xref: /freebsd/sys/netinet/in_pcb.c (revision 58a0f0d00c0cc4a90ce584a61470290751bfcac7)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2007-2009 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * All rights reserved.
9  *
10  * Portions of this software were developed by Robert N. M. Watson under
11  * contract to Juniper Networks, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include "opt_ddb.h"
44 #include "opt_ipsec.h"
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 #include "opt_ratelimit.h"
48 #include "opt_pcbgroup.h"
49 #include "opt_rss.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/callout.h>
57 #include <sys/eventhandler.h>
58 #include <sys/domain.h>
59 #include <sys/protosw.h>
60 #include <sys/rmlock.h>
61 #include <sys/smp.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/sockio.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/refcount.h>
68 #include <sys/jail.h>
69 #include <sys/kernel.h>
70 #include <sys/sysctl.h>
71 
72 #ifdef DDB
73 #include <ddb/ddb.h>
74 #endif
75 
76 #include <vm/uma.h>
77 
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/if_types.h>
81 #include <net/if_llatbl.h>
82 #include <net/route.h>
83 #include <net/rss_config.h>
84 #include <net/vnet.h>
85 
86 #if defined(INET) || defined(INET6)
87 #include <netinet/in.h>
88 #include <netinet/in_pcb.h>
89 #include <netinet/ip_var.h>
90 #include <netinet/tcp_var.h>
91 #ifdef TCPHPTS
92 #include <netinet/tcp_hpts.h>
93 #endif
94 #include <netinet/udp.h>
95 #include <netinet/udp_var.h>
96 #endif
97 #ifdef INET
98 #include <netinet/in_var.h>
99 #endif
100 #ifdef INET6
101 #include <netinet/ip6.h>
102 #include <netinet6/in6_pcb.h>
103 #include <netinet6/in6_var.h>
104 #include <netinet6/ip6_var.h>
105 #endif /* INET6 */
106 
107 #include <netipsec/ipsec_support.h>
108 
109 #include <security/mac/mac_framework.h>
110 
111 static struct callout	ipport_tick_callout;
112 
113 /*
114  * These configure the range of local port addresses assigned to
115  * "unspecified" outgoing connections/packets/whatever.
116  */
117 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
118 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
119 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
120 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
121 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
122 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
123 
124 /*
125  * Reserved ports accessible only to root. There are significant
126  * security considerations that must be accounted for when changing these,
127  * but the security benefits can be great. Please be careful.
128  */
129 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
130 VNET_DEFINE(int, ipport_reservedlow);
131 
132 /* Variables dealing with random ephemeral port allocation. */
133 VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
134 VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
135 VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
136 VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
137 VNET_DEFINE(int, ipport_tcpallocs);
138 static VNET_DEFINE(int, ipport_tcplastcount);
139 
140 #define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
141 
142 static void	in_pcbremlists(struct inpcb *inp);
143 #ifdef INET
144 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
145 			    struct in_addr faddr, u_int fport_arg,
146 			    struct in_addr laddr, u_int lport_arg,
147 			    int lookupflags, struct ifnet *ifp);
148 
149 #define RANGECHK(var, min, max) \
150 	if ((var) < (min)) { (var) = (min); } \
151 	else if ((var) > (max)) { (var) = (max); }
152 
153 static int
154 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
155 {
156 	int error;
157 
158 	error = sysctl_handle_int(oidp, arg1, arg2, req);
159 	if (error == 0) {
160 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
161 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
162 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
163 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
164 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
165 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
166 	}
167 	return (error);
168 }
169 
170 #undef RANGECHK
171 
172 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
173     "IP Ports");
174 
175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
176 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
177 	&VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", "");
178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
179 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
180 	&VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", "");
181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
182 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
183 	&VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", "");
184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
185 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
186 	&VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", "");
187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
188 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
189 	&VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", "");
190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
191 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
192 	&VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", "");
193 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
194 	CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
195 	&VNET_NAME(ipport_reservedhigh), 0, "");
196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
197 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
198 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
199 	CTLFLAG_VNET | CTLFLAG_RW,
200 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
202 	CTLFLAG_VNET | CTLFLAG_RW,
203 	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
204 	"allocations before switching to a sequental one");
205 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
206 	CTLFLAG_VNET | CTLFLAG_RW,
207 	&VNET_NAME(ipport_randomtime), 0,
208 	"Minimum time to keep sequental port "
209 	"allocation before switching to a random one");
210 #endif /* INET */
211 
212 /*
213  * in_pcb.c: manage the Protocol Control Blocks.
214  *
215  * NOTE: It is assumed that most of these functions will be called with
216  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
217  * functions often modify hash chains or addresses in pcbs.
218  */
219 
220 /*
221  * Different protocols initialize their inpcbs differently - giving
222  * different name to the lock.  But they all are disposed the same.
223  */
224 static void
225 inpcb_fini(void *mem, int size)
226 {
227 	struct inpcb *inp = mem;
228 
229 	INP_LOCK_DESTROY(inp);
230 }
231 
232 /*
233  * Initialize an inpcbinfo -- we should be able to reduce the number of
234  * arguments in time.
235  */
236 void
237 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
238     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
239     char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields)
240 {
241 
242 	INP_INFO_LOCK_INIT(pcbinfo, name);
243 	INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");	/* XXXRW: argument? */
244 	INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist");
245 #ifdef VIMAGE
246 	pcbinfo->ipi_vnet = curvnet;
247 #endif
248 	pcbinfo->ipi_listhead = listhead;
249 	LIST_INIT(pcbinfo->ipi_listhead);
250 	pcbinfo->ipi_count = 0;
251 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
252 	    &pcbinfo->ipi_hashmask);
253 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
254 	    &pcbinfo->ipi_porthashmask);
255 #ifdef PCBGROUP
256 	in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
257 #endif
258 	pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
259 	    NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0);
260 	uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
261 	uma_zone_set_warning(pcbinfo->ipi_zone,
262 	    "kern.ipc.maxsockets limit reached");
263 }
264 
265 /*
266  * Destroy an inpcbinfo.
267  */
268 void
269 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
270 {
271 
272 	KASSERT(pcbinfo->ipi_count == 0,
273 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
274 
275 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
276 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
277 	    pcbinfo->ipi_porthashmask);
278 #ifdef PCBGROUP
279 	in_pcbgroup_destroy(pcbinfo);
280 #endif
281 	uma_zdestroy(pcbinfo->ipi_zone);
282 	INP_LIST_LOCK_DESTROY(pcbinfo);
283 	INP_HASH_LOCK_DESTROY(pcbinfo);
284 	INP_INFO_LOCK_DESTROY(pcbinfo);
285 }
286 
287 /*
288  * Allocate a PCB and associate it with the socket.
289  * On success return with the PCB locked.
290  */
291 int
292 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
293 {
294 	struct inpcb *inp;
295 	int error;
296 
297 #ifdef INVARIANTS
298 	if (pcbinfo == &V_tcbinfo) {
299 		INP_INFO_RLOCK_ASSERT(pcbinfo);
300 	} else {
301 		INP_INFO_WLOCK_ASSERT(pcbinfo);
302 	}
303 #endif
304 
305 	error = 0;
306 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
307 	if (inp == NULL)
308 		return (ENOBUFS);
309 	bzero(&inp->inp_start_zero, inp_zero_size);
310 	inp->inp_pcbinfo = pcbinfo;
311 	inp->inp_socket = so;
312 	inp->inp_cred = crhold(so->so_cred);
313 	inp->inp_inc.inc_fibnum = so->so_fibnum;
314 #ifdef MAC
315 	error = mac_inpcb_init(inp, M_NOWAIT);
316 	if (error != 0)
317 		goto out;
318 	mac_inpcb_create(so, inp);
319 #endif
320 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
321 	error = ipsec_init_pcbpolicy(inp);
322 	if (error != 0) {
323 #ifdef MAC
324 		mac_inpcb_destroy(inp);
325 #endif
326 		goto out;
327 	}
328 #endif /*IPSEC*/
329 #ifdef INET6
330 	if (INP_SOCKAF(so) == AF_INET6) {
331 		inp->inp_vflag |= INP_IPV6PROTO;
332 		if (V_ip6_v6only)
333 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
334 	}
335 #endif
336 	INP_WLOCK(inp);
337 	INP_LIST_WLOCK(pcbinfo);
338 	LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
339 	pcbinfo->ipi_count++;
340 	so->so_pcb = (caddr_t)inp;
341 #ifdef INET6
342 	if (V_ip6_auto_flowlabel)
343 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
344 #endif
345 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
346 	refcount_init(&inp->inp_refcount, 1);	/* Reference from inpcbinfo */
347 
348 	/*
349 	 * Routes in inpcb's can cache L2 as well; they are guaranteed
350 	 * to be cleaned up.
351 	 */
352 	inp->inp_route.ro_flags = RT_LLE_CACHE;
353 	INP_LIST_WUNLOCK(pcbinfo);
354 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
355 out:
356 	if (error != 0) {
357 		crfree(inp->inp_cred);
358 		uma_zfree(pcbinfo->ipi_zone, inp);
359 	}
360 #endif
361 	return (error);
362 }
363 
364 #ifdef INET
365 int
366 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
367 {
368 	int anonport, error;
369 
370 	INP_WLOCK_ASSERT(inp);
371 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
372 
373 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
374 		return (EINVAL);
375 	anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
376 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
377 	    &inp->inp_lport, cred);
378 	if (error)
379 		return (error);
380 	if (in_pcbinshash(inp) != 0) {
381 		inp->inp_laddr.s_addr = INADDR_ANY;
382 		inp->inp_lport = 0;
383 		return (EAGAIN);
384 	}
385 	if (anonport)
386 		inp->inp_flags |= INP_ANONPORT;
387 	return (0);
388 }
389 #endif
390 
391 /*
392  * Select a local port (number) to use.
393  */
394 #if defined(INET) || defined(INET6)
395 int
396 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
397     struct ucred *cred, int lookupflags)
398 {
399 	struct inpcbinfo *pcbinfo;
400 	struct inpcb *tmpinp;
401 	unsigned short *lastport;
402 	int count, dorandom, error;
403 	u_short aux, first, last, lport;
404 #ifdef INET
405 	struct in_addr laddr;
406 #endif
407 
408 	pcbinfo = inp->inp_pcbinfo;
409 
410 	/*
411 	 * Because no actual state changes occur here, a global write lock on
412 	 * the pcbinfo isn't required.
413 	 */
414 	INP_LOCK_ASSERT(inp);
415 	INP_HASH_LOCK_ASSERT(pcbinfo);
416 
417 	if (inp->inp_flags & INP_HIGHPORT) {
418 		first = V_ipport_hifirstauto;	/* sysctl */
419 		last  = V_ipport_hilastauto;
420 		lastport = &pcbinfo->ipi_lasthi;
421 	} else if (inp->inp_flags & INP_LOWPORT) {
422 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
423 		if (error)
424 			return (error);
425 		first = V_ipport_lowfirstauto;	/* 1023 */
426 		last  = V_ipport_lowlastauto;	/* 600 */
427 		lastport = &pcbinfo->ipi_lastlow;
428 	} else {
429 		first = V_ipport_firstauto;	/* sysctl */
430 		last  = V_ipport_lastauto;
431 		lastport = &pcbinfo->ipi_lastport;
432 	}
433 	/*
434 	 * For UDP(-Lite), use random port allocation as long as the user
435 	 * allows it.  For TCP (and as of yet unknown) connections,
436 	 * use random port allocation only if the user allows it AND
437 	 * ipport_tick() allows it.
438 	 */
439 	if (V_ipport_randomized &&
440 		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
441 		pcbinfo == &V_ulitecbinfo))
442 		dorandom = 1;
443 	else
444 		dorandom = 0;
445 	/*
446 	 * It makes no sense to do random port allocation if
447 	 * we have the only port available.
448 	 */
449 	if (first == last)
450 		dorandom = 0;
451 	/* Make sure to not include UDP(-Lite) packets in the count. */
452 	if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
453 		V_ipport_tcpallocs++;
454 	/*
455 	 * Instead of having two loops further down counting up or down
456 	 * make sure that first is always <= last and go with only one
457 	 * code path implementing all logic.
458 	 */
459 	if (first > last) {
460 		aux = first;
461 		first = last;
462 		last = aux;
463 	}
464 
465 #ifdef INET
466 	/* Make the compiler happy. */
467 	laddr.s_addr = 0;
468 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
469 		KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
470 		    __func__, inp));
471 		laddr = *laddrp;
472 	}
473 #endif
474 	tmpinp = NULL;	/* Make compiler happy. */
475 	lport = *lportp;
476 
477 	if (dorandom)
478 		*lastport = first + (arc4random() % (last - first));
479 
480 	count = last - first;
481 
482 	do {
483 		if (count-- < 0)	/* completely used? */
484 			return (EADDRNOTAVAIL);
485 		++*lastport;
486 		if (*lastport < first || *lastport > last)
487 			*lastport = first;
488 		lport = htons(*lastport);
489 
490 #ifdef INET6
491 		if ((inp->inp_vflag & INP_IPV6) != 0)
492 			tmpinp = in6_pcblookup_local(pcbinfo,
493 			    &inp->in6p_laddr, lport, lookupflags, cred);
494 #endif
495 #if defined(INET) && defined(INET6)
496 		else
497 #endif
498 #ifdef INET
499 			tmpinp = in_pcblookup_local(pcbinfo, laddr,
500 			    lport, lookupflags, cred);
501 #endif
502 	} while (tmpinp != NULL);
503 
504 #ifdef INET
505 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
506 		laddrp->s_addr = laddr.s_addr;
507 #endif
508 	*lportp = lport;
509 
510 	return (0);
511 }
512 
513 /*
514  * Return cached socket options.
515  */
516 short
517 inp_so_options(const struct inpcb *inp)
518 {
519    short so_options;
520 
521    so_options = 0;
522 
523    if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
524 	   so_options |= SO_REUSEPORT;
525    if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
526 	   so_options |= SO_REUSEADDR;
527    return (so_options);
528 }
529 #endif /* INET || INET6 */
530 
531 /*
532  * Check if a new BINDMULTI socket is allowed to be created.
533  *
534  * ni points to the new inp.
535  * oi points to the exisitng inp.
536  *
537  * This checks whether the existing inp also has BINDMULTI and
538  * whether the credentials match.
539  */
540 int
541 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
542 {
543 	/* Check permissions match */
544 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
545 	    (ni->inp_cred->cr_uid !=
546 	    oi->inp_cred->cr_uid))
547 		return (0);
548 
549 	/* Check the existing inp has BINDMULTI set */
550 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
551 	    ((oi->inp_flags2 & INP_BINDMULTI) == 0))
552 		return (0);
553 
554 	/*
555 	 * We're okay - either INP_BINDMULTI isn't set on ni, or
556 	 * it is and it matches the checks.
557 	 */
558 	return (1);
559 }
560 
561 #ifdef INET
562 /*
563  * Set up a bind operation on a PCB, performing port allocation
564  * as required, but do not actually modify the PCB. Callers can
565  * either complete the bind by setting inp_laddr/inp_lport and
566  * calling in_pcbinshash(), or they can just use the resulting
567  * port and address to authorise the sending of a once-off packet.
568  *
569  * On error, the values of *laddrp and *lportp are not changed.
570  */
571 int
572 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
573     u_short *lportp, struct ucred *cred)
574 {
575 	struct socket *so = inp->inp_socket;
576 	struct sockaddr_in *sin;
577 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
578 	struct in_addr laddr;
579 	u_short lport = 0;
580 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
581 	int error;
582 
583 	/*
584 	 * No state changes, so read locks are sufficient here.
585 	 */
586 	INP_LOCK_ASSERT(inp);
587 	INP_HASH_LOCK_ASSERT(pcbinfo);
588 
589 	if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
590 		return (EADDRNOTAVAIL);
591 	laddr.s_addr = *laddrp;
592 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
593 		return (EINVAL);
594 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
595 		lookupflags = INPLOOKUP_WILDCARD;
596 	if (nam == NULL) {
597 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
598 			return (error);
599 	} else {
600 		sin = (struct sockaddr_in *)nam;
601 		if (nam->sa_len != sizeof (*sin))
602 			return (EINVAL);
603 #ifdef notdef
604 		/*
605 		 * We should check the family, but old programs
606 		 * incorrectly fail to initialize it.
607 		 */
608 		if (sin->sin_family != AF_INET)
609 			return (EAFNOSUPPORT);
610 #endif
611 		error = prison_local_ip4(cred, &sin->sin_addr);
612 		if (error)
613 			return (error);
614 		if (sin->sin_port != *lportp) {
615 			/* Don't allow the port to change. */
616 			if (*lportp != 0)
617 				return (EINVAL);
618 			lport = sin->sin_port;
619 		}
620 		/* NB: lport is left as 0 if the port isn't being changed. */
621 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
622 			/*
623 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
624 			 * allow complete duplication of binding if
625 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
626 			 * and a multicast address is bound on both
627 			 * new and duplicated sockets.
628 			 */
629 			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
630 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
631 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
632 			sin->sin_port = 0;		/* yech... */
633 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
634 			/*
635 			 * Is the address a local IP address?
636 			 * If INP_BINDANY is set, then the socket may be bound
637 			 * to any endpoint address, local or not.
638 			 */
639 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
640 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
641 				return (EADDRNOTAVAIL);
642 		}
643 		laddr = sin->sin_addr;
644 		if (lport) {
645 			struct inpcb *t;
646 			struct tcptw *tw;
647 
648 			/* GROSS */
649 			if (ntohs(lport) <= V_ipport_reservedhigh &&
650 			    ntohs(lport) >= V_ipport_reservedlow &&
651 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
652 			    0))
653 				return (EACCES);
654 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
655 			    priv_check_cred(inp->inp_cred,
656 			    PRIV_NETINET_REUSEPORT, 0) != 0) {
657 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
658 				    lport, INPLOOKUP_WILDCARD, cred);
659 	/*
660 	 * XXX
661 	 * This entire block sorely needs a rewrite.
662 	 */
663 				if (t &&
664 				    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
665 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
666 				    (so->so_type != SOCK_STREAM ||
667 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
668 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
669 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
670 				     (t->inp_flags2 & INP_REUSEPORT) == 0) &&
671 				    (inp->inp_cred->cr_uid !=
672 				     t->inp_cred->cr_uid))
673 					return (EADDRINUSE);
674 
675 				/*
676 				 * If the socket is a BINDMULTI socket, then
677 				 * the credentials need to match and the
678 				 * original socket also has to have been bound
679 				 * with BINDMULTI.
680 				 */
681 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
682 					return (EADDRINUSE);
683 			}
684 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
685 			    lport, lookupflags, cred);
686 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
687 				/*
688 				 * XXXRW: If an incpb has had its timewait
689 				 * state recycled, we treat the address as
690 				 * being in use (for now).  This is better
691 				 * than a panic, but not desirable.
692 				 */
693 				tw = intotw(t);
694 				if (tw == NULL ||
695 				    (reuseport & tw->tw_so_options) == 0)
696 					return (EADDRINUSE);
697 			} else if (t &&
698 			    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
699 			    (reuseport & inp_so_options(t)) == 0) {
700 #ifdef INET6
701 				if (ntohl(sin->sin_addr.s_addr) !=
702 				    INADDR_ANY ||
703 				    ntohl(t->inp_laddr.s_addr) !=
704 				    INADDR_ANY ||
705 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
706 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
707 #endif
708 				return (EADDRINUSE);
709 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
710 					return (EADDRINUSE);
711 			}
712 		}
713 	}
714 	if (*lportp != 0)
715 		lport = *lportp;
716 	if (lport == 0) {
717 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
718 		if (error != 0)
719 			return (error);
720 
721 	}
722 	*laddrp = laddr.s_addr;
723 	*lportp = lport;
724 	return (0);
725 }
726 
727 /*
728  * Connect from a socket to a specified address.
729  * Both address and port must be specified in argument sin.
730  * If don't have a local address for this socket yet,
731  * then pick one.
732  */
733 int
734 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
735     struct ucred *cred, struct mbuf *m)
736 {
737 	u_short lport, fport;
738 	in_addr_t laddr, faddr;
739 	int anonport, error;
740 
741 	INP_WLOCK_ASSERT(inp);
742 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
743 
744 	lport = inp->inp_lport;
745 	laddr = inp->inp_laddr.s_addr;
746 	anonport = (lport == 0);
747 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
748 	    NULL, cred);
749 	if (error)
750 		return (error);
751 
752 	/* Do the initial binding of the local address if required. */
753 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
754 		inp->inp_lport = lport;
755 		inp->inp_laddr.s_addr = laddr;
756 		if (in_pcbinshash(inp) != 0) {
757 			inp->inp_laddr.s_addr = INADDR_ANY;
758 			inp->inp_lport = 0;
759 			return (EAGAIN);
760 		}
761 	}
762 
763 	/* Commit the remaining changes. */
764 	inp->inp_lport = lport;
765 	inp->inp_laddr.s_addr = laddr;
766 	inp->inp_faddr.s_addr = faddr;
767 	inp->inp_fport = fport;
768 	in_pcbrehash_mbuf(inp, m);
769 
770 	if (anonport)
771 		inp->inp_flags |= INP_ANONPORT;
772 	return (0);
773 }
774 
775 int
776 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
777 {
778 
779 	return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
780 }
781 
782 /*
783  * Do proper source address selection on an unbound socket in case
784  * of connect. Take jails into account as well.
785  */
786 int
787 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
788     struct ucred *cred)
789 {
790 	struct ifaddr *ifa;
791 	struct sockaddr *sa;
792 	struct sockaddr_in *sin;
793 	struct route sro;
794 	int error;
795 
796 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
797 
798 	/*
799 	 * Bypass source address selection and use the primary jail IP
800 	 * if requested.
801 	 */
802 	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
803 		return (0);
804 
805 	error = 0;
806 	bzero(&sro, sizeof(sro));
807 
808 	sin = (struct sockaddr_in *)&sro.ro_dst;
809 	sin->sin_family = AF_INET;
810 	sin->sin_len = sizeof(struct sockaddr_in);
811 	sin->sin_addr.s_addr = faddr->s_addr;
812 
813 	/*
814 	 * If route is known our src addr is taken from the i/f,
815 	 * else punt.
816 	 *
817 	 * Find out route to destination.
818 	 */
819 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
820 		in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
821 
822 	/*
823 	 * If we found a route, use the address corresponding to
824 	 * the outgoing interface.
825 	 *
826 	 * Otherwise assume faddr is reachable on a directly connected
827 	 * network and try to find a corresponding interface to take
828 	 * the source address from.
829 	 */
830 	if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
831 		struct in_ifaddr *ia;
832 		struct ifnet *ifp;
833 
834 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
835 					inp->inp_socket->so_fibnum));
836 		if (ia == NULL)
837 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
838 						inp->inp_socket->so_fibnum));
839 		if (ia == NULL) {
840 			error = ENETUNREACH;
841 			goto done;
842 		}
843 
844 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
845 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
846 			ifa_free(&ia->ia_ifa);
847 			goto done;
848 		}
849 
850 		ifp = ia->ia_ifp;
851 		ifa_free(&ia->ia_ifa);
852 		ia = NULL;
853 		IF_ADDR_RLOCK(ifp);
854 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
855 
856 			sa = ifa->ifa_addr;
857 			if (sa->sa_family != AF_INET)
858 				continue;
859 			sin = (struct sockaddr_in *)sa;
860 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
861 				ia = (struct in_ifaddr *)ifa;
862 				break;
863 			}
864 		}
865 		if (ia != NULL) {
866 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
867 			IF_ADDR_RUNLOCK(ifp);
868 			goto done;
869 		}
870 		IF_ADDR_RUNLOCK(ifp);
871 
872 		/* 3. As a last resort return the 'default' jail address. */
873 		error = prison_get_ip4(cred, laddr);
874 		goto done;
875 	}
876 
877 	/*
878 	 * If the outgoing interface on the route found is not
879 	 * a loopback interface, use the address from that interface.
880 	 * In case of jails do those three steps:
881 	 * 1. check if the interface address belongs to the jail. If so use it.
882 	 * 2. check if we have any address on the outgoing interface
883 	 *    belonging to this jail. If so use it.
884 	 * 3. as a last resort return the 'default' jail address.
885 	 */
886 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
887 		struct in_ifaddr *ia;
888 		struct ifnet *ifp;
889 
890 		/* If not jailed, use the default returned. */
891 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
892 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
893 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
894 			goto done;
895 		}
896 
897 		/* Jailed. */
898 		/* 1. Check if the iface address belongs to the jail. */
899 		sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
900 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
901 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
902 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
903 			goto done;
904 		}
905 
906 		/*
907 		 * 2. Check if we have any address on the outgoing interface
908 		 *    belonging to this jail.
909 		 */
910 		ia = NULL;
911 		ifp = sro.ro_rt->rt_ifp;
912 		IF_ADDR_RLOCK(ifp);
913 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
914 			sa = ifa->ifa_addr;
915 			if (sa->sa_family != AF_INET)
916 				continue;
917 			sin = (struct sockaddr_in *)sa;
918 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
919 				ia = (struct in_ifaddr *)ifa;
920 				break;
921 			}
922 		}
923 		if (ia != NULL) {
924 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
925 			IF_ADDR_RUNLOCK(ifp);
926 			goto done;
927 		}
928 		IF_ADDR_RUNLOCK(ifp);
929 
930 		/* 3. As a last resort return the 'default' jail address. */
931 		error = prison_get_ip4(cred, laddr);
932 		goto done;
933 	}
934 
935 	/*
936 	 * The outgoing interface is marked with 'loopback net', so a route
937 	 * to ourselves is here.
938 	 * Try to find the interface of the destination address and then
939 	 * take the address from there. That interface is not necessarily
940 	 * a loopback interface.
941 	 * In case of jails, check that it is an address of the jail
942 	 * and if we cannot find, fall back to the 'default' jail address.
943 	 */
944 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
945 		struct sockaddr_in sain;
946 		struct in_ifaddr *ia;
947 
948 		bzero(&sain, sizeof(struct sockaddr_in));
949 		sain.sin_family = AF_INET;
950 		sain.sin_len = sizeof(struct sockaddr_in);
951 		sain.sin_addr.s_addr = faddr->s_addr;
952 
953 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain),
954 					inp->inp_socket->so_fibnum));
955 		if (ia == NULL)
956 			ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0,
957 						inp->inp_socket->so_fibnum));
958 		if (ia == NULL)
959 			ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
960 
961 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
962 			if (ia == NULL) {
963 				error = ENETUNREACH;
964 				goto done;
965 			}
966 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
967 			ifa_free(&ia->ia_ifa);
968 			goto done;
969 		}
970 
971 		/* Jailed. */
972 		if (ia != NULL) {
973 			struct ifnet *ifp;
974 
975 			ifp = ia->ia_ifp;
976 			ifa_free(&ia->ia_ifa);
977 			ia = NULL;
978 			IF_ADDR_RLOCK(ifp);
979 			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
980 
981 				sa = ifa->ifa_addr;
982 				if (sa->sa_family != AF_INET)
983 					continue;
984 				sin = (struct sockaddr_in *)sa;
985 				if (prison_check_ip4(cred,
986 				    &sin->sin_addr) == 0) {
987 					ia = (struct in_ifaddr *)ifa;
988 					break;
989 				}
990 			}
991 			if (ia != NULL) {
992 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
993 				IF_ADDR_RUNLOCK(ifp);
994 				goto done;
995 			}
996 			IF_ADDR_RUNLOCK(ifp);
997 		}
998 
999 		/* 3. As a last resort return the 'default' jail address. */
1000 		error = prison_get_ip4(cred, laddr);
1001 		goto done;
1002 	}
1003 
1004 done:
1005 	if (sro.ro_rt != NULL)
1006 		RTFREE(sro.ro_rt);
1007 	return (error);
1008 }
1009 
1010 /*
1011  * Set up for a connect from a socket to the specified address.
1012  * On entry, *laddrp and *lportp should contain the current local
1013  * address and port for the PCB; these are updated to the values
1014  * that should be placed in inp_laddr and inp_lport to complete
1015  * the connect.
1016  *
1017  * On success, *faddrp and *fportp will be set to the remote address
1018  * and port. These are not updated in the error case.
1019  *
1020  * If the operation fails because the connection already exists,
1021  * *oinpp will be set to the PCB of that connection so that the
1022  * caller can decide to override it. In all other cases, *oinpp
1023  * is set to NULL.
1024  */
1025 int
1026 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
1027     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1028     struct inpcb **oinpp, struct ucred *cred)
1029 {
1030 	struct rm_priotracker in_ifa_tracker;
1031 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1032 	struct in_ifaddr *ia;
1033 	struct inpcb *oinp;
1034 	struct in_addr laddr, faddr;
1035 	u_short lport, fport;
1036 	int error;
1037 
1038 	/*
1039 	 * Because a global state change doesn't actually occur here, a read
1040 	 * lock is sufficient.
1041 	 */
1042 	INP_LOCK_ASSERT(inp);
1043 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1044 
1045 	if (oinpp != NULL)
1046 		*oinpp = NULL;
1047 	if (nam->sa_len != sizeof (*sin))
1048 		return (EINVAL);
1049 	if (sin->sin_family != AF_INET)
1050 		return (EAFNOSUPPORT);
1051 	if (sin->sin_port == 0)
1052 		return (EADDRNOTAVAIL);
1053 	laddr.s_addr = *laddrp;
1054 	lport = *lportp;
1055 	faddr = sin->sin_addr;
1056 	fport = sin->sin_port;
1057 
1058 	if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) {
1059 		/*
1060 		 * If the destination address is INADDR_ANY,
1061 		 * use the primary local address.
1062 		 * If the supplied address is INADDR_BROADCAST,
1063 		 * and the primary interface supports broadcast,
1064 		 * choose the broadcast address for that interface.
1065 		 */
1066 		if (faddr.s_addr == INADDR_ANY) {
1067 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1068 			faddr =
1069 			    IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1070 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1071 			if (cred != NULL &&
1072 			    (error = prison_get_ip4(cred, &faddr)) != 0)
1073 				return (error);
1074 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1075 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1076 			if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1077 			    IFF_BROADCAST)
1078 				faddr = satosin(&CK_STAILQ_FIRST(
1079 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1080 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1081 		}
1082 	}
1083 	if (laddr.s_addr == INADDR_ANY) {
1084 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
1085 		/*
1086 		 * If the destination address is multicast and an outgoing
1087 		 * interface has been set as a multicast option, prefer the
1088 		 * address of that interface as our source address.
1089 		 */
1090 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1091 		    inp->inp_moptions != NULL) {
1092 			struct ip_moptions *imo;
1093 			struct ifnet *ifp;
1094 
1095 			imo = inp->inp_moptions;
1096 			if (imo->imo_multicast_ifp != NULL) {
1097 				ifp = imo->imo_multicast_ifp;
1098 				IN_IFADDR_RLOCK(&in_ifa_tracker);
1099 				CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1100 					if ((ia->ia_ifp == ifp) &&
1101 					    (cred == NULL ||
1102 					    prison_check_ip4(cred,
1103 					    &ia->ia_addr.sin_addr) == 0))
1104 						break;
1105 				}
1106 				if (ia == NULL)
1107 					error = EADDRNOTAVAIL;
1108 				else {
1109 					laddr = ia->ia_addr.sin_addr;
1110 					error = 0;
1111 				}
1112 				IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1113 			}
1114 		}
1115 		if (error)
1116 			return (error);
1117 	}
1118 	oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1119 	    laddr, lport, 0, NULL);
1120 	if (oinp != NULL) {
1121 		if (oinpp != NULL)
1122 			*oinpp = oinp;
1123 		return (EADDRINUSE);
1124 	}
1125 	if (lport == 0) {
1126 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1127 		    cred);
1128 		if (error)
1129 			return (error);
1130 	}
1131 	*laddrp = laddr.s_addr;
1132 	*lportp = lport;
1133 	*faddrp = faddr.s_addr;
1134 	*fportp = fport;
1135 	return (0);
1136 }
1137 
1138 void
1139 in_pcbdisconnect(struct inpcb *inp)
1140 {
1141 
1142 	INP_WLOCK_ASSERT(inp);
1143 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1144 
1145 	inp->inp_faddr.s_addr = INADDR_ANY;
1146 	inp->inp_fport = 0;
1147 	in_pcbrehash(inp);
1148 }
1149 #endif /* INET */
1150 
1151 /*
1152  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1153  * For most protocols, this will be invoked immediately prior to calling
1154  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1155  * socket, in which case in_pcbfree() is deferred.
1156  */
1157 void
1158 in_pcbdetach(struct inpcb *inp)
1159 {
1160 
1161 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1162 
1163 #ifdef RATELIMIT
1164 	if (inp->inp_snd_tag != NULL)
1165 		in_pcbdetach_txrtlmt(inp);
1166 #endif
1167 	inp->inp_socket->so_pcb = NULL;
1168 	inp->inp_socket = NULL;
1169 }
1170 
1171 /*
1172  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1173  * stability of an inpcb pointer despite the inpcb lock being released.  This
1174  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1175  * but where the inpcb lock may already held, or when acquiring a reference
1176  * via a pcbgroup.
1177  *
1178  * in_pcbref() should be used only to provide brief memory stability, and
1179  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1180  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1181  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1182  * lock and rele are the *only* safe operations that may be performed on the
1183  * inpcb.
1184  *
1185  * While the inpcb will not be freed, releasing the inpcb lock means that the
1186  * connection's state may change, so the caller should be careful to
1187  * revalidate any cached state on reacquiring the lock.  Drop the reference
1188  * using in_pcbrele().
1189  */
1190 void
1191 in_pcbref(struct inpcb *inp)
1192 {
1193 
1194 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1195 
1196 	refcount_acquire(&inp->inp_refcount);
1197 }
1198 
1199 /*
1200  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1201  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1202  * return a flag indicating whether or not the inpcb remains valid.  If it is
1203  * valid, we return with the inpcb lock held.
1204  *
1205  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1206  * reference on an inpcb.  Historically more work was done here (actually, in
1207  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1208  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1209  * about memory stability (and continued use of the write lock).
1210  */
1211 int
1212 in_pcbrele_rlocked(struct inpcb *inp)
1213 {
1214 	struct inpcbinfo *pcbinfo;
1215 
1216 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1217 
1218 	INP_RLOCK_ASSERT(inp);
1219 
1220 	if (refcount_release(&inp->inp_refcount) == 0) {
1221 		/*
1222 		 * If the inpcb has been freed, let the caller know, even if
1223 		 * this isn't the last reference.
1224 		 */
1225 		if (inp->inp_flags2 & INP_FREED) {
1226 			INP_RUNLOCK(inp);
1227 			return (1);
1228 		}
1229 		return (0);
1230 	}
1231 
1232 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1233 #ifdef TCPHPTS
1234 	if (inp->inp_in_hpts || inp->inp_in_input) {
1235 		struct tcp_hpts_entry *hpts;
1236 		/*
1237 		 * We should not be on the hpts at
1238 		 * this point in any form. we must
1239 		 * get the lock to be sure.
1240 		 */
1241 		hpts = tcp_hpts_lock(inp);
1242 		if (inp->inp_in_hpts)
1243 			panic("Hpts:%p inp:%p at free still on hpts",
1244 			      hpts, inp);
1245 		mtx_unlock(&hpts->p_mtx);
1246 		hpts = tcp_input_lock(inp);
1247 		if (inp->inp_in_input)
1248 			panic("Hpts:%p inp:%p at free still on input hpts",
1249 			      hpts, inp);
1250 		mtx_unlock(&hpts->p_mtx);
1251 	}
1252 #endif
1253 	INP_RUNLOCK(inp);
1254 	pcbinfo = inp->inp_pcbinfo;
1255 	uma_zfree(pcbinfo->ipi_zone, inp);
1256 	return (1);
1257 }
1258 
1259 int
1260 in_pcbrele_wlocked(struct inpcb *inp)
1261 {
1262 	struct inpcbinfo *pcbinfo;
1263 
1264 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1265 
1266 	INP_WLOCK_ASSERT(inp);
1267 
1268 	if (refcount_release(&inp->inp_refcount) == 0) {
1269 		/*
1270 		 * If the inpcb has been freed, let the caller know, even if
1271 		 * this isn't the last reference.
1272 		 */
1273 		if (inp->inp_flags2 & INP_FREED) {
1274 			INP_WUNLOCK(inp);
1275 			return (1);
1276 		}
1277 		return (0);
1278 	}
1279 
1280 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1281 #ifdef TCPHPTS
1282 	if (inp->inp_in_hpts || inp->inp_in_input) {
1283 		struct tcp_hpts_entry *hpts;
1284 		/*
1285 		 * We should not be on the hpts at
1286 		 * this point in any form. we must
1287 		 * get the lock to be sure.
1288 		 */
1289 		hpts = tcp_hpts_lock(inp);
1290 		if (inp->inp_in_hpts)
1291 			panic("Hpts:%p inp:%p at free still on hpts",
1292 			      hpts, inp);
1293 		mtx_unlock(&hpts->p_mtx);
1294 		hpts = tcp_input_lock(inp);
1295 		if (inp->inp_in_input)
1296 			panic("Hpts:%p inp:%p at free still on input hpts",
1297 			      hpts, inp);
1298 		mtx_unlock(&hpts->p_mtx);
1299 	}
1300 #endif
1301 	INP_WUNLOCK(inp);
1302 	pcbinfo = inp->inp_pcbinfo;
1303 	uma_zfree(pcbinfo->ipi_zone, inp);
1304 	return (1);
1305 }
1306 
1307 /*
1308  * Temporary wrapper.
1309  */
1310 int
1311 in_pcbrele(struct inpcb *inp)
1312 {
1313 
1314 	return (in_pcbrele_wlocked(inp));
1315 }
1316 
1317 void
1318 in_pcblist_rele_rlocked(epoch_context_t ctx)
1319 {
1320 	struct in_pcblist *il;
1321 	struct inpcb *inp;
1322 	struct inpcbinfo *pcbinfo;
1323 	int i, n;
1324 
1325 	il = __containerof(ctx, struct in_pcblist, il_epoch_ctx);
1326 	pcbinfo = il->il_pcbinfo;
1327 	n = il->il_count;
1328 	INP_INFO_WLOCK(pcbinfo);
1329 	for (i = 0; i < n; i++) {
1330 		inp = il->il_inp_list[i];
1331 		INP_RLOCK(inp);
1332 		if (!in_pcbrele_rlocked(inp))
1333 			INP_RUNLOCK(inp);
1334 	}
1335 	INP_INFO_WUNLOCK(pcbinfo);
1336 	free(il, M_TEMP);
1337 }
1338 
1339 static void
1340 in_pcbfree_deferred(epoch_context_t ctx)
1341 {
1342 	struct inpcb *inp;
1343 	struct inpcbinfo *pcbinfo;
1344 #ifdef INET6
1345 	struct ip6_moptions *im6o = NULL;
1346 #endif
1347 #ifdef INET
1348 	struct ip_moptions *imo = NULL;
1349 #endif
1350 
1351 	inp = __containerof(ctx, struct inpcb, inp_epoch_ctx);
1352 	pcbinfo = inp->inp_pcbinfo;
1353 
1354 	INP_WLOCK(inp);
1355 #ifdef INET
1356 	imo = inp->inp_moptions;
1357 	inp->inp_moptions = NULL;
1358 #endif
1359 	/* XXXRW: Do as much as possible here. */
1360 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1361 	if (inp->inp_sp != NULL)
1362 		ipsec_delete_pcbpolicy(inp);
1363 #endif
1364 #ifdef INET6
1365 	if (inp->inp_vflag & INP_IPV6PROTO) {
1366 		ip6_freepcbopts(inp->in6p_outputopts);
1367 		im6o = inp->in6p_moptions;
1368 		inp->in6p_moptions = NULL;
1369 	}
1370 #endif
1371 	if (inp->inp_options)
1372 		(void)m_free(inp->inp_options);
1373 
1374 	inp->inp_vflag = 0;
1375 	inp->inp_flags2 |= INP_FREED;
1376 	crfree(inp->inp_cred);
1377 #ifdef MAC
1378 	mac_inpcb_destroy(inp);
1379 #endif
1380 	if (!in_pcbrele_wlocked(inp))
1381 		INP_WUNLOCK(inp);
1382 #ifdef INET6
1383 	ip6_freemoptions(im6o);
1384 #endif
1385 #ifdef INET
1386 	inp_freemoptions(imo);
1387 #endif
1388 }
1389 
1390 /*
1391  * Unconditionally schedule an inpcb to be freed by decrementing its
1392  * reference count, which should occur only after the inpcb has been detached
1393  * from its socket.  If another thread holds a temporary reference (acquired
1394  * using in_pcbref()) then the free is deferred until that reference is
1395  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1396  * work, including removal from global lists, is done in this context, where
1397  * the pcbinfo lock is held.
1398  */
1399 void
1400 in_pcbfree(struct inpcb *inp)
1401 {
1402 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1403 
1404 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1405 	KASSERT((inp->inp_flags2 & INP_FREED) == 0,
1406 	    ("%s: called twice for pcb %p", __func__, inp));
1407 	if (inp->inp_flags2 & INP_FREED) {
1408 		INP_WUNLOCK(inp);
1409 		return;
1410 	}
1411 
1412 #ifdef INVARIANTS
1413 	if (pcbinfo == &V_tcbinfo) {
1414 		INP_INFO_LOCK_ASSERT(pcbinfo);
1415 	} else {
1416 		INP_INFO_WLOCK_ASSERT(pcbinfo);
1417 	}
1418 #endif
1419 	INP_WLOCK_ASSERT(inp);
1420 	/* Remove first from list */
1421 	INP_LIST_WLOCK(pcbinfo);
1422 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1423 	in_pcbremlists(inp);
1424 	INP_LIST_WUNLOCK(pcbinfo);
1425 	RO_INVALIDATE_CACHE(&inp->inp_route);
1426 	INP_WUNLOCK(inp);
1427 	epoch_call(net_epoch_preempt, &inp->inp_epoch_ctx, in_pcbfree_deferred);
1428 }
1429 
1430 /*
1431  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1432  * port reservation, and preventing it from being returned by inpcb lookups.
1433  *
1434  * It is used by TCP to mark an inpcb as unused and avoid future packet
1435  * delivery or event notification when a socket remains open but TCP has
1436  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1437  * or a RST on the wire, and allows the port binding to be reused while still
1438  * maintaining the invariant that so_pcb always points to a valid inpcb until
1439  * in_pcbdetach().
1440  *
1441  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1442  * in_pcbnotifyall() and in_pcbpurgeif0()?
1443  */
1444 void
1445 in_pcbdrop(struct inpcb *inp)
1446 {
1447 
1448 	INP_WLOCK_ASSERT(inp);
1449 
1450 	/*
1451 	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1452 	 * the hash lock...?
1453 	 */
1454 	inp->inp_flags |= INP_DROPPED;
1455 	if (inp->inp_flags & INP_INHASHLIST) {
1456 		struct inpcbport *phd = inp->inp_phd;
1457 
1458 		INP_HASH_WLOCK(inp->inp_pcbinfo);
1459 		LIST_REMOVE(inp, inp_hash);
1460 		LIST_REMOVE(inp, inp_portlist);
1461 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1462 			LIST_REMOVE(phd, phd_hash);
1463 			free(phd, M_PCB);
1464 		}
1465 		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1466 		inp->inp_flags &= ~INP_INHASHLIST;
1467 #ifdef PCBGROUP
1468 		in_pcbgroup_remove(inp);
1469 #endif
1470 	}
1471 }
1472 
1473 #ifdef INET
1474 /*
1475  * Common routines to return the socket addresses associated with inpcbs.
1476  */
1477 struct sockaddr *
1478 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1479 {
1480 	struct sockaddr_in *sin;
1481 
1482 	sin = malloc(sizeof *sin, M_SONAME,
1483 		M_WAITOK | M_ZERO);
1484 	sin->sin_family = AF_INET;
1485 	sin->sin_len = sizeof(*sin);
1486 	sin->sin_addr = *addr_p;
1487 	sin->sin_port = port;
1488 
1489 	return (struct sockaddr *)sin;
1490 }
1491 
1492 int
1493 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1494 {
1495 	struct inpcb *inp;
1496 	struct in_addr addr;
1497 	in_port_t port;
1498 
1499 	inp = sotoinpcb(so);
1500 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1501 
1502 	INP_RLOCK(inp);
1503 	port = inp->inp_lport;
1504 	addr = inp->inp_laddr;
1505 	INP_RUNLOCK(inp);
1506 
1507 	*nam = in_sockaddr(port, &addr);
1508 	return 0;
1509 }
1510 
1511 int
1512 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1513 {
1514 	struct inpcb *inp;
1515 	struct in_addr addr;
1516 	in_port_t port;
1517 
1518 	inp = sotoinpcb(so);
1519 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1520 
1521 	INP_RLOCK(inp);
1522 	port = inp->inp_fport;
1523 	addr = inp->inp_faddr;
1524 	INP_RUNLOCK(inp);
1525 
1526 	*nam = in_sockaddr(port, &addr);
1527 	return 0;
1528 }
1529 
1530 void
1531 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1532     struct inpcb *(*notify)(struct inpcb *, int))
1533 {
1534 	struct inpcb *inp, *inp_temp;
1535 
1536 	INP_INFO_WLOCK(pcbinfo);
1537 	LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1538 		INP_WLOCK(inp);
1539 #ifdef INET6
1540 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1541 			INP_WUNLOCK(inp);
1542 			continue;
1543 		}
1544 #endif
1545 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1546 		    inp->inp_socket == NULL) {
1547 			INP_WUNLOCK(inp);
1548 			continue;
1549 		}
1550 		if ((*notify)(inp, errno))
1551 			INP_WUNLOCK(inp);
1552 	}
1553 	INP_INFO_WUNLOCK(pcbinfo);
1554 }
1555 
1556 void
1557 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1558 {
1559 	struct inpcb *inp;
1560 	struct ip_moptions *imo;
1561 	int i, gap;
1562 
1563 	INP_INFO_WLOCK(pcbinfo);
1564 	LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1565 		INP_WLOCK(inp);
1566 		imo = inp->inp_moptions;
1567 		if ((inp->inp_vflag & INP_IPV4) &&
1568 		    imo != NULL) {
1569 			/*
1570 			 * Unselect the outgoing interface if it is being
1571 			 * detached.
1572 			 */
1573 			if (imo->imo_multicast_ifp == ifp)
1574 				imo->imo_multicast_ifp = NULL;
1575 
1576 			/*
1577 			 * Drop multicast group membership if we joined
1578 			 * through the interface being detached.
1579 			 *
1580 			 * XXX This can all be deferred to an epoch_call
1581 			 */
1582 			for (i = 0, gap = 0; i < imo->imo_num_memberships;
1583 			    i++) {
1584 				if (imo->imo_membership[i]->inm_ifp == ifp) {
1585 					IN_MULTI_LOCK_ASSERT();
1586 					in_leavegroup_locked(imo->imo_membership[i], NULL);
1587 					gap++;
1588 				} else if (gap != 0)
1589 					imo->imo_membership[i - gap] =
1590 					    imo->imo_membership[i];
1591 			}
1592 			imo->imo_num_memberships -= gap;
1593 		}
1594 		INP_WUNLOCK(inp);
1595 	}
1596 	INP_INFO_WUNLOCK(pcbinfo);
1597 }
1598 
1599 /*
1600  * Lookup a PCB based on the local address and port.  Caller must hold the
1601  * hash lock.  No inpcb locks or references are acquired.
1602  */
1603 #define INP_LOOKUP_MAPPED_PCB_COST	3
1604 struct inpcb *
1605 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1606     u_short lport, int lookupflags, struct ucred *cred)
1607 {
1608 	struct inpcb *inp;
1609 #ifdef INET6
1610 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1611 #else
1612 	int matchwild = 3;
1613 #endif
1614 	int wildcard;
1615 
1616 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1617 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1618 
1619 	INP_HASH_LOCK_ASSERT(pcbinfo);
1620 
1621 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1622 		struct inpcbhead *head;
1623 		/*
1624 		 * Look for an unconnected (wildcard foreign addr) PCB that
1625 		 * matches the local address and port we're looking for.
1626 		 */
1627 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1628 		    0, pcbinfo->ipi_hashmask)];
1629 		LIST_FOREACH(inp, head, inp_hash) {
1630 #ifdef INET6
1631 			/* XXX inp locking */
1632 			if ((inp->inp_vflag & INP_IPV4) == 0)
1633 				continue;
1634 #endif
1635 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1636 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1637 			    inp->inp_lport == lport) {
1638 				/*
1639 				 * Found?
1640 				 */
1641 				if (cred == NULL ||
1642 				    prison_equal_ip4(cred->cr_prison,
1643 					inp->inp_cred->cr_prison))
1644 					return (inp);
1645 			}
1646 		}
1647 		/*
1648 		 * Not found.
1649 		 */
1650 		return (NULL);
1651 	} else {
1652 		struct inpcbporthead *porthash;
1653 		struct inpcbport *phd;
1654 		struct inpcb *match = NULL;
1655 		/*
1656 		 * Best fit PCB lookup.
1657 		 *
1658 		 * First see if this local port is in use by looking on the
1659 		 * port hash list.
1660 		 */
1661 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1662 		    pcbinfo->ipi_porthashmask)];
1663 		LIST_FOREACH(phd, porthash, phd_hash) {
1664 			if (phd->phd_port == lport)
1665 				break;
1666 		}
1667 		if (phd != NULL) {
1668 			/*
1669 			 * Port is in use by one or more PCBs. Look for best
1670 			 * fit.
1671 			 */
1672 			LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1673 				wildcard = 0;
1674 				if (cred != NULL &&
1675 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
1676 					cred->cr_prison))
1677 					continue;
1678 #ifdef INET6
1679 				/* XXX inp locking */
1680 				if ((inp->inp_vflag & INP_IPV4) == 0)
1681 					continue;
1682 				/*
1683 				 * We never select the PCB that has
1684 				 * INP_IPV6 flag and is bound to :: if
1685 				 * we have another PCB which is bound
1686 				 * to 0.0.0.0.  If a PCB has the
1687 				 * INP_IPV6 flag, then we set its cost
1688 				 * higher than IPv4 only PCBs.
1689 				 *
1690 				 * Note that the case only happens
1691 				 * when a socket is bound to ::, under
1692 				 * the condition that the use of the
1693 				 * mapped address is allowed.
1694 				 */
1695 				if ((inp->inp_vflag & INP_IPV6) != 0)
1696 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1697 #endif
1698 				if (inp->inp_faddr.s_addr != INADDR_ANY)
1699 					wildcard++;
1700 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
1701 					if (laddr.s_addr == INADDR_ANY)
1702 						wildcard++;
1703 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
1704 						continue;
1705 				} else {
1706 					if (laddr.s_addr != INADDR_ANY)
1707 						wildcard++;
1708 				}
1709 				if (wildcard < matchwild) {
1710 					match = inp;
1711 					matchwild = wildcard;
1712 					if (matchwild == 0)
1713 						break;
1714 				}
1715 			}
1716 		}
1717 		return (match);
1718 	}
1719 }
1720 #undef INP_LOOKUP_MAPPED_PCB_COST
1721 
1722 #ifdef PCBGROUP
1723 /*
1724  * Lookup PCB in hash list, using pcbgroup tables.
1725  */
1726 static struct inpcb *
1727 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
1728     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
1729     u_int lport_arg, int lookupflags, struct ifnet *ifp)
1730 {
1731 	struct inpcbhead *head;
1732 	struct inpcb *inp, *tmpinp;
1733 	u_short fport = fport_arg, lport = lport_arg;
1734 	bool locked;
1735 
1736 	/*
1737 	 * First look for an exact match.
1738 	 */
1739 	tmpinp = NULL;
1740 	INP_GROUP_LOCK(pcbgroup);
1741 	head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1742 	    pcbgroup->ipg_hashmask)];
1743 	LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1744 #ifdef INET6
1745 		/* XXX inp locking */
1746 		if ((inp->inp_vflag & INP_IPV4) == 0)
1747 			continue;
1748 #endif
1749 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1750 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1751 		    inp->inp_fport == fport &&
1752 		    inp->inp_lport == lport) {
1753 			/*
1754 			 * XXX We should be able to directly return
1755 			 * the inp here, without any checks.
1756 			 * Well unless both bound with SO_REUSEPORT?
1757 			 */
1758 			if (prison_flag(inp->inp_cred, PR_IP4))
1759 				goto found;
1760 			if (tmpinp == NULL)
1761 				tmpinp = inp;
1762 		}
1763 	}
1764 	if (tmpinp != NULL) {
1765 		inp = tmpinp;
1766 		goto found;
1767 	}
1768 
1769 #ifdef	RSS
1770 	/*
1771 	 * For incoming connections, we may wish to do a wildcard
1772 	 * match for an RSS-local socket.
1773 	 */
1774 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1775 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1776 #ifdef INET6
1777 		struct inpcb *local_wild_mapped = NULL;
1778 #endif
1779 		struct inpcb *jail_wild = NULL;
1780 		struct inpcbhead *head;
1781 		int injail;
1782 
1783 		/*
1784 		 * Order of socket selection - we always prefer jails.
1785 		 *      1. jailed, non-wild.
1786 		 *      2. jailed, wild.
1787 		 *      3. non-jailed, non-wild.
1788 		 *      4. non-jailed, wild.
1789 		 */
1790 
1791 		head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
1792 		    lport, 0, pcbgroup->ipg_hashmask)];
1793 		LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1794 #ifdef INET6
1795 			/* XXX inp locking */
1796 			if ((inp->inp_vflag & INP_IPV4) == 0)
1797 				continue;
1798 #endif
1799 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1800 			    inp->inp_lport != lport)
1801 				continue;
1802 
1803 			injail = prison_flag(inp->inp_cred, PR_IP4);
1804 			if (injail) {
1805 				if (prison_check_ip4(inp->inp_cred,
1806 				    &laddr) != 0)
1807 					continue;
1808 			} else {
1809 				if (local_exact != NULL)
1810 					continue;
1811 			}
1812 
1813 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1814 				if (injail)
1815 					goto found;
1816 				else
1817 					local_exact = inp;
1818 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1819 #ifdef INET6
1820 				/* XXX inp locking, NULL check */
1821 				if (inp->inp_vflag & INP_IPV6PROTO)
1822 					local_wild_mapped = inp;
1823 				else
1824 #endif
1825 					if (injail)
1826 						jail_wild = inp;
1827 					else
1828 						local_wild = inp;
1829 			}
1830 		} /* LIST_FOREACH */
1831 
1832 		inp = jail_wild;
1833 		if (inp == NULL)
1834 			inp = local_exact;
1835 		if (inp == NULL)
1836 			inp = local_wild;
1837 #ifdef INET6
1838 		if (inp == NULL)
1839 			inp = local_wild_mapped;
1840 #endif
1841 		if (inp != NULL)
1842 			goto found;
1843 	}
1844 #endif
1845 
1846 	/*
1847 	 * Then look for a wildcard match, if requested.
1848 	 */
1849 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1850 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1851 #ifdef INET6
1852 		struct inpcb *local_wild_mapped = NULL;
1853 #endif
1854 		struct inpcb *jail_wild = NULL;
1855 		struct inpcbhead *head;
1856 		int injail;
1857 
1858 		/*
1859 		 * Order of socket selection - we always prefer jails.
1860 		 *      1. jailed, non-wild.
1861 		 *      2. jailed, wild.
1862 		 *      3. non-jailed, non-wild.
1863 		 *      4. non-jailed, wild.
1864 		 */
1865 		head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
1866 		    0, pcbinfo->ipi_wildmask)];
1867 		LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
1868 #ifdef INET6
1869 			/* XXX inp locking */
1870 			if ((inp->inp_vflag & INP_IPV4) == 0)
1871 				continue;
1872 #endif
1873 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1874 			    inp->inp_lport != lport)
1875 				continue;
1876 
1877 			injail = prison_flag(inp->inp_cred, PR_IP4);
1878 			if (injail) {
1879 				if (prison_check_ip4(inp->inp_cred,
1880 				    &laddr) != 0)
1881 					continue;
1882 			} else {
1883 				if (local_exact != NULL)
1884 					continue;
1885 			}
1886 
1887 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1888 				if (injail)
1889 					goto found;
1890 				else
1891 					local_exact = inp;
1892 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1893 #ifdef INET6
1894 				/* XXX inp locking, NULL check */
1895 				if (inp->inp_vflag & INP_IPV6PROTO)
1896 					local_wild_mapped = inp;
1897 				else
1898 #endif
1899 					if (injail)
1900 						jail_wild = inp;
1901 					else
1902 						local_wild = inp;
1903 			}
1904 		} /* LIST_FOREACH */
1905 		inp = jail_wild;
1906 		if (inp == NULL)
1907 			inp = local_exact;
1908 		if (inp == NULL)
1909 			inp = local_wild;
1910 #ifdef INET6
1911 		if (inp == NULL)
1912 			inp = local_wild_mapped;
1913 #endif
1914 		if (inp != NULL)
1915 			goto found;
1916 	} /* if (lookupflags & INPLOOKUP_WILDCARD) */
1917 	INP_GROUP_UNLOCK(pcbgroup);
1918 	return (NULL);
1919 
1920 found:
1921 	if (lookupflags & INPLOOKUP_WLOCKPCB)
1922 		locked = INP_TRY_WLOCK(inp);
1923 	else if (lookupflags & INPLOOKUP_RLOCKPCB)
1924 		locked = INP_TRY_RLOCK(inp);
1925 	else
1926 		panic("%s: locking bug", __func__);
1927 	if (!locked)
1928 		in_pcbref(inp);
1929 	INP_GROUP_UNLOCK(pcbgroup);
1930 	if (!locked) {
1931 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
1932 			INP_WLOCK(inp);
1933 			if (in_pcbrele_wlocked(inp))
1934 				return (NULL);
1935 		} else {
1936 			INP_RLOCK(inp);
1937 			if (in_pcbrele_rlocked(inp))
1938 				return (NULL);
1939 		}
1940 	}
1941 #ifdef INVARIANTS
1942 	if (lookupflags & INPLOOKUP_WLOCKPCB)
1943 		INP_WLOCK_ASSERT(inp);
1944 	else
1945 		INP_RLOCK_ASSERT(inp);
1946 #endif
1947 	return (inp);
1948 }
1949 #endif /* PCBGROUP */
1950 
1951 /*
1952  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
1953  * that the caller has locked the hash list, and will not perform any further
1954  * locking or reference operations on either the hash list or the connection.
1955  */
1956 static struct inpcb *
1957 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1958     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
1959     struct ifnet *ifp)
1960 {
1961 	struct inpcbhead *head;
1962 	struct inpcb *inp, *tmpinp;
1963 	u_short fport = fport_arg, lport = lport_arg;
1964 
1965 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1966 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1967 
1968 	INP_HASH_LOCK_ASSERT(pcbinfo);
1969 
1970 	/*
1971 	 * First look for an exact match.
1972 	 */
1973 	tmpinp = NULL;
1974 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1975 	    pcbinfo->ipi_hashmask)];
1976 	LIST_FOREACH(inp, head, inp_hash) {
1977 #ifdef INET6
1978 		/* XXX inp locking */
1979 		if ((inp->inp_vflag & INP_IPV4) == 0)
1980 			continue;
1981 #endif
1982 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1983 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1984 		    inp->inp_fport == fport &&
1985 		    inp->inp_lport == lport) {
1986 			/*
1987 			 * XXX We should be able to directly return
1988 			 * the inp here, without any checks.
1989 			 * Well unless both bound with SO_REUSEPORT?
1990 			 */
1991 			if (prison_flag(inp->inp_cred, PR_IP4))
1992 				return (inp);
1993 			if (tmpinp == NULL)
1994 				tmpinp = inp;
1995 		}
1996 	}
1997 	if (tmpinp != NULL)
1998 		return (tmpinp);
1999 
2000 	/*
2001 	 * Then look for a wildcard match, if requested.
2002 	 */
2003 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
2004 		struct inpcb *local_wild = NULL, *local_exact = NULL;
2005 #ifdef INET6
2006 		struct inpcb *local_wild_mapped = NULL;
2007 #endif
2008 		struct inpcb *jail_wild = NULL;
2009 		int injail;
2010 
2011 		/*
2012 		 * Order of socket selection - we always prefer jails.
2013 		 *      1. jailed, non-wild.
2014 		 *      2. jailed, wild.
2015 		 *      3. non-jailed, non-wild.
2016 		 *      4. non-jailed, wild.
2017 		 */
2018 
2019 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
2020 		    0, pcbinfo->ipi_hashmask)];
2021 		LIST_FOREACH(inp, head, inp_hash) {
2022 #ifdef INET6
2023 			/* XXX inp locking */
2024 			if ((inp->inp_vflag & INP_IPV4) == 0)
2025 				continue;
2026 #endif
2027 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2028 			    inp->inp_lport != lport)
2029 				continue;
2030 
2031 			injail = prison_flag(inp->inp_cred, PR_IP4);
2032 			if (injail) {
2033 				if (prison_check_ip4(inp->inp_cred,
2034 				    &laddr) != 0)
2035 					continue;
2036 			} else {
2037 				if (local_exact != NULL)
2038 					continue;
2039 			}
2040 
2041 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2042 				if (injail)
2043 					return (inp);
2044 				else
2045 					local_exact = inp;
2046 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2047 #ifdef INET6
2048 				/* XXX inp locking, NULL check */
2049 				if (inp->inp_vflag & INP_IPV6PROTO)
2050 					local_wild_mapped = inp;
2051 				else
2052 #endif
2053 					if (injail)
2054 						jail_wild = inp;
2055 					else
2056 						local_wild = inp;
2057 			}
2058 		} /* LIST_FOREACH */
2059 		if (jail_wild != NULL)
2060 			return (jail_wild);
2061 		if (local_exact != NULL)
2062 			return (local_exact);
2063 		if (local_wild != NULL)
2064 			return (local_wild);
2065 #ifdef INET6
2066 		if (local_wild_mapped != NULL)
2067 			return (local_wild_mapped);
2068 #endif
2069 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
2070 
2071 	return (NULL);
2072 }
2073 
2074 /*
2075  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
2076  * hash list lock, and will return the inpcb locked (i.e., requires
2077  * INPLOOKUP_LOCKPCB).
2078  */
2079 static struct inpcb *
2080 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2081     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2082     struct ifnet *ifp)
2083 {
2084 	struct inpcb *inp;
2085 	bool locked;
2086 
2087 	INP_HASH_RLOCK(pcbinfo);
2088 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2089 	    (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
2090 	if (inp != NULL) {
2091 		if (lookupflags & INPLOOKUP_WLOCKPCB)
2092 			locked = INP_TRY_WLOCK(inp);
2093 		else if (lookupflags & INPLOOKUP_RLOCKPCB)
2094 			locked = INP_TRY_RLOCK(inp);
2095 		else
2096 			panic("%s: locking bug", __func__);
2097 		if (!locked)
2098 			in_pcbref(inp);
2099 		INP_HASH_RUNLOCK(pcbinfo);
2100 		if (!locked) {
2101 			if (lookupflags & INPLOOKUP_WLOCKPCB) {
2102 				INP_WLOCK(inp);
2103 				if (in_pcbrele_wlocked(inp))
2104 					return (NULL);
2105 			} else {
2106 				INP_RLOCK(inp);
2107 				if (in_pcbrele_rlocked(inp))
2108 					return (NULL);
2109 			}
2110 		}
2111 #ifdef INVARIANTS
2112 		if (lookupflags & INPLOOKUP_WLOCKPCB)
2113 			INP_WLOCK_ASSERT(inp);
2114 		else
2115 			INP_RLOCK_ASSERT(inp);
2116 #endif
2117 	} else
2118 		INP_HASH_RUNLOCK(pcbinfo);
2119 	return (inp);
2120 }
2121 
2122 /*
2123  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2124  * from which a pre-calculated hash value may be extracted.
2125  *
2126  * Possibly more of this logic should be in in_pcbgroup.c.
2127  */
2128 struct inpcb *
2129 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2130     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
2131 {
2132 #if defined(PCBGROUP) && !defined(RSS)
2133 	struct inpcbgroup *pcbgroup;
2134 #endif
2135 
2136 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2137 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2138 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2139 	    ("%s: LOCKPCB not set", __func__));
2140 
2141 	/*
2142 	 * When not using RSS, use connection groups in preference to the
2143 	 * reservation table when looking up 4-tuples.  When using RSS, just
2144 	 * use the reservation table, due to the cost of the Toeplitz hash
2145 	 * in software.
2146 	 *
2147 	 * XXXRW: This policy belongs in the pcbgroup code, as in principle
2148 	 * we could be doing RSS with a non-Toeplitz hash that is affordable
2149 	 * in software.
2150 	 */
2151 #if defined(PCBGROUP) && !defined(RSS)
2152 	if (in_pcbgroup_enabled(pcbinfo)) {
2153 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2154 		    fport);
2155 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2156 		    laddr, lport, lookupflags, ifp));
2157 	}
2158 #endif
2159 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2160 	    lookupflags, ifp));
2161 }
2162 
2163 struct inpcb *
2164 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2165     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2166     struct ifnet *ifp, struct mbuf *m)
2167 {
2168 #ifdef PCBGROUP
2169 	struct inpcbgroup *pcbgroup;
2170 #endif
2171 
2172 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2173 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2174 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2175 	    ("%s: LOCKPCB not set", __func__));
2176 
2177 #ifdef PCBGROUP
2178 	/*
2179 	 * If we can use a hardware-generated hash to look up the connection
2180 	 * group, use that connection group to find the inpcb.  Otherwise
2181 	 * fall back on a software hash -- or the reservation table if we're
2182 	 * using RSS.
2183 	 *
2184 	 * XXXRW: As above, that policy belongs in the pcbgroup code.
2185 	 */
2186 	if (in_pcbgroup_enabled(pcbinfo) &&
2187 	    !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
2188 		pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
2189 		    m->m_pkthdr.flowid);
2190 		if (pcbgroup != NULL)
2191 			return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
2192 			    fport, laddr, lport, lookupflags, ifp));
2193 #ifndef RSS
2194 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2195 		    fport);
2196 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2197 		    laddr, lport, lookupflags, ifp));
2198 #endif
2199 	}
2200 #endif
2201 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2202 	    lookupflags, ifp));
2203 }
2204 #endif /* INET */
2205 
2206 /*
2207  * Insert PCB onto various hash lists.
2208  */
2209 static int
2210 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
2211 {
2212 	struct inpcbhead *pcbhash;
2213 	struct inpcbporthead *pcbporthash;
2214 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2215 	struct inpcbport *phd;
2216 	u_int32_t hashkey_faddr;
2217 
2218 	INP_WLOCK_ASSERT(inp);
2219 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2220 
2221 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2222 	    ("in_pcbinshash: INP_INHASHLIST"));
2223 
2224 #ifdef INET6
2225 	if (inp->inp_vflag & INP_IPV6)
2226 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2227 	else
2228 #endif
2229 	hashkey_faddr = inp->inp_faddr.s_addr;
2230 
2231 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2232 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2233 
2234 	pcbporthash = &pcbinfo->ipi_porthashbase[
2235 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2236 
2237 	/*
2238 	 * Go through port list and look for a head for this lport.
2239 	 */
2240 	LIST_FOREACH(phd, pcbporthash, phd_hash) {
2241 		if (phd->phd_port == inp->inp_lport)
2242 			break;
2243 	}
2244 	/*
2245 	 * If none exists, malloc one and tack it on.
2246 	 */
2247 	if (phd == NULL) {
2248 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
2249 		if (phd == NULL) {
2250 			return (ENOBUFS); /* XXX */
2251 		}
2252 		phd->phd_port = inp->inp_lport;
2253 		LIST_INIT(&phd->phd_pcblist);
2254 		LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2255 	}
2256 	inp->inp_phd = phd;
2257 	LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2258 	LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2259 	inp->inp_flags |= INP_INHASHLIST;
2260 #ifdef PCBGROUP
2261 	if (do_pcbgroup_update)
2262 		in_pcbgroup_update(inp);
2263 #endif
2264 	return (0);
2265 }
2266 
2267 /*
2268  * For now, there are two public interfaces to insert an inpcb into the hash
2269  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
2270  * is used only in the TCP syncache, where in_pcbinshash is called before the
2271  * full 4-tuple is set for the inpcb, and we don't want to install in the
2272  * pcbgroup until later.
2273  *
2274  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
2275  * connection groups, and partially initialised inpcbs should not be exposed
2276  * to either reservation hash tables or pcbgroups.
2277  */
2278 int
2279 in_pcbinshash(struct inpcb *inp)
2280 {
2281 
2282 	return (in_pcbinshash_internal(inp, 1));
2283 }
2284 
2285 int
2286 in_pcbinshash_nopcbgroup(struct inpcb *inp)
2287 {
2288 
2289 	return (in_pcbinshash_internal(inp, 0));
2290 }
2291 
2292 /*
2293  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2294  * changed. NOTE: This does not handle the case of the lport changing (the
2295  * hashed port list would have to be updated as well), so the lport must
2296  * not change after in_pcbinshash() has been called.
2297  */
2298 void
2299 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
2300 {
2301 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2302 	struct inpcbhead *head;
2303 	u_int32_t hashkey_faddr;
2304 
2305 	INP_WLOCK_ASSERT(inp);
2306 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2307 
2308 	KASSERT(inp->inp_flags & INP_INHASHLIST,
2309 	    ("in_pcbrehash: !INP_INHASHLIST"));
2310 
2311 #ifdef INET6
2312 	if (inp->inp_vflag & INP_IPV6)
2313 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2314 	else
2315 #endif
2316 	hashkey_faddr = inp->inp_faddr.s_addr;
2317 
2318 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2319 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2320 
2321 	LIST_REMOVE(inp, inp_hash);
2322 	LIST_INSERT_HEAD(head, inp, inp_hash);
2323 
2324 #ifdef PCBGROUP
2325 	if (m != NULL)
2326 		in_pcbgroup_update_mbuf(inp, m);
2327 	else
2328 		in_pcbgroup_update(inp);
2329 #endif
2330 }
2331 
2332 void
2333 in_pcbrehash(struct inpcb *inp)
2334 {
2335 
2336 	in_pcbrehash_mbuf(inp, NULL);
2337 }
2338 
2339 /*
2340  * Remove PCB from various lists.
2341  */
2342 static void
2343 in_pcbremlists(struct inpcb *inp)
2344 {
2345 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2346 
2347 #ifdef INVARIANTS
2348 	if (pcbinfo == &V_tcbinfo) {
2349 		INP_INFO_RLOCK_ASSERT(pcbinfo);
2350 	} else {
2351 		INP_INFO_WLOCK_ASSERT(pcbinfo);
2352 	}
2353 #endif
2354 
2355 	INP_WLOCK_ASSERT(inp);
2356 	INP_LIST_WLOCK_ASSERT(pcbinfo);
2357 
2358 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2359 	if (inp->inp_flags & INP_INHASHLIST) {
2360 		struct inpcbport *phd = inp->inp_phd;
2361 
2362 		INP_HASH_WLOCK(pcbinfo);
2363 		LIST_REMOVE(inp, inp_hash);
2364 		LIST_REMOVE(inp, inp_portlist);
2365 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
2366 			LIST_REMOVE(phd, phd_hash);
2367 			free(phd, M_PCB);
2368 		}
2369 		INP_HASH_WUNLOCK(pcbinfo);
2370 		inp->inp_flags &= ~INP_INHASHLIST;
2371 	}
2372 	LIST_REMOVE(inp, inp_list);
2373 	pcbinfo->ipi_count--;
2374 #ifdef PCBGROUP
2375 	in_pcbgroup_remove(inp);
2376 #endif
2377 }
2378 
2379 /*
2380  * Check for alternatives when higher level complains
2381  * about service problems.  For now, invalidate cached
2382  * routing information.  If the route was created dynamically
2383  * (by a redirect), time to try a default gateway again.
2384  */
2385 void
2386 in_losing(struct inpcb *inp)
2387 {
2388 
2389 	RO_INVALIDATE_CACHE(&inp->inp_route);
2390 	return;
2391 }
2392 
2393 /*
2394  * A set label operation has occurred at the socket layer, propagate the
2395  * label change into the in_pcb for the socket.
2396  */
2397 void
2398 in_pcbsosetlabel(struct socket *so)
2399 {
2400 #ifdef MAC
2401 	struct inpcb *inp;
2402 
2403 	inp = sotoinpcb(so);
2404 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2405 
2406 	INP_WLOCK(inp);
2407 	SOCK_LOCK(so);
2408 	mac_inpcb_sosetlabel(so, inp);
2409 	SOCK_UNLOCK(so);
2410 	INP_WUNLOCK(inp);
2411 #endif
2412 }
2413 
2414 /*
2415  * ipport_tick runs once per second, determining if random port allocation
2416  * should be continued.  If more than ipport_randomcps ports have been
2417  * allocated in the last second, then we return to sequential port
2418  * allocation. We return to random allocation only once we drop below
2419  * ipport_randomcps for at least ipport_randomtime seconds.
2420  */
2421 static void
2422 ipport_tick(void *xtp)
2423 {
2424 	VNET_ITERATOR_DECL(vnet_iter);
2425 
2426 	VNET_LIST_RLOCK_NOSLEEP();
2427 	VNET_FOREACH(vnet_iter) {
2428 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
2429 		if (V_ipport_tcpallocs <=
2430 		    V_ipport_tcplastcount + V_ipport_randomcps) {
2431 			if (V_ipport_stoprandom > 0)
2432 				V_ipport_stoprandom--;
2433 		} else
2434 			V_ipport_stoprandom = V_ipport_randomtime;
2435 		V_ipport_tcplastcount = V_ipport_tcpallocs;
2436 		CURVNET_RESTORE();
2437 	}
2438 	VNET_LIST_RUNLOCK_NOSLEEP();
2439 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2440 }
2441 
2442 static void
2443 ip_fini(void *xtp)
2444 {
2445 
2446 	callout_stop(&ipport_tick_callout);
2447 }
2448 
2449 /*
2450  * The ipport_callout should start running at about the time we attach the
2451  * inet or inet6 domains.
2452  */
2453 static void
2454 ipport_tick_init(const void *unused __unused)
2455 {
2456 
2457 	/* Start ipport_tick. */
2458 	callout_init(&ipport_tick_callout, 1);
2459 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2460 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2461 		SHUTDOWN_PRI_DEFAULT);
2462 }
2463 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
2464     ipport_tick_init, NULL);
2465 
2466 void
2467 inp_wlock(struct inpcb *inp)
2468 {
2469 
2470 	INP_WLOCK(inp);
2471 }
2472 
2473 void
2474 inp_wunlock(struct inpcb *inp)
2475 {
2476 
2477 	INP_WUNLOCK(inp);
2478 }
2479 
2480 void
2481 inp_rlock(struct inpcb *inp)
2482 {
2483 
2484 	INP_RLOCK(inp);
2485 }
2486 
2487 void
2488 inp_runlock(struct inpcb *inp)
2489 {
2490 
2491 	INP_RUNLOCK(inp);
2492 }
2493 
2494 #ifdef INVARIANT_SUPPORT
2495 void
2496 inp_lock_assert(struct inpcb *inp)
2497 {
2498 
2499 	INP_WLOCK_ASSERT(inp);
2500 }
2501 
2502 void
2503 inp_unlock_assert(struct inpcb *inp)
2504 {
2505 
2506 	INP_UNLOCK_ASSERT(inp);
2507 }
2508 #endif
2509 
2510 void
2511 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2512 {
2513 	struct inpcb *inp;
2514 
2515 	INP_INFO_WLOCK(&V_tcbinfo);
2516 	LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2517 		INP_WLOCK(inp);
2518 		func(inp, arg);
2519 		INP_WUNLOCK(inp);
2520 	}
2521 	INP_INFO_WUNLOCK(&V_tcbinfo);
2522 }
2523 
2524 struct socket *
2525 inp_inpcbtosocket(struct inpcb *inp)
2526 {
2527 
2528 	INP_WLOCK_ASSERT(inp);
2529 	return (inp->inp_socket);
2530 }
2531 
2532 struct tcpcb *
2533 inp_inpcbtotcpcb(struct inpcb *inp)
2534 {
2535 
2536 	INP_WLOCK_ASSERT(inp);
2537 	return ((struct tcpcb *)inp->inp_ppcb);
2538 }
2539 
2540 int
2541 inp_ip_tos_get(const struct inpcb *inp)
2542 {
2543 
2544 	return (inp->inp_ip_tos);
2545 }
2546 
2547 void
2548 inp_ip_tos_set(struct inpcb *inp, int val)
2549 {
2550 
2551 	inp->inp_ip_tos = val;
2552 }
2553 
2554 void
2555 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2556     uint32_t *faddr, uint16_t *fp)
2557 {
2558 
2559 	INP_LOCK_ASSERT(inp);
2560 	*laddr = inp->inp_laddr.s_addr;
2561 	*faddr = inp->inp_faddr.s_addr;
2562 	*lp = inp->inp_lport;
2563 	*fp = inp->inp_fport;
2564 }
2565 
2566 struct inpcb *
2567 so_sotoinpcb(struct socket *so)
2568 {
2569 
2570 	return (sotoinpcb(so));
2571 }
2572 
2573 struct tcpcb *
2574 so_sototcpcb(struct socket *so)
2575 {
2576 
2577 	return (sototcpcb(so));
2578 }
2579 
2580 /*
2581  * Create an external-format (``xinpcb'') structure using the information in
2582  * the kernel-format in_pcb structure pointed to by inp.  This is done to
2583  * reduce the spew of irrelevant information over this interface, to isolate
2584  * user code from changes in the kernel structure, and potentially to provide
2585  * information-hiding if we decide that some of this information should be
2586  * hidden from users.
2587  */
2588 void
2589 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2590 {
2591 
2592 	xi->xi_len = sizeof(struct xinpcb);
2593 	if (inp->inp_socket)
2594 		sotoxsocket(inp->inp_socket, &xi->xi_socket);
2595 	else
2596 		bzero(&xi->xi_socket, sizeof(struct xsocket));
2597 	bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2598 	xi->inp_gencnt = inp->inp_gencnt;
2599 	xi->inp_ppcb = inp->inp_ppcb;
2600 	xi->inp_flow = inp->inp_flow;
2601 	xi->inp_flowid = inp->inp_flowid;
2602 	xi->inp_flowtype = inp->inp_flowtype;
2603 	xi->inp_flags = inp->inp_flags;
2604 	xi->inp_flags2 = inp->inp_flags2;
2605 	xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket;
2606 	xi->in6p_cksum = inp->in6p_cksum;
2607 	xi->in6p_hops = inp->in6p_hops;
2608 	xi->inp_ip_tos = inp->inp_ip_tos;
2609 	xi->inp_vflag = inp->inp_vflag;
2610 	xi->inp_ip_ttl = inp->inp_ip_ttl;
2611 	xi->inp_ip_p = inp->inp_ip_p;
2612 	xi->inp_ip_minttl = inp->inp_ip_minttl;
2613 }
2614 
2615 #ifdef DDB
2616 static void
2617 db_print_indent(int indent)
2618 {
2619 	int i;
2620 
2621 	for (i = 0; i < indent; i++)
2622 		db_printf(" ");
2623 }
2624 
2625 static void
2626 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2627 {
2628 	char faddr_str[48], laddr_str[48];
2629 
2630 	db_print_indent(indent);
2631 	db_printf("%s at %p\n", name, inc);
2632 
2633 	indent += 2;
2634 
2635 #ifdef INET6
2636 	if (inc->inc_flags & INC_ISIPV6) {
2637 		/* IPv6. */
2638 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
2639 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
2640 	} else
2641 #endif
2642 	{
2643 		/* IPv4. */
2644 		inet_ntoa_r(inc->inc_laddr, laddr_str);
2645 		inet_ntoa_r(inc->inc_faddr, faddr_str);
2646 	}
2647 	db_print_indent(indent);
2648 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2649 	    ntohs(inc->inc_lport));
2650 	db_print_indent(indent);
2651 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2652 	    ntohs(inc->inc_fport));
2653 }
2654 
2655 static void
2656 db_print_inpflags(int inp_flags)
2657 {
2658 	int comma;
2659 
2660 	comma = 0;
2661 	if (inp_flags & INP_RECVOPTS) {
2662 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2663 		comma = 1;
2664 	}
2665 	if (inp_flags & INP_RECVRETOPTS) {
2666 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2667 		comma = 1;
2668 	}
2669 	if (inp_flags & INP_RECVDSTADDR) {
2670 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2671 		comma = 1;
2672 	}
2673 	if (inp_flags & INP_ORIGDSTADDR) {
2674 		db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
2675 		comma = 1;
2676 	}
2677 	if (inp_flags & INP_HDRINCL) {
2678 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
2679 		comma = 1;
2680 	}
2681 	if (inp_flags & INP_HIGHPORT) {
2682 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2683 		comma = 1;
2684 	}
2685 	if (inp_flags & INP_LOWPORT) {
2686 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
2687 		comma = 1;
2688 	}
2689 	if (inp_flags & INP_ANONPORT) {
2690 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
2691 		comma = 1;
2692 	}
2693 	if (inp_flags & INP_RECVIF) {
2694 		db_printf("%sINP_RECVIF", comma ? ", " : "");
2695 		comma = 1;
2696 	}
2697 	if (inp_flags & INP_MTUDISC) {
2698 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
2699 		comma = 1;
2700 	}
2701 	if (inp_flags & INP_RECVTTL) {
2702 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
2703 		comma = 1;
2704 	}
2705 	if (inp_flags & INP_DONTFRAG) {
2706 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2707 		comma = 1;
2708 	}
2709 	if (inp_flags & INP_RECVTOS) {
2710 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
2711 		comma = 1;
2712 	}
2713 	if (inp_flags & IN6P_IPV6_V6ONLY) {
2714 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
2715 		comma = 1;
2716 	}
2717 	if (inp_flags & IN6P_PKTINFO) {
2718 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
2719 		comma = 1;
2720 	}
2721 	if (inp_flags & IN6P_HOPLIMIT) {
2722 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
2723 		comma = 1;
2724 	}
2725 	if (inp_flags & IN6P_HOPOPTS) {
2726 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
2727 		comma = 1;
2728 	}
2729 	if (inp_flags & IN6P_DSTOPTS) {
2730 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
2731 		comma = 1;
2732 	}
2733 	if (inp_flags & IN6P_RTHDR) {
2734 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
2735 		comma = 1;
2736 	}
2737 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
2738 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
2739 		comma = 1;
2740 	}
2741 	if (inp_flags & IN6P_TCLASS) {
2742 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
2743 		comma = 1;
2744 	}
2745 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
2746 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
2747 		comma = 1;
2748 	}
2749 	if (inp_flags & INP_TIMEWAIT) {
2750 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
2751 		comma  = 1;
2752 	}
2753 	if (inp_flags & INP_ONESBCAST) {
2754 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
2755 		comma  = 1;
2756 	}
2757 	if (inp_flags & INP_DROPPED) {
2758 		db_printf("%sINP_DROPPED", comma ? ", " : "");
2759 		comma  = 1;
2760 	}
2761 	if (inp_flags & INP_SOCKREF) {
2762 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
2763 		comma  = 1;
2764 	}
2765 	if (inp_flags & IN6P_RFC2292) {
2766 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
2767 		comma = 1;
2768 	}
2769 	if (inp_flags & IN6P_MTU) {
2770 		db_printf("IN6P_MTU%s", comma ? ", " : "");
2771 		comma = 1;
2772 	}
2773 }
2774 
2775 static void
2776 db_print_inpvflag(u_char inp_vflag)
2777 {
2778 	int comma;
2779 
2780 	comma = 0;
2781 	if (inp_vflag & INP_IPV4) {
2782 		db_printf("%sINP_IPV4", comma ? ", " : "");
2783 		comma  = 1;
2784 	}
2785 	if (inp_vflag & INP_IPV6) {
2786 		db_printf("%sINP_IPV6", comma ? ", " : "");
2787 		comma  = 1;
2788 	}
2789 	if (inp_vflag & INP_IPV6PROTO) {
2790 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
2791 		comma  = 1;
2792 	}
2793 }
2794 
2795 static void
2796 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
2797 {
2798 
2799 	db_print_indent(indent);
2800 	db_printf("%s at %p\n", name, inp);
2801 
2802 	indent += 2;
2803 
2804 	db_print_indent(indent);
2805 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
2806 
2807 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
2808 
2809 	db_print_indent(indent);
2810 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
2811 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
2812 
2813 	db_print_indent(indent);
2814 	db_printf("inp_label: %p   inp_flags: 0x%x (",
2815 	   inp->inp_label, inp->inp_flags);
2816 	db_print_inpflags(inp->inp_flags);
2817 	db_printf(")\n");
2818 
2819 	db_print_indent(indent);
2820 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
2821 	    inp->inp_vflag);
2822 	db_print_inpvflag(inp->inp_vflag);
2823 	db_printf(")\n");
2824 
2825 	db_print_indent(indent);
2826 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
2827 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
2828 
2829 	db_print_indent(indent);
2830 #ifdef INET6
2831 	if (inp->inp_vflag & INP_IPV6) {
2832 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
2833 		    "in6p_moptions: %p\n", inp->in6p_options,
2834 		    inp->in6p_outputopts, inp->in6p_moptions);
2835 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
2836 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
2837 		    inp->in6p_hops);
2838 	} else
2839 #endif
2840 	{
2841 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
2842 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
2843 		    inp->inp_options, inp->inp_moptions);
2844 	}
2845 
2846 	db_print_indent(indent);
2847 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
2848 	    (uintmax_t)inp->inp_gencnt);
2849 }
2850 
2851 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
2852 {
2853 	struct inpcb *inp;
2854 
2855 	if (!have_addr) {
2856 		db_printf("usage: show inpcb <addr>\n");
2857 		return;
2858 	}
2859 	inp = (struct inpcb *)addr;
2860 
2861 	db_print_inpcb(inp, "inpcb", 0);
2862 }
2863 #endif /* DDB */
2864 
2865 #ifdef RATELIMIT
2866 /*
2867  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
2868  * if any.
2869  */
2870 int
2871 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
2872 {
2873 	union if_snd_tag_modify_params params = {
2874 		.rate_limit.max_rate = max_pacing_rate,
2875 	};
2876 	struct m_snd_tag *mst;
2877 	struct ifnet *ifp;
2878 	int error;
2879 
2880 	mst = inp->inp_snd_tag;
2881 	if (mst == NULL)
2882 		return (EINVAL);
2883 
2884 	ifp = mst->ifp;
2885 	if (ifp == NULL)
2886 		return (EINVAL);
2887 
2888 	if (ifp->if_snd_tag_modify == NULL) {
2889 		error = EOPNOTSUPP;
2890 	} else {
2891 		error = ifp->if_snd_tag_modify(mst, &params);
2892 	}
2893 	return (error);
2894 }
2895 
2896 /*
2897  * Query existing TX rate limit based on the existing
2898  * "inp->inp_snd_tag", if any.
2899  */
2900 int
2901 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
2902 {
2903 	union if_snd_tag_query_params params = { };
2904 	struct m_snd_tag *mst;
2905 	struct ifnet *ifp;
2906 	int error;
2907 
2908 	mst = inp->inp_snd_tag;
2909 	if (mst == NULL)
2910 		return (EINVAL);
2911 
2912 	ifp = mst->ifp;
2913 	if (ifp == NULL)
2914 		return (EINVAL);
2915 
2916 	if (ifp->if_snd_tag_query == NULL) {
2917 		error = EOPNOTSUPP;
2918 	} else {
2919 		error = ifp->if_snd_tag_query(mst, &params);
2920 		if (error == 0 &&  p_max_pacing_rate != NULL)
2921 			*p_max_pacing_rate = params.rate_limit.max_rate;
2922 	}
2923 	return (error);
2924 }
2925 
2926 /*
2927  * Query existing TX queue level based on the existing
2928  * "inp->inp_snd_tag", if any.
2929  */
2930 int
2931 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
2932 {
2933 	union if_snd_tag_query_params params = { };
2934 	struct m_snd_tag *mst;
2935 	struct ifnet *ifp;
2936 	int error;
2937 
2938 	mst = inp->inp_snd_tag;
2939 	if (mst == NULL)
2940 		return (EINVAL);
2941 
2942 	ifp = mst->ifp;
2943 	if (ifp == NULL)
2944 		return (EINVAL);
2945 
2946 	if (ifp->if_snd_tag_query == NULL)
2947 		return (EOPNOTSUPP);
2948 
2949 	error = ifp->if_snd_tag_query(mst, &params);
2950 	if (error == 0 &&  p_txqueue_level != NULL)
2951 		*p_txqueue_level = params.rate_limit.queue_level;
2952 	return (error);
2953 }
2954 
2955 /*
2956  * Allocate a new TX rate limit send tag from the network interface
2957  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
2958  */
2959 int
2960 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
2961     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate)
2962 {
2963 	union if_snd_tag_alloc_params params = {
2964 		.rate_limit.hdr.type = (max_pacing_rate == -1U) ?
2965 		    IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
2966 		.rate_limit.hdr.flowid = flowid,
2967 		.rate_limit.hdr.flowtype = flowtype,
2968 		.rate_limit.max_rate = max_pacing_rate,
2969 	};
2970 	int error;
2971 
2972 	INP_WLOCK_ASSERT(inp);
2973 
2974 	if (inp->inp_snd_tag != NULL)
2975 		return (EINVAL);
2976 
2977 	if (ifp->if_snd_tag_alloc == NULL) {
2978 		error = EOPNOTSUPP;
2979 	} else {
2980 		error = ifp->if_snd_tag_alloc(ifp, &params, &inp->inp_snd_tag);
2981 
2982 		/*
2983 		 * At success increment the refcount on
2984 		 * the send tag's network interface:
2985 		 */
2986 		if (error == 0)
2987 			if_ref(inp->inp_snd_tag->ifp);
2988 	}
2989 	return (error);
2990 }
2991 
2992 /*
2993  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
2994  * if any:
2995  */
2996 void
2997 in_pcbdetach_txrtlmt(struct inpcb *inp)
2998 {
2999 	struct m_snd_tag *mst;
3000 	struct ifnet *ifp;
3001 
3002 	INP_WLOCK_ASSERT(inp);
3003 
3004 	mst = inp->inp_snd_tag;
3005 	inp->inp_snd_tag = NULL;
3006 
3007 	if (mst == NULL)
3008 		return;
3009 
3010 	ifp = mst->ifp;
3011 	if (ifp == NULL)
3012 		return;
3013 
3014 	/*
3015 	 * If the device was detached while we still had reference(s)
3016 	 * on the ifp, we assume if_snd_tag_free() was replaced with
3017 	 * stubs.
3018 	 */
3019 	ifp->if_snd_tag_free(mst);
3020 
3021 	/* release reference count on network interface */
3022 	if_rele(ifp);
3023 }
3024 
3025 /*
3026  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
3027  * is set in the fast path and will attach/detach/modify the TX rate
3028  * limit send tag based on the socket's so_max_pacing_rate value.
3029  */
3030 void
3031 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
3032 {
3033 	struct socket *socket;
3034 	uint32_t max_pacing_rate;
3035 	bool did_upgrade;
3036 	int error;
3037 
3038 	if (inp == NULL)
3039 		return;
3040 
3041 	socket = inp->inp_socket;
3042 	if (socket == NULL)
3043 		return;
3044 
3045 	if (!INP_WLOCKED(inp)) {
3046 		/*
3047 		 * NOTE: If the write locking fails, we need to bail
3048 		 * out and use the non-ratelimited ring for the
3049 		 * transmit until there is a new chance to get the
3050 		 * write lock.
3051 		 */
3052 		if (!INP_TRY_UPGRADE(inp))
3053 			return;
3054 		did_upgrade = 1;
3055 	} else {
3056 		did_upgrade = 0;
3057 	}
3058 
3059 	/*
3060 	 * NOTE: The so_max_pacing_rate value is read unlocked,
3061 	 * because atomic updates are not required since the variable
3062 	 * is checked at every mbuf we send. It is assumed that the
3063 	 * variable read itself will be atomic.
3064 	 */
3065 	max_pacing_rate = socket->so_max_pacing_rate;
3066 
3067 	/*
3068 	 * NOTE: When attaching to a network interface a reference is
3069 	 * made to ensure the network interface doesn't go away until
3070 	 * all ratelimit connections are gone. The network interface
3071 	 * pointers compared below represent valid network interfaces,
3072 	 * except when comparing towards NULL.
3073 	 */
3074 	if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3075 		error = 0;
3076 	} else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3077 		if (inp->inp_snd_tag != NULL)
3078 			in_pcbdetach_txrtlmt(inp);
3079 		error = 0;
3080 	} else if (inp->inp_snd_tag == NULL) {
3081 		/*
3082 		 * In order to utilize packet pacing with RSS, we need
3083 		 * to wait until there is a valid RSS hash before we
3084 		 * can proceed:
3085 		 */
3086 		if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3087 			error = EAGAIN;
3088 		} else {
3089 			error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3090 			    mb->m_pkthdr.flowid, max_pacing_rate);
3091 		}
3092 	} else {
3093 		error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3094 	}
3095 	if (error == 0 || error == EOPNOTSUPP)
3096 		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3097 	if (did_upgrade)
3098 		INP_DOWNGRADE(inp);
3099 }
3100 
3101 /*
3102  * Track route changes for TX rate limiting.
3103  */
3104 void
3105 in_pcboutput_eagain(struct inpcb *inp)
3106 {
3107 	struct socket *socket;
3108 	bool did_upgrade;
3109 
3110 	if (inp == NULL)
3111 		return;
3112 
3113 	socket = inp->inp_socket;
3114 	if (socket == NULL)
3115 		return;
3116 
3117 	if (inp->inp_snd_tag == NULL)
3118 		return;
3119 
3120 	if (!INP_WLOCKED(inp)) {
3121 		/*
3122 		 * NOTE: If the write locking fails, we need to bail
3123 		 * out and use the non-ratelimited ring for the
3124 		 * transmit until there is a new chance to get the
3125 		 * write lock.
3126 		 */
3127 		if (!INP_TRY_UPGRADE(inp))
3128 			return;
3129 		did_upgrade = 1;
3130 	} else {
3131 		did_upgrade = 0;
3132 	}
3133 
3134 	/* detach rate limiting */
3135 	in_pcbdetach_txrtlmt(inp);
3136 
3137 	/* make sure new mbuf send tag allocation is made */
3138 	inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3139 
3140 	if (did_upgrade)
3141 		INP_DOWNGRADE(inp);
3142 }
3143 #endif /* RATELIMIT */
3144