WUNLOCK(pcbinfo); 354 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 355 out: 356 if (error != 0) { 357 crfree(inp->inp_cred); 358 uma_zfree(pcbinfo->ipi_zone, inp); 359 } 360 #endif 361 return (error); 362 } 363 364 #ifdef INET 365 int 366 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 367 { 368 int anonport, error; 369 370 INP_WLOCK_ASSERT(inp); 371 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 372 373 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 374 return (EINVAL); 375 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 376 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 377 &inp->inp_lport, cred); 378 if (error) 379 return (error); 380 if (in_pcbinshash(inp) != 0) { 381 inp->inp_laddr.s_addr = INADDR_ANY; 382 inp->inp_lport = 0; 383 return (EAGAIN); 384 } 385 if (anonport) 386 inp->inp_flags |= INP_ANONPORT; 387 return (0); 388 } 389 #endif 390 391 /* 392 * Select a local port (number) to use. 393 */ 394 #if defined(INET) || defined(INET6) 395 int 396 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 397 struct ucred *cred, int lookupflags) 398 { 399 struct inpcbinfo *pcbinfo; 400 struct inpcb *tmpinp; 401 unsigned short *lastport; 402 int count, dorandom, error; 403 u_short aux, first, last, lport; 404 #ifdef INET 405 struct in_addr laddr; 406 #endif 407 408 pcbinfo = inp->inp_pcbinfo; 409 410 /* 411 * Because no actual state changes occur here, a global write lock on 412 * the pcbinfo isn't required. 413 */ 414 INP_LOCK_ASSERT(inp); 415 INP_HASH_LOCK_ASSERT(pcbinfo); 416 417 if (inp->inp_flags & INP_HIGHPORT) { 418 first = V_ipport_hifirstauto; /* sysctl */ 419 last = V_ipport_hilastauto; 420 lastport = &pcbinfo->ipi_lasthi; 421 } else if (inp->inp_flags & INP_LOWPORT) { 422 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0); 423 if (error) 424 return (error); 425 first = V_ipport_lowfirstauto; /* 1023 */ 426 last = V_ipport_lowlastauto; /* 600 */ 427 lastport = &pcbinfo->ipi_lastlow; 428 } else { 429 first = V_ipport_firstauto; /* sysctl */ 430 last = V_ipport_lastauto; 431 lastport = &pcbinfo->ipi_lastport; 432 } 433 /* 434 * For UDP(-Lite), use random port allocation as long as the user 435 * allows it. For TCP (and as of yet unknown) connections, 436 * use random port allocation only if the user allows it AND 437 * ipport_tick() allows it. 438 */ 439 if (V_ipport_randomized && 440 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 441 pcbinfo == &V_ulitecbinfo)) 442 dorandom = 1; 443 else 444 dorandom = 0; 445 /* 446 * It makes no sense to do random port allocation if 447 * we have the only port available. 448 */ 449 if (first == last) 450 dorandom = 0; 451 /* Make sure to not include UDP(-Lite) packets in the count. */ 452 if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) 453 V_ipport_tcpallocs++; 454 /* 455 * Instead of having two loops further down counting up or down 456 * make sure that first is always <= last and go with only one 457 * code path implementing all logic. 458 */ 459 if (first > last) { 460 aux = first; 461 first = last; 462 last = aux; 463 } 464 465 #ifdef INET 466 /* Make the compiler happy. */ 467 laddr.s_addr = 0; 468 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 469 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p", 470 __func__, inp)); 471 laddr = *laddrp; 472 } 473 #endif 474 tmpinp = NULL; /* Make compiler happy. */ 475 lport = *lportp; 476 477 if (dorandom) 478 *lastport = first + (arc4random() % (last - first)); 479 480 count = last - first; 481 482 do { 483 if (count-- < 0) /* completely used? */ 484 return (EADDRNOTAVAIL); 485 ++*lastport; 486 if (*lastport < first || *lastport > last) 487 *lastport = first; 488 lport = htons(*lastport); 489 490 #ifdef INET6 491 if ((inp->inp_vflag & INP_IPV6) != 0) 492 tmpinp = in6_pcblookup_local(pcbinfo, 493 &inp->in6p_laddr, lport, lookupflags, cred); 494 #endif 495 #if defined(INET) && defined(INET6) 496 else 497 #endif 498 #ifdef INET 499 tmpinp = in_pcblookup_local(pcbinfo, laddr, 500 lport, lookupflags, cred); 501 #endif 502 } while (tmpinp != NULL); 503 504 #ifdef INET 505 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) 506 laddrp->s_addr = laddr.s_addr; 507 #endif 508 *lportp = lport; 509 510 return (0); 511 } 512 513 /* 514 * Return cached socket options. 515 */ 516 short 517 inp_so_options(const struct inpcb *inp) 518 { 519 short so_options; 520 521 so_options = 0; 522 523 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 524 so_options |= SO_REUSEPORT; 525 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 526 so_options |= SO_REUSEADDR; 527 return (so_options); 528 } 529 #endif /* INET || INET6 */ 530 531 /* 532 * Check if a new BINDMULTI socket is allowed to be created. 533 * 534 * ni points to the new inp. 535 * oi points to the exisitng inp. 536 * 537 * This checks whether the existing inp also has BINDMULTI and 538 * whether the credentials match. 539 */ 540 int 541 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 542 { 543 /* Check permissions match */ 544 if ((ni->inp_flags2 & INP_BINDMULTI) && 545 (ni->inp_cred->cr_uid != 546 oi->inp_cred->cr_uid)) 547 return (0); 548 549 /* Check the existing inp has BINDMULTI set */ 550 if ((ni->inp_flags2 & INP_BINDMULTI) && 551 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 552 return (0); 553 554 /* 555 * We're okay - either INP_BINDMULTI isn't set on ni, or 556 * it is and it matches the checks. 557 */ 558 return (1); 559 } 560 561 #ifdef INET 562 /* 563 * Set up a bind operation on a PCB, performing port allocation 564 * as required, but do not actually modify the PCB. Callers can 565 * either complete the bind by setting inp_laddr/inp_lport and 566 * calling in_pcbinshash(), or they can just use the resulting 567 * port and address to authorise the sending of a once-off packet. 568 * 569 * On error, the values of *laddrp and *lportp are not changed. 570 */ 571 int 572 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 573 u_short *lportp, struct ucred *cred) 574 { 575 struct socket *so = inp->inp_socket; 576 struct sockaddr_in *sin; 577 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 578 struct in_addr laddr; 579 u_short lport = 0; 580 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 581 int error; 582 583 /* 584 * No state changes, so read locks are sufficient here. 585 */ 586 INP_LOCK_ASSERT(inp); 587 INP_HASH_LOCK_ASSERT(pcbinfo); 588 589 if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 590 return (EADDRNOTAVAIL); 591 laddr.s_addr = *laddrp; 592 if (nam != NULL && laddr.s_addr != INADDR_ANY) 593 return (EINVAL); 594 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) 595 lookupflags = INPLOOKUP_WILDCARD; 596 if (nam == NULL) { 597 if ((error = prison_local_ip4(cred, &laddr)) != 0) 598 return (error); 599 } else { 600 sin = (struct sockaddr_in *)nam; 601 if (nam->sa_len != sizeof (*sin)) 602 return (EINVAL); 603 #ifdef notdef 604 /* 605 * We should check the family, but old programs 606 * incorrectly fail to initialize it. 607 */ 608 if (sin->sin_family != AF_INET) 609 return (EAFNOSUPPORT); 610 #endif 611 error = prison_local_ip4(cred, &sin->sin_addr); 612 if (error) 613 return (error); 614 if (sin->sin_port != *lportp) { 615 /* Don't allow the port to change. */ 616 if (*lportp != 0) 617 return (EINVAL); 618 lport = sin->sin_port; 619 } 620 /* NB: lport is left as 0 if the port isn't being changed. */ 621 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 622 /* 623 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 624 * allow complete duplication of binding if 625 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 626 * and a multicast address is bound on both 627 * new and duplicated sockets. 628 */ 629 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 630 reuseport = SO_REUSEADDR|SO_REUSEPORT; 631 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 632 sin->sin_port = 0; /* yech... */ 633 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 634 /* 635 * Is the address a local IP address? 636 * If INP_BINDANY is set, then the socket may be bound 637 * to any endpoint address, local or not. 638 */ 639 if ((inp->inp_flags & INP_BINDANY) == 0 && 640 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 641 return (EADDRNOTAVAIL); 642 } 643 laddr = sin->sin_addr; 644 if (lport) { 645 struct inpcb *t; 646 struct tcptw *tw; 647 648 /* GROSS */ 649 if (ntohs(lport) <= V_ipport_reservedhigh && 650 ntohs(lport) >= V_ipport_reservedlow && 651 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 652 0)) 653 return (EACCES); 654 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 655 priv_check_cred(inp->inp_cred, 656 PRIV_NETINET_REUSEPORT, 0) != 0) { 657 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 658 lport, INPLOOKUP_WILDCARD, cred); 659 /* 660 * XXX 661 * This entire block sorely needs a rewrite. 662 */ 663 if (t && 664 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 665 ((t->inp_flags & INP_TIMEWAIT) == 0) && 666 (so->so_type != SOCK_STREAM || 667 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 668 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 669 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 670 (t->inp_flags2 & INP_REUSEPORT) == 0) && 671 (inp->inp_cred->cr_uid != 672 t->inp_cred->cr_uid)) 673 return (EADDRINUSE); 674 675 /* 676 * If the socket is a BINDMULTI socket, then 677 * the credentials need to match and the 678 * original socket also has to have been bound 679 * with BINDMULTI. 680 */ 681 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 682 return (EADDRINUSE); 683 } 684 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 685 lport, lookupflags, cred); 686 if (t && (t->inp_flags & INP_TIMEWAIT)) { 687 /* 688 * XXXRW: If an incpb has had its timewait 689 * state recycled, we treat the address as 690 * being in use (for now). This is better 691 * than a panic, but not desirable. 692 */ 693 tw = intotw(t); 694 if (tw == NULL || 695 (reuseport & tw->tw_so_options) == 0) 696 return (EADDRINUSE); 697 } else if (t && 698 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 699 (reuseport & inp_so_options(t)) == 0) { 700 #ifdef INET6 701 if (ntohl(sin->sin_addr.s_addr) != 702 INADDR_ANY || 703 ntohl(t->inp_laddr.s_addr) != 704 INADDR_ANY || 705 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 706 (t->inp_vflag & INP_IPV6PROTO) == 0) 707 #endif 708 return (EADDRINUSE); 709 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 710 return (EADDRINUSE); 711 } 712 } 713 } 714 if (*lportp != 0) 715 lport = *lportp; 716 if (lport == 0) { 717 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 718 if (error != 0) 719 return (error); 720 721 } 722 *laddrp = laddr.s_addr; 723 *lportp = lport; 724 return (0); 725 } 726 727 /* 728 * Connect from a socket to a specified address. 729 * Both address and port must be specified in argument sin. 730 * If don't have a local address for this socket yet, 731 * then pick one. 732 */ 733 int 734 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, 735 struct ucred *cred, struct mbuf *m) 736 { 737 u_short lport, fport; 738 in_addr_t laddr, faddr; 739 int anonport, error; 740 741 INP_WLOCK_ASSERT(inp); 742 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 743 744 lport = inp->inp_lport; 745 laddr = inp->inp_laddr.s_addr; 746 anonport = (lport == 0); 747 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 748 NULL, cred); 749 if (error) 750 return (error); 751 752 /* Do the initial binding of the local address if required. */ 753 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 754 inp->inp_lport = lport; 755 inp->inp_laddr.s_addr = laddr; 756 if (in_pcbinshash(inp) != 0) { 757 inp->inp_laddr.s_addr = INADDR_ANY; 758 inp->inp_lport = 0; 759 return (EAGAIN); 760 } 761 } 762 763 /* Commit the remaining changes. */ 764 inp->inp_lport = lport; 765 inp->inp_laddr.s_addr = laddr; 766 inp->inp_faddr.s_addr = faddr; 767 inp->inp_fport = fport; 768 in_pcbrehash_mbuf(inp, m); 769 770 if (anonport) 771 inp->inp_flags |= INP_ANONPORT; 772 return (0); 773 } 774 775 int 776 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 777 { 778 779 return (in_pcbconnect_mbuf(inp, nam, cred, NULL)); 780 } 781 782 /* 783 * Do proper source address selection on an unbound socket in case 784 * of connect. Take jails into account as well. 785 */ 786 int 787 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 788 struct ucred *cred) 789 { 790 struct ifaddr *ifa; 791 struct sockaddr *sa; 792 struct sockaddr_in *sin; 793 struct route sro; 794 int error; 795 796 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 797 798 /* 799 * Bypass source address selection and use the primary jail IP 800 * if requested. 801 */ 802 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 803 return (0); 804 805 error = 0; 806 bzero(&sro, sizeof(sro)); 807 808 sin = (struct sockaddr_in *)&sro.ro_dst; 809 sin->sin_family = AF_INET; 810 sin->sin_len = sizeof(struct sockaddr_in); 811 sin->sin_addr.s_addr = faddr->s_addr; 812 813 /* 814 * If route is known our src addr is taken from the i/f, 815 * else punt. 816 * 817 * Find out route to destination. 818 */ 819 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 820 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); 821 822 /* 823 * If we found a route, use the address corresponding to 824 * the outgoing interface. 825 * 826 * Otherwise assume faddr is reachable on a directly connected 827 * network and try to find a corresponding interface to take 828 * the source address from. 829 */ 830 if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { 831 struct in_ifaddr *ia; 832 struct ifnet *ifp; 833 834 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 835 inp->inp_socket->so_fibnum)); 836 if (ia == NULL) 837 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 838 inp->inp_socket->so_fibnum)); 839 if (ia == NULL) { 840 error = ENETUNREACH; 841 goto done; 842 } 843 844 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 845 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 846 ifa_free(&ia->ia_ifa); 847 goto done; 848 } 849 850 ifp = ia->ia_ifp; 851 ifa_free(&ia->ia_ifa); 852 ia = NULL; 853 IF_ADDR_RLOCK(ifp); 854 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 855 856 sa = ifa->ifa_addr; 857 if (sa->sa_family != AF_INET) 858 continue; 859 sin = (struct sockaddr_in *)sa; 860 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 861 ia = (struct in_ifaddr *)ifa; 862 break; 863 } 864 } 865 if (ia != NULL) { 866 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 867 IF_ADDR_RUNLOCK(ifp); 868 goto done; 869 } 870 IF_ADDR_RUNLOCK(ifp); 871 872 /* 3. As a last resort return the 'default' jail address. */ 873 error = prison_get_ip4(cred, laddr); 874 goto done; 875 } 876 877 /* 878 * If the outgoing interface on the route found is not 879 * a loopback interface, use the address from that interface. 880 * In case of jails do those three steps: 881 * 1. check if the interface address belongs to the jail. If so use it. 882 * 2. check if we have any address on the outgoing interface 883 * belonging to this jail. If so use it. 884 * 3. as a last resort return the 'default' jail address. 885 */ 886 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { 887 struct in_ifaddr *ia; 888 struct ifnet *ifp; 889 890 /* If not jailed, use the default returned. */ 891 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 892 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 893 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 894 goto done; 895 } 896 897 /* Jailed. */ 898 /* 1. Check if the iface address belongs to the jail. */ 899 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; 900 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 901 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 902 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 903 goto done; 904 } 905 906 /* 907 * 2. Check if we have any address on the outgoing interface 908 * belonging to this jail. 909 */ 910 ia = NULL; 911 ifp = sro.ro_rt->rt_ifp; 912 IF_ADDR_RLOCK(ifp); 913 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 914 sa = ifa->ifa_addr; 915 if (sa->sa_family != AF_INET) 916 continue; 917 sin = (struct sockaddr_in *)sa; 918 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 919 ia = (struct in_ifaddr *)ifa; 920 break; 921 } 922 } 923 if (ia != NULL) { 924 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 925 IF_ADDR_RUNLOCK(ifp); 926 goto done; 927 } 928 IF_ADDR_RUNLOCK(ifp); 929 930 /* 3. As a last resort return the 'default' jail address. */ 931 error = prison_get_ip4(cred, laddr); 932 goto done; 933 } 934 935 /* 936 * The outgoing interface is marked with 'loopback net', so a route 937 * to ourselves is here. 938 * Try to find the interface of the destination address and then 939 * take the address from there. That interface is not necessarily 940 * a loopback interface. 941 * In case of jails, check that it is an address of the jail 942 * and if we cannot find, fall back to the 'default' jail address. 943 */ 944 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 945 struct sockaddr_in sain; 946 struct in_ifaddr *ia; 947 948 bzero(&sain, sizeof(struct sockaddr_in)); 949 sain.sin_family = AF_INET; 950 sain.sin_len = sizeof(struct sockaddr_in); 951 sain.sin_addr.s_addr = faddr->s_addr; 952 953 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain), 954 inp->inp_socket->so_fibnum)); 955 if (ia == NULL) 956 ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0, 957 inp->inp_socket->so_fibnum)); 958 if (ia == NULL) 959 ia = ifatoia(ifa_ifwithaddr(sintosa(&sain))); 960 961 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 962 if (ia == NULL) { 963 error = ENETUNREACH; 964 goto done; 965 } 966 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 967 ifa_free(&ia->ia_ifa); 968 goto done; 969 } 970 971 /* Jailed. */ 972 if (ia != NULL) { 973 struct ifnet *ifp; 974 975 ifp = ia->ia_ifp; 976 ifa_free(&ia->ia_ifa); 977 ia = NULL; 978 IF_ADDR_RLOCK(ifp); 979 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 980 981 sa = ifa->ifa_addr; 982 if (sa->sa_family != AF_INET) 983 continue; 984 sin = (struct sockaddr_in *)sa; 985 if (prison_check_ip4(cred, 986 &sin->sin_addr) == 0) { 987 ia = (struct in_ifaddr *)ifa; 988 break; 989 } 990 } 991 if (ia != NULL) { 992 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 993 IF_ADDR_RUNLOCK(ifp); 994 goto done; 995 } 996 IF_ADDR_RUNLOCK(ifp); 997 } 998 999 /* 3. As a last resort return the 'default' jail address. */ 1000 error = prison_get_ip4(cred, laddr); 1001 goto done; 1002 } 1003 1004 done: 1005 if (sro.ro_rt != NULL) 1006 RTFREE(sro.ro_rt); 1007 return (error); 1008 } 1009 1010 /* 1011 * Set up for a connect from a socket to the specified address. 1012 * On entry, *laddrp and *lportp should contain the current local 1013 * address and port for the PCB; these are updated to the values 1014 * that should be placed in inp_laddr and inp_lport to complete 1015 * the connect. 1016 * 1017 * On success, *faddrp and *fportp will be set to the remote address 1018 * and port. These are not updated in the error case. 1019 * 1020 * If the operation fails because the connection already exists, 1021 * *oinpp will be set to the PCB of that connection so that the 1022 * caller can decide to override it. In all other cases, *oinpp 1023 * is set to NULL. 1024 */ 1025 int 1026 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1027 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1028 struct inpcb **oinpp, struct ucred *cred) 1029 { 1030 struct rm_priotracker in_ifa_tracker; 1031 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1032 struct in_ifaddr *ia; 1033 struct inpcb *oinp; 1034 struct in_addr laddr, faddr; 1035 u_short lport, fport; 1036 int error; 1037 1038 /* 1039 * Because a global state change doesn't actually occur here, a read 1040 * lock is sufficient. 1041 */ 1042 INP_LOCK_ASSERT(inp); 1043 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1044 1045 if (oinpp != NULL) 1046 *oinpp = NULL; 1047 if (nam->sa_len != sizeof (*sin)) 1048 return (EINVAL); 1049 if (sin->sin_family != AF_INET) 1050 return (EAFNOSUPPORT); 1051 if (sin->sin_port == 0) 1052 return (EADDRNOTAVAIL); 1053 laddr.s_addr = *laddrp; 1054 lport = *lportp; 1055 faddr = sin->sin_addr; 1056 fport = sin->sin_port; 1057 1058 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1059 /* 1060 * If the destination address is INADDR_ANY, 1061 * use the primary local address. 1062 * If the supplied address is INADDR_BROADCAST, 1063 * and the primary interface supports broadcast, 1064 * choose the broadcast address for that interface. 1065 */ 1066 if (faddr.s_addr == INADDR_ANY) { 1067 IN_IFADDR_RLOCK(&in_ifa_tracker); 1068 faddr = 1069 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1070 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1071 if (cred != NULL && 1072 (error = prison_get_ip4(cred, &faddr)) != 0) 1073 return (error); 1074 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1075 IN_IFADDR_RLOCK(&in_ifa_tracker); 1076 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1077 IFF_BROADCAST) 1078 faddr = satosin(&CK_STAILQ_FIRST( 1079 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1080 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1081 } 1082 } 1083 if (laddr.s_addr == INADDR_ANY) { 1084 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1085 /* 1086 * If the destination address is multicast and an outgoing 1087 * interface has been set as a multicast option, prefer the 1088 * address of that interface as our source address. 1089 */ 1090 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1091 inp->inp_moptions != NULL) { 1092 struct ip_moptions *imo; 1093 struct ifnet *ifp; 1094 1095 imo = inp->inp_moptions; 1096 if (imo->imo_multicast_ifp != NULL) { 1097 ifp = imo->imo_multicast_ifp; 1098 IN_IFADDR_RLOCK(&in_ifa_tracker); 1099 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1100 if ((ia->ia_ifp == ifp) && 1101 (cred == NULL || 1102 prison_check_ip4(cred, 1103 &ia->ia_addr.sin_addr) == 0)) 1104 break; 1105 } 1106 if (ia == NULL) 1107 error = EADDRNOTAVAIL; 1108 else { 1109 laddr = ia->ia_addr.sin_addr; 1110 error = 0; 1111 } 1112 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1113 } 1114 } 1115 if (error) 1116 return (error); 1117 } 1118 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport, 1119 laddr, lport, 0, NULL); 1120 if (oinp != NULL) { 1121 if (oinpp != NULL) 1122 *oinpp = oinp; 1123 return (EADDRINUSE); 1124 } 1125 if (lport == 0) { 1126 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 1127 cred); 1128 if (error) 1129 return (error); 1130 } 1131 *laddrp = laddr.s_addr; 1132 *lportp = lport; 1133 *faddrp = faddr.s_addr; 1134 *fportp = fport; 1135 return (0); 1136 } 1137 1138 void 1139 in_pcbdisconnect(struct inpcb *inp) 1140 { 1141 1142 INP_WLOCK_ASSERT(inp); 1143 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1144 1145 inp->inp_faddr.s_addr = INADDR_ANY; 1146 inp->inp_fport = 0; 1147 in_pcbrehash(inp); 1148 } 1149 #endif /* INET */ 1150 1151 /* 1152 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1153 * For most protocols, this will be invoked immediately prior to calling 1154 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1155 * socket, in which case in_pcbfree() is deferred. 1156 */ 1157 void 1158 in_pcbdetach(struct inpcb *inp) 1159 { 1160 1161 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1162 1163 #ifdef RATELIMIT 1164 if (inp->inp_snd_tag != NULL) 1165 in_pcbdetach_txrtlmt(inp); 1166 #endif 1167 inp->inp_socket->so_pcb = NULL; 1168 inp->inp_socket = NULL; 1169 } 1170 1171 /* 1172 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1173 * stability of an inpcb pointer despite the inpcb lock being released. This 1174 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 1175 * but where the inpcb lock may already held, or when acquiring a reference 1176 * via a pcbgroup. 1177 * 1178 * in_pcbref() should be used only to provide brief memory stability, and 1179 * must always be followed by a call to INP_WLOCK() and in_pcbrele() to 1180 * garbage collect the inpcb if it has been in_pcbfree()'d from another 1181 * context. Until in_pcbrele() has returned that the inpcb is still valid, 1182 * lock and rele are the *only* safe operations that may be performed on the 1183 * inpcb. 1184 * 1185 * While the inpcb will not be freed, releasing the inpcb lock means that the 1186 * connection's state may change, so the caller should be careful to 1187 * revalidate any cached state on reacquiring the lock. Drop the reference 1188 * using in_pcbrele(). 1189 */ 1190 void 1191 in_pcbref(struct inpcb *inp) 1192 { 1193 1194 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1195 1196 refcount_acquire(&inp->inp_refcount); 1197 } 1198 1199 /* 1200 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 1201 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 1202 * return a flag indicating whether or not the inpcb remains valid. If it is 1203 * valid, we return with the inpcb lock held. 1204 * 1205 * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a 1206 * reference on an inpcb. Historically more work was done here (actually, in 1207 * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the 1208 * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely 1209 * about memory stability (and continued use of the write lock). 1210 */ 1211 int 1212 in_pcbrele_rlocked(struct inpcb *inp) 1213 { 1214 struct inpcbinfo *pcbinfo; 1215 1216 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1217 1218 INP_RLOCK_ASSERT(inp); 1219 1220 if (refcount_release(&inp->inp_refcount) == 0) { 1221 /* 1222 * If the inpcb has been freed, let the caller know, even if 1223 * this isn't the last reference. 1224 */ 1225 if (inp->inp_flags2 & INP_FREED) { 1226 INP_RUNLOCK(inp); 1227 return (1); 1228 } 1229 return (0); 1230 } 1231 1232 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1233 #ifdef TCPHPTS 1234 if (inp->inp_in_hpts || inp->inp_in_input) { 1235 struct tcp_hpts_entry *hpts; 1236 /* 1237 * We should not be on the hpts at 1238 * this point in any form. we must 1239 * get the lock to be sure. 1240 */ 1241 hpts = tcp_hpts_lock(inp); 1242 if (inp->inp_in_hpts) 1243 panic("Hpts:%p inp:%p at free still on hpts", 1244 hpts, inp); 1245 mtx_unlock(&hpts->p_mtx); 1246 hpts = tcp_input_lock(inp); 1247 if (inp->inp_in_input) 1248 panic("Hpts:%p inp:%p at free still on input hpts", 1249 hpts, inp); 1250 mtx_unlock(&hpts->p_mtx); 1251 } 1252 #endif 1253 INP_RUNLOCK(inp); 1254 pcbinfo = inp->inp_pcbinfo; 1255 uma_zfree(pcbinfo->ipi_zone, inp); 1256 return (1); 1257 } 1258 1259 int 1260 in_pcbrele_wlocked(struct inpcb *inp) 1261 { 1262 struct inpcbinfo *pcbinfo; 1263 1264 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1265 1266 INP_WLOCK_ASSERT(inp); 1267 1268 if (refcount_release(&inp->inp_refcount) == 0) { 1269 /* 1270 * If the inpcb has been freed, let the caller know, even if 1271 * this isn't the last reference. 1272 */ 1273 if (inp->inp_flags2 & INP_FREED) { 1274 INP_WUNLOCK(inp); 1275 return (1); 1276 } 1277 return (0); 1278 } 1279 1280 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1281 #ifdef TCPHPTS 1282 if (inp->inp_in_hpts || inp->inp_in_input) { 1283 struct tcp_hpts_entry *hpts; 1284 /* 1285 * We should not be on the hpts at 1286 * this point in any form. we must 1287 * get the lock to be sure. 1288 */ 1289 hpts = tcp_hpts_lock(inp); 1290 if (inp->inp_in_hpts) 1291 panic("Hpts:%p inp:%p at free still on hpts", 1292 hpts, inp); 1293 mtx_unlock(&hpts->p_mtx); 1294 hpts = tcp_input_lock(inp); 1295 if (inp->inp_in_input) 1296 panic("Hpts:%p inp:%p at free still on input hpts", 1297 hpts, inp); 1298 mtx_unlock(&hpts->p_mtx); 1299 } 1300 #endif 1301 INP_WUNLOCK(inp); 1302 pcbinfo = inp->inp_pcbinfo; 1303 uma_zfree(pcbinfo->ipi_zone, inp); 1304 return (1); 1305 } 1306 1307 /* 1308 * Temporary wrapper. 1309 */ 1310 int 1311 in_pcbrele(struct inpcb *inp) 1312 { 1313 1314 return (in_pcbrele_wlocked(inp)); 1315 } 1316 1317 void 1318 in_pcblist_rele_rlocked(epoch_context_t ctx) 1319 { 1320 struct in_pcblist *il; 1321 struct inpcb *inp; 1322 struct inpcbinfo *pcbinfo; 1323 int i, n; 1324 1325 il = __containerof(ctx, struct in_pcblist, il_epoch_ctx); 1326 pcbinfo = il->il_pcbinfo; 1327 n = il->il_count; 1328 INP_INFO_WLOCK(pcbinfo); 1329 for (i = 0; i < n; i++) { 1330 inp = il->il_inp_list[i]; 1331 INP_RLOCK(inp); 1332 if (!in_pcbrele_rlocked(inp)) 1333 INP_RUNLOCK(inp); 1334 } 1335 INP_INFO_WUNLOCK(pcbinfo); 1336 free(il, M_TEMP); 1337 } 1338 1339 static void 1340 in_pcbfree_deferred(epoch_context_t ctx) 1341 { 1342 struct inpcb *inp; 1343 struct inpcbinfo *pcbinfo; 1344 #ifdef INET6 1345 struct ip6_moptions *im6o = NULL; 1346 #endif 1347 #ifdef INET 1348 struct ip_moptions *imo = NULL; 1349 #endif 1350 1351 inp = __containerof(ctx, struct inpcb, inp_epoch_ctx); 1352 pcbinfo = inp->inp_pcbinfo; 1353 1354 INP_WLOCK(inp); 1355 #ifdef INET 1356 imo = inp->inp_moptions; 1357 inp->inp_moptions = NULL; 1358 #endif 1359 /* XXXRW: Do as much as possible here. */ 1360 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1361 if (inp->inp_sp != NULL) 1362 ipsec_delete_pcbpolicy(inp); 1363 #endif 1364 #ifdef INET6 1365 if (inp->inp_vflag & INP_IPV6PROTO) { 1366 ip6_freepcbopts(inp->in6p_outputopts); 1367 im6o = inp->in6p_moptions; 1368 inp->in6p_moptions = NULL; 1369 } 1370 #endif 1371 if (inp->inp_options) 1372 (void)m_free(inp->inp_options); 1373 1374 inp->inp_vflag = 0; 1375 inp->inp_flags2 |= INP_FREED; 1376 crfree(inp->inp_cred); 1377 #ifdef MAC 1378 mac_inpcb_destroy(inp); 1379 #endif 1380 if (!in_pcbrele_wlocked(inp)) 1381 INP_WUNLOCK(inp); 1382 #ifdef INET6 1383 ip6_freemoptions(im6o); 1384 #endif 1385 #ifdef INET 1386 inp_freemoptions(imo); 1387 #endif 1388 } 1389 1390 /* 1391 * Unconditionally schedule an inpcb to be freed by decrementing its 1392 * reference count, which should occur only after the inpcb has been detached 1393 * from its socket. If another thread holds a temporary reference (acquired 1394 * using in_pcbref()) then the free is deferred until that reference is 1395 * released using in_pcbrele(), but the inpcb is still unlocked. Almost all 1396 * work, including removal from global lists, is done in this context, where 1397 * the pcbinfo lock is held. 1398 */ 1399 void 1400 in_pcbfree(struct inpcb *inp) 1401 { 1402 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1403 1404 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1405 KASSERT((inp->inp_flags2 & INP_FREED) == 0, 1406 ("%s: called twice for pcb %p", __func__, inp)); 1407 if (inp->inp_flags2 & INP_FREED) { 1408 INP_WUNLOCK(inp); 1409 return; 1410 } 1411 1412 #ifdef INVARIANTS 1413 if (pcbinfo == &V_tcbinfo) { 1414 INP_INFO_LOCK_ASSERT(pcbinfo); 1415 } else { 1416 INP_INFO_WLOCK_ASSERT(pcbinfo); 1417 } 1418 #endif 1419 INP_WLOCK_ASSERT(inp); 1420 /* Remove first from list */ 1421 INP_LIST_WLOCK(pcbinfo); 1422 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1423 in_pcbremlists(inp); 1424 INP_LIST_WUNLOCK(pcbinfo); 1425 RO_INVALIDATE_CACHE(&inp->inp_route); 1426 INP_WUNLOCK(inp); 1427 epoch_call(net_epoch_preempt, &inp->inp_epoch_ctx, in_pcbfree_deferred); 1428 } 1429 1430 /* 1431 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1432 * port reservation, and preventing it from being returned by inpcb lookups. 1433 * 1434 * It is used by TCP to mark an inpcb as unused and avoid future packet 1435 * delivery or event notification when a socket remains open but TCP has 1436 * closed. This might occur as a result of a shutdown()-initiated TCP close 1437 * or a RST on the wire, and allows the port binding to be reused while still 1438 * maintaining the invariant that so_pcb always points to a valid inpcb until 1439 * in_pcbdetach(). 1440 * 1441 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1442 * in_pcbnotifyall() and in_pcbpurgeif0()? 1443 */ 1444 void 1445 in_pcbdrop(struct inpcb *inp) 1446 { 1447 1448 INP_WLOCK_ASSERT(inp); 1449 1450 /* 1451 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1452 * the hash lock...? 1453 */ 1454 inp->inp_flags |= INP_DROPPED; 1455 if (inp->inp_flags & INP_INHASHLIST) { 1456 struct inpcbport *phd = inp->inp_phd; 1457 1458 INP_HASH_WLOCK(inp->inp_pcbinfo); 1459 LIST_REMOVE(inp, inp_hash); 1460 LIST_REMOVE(inp, inp_portlist); 1461 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 1462 LIST_REMOVE(phd, phd_hash); 1463 free(phd, M_PCB); 1464 } 1465 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1466 inp->inp_flags &= ~INP_INHASHLIST; 1467 #ifdef PCBGROUP 1468 in_pcbgroup_remove(inp); 1469 #endif 1470 } 1471 } 1472 1473 #ifdef INET 1474 /* 1475 * Common routines to return the socket addresses associated with inpcbs. 1476 */ 1477 struct sockaddr * 1478 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1479 { 1480 struct sockaddr_in *sin; 1481 1482 sin = malloc(sizeof *sin, M_SONAME, 1483 M_WAITOK | M_ZERO); 1484 sin->sin_family = AF_INET; 1485 sin->sin_len = sizeof(*sin); 1486 sin->sin_addr = *addr_p; 1487 sin->sin_port = port; 1488 1489 return (struct sockaddr *)sin; 1490 } 1491 1492 int 1493 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1494 { 1495 struct inpcb *inp; 1496 struct in_addr addr; 1497 in_port_t port; 1498 1499 inp = sotoinpcb(so); 1500 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1501 1502 INP_RLOCK(inp); 1503 port = inp->inp_lport; 1504 addr = inp->inp_laddr; 1505 INP_RUNLOCK(inp); 1506 1507 *nam = in_sockaddr(port, &addr); 1508 return 0; 1509 } 1510 1511 int 1512 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1513 { 1514 struct inpcb *inp; 1515 struct in_addr addr; 1516 in_port_t port; 1517 1518 inp = sotoinpcb(so); 1519 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1520 1521 INP_RLOCK(inp); 1522 port = inp->inp_fport; 1523 addr = inp->inp_faddr; 1524 INP_RUNLOCK(inp); 1525 1526 *nam = in_sockaddr(port, &addr); 1527 return 0; 1528 } 1529 1530 void 1531 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1532 struct inpcb *(*notify)(struct inpcb *, int)) 1533 { 1534 struct inpcb *inp, *inp_temp; 1535 1536 INP_INFO_WLOCK(pcbinfo); 1537 LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1538 INP_WLOCK(inp); 1539 #ifdef INET6 1540 if ((inp->inp_vflag & INP_IPV4) == 0) { 1541 INP_WUNLOCK(inp); 1542 continue; 1543 } 1544 #endif 1545 if (inp->inp_faddr.s_addr != faddr.s_addr || 1546 inp->inp_socket == NULL) { 1547 INP_WUNLOCK(inp); 1548 continue; 1549 } 1550 if ((*notify)(inp, errno)) 1551 INP_WUNLOCK(inp); 1552 } 1553 INP_INFO_WUNLOCK(pcbinfo); 1554 } 1555 1556 void 1557 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1558 { 1559 struct inpcb *inp; 1560 struct ip_moptions *imo; 1561 int i, gap; 1562 1563 INP_INFO_WLOCK(pcbinfo); 1564 LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1565 INP_WLOCK(inp); 1566 imo = inp->inp_moptions; 1567 if ((inp->inp_vflag & INP_IPV4) && 1568 imo != NULL) { 1569 /* 1570 * Unselect the outgoing interface if it is being 1571 * detached. 1572 */ 1573 if (imo->imo_multicast_ifp == ifp) 1574 imo->imo_multicast_ifp = NULL; 1575 1576 /* 1577 * Drop multicast group membership if we joined 1578 * through the interface being detached. 1579 * 1580 * XXX This can all be deferred to an epoch_call 1581 */ 1582 for (i = 0, gap = 0; i < imo->imo_num_memberships; 1583 i++) { 1584 if (imo->imo_membership[i]->inm_ifp == ifp) { 1585 IN_MULTI_LOCK_ASSERT(); 1586 in_leavegroup_locked(imo->imo_membership[i], NULL); 1587 gap++; 1588 } else if (gap != 0) 1589 imo->imo_membership[i - gap] = 1590 imo->imo_membership[i]; 1591 } 1592 imo->imo_num_memberships -= gap; 1593 } 1594 INP_WUNLOCK(inp); 1595 } 1596 INP_INFO_WUNLOCK(pcbinfo); 1597 } 1598 1599 /* 1600 * Lookup a PCB based on the local address and port. Caller must hold the 1601 * hash lock. No inpcb locks or references are acquired. 1602 */ 1603 #define INP_LOOKUP_MAPPED_PCB_COST 3 1604 struct inpcb * 1605 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1606 u_short lport, int lookupflags, struct ucred *cred) 1607 { 1608 struct inpcb *inp; 1609 #ifdef INET6 1610 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1611 #else 1612 int matchwild = 3; 1613 #endif 1614 int wildcard; 1615 1616 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1617 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1618 1619 INP_HASH_LOCK_ASSERT(pcbinfo); 1620 1621 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1622 struct inpcbhead *head; 1623 /* 1624 * Look for an unconnected (wildcard foreign addr) PCB that 1625 * matches the local address and port we're looking for. 1626 */ 1627 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1628 0, pcbinfo->ipi_hashmask)]; 1629 LIST_FOREACH(inp, head, inp_hash) { 1630 #ifdef INET6 1631 /* XXX inp locking */ 1632 if ((inp->inp_vflag & INP_IPV4) == 0) 1633 continue; 1634 #endif 1635 if (inp->inp_faddr.s_addr == INADDR_ANY && 1636 inp->inp_laddr.s_addr == laddr.s_addr && 1637 inp->inp_lport == lport) { 1638 /* 1639 * Found? 1640 */ 1641 if (cred == NULL || 1642 prison_equal_ip4(cred->cr_prison, 1643 inp->inp_cred->cr_prison)) 1644 return (inp); 1645 } 1646 } 1647 /* 1648 * Not found. 1649 */ 1650 return (NULL); 1651 } else { 1652 struct inpcbporthead *porthash; 1653 struct inpcbport *phd; 1654 struct inpcb *match = NULL; 1655 /* 1656 * Best fit PCB lookup. 1657 * 1658 * First see if this local port is in use by looking on the 1659 * port hash list. 1660 */ 1661 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1662 pcbinfo->ipi_porthashmask)]; 1663 LIST_FOREACH(phd, porthash, phd_hash) { 1664 if (phd->phd_port == lport) 1665 break; 1666 } 1667 if (phd != NULL) { 1668 /* 1669 * Port is in use by one or more PCBs. Look for best 1670 * fit. 1671 */ 1672 LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1673 wildcard = 0; 1674 if (cred != NULL && 1675 !prison_equal_ip4(inp->inp_cred->cr_prison, 1676 cred->cr_prison)) 1677 continue; 1678 #ifdef INET6 1679 /* XXX inp locking */ 1680 if ((inp->inp_vflag & INP_IPV4) == 0) 1681 continue; 1682 /* 1683 * We never select the PCB that has 1684 * INP_IPV6 flag and is bound to :: if 1685 * we have another PCB which is bound 1686 * to 0.0.0.0. If a PCB has the 1687 * INP_IPV6 flag, then we set its cost 1688 * higher than IPv4 only PCBs. 1689 * 1690 * Note that the case only happens 1691 * when a socket is bound to ::, under 1692 * the condition that the use of the 1693 * mapped address is allowed. 1694 */ 1695 if ((inp->inp_vflag & INP_IPV6) != 0) 1696 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1697 #endif 1698 if (inp->inp_faddr.s_addr != INADDR_ANY) 1699 wildcard++; 1700 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1701 if (laddr.s_addr == INADDR_ANY) 1702 wildcard++; 1703 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1704 continue; 1705 } else { 1706 if (laddr.s_addr != INADDR_ANY) 1707 wildcard++; 1708 } 1709 if (wildcard < matchwild) { 1710 match = inp; 1711 matchwild = wildcard; 1712 if (matchwild == 0) 1713 break; 1714 } 1715 } 1716 } 1717 return (match); 1718 } 1719 } 1720 #undef INP_LOOKUP_MAPPED_PCB_COST 1721 1722 #ifdef PCBGROUP 1723 /* 1724 * Lookup PCB in hash list, using pcbgroup tables. 1725 */ 1726 static struct inpcb * 1727 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, 1728 struct in_addr faddr, u_int fport_arg, struct in_addr laddr, 1729 u_int lport_arg, int lookupflags, struct ifnet *ifp) 1730 { 1731 struct inpcbhead *head; 1732 struct inpcb *inp, *tmpinp; 1733 u_short fport = fport_arg, lport = lport_arg; 1734 bool locked; 1735 1736 /* 1737 * First look for an exact match. 1738 */ 1739 tmpinp = NULL; 1740 INP_GROUP_LOCK(pcbgroup); 1741 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1742 pcbgroup->ipg_hashmask)]; 1743 LIST_FOREACH(inp, head, inp_pcbgrouphash) { 1744 #ifdef INET6 1745 /* XXX inp locking */ 1746 if ((inp->inp_vflag & INP_IPV4) == 0) 1747 continue; 1748 #endif 1749 if (inp->inp_faddr.s_addr == faddr.s_addr && 1750 inp->inp_laddr.s_addr == laddr.s_addr && 1751 inp->inp_fport == fport && 1752 inp->inp_lport == lport) { 1753 /* 1754 * XXX We should be able to directly return 1755 * the inp here, without any checks. 1756 * Well unless both bound with SO_REUSEPORT? 1757 */ 1758 if (prison_flag(inp->inp_cred, PR_IP4)) 1759 goto found; 1760 if (tmpinp == NULL) 1761 tmpinp = inp; 1762 } 1763 } 1764 if (tmpinp != NULL) { 1765 inp = tmpinp; 1766 goto found; 1767 } 1768 1769 #ifdef RSS 1770 /* 1771 * For incoming connections, we may wish to do a wildcard 1772 * match for an RSS-local socket. 1773 */ 1774 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1775 struct inpcb *local_wild = NULL, *local_exact = NULL; 1776 #ifdef INET6 1777 struct inpcb *local_wild_mapped = NULL; 1778 #endif 1779 struct inpcb *jail_wild = NULL; 1780 struct inpcbhead *head; 1781 int injail; 1782 1783 /* 1784 * Order of socket selection - we always prefer jails. 1785 * 1. jailed, non-wild. 1786 * 2. jailed, wild. 1787 * 3. non-jailed, non-wild. 1788 * 4. non-jailed, wild. 1789 */ 1790 1791 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, 1792 lport, 0, pcbgroup->ipg_hashmask)]; 1793 LIST_FOREACH(inp, head, inp_pcbgrouphash) { 1794 #ifdef INET6 1795 /* XXX inp locking */ 1796 if ((inp->inp_vflag & INP_IPV4) == 0) 1797 continue; 1798 #endif 1799 if (inp->inp_faddr.s_addr != INADDR_ANY || 1800 inp->inp_lport != lport) 1801 continue; 1802 1803 injail = prison_flag(inp->inp_cred, PR_IP4); 1804 if (injail) { 1805 if (prison_check_ip4(inp->inp_cred, 1806 &laddr) != 0) 1807 continue; 1808 } else { 1809 if (local_exact != NULL) 1810 continue; 1811 } 1812 1813 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1814 if (injail) 1815 goto found; 1816 else 1817 local_exact = inp; 1818 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1819 #ifdef INET6 1820 /* XXX inp locking, NULL check */ 1821 if (inp->inp_vflag & INP_IPV6PROTO) 1822 local_wild_mapped = inp; 1823 else 1824 #endif 1825 if (injail) 1826 jail_wild = inp; 1827 else 1828 local_wild = inp; 1829 } 1830 } /* LIST_FOREACH */ 1831 1832 inp = jail_wild; 1833 if (inp == NULL) 1834 inp = local_exact; 1835 if (inp == NULL) 1836 inp = local_wild; 1837 #ifdef INET6 1838 if (inp == NULL) 1839 inp = local_wild_mapped; 1840 #endif 1841 if (inp != NULL) 1842 goto found; 1843 } 1844 #endif 1845 1846 /* 1847 * Then look for a wildcard match, if requested. 1848 */ 1849 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1850 struct inpcb *local_wild = NULL, *local_exact = NULL; 1851 #ifdef INET6 1852 struct inpcb *local_wild_mapped = NULL; 1853 #endif 1854 struct inpcb *jail_wild = NULL; 1855 struct inpcbhead *head; 1856 int injail; 1857 1858 /* 1859 * Order of socket selection - we always prefer jails. 1860 * 1. jailed, non-wild. 1861 * 2. jailed, wild. 1862 * 3. non-jailed, non-wild. 1863 * 4. non-jailed, wild. 1864 */ 1865 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 1866 0, pcbinfo->ipi_wildmask)]; 1867 LIST_FOREACH(inp, head, inp_pcbgroup_wild) { 1868 #ifdef INET6 1869 /* XXX inp locking */ 1870 if ((inp->inp_vflag & INP_IPV4) == 0) 1871 continue; 1872 #endif 1873 if (inp->inp_faddr.s_addr != INADDR_ANY || 1874 inp->inp_lport != lport) 1875 continue; 1876 1877 injail = prison_flag(inp->inp_cred, PR_IP4); 1878 if (injail) { 1879 if (prison_check_ip4(inp->inp_cred, 1880 &laddr) != 0) 1881 continue; 1882 } else { 1883 if (local_exact != NULL) 1884 continue; 1885 } 1886 1887 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1888 if (injail) 1889 goto found; 1890 else 1891 local_exact = inp; 1892 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1893 #ifdef INET6 1894 /* XXX inp locking, NULL check */ 1895 if (inp->inp_vflag & INP_IPV6PROTO) 1896 local_wild_mapped = inp; 1897 else 1898 #endif 1899 if (injail) 1900 jail_wild = inp; 1901 else 1902 local_wild = inp; 1903 } 1904 } /* LIST_FOREACH */ 1905 inp = jail_wild; 1906 if (inp == NULL) 1907 inp = local_exact; 1908 if (inp == NULL) 1909 inp = local_wild; 1910 #ifdef INET6 1911 if (inp == NULL) 1912 inp = local_wild_mapped; 1913 #endif 1914 if (inp != NULL) 1915 goto found; 1916 } /* if (lookupflags & INPLOOKUP_WILDCARD) */ 1917 INP_GROUP_UNLOCK(pcbgroup); 1918 return (NULL); 1919 1920 found: 1921 if (lookupflags & INPLOOKUP_WLOCKPCB) 1922 locked = INP_TRY_WLOCK(inp); 1923 else if (lookupflags & INPLOOKUP_RLOCKPCB) 1924 locked = INP_TRY_RLOCK(inp); 1925 else 1926 panic("%s: locking bug", __func__); 1927 if (!locked) 1928 in_pcbref(inp); 1929 INP_GROUP_UNLOCK(pcbgroup); 1930 if (!locked) { 1931 if (lookupflags & INPLOOKUP_WLOCKPCB) { 1932 INP_WLOCK(inp); 1933 if (in_pcbrele_wlocked(inp)) 1934 return (NULL); 1935 } else { 1936 INP_RLOCK(inp); 1937 if (in_pcbrele_rlocked(inp)) 1938 return (NULL); 1939 } 1940 } 1941 #ifdef INVARIANTS 1942 if (lookupflags & INPLOOKUP_WLOCKPCB) 1943 INP_WLOCK_ASSERT(inp); 1944 else 1945 INP_RLOCK_ASSERT(inp); 1946 #endif 1947 return (inp); 1948 } 1949 #endif /* PCBGROUP */ 1950 1951 /* 1952 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 1953 * that the caller has locked the hash list, and will not perform any further 1954 * locking or reference operations on either the hash list or the connection. 1955 */ 1956 static struct inpcb * 1957 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1958 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 1959 struct ifnet *ifp) 1960 { 1961 struct inpcbhead *head; 1962 struct inpcb *inp, *tmpinp; 1963 u_short fport = fport_arg, lport = lport_arg; 1964 1965 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1966 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1967 1968 INP_HASH_LOCK_ASSERT(pcbinfo); 1969 1970 /* 1971 * First look for an exact match. 1972 */ 1973 tmpinp = NULL; 1974 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1975 pcbinfo->ipi_hashmask)]; 1976 LIST_FOREACH(inp, head, inp_hash) { 1977 #ifdef INET6 1978 /* XXX inp locking */ 1979 if ((inp->inp_vflag & INP_IPV4) == 0) 1980 continue; 1981 #endif 1982 if (inp->inp_faddr.s_addr == faddr.s_addr && 1983 inp->inp_laddr.s_addr == laddr.s_addr && 1984 inp->inp_fport == fport && 1985 inp->inp_lport == lport) { 1986 /* 1987 * XXX We should be able to directly return 1988 * the inp here, without any checks. 1989 * Well unless both bound with SO_REUSEPORT? 1990 */ 1991 if (prison_flag(inp->inp_cred, PR_IP4)) 1992 return (inp); 1993 if (tmpinp == NULL) 1994 tmpinp = inp; 1995 } 1996 } 1997 if (tmpinp != NULL) 1998 return (tmpinp); 1999 2000 /* 2001 * Then look for a wildcard match, if requested. 2002 */ 2003 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2004 struct inpcb *local_wild = NULL, *local_exact = NULL; 2005 #ifdef INET6 2006 struct inpcb *local_wild_mapped = NULL; 2007 #endif 2008 struct inpcb *jail_wild = NULL; 2009 int injail; 2010 2011 /* 2012 * Order of socket selection - we always prefer jails. 2013 * 1. jailed, non-wild. 2014 * 2. jailed, wild. 2015 * 3. non-jailed, non-wild. 2016 * 4. non-jailed, wild. 2017 */ 2018 2019 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 2020 0, pcbinfo->ipi_hashmask)]; 2021 LIST_FOREACH(inp, head, inp_hash) { 2022 #ifdef INET6 2023 /* XXX inp locking */ 2024 if ((inp->inp_vflag & INP_IPV4) == 0) 2025 continue; 2026 #endif 2027 if (inp->inp_faddr.s_addr != INADDR_ANY || 2028 inp->inp_lport != lport) 2029 continue; 2030 2031 injail = prison_flag(inp->inp_cred, PR_IP4); 2032 if (injail) { 2033 if (prison_check_ip4(inp->inp_cred, 2034 &laddr) != 0) 2035 continue; 2036 } else { 2037 if (local_exact != NULL) 2038 continue; 2039 } 2040 2041 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2042 if (injail) 2043 return (inp); 2044 else 2045 local_exact = inp; 2046 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2047 #ifdef INET6 2048 /* XXX inp locking, NULL check */ 2049 if (inp->inp_vflag & INP_IPV6PROTO) 2050 local_wild_mapped = inp; 2051 else 2052 #endif 2053 if (injail) 2054 jail_wild = inp; 2055 else 2056 local_wild = inp; 2057 } 2058 } /* LIST_FOREACH */ 2059 if (jail_wild != NULL) 2060 return (jail_wild); 2061 if (local_exact != NULL) 2062 return (local_exact); 2063 if (local_wild != NULL) 2064 return (local_wild); 2065 #ifdef INET6 2066 if (local_wild_mapped != NULL) 2067 return (local_wild_mapped); 2068 #endif 2069 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 2070 2071 return (NULL); 2072 } 2073 2074 /* 2075 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 2076 * hash list lock, and will return the inpcb locked (i.e., requires 2077 * INPLOOKUP_LOCKPCB). 2078 */ 2079 static struct inpcb * 2080 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2081 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2082 struct ifnet *ifp) 2083 { 2084 struct inpcb *inp; 2085 bool locked; 2086 2087 INP_HASH_RLOCK(pcbinfo); 2088 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2089 (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp); 2090 if (inp != NULL) { 2091 if (lookupflags & INPLOOKUP_WLOCKPCB) 2092 locked = INP_TRY_WLOCK(inp); 2093 else if (lookupflags & INPLOOKUP_RLOCKPCB) 2094 locked = INP_TRY_RLOCK(inp); 2095 else 2096 panic("%s: locking bug", __func__); 2097 if (!locked) 2098 in_pcbref(inp); 2099 INP_HASH_RUNLOCK(pcbinfo); 2100 if (!locked) { 2101 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2102 INP_WLOCK(inp); 2103 if (in_pcbrele_wlocked(inp)) 2104 return (NULL); 2105 } else { 2106 INP_RLOCK(inp); 2107 if (in_pcbrele_rlocked(inp)) 2108 return (NULL); 2109 } 2110 } 2111 #ifdef INVARIANTS 2112 if (lookupflags & INPLOOKUP_WLOCKPCB) 2113 INP_WLOCK_ASSERT(inp); 2114 else 2115 INP_RLOCK_ASSERT(inp); 2116 #endif 2117 } else 2118 INP_HASH_RUNLOCK(pcbinfo); 2119 return (inp); 2120 } 2121 2122 /* 2123 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2124 * from which a pre-calculated hash value may be extracted. 2125 * 2126 * Possibly more of this logic should be in in_pcbgroup.c. 2127 */ 2128 struct inpcb * 2129 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2130 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 2131 { 2132 #if defined(PCBGROUP) && !defined(RSS) 2133 struct inpcbgroup *pcbgroup; 2134 #endif 2135 2136 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2137 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2138 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2139 ("%s: LOCKPCB not set", __func__)); 2140 2141 /* 2142 * When not using RSS, use connection groups in preference to the 2143 * reservation table when looking up 4-tuples. When using RSS, just 2144 * use the reservation table, due to the cost of the Toeplitz hash 2145 * in software. 2146 * 2147 * XXXRW: This policy belongs in the pcbgroup code, as in principle 2148 * we could be doing RSS with a non-Toeplitz hash that is affordable 2149 * in software. 2150 */ 2151 #if defined(PCBGROUP) && !defined(RSS) 2152 if (in_pcbgroup_enabled(pcbinfo)) { 2153 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2154 fport); 2155 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2156 laddr, lport, lookupflags, ifp)); 2157 } 2158 #endif 2159 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2160 lookupflags, ifp)); 2161 } 2162 2163 struct inpcb * 2164 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2165 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2166 struct ifnet *ifp, struct mbuf *m) 2167 { 2168 #ifdef PCBGROUP 2169 struct inpcbgroup *pcbgroup; 2170 #endif 2171 2172 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2173 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2174 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2175 ("%s: LOCKPCB not set", __func__)); 2176 2177 #ifdef PCBGROUP 2178 /* 2179 * If we can use a hardware-generated hash to look up the connection 2180 * group, use that connection group to find the inpcb. Otherwise 2181 * fall back on a software hash -- or the reservation table if we're 2182 * using RSS. 2183 * 2184 * XXXRW: As above, that policy belongs in the pcbgroup code. 2185 */ 2186 if (in_pcbgroup_enabled(pcbinfo) && 2187 !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { 2188 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), 2189 m->m_pkthdr.flowid); 2190 if (pcbgroup != NULL) 2191 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, 2192 fport, laddr, lport, lookupflags, ifp)); 2193 #ifndef RSS 2194 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2195 fport); 2196 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2197 laddr, lport, lookupflags, ifp)); 2198 #endif 2199 } 2200 #endif 2201 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2202 lookupflags, ifp)); 2203 } 2204 #endif /* INET */ 2205 2206 /* 2207 * Insert PCB onto various hash lists. 2208 */ 2209 static int 2210 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update) 2211 { 2212 struct inpcbhead *pcbhash; 2213 struct inpcbporthead *pcbporthash; 2214 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2215 struct inpcbport *phd; 2216 u_int32_t hashkey_faddr; 2217 2218 INP_WLOCK_ASSERT(inp); 2219 INP_HASH_WLOCK_ASSERT(pcbinfo); 2220 2221 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2222 ("in_pcbinshash: INP_INHASHLIST")); 2223 2224 #ifdef INET6 2225 if (inp->inp_vflag & INP_IPV6) 2226 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2227 else 2228 #endif 2229 hashkey_faddr = inp->inp_faddr.s_addr; 2230 2231 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2232 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2233 2234 pcbporthash = &pcbinfo->ipi_porthashbase[ 2235 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2236 2237 /* 2238 * Go through port list and look for a head for this lport. 2239 */ 2240 LIST_FOREACH(phd, pcbporthash, phd_hash) { 2241 if (phd->phd_port == inp->inp_lport) 2242 break; 2243 } 2244 /* 2245 * If none exists, malloc one and tack it on. 2246 */ 2247 if (phd == NULL) { 2248 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 2249 if (phd == NULL) { 2250 return (ENOBUFS); /* XXX */ 2251 } 2252 phd->phd_port = inp->inp_lport; 2253 LIST_INIT(&phd->phd_pcblist); 2254 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2255 } 2256 inp->inp_phd = phd; 2257 LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2258 LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2259 inp->inp_flags |= INP_INHASHLIST; 2260 #ifdef PCBGROUP 2261 if (do_pcbgroup_update) 2262 in_pcbgroup_update(inp); 2263 #endif 2264 return (0); 2265 } 2266 2267 /* 2268 * For now, there are two public interfaces to insert an inpcb into the hash 2269 * lists -- one that does update pcbgroups, and one that doesn't. The latter 2270 * is used only in the TCP syncache, where in_pcbinshash is called before the 2271 * full 4-tuple is set for the inpcb, and we don't want to install in the 2272 * pcbgroup until later. 2273 * 2274 * XXXRW: This seems like a misfeature. in_pcbinshash should always update 2275 * connection groups, and partially initialised inpcbs should not be exposed 2276 * to either reservation hash tables or pcbgroups. 2277 */ 2278 int 2279 in_pcbinshash(struct inpcb *inp) 2280 { 2281 2282 return (in_pcbinshash_internal(inp, 1)); 2283 } 2284 2285 int 2286 in_pcbinshash_nopcbgroup(struct inpcb *inp) 2287 { 2288 2289 return (in_pcbinshash_internal(inp, 0)); 2290 } 2291 2292 /* 2293 * Move PCB to the proper hash bucket when { faddr, fport } have been 2294 * changed. NOTE: This does not handle the case of the lport changing (the 2295 * hashed port list would have to be updated as well), so the lport must 2296 * not change after in_pcbinshash() has been called. 2297 */ 2298 void 2299 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) 2300 { 2301 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2302 struct inpcbhead *head; 2303 u_int32_t hashkey_faddr; 2304 2305 INP_WLOCK_ASSERT(inp); 2306 INP_HASH_WLOCK_ASSERT(pcbinfo); 2307 2308 KASSERT(inp->inp_flags & INP_INHASHLIST, 2309 ("in_pcbrehash: !INP_INHASHLIST")); 2310 2311 #ifdef INET6 2312 if (inp->inp_vflag & INP_IPV6) 2313 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2314 else 2315 #endif 2316 hashkey_faddr = inp->inp_faddr.s_addr; 2317 2318 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2319 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2320 2321 LIST_REMOVE(inp, inp_hash); 2322 LIST_INSERT_HEAD(head, inp, inp_hash); 2323 2324 #ifdef PCBGROUP 2325 if (m != NULL) 2326 in_pcbgroup_update_mbuf(inp, m); 2327 else 2328 in_pcbgroup_update(inp); 2329 #endif 2330 } 2331 2332 void 2333 in_pcbrehash(struct inpcb *inp) 2334 { 2335 2336 in_pcbrehash_mbuf(inp, NULL); 2337 } 2338 2339 /* 2340 * Remove PCB from various lists. 2341 */ 2342 static void 2343 in_pcbremlists(struct inpcb *inp) 2344 { 2345 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2346 2347 #ifdef INVARIANTS 2348 if (pcbinfo == &V_tcbinfo) { 2349 INP_INFO_RLOCK_ASSERT(pcbinfo); 2350 } else { 2351 INP_INFO_WLOCK_ASSERT(pcbinfo); 2352 } 2353 #endif 2354 2355 INP_WLOCK_ASSERT(inp); 2356 INP_LIST_WLOCK_ASSERT(pcbinfo); 2357 2358 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 2359 if (inp->inp_flags & INP_INHASHLIST) { 2360 struct inpcbport *phd = inp->inp_phd; 2361 2362 INP_HASH_WLOCK(pcbinfo); 2363 LIST_REMOVE(inp, inp_hash); 2364 LIST_REMOVE(inp, inp_portlist); 2365 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 2366 LIST_REMOVE(phd, phd_hash); 2367 free(phd, M_PCB); 2368 } 2369 INP_HASH_WUNLOCK(pcbinfo); 2370 inp->inp_flags &= ~INP_INHASHLIST; 2371 } 2372 LIST_REMOVE(inp, inp_list); 2373 pcbinfo->ipi_count--; 2374 #ifdef PCBGROUP 2375 in_pcbgroup_remove(inp); 2376 #endif 2377 } 2378 2379 /* 2380 * Check for alternatives when higher level complains 2381 * about service problems. For now, invalidate cached 2382 * routing information. If the route was created dynamically 2383 * (by a redirect), time to try a default gateway again. 2384 */ 2385 void 2386 in_losing(struct inpcb *inp) 2387 { 2388 2389 RO_INVALIDATE_CACHE(&inp->inp_route); 2390 return; 2391 } 2392 2393 /* 2394 * A set label operation has occurred at the socket layer, propagate the 2395 * label change into the in_pcb for the socket. 2396 */ 2397 void 2398 in_pcbsosetlabel(struct socket *so) 2399 { 2400 #ifdef MAC 2401 struct inpcb *inp; 2402 2403 inp = sotoinpcb(so); 2404 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2405 2406 INP_WLOCK(inp); 2407 SOCK_LOCK(so); 2408 mac_inpcb_sosetlabel(so, inp); 2409 SOCK_UNLOCK(so); 2410 INP_WUNLOCK(inp); 2411 #endif 2412 } 2413 2414 /* 2415 * ipport_tick runs once per second, determining if random port allocation 2416 * should be continued. If more than ipport_randomcps ports have been 2417 * allocated in the last second, then we return to sequential port 2418 * allocation. We return to random allocation only once we drop below 2419 * ipport_randomcps for at least ipport_randomtime seconds. 2420 */ 2421 static void 2422 ipport_tick(void *xtp) 2423 { 2424 VNET_ITERATOR_DECL(vnet_iter); 2425 2426 VNET_LIST_RLOCK_NOSLEEP(); 2427 VNET_FOREACH(vnet_iter) { 2428 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2429 if (V_ipport_tcpallocs <= 2430 V_ipport_tcplastcount + V_ipport_randomcps) { 2431 if (V_ipport_stoprandom > 0) 2432 V_ipport_stoprandom--; 2433 } else 2434 V_ipport_stoprandom = V_ipport_randomtime; 2435 V_ipport_tcplastcount = V_ipport_tcpallocs; 2436 CURVNET_RESTORE(); 2437 } 2438 VNET_LIST_RUNLOCK_NOSLEEP(); 2439 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2440 } 2441 2442 static void 2443 ip_fini(void *xtp) 2444 { 2445 2446 callout_stop(&ipport_tick_callout); 2447 } 2448 2449 /* 2450 * The ipport_callout should start running at about the time we attach the 2451 * inet or inet6 domains. 2452 */ 2453 static void 2454 ipport_tick_init(const void *unused __unused) 2455 { 2456 2457 /* Start ipport_tick. */ 2458 callout_init(&ipport_tick_callout, 1); 2459 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2460 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2461 SHUTDOWN_PRI_DEFAULT); 2462 } 2463 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2464 ipport_tick_init, NULL); 2465 2466 void 2467 inp_wlock(struct inpcb *inp) 2468 { 2469 2470 INP_WLOCK(inp); 2471 } 2472 2473 void 2474 inp_wunlock(struct inpcb *inp) 2475 { 2476 2477 INP_WUNLOCK(inp); 2478 } 2479 2480 void 2481 inp_rlock(struct inpcb *inp) 2482 { 2483 2484 INP_RLOCK(inp); 2485 } 2486 2487 void 2488 inp_runlock(struct inpcb *inp) 2489 { 2490 2491 INP_RUNLOCK(inp); 2492 } 2493 2494 #ifdef INVARIANT_SUPPORT 2495 void 2496 inp_lock_assert(struct inpcb *inp) 2497 { 2498 2499 INP_WLOCK_ASSERT(inp); 2500 } 2501 2502 void 2503 inp_unlock_assert(struct inpcb *inp) 2504 { 2505 2506 INP_UNLOCK_ASSERT(inp); 2507 } 2508 #endif 2509 2510 void 2511 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2512 { 2513 struct inpcb *inp; 2514 2515 INP_INFO_WLOCK(&V_tcbinfo); 2516 LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 2517 INP_WLOCK(inp); 2518 func(inp, arg); 2519 INP_WUNLOCK(inp); 2520 } 2521 INP_INFO_WUNLOCK(&V_tcbinfo); 2522 } 2523 2524 struct socket * 2525 inp_inpcbtosocket(struct inpcb *inp) 2526 { 2527 2528 INP_WLOCK_ASSERT(inp); 2529 return (inp->inp_socket); 2530 } 2531 2532 struct tcpcb * 2533 inp_inpcbtotcpcb(struct inpcb *inp) 2534 { 2535 2536 INP_WLOCK_ASSERT(inp); 2537 return ((struct tcpcb *)inp->inp_ppcb); 2538 } 2539 2540 int 2541 inp_ip_tos_get(const struct inpcb *inp) 2542 { 2543 2544 return (inp->inp_ip_tos); 2545 } 2546 2547 void 2548 inp_ip_tos_set(struct inpcb *inp, int val) 2549 { 2550 2551 inp->inp_ip_tos = val; 2552 } 2553 2554 void 2555 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2556 uint32_t *faddr, uint16_t *fp) 2557 { 2558 2559 INP_LOCK_ASSERT(inp); 2560 *laddr = inp->inp_laddr.s_addr; 2561 *faddr = inp->inp_faddr.s_addr; 2562 *lp = inp->inp_lport; 2563 *fp = inp->inp_fport; 2564 } 2565 2566 struct inpcb * 2567 so_sotoinpcb(struct socket *so) 2568 { 2569 2570 return (sotoinpcb(so)); 2571 } 2572 2573 struct tcpcb * 2574 so_sototcpcb(struct socket *so) 2575 { 2576 2577 return (sototcpcb(so)); 2578 } 2579 2580 /* 2581 * Create an external-format (``xinpcb'') structure using the information in 2582 * the kernel-format in_pcb structure pointed to by inp. This is done to 2583 * reduce the spew of irrelevant information over this interface, to isolate 2584 * user code from changes in the kernel structure, and potentially to provide 2585 * information-hiding if we decide that some of this information should be 2586 * hidden from users. 2587 */ 2588 void 2589 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2590 { 2591 2592 xi->xi_len = sizeof(struct xinpcb); 2593 if (inp->inp_socket) 2594 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2595 else 2596 bzero(&xi->xi_socket, sizeof(struct xsocket)); 2597 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2598 xi->inp_gencnt = inp->inp_gencnt; 2599 xi->inp_ppcb = inp->inp_ppcb; 2600 xi->inp_flow = inp->inp_flow; 2601 xi->inp_flowid = inp->inp_flowid; 2602 xi->inp_flowtype = inp->inp_flowtype; 2603 xi->inp_flags = inp->inp_flags; 2604 xi->inp_flags2 = inp->inp_flags2; 2605 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2606 xi->in6p_cksum = inp->in6p_cksum; 2607 xi->in6p_hops = inp->in6p_hops; 2608 xi->inp_ip_tos = inp->inp_ip_tos; 2609 xi->inp_vflag = inp->inp_vflag; 2610 xi->inp_ip_ttl = inp->inp_ip_ttl; 2611 xi->inp_ip_p = inp->inp_ip_p; 2612 xi->inp_ip_minttl = inp->inp_ip_minttl; 2613 } 2614 2615 #ifdef DDB 2616 static void 2617 db_print_indent(int indent) 2618 { 2619 int i; 2620 2621 for (i = 0; i < indent; i++) 2622 db_printf(" "); 2623 } 2624 2625 static void 2626 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2627 { 2628 char faddr_str[48], laddr_str[48]; 2629 2630 db_print_indent(indent); 2631 db_printf("%s at %p\n", name, inc); 2632 2633 indent += 2; 2634 2635 #ifdef INET6 2636 if (inc->inc_flags & INC_ISIPV6) { 2637 /* IPv6. */ 2638 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2639 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2640 } else 2641 #endif 2642 { 2643 /* IPv4. */ 2644 inet_ntoa_r(inc->inc_laddr, laddr_str); 2645 inet_ntoa_r(inc->inc_faddr, faddr_str); 2646 } 2647 db_print_indent(indent); 2648 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2649 ntohs(inc->inc_lport)); 2650 db_print_indent(indent); 2651 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2652 ntohs(inc->inc_fport)); 2653 } 2654 2655 static void 2656 db_print_inpflags(int inp_flags) 2657 { 2658 int comma; 2659 2660 comma = 0; 2661 if (inp_flags & INP_RECVOPTS) { 2662 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2663 comma = 1; 2664 } 2665 if (inp_flags & INP_RECVRETOPTS) { 2666 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2667 comma = 1; 2668 } 2669 if (inp_flags & INP_RECVDSTADDR) { 2670 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2671 comma = 1; 2672 } 2673 if (inp_flags & INP_ORIGDSTADDR) { 2674 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 2675 comma = 1; 2676 } 2677 if (inp_flags & INP_HDRINCL) { 2678 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2679 comma = 1; 2680 } 2681 if (inp_flags & INP_HIGHPORT) { 2682 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2683 comma = 1; 2684 } 2685 if (inp_flags & INP_LOWPORT) { 2686 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2687 comma = 1; 2688 } 2689 if (inp_flags & INP_ANONPORT) { 2690 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2691 comma = 1; 2692 } 2693 if (inp_flags & INP_RECVIF) { 2694 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2695 comma = 1; 2696 } 2697 if (inp_flags & INP_MTUDISC) { 2698 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2699 comma = 1; 2700 } 2701 if (inp_flags & INP_RECVTTL) { 2702 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 2703 comma = 1; 2704 } 2705 if (inp_flags & INP_DONTFRAG) { 2706 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 2707 comma = 1; 2708 } 2709 if (inp_flags & INP_RECVTOS) { 2710 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 2711 comma = 1; 2712 } 2713 if (inp_flags & IN6P_IPV6_V6ONLY) { 2714 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 2715 comma = 1; 2716 } 2717 if (inp_flags & IN6P_PKTINFO) { 2718 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 2719 comma = 1; 2720 } 2721 if (inp_flags & IN6P_HOPLIMIT) { 2722 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 2723 comma = 1; 2724 } 2725 if (inp_flags & IN6P_HOPOPTS) { 2726 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 2727 comma = 1; 2728 } 2729 if (inp_flags & IN6P_DSTOPTS) { 2730 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 2731 comma = 1; 2732 } 2733 if (inp_flags & IN6P_RTHDR) { 2734 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 2735 comma = 1; 2736 } 2737 if (inp_flags & IN6P_RTHDRDSTOPTS) { 2738 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 2739 comma = 1; 2740 } 2741 if (inp_flags & IN6P_TCLASS) { 2742 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 2743 comma = 1; 2744 } 2745 if (inp_flags & IN6P_AUTOFLOWLABEL) { 2746 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 2747 comma = 1; 2748 } 2749 if (inp_flags & INP_TIMEWAIT) { 2750 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 2751 comma = 1; 2752 } 2753 if (inp_flags & INP_ONESBCAST) { 2754 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 2755 comma = 1; 2756 } 2757 if (inp_flags & INP_DROPPED) { 2758 db_printf("%sINP_DROPPED", comma ? ", " : ""); 2759 comma = 1; 2760 } 2761 if (inp_flags & INP_SOCKREF) { 2762 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 2763 comma = 1; 2764 } 2765 if (inp_flags & IN6P_RFC2292) { 2766 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 2767 comma = 1; 2768 } 2769 if (inp_flags & IN6P_MTU) { 2770 db_printf("IN6P_MTU%s", comma ? ", " : ""); 2771 comma = 1; 2772 } 2773 } 2774 2775 static void 2776 db_print_inpvflag(u_char inp_vflag) 2777 { 2778 int comma; 2779 2780 comma = 0; 2781 if (inp_vflag & INP_IPV4) { 2782 db_printf("%sINP_IPV4", comma ? ", " : ""); 2783 comma = 1; 2784 } 2785 if (inp_vflag & INP_IPV6) { 2786 db_printf("%sINP_IPV6", comma ? ", " : ""); 2787 comma = 1; 2788 } 2789 if (inp_vflag & INP_IPV6PROTO) { 2790 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 2791 comma = 1; 2792 } 2793 } 2794 2795 static void 2796 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 2797 { 2798 2799 db_print_indent(indent); 2800 db_printf("%s at %p\n", name, inp); 2801 2802 indent += 2; 2803 2804 db_print_indent(indent); 2805 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 2806 2807 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 2808 2809 db_print_indent(indent); 2810 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 2811 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 2812 2813 db_print_indent(indent); 2814 db_printf("inp_label: %p inp_flags: 0x%x (", 2815 inp->inp_label, inp->inp_flags); 2816 db_print_inpflags(inp->inp_flags); 2817 db_printf(")\n"); 2818 2819 db_print_indent(indent); 2820 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 2821 inp->inp_vflag); 2822 db_print_inpvflag(inp->inp_vflag); 2823 db_printf(")\n"); 2824 2825 db_print_indent(indent); 2826 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 2827 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 2828 2829 db_print_indent(indent); 2830 #ifdef INET6 2831 if (inp->inp_vflag & INP_IPV6) { 2832 db_printf("in6p_options: %p in6p_outputopts: %p " 2833 "in6p_moptions: %p\n", inp->in6p_options, 2834 inp->in6p_outputopts, inp->in6p_moptions); 2835 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 2836 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 2837 inp->in6p_hops); 2838 } else 2839 #endif 2840 { 2841 db_printf("inp_ip_tos: %d inp_ip_options: %p " 2842 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 2843 inp->inp_options, inp->inp_moptions); 2844 } 2845 2846 db_print_indent(indent); 2847 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 2848 (uintmax_t)inp->inp_gencnt); 2849 } 2850 2851 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 2852 { 2853 struct inpcb *inp; 2854 2855 if (!have_addr) { 2856 db_printf("usage: show inpcb <addr>\n"); 2857 return; 2858 } 2859 inp = (struct inpcb *)addr; 2860 2861 db_print_inpcb(inp, "inpcb", 0); 2862 } 2863 #endif /* DDB */ 2864 2865 #ifdef RATELIMIT 2866 /* 2867 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 2868 * if any. 2869 */ 2870 int 2871 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 2872 { 2873 union if_snd_tag_modify_params params = { 2874 .rate_limit.max_rate = max_pacing_rate, 2875 }; 2876 struct m_snd_tag *mst; 2877 struct ifnet *ifp; 2878 int error; 2879 2880 mst = inp->inp_snd_tag; 2881 if (mst == NULL) 2882 return (EINVAL); 2883 2884 ifp = mst->ifp; 2885 if (ifp == NULL) 2886 return (EINVAL); 2887 2888 if (ifp->if_snd_tag_modify == NULL) { 2889 error = EOPNOTSUPP; 2890 } else { 2891 error = ifp->if_snd_tag_modify(mst, ¶ms); 2892 } 2893 return (error); 2894 } 2895 2896 /* 2897 * Query existing TX rate limit based on the existing 2898 * "inp->inp_snd_tag", if any. 2899 */ 2900 int 2901 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 2902 { 2903 union if_snd_tag_query_params params = { }; 2904 struct m_snd_tag *mst; 2905 struct ifnet *ifp; 2906 int error; 2907 2908 mst = inp->inp_snd_tag; 2909 if (mst == NULL) 2910 return (EINVAL); 2911 2912 ifp = mst->ifp; 2913 if (ifp == NULL) 2914 return (EINVAL); 2915 2916 if (ifp->if_snd_tag_query == NULL) { 2917 error = EOPNOTSUPP; 2918 } else { 2919 error = ifp->if_snd_tag_query(mst, ¶ms); 2920 if (error == 0 && p_max_pacing_rate != NULL) 2921 *p_max_pacing_rate = params.rate_limit.max_rate; 2922 } 2923 return (error); 2924 } 2925 2926 /* 2927 * Query existing TX queue level based on the existing 2928 * "inp->inp_snd_tag", if any. 2929 */ 2930 int 2931 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 2932 { 2933 union if_snd_tag_query_params params = { }; 2934 struct m_snd_tag *mst; 2935 struct ifnet *ifp; 2936 int error; 2937 2938 mst = inp->inp_snd_tag; 2939 if (mst == NULL) 2940 return (EINVAL); 2941 2942 ifp = mst->ifp; 2943 if (ifp == NULL) 2944 return (EINVAL); 2945 2946 if (ifp->if_snd_tag_query == NULL) 2947 return (EOPNOTSUPP); 2948 2949 error = ifp->if_snd_tag_query(mst, ¶ms); 2950 if (error == 0 && p_txqueue_level != NULL) 2951 *p_txqueue_level = params.rate_limit.queue_level; 2952 return (error); 2953 } 2954 2955 /* 2956 * Allocate a new TX rate limit send tag from the network interface 2957 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 2958 */ 2959 int 2960 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 2961 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate) 2962 { 2963 union if_snd_tag_alloc_params params = { 2964 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 2965 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 2966 .rate_limit.hdr.flowid = flowid, 2967 .rate_limit.hdr.flowtype = flowtype, 2968 .rate_limit.max_rate = max_pacing_rate, 2969 }; 2970 int error; 2971 2972 INP_WLOCK_ASSERT(inp); 2973 2974 if (inp->inp_snd_tag != NULL) 2975 return (EINVAL); 2976 2977 if (ifp->if_snd_tag_alloc == NULL) { 2978 error = EOPNOTSUPP; 2979 } else { 2980 error = ifp->if_snd_tag_alloc(ifp, ¶ms, &inp->inp_snd_tag); 2981 2982 /* 2983 * At success increment the refcount on 2984 * the send tag's network interface: 2985 */ 2986 if (error == 0) 2987 if_ref(inp->inp_snd_tag->ifp); 2988 } 2989 return (error); 2990 } 2991 2992 /* 2993 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 2994 * if any: 2995 */ 2996 void 2997 in_pcbdetach_txrtlmt(struct inpcb *inp) 2998 { 2999 struct m_snd_tag *mst; 3000 struct ifnet *ifp; 3001 3002 INP_WLOCK_ASSERT(inp); 3003 3004 mst = inp->inp_snd_tag; 3005 inp->inp_snd_tag = NULL; 3006 3007 if (mst == NULL) 3008 return; 3009 3010 ifp = mst->ifp; 3011 if (ifp == NULL) 3012 return; 3013 3014 /* 3015 * If the device was detached while we still had reference(s) 3016 * on the ifp, we assume if_snd_tag_free() was replaced with 3017 * stubs. 3018 */ 3019 ifp->if_snd_tag_free(mst); 3020 3021 /* release reference count on network interface */ 3022 if_rele(ifp); 3023 } 3024 3025 /* 3026 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3027 * is set in the fast path and will attach/detach/modify the TX rate 3028 * limit send tag based on the socket's so_max_pacing_rate value. 3029 */ 3030 void 3031 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3032 { 3033 struct socket *socket; 3034 uint32_t max_pacing_rate; 3035 bool did_upgrade; 3036 int error; 3037 3038 if (inp == NULL) 3039 return; 3040 3041 socket = inp->inp_socket; 3042 if (socket == NULL) 3043 return; 3044 3045 if (!INP_WLOCKED(inp)) { 3046 /* 3047 * NOTE: If the write locking fails, we need to bail 3048 * out and use the non-ratelimited ring for the 3049 * transmit until there is a new chance to get the 3050 * write lock. 3051 */ 3052 if (!INP_TRY_UPGRADE(inp)) 3053 return; 3054 did_upgrade = 1; 3055 } else { 3056 did_upgrade = 0; 3057 } 3058 3059 /* 3060 * NOTE: The so_max_pacing_rate value is read unlocked, 3061 * because atomic updates are not required since the variable 3062 * is checked at every mbuf we send. It is assumed that the 3063 * variable read itself will be atomic. 3064 */ 3065 max_pacing_rate = socket->so_max_pacing_rate; 3066 3067 /* 3068 * NOTE: When attaching to a network interface a reference is 3069 * made to ensure the network interface doesn't go away until 3070 * all ratelimit connections are gone. The network interface 3071 * pointers compared below represent valid network interfaces, 3072 * except when comparing towards NULL. 3073 */ 3074 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3075 error = 0; 3076 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3077 if (inp->inp_snd_tag != NULL) 3078 in_pcbdetach_txrtlmt(inp); 3079 error = 0; 3080 } else if (inp->inp_snd_tag == NULL) { 3081 /* 3082 * In order to utilize packet pacing with RSS, we need 3083 * to wait until there is a valid RSS hash before we 3084 * can proceed: 3085 */ 3086 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3087 error = EAGAIN; 3088 } else { 3089 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3090 mb->m_pkthdr.flowid, max_pacing_rate); 3091 } 3092 } else { 3093 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3094 } 3095 if (error == 0 || error == EOPNOTSUPP) 3096 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3097 if (did_upgrade) 3098 INP_DOWNGRADE(inp); 3099 } 3100 3101 /* 3102 * Track route changes for TX rate limiting. 3103 */ 3104 void 3105 in_pcboutput_eagain(struct inpcb *inp) 3106 { 3107 struct socket *socket; 3108 bool did_upgrade; 3109 3110 if (inp == NULL) 3111 return; 3112 3113 socket = inp->inp_socket; 3114 if (socket == NULL) 3115 return; 3116 3117 if (inp->inp_snd_tag == NULL) 3118 return; 3119 3120 if (!INP_WLOCKED(inp)) { 3121 /* 3122 * NOTE: If the write locking fails, we need to bail 3123 * out and use the non-ratelimited ring for the 3124 * transmit until there is a new chance to get the 3125 * write lock. 3126 */ 3127 if (!INP_TRY_UPGRADE(inp)) 3128 return; 3129 did_upgrade = 1; 3130 } else { 3131 did_upgrade = 0; 3132 } 3133 3134 /* detach rate limiting */ 3135 in_pcbdetach_txrtlmt(inp); 3136 3137 /* make sure new mbuf send tag allocation is made */ 3138 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3139 3140 if (did_upgrade) 3141 INP_DOWNGRADE(inp); 3142 } 3143 #endif /* RATELIMIT */ 3144