xref: /freebsd/sys/netinet/in_pcb.c (revision 5861f9665471e98e544f6fa3ce73c4912229ff82)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993, 1995
3  *	The Regents of the University of California.
4  * Copyright (c) 2007-2009 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_ddb.h"
38 #include "opt_ipsec.h"
39 #include "opt_inet6.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/domain.h>
46 #include <sys/protosw.h>
47 #include <sys/socket.h>
48 #include <sys/socketvar.h>
49 #include <sys/priv.h>
50 #include <sys/proc.h>
51 #include <sys/jail.h>
52 #include <sys/kernel.h>
53 #include <sys/sysctl.h>
54 #include <sys/vimage.h>
55 
56 #ifdef DDB
57 #include <ddb/ddb.h>
58 #endif
59 
60 #include <vm/uma.h>
61 
62 #include <net/if.h>
63 #include <net/if_types.h>
64 #include <net/route.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_pcb.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip_var.h>
70 #include <netinet/tcp_var.h>
71 #include <netinet/udp.h>
72 #include <netinet/udp_var.h>
73 #include <netinet/vinet.h>
74 #ifdef INET6
75 #include <netinet/ip6.h>
76 #include <netinet6/ip6_var.h>
77 #include <netinet6/vinet6.h>
78 #endif /* INET6 */
79 
80 
81 #ifdef IPSEC
82 #include <netipsec/ipsec.h>
83 #include <netipsec/key.h>
84 #endif /* IPSEC */
85 
86 #include <security/mac/mac_framework.h>
87 
88 #ifdef VIMAGE_GLOBALS
89 /*
90  * These configure the range of local port addresses assigned to
91  * "unspecified" outgoing connections/packets/whatever.
92  */
93 int	ipport_lowfirstauto;
94 int	ipport_lowlastauto;
95 int	ipport_firstauto;
96 int	ipport_lastauto;
97 int	ipport_hifirstauto;
98 int	ipport_hilastauto;
99 
100 /*
101  * Reserved ports accessible only to root. There are significant
102  * security considerations that must be accounted for when changing these,
103  * but the security benefits can be great. Please be careful.
104  */
105 int	ipport_reservedhigh;
106 int	ipport_reservedlow;
107 
108 /* Variables dealing with random ephemeral port allocation. */
109 int	ipport_randomized;
110 int	ipport_randomcps;
111 int	ipport_randomtime;
112 int	ipport_stoprandom;
113 int	ipport_tcpallocs;
114 int	ipport_tcplastcount;
115 #endif
116 
117 #define RANGECHK(var, min, max) \
118 	if ((var) < (min)) { (var) = (min); } \
119 	else if ((var) > (max)) { (var) = (max); }
120 
121 static void	in_pcbremlists(struct inpcb *inp);
122 
123 static int
124 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
125 {
126 	INIT_VNET_INET(curvnet);
127 	int error;
128 
129 	SYSCTL_RESOLVE_V_ARG1();
130 
131 	error = sysctl_handle_int(oidp, arg1, arg2, req);
132 	if (error == 0) {
133 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
134 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
135 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
136 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
137 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
138 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
139 	}
140 	return (error);
141 }
142 
143 #undef RANGECHK
144 
145 SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports");
146 
147 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
148 	lowfirst, CTLTYPE_INT|CTLFLAG_RW, ipport_lowfirstauto, 0,
149 	&sysctl_net_ipport_check, "I", "");
150 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
151 	lowlast, CTLTYPE_INT|CTLFLAG_RW, ipport_lowlastauto, 0,
152 	&sysctl_net_ipport_check, "I", "");
153 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
154 	first, CTLTYPE_INT|CTLFLAG_RW, ipport_firstauto, 0,
155 	&sysctl_net_ipport_check, "I", "");
156 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
157 	last, CTLTYPE_INT|CTLFLAG_RW, ipport_lastauto, 0,
158 	&sysctl_net_ipport_check, "I", "");
159 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
160 	hifirst, CTLTYPE_INT|CTLFLAG_RW, ipport_hifirstauto, 0,
161 	&sysctl_net_ipport_check, "I", "");
162 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
163 	hilast, CTLTYPE_INT|CTLFLAG_RW, ipport_hilastauto, 0,
164 	&sysctl_net_ipport_check, "I", "");
165 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
166 	reservedhigh, CTLFLAG_RW|CTLFLAG_SECURE, ipport_reservedhigh, 0, "");
167 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, reservedlow,
168 	CTLFLAG_RW|CTLFLAG_SECURE, ipport_reservedlow, 0, "");
169 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, randomized,
170 	CTLFLAG_RW, ipport_randomized, 0, "Enable random port allocation");
171 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, randomcps,
172 	CTLFLAG_RW, ipport_randomcps, 0, "Maximum number of random port "
173 	"allocations before switching to a sequental one");
174 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, randomtime,
175 	CTLFLAG_RW, ipport_randomtime, 0,
176 	"Minimum time to keep sequental port "
177 	"allocation before switching to a random one");
178 
179 /*
180  * in_pcb.c: manage the Protocol Control Blocks.
181  *
182  * NOTE: It is assumed that most of these functions will be called with
183  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
184  * functions often modify hash chains or addresses in pcbs.
185  */
186 
187 /*
188  * Allocate a PCB and associate it with the socket.
189  * On success return with the PCB locked.
190  */
191 int
192 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
193 {
194 #ifdef INET6
195 	INIT_VNET_INET6(curvnet);
196 #endif
197 	struct inpcb *inp;
198 	int error;
199 
200 	INP_INFO_WLOCK_ASSERT(pcbinfo);
201 	error = 0;
202 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
203 	if (inp == NULL)
204 		return (ENOBUFS);
205 	bzero(inp, inp_zero_size);
206 	inp->inp_pcbinfo = pcbinfo;
207 	inp->inp_socket = so;
208 	inp->inp_cred = crhold(so->so_cred);
209 	inp->inp_inc.inc_fibnum = so->so_fibnum;
210 #ifdef MAC
211 	error = mac_inpcb_init(inp, M_NOWAIT);
212 	if (error != 0)
213 		goto out;
214 	mac_inpcb_create(so, inp);
215 #endif
216 #ifdef IPSEC
217 	error = ipsec_init_policy(so, &inp->inp_sp);
218 	if (error != 0) {
219 #ifdef MAC
220 		mac_inpcb_destroy(inp);
221 #endif
222 		goto out;
223 	}
224 #endif /*IPSEC*/
225 #ifdef INET6
226 	if (INP_SOCKAF(so) == AF_INET6) {
227 		inp->inp_vflag |= INP_IPV6PROTO;
228 		if (V_ip6_v6only)
229 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
230 	}
231 #endif
232 	LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
233 	pcbinfo->ipi_count++;
234 	so->so_pcb = (caddr_t)inp;
235 #ifdef INET6
236 	if (V_ip6_auto_flowlabel)
237 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
238 #endif
239 	INP_WLOCK(inp);
240 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
241 	inp->inp_refcount = 1;	/* Reference from the inpcbinfo */
242 #if defined(IPSEC) || defined(MAC)
243 out:
244 	if (error != 0) {
245 		crfree(inp->inp_cred);
246 		uma_zfree(pcbinfo->ipi_zone, inp);
247 	}
248 #endif
249 	return (error);
250 }
251 
252 int
253 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
254 {
255 	int anonport, error;
256 
257 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
258 	INP_WLOCK_ASSERT(inp);
259 
260 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
261 		return (EINVAL);
262 	anonport = inp->inp_lport == 0 && (nam == NULL ||
263 	    ((struct sockaddr_in *)nam)->sin_port == 0);
264 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
265 	    &inp->inp_lport, cred);
266 	if (error)
267 		return (error);
268 	if (in_pcbinshash(inp) != 0) {
269 		inp->inp_laddr.s_addr = INADDR_ANY;
270 		inp->inp_lport = 0;
271 		return (EAGAIN);
272 	}
273 	if (anonport)
274 		inp->inp_flags |= INP_ANONPORT;
275 	return (0);
276 }
277 
278 /*
279  * Set up a bind operation on a PCB, performing port allocation
280  * as required, but do not actually modify the PCB. Callers can
281  * either complete the bind by setting inp_laddr/inp_lport and
282  * calling in_pcbinshash(), or they can just use the resulting
283  * port and address to authorise the sending of a once-off packet.
284  *
285  * On error, the values of *laddrp and *lportp are not changed.
286  */
287 int
288 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
289     u_short *lportp, struct ucred *cred)
290 {
291 	INIT_VNET_INET(inp->inp_vnet);
292 	struct socket *so = inp->inp_socket;
293 	unsigned short *lastport;
294 	struct sockaddr_in *sin;
295 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
296 	struct in_addr laddr;
297 	u_short lport = 0;
298 	int wild = 0, reuseport = (so->so_options & SO_REUSEPORT);
299 	int error;
300 	int dorandom;
301 
302 	/*
303 	 * Because no actual state changes occur here, a global write lock on
304 	 * the pcbinfo isn't required.
305 	 */
306 	INP_INFO_LOCK_ASSERT(pcbinfo);
307 	INP_LOCK_ASSERT(inp);
308 
309 	if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
310 		return (EADDRNOTAVAIL);
311 	laddr.s_addr = *laddrp;
312 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
313 		return (EINVAL);
314 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
315 		wild = INPLOOKUP_WILDCARD;
316 	if (nam == NULL) {
317 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
318 			return (error);
319 	} else {
320 		sin = (struct sockaddr_in *)nam;
321 		if (nam->sa_len != sizeof (*sin))
322 			return (EINVAL);
323 #ifdef notdef
324 		/*
325 		 * We should check the family, but old programs
326 		 * incorrectly fail to initialize it.
327 		 */
328 		if (sin->sin_family != AF_INET)
329 			return (EAFNOSUPPORT);
330 #endif
331 		error = prison_local_ip4(cred, &sin->sin_addr);
332 		if (error)
333 			return (error);
334 		if (sin->sin_port != *lportp) {
335 			/* Don't allow the port to change. */
336 			if (*lportp != 0)
337 				return (EINVAL);
338 			lport = sin->sin_port;
339 		}
340 		/* NB: lport is left as 0 if the port isn't being changed. */
341 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
342 			/*
343 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
344 			 * allow complete duplication of binding if
345 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
346 			 * and a multicast address is bound on both
347 			 * new and duplicated sockets.
348 			 */
349 			if (so->so_options & SO_REUSEADDR)
350 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
351 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
352 			sin->sin_port = 0;		/* yech... */
353 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
354 			/*
355 			 * Is the address a local IP address?
356 			 * If INP_BINDANY is set, then the socket may be bound
357 			 * to any endpoint address, local or not.
358 			 */
359 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
360 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
361 				return (EADDRNOTAVAIL);
362 		}
363 		laddr = sin->sin_addr;
364 		if (lport) {
365 			struct inpcb *t;
366 			struct tcptw *tw;
367 
368 			/* GROSS */
369 			if (ntohs(lport) <= V_ipport_reservedhigh &&
370 			    ntohs(lport) >= V_ipport_reservedlow &&
371 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
372 			    0))
373 				return (EACCES);
374 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
375 			    priv_check_cred(inp->inp_cred,
376 			    PRIV_NETINET_REUSEPORT, 0) != 0) {
377 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
378 				    lport, INPLOOKUP_WILDCARD, cred);
379 	/*
380 	 * XXX
381 	 * This entire block sorely needs a rewrite.
382 	 */
383 				if (t &&
384 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
385 				    (so->so_type != SOCK_STREAM ||
386 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
387 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
388 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
389 				     (t->inp_socket->so_options &
390 					 SO_REUSEPORT) == 0) &&
391 				    (inp->inp_cred->cr_uid !=
392 				     t->inp_cred->cr_uid))
393 					return (EADDRINUSE);
394 			}
395 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
396 			    lport, wild, cred);
397 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
398 				/*
399 				 * XXXRW: If an incpb has had its timewait
400 				 * state recycled, we treat the address as
401 				 * being in use (for now).  This is better
402 				 * than a panic, but not desirable.
403 				 */
404 				tw = intotw(inp);
405 				if (tw == NULL ||
406 				    (reuseport & tw->tw_so_options) == 0)
407 					return (EADDRINUSE);
408 			} else if (t &&
409 			    (reuseport & t->inp_socket->so_options) == 0) {
410 #ifdef INET6
411 				if (ntohl(sin->sin_addr.s_addr) !=
412 				    INADDR_ANY ||
413 				    ntohl(t->inp_laddr.s_addr) !=
414 				    INADDR_ANY ||
415 				    INP_SOCKAF(so) ==
416 				    INP_SOCKAF(t->inp_socket))
417 #endif
418 				return (EADDRINUSE);
419 			}
420 		}
421 	}
422 	if (*lportp != 0)
423 		lport = *lportp;
424 	if (lport == 0) {
425 		u_short first, last, aux;
426 		int count;
427 
428 		if (inp->inp_flags & INP_HIGHPORT) {
429 			first = V_ipport_hifirstauto;	/* sysctl */
430 			last  = V_ipport_hilastauto;
431 			lastport = &pcbinfo->ipi_lasthi;
432 		} else if (inp->inp_flags & INP_LOWPORT) {
433 			error = priv_check_cred(cred,
434 			    PRIV_NETINET_RESERVEDPORT, 0);
435 			if (error)
436 				return error;
437 			first = V_ipport_lowfirstauto;	/* 1023 */
438 			last  = V_ipport_lowlastauto;	/* 600 */
439 			lastport = &pcbinfo->ipi_lastlow;
440 		} else {
441 			first = V_ipport_firstauto;	/* sysctl */
442 			last  = V_ipport_lastauto;
443 			lastport = &pcbinfo->ipi_lastport;
444 		}
445 		/*
446 		 * For UDP, use random port allocation as long as the user
447 		 * allows it.  For TCP (and as of yet unknown) connections,
448 		 * use random port allocation only if the user allows it AND
449 		 * ipport_tick() allows it.
450 		 */
451 		if (V_ipport_randomized &&
452 			(!V_ipport_stoprandom || pcbinfo == &V_udbinfo))
453 			dorandom = 1;
454 		else
455 			dorandom = 0;
456 		/*
457 		 * It makes no sense to do random port allocation if
458 		 * we have the only port available.
459 		 */
460 		if (first == last)
461 			dorandom = 0;
462 		/* Make sure to not include UDP packets in the count. */
463 		if (pcbinfo != &V_udbinfo)
464 			V_ipport_tcpallocs++;
465 		/*
466 		 * Instead of having two loops further down counting up or down
467 		 * make sure that first is always <= last and go with only one
468 		 * code path implementing all logic.
469 		 */
470 		if (first > last) {
471 			aux = first;
472 			first = last;
473 			last = aux;
474 		}
475 
476 		if (dorandom)
477 			*lastport = first +
478 				    (arc4random() % (last - first));
479 
480 		count = last - first;
481 
482 		do {
483 			if (count-- < 0)	/* completely used? */
484 				return (EADDRNOTAVAIL);
485 			++*lastport;
486 			if (*lastport < first || *lastport > last)
487 				*lastport = first;
488 			lport = htons(*lastport);
489 		} while (in_pcblookup_local(pcbinfo, laddr,
490 		    lport, wild, cred));
491 	}
492 	*laddrp = laddr.s_addr;
493 	*lportp = lport;
494 	return (0);
495 }
496 
497 /*
498  * Connect from a socket to a specified address.
499  * Both address and port must be specified in argument sin.
500  * If don't have a local address for this socket yet,
501  * then pick one.
502  */
503 int
504 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
505 {
506 	u_short lport, fport;
507 	in_addr_t laddr, faddr;
508 	int anonport, error;
509 
510 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
511 	INP_WLOCK_ASSERT(inp);
512 
513 	lport = inp->inp_lport;
514 	laddr = inp->inp_laddr.s_addr;
515 	anonport = (lport == 0);
516 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
517 	    NULL, cred);
518 	if (error)
519 		return (error);
520 
521 	/* Do the initial binding of the local address if required. */
522 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
523 		inp->inp_lport = lport;
524 		inp->inp_laddr.s_addr = laddr;
525 		if (in_pcbinshash(inp) != 0) {
526 			inp->inp_laddr.s_addr = INADDR_ANY;
527 			inp->inp_lport = 0;
528 			return (EAGAIN);
529 		}
530 	}
531 
532 	/* Commit the remaining changes. */
533 	inp->inp_lport = lport;
534 	inp->inp_laddr.s_addr = laddr;
535 	inp->inp_faddr.s_addr = faddr;
536 	inp->inp_fport = fport;
537 	in_pcbrehash(inp);
538 
539 	if (anonport)
540 		inp->inp_flags |= INP_ANONPORT;
541 	return (0);
542 }
543 
544 /*
545  * Do proper source address selection on an unbound socket in case
546  * of connect. Take jails into account as well.
547  */
548 static int
549 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
550     struct ucred *cred)
551 {
552 	struct ifaddr *ifa;
553 	struct sockaddr *sa;
554 	struct sockaddr_in *sin;
555 	struct route sro;
556 	int error;
557 
558 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
559 
560 	error = 0;
561 	bzero(&sro, sizeof(sro));
562 
563 	sin = (struct sockaddr_in *)&sro.ro_dst;
564 	sin->sin_family = AF_INET;
565 	sin->sin_len = sizeof(struct sockaddr_in);
566 	sin->sin_addr.s_addr = faddr->s_addr;
567 
568 	/*
569 	 * If route is known our src addr is taken from the i/f,
570 	 * else punt.
571 	 *
572 	 * Find out route to destination.
573 	 */
574 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
575 		in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
576 
577 	/*
578 	 * If we found a route, use the address corresponding to
579 	 * the outgoing interface.
580 	 *
581 	 * Otherwise assume faddr is reachable on a directly connected
582 	 * network and try to find a corresponding interface to take
583 	 * the source address from.
584 	 */
585 	if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
586 		struct in_ifaddr *ia;
587 		struct ifnet *ifp;
588 
589 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin));
590 		if (ia == NULL)
591 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin));
592 		if (ia == NULL) {
593 			error = ENETUNREACH;
594 			goto done;
595 		}
596 
597 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
598 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
599 			ifa_free(&ia->ia_ifa);
600 			goto done;
601 		}
602 
603 		ifp = ia->ia_ifp;
604 		ifa_free(&ia->ia_ifa);
605 		ia = NULL;
606 		IF_ADDR_LOCK(ifp);
607 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
608 
609 			sa = ifa->ifa_addr;
610 			if (sa->sa_family != AF_INET)
611 				continue;
612 			sin = (struct sockaddr_in *)sa;
613 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
614 				ia = (struct in_ifaddr *)ifa;
615 				break;
616 			}
617 		}
618 		if (ia != NULL) {
619 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
620 			IF_ADDR_UNLOCK(ifp);
621 			goto done;
622 		}
623 		IF_ADDR_UNLOCK(ifp);
624 
625 		/* 3. As a last resort return the 'default' jail address. */
626 		error = prison_get_ip4(cred, laddr);
627 		goto done;
628 	}
629 
630 	/*
631 	 * If the outgoing interface on the route found is not
632 	 * a loopback interface, use the address from that interface.
633 	 * In case of jails do those three steps:
634 	 * 1. check if the interface address belongs to the jail. If so use it.
635 	 * 2. check if we have any address on the outgoing interface
636 	 *    belonging to this jail. If so use it.
637 	 * 3. as a last resort return the 'default' jail address.
638 	 */
639 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
640 		struct in_ifaddr *ia;
641 		struct ifnet *ifp;
642 
643 		/* If not jailed, use the default returned. */
644 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
645 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
646 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
647 			goto done;
648 		}
649 
650 		/* Jailed. */
651 		/* 1. Check if the iface address belongs to the jail. */
652 		sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
653 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
654 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
655 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
656 			goto done;
657 		}
658 
659 		/*
660 		 * 2. Check if we have any address on the outgoing interface
661 		 *    belonging to this jail.
662 		 */
663 		ia = NULL;
664 		ifp = sro.ro_rt->rt_ifp;
665 		IF_ADDR_LOCK(ifp);
666 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
667 			sa = ifa->ifa_addr;
668 			if (sa->sa_family != AF_INET)
669 				continue;
670 			sin = (struct sockaddr_in *)sa;
671 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
672 				ia = (struct in_ifaddr *)ifa;
673 				break;
674 			}
675 		}
676 		if (ia != NULL) {
677 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
678 			IF_ADDR_UNLOCK(ifp);
679 			goto done;
680 		}
681 		IF_ADDR_UNLOCK(ifp);
682 
683 		/* 3. As a last resort return the 'default' jail address. */
684 		error = prison_get_ip4(cred, laddr);
685 		goto done;
686 	}
687 
688 	/*
689 	 * The outgoing interface is marked with 'loopback net', so a route
690 	 * to ourselves is here.
691 	 * Try to find the interface of the destination address and then
692 	 * take the address from there. That interface is not necessarily
693 	 * a loopback interface.
694 	 * In case of jails, check that it is an address of the jail
695 	 * and if we cannot find, fall back to the 'default' jail address.
696 	 */
697 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
698 		struct sockaddr_in sain;
699 		struct in_ifaddr *ia;
700 
701 		bzero(&sain, sizeof(struct sockaddr_in));
702 		sain.sin_family = AF_INET;
703 		sain.sin_len = sizeof(struct sockaddr_in);
704 		sain.sin_addr.s_addr = faddr->s_addr;
705 
706 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain)));
707 		if (ia == NULL)
708 			ia = ifatoia(ifa_ifwithnet(sintosa(&sain)));
709 
710 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
711 			if (ia == NULL) {
712 				error = ENETUNREACH;
713 				goto done;
714 			}
715 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
716 			ifa_free(&ia->ia_ifa);
717 			goto done;
718 		}
719 
720 		/* Jailed. */
721 		if (ia != NULL) {
722 			struct ifnet *ifp;
723 
724 			ifp = ia->ia_ifp;
725 			ifa_free(&ia->ia_ifa);
726 			ia = NULL;
727 			IF_ADDR_LOCK(ifp);
728 			TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
729 
730 				sa = ifa->ifa_addr;
731 				if (sa->sa_family != AF_INET)
732 					continue;
733 				sin = (struct sockaddr_in *)sa;
734 				if (prison_check_ip4(cred,
735 				    &sin->sin_addr) == 0) {
736 					ia = (struct in_ifaddr *)ifa;
737 					break;
738 				}
739 			}
740 			if (ia != NULL) {
741 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
742 				IF_ADDR_UNLOCK(ifp);
743 				goto done;
744 			}
745 			IF_ADDR_UNLOCK(ifp);
746 		}
747 
748 		/* 3. As a last resort return the 'default' jail address. */
749 		error = prison_get_ip4(cred, laddr);
750 		goto done;
751 	}
752 
753 done:
754 	if (sro.ro_rt != NULL)
755 		RTFREE(sro.ro_rt);
756 	return (error);
757 }
758 
759 /*
760  * Set up for a connect from a socket to the specified address.
761  * On entry, *laddrp and *lportp should contain the current local
762  * address and port for the PCB; these are updated to the values
763  * that should be placed in inp_laddr and inp_lport to complete
764  * the connect.
765  *
766  * On success, *faddrp and *fportp will be set to the remote address
767  * and port. These are not updated in the error case.
768  *
769  * If the operation fails because the connection already exists,
770  * *oinpp will be set to the PCB of that connection so that the
771  * caller can decide to override it. In all other cases, *oinpp
772  * is set to NULL.
773  */
774 int
775 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
776     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
777     struct inpcb **oinpp, struct ucred *cred)
778 {
779 	INIT_VNET_INET(inp->inp_vnet);
780 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
781 	struct in_ifaddr *ia;
782 	struct inpcb *oinp;
783 	struct in_addr laddr, faddr;
784 	u_short lport, fport;
785 	int error;
786 
787 	/*
788 	 * Because a global state change doesn't actually occur here, a read
789 	 * lock is sufficient.
790 	 */
791 	INP_INFO_LOCK_ASSERT(inp->inp_pcbinfo);
792 	INP_LOCK_ASSERT(inp);
793 
794 	if (oinpp != NULL)
795 		*oinpp = NULL;
796 	if (nam->sa_len != sizeof (*sin))
797 		return (EINVAL);
798 	if (sin->sin_family != AF_INET)
799 		return (EAFNOSUPPORT);
800 	if (sin->sin_port == 0)
801 		return (EADDRNOTAVAIL);
802 	laddr.s_addr = *laddrp;
803 	lport = *lportp;
804 	faddr = sin->sin_addr;
805 	fport = sin->sin_port;
806 
807 	if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
808 		/*
809 		 * If the destination address is INADDR_ANY,
810 		 * use the primary local address.
811 		 * If the supplied address is INADDR_BROADCAST,
812 		 * and the primary interface supports broadcast,
813 		 * choose the broadcast address for that interface.
814 		 */
815 		if (faddr.s_addr == INADDR_ANY) {
816 			IN_IFADDR_RLOCK();
817 			faddr =
818 			    IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
819 			IN_IFADDR_RUNLOCK();
820 			if (cred != NULL &&
821 			    (error = prison_get_ip4(cred, &faddr)) != 0)
822 				return (error);
823 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
824 			IN_IFADDR_RLOCK();
825 			if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
826 			    IFF_BROADCAST)
827 				faddr = satosin(&TAILQ_FIRST(
828 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
829 			IN_IFADDR_RUNLOCK();
830 		}
831 	}
832 	if (laddr.s_addr == INADDR_ANY) {
833 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
834 		if (error)
835 			return (error);
836 
837 		/*
838 		 * If the destination address is multicast and an outgoing
839 		 * interface has been set as a multicast option, use the
840 		 * address of that interface as our source address.
841 		 */
842 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
843 		    inp->inp_moptions != NULL) {
844 			struct ip_moptions *imo;
845 			struct ifnet *ifp;
846 
847 			imo = inp->inp_moptions;
848 			if (imo->imo_multicast_ifp != NULL) {
849 				ifp = imo->imo_multicast_ifp;
850 				IN_IFADDR_RLOCK();
851 				TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link)
852 					if (ia->ia_ifp == ifp)
853 						break;
854 				if (ia == NULL) {
855 					IN_IFADDR_RUNLOCK();
856 					return (EADDRNOTAVAIL);
857 				}
858 				laddr = ia->ia_addr.sin_addr;
859 				IN_IFADDR_RUNLOCK();
860 			}
861 		}
862 	}
863 
864 	oinp = in_pcblookup_hash(inp->inp_pcbinfo, faddr, fport, laddr, lport,
865 	    0, NULL);
866 	if (oinp != NULL) {
867 		if (oinpp != NULL)
868 			*oinpp = oinp;
869 		return (EADDRINUSE);
870 	}
871 	if (lport == 0) {
872 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
873 		    cred);
874 		if (error)
875 			return (error);
876 	}
877 	*laddrp = laddr.s_addr;
878 	*lportp = lport;
879 	*faddrp = faddr.s_addr;
880 	*fportp = fport;
881 	return (0);
882 }
883 
884 void
885 in_pcbdisconnect(struct inpcb *inp)
886 {
887 
888 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
889 	INP_WLOCK_ASSERT(inp);
890 
891 	inp->inp_faddr.s_addr = INADDR_ANY;
892 	inp->inp_fport = 0;
893 	in_pcbrehash(inp);
894 }
895 
896 /*
897  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
898  * For most protocols, this will be invoked immediately prior to calling
899  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
900  * socket, in which case in_pcbfree() is deferred.
901  */
902 void
903 in_pcbdetach(struct inpcb *inp)
904 {
905 
906 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
907 
908 	inp->inp_socket->so_pcb = NULL;
909 	inp->inp_socket = NULL;
910 }
911 
912 /*
913  * in_pcbfree_internal() frees an inpcb that has been detached from its
914  * socket, and whose reference count has reached 0.  It will also remove the
915  * inpcb from any global lists it might remain on.
916  */
917 static void
918 in_pcbfree_internal(struct inpcb *inp)
919 {
920 	struct inpcbinfo *ipi = inp->inp_pcbinfo;
921 
922 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
923 	KASSERT(inp->inp_refcount == 0, ("%s: refcount !0", __func__));
924 
925 	INP_INFO_WLOCK_ASSERT(ipi);
926 	INP_WLOCK_ASSERT(inp);
927 
928 #ifdef IPSEC
929 	if (inp->inp_sp != NULL)
930 		ipsec_delete_pcbpolicy(inp);
931 #endif /* IPSEC */
932 	inp->inp_gencnt = ++ipi->ipi_gencnt;
933 	in_pcbremlists(inp);
934 #ifdef INET6
935 	if (inp->inp_vflag & INP_IPV6PROTO) {
936 		ip6_freepcbopts(inp->in6p_outputopts);
937 		if (inp->in6p_moptions != NULL)
938 			ip6_freemoptions(inp->in6p_moptions);
939 	}
940 #endif
941 	if (inp->inp_options)
942 		(void)m_free(inp->inp_options);
943 	if (inp->inp_moptions != NULL)
944 		inp_freemoptions(inp->inp_moptions);
945 	inp->inp_vflag = 0;
946 	crfree(inp->inp_cred);
947 
948 #ifdef MAC
949 	mac_inpcb_destroy(inp);
950 #endif
951 	INP_WUNLOCK(inp);
952 	uma_zfree(ipi->ipi_zone, inp);
953 }
954 
955 /*
956  * in_pcbref() bumps the reference count on an inpcb in order to maintain
957  * stability of an inpcb pointer despite the inpcb lock being released.  This
958  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
959  * but where the inpcb lock is already held.
960  *
961  * While the inpcb will not be freed, releasing the inpcb lock means that the
962  * connection's state may change, so the caller should be careful to
963  * revalidate any cached state on reacquiring the lock.  Drop the reference
964  * using in_pcbrele().
965  */
966 void
967 in_pcbref(struct inpcb *inp)
968 {
969 
970 	INP_WLOCK_ASSERT(inp);
971 
972 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
973 
974 	inp->inp_refcount++;
975 }
976 
977 /*
978  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
979  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
980  * return a flag indicating whether or not the inpcb remains valid.  If it is
981  * valid, we return with the inpcb lock held.
982  */
983 int
984 in_pcbrele(struct inpcb *inp)
985 {
986 #ifdef INVARIANTS
987 	struct inpcbinfo *ipi = inp->inp_pcbinfo;
988 #endif
989 
990 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
991 
992 	INP_INFO_WLOCK_ASSERT(ipi);
993 	INP_WLOCK_ASSERT(inp);
994 
995 	inp->inp_refcount--;
996 	if (inp->inp_refcount > 0)
997 		return (0);
998 	in_pcbfree_internal(inp);
999 	return (1);
1000 }
1001 
1002 /*
1003  * Unconditionally schedule an inpcb to be freed by decrementing its
1004  * reference count, which should occur only after the inpcb has been detached
1005  * from its socket.  If another thread holds a temporary reference (acquired
1006  * using in_pcbref()) then the free is deferred until that reference is
1007  * released using in_pcbrele(), but the inpcb is still unlocked.
1008  */
1009 void
1010 in_pcbfree(struct inpcb *inp)
1011 {
1012 #ifdef INVARIANTS
1013 	struct inpcbinfo *ipi = inp->inp_pcbinfo;
1014 #endif
1015 
1016 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL",
1017 	    __func__));
1018 
1019 	INP_INFO_WLOCK_ASSERT(ipi);
1020 	INP_WLOCK_ASSERT(inp);
1021 
1022 	if (!in_pcbrele(inp))
1023 		INP_WUNLOCK(inp);
1024 }
1025 
1026 /*
1027  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1028  * port reservation, and preventing it from being returned by inpcb lookups.
1029  *
1030  * It is used by TCP to mark an inpcb as unused and avoid future packet
1031  * delivery or event notification when a socket remains open but TCP has
1032  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1033  * or a RST on the wire, and allows the port binding to be reused while still
1034  * maintaining the invariant that so_pcb always points to a valid inpcb until
1035  * in_pcbdetach().
1036  *
1037  * XXXRW: An inp_lport of 0 is used to indicate that the inpcb is not on hash
1038  * lists, but can lead to confusing netstat output, as open sockets with
1039  * closed TCP connections will no longer appear to have their bound port
1040  * number.  An explicit flag would be better, as it would allow us to leave
1041  * the port number intact after the connection is dropped.
1042  *
1043  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1044  * in_pcbnotifyall() and in_pcbpurgeif0()?
1045  */
1046 void
1047 in_pcbdrop(struct inpcb *inp)
1048 {
1049 
1050 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
1051 	INP_WLOCK_ASSERT(inp);
1052 
1053 	inp->inp_flags |= INP_DROPPED;
1054 	if (inp->inp_flags & INP_INHASHLIST) {
1055 		struct inpcbport *phd = inp->inp_phd;
1056 
1057 		LIST_REMOVE(inp, inp_hash);
1058 		LIST_REMOVE(inp, inp_portlist);
1059 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1060 			LIST_REMOVE(phd, phd_hash);
1061 			free(phd, M_PCB);
1062 		}
1063 		inp->inp_flags &= ~INP_INHASHLIST;
1064 	}
1065 }
1066 
1067 /*
1068  * Common routines to return the socket addresses associated with inpcbs.
1069  */
1070 struct sockaddr *
1071 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1072 {
1073 	struct sockaddr_in *sin;
1074 
1075 	sin = malloc(sizeof *sin, M_SONAME,
1076 		M_WAITOK | M_ZERO);
1077 	sin->sin_family = AF_INET;
1078 	sin->sin_len = sizeof(*sin);
1079 	sin->sin_addr = *addr_p;
1080 	sin->sin_port = port;
1081 
1082 	return (struct sockaddr *)sin;
1083 }
1084 
1085 int
1086 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1087 {
1088 	struct inpcb *inp;
1089 	struct in_addr addr;
1090 	in_port_t port;
1091 
1092 	inp = sotoinpcb(so);
1093 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1094 
1095 	INP_RLOCK(inp);
1096 	port = inp->inp_lport;
1097 	addr = inp->inp_laddr;
1098 	INP_RUNLOCK(inp);
1099 
1100 	*nam = in_sockaddr(port, &addr);
1101 	return 0;
1102 }
1103 
1104 int
1105 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1106 {
1107 	struct inpcb *inp;
1108 	struct in_addr addr;
1109 	in_port_t port;
1110 
1111 	inp = sotoinpcb(so);
1112 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1113 
1114 	INP_RLOCK(inp);
1115 	port = inp->inp_fport;
1116 	addr = inp->inp_faddr;
1117 	INP_RUNLOCK(inp);
1118 
1119 	*nam = in_sockaddr(port, &addr);
1120 	return 0;
1121 }
1122 
1123 void
1124 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1125     struct inpcb *(*notify)(struct inpcb *, int))
1126 {
1127 	struct inpcb *inp, *inp_temp;
1128 
1129 	INP_INFO_WLOCK(pcbinfo);
1130 	LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1131 		INP_WLOCK(inp);
1132 #ifdef INET6
1133 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1134 			INP_WUNLOCK(inp);
1135 			continue;
1136 		}
1137 #endif
1138 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1139 		    inp->inp_socket == NULL) {
1140 			INP_WUNLOCK(inp);
1141 			continue;
1142 		}
1143 		if ((*notify)(inp, errno))
1144 			INP_WUNLOCK(inp);
1145 	}
1146 	INP_INFO_WUNLOCK(pcbinfo);
1147 }
1148 
1149 void
1150 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1151 {
1152 	struct inpcb *inp;
1153 	struct ip_moptions *imo;
1154 	int i, gap;
1155 
1156 	INP_INFO_RLOCK(pcbinfo);
1157 	LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1158 		INP_WLOCK(inp);
1159 		imo = inp->inp_moptions;
1160 		if ((inp->inp_vflag & INP_IPV4) &&
1161 		    imo != NULL) {
1162 			/*
1163 			 * Unselect the outgoing interface if it is being
1164 			 * detached.
1165 			 */
1166 			if (imo->imo_multicast_ifp == ifp)
1167 				imo->imo_multicast_ifp = NULL;
1168 
1169 			/*
1170 			 * Drop multicast group membership if we joined
1171 			 * through the interface being detached.
1172 			 */
1173 			for (i = 0, gap = 0; i < imo->imo_num_memberships;
1174 			    i++) {
1175 				if (imo->imo_membership[i]->inm_ifp == ifp) {
1176 					in_delmulti(imo->imo_membership[i]);
1177 					gap++;
1178 				} else if (gap != 0)
1179 					imo->imo_membership[i - gap] =
1180 					    imo->imo_membership[i];
1181 			}
1182 			imo->imo_num_memberships -= gap;
1183 		}
1184 		INP_WUNLOCK(inp);
1185 	}
1186 	INP_INFO_RUNLOCK(pcbinfo);
1187 }
1188 
1189 /*
1190  * Lookup a PCB based on the local address and port.
1191  */
1192 #define INP_LOOKUP_MAPPED_PCB_COST	3
1193 struct inpcb *
1194 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1195     u_short lport, int wild_okay, struct ucred *cred)
1196 {
1197 	struct inpcb *inp;
1198 #ifdef INET6
1199 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1200 #else
1201 	int matchwild = 3;
1202 #endif
1203 	int wildcard;
1204 
1205 	INP_INFO_LOCK_ASSERT(pcbinfo);
1206 
1207 	if (!wild_okay) {
1208 		struct inpcbhead *head;
1209 		/*
1210 		 * Look for an unconnected (wildcard foreign addr) PCB that
1211 		 * matches the local address and port we're looking for.
1212 		 */
1213 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1214 		    0, pcbinfo->ipi_hashmask)];
1215 		LIST_FOREACH(inp, head, inp_hash) {
1216 #ifdef INET6
1217 			/* XXX inp locking */
1218 			if ((inp->inp_vflag & INP_IPV4) == 0)
1219 				continue;
1220 #endif
1221 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1222 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1223 			    inp->inp_lport == lport) {
1224 				/*
1225 				 * Found?
1226 				 */
1227 				if (cred == NULL ||
1228 				    prison_equal_ip4(cred->cr_prison,
1229 					inp->inp_cred->cr_prison))
1230 					return (inp);
1231 			}
1232 		}
1233 		/*
1234 		 * Not found.
1235 		 */
1236 		return (NULL);
1237 	} else {
1238 		struct inpcbporthead *porthash;
1239 		struct inpcbport *phd;
1240 		struct inpcb *match = NULL;
1241 		/*
1242 		 * Best fit PCB lookup.
1243 		 *
1244 		 * First see if this local port is in use by looking on the
1245 		 * port hash list.
1246 		 */
1247 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1248 		    pcbinfo->ipi_porthashmask)];
1249 		LIST_FOREACH(phd, porthash, phd_hash) {
1250 			if (phd->phd_port == lport)
1251 				break;
1252 		}
1253 		if (phd != NULL) {
1254 			/*
1255 			 * Port is in use by one or more PCBs. Look for best
1256 			 * fit.
1257 			 */
1258 			LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1259 				wildcard = 0;
1260 				if (cred != NULL &&
1261 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
1262 					cred->cr_prison))
1263 					continue;
1264 #ifdef INET6
1265 				/* XXX inp locking */
1266 				if ((inp->inp_vflag & INP_IPV4) == 0)
1267 					continue;
1268 				/*
1269 				 * We never select the PCB that has
1270 				 * INP_IPV6 flag and is bound to :: if
1271 				 * we have another PCB which is bound
1272 				 * to 0.0.0.0.  If a PCB has the
1273 				 * INP_IPV6 flag, then we set its cost
1274 				 * higher than IPv4 only PCBs.
1275 				 *
1276 				 * Note that the case only happens
1277 				 * when a socket is bound to ::, under
1278 				 * the condition that the use of the
1279 				 * mapped address is allowed.
1280 				 */
1281 				if ((inp->inp_vflag & INP_IPV6) != 0)
1282 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1283 #endif
1284 				if (inp->inp_faddr.s_addr != INADDR_ANY)
1285 					wildcard++;
1286 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
1287 					if (laddr.s_addr == INADDR_ANY)
1288 						wildcard++;
1289 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
1290 						continue;
1291 				} else {
1292 					if (laddr.s_addr != INADDR_ANY)
1293 						wildcard++;
1294 				}
1295 				if (wildcard < matchwild) {
1296 					match = inp;
1297 					matchwild = wildcard;
1298 					if (matchwild == 0)
1299 						break;
1300 				}
1301 			}
1302 		}
1303 		return (match);
1304 	}
1305 }
1306 #undef INP_LOOKUP_MAPPED_PCB_COST
1307 
1308 /*
1309  * Lookup PCB in hash list.
1310  */
1311 struct inpcb *
1312 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1313     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard,
1314     struct ifnet *ifp)
1315 {
1316 	struct inpcbhead *head;
1317 	struct inpcb *inp, *tmpinp;
1318 	u_short fport = fport_arg, lport = lport_arg;
1319 
1320 	INP_INFO_LOCK_ASSERT(pcbinfo);
1321 
1322 	/*
1323 	 * First look for an exact match.
1324 	 */
1325 	tmpinp = NULL;
1326 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1327 	    pcbinfo->ipi_hashmask)];
1328 	LIST_FOREACH(inp, head, inp_hash) {
1329 #ifdef INET6
1330 		/* XXX inp locking */
1331 		if ((inp->inp_vflag & INP_IPV4) == 0)
1332 			continue;
1333 #endif
1334 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1335 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1336 		    inp->inp_fport == fport &&
1337 		    inp->inp_lport == lport) {
1338 			/*
1339 			 * XXX We should be able to directly return
1340 			 * the inp here, without any checks.
1341 			 * Well unless both bound with SO_REUSEPORT?
1342 			 */
1343 			if (prison_flag(inp->inp_cred, PR_IP4))
1344 				return (inp);
1345 			if (tmpinp == NULL)
1346 				tmpinp = inp;
1347 		}
1348 	}
1349 	if (tmpinp != NULL)
1350 		return (tmpinp);
1351 
1352 	/*
1353 	 * Then look for a wildcard match, if requested.
1354 	 */
1355 	if (wildcard == INPLOOKUP_WILDCARD) {
1356 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1357 #ifdef INET6
1358 		struct inpcb *local_wild_mapped = NULL;
1359 #endif
1360 		struct inpcb *jail_wild = NULL;
1361 		int injail;
1362 
1363 		/*
1364 		 * Order of socket selection - we always prefer jails.
1365 		 *      1. jailed, non-wild.
1366 		 *      2. jailed, wild.
1367 		 *      3. non-jailed, non-wild.
1368 		 *      4. non-jailed, wild.
1369 		 */
1370 
1371 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1372 		    0, pcbinfo->ipi_hashmask)];
1373 		LIST_FOREACH(inp, head, inp_hash) {
1374 #ifdef INET6
1375 			/* XXX inp locking */
1376 			if ((inp->inp_vflag & INP_IPV4) == 0)
1377 				continue;
1378 #endif
1379 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1380 			    inp->inp_lport != lport)
1381 				continue;
1382 
1383 			/* XXX inp locking */
1384 			if (ifp && ifp->if_type == IFT_FAITH &&
1385 			    (inp->inp_flags & INP_FAITH) == 0)
1386 				continue;
1387 
1388 			injail = prison_flag(inp->inp_cred, PR_IP4);
1389 			if (injail) {
1390 				if (prison_check_ip4(inp->inp_cred,
1391 				    &laddr) != 0)
1392 					continue;
1393 			} else {
1394 				if (local_exact != NULL)
1395 					continue;
1396 			}
1397 
1398 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1399 				if (injail)
1400 					return (inp);
1401 				else
1402 					local_exact = inp;
1403 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1404 #ifdef INET6
1405 				/* XXX inp locking, NULL check */
1406 				if (inp->inp_vflag & INP_IPV6PROTO)
1407 					local_wild_mapped = inp;
1408 				else
1409 #endif /* INET6 */
1410 					if (injail)
1411 						jail_wild = inp;
1412 					else
1413 						local_wild = inp;
1414 			}
1415 		} /* LIST_FOREACH */
1416 		if (jail_wild != NULL)
1417 			return (jail_wild);
1418 		if (local_exact != NULL)
1419 			return (local_exact);
1420 		if (local_wild != NULL)
1421 			return (local_wild);
1422 #ifdef INET6
1423 		if (local_wild_mapped != NULL)
1424 			return (local_wild_mapped);
1425 #endif /* defined(INET6) */
1426 	} /* if (wildcard == INPLOOKUP_WILDCARD) */
1427 
1428 	return (NULL);
1429 }
1430 
1431 /*
1432  * Insert PCB onto various hash lists.
1433  */
1434 int
1435 in_pcbinshash(struct inpcb *inp)
1436 {
1437 	struct inpcbhead *pcbhash;
1438 	struct inpcbporthead *pcbporthash;
1439 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1440 	struct inpcbport *phd;
1441 	u_int32_t hashkey_faddr;
1442 
1443 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1444 	INP_WLOCK_ASSERT(inp);
1445 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
1446 	    ("in_pcbinshash: INP_INHASHLIST"));
1447 
1448 #ifdef INET6
1449 	if (inp->inp_vflag & INP_IPV6)
1450 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1451 	else
1452 #endif /* INET6 */
1453 	hashkey_faddr = inp->inp_faddr.s_addr;
1454 
1455 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
1456 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
1457 
1458 	pcbporthash = &pcbinfo->ipi_porthashbase[
1459 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
1460 
1461 	/*
1462 	 * Go through port list and look for a head for this lport.
1463 	 */
1464 	LIST_FOREACH(phd, pcbporthash, phd_hash) {
1465 		if (phd->phd_port == inp->inp_lport)
1466 			break;
1467 	}
1468 	/*
1469 	 * If none exists, malloc one and tack it on.
1470 	 */
1471 	if (phd == NULL) {
1472 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
1473 		if (phd == NULL) {
1474 			return (ENOBUFS); /* XXX */
1475 		}
1476 		phd->phd_port = inp->inp_lport;
1477 		LIST_INIT(&phd->phd_pcblist);
1478 		LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
1479 	}
1480 	inp->inp_phd = phd;
1481 	LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
1482 	LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
1483 	inp->inp_flags |= INP_INHASHLIST;
1484 	return (0);
1485 }
1486 
1487 /*
1488  * Move PCB to the proper hash bucket when { faddr, fport } have  been
1489  * changed. NOTE: This does not handle the case of the lport changing (the
1490  * hashed port list would have to be updated as well), so the lport must
1491  * not change after in_pcbinshash() has been called.
1492  */
1493 void
1494 in_pcbrehash(struct inpcb *inp)
1495 {
1496 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1497 	struct inpcbhead *head;
1498 	u_int32_t hashkey_faddr;
1499 
1500 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1501 	INP_WLOCK_ASSERT(inp);
1502 	KASSERT(inp->inp_flags & INP_INHASHLIST,
1503 	    ("in_pcbrehash: !INP_INHASHLIST"));
1504 
1505 #ifdef INET6
1506 	if (inp->inp_vflag & INP_IPV6)
1507 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1508 	else
1509 #endif /* INET6 */
1510 	hashkey_faddr = inp->inp_faddr.s_addr;
1511 
1512 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
1513 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
1514 
1515 	LIST_REMOVE(inp, inp_hash);
1516 	LIST_INSERT_HEAD(head, inp, inp_hash);
1517 }
1518 
1519 /*
1520  * Remove PCB from various lists.
1521  */
1522 static void
1523 in_pcbremlists(struct inpcb *inp)
1524 {
1525 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1526 
1527 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1528 	INP_WLOCK_ASSERT(inp);
1529 
1530 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1531 	if (inp->inp_flags & INP_INHASHLIST) {
1532 		struct inpcbport *phd = inp->inp_phd;
1533 
1534 		LIST_REMOVE(inp, inp_hash);
1535 		LIST_REMOVE(inp, inp_portlist);
1536 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1537 			LIST_REMOVE(phd, phd_hash);
1538 			free(phd, M_PCB);
1539 		}
1540 		inp->inp_flags &= ~INP_INHASHLIST;
1541 	}
1542 	LIST_REMOVE(inp, inp_list);
1543 	pcbinfo->ipi_count--;
1544 }
1545 
1546 /*
1547  * A set label operation has occurred at the socket layer, propagate the
1548  * label change into the in_pcb for the socket.
1549  */
1550 void
1551 in_pcbsosetlabel(struct socket *so)
1552 {
1553 #ifdef MAC
1554 	struct inpcb *inp;
1555 
1556 	inp = sotoinpcb(so);
1557 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
1558 
1559 	INP_WLOCK(inp);
1560 	SOCK_LOCK(so);
1561 	mac_inpcb_sosetlabel(so, inp);
1562 	SOCK_UNLOCK(so);
1563 	INP_WUNLOCK(inp);
1564 #endif
1565 }
1566 
1567 /*
1568  * ipport_tick runs once per second, determining if random port allocation
1569  * should be continued.  If more than ipport_randomcps ports have been
1570  * allocated in the last second, then we return to sequential port
1571  * allocation. We return to random allocation only once we drop below
1572  * ipport_randomcps for at least ipport_randomtime seconds.
1573  */
1574 void
1575 ipport_tick(void *xtp)
1576 {
1577 	VNET_ITERATOR_DECL(vnet_iter);
1578 
1579 	VNET_LIST_RLOCK();
1580 	VNET_FOREACH(vnet_iter) {
1581 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
1582 		INIT_VNET_INET(vnet_iter);
1583 		if (V_ipport_tcpallocs <=
1584 		    V_ipport_tcplastcount + V_ipport_randomcps) {
1585 			if (V_ipport_stoprandom > 0)
1586 				V_ipport_stoprandom--;
1587 		} else
1588 			V_ipport_stoprandom = V_ipport_randomtime;
1589 		V_ipport_tcplastcount = V_ipport_tcpallocs;
1590 		CURVNET_RESTORE();
1591 	}
1592 	VNET_LIST_RUNLOCK();
1593 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
1594 }
1595 
1596 void
1597 inp_wlock(struct inpcb *inp)
1598 {
1599 
1600 	INP_WLOCK(inp);
1601 }
1602 
1603 void
1604 inp_wunlock(struct inpcb *inp)
1605 {
1606 
1607 	INP_WUNLOCK(inp);
1608 }
1609 
1610 void
1611 inp_rlock(struct inpcb *inp)
1612 {
1613 
1614 	INP_RLOCK(inp);
1615 }
1616 
1617 void
1618 inp_runlock(struct inpcb *inp)
1619 {
1620 
1621 	INP_RUNLOCK(inp);
1622 }
1623 
1624 #ifdef INVARIANTS
1625 void
1626 inp_lock_assert(struct inpcb *inp)
1627 {
1628 
1629 	INP_WLOCK_ASSERT(inp);
1630 }
1631 
1632 void
1633 inp_unlock_assert(struct inpcb *inp)
1634 {
1635 
1636 	INP_UNLOCK_ASSERT(inp);
1637 }
1638 #endif
1639 
1640 void
1641 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
1642 {
1643 	INIT_VNET_INET(curvnet);
1644 	struct inpcb *inp;
1645 
1646 	INP_INFO_RLOCK(&V_tcbinfo);
1647 	LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
1648 		INP_WLOCK(inp);
1649 		func(inp, arg);
1650 		INP_WUNLOCK(inp);
1651 	}
1652 	INP_INFO_RUNLOCK(&V_tcbinfo);
1653 }
1654 
1655 struct socket *
1656 inp_inpcbtosocket(struct inpcb *inp)
1657 {
1658 
1659 	INP_WLOCK_ASSERT(inp);
1660 	return (inp->inp_socket);
1661 }
1662 
1663 struct tcpcb *
1664 inp_inpcbtotcpcb(struct inpcb *inp)
1665 {
1666 
1667 	INP_WLOCK_ASSERT(inp);
1668 	return ((struct tcpcb *)inp->inp_ppcb);
1669 }
1670 
1671 int
1672 inp_ip_tos_get(const struct inpcb *inp)
1673 {
1674 
1675 	return (inp->inp_ip_tos);
1676 }
1677 
1678 void
1679 inp_ip_tos_set(struct inpcb *inp, int val)
1680 {
1681 
1682 	inp->inp_ip_tos = val;
1683 }
1684 
1685 void
1686 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
1687     uint32_t *faddr, uint16_t *fp)
1688 {
1689 
1690 	INP_LOCK_ASSERT(inp);
1691 	*laddr = inp->inp_laddr.s_addr;
1692 	*faddr = inp->inp_faddr.s_addr;
1693 	*lp = inp->inp_lport;
1694 	*fp = inp->inp_fport;
1695 }
1696 
1697 struct inpcb *
1698 so_sotoinpcb(struct socket *so)
1699 {
1700 
1701 	return (sotoinpcb(so));
1702 }
1703 
1704 struct tcpcb *
1705 so_sototcpcb(struct socket *so)
1706 {
1707 
1708 	return (sototcpcb(so));
1709 }
1710 
1711 #ifdef DDB
1712 static void
1713 db_print_indent(int indent)
1714 {
1715 	int i;
1716 
1717 	for (i = 0; i < indent; i++)
1718 		db_printf(" ");
1719 }
1720 
1721 static void
1722 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
1723 {
1724 	char faddr_str[48], laddr_str[48];
1725 
1726 	db_print_indent(indent);
1727 	db_printf("%s at %p\n", name, inc);
1728 
1729 	indent += 2;
1730 
1731 #ifdef INET6
1732 	if (inc->inc_flags & INC_ISIPV6) {
1733 		/* IPv6. */
1734 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
1735 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
1736 	} else {
1737 #endif
1738 		/* IPv4. */
1739 		inet_ntoa_r(inc->inc_laddr, laddr_str);
1740 		inet_ntoa_r(inc->inc_faddr, faddr_str);
1741 #ifdef INET6
1742 	}
1743 #endif
1744 	db_print_indent(indent);
1745 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
1746 	    ntohs(inc->inc_lport));
1747 	db_print_indent(indent);
1748 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
1749 	    ntohs(inc->inc_fport));
1750 }
1751 
1752 static void
1753 db_print_inpflags(int inp_flags)
1754 {
1755 	int comma;
1756 
1757 	comma = 0;
1758 	if (inp_flags & INP_RECVOPTS) {
1759 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
1760 		comma = 1;
1761 	}
1762 	if (inp_flags & INP_RECVRETOPTS) {
1763 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
1764 		comma = 1;
1765 	}
1766 	if (inp_flags & INP_RECVDSTADDR) {
1767 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
1768 		comma = 1;
1769 	}
1770 	if (inp_flags & INP_HDRINCL) {
1771 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
1772 		comma = 1;
1773 	}
1774 	if (inp_flags & INP_HIGHPORT) {
1775 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
1776 		comma = 1;
1777 	}
1778 	if (inp_flags & INP_LOWPORT) {
1779 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
1780 		comma = 1;
1781 	}
1782 	if (inp_flags & INP_ANONPORT) {
1783 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
1784 		comma = 1;
1785 	}
1786 	if (inp_flags & INP_RECVIF) {
1787 		db_printf("%sINP_RECVIF", comma ? ", " : "");
1788 		comma = 1;
1789 	}
1790 	if (inp_flags & INP_MTUDISC) {
1791 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
1792 		comma = 1;
1793 	}
1794 	if (inp_flags & INP_FAITH) {
1795 		db_printf("%sINP_FAITH", comma ? ", " : "");
1796 		comma = 1;
1797 	}
1798 	if (inp_flags & INP_RECVTTL) {
1799 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
1800 		comma = 1;
1801 	}
1802 	if (inp_flags & INP_DONTFRAG) {
1803 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
1804 		comma = 1;
1805 	}
1806 	if (inp_flags & IN6P_IPV6_V6ONLY) {
1807 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
1808 		comma = 1;
1809 	}
1810 	if (inp_flags & IN6P_PKTINFO) {
1811 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
1812 		comma = 1;
1813 	}
1814 	if (inp_flags & IN6P_HOPLIMIT) {
1815 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
1816 		comma = 1;
1817 	}
1818 	if (inp_flags & IN6P_HOPOPTS) {
1819 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
1820 		comma = 1;
1821 	}
1822 	if (inp_flags & IN6P_DSTOPTS) {
1823 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
1824 		comma = 1;
1825 	}
1826 	if (inp_flags & IN6P_RTHDR) {
1827 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
1828 		comma = 1;
1829 	}
1830 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
1831 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
1832 		comma = 1;
1833 	}
1834 	if (inp_flags & IN6P_TCLASS) {
1835 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
1836 		comma = 1;
1837 	}
1838 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
1839 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
1840 		comma = 1;
1841 	}
1842 	if (inp_flags & INP_TIMEWAIT) {
1843 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
1844 		comma  = 1;
1845 	}
1846 	if (inp_flags & INP_ONESBCAST) {
1847 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
1848 		comma  = 1;
1849 	}
1850 	if (inp_flags & INP_DROPPED) {
1851 		db_printf("%sINP_DROPPED", comma ? ", " : "");
1852 		comma  = 1;
1853 	}
1854 	if (inp_flags & INP_SOCKREF) {
1855 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
1856 		comma  = 1;
1857 	}
1858 	if (inp_flags & IN6P_RFC2292) {
1859 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
1860 		comma = 1;
1861 	}
1862 	if (inp_flags & IN6P_MTU) {
1863 		db_printf("IN6P_MTU%s", comma ? ", " : "");
1864 		comma = 1;
1865 	}
1866 }
1867 
1868 static void
1869 db_print_inpvflag(u_char inp_vflag)
1870 {
1871 	int comma;
1872 
1873 	comma = 0;
1874 	if (inp_vflag & INP_IPV4) {
1875 		db_printf("%sINP_IPV4", comma ? ", " : "");
1876 		comma  = 1;
1877 	}
1878 	if (inp_vflag & INP_IPV6) {
1879 		db_printf("%sINP_IPV6", comma ? ", " : "");
1880 		comma  = 1;
1881 	}
1882 	if (inp_vflag & INP_IPV6PROTO) {
1883 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
1884 		comma  = 1;
1885 	}
1886 }
1887 
1888 static void
1889 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
1890 {
1891 
1892 	db_print_indent(indent);
1893 	db_printf("%s at %p\n", name, inp);
1894 
1895 	indent += 2;
1896 
1897 	db_print_indent(indent);
1898 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
1899 
1900 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
1901 
1902 	db_print_indent(indent);
1903 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
1904 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
1905 
1906 	db_print_indent(indent);
1907 	db_printf("inp_label: %p   inp_flags: 0x%x (",
1908 	   inp->inp_label, inp->inp_flags);
1909 	db_print_inpflags(inp->inp_flags);
1910 	db_printf(")\n");
1911 
1912 	db_print_indent(indent);
1913 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
1914 	    inp->inp_vflag);
1915 	db_print_inpvflag(inp->inp_vflag);
1916 	db_printf(")\n");
1917 
1918 	db_print_indent(indent);
1919 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
1920 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
1921 
1922 	db_print_indent(indent);
1923 #ifdef INET6
1924 	if (inp->inp_vflag & INP_IPV6) {
1925 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
1926 		    "in6p_moptions: %p\n", inp->in6p_options,
1927 		    inp->in6p_outputopts, inp->in6p_moptions);
1928 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
1929 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
1930 		    inp->in6p_hops);
1931 	} else
1932 #endif
1933 	{
1934 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
1935 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
1936 		    inp->inp_options, inp->inp_moptions);
1937 	}
1938 
1939 	db_print_indent(indent);
1940 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
1941 	    (uintmax_t)inp->inp_gencnt);
1942 }
1943 
1944 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
1945 {
1946 	struct inpcb *inp;
1947 
1948 	if (!have_addr) {
1949 		db_printf("usage: show inpcb <addr>\n");
1950 		return;
1951 	}
1952 	inp = (struct inpcb *)addr;
1953 
1954 	db_print_inpcb(inp, "inpcb", 0);
1955 }
1956 #endif
1957