1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Robert N. M. Watson under 11 * contract to Juniper Networks, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_ddb.h" 44 #include "opt_ipsec.h" 45 #include "opt_inet.h" 46 #include "opt_inet6.h" 47 #include "opt_ratelimit.h" 48 #include "opt_route.h" 49 #include "opt_rss.h" 50 51 #include <sys/param.h> 52 #include <sys/systm.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/mbuf.h> 56 #include <sys/callout.h> 57 #include <sys/eventhandler.h> 58 #include <sys/domain.h> 59 #include <sys/protosw.h> 60 #include <sys/smp.h> 61 #include <sys/socket.h> 62 #include <sys/socketvar.h> 63 #include <sys/sockio.h> 64 #include <sys/priv.h> 65 #include <sys/proc.h> 66 #include <sys/refcount.h> 67 #include <sys/jail.h> 68 #include <sys/kernel.h> 69 #include <sys/sysctl.h> 70 71 #ifdef DDB 72 #include <ddb/ddb.h> 73 #endif 74 75 #include <vm/uma.h> 76 #include <vm/vm.h> 77 78 #include <net/if.h> 79 #include <net/if_var.h> 80 #include <net/if_types.h> 81 #include <net/if_llatbl.h> 82 #include <net/route.h> 83 #include <net/rss_config.h> 84 #include <net/vnet.h> 85 86 #if defined(INET) || defined(INET6) 87 #include <netinet/in.h> 88 #include <netinet/in_pcb.h> 89 #include <netinet/in_pcb_var.h> 90 #ifdef INET 91 #include <netinet/in_var.h> 92 #include <netinet/in_fib.h> 93 #endif 94 #include <netinet/ip_var.h> 95 #include <netinet/tcp_var.h> 96 #ifdef TCPHPTS 97 #include <netinet/tcp_hpts.h> 98 #endif 99 #include <netinet/udp.h> 100 #include <netinet/udp_var.h> 101 #ifdef INET6 102 #include <netinet/ip6.h> 103 #include <netinet6/in6_pcb.h> 104 #include <netinet6/in6_var.h> 105 #include <netinet6/ip6_var.h> 106 #endif /* INET6 */ 107 #include <net/route/nhop.h> 108 #endif 109 110 #include <netipsec/ipsec_support.h> 111 112 #include <security/mac/mac_framework.h> 113 114 #define INPCBLBGROUP_SIZMIN 8 115 #define INPCBLBGROUP_SIZMAX 256 116 #define INP_FREED 0x00000200 /* See in_pcb.h. */ 117 118 static struct callout ipport_tick_callout; 119 120 /* 121 * These configure the range of local port addresses assigned to 122 * "unspecified" outgoing connections/packets/whatever. 123 */ 124 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 125 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 126 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 127 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 128 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 129 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 130 131 /* 132 * Reserved ports accessible only to root. There are significant 133 * security considerations that must be accounted for when changing these, 134 * but the security benefits can be great. Please be careful. 135 */ 136 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 137 VNET_DEFINE(int, ipport_reservedlow); 138 139 /* Variables dealing with random ephemeral port allocation. */ 140 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 141 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 142 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 143 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 144 VNET_DEFINE(int, ipport_tcpallocs); 145 VNET_DEFINE_STATIC(int, ipport_tcplastcount); 146 147 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 148 149 #ifdef INET 150 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 151 struct in_addr faddr, u_int fport_arg, 152 struct in_addr laddr, u_int lport_arg, 153 int lookupflags, struct ifnet *ifp, 154 uint8_t numa_domain); 155 156 #define RANGECHK(var, min, max) \ 157 if ((var) < (min)) { (var) = (min); } \ 158 else if ((var) > (max)) { (var) = (max); } 159 160 static int 161 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 162 { 163 int error; 164 165 error = sysctl_handle_int(oidp, arg1, arg2, req); 166 if (error == 0) { 167 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 168 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 169 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 170 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 171 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 172 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 173 } 174 return (error); 175 } 176 177 #undef RANGECHK 178 179 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, 180 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 181 "IP Ports"); 182 183 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 184 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 185 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", 186 ""); 187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 188 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 189 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", 190 ""); 191 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 192 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 193 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", 194 ""); 195 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 196 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 197 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", 198 ""); 199 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 200 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 201 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", 202 ""); 203 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 204 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 205 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", 206 ""); 207 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 208 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 209 &VNET_NAME(ipport_reservedhigh), 0, ""); 210 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 211 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 212 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 213 CTLFLAG_VNET | CTLFLAG_RW, 214 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 215 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 216 CTLFLAG_VNET | CTLFLAG_RW, 217 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 218 "allocations before switching to a sequential one"); 219 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 220 CTLFLAG_VNET | CTLFLAG_RW, 221 &VNET_NAME(ipport_randomtime), 0, 222 "Minimum time to keep sequential port " 223 "allocation before switching to a random one"); 224 225 #ifdef RATELIMIT 226 counter_u64_t rate_limit_new; 227 counter_u64_t rate_limit_chg; 228 counter_u64_t rate_limit_active; 229 counter_u64_t rate_limit_alloc_fail; 230 counter_u64_t rate_limit_set_ok; 231 232 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 233 "IP Rate Limiting"); 234 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD, 235 &rate_limit_active, "Active rate limited connections"); 236 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD, 237 &rate_limit_alloc_fail, "Rate limited connection failures"); 238 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD, 239 &rate_limit_set_ok, "Rate limited setting succeeded"); 240 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD, 241 &rate_limit_new, "Total Rate limit new attempts"); 242 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD, 243 &rate_limit_chg, "Total Rate limited change attempts"); 244 245 #endif /* RATELIMIT */ 246 247 #endif /* INET */ 248 249 /* 250 * in_pcb.c: manage the Protocol Control Blocks. 251 * 252 * NOTE: It is assumed that most of these functions will be called with 253 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 254 * functions often modify hash chains or addresses in pcbs. 255 */ 256 257 static struct inpcblbgroup * 258 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag, 259 uint16_t port, const union in_dependaddr *addr, int size, 260 uint8_t numa_domain) 261 { 262 struct inpcblbgroup *grp; 263 size_t bytes; 264 265 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 266 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 267 if (!grp) 268 return (NULL); 269 grp->il_vflag = vflag; 270 grp->il_lport = port; 271 grp->il_numa_domain = numa_domain; 272 grp->il_dependladdr = *addr; 273 grp->il_inpsiz = size; 274 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 275 return (grp); 276 } 277 278 static void 279 in_pcblbgroup_free_deferred(epoch_context_t ctx) 280 { 281 struct inpcblbgroup *grp; 282 283 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); 284 free(grp, M_PCB); 285 } 286 287 static void 288 in_pcblbgroup_free(struct inpcblbgroup *grp) 289 { 290 291 CK_LIST_REMOVE(grp, il_list); 292 NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx); 293 } 294 295 static struct inpcblbgroup * 296 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 297 struct inpcblbgroup *old_grp, int size) 298 { 299 struct inpcblbgroup *grp; 300 int i; 301 302 grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag, 303 old_grp->il_lport, &old_grp->il_dependladdr, size, 304 old_grp->il_numa_domain); 305 if (grp == NULL) 306 return (NULL); 307 308 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 309 ("invalid new local group size %d and old local group count %d", 310 grp->il_inpsiz, old_grp->il_inpcnt)); 311 312 for (i = 0; i < old_grp->il_inpcnt; ++i) 313 grp->il_inp[i] = old_grp->il_inp[i]; 314 grp->il_inpcnt = old_grp->il_inpcnt; 315 in_pcblbgroup_free(old_grp); 316 return (grp); 317 } 318 319 /* 320 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] 321 * and shrink group if possible. 322 */ 323 static void 324 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, 325 int i) 326 { 327 struct inpcblbgroup *grp, *new_grp; 328 329 grp = *grpp; 330 for (; i + 1 < grp->il_inpcnt; ++i) 331 grp->il_inp[i] = grp->il_inp[i + 1]; 332 grp->il_inpcnt--; 333 334 if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && 335 grp->il_inpcnt <= grp->il_inpsiz / 4) { 336 /* Shrink this group. */ 337 new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); 338 if (new_grp != NULL) 339 *grpp = new_grp; 340 } 341 } 342 343 /* 344 * Add PCB to load balance group for SO_REUSEPORT_LB option. 345 */ 346 static int 347 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain) 348 { 349 const static struct timeval interval = { 60, 0 }; 350 static struct timeval lastprint; 351 struct inpcbinfo *pcbinfo; 352 struct inpcblbgrouphead *hdr; 353 struct inpcblbgroup *grp; 354 uint32_t idx; 355 356 pcbinfo = inp->inp_pcbinfo; 357 358 INP_WLOCK_ASSERT(inp); 359 INP_HASH_WLOCK_ASSERT(pcbinfo); 360 361 /* 362 * Don't allow jailed socket to join local group. 363 */ 364 if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred)) 365 return (0); 366 367 #ifdef INET6 368 /* 369 * Don't allow IPv4 mapped INET6 wild socket. 370 */ 371 if ((inp->inp_vflag & INP_IPV4) && 372 inp->inp_laddr.s_addr == INADDR_ANY && 373 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 374 return (0); 375 } 376 #endif 377 378 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); 379 hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; 380 CK_LIST_FOREACH(grp, hdr, il_list) { 381 if (grp->il_vflag == inp->inp_vflag && 382 grp->il_lport == inp->inp_lport && 383 grp->il_numa_domain == numa_domain && 384 memcmp(&grp->il_dependladdr, 385 &inp->inp_inc.inc_ie.ie_dependladdr, 386 sizeof(grp->il_dependladdr)) == 0) 387 break; 388 } 389 if (grp == NULL) { 390 /* Create new load balance group. */ 391 grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag, 392 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 393 INPCBLBGROUP_SIZMIN, numa_domain); 394 if (grp == NULL) 395 return (ENOBUFS); 396 } else if (grp->il_inpcnt == grp->il_inpsiz) { 397 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 398 if (ratecheck(&lastprint, &interval)) 399 printf("lb group port %d, limit reached\n", 400 ntohs(grp->il_lport)); 401 return (0); 402 } 403 404 /* Expand this local group. */ 405 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 406 if (grp == NULL) 407 return (ENOBUFS); 408 } 409 410 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 411 ("invalid local group size %d and count %d", grp->il_inpsiz, 412 grp->il_inpcnt)); 413 414 grp->il_inp[grp->il_inpcnt] = inp; 415 grp->il_inpcnt++; 416 return (0); 417 } 418 419 /* 420 * Remove PCB from load balance group. 421 */ 422 static void 423 in_pcbremlbgrouphash(struct inpcb *inp) 424 { 425 struct inpcbinfo *pcbinfo; 426 struct inpcblbgrouphead *hdr; 427 struct inpcblbgroup *grp; 428 int i; 429 430 pcbinfo = inp->inp_pcbinfo; 431 432 INP_WLOCK_ASSERT(inp); 433 INP_HASH_WLOCK_ASSERT(pcbinfo); 434 435 hdr = &pcbinfo->ipi_lbgrouphashbase[ 436 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 437 CK_LIST_FOREACH(grp, hdr, il_list) { 438 for (i = 0; i < grp->il_inpcnt; ++i) { 439 if (grp->il_inp[i] != inp) 440 continue; 441 442 if (grp->il_inpcnt == 1) { 443 /* We are the last, free this local group. */ 444 in_pcblbgroup_free(grp); 445 } else { 446 /* Pull up inpcbs, shrink group if possible. */ 447 in_pcblbgroup_reorder(hdr, &grp, i); 448 } 449 return; 450 } 451 } 452 } 453 454 int 455 in_pcblbgroup_numa(struct inpcb *inp, int arg) 456 { 457 struct inpcbinfo *pcbinfo; 458 struct inpcblbgrouphead *hdr; 459 struct inpcblbgroup *grp; 460 int err, i; 461 uint8_t numa_domain; 462 463 switch (arg) { 464 case TCP_REUSPORT_LB_NUMA_NODOM: 465 numa_domain = M_NODOM; 466 break; 467 case TCP_REUSPORT_LB_NUMA_CURDOM: 468 numa_domain = PCPU_GET(domain); 469 break; 470 default: 471 if (arg < 0 || arg >= vm_ndomains) 472 return (EINVAL); 473 numa_domain = arg; 474 } 475 476 err = 0; 477 pcbinfo = inp->inp_pcbinfo; 478 INP_WLOCK_ASSERT(inp); 479 INP_HASH_WLOCK(pcbinfo); 480 hdr = &pcbinfo->ipi_lbgrouphashbase[ 481 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 482 CK_LIST_FOREACH(grp, hdr, il_list) { 483 for (i = 0; i < grp->il_inpcnt; ++i) { 484 if (grp->il_inp[i] != inp) 485 continue; 486 487 if (grp->il_numa_domain == numa_domain) { 488 goto abort_with_hash_wlock; 489 } 490 491 /* Remove it from the old group. */ 492 in_pcbremlbgrouphash(inp); 493 494 /* Add it to the new group based on numa domain. */ 495 in_pcbinslbgrouphash(inp, numa_domain); 496 goto abort_with_hash_wlock; 497 } 498 } 499 err = ENOENT; 500 abort_with_hash_wlock: 501 INP_HASH_WUNLOCK(pcbinfo); 502 return (err); 503 } 504 505 /* 506 * Different protocols initialize their inpcbs differently - giving 507 * different name to the lock. But they all are disposed the same. 508 */ 509 static void 510 inpcb_fini(void *mem, int size) 511 { 512 struct inpcb *inp = mem; 513 514 INP_LOCK_DESTROY(inp); 515 } 516 517 /* Make sure it is safe to use hashinit(9) on CK_LIST. */ 518 CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb))); 519 520 /* 521 * Initialize an inpcbinfo -- we should be able to reduce the number of 522 * arguments in time. 523 */ 524 void 525 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 526 u_int hash_nelements, int porthash_nelements, char *inpcbzone_name, 527 uma_init inpcbzone_init) 528 { 529 530 mtx_init(&pcbinfo->ipi_lock, name, NULL, MTX_DEF); 531 mtx_init(&pcbinfo->ipi_hash_lock, "pcbinfohash", NULL, MTX_DEF); 532 #ifdef VIMAGE 533 pcbinfo->ipi_vnet = curvnet; 534 #endif 535 CK_LIST_INIT(&pcbinfo->ipi_listhead); 536 pcbinfo->ipi_count = 0; 537 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 538 &pcbinfo->ipi_hashmask); 539 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); 540 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 541 &pcbinfo->ipi_porthashmask); 542 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, 543 &pcbinfo->ipi_lbgrouphashmask); 544 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 545 NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 546 UMA_ZONE_SMR); 547 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 548 uma_zone_set_warning(pcbinfo->ipi_zone, 549 "kern.ipc.maxsockets limit reached"); 550 pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone); 551 pcbinfo->ipi_portzone = uma_zcreate(inpcbzone_name, 552 sizeof(struct inpcbport), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 553 uma_zone_set_smr(pcbinfo->ipi_portzone, pcbinfo->ipi_smr); 554 } 555 556 /* 557 * Destroy an inpcbinfo. 558 */ 559 void 560 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 561 { 562 563 KASSERT(pcbinfo->ipi_count == 0, 564 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 565 566 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 567 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 568 pcbinfo->ipi_porthashmask); 569 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 570 pcbinfo->ipi_lbgrouphashmask); 571 uma_zdestroy(pcbinfo->ipi_zone); 572 mtx_destroy(&pcbinfo->ipi_hash_lock); 573 mtx_destroy(&pcbinfo->ipi_lock); 574 } 575 576 /* 577 * Allocate a PCB and associate it with the socket. 578 * On success return with the PCB locked. 579 */ 580 int 581 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 582 { 583 struct inpcb *inp; 584 int error; 585 586 error = 0; 587 inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT); 588 if (inp == NULL) 589 return (ENOBUFS); 590 bzero(&inp->inp_start_zero, inp_zero_size); 591 #ifdef NUMA 592 inp->inp_numa_domain = M_NODOM; 593 #endif 594 inp->inp_pcbinfo = pcbinfo; 595 inp->inp_socket = so; 596 inp->inp_cred = crhold(so->so_cred); 597 inp->inp_inc.inc_fibnum = so->so_fibnum; 598 #ifdef MAC 599 error = mac_inpcb_init(inp, M_NOWAIT); 600 if (error != 0) 601 goto out; 602 mac_inpcb_create(so, inp); 603 #endif 604 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 605 error = ipsec_init_pcbpolicy(inp); 606 if (error != 0) { 607 #ifdef MAC 608 mac_inpcb_destroy(inp); 609 #endif 610 goto out; 611 } 612 #endif /*IPSEC*/ 613 #ifdef INET6 614 if (INP_SOCKAF(so) == AF_INET6) { 615 inp->inp_vflag |= INP_IPV6PROTO; 616 if (V_ip6_v6only) 617 inp->inp_flags |= IN6P_IPV6_V6ONLY; 618 } 619 if (V_ip6_auto_flowlabel) 620 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 621 #endif 622 /* 623 * Routes in inpcb's can cache L2 as well; they are guaranteed 624 * to be cleaned up. 625 */ 626 inp->inp_route.ro_flags = RT_LLE_CACHE; 627 #ifdef TCPHPTS 628 /* 629 * If using hpts lets drop a random number in so 630 * not all new connections fall on the same CPU. 631 */ 632 inp->inp_hpts_cpu = inp->inp_dropq_cpu = hpts_random_cpu(inp); 633 #endif 634 refcount_init(&inp->inp_refcount, 1); /* Reference from socket. */ 635 INP_WLOCK(inp); 636 INP_INFO_WLOCK(pcbinfo); 637 pcbinfo->ipi_count++; 638 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 639 CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list); 640 INP_INFO_WUNLOCK(pcbinfo); 641 so->so_pcb = inp; 642 643 return (0); 644 645 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 646 out: 647 crfree(inp->inp_cred); 648 uma_zfree_smr(pcbinfo->ipi_zone, inp); 649 return (error); 650 #endif 651 } 652 653 #ifdef INET 654 int 655 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 656 { 657 int anonport, error; 658 659 KASSERT(nam == NULL || nam->sa_family == AF_INET, 660 ("%s: invalid address family for %p", __func__, nam)); 661 KASSERT(nam == NULL || nam->sa_len == sizeof(struct sockaddr_in), 662 ("%s: invalid address length for %p", __func__, nam)); 663 INP_WLOCK_ASSERT(inp); 664 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 665 666 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 667 return (EINVAL); 668 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 669 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 670 &inp->inp_lport, cred); 671 if (error) 672 return (error); 673 if (in_pcbinshash(inp) != 0) { 674 inp->inp_laddr.s_addr = INADDR_ANY; 675 inp->inp_lport = 0; 676 return (EAGAIN); 677 } 678 if (anonport) 679 inp->inp_flags |= INP_ANONPORT; 680 return (0); 681 } 682 #endif 683 684 #if defined(INET) || defined(INET6) 685 /* 686 * Assign a local port like in_pcb_lport(), but also used with connect() 687 * and a foreign address and port. If fsa is non-NULL, choose a local port 688 * that is unused with those, otherwise one that is completely unused. 689 * lsa can be NULL for IPv6. 690 */ 691 int 692 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp, 693 struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags) 694 { 695 struct inpcbinfo *pcbinfo; 696 struct inpcb *tmpinp; 697 unsigned short *lastport; 698 int count, dorandom, error; 699 u_short aux, first, last, lport; 700 #ifdef INET 701 struct in_addr laddr, faddr; 702 #endif 703 #ifdef INET6 704 struct in6_addr *laddr6, *faddr6; 705 #endif 706 707 pcbinfo = inp->inp_pcbinfo; 708 709 /* 710 * Because no actual state changes occur here, a global write lock on 711 * the pcbinfo isn't required. 712 */ 713 INP_LOCK_ASSERT(inp); 714 INP_HASH_LOCK_ASSERT(pcbinfo); 715 716 if (inp->inp_flags & INP_HIGHPORT) { 717 first = V_ipport_hifirstauto; /* sysctl */ 718 last = V_ipport_hilastauto; 719 lastport = &pcbinfo->ipi_lasthi; 720 } else if (inp->inp_flags & INP_LOWPORT) { 721 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); 722 if (error) 723 return (error); 724 first = V_ipport_lowfirstauto; /* 1023 */ 725 last = V_ipport_lowlastauto; /* 600 */ 726 lastport = &pcbinfo->ipi_lastlow; 727 } else { 728 first = V_ipport_firstauto; /* sysctl */ 729 last = V_ipport_lastauto; 730 lastport = &pcbinfo->ipi_lastport; 731 } 732 /* 733 * For UDP(-Lite), use random port allocation as long as the user 734 * allows it. For TCP (and as of yet unknown) connections, 735 * use random port allocation only if the user allows it AND 736 * ipport_tick() allows it. 737 */ 738 if (V_ipport_randomized && 739 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 740 pcbinfo == &V_ulitecbinfo)) 741 dorandom = 1; 742 else 743 dorandom = 0; 744 /* 745 * It makes no sense to do random port allocation if 746 * we have the only port available. 747 */ 748 if (first == last) 749 dorandom = 0; 750 /* Make sure to not include UDP(-Lite) packets in the count. */ 751 if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) 752 V_ipport_tcpallocs++; 753 /* 754 * Instead of having two loops further down counting up or down 755 * make sure that first is always <= last and go with only one 756 * code path implementing all logic. 757 */ 758 if (first > last) { 759 aux = first; 760 first = last; 761 last = aux; 762 } 763 764 #ifdef INET 765 laddr.s_addr = INADDR_ANY; 766 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 767 if (lsa != NULL) 768 laddr = ((struct sockaddr_in *)lsa)->sin_addr; 769 if (fsa != NULL) 770 faddr = ((struct sockaddr_in *)fsa)->sin_addr; 771 } 772 #endif 773 #ifdef INET6 774 laddr6 = NULL; 775 if ((inp->inp_vflag & INP_IPV6) != 0) { 776 if (lsa != NULL) 777 laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr; 778 if (fsa != NULL) 779 faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr; 780 } 781 #endif 782 783 tmpinp = NULL; 784 lport = *lportp; 785 786 if (dorandom) 787 *lastport = first + (arc4random() % (last - first)); 788 789 count = last - first; 790 791 do { 792 if (count-- < 0) /* completely used? */ 793 return (EADDRNOTAVAIL); 794 ++*lastport; 795 if (*lastport < first || *lastport > last) 796 *lastport = first; 797 lport = htons(*lastport); 798 799 if (fsa != NULL) { 800 #ifdef INET 801 if (lsa->sa_family == AF_INET) { 802 tmpinp = in_pcblookup_hash_locked(pcbinfo, 803 faddr, fport, laddr, lport, lookupflags, 804 NULL, M_NODOM); 805 } 806 #endif 807 #ifdef INET6 808 if (lsa->sa_family == AF_INET6) { 809 tmpinp = in6_pcblookup_hash_locked(pcbinfo, 810 faddr6, fport, laddr6, lport, lookupflags, 811 NULL, M_NODOM); 812 } 813 #endif 814 } else { 815 #ifdef INET6 816 if ((inp->inp_vflag & INP_IPV6) != 0) 817 tmpinp = in6_pcblookup_local(pcbinfo, 818 &inp->in6p_laddr, lport, lookupflags, cred); 819 #endif 820 #if defined(INET) && defined(INET6) 821 else 822 #endif 823 #ifdef INET 824 tmpinp = in_pcblookup_local(pcbinfo, laddr, 825 lport, lookupflags, cred); 826 #endif 827 } 828 } while (tmpinp != NULL); 829 830 *lportp = lport; 831 832 return (0); 833 } 834 835 /* 836 * Select a local port (number) to use. 837 */ 838 int 839 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 840 struct ucred *cred, int lookupflags) 841 { 842 struct sockaddr_in laddr; 843 844 if (laddrp) { 845 bzero(&laddr, sizeof(laddr)); 846 laddr.sin_family = AF_INET; 847 laddr.sin_addr = *laddrp; 848 } 849 return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr : 850 NULL, lportp, NULL, 0, cred, lookupflags)); 851 } 852 853 /* 854 * Return cached socket options. 855 */ 856 int 857 inp_so_options(const struct inpcb *inp) 858 { 859 int so_options; 860 861 so_options = 0; 862 863 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 864 so_options |= SO_REUSEPORT_LB; 865 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 866 so_options |= SO_REUSEPORT; 867 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 868 so_options |= SO_REUSEADDR; 869 return (so_options); 870 } 871 #endif /* INET || INET6 */ 872 873 /* 874 * Check if a new BINDMULTI socket is allowed to be created. 875 * 876 * ni points to the new inp. 877 * oi points to the exisitng inp. 878 * 879 * This checks whether the existing inp also has BINDMULTI and 880 * whether the credentials match. 881 */ 882 int 883 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 884 { 885 /* Check permissions match */ 886 if ((ni->inp_flags2 & INP_BINDMULTI) && 887 (ni->inp_cred->cr_uid != 888 oi->inp_cred->cr_uid)) 889 return (0); 890 891 /* Check the existing inp has BINDMULTI set */ 892 if ((ni->inp_flags2 & INP_BINDMULTI) && 893 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 894 return (0); 895 896 /* 897 * We're okay - either INP_BINDMULTI isn't set on ni, or 898 * it is and it matches the checks. 899 */ 900 return (1); 901 } 902 903 #ifdef INET 904 /* 905 * Set up a bind operation on a PCB, performing port allocation 906 * as required, but do not actually modify the PCB. Callers can 907 * either complete the bind by setting inp_laddr/inp_lport and 908 * calling in_pcbinshash(), or they can just use the resulting 909 * port and address to authorise the sending of a once-off packet. 910 * 911 * On error, the values of *laddrp and *lportp are not changed. 912 */ 913 int 914 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 915 u_short *lportp, struct ucred *cred) 916 { 917 struct socket *so = inp->inp_socket; 918 struct sockaddr_in *sin; 919 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 920 struct in_addr laddr; 921 u_short lport = 0; 922 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 923 int error; 924 925 /* 926 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here 927 * so that we don't have to add to the (already messy) code below. 928 */ 929 int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); 930 931 /* 932 * No state changes, so read locks are sufficient here. 933 */ 934 INP_LOCK_ASSERT(inp); 935 INP_HASH_LOCK_ASSERT(pcbinfo); 936 937 laddr.s_addr = *laddrp; 938 if (nam != NULL && laddr.s_addr != INADDR_ANY) 939 return (EINVAL); 940 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) 941 lookupflags = INPLOOKUP_WILDCARD; 942 if (nam == NULL) { 943 if ((error = prison_local_ip4(cred, &laddr)) != 0) 944 return (error); 945 } else { 946 sin = (struct sockaddr_in *)nam; 947 KASSERT(sin->sin_family == AF_INET, 948 ("%s: invalid family for address %p", __func__, sin)); 949 KASSERT(sin->sin_len == sizeof(*sin), 950 ("%s: invalid length for address %p", __func__, sin)); 951 952 error = prison_local_ip4(cred, &sin->sin_addr); 953 if (error) 954 return (error); 955 if (sin->sin_port != *lportp) { 956 /* Don't allow the port to change. */ 957 if (*lportp != 0) 958 return (EINVAL); 959 lport = sin->sin_port; 960 } 961 /* NB: lport is left as 0 if the port isn't being changed. */ 962 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 963 /* 964 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 965 * allow complete duplication of binding if 966 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 967 * and a multicast address is bound on both 968 * new and duplicated sockets. 969 */ 970 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 971 reuseport = SO_REUSEADDR|SO_REUSEPORT; 972 /* 973 * XXX: How to deal with SO_REUSEPORT_LB here? 974 * Treat same as SO_REUSEPORT for now. 975 */ 976 if ((so->so_options & 977 (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) 978 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; 979 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 980 sin->sin_port = 0; /* yech... */ 981 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 982 /* 983 * Is the address a local IP address? 984 * If INP_BINDANY is set, then the socket may be bound 985 * to any endpoint address, local or not. 986 */ 987 if ((inp->inp_flags & INP_BINDANY) == 0 && 988 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 989 return (EADDRNOTAVAIL); 990 } 991 laddr = sin->sin_addr; 992 if (lport) { 993 struct inpcb *t; 994 struct tcptw *tw; 995 996 /* GROSS */ 997 if (ntohs(lport) <= V_ipport_reservedhigh && 998 ntohs(lport) >= V_ipport_reservedlow && 999 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) 1000 return (EACCES); 1001 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 1002 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { 1003 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 1004 lport, INPLOOKUP_WILDCARD, cred); 1005 /* 1006 * XXX 1007 * This entire block sorely needs a rewrite. 1008 */ 1009 if (t && 1010 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 1011 ((t->inp_flags & INP_TIMEWAIT) == 0) && 1012 (so->so_type != SOCK_STREAM || 1013 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 1014 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 1015 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 1016 (t->inp_flags2 & INP_REUSEPORT) || 1017 (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && 1018 (inp->inp_cred->cr_uid != 1019 t->inp_cred->cr_uid)) 1020 return (EADDRINUSE); 1021 1022 /* 1023 * If the socket is a BINDMULTI socket, then 1024 * the credentials need to match and the 1025 * original socket also has to have been bound 1026 * with BINDMULTI. 1027 */ 1028 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 1029 return (EADDRINUSE); 1030 } 1031 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 1032 lport, lookupflags, cred); 1033 if (t && (t->inp_flags & INP_TIMEWAIT)) { 1034 /* 1035 * XXXRW: If an incpb has had its timewait 1036 * state recycled, we treat the address as 1037 * being in use (for now). This is better 1038 * than a panic, but not desirable. 1039 */ 1040 tw = intotw(t); 1041 if (tw == NULL || 1042 ((reuseport & tw->tw_so_options) == 0 && 1043 (reuseport_lb & 1044 tw->tw_so_options) == 0)) { 1045 return (EADDRINUSE); 1046 } 1047 } else if (t && 1048 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 1049 (reuseport & inp_so_options(t)) == 0 && 1050 (reuseport_lb & inp_so_options(t)) == 0) { 1051 #ifdef INET6 1052 if (ntohl(sin->sin_addr.s_addr) != 1053 INADDR_ANY || 1054 ntohl(t->inp_laddr.s_addr) != 1055 INADDR_ANY || 1056 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 1057 (t->inp_vflag & INP_IPV6PROTO) == 0) 1058 #endif 1059 return (EADDRINUSE); 1060 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 1061 return (EADDRINUSE); 1062 } 1063 } 1064 } 1065 if (*lportp != 0) 1066 lport = *lportp; 1067 if (lport == 0) { 1068 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 1069 if (error != 0) 1070 return (error); 1071 } 1072 *laddrp = laddr.s_addr; 1073 *lportp = lport; 1074 return (0); 1075 } 1076 1077 /* 1078 * Connect from a socket to a specified address. 1079 * Both address and port must be specified in argument sin. 1080 * If don't have a local address for this socket yet, 1081 * then pick one. 1082 */ 1083 int 1084 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred, 1085 bool rehash) 1086 { 1087 u_short lport, fport; 1088 in_addr_t laddr, faddr; 1089 int anonport, error; 1090 1091 INP_WLOCK_ASSERT(inp); 1092 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1093 1094 lport = inp->inp_lport; 1095 laddr = inp->inp_laddr.s_addr; 1096 anonport = (lport == 0); 1097 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 1098 NULL, cred); 1099 if (error) 1100 return (error); 1101 1102 /* Do the initial binding of the local address if required. */ 1103 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 1104 KASSERT(rehash == true, 1105 ("Rehashing required for unbound inps")); 1106 inp->inp_lport = lport; 1107 inp->inp_laddr.s_addr = laddr; 1108 if (in_pcbinshash(inp) != 0) { 1109 inp->inp_laddr.s_addr = INADDR_ANY; 1110 inp->inp_lport = 0; 1111 return (EAGAIN); 1112 } 1113 } 1114 1115 /* Commit the remaining changes. */ 1116 inp->inp_lport = lport; 1117 inp->inp_laddr.s_addr = laddr; 1118 inp->inp_faddr.s_addr = faddr; 1119 inp->inp_fport = fport; 1120 if (rehash) { 1121 in_pcbrehash(inp); 1122 } else { 1123 in_pcbinshash(inp); 1124 } 1125 1126 if (anonport) 1127 inp->inp_flags |= INP_ANONPORT; 1128 return (0); 1129 } 1130 1131 /* 1132 * Do proper source address selection on an unbound socket in case 1133 * of connect. Take jails into account as well. 1134 */ 1135 int 1136 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 1137 struct ucred *cred) 1138 { 1139 struct ifaddr *ifa; 1140 struct sockaddr *sa; 1141 struct sockaddr_in *sin, dst; 1142 struct nhop_object *nh; 1143 int error; 1144 1145 NET_EPOCH_ASSERT(); 1146 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1147 /* 1148 * Bypass source address selection and use the primary jail IP 1149 * if requested. 1150 */ 1151 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 1152 return (0); 1153 1154 error = 0; 1155 1156 nh = NULL; 1157 bzero(&dst, sizeof(dst)); 1158 sin = &dst; 1159 sin->sin_family = AF_INET; 1160 sin->sin_len = sizeof(struct sockaddr_in); 1161 sin->sin_addr.s_addr = faddr->s_addr; 1162 1163 /* 1164 * If route is known our src addr is taken from the i/f, 1165 * else punt. 1166 * 1167 * Find out route to destination. 1168 */ 1169 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1170 nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr, 1171 0, NHR_NONE, 0); 1172 1173 /* 1174 * If we found a route, use the address corresponding to 1175 * the outgoing interface. 1176 * 1177 * Otherwise assume faddr is reachable on a directly connected 1178 * network and try to find a corresponding interface to take 1179 * the source address from. 1180 */ 1181 if (nh == NULL || nh->nh_ifp == NULL) { 1182 struct in_ifaddr *ia; 1183 struct ifnet *ifp; 1184 1185 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1186 inp->inp_socket->so_fibnum)); 1187 if (ia == NULL) { 1188 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1189 inp->inp_socket->so_fibnum)); 1190 } 1191 if (ia == NULL) { 1192 error = ENETUNREACH; 1193 goto done; 1194 } 1195 1196 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1197 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1198 goto done; 1199 } 1200 1201 ifp = ia->ia_ifp; 1202 ia = NULL; 1203 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1204 sa = ifa->ifa_addr; 1205 if (sa->sa_family != AF_INET) 1206 continue; 1207 sin = (struct sockaddr_in *)sa; 1208 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1209 ia = (struct in_ifaddr *)ifa; 1210 break; 1211 } 1212 } 1213 if (ia != NULL) { 1214 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1215 goto done; 1216 } 1217 1218 /* 3. As a last resort return the 'default' jail address. */ 1219 error = prison_get_ip4(cred, laddr); 1220 goto done; 1221 } 1222 1223 /* 1224 * If the outgoing interface on the route found is not 1225 * a loopback interface, use the address from that interface. 1226 * In case of jails do those three steps: 1227 * 1. check if the interface address belongs to the jail. If so use it. 1228 * 2. check if we have any address on the outgoing interface 1229 * belonging to this jail. If so use it. 1230 * 3. as a last resort return the 'default' jail address. 1231 */ 1232 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) { 1233 struct in_ifaddr *ia; 1234 struct ifnet *ifp; 1235 1236 /* If not jailed, use the default returned. */ 1237 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1238 ia = (struct in_ifaddr *)nh->nh_ifa; 1239 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1240 goto done; 1241 } 1242 1243 /* Jailed. */ 1244 /* 1. Check if the iface address belongs to the jail. */ 1245 sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr; 1246 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1247 ia = (struct in_ifaddr *)nh->nh_ifa; 1248 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1249 goto done; 1250 } 1251 1252 /* 1253 * 2. Check if we have any address on the outgoing interface 1254 * belonging to this jail. 1255 */ 1256 ia = NULL; 1257 ifp = nh->nh_ifp; 1258 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1259 sa = ifa->ifa_addr; 1260 if (sa->sa_family != AF_INET) 1261 continue; 1262 sin = (struct sockaddr_in *)sa; 1263 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1264 ia = (struct in_ifaddr *)ifa; 1265 break; 1266 } 1267 } 1268 if (ia != NULL) { 1269 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1270 goto done; 1271 } 1272 1273 /* 3. As a last resort return the 'default' jail address. */ 1274 error = prison_get_ip4(cred, laddr); 1275 goto done; 1276 } 1277 1278 /* 1279 * The outgoing interface is marked with 'loopback net', so a route 1280 * to ourselves is here. 1281 * Try to find the interface of the destination address and then 1282 * take the address from there. That interface is not necessarily 1283 * a loopback interface. 1284 * In case of jails, check that it is an address of the jail 1285 * and if we cannot find, fall back to the 'default' jail address. 1286 */ 1287 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) { 1288 struct in_ifaddr *ia; 1289 1290 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst), 1291 inp->inp_socket->so_fibnum)); 1292 if (ia == NULL) 1293 ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0, 1294 inp->inp_socket->so_fibnum)); 1295 if (ia == NULL) 1296 ia = ifatoia(ifa_ifwithaddr(sintosa(&dst))); 1297 1298 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1299 if (ia == NULL) { 1300 error = ENETUNREACH; 1301 goto done; 1302 } 1303 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1304 goto done; 1305 } 1306 1307 /* Jailed. */ 1308 if (ia != NULL) { 1309 struct ifnet *ifp; 1310 1311 ifp = ia->ia_ifp; 1312 ia = NULL; 1313 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1314 sa = ifa->ifa_addr; 1315 if (sa->sa_family != AF_INET) 1316 continue; 1317 sin = (struct sockaddr_in *)sa; 1318 if (prison_check_ip4(cred, 1319 &sin->sin_addr) == 0) { 1320 ia = (struct in_ifaddr *)ifa; 1321 break; 1322 } 1323 } 1324 if (ia != NULL) { 1325 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1326 goto done; 1327 } 1328 } 1329 1330 /* 3. As a last resort return the 'default' jail address. */ 1331 error = prison_get_ip4(cred, laddr); 1332 goto done; 1333 } 1334 1335 done: 1336 return (error); 1337 } 1338 1339 /* 1340 * Set up for a connect from a socket to the specified address. 1341 * On entry, *laddrp and *lportp should contain the current local 1342 * address and port for the PCB; these are updated to the values 1343 * that should be placed in inp_laddr and inp_lport to complete 1344 * the connect. 1345 * 1346 * On success, *faddrp and *fportp will be set to the remote address 1347 * and port. These are not updated in the error case. 1348 * 1349 * If the operation fails because the connection already exists, 1350 * *oinpp will be set to the PCB of that connection so that the 1351 * caller can decide to override it. In all other cases, *oinpp 1352 * is set to NULL. 1353 */ 1354 int 1355 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1356 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1357 struct inpcb **oinpp, struct ucred *cred) 1358 { 1359 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1360 struct in_ifaddr *ia; 1361 struct inpcb *oinp; 1362 struct in_addr laddr, faddr; 1363 u_short lport, fport; 1364 int error; 1365 1366 KASSERT(sin->sin_family == AF_INET, 1367 ("%s: invalid address family for %p", __func__, sin)); 1368 KASSERT(sin->sin_len == sizeof(*sin), 1369 ("%s: invalid address length for %p", __func__, sin)); 1370 1371 /* 1372 * Because a global state change doesn't actually occur here, a read 1373 * lock is sufficient. 1374 */ 1375 NET_EPOCH_ASSERT(); 1376 INP_LOCK_ASSERT(inp); 1377 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1378 1379 if (oinpp != NULL) 1380 *oinpp = NULL; 1381 if (sin->sin_port == 0) 1382 return (EADDRNOTAVAIL); 1383 laddr.s_addr = *laddrp; 1384 lport = *lportp; 1385 faddr = sin->sin_addr; 1386 fport = sin->sin_port; 1387 #ifdef ROUTE_MPATH 1388 if (CALC_FLOWID_OUTBOUND) { 1389 uint32_t hash_val, hash_type; 1390 1391 hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport, 1392 inp->inp_socket->so_proto->pr_protocol, &hash_type); 1393 1394 inp->inp_flowid = hash_val; 1395 inp->inp_flowtype = hash_type; 1396 } 1397 #endif 1398 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1399 /* 1400 * If the destination address is INADDR_ANY, 1401 * use the primary local address. 1402 * If the supplied address is INADDR_BROADCAST, 1403 * and the primary interface supports broadcast, 1404 * choose the broadcast address for that interface. 1405 */ 1406 if (faddr.s_addr == INADDR_ANY) { 1407 faddr = 1408 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1409 if (cred != NULL && 1410 (error = prison_get_ip4(cred, &faddr)) != 0) 1411 return (error); 1412 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1413 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1414 IFF_BROADCAST) 1415 faddr = satosin(&CK_STAILQ_FIRST( 1416 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1417 } 1418 } 1419 if (laddr.s_addr == INADDR_ANY) { 1420 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1421 /* 1422 * If the destination address is multicast and an outgoing 1423 * interface has been set as a multicast option, prefer the 1424 * address of that interface as our source address. 1425 */ 1426 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1427 inp->inp_moptions != NULL) { 1428 struct ip_moptions *imo; 1429 struct ifnet *ifp; 1430 1431 imo = inp->inp_moptions; 1432 if (imo->imo_multicast_ifp != NULL) { 1433 ifp = imo->imo_multicast_ifp; 1434 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1435 if ((ia->ia_ifp == ifp) && 1436 (cred == NULL || 1437 prison_check_ip4(cred, 1438 &ia->ia_addr.sin_addr) == 0)) 1439 break; 1440 } 1441 if (ia == NULL) 1442 error = EADDRNOTAVAIL; 1443 else { 1444 laddr = ia->ia_addr.sin_addr; 1445 error = 0; 1446 } 1447 } 1448 } 1449 if (error) 1450 return (error); 1451 } 1452 1453 if (lport != 0) { 1454 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, 1455 fport, laddr, lport, 0, NULL, M_NODOM); 1456 if (oinp != NULL) { 1457 if (oinpp != NULL) 1458 *oinpp = oinp; 1459 return (EADDRINUSE); 1460 } 1461 } else { 1462 struct sockaddr_in lsin, fsin; 1463 1464 bzero(&lsin, sizeof(lsin)); 1465 bzero(&fsin, sizeof(fsin)); 1466 lsin.sin_family = AF_INET; 1467 lsin.sin_addr = laddr; 1468 fsin.sin_family = AF_INET; 1469 fsin.sin_addr = faddr; 1470 error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin, 1471 &lport, (struct sockaddr *)& fsin, fport, cred, 1472 INPLOOKUP_WILDCARD); 1473 if (error) 1474 return (error); 1475 } 1476 *laddrp = laddr.s_addr; 1477 *lportp = lport; 1478 *faddrp = faddr.s_addr; 1479 *fportp = fport; 1480 return (0); 1481 } 1482 1483 void 1484 in_pcbdisconnect(struct inpcb *inp) 1485 { 1486 1487 INP_WLOCK_ASSERT(inp); 1488 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1489 1490 inp->inp_faddr.s_addr = INADDR_ANY; 1491 inp->inp_fport = 0; 1492 in_pcbrehash(inp); 1493 } 1494 #endif /* INET */ 1495 1496 /* 1497 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1498 * For most protocols, this will be invoked immediately prior to calling 1499 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1500 * socket, in which case in_pcbfree() is deferred. 1501 */ 1502 void 1503 in_pcbdetach(struct inpcb *inp) 1504 { 1505 1506 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1507 1508 #ifdef RATELIMIT 1509 if (inp->inp_snd_tag != NULL) 1510 in_pcbdetach_txrtlmt(inp); 1511 #endif 1512 inp->inp_socket->so_pcb = NULL; 1513 inp->inp_socket = NULL; 1514 } 1515 1516 /* 1517 * inpcb hash lookups are protected by SMR section. 1518 * 1519 * Once desired pcb has been found, switching from SMR section to a pcb 1520 * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK 1521 * here because SMR is a critical section. 1522 * In 99%+ cases inp_smr_lock() would obtain the lock immediately. 1523 */ 1524 static inline void 1525 inp_lock(struct inpcb *inp, const inp_lookup_t lock) 1526 { 1527 1528 lock == INPLOOKUP_RLOCKPCB ? 1529 rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock); 1530 } 1531 1532 static inline void 1533 inp_unlock(struct inpcb *inp, const inp_lookup_t lock) 1534 { 1535 1536 lock == INPLOOKUP_RLOCKPCB ? 1537 rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock); 1538 } 1539 1540 static inline int 1541 inp_trylock(struct inpcb *inp, const inp_lookup_t lock) 1542 { 1543 1544 return (lock == INPLOOKUP_RLOCKPCB ? 1545 rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock)); 1546 } 1547 1548 static inline bool 1549 in_pcbrele(struct inpcb *inp, const inp_lookup_t lock) 1550 { 1551 1552 return (lock == INPLOOKUP_RLOCKPCB ? 1553 in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp)); 1554 } 1555 1556 bool 1557 inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock) 1558 { 1559 1560 MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB); 1561 SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr); 1562 1563 if (__predict_true(inp_trylock(inp, lock))) { 1564 if (__predict_false(inp->inp_flags & INP_FREED)) { 1565 smr_exit(inp->inp_pcbinfo->ipi_smr); 1566 inp_unlock(inp, lock); 1567 return (false); 1568 } 1569 smr_exit(inp->inp_pcbinfo->ipi_smr); 1570 return (true); 1571 } 1572 1573 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1574 smr_exit(inp->inp_pcbinfo->ipi_smr); 1575 inp_lock(inp, lock); 1576 if (__predict_false(in_pcbrele(inp, lock))) 1577 return (false); 1578 /* 1579 * inp acquired through refcount & lock for sure didn't went 1580 * through uma_zfree(). However, it may have already went 1581 * through in_pcbfree() and has another reference, that 1582 * prevented its release by our in_pcbrele(). 1583 */ 1584 if (__predict_false(inp->inp_flags & INP_FREED)) { 1585 inp_unlock(inp, lock); 1586 return (false); 1587 } 1588 return (true); 1589 } else { 1590 smr_exit(inp->inp_pcbinfo->ipi_smr); 1591 return (false); 1592 } 1593 } 1594 1595 /* 1596 * inp_next() - inpcb hash/list traversal iterator 1597 * 1598 * Requires initialized struct inpcb_iterator for context. 1599 * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR(). 1600 * 1601 * - Iterator can have either write-lock or read-lock semantics, that can not 1602 * be changed later. 1603 * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through 1604 * a single hash slot. Note: only rip_input() does the latter. 1605 * - Iterator may have optional bool matching function. The matching function 1606 * will be executed for each inpcb in the SMR context, so it can not acquire 1607 * locks and can safely access only immutable fields of inpcb. 1608 * 1609 * A fresh initialized iterator has NULL inpcb in its context and that 1610 * means that inp_next() call would return the very first inpcb on the list 1611 * locked with desired semantic. In all following calls the context pointer 1612 * shall hold the current inpcb pointer. The KPI user is not supposed to 1613 * unlock the current inpcb! Upon end of traversal inp_next() will return NULL 1614 * and write NULL to its context. After end of traversal an iterator can be 1615 * reused. 1616 * 1617 * List traversals have the following features/constraints: 1618 * - New entries won't be seen, as they are always added to the head of a list. 1619 * - Removed entries won't stop traversal as long as they are not added to 1620 * a different list. This is violated by in_pcbrehash(). 1621 */ 1622 #define II_LIST_FIRST(ipi, hash) \ 1623 (((hash) == INP_ALL_LIST) ? \ 1624 CK_LIST_FIRST(&(ipi)->ipi_listhead) : \ 1625 CK_LIST_FIRST(&(ipi)->ipi_hashbase[(hash)])) 1626 #define II_LIST_NEXT(inp, hash) \ 1627 (((hash) == INP_ALL_LIST) ? \ 1628 CK_LIST_NEXT((inp), inp_list) : \ 1629 CK_LIST_NEXT((inp), inp_hash)) 1630 #define II_LOCK_ASSERT(inp, lock) \ 1631 rw_assert(&(inp)->inp_lock, \ 1632 (lock) == INPLOOKUP_RLOCKPCB ? RA_RLOCKED : RA_WLOCKED ) 1633 struct inpcb * 1634 inp_next(struct inpcb_iterator *ii) 1635 { 1636 const struct inpcbinfo *ipi = ii->ipi; 1637 inp_match_t *match = ii->match; 1638 void *ctx = ii->ctx; 1639 inp_lookup_t lock = ii->lock; 1640 int hash = ii->hash; 1641 struct inpcb *inp; 1642 1643 if (ii->inp == NULL) { /* First call. */ 1644 smr_enter(ipi->ipi_smr); 1645 /* This is unrolled CK_LIST_FOREACH(). */ 1646 for (inp = II_LIST_FIRST(ipi, hash); 1647 inp != NULL; 1648 inp = II_LIST_NEXT(inp, hash)) { 1649 if (match != NULL && (match)(inp, ctx) == false) 1650 continue; 1651 if (__predict_true(inp_smr_lock(inp, lock))) 1652 break; 1653 else { 1654 smr_enter(ipi->ipi_smr); 1655 MPASS(inp != II_LIST_FIRST(ipi, hash)); 1656 inp = II_LIST_FIRST(ipi, hash); 1657 } 1658 } 1659 1660 if (inp == NULL) 1661 smr_exit(ipi->ipi_smr); 1662 else 1663 ii->inp = inp; 1664 1665 return (inp); 1666 } 1667 1668 /* Not a first call. */ 1669 smr_enter(ipi->ipi_smr); 1670 restart: 1671 inp = ii->inp; 1672 II_LOCK_ASSERT(inp, lock); 1673 next: 1674 inp = II_LIST_NEXT(inp, hash); 1675 if (inp == NULL) { 1676 smr_exit(ipi->ipi_smr); 1677 goto found; 1678 } 1679 1680 if (match != NULL && (match)(inp, ctx) == false) 1681 goto next; 1682 1683 if (__predict_true(inp_trylock(inp, lock))) { 1684 if (__predict_false(inp->inp_flags & INP_FREED)) { 1685 /* 1686 * Entries are never inserted in middle of a list, thus 1687 * as long as we are in SMR, we can continue traversal. 1688 * Jump to 'restart' should yield in the same result, 1689 * but could produce unnecessary looping. Could this 1690 * looping be unbound? 1691 */ 1692 inp_unlock(inp, lock); 1693 goto next; 1694 } else { 1695 smr_exit(ipi->ipi_smr); 1696 goto found; 1697 } 1698 } 1699 1700 /* 1701 * Can't obtain lock immediately, thus going hard. Once we exit the 1702 * SMR section we can no longer jump to 'next', and our only stable 1703 * anchoring point is ii->inp, which we keep locked for this case, so 1704 * we jump to 'restart'. 1705 */ 1706 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1707 smr_exit(ipi->ipi_smr); 1708 inp_lock(inp, lock); 1709 if (__predict_false(in_pcbrele(inp, lock))) { 1710 smr_enter(ipi->ipi_smr); 1711 goto restart; 1712 } 1713 /* 1714 * See comment in inp_smr_lock(). 1715 */ 1716 if (__predict_false(inp->inp_flags & INP_FREED)) { 1717 inp_unlock(inp, lock); 1718 smr_enter(ipi->ipi_smr); 1719 goto restart; 1720 } 1721 } else 1722 goto next; 1723 1724 found: 1725 inp_unlock(ii->inp, lock); 1726 ii->inp = inp; 1727 1728 return (ii->inp); 1729 } 1730 1731 /* 1732 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1733 * stability of an inpcb pointer despite the inpcb lock being released or 1734 * SMR section exited. 1735 * 1736 * To free a reference later in_pcbrele_(r|w)locked() must be performed. 1737 */ 1738 void 1739 in_pcbref(struct inpcb *inp) 1740 { 1741 u_int old __diagused; 1742 1743 old = refcount_acquire(&inp->inp_refcount); 1744 KASSERT(old > 0, ("%s: refcount 0", __func__)); 1745 } 1746 1747 /* 1748 * Drop a refcount on an inpcb elevated using in_pcbref(), potentially 1749 * freeing the pcb, if the reference was very last. 1750 */ 1751 bool 1752 in_pcbrele_rlocked(struct inpcb *inp) 1753 { 1754 1755 INP_RLOCK_ASSERT(inp); 1756 1757 if (refcount_release(&inp->inp_refcount) == 0) 1758 return (false); 1759 1760 MPASS(inp->inp_flags & INP_FREED); 1761 MPASS(inp->inp_socket == NULL); 1762 MPASS(inp->inp_in_hpts == 0); 1763 MPASS(inp->inp_in_dropq == 0); 1764 INP_RUNLOCK(inp); 1765 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1766 return (true); 1767 } 1768 1769 bool 1770 in_pcbrele_wlocked(struct inpcb *inp) 1771 { 1772 1773 INP_WLOCK_ASSERT(inp); 1774 1775 if (refcount_release(&inp->inp_refcount) == 0) 1776 return (false); 1777 1778 MPASS(inp->inp_flags & INP_FREED); 1779 MPASS(inp->inp_socket == NULL); 1780 MPASS(inp->inp_in_hpts == 0); 1781 MPASS(inp->inp_in_dropq == 0); 1782 INP_WUNLOCK(inp); 1783 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1784 return (true); 1785 } 1786 1787 /* 1788 * Unconditionally schedule an inpcb to be freed by decrementing its 1789 * reference count, which should occur only after the inpcb has been detached 1790 * from its socket. If another thread holds a temporary reference (acquired 1791 * using in_pcbref()) then the free is deferred until that reference is 1792 * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked. 1793 * Almost all work, including removal from global lists, is done in this 1794 * context, where the pcbinfo lock is held. 1795 */ 1796 void 1797 in_pcbfree(struct inpcb *inp) 1798 { 1799 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1800 #ifdef INET 1801 struct ip_moptions *imo; 1802 #endif 1803 #ifdef INET6 1804 struct ip6_moptions *im6o; 1805 #endif 1806 1807 INP_WLOCK_ASSERT(inp); 1808 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1809 KASSERT((inp->inp_flags & INP_FREED) == 0, 1810 ("%s: called twice for pcb %p", __func__, inp)); 1811 1812 inp->inp_flags |= INP_FREED; 1813 INP_INFO_WLOCK(pcbinfo); 1814 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1815 pcbinfo->ipi_count--; 1816 CK_LIST_REMOVE(inp, inp_list); 1817 INP_INFO_WUNLOCK(pcbinfo); 1818 1819 if (inp->inp_flags & INP_INHASHLIST) { 1820 struct inpcbport *phd = inp->inp_phd; 1821 1822 INP_HASH_WLOCK(pcbinfo); 1823 /* XXX: Only do if SO_REUSEPORT_LB set? */ 1824 in_pcbremlbgrouphash(inp); 1825 1826 CK_LIST_REMOVE(inp, inp_hash); 1827 CK_LIST_REMOVE(inp, inp_portlist); 1828 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 1829 CK_LIST_REMOVE(phd, phd_hash); 1830 uma_zfree_smr(pcbinfo->ipi_portzone, phd); 1831 } 1832 INP_HASH_WUNLOCK(pcbinfo); 1833 inp->inp_flags &= ~INP_INHASHLIST; 1834 } 1835 1836 crfree(inp->inp_cred); 1837 RO_INVALIDATE_CACHE(&inp->inp_route); 1838 #ifdef MAC 1839 mac_inpcb_destroy(inp); 1840 #endif 1841 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1842 if (inp->inp_sp != NULL) 1843 ipsec_delete_pcbpolicy(inp); 1844 #endif 1845 #ifdef INET 1846 if (inp->inp_options) 1847 (void)m_free(inp->inp_options); 1848 imo = inp->inp_moptions; 1849 #endif 1850 #ifdef INET6 1851 if (inp->inp_vflag & INP_IPV6PROTO) { 1852 ip6_freepcbopts(inp->in6p_outputopts); 1853 im6o = inp->in6p_moptions; 1854 } else 1855 im6o = NULL; 1856 #endif 1857 1858 if (__predict_false(in_pcbrele_wlocked(inp) == false)) { 1859 INP_WUNLOCK(inp); 1860 } 1861 #ifdef INET6 1862 ip6_freemoptions(im6o); 1863 #endif 1864 #ifdef INET 1865 inp_freemoptions(imo); 1866 #endif 1867 } 1868 1869 /* 1870 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1871 * port reservation, and preventing it from being returned by inpcb lookups. 1872 * 1873 * It is used by TCP to mark an inpcb as unused and avoid future packet 1874 * delivery or event notification when a socket remains open but TCP has 1875 * closed. This might occur as a result of a shutdown()-initiated TCP close 1876 * or a RST on the wire, and allows the port binding to be reused while still 1877 * maintaining the invariant that so_pcb always points to a valid inpcb until 1878 * in_pcbdetach(). 1879 * 1880 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1881 * in_pcbnotifyall() and in_pcbpurgeif0()? 1882 */ 1883 void 1884 in_pcbdrop(struct inpcb *inp) 1885 { 1886 1887 INP_WLOCK_ASSERT(inp); 1888 #ifdef INVARIANTS 1889 if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) 1890 MPASS(inp->inp_refcount > 1); 1891 #endif 1892 1893 /* 1894 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1895 * the hash lock...? 1896 */ 1897 inp->inp_flags |= INP_DROPPED; 1898 if (inp->inp_flags & INP_INHASHLIST) { 1899 struct inpcbport *phd = inp->inp_phd; 1900 1901 INP_HASH_WLOCK(inp->inp_pcbinfo); 1902 in_pcbremlbgrouphash(inp); 1903 CK_LIST_REMOVE(inp, inp_hash); 1904 CK_LIST_REMOVE(inp, inp_portlist); 1905 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 1906 CK_LIST_REMOVE(phd, phd_hash); 1907 uma_zfree_smr(inp->inp_pcbinfo->ipi_portzone, phd); 1908 } 1909 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1910 inp->inp_flags &= ~INP_INHASHLIST; 1911 } 1912 } 1913 1914 #ifdef INET 1915 /* 1916 * Common routines to return the socket addresses associated with inpcbs. 1917 */ 1918 struct sockaddr * 1919 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1920 { 1921 struct sockaddr_in *sin; 1922 1923 sin = malloc(sizeof *sin, M_SONAME, 1924 M_WAITOK | M_ZERO); 1925 sin->sin_family = AF_INET; 1926 sin->sin_len = sizeof(*sin); 1927 sin->sin_addr = *addr_p; 1928 sin->sin_port = port; 1929 1930 return (struct sockaddr *)sin; 1931 } 1932 1933 int 1934 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1935 { 1936 struct inpcb *inp; 1937 struct in_addr addr; 1938 in_port_t port; 1939 1940 inp = sotoinpcb(so); 1941 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1942 1943 INP_RLOCK(inp); 1944 port = inp->inp_lport; 1945 addr = inp->inp_laddr; 1946 INP_RUNLOCK(inp); 1947 1948 *nam = in_sockaddr(port, &addr); 1949 return 0; 1950 } 1951 1952 int 1953 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1954 { 1955 struct inpcb *inp; 1956 struct in_addr addr; 1957 in_port_t port; 1958 1959 inp = sotoinpcb(so); 1960 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1961 1962 INP_RLOCK(inp); 1963 port = inp->inp_fport; 1964 addr = inp->inp_faddr; 1965 INP_RUNLOCK(inp); 1966 1967 *nam = in_sockaddr(port, &addr); 1968 return 0; 1969 } 1970 1971 void 1972 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1973 struct inpcb *(*notify)(struct inpcb *, int)) 1974 { 1975 struct inpcb *inp, *inp_temp; 1976 1977 INP_INFO_WLOCK(pcbinfo); 1978 CK_LIST_FOREACH_SAFE(inp, &pcbinfo->ipi_listhead, inp_list, inp_temp) { 1979 INP_WLOCK(inp); 1980 #ifdef INET6 1981 if ((inp->inp_vflag & INP_IPV4) == 0) { 1982 INP_WUNLOCK(inp); 1983 continue; 1984 } 1985 #endif 1986 if (inp->inp_faddr.s_addr != faddr.s_addr || 1987 inp->inp_socket == NULL) { 1988 INP_WUNLOCK(inp); 1989 continue; 1990 } 1991 if ((*notify)(inp, errno)) 1992 INP_WUNLOCK(inp); 1993 } 1994 INP_INFO_WUNLOCK(pcbinfo); 1995 } 1996 1997 static bool 1998 inp_v4_multi_match(const struct inpcb *inp, void *v __unused) 1999 { 2000 2001 if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL) 2002 return (true); 2003 else 2004 return (false); 2005 } 2006 2007 void 2008 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 2009 { 2010 struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB, 2011 inp_v4_multi_match, NULL); 2012 struct inpcb *inp; 2013 struct in_multi *inm; 2014 struct in_mfilter *imf; 2015 struct ip_moptions *imo; 2016 2017 IN_MULTI_LOCK_ASSERT(); 2018 2019 while ((inp = inp_next(&inpi)) != NULL) { 2020 INP_WLOCK_ASSERT(inp); 2021 2022 imo = inp->inp_moptions; 2023 /* 2024 * Unselect the outgoing interface if it is being 2025 * detached. 2026 */ 2027 if (imo->imo_multicast_ifp == ifp) 2028 imo->imo_multicast_ifp = NULL; 2029 2030 /* 2031 * Drop multicast group membership if we joined 2032 * through the interface being detached. 2033 * 2034 * XXX This can all be deferred to an epoch_call 2035 */ 2036 restart: 2037 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 2038 if ((inm = imf->imf_inm) == NULL) 2039 continue; 2040 if (inm->inm_ifp != ifp) 2041 continue; 2042 ip_mfilter_remove(&imo->imo_head, imf); 2043 in_leavegroup_locked(inm, NULL); 2044 ip_mfilter_free(imf); 2045 goto restart; 2046 } 2047 } 2048 } 2049 2050 /* 2051 * Lookup a PCB based on the local address and port. Caller must hold the 2052 * hash lock. No inpcb locks or references are acquired. 2053 */ 2054 #define INP_LOOKUP_MAPPED_PCB_COST 3 2055 struct inpcb * 2056 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 2057 u_short lport, int lookupflags, struct ucred *cred) 2058 { 2059 struct inpcb *inp; 2060 #ifdef INET6 2061 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 2062 #else 2063 int matchwild = 3; 2064 #endif 2065 int wildcard; 2066 2067 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2068 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2069 INP_HASH_LOCK_ASSERT(pcbinfo); 2070 2071 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 2072 struct inpcbhead *head; 2073 /* 2074 * Look for an unconnected (wildcard foreign addr) PCB that 2075 * matches the local address and port we're looking for. 2076 */ 2077 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 2078 0, pcbinfo->ipi_hashmask)]; 2079 CK_LIST_FOREACH(inp, head, inp_hash) { 2080 #ifdef INET6 2081 /* XXX inp locking */ 2082 if ((inp->inp_vflag & INP_IPV4) == 0) 2083 continue; 2084 #endif 2085 if (inp->inp_faddr.s_addr == INADDR_ANY && 2086 inp->inp_laddr.s_addr == laddr.s_addr && 2087 inp->inp_lport == lport) { 2088 /* 2089 * Found? 2090 */ 2091 if (cred == NULL || 2092 prison_equal_ip4(cred->cr_prison, 2093 inp->inp_cred->cr_prison)) 2094 return (inp); 2095 } 2096 } 2097 /* 2098 * Not found. 2099 */ 2100 return (NULL); 2101 } else { 2102 struct inpcbporthead *porthash; 2103 struct inpcbport *phd; 2104 struct inpcb *match = NULL; 2105 /* 2106 * Best fit PCB lookup. 2107 * 2108 * First see if this local port is in use by looking on the 2109 * port hash list. 2110 */ 2111 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 2112 pcbinfo->ipi_porthashmask)]; 2113 CK_LIST_FOREACH(phd, porthash, phd_hash) { 2114 if (phd->phd_port == lport) 2115 break; 2116 } 2117 if (phd != NULL) { 2118 /* 2119 * Port is in use by one or more PCBs. Look for best 2120 * fit. 2121 */ 2122 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 2123 wildcard = 0; 2124 if (cred != NULL && 2125 !prison_equal_ip4(inp->inp_cred->cr_prison, 2126 cred->cr_prison)) 2127 continue; 2128 #ifdef INET6 2129 /* XXX inp locking */ 2130 if ((inp->inp_vflag & INP_IPV4) == 0) 2131 continue; 2132 /* 2133 * We never select the PCB that has 2134 * INP_IPV6 flag and is bound to :: if 2135 * we have another PCB which is bound 2136 * to 0.0.0.0. If a PCB has the 2137 * INP_IPV6 flag, then we set its cost 2138 * higher than IPv4 only PCBs. 2139 * 2140 * Note that the case only happens 2141 * when a socket is bound to ::, under 2142 * the condition that the use of the 2143 * mapped address is allowed. 2144 */ 2145 if ((inp->inp_vflag & INP_IPV6) != 0) 2146 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 2147 #endif 2148 if (inp->inp_faddr.s_addr != INADDR_ANY) 2149 wildcard++; 2150 if (inp->inp_laddr.s_addr != INADDR_ANY) { 2151 if (laddr.s_addr == INADDR_ANY) 2152 wildcard++; 2153 else if (inp->inp_laddr.s_addr != laddr.s_addr) 2154 continue; 2155 } else { 2156 if (laddr.s_addr != INADDR_ANY) 2157 wildcard++; 2158 } 2159 if (wildcard < matchwild) { 2160 match = inp; 2161 matchwild = wildcard; 2162 if (matchwild == 0) 2163 break; 2164 } 2165 } 2166 } 2167 return (match); 2168 } 2169 } 2170 #undef INP_LOOKUP_MAPPED_PCB_COST 2171 2172 static struct inpcb * 2173 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 2174 const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr, 2175 uint16_t fport, int lookupflags, int numa_domain) 2176 { 2177 struct inpcb *local_wild, *numa_wild; 2178 const struct inpcblbgrouphead *hdr; 2179 struct inpcblbgroup *grp; 2180 uint32_t idx; 2181 2182 INP_HASH_LOCK_ASSERT(pcbinfo); 2183 2184 hdr = &pcbinfo->ipi_lbgrouphashbase[ 2185 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; 2186 2187 /* 2188 * Order of socket selection: 2189 * 1. non-wild. 2190 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD). 2191 * 2192 * NOTE: 2193 * - Load balanced group does not contain jailed sockets 2194 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets 2195 */ 2196 local_wild = NULL; 2197 numa_wild = NULL; 2198 CK_LIST_FOREACH(grp, hdr, il_list) { 2199 #ifdef INET6 2200 if (!(grp->il_vflag & INP_IPV4)) 2201 continue; 2202 #endif 2203 if (grp->il_lport != lport) 2204 continue; 2205 2206 idx = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport) % 2207 grp->il_inpcnt; 2208 if (grp->il_laddr.s_addr == laddr->s_addr) { 2209 if (numa_domain == M_NODOM || 2210 grp->il_numa_domain == numa_domain) { 2211 return (grp->il_inp[idx]); 2212 } else { 2213 numa_wild = grp->il_inp[idx]; 2214 } 2215 } 2216 if (grp->il_laddr.s_addr == INADDR_ANY && 2217 (lookupflags & INPLOOKUP_WILDCARD) != 0 && 2218 (local_wild == NULL || numa_domain == M_NODOM || 2219 grp->il_numa_domain == numa_domain)) { 2220 local_wild = grp->il_inp[idx]; 2221 } 2222 } 2223 if (numa_wild != NULL) 2224 return (numa_wild); 2225 2226 return (local_wild); 2227 } 2228 2229 /* 2230 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2231 * that the caller has either locked the hash list, which usually happens 2232 * for bind(2) operations, or is in SMR section, which happens when sorting 2233 * out incoming packets. 2234 */ 2235 static struct inpcb * 2236 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2237 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2238 struct ifnet *ifp, uint8_t numa_domain) 2239 { 2240 struct inpcbhead *head; 2241 struct inpcb *inp, *tmpinp; 2242 u_short fport = fport_arg, lport = lport_arg; 2243 2244 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2245 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2246 INP_HASH_LOCK_ASSERT(pcbinfo); 2247 2248 /* 2249 * First look for an exact match. 2250 */ 2251 tmpinp = NULL; 2252 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 2253 pcbinfo->ipi_hashmask)]; 2254 CK_LIST_FOREACH(inp, head, inp_hash) { 2255 #ifdef INET6 2256 /* XXX inp locking */ 2257 if ((inp->inp_vflag & INP_IPV4) == 0) 2258 continue; 2259 #endif 2260 if (inp->inp_faddr.s_addr == faddr.s_addr && 2261 inp->inp_laddr.s_addr == laddr.s_addr && 2262 inp->inp_fport == fport && 2263 inp->inp_lport == lport) { 2264 /* 2265 * XXX We should be able to directly return 2266 * the inp here, without any checks. 2267 * Well unless both bound with SO_REUSEPORT? 2268 */ 2269 if (prison_flag(inp->inp_cred, PR_IP4)) 2270 return (inp); 2271 if (tmpinp == NULL) 2272 tmpinp = inp; 2273 } 2274 } 2275 if (tmpinp != NULL) 2276 return (tmpinp); 2277 2278 /* 2279 * Then look in lb group (for wildcard match). 2280 */ 2281 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2282 inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr, 2283 fport, lookupflags, numa_domain); 2284 if (inp != NULL) 2285 return (inp); 2286 } 2287 2288 /* 2289 * Then look for a wildcard match, if requested. 2290 */ 2291 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2292 struct inpcb *local_wild = NULL, *local_exact = NULL; 2293 #ifdef INET6 2294 struct inpcb *local_wild_mapped = NULL; 2295 #endif 2296 struct inpcb *jail_wild = NULL; 2297 int injail; 2298 2299 /* 2300 * Order of socket selection - we always prefer jails. 2301 * 1. jailed, non-wild. 2302 * 2. jailed, wild. 2303 * 3. non-jailed, non-wild. 2304 * 4. non-jailed, wild. 2305 */ 2306 2307 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 2308 0, pcbinfo->ipi_hashmask)]; 2309 CK_LIST_FOREACH(inp, head, inp_hash) { 2310 #ifdef INET6 2311 /* XXX inp locking */ 2312 if ((inp->inp_vflag & INP_IPV4) == 0) 2313 continue; 2314 #endif 2315 if (inp->inp_faddr.s_addr != INADDR_ANY || 2316 inp->inp_lport != lport) 2317 continue; 2318 2319 injail = prison_flag(inp->inp_cred, PR_IP4); 2320 if (injail) { 2321 if (prison_check_ip4(inp->inp_cred, 2322 &laddr) != 0) 2323 continue; 2324 } else { 2325 if (local_exact != NULL) 2326 continue; 2327 } 2328 2329 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2330 if (injail) 2331 return (inp); 2332 else 2333 local_exact = inp; 2334 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2335 #ifdef INET6 2336 /* XXX inp locking, NULL check */ 2337 if (inp->inp_vflag & INP_IPV6PROTO) 2338 local_wild_mapped = inp; 2339 else 2340 #endif 2341 if (injail) 2342 jail_wild = inp; 2343 else 2344 local_wild = inp; 2345 } 2346 } /* LIST_FOREACH */ 2347 if (jail_wild != NULL) 2348 return (jail_wild); 2349 if (local_exact != NULL) 2350 return (local_exact); 2351 if (local_wild != NULL) 2352 return (local_wild); 2353 #ifdef INET6 2354 if (local_wild_mapped != NULL) 2355 return (local_wild_mapped); 2356 #endif 2357 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 2358 2359 return (NULL); 2360 } 2361 2362 /* 2363 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 2364 * hash list lock, and will return the inpcb locked (i.e., requires 2365 * INPLOOKUP_LOCKPCB). 2366 */ 2367 static struct inpcb * 2368 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2369 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2370 struct ifnet *ifp, uint8_t numa_domain) 2371 { 2372 struct inpcb *inp; 2373 2374 smr_enter(pcbinfo->ipi_smr); 2375 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2376 lookupflags & INPLOOKUP_WILDCARD, ifp, numa_domain); 2377 if (inp != NULL) { 2378 if (__predict_false(inp_smr_lock(inp, 2379 (lookupflags & INPLOOKUP_LOCKMASK)) == false)) 2380 inp = NULL; 2381 } else 2382 smr_exit(pcbinfo->ipi_smr); 2383 2384 return (inp); 2385 } 2386 2387 /* 2388 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2389 * from which a pre-calculated hash value may be extracted. 2390 */ 2391 struct inpcb * 2392 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2393 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 2394 { 2395 2396 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2397 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2398 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2399 ("%s: LOCKPCB not set", __func__)); 2400 2401 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2402 lookupflags, ifp, M_NODOM)); 2403 } 2404 2405 struct inpcb * 2406 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2407 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2408 struct ifnet *ifp, struct mbuf *m) 2409 { 2410 2411 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2412 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2413 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2414 ("%s: LOCKPCB not set", __func__)); 2415 2416 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2417 lookupflags, ifp, m->m_pkthdr.numa_domain)); 2418 } 2419 #endif /* INET */ 2420 2421 /* 2422 * Insert PCB onto various hash lists. 2423 */ 2424 int 2425 in_pcbinshash(struct inpcb *inp) 2426 { 2427 struct inpcbhead *pcbhash; 2428 struct inpcbporthead *pcbporthash; 2429 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2430 struct inpcbport *phd; 2431 u_int32_t hashkey_faddr; 2432 int so_options; 2433 2434 INP_WLOCK_ASSERT(inp); 2435 INP_HASH_WLOCK_ASSERT(pcbinfo); 2436 2437 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2438 ("in_pcbinshash: INP_INHASHLIST")); 2439 2440 #ifdef INET6 2441 if (inp->inp_vflag & INP_IPV6) 2442 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2443 else 2444 #endif 2445 hashkey_faddr = inp->inp_faddr.s_addr; 2446 2447 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2448 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2449 2450 pcbporthash = &pcbinfo->ipi_porthashbase[ 2451 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2452 2453 /* 2454 * Add entry to load balance group. 2455 * Only do this if SO_REUSEPORT_LB is set. 2456 */ 2457 so_options = inp_so_options(inp); 2458 if (so_options & SO_REUSEPORT_LB) { 2459 int ret = in_pcbinslbgrouphash(inp, M_NODOM); 2460 if (ret) { 2461 /* pcb lb group malloc fail (ret=ENOBUFS). */ 2462 return (ret); 2463 } 2464 } 2465 2466 /* 2467 * Go through port list and look for a head for this lport. 2468 */ 2469 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2470 if (phd->phd_port == inp->inp_lport) 2471 break; 2472 } 2473 /* 2474 * If none exists, malloc one and tack it on. 2475 */ 2476 if (phd == NULL) { 2477 phd = uma_zalloc_smr(pcbinfo->ipi_portzone, M_NOWAIT); 2478 if (phd == NULL) { 2479 return (ENOBUFS); /* XXX */ 2480 } 2481 phd->phd_port = inp->inp_lport; 2482 CK_LIST_INIT(&phd->phd_pcblist); 2483 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2484 } 2485 inp->inp_phd = phd; 2486 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2487 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2488 inp->inp_flags |= INP_INHASHLIST; 2489 2490 return (0); 2491 } 2492 2493 /* 2494 * Move PCB to the proper hash bucket when { faddr, fport } have been 2495 * changed. NOTE: This does not handle the case of the lport changing (the 2496 * hashed port list would have to be updated as well), so the lport must 2497 * not change after in_pcbinshash() has been called. 2498 * 2499 * XXXGL: a race between this function and SMR-protected hash iterator 2500 * will lead to iterator traversing a possibly wrong hash list. However, 2501 * this race should have been here since change from rwlock to epoch. 2502 */ 2503 void 2504 in_pcbrehash(struct inpcb *inp) 2505 { 2506 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2507 struct inpcbhead *head; 2508 u_int32_t hashkey_faddr; 2509 2510 INP_WLOCK_ASSERT(inp); 2511 INP_HASH_WLOCK_ASSERT(pcbinfo); 2512 2513 KASSERT(inp->inp_flags & INP_INHASHLIST, 2514 ("in_pcbrehash: !INP_INHASHLIST")); 2515 2516 #ifdef INET6 2517 if (inp->inp_vflag & INP_IPV6) 2518 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2519 else 2520 #endif 2521 hashkey_faddr = inp->inp_faddr.s_addr; 2522 2523 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2524 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2525 2526 CK_LIST_REMOVE(inp, inp_hash); 2527 CK_LIST_INSERT_HEAD(head, inp, inp_hash); 2528 } 2529 2530 /* 2531 * Check for alternatives when higher level complains 2532 * about service problems. For now, invalidate cached 2533 * routing information. If the route was created dynamically 2534 * (by a redirect), time to try a default gateway again. 2535 */ 2536 void 2537 in_losing(struct inpcb *inp) 2538 { 2539 2540 RO_INVALIDATE_CACHE(&inp->inp_route); 2541 return; 2542 } 2543 2544 /* 2545 * A set label operation has occurred at the socket layer, propagate the 2546 * label change into the in_pcb for the socket. 2547 */ 2548 void 2549 in_pcbsosetlabel(struct socket *so) 2550 { 2551 #ifdef MAC 2552 struct inpcb *inp; 2553 2554 inp = sotoinpcb(so); 2555 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2556 2557 INP_WLOCK(inp); 2558 SOCK_LOCK(so); 2559 mac_inpcb_sosetlabel(so, inp); 2560 SOCK_UNLOCK(so); 2561 INP_WUNLOCK(inp); 2562 #endif 2563 } 2564 2565 /* 2566 * ipport_tick runs once per second, determining if random port allocation 2567 * should be continued. If more than ipport_randomcps ports have been 2568 * allocated in the last second, then we return to sequential port 2569 * allocation. We return to random allocation only once we drop below 2570 * ipport_randomcps for at least ipport_randomtime seconds. 2571 */ 2572 static void 2573 ipport_tick(void *xtp) 2574 { 2575 VNET_ITERATOR_DECL(vnet_iter); 2576 2577 VNET_LIST_RLOCK_NOSLEEP(); 2578 VNET_FOREACH(vnet_iter) { 2579 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2580 if (V_ipport_tcpallocs <= 2581 V_ipport_tcplastcount + V_ipport_randomcps) { 2582 if (V_ipport_stoprandom > 0) 2583 V_ipport_stoprandom--; 2584 } else 2585 V_ipport_stoprandom = V_ipport_randomtime; 2586 V_ipport_tcplastcount = V_ipport_tcpallocs; 2587 CURVNET_RESTORE(); 2588 } 2589 VNET_LIST_RUNLOCK_NOSLEEP(); 2590 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2591 } 2592 2593 static void 2594 ip_fini(void *xtp) 2595 { 2596 2597 callout_stop(&ipport_tick_callout); 2598 } 2599 2600 /* 2601 * The ipport_callout should start running at about the time we attach the 2602 * inet or inet6 domains. 2603 */ 2604 static void 2605 ipport_tick_init(const void *unused __unused) 2606 { 2607 2608 /* Start ipport_tick. */ 2609 callout_init(&ipport_tick_callout, 1); 2610 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2611 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2612 SHUTDOWN_PRI_DEFAULT); 2613 } 2614 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2615 ipport_tick_init, NULL); 2616 2617 void 2618 inp_wlock(struct inpcb *inp) 2619 { 2620 2621 INP_WLOCK(inp); 2622 } 2623 2624 void 2625 inp_wunlock(struct inpcb *inp) 2626 { 2627 2628 INP_WUNLOCK(inp); 2629 } 2630 2631 void 2632 inp_rlock(struct inpcb *inp) 2633 { 2634 2635 INP_RLOCK(inp); 2636 } 2637 2638 void 2639 inp_runlock(struct inpcb *inp) 2640 { 2641 2642 INP_RUNLOCK(inp); 2643 } 2644 2645 #ifdef INVARIANT_SUPPORT 2646 void 2647 inp_lock_assert(struct inpcb *inp) 2648 { 2649 2650 INP_WLOCK_ASSERT(inp); 2651 } 2652 2653 void 2654 inp_unlock_assert(struct inpcb *inp) 2655 { 2656 2657 INP_UNLOCK_ASSERT(inp); 2658 } 2659 #endif 2660 2661 void 2662 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2663 { 2664 struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_tcbinfo, 2665 INPLOOKUP_WLOCKPCB); 2666 struct inpcb *inp; 2667 2668 while ((inp = inp_next(&inpi)) != NULL) 2669 func(inp, arg); 2670 } 2671 2672 struct socket * 2673 inp_inpcbtosocket(struct inpcb *inp) 2674 { 2675 2676 INP_WLOCK_ASSERT(inp); 2677 return (inp->inp_socket); 2678 } 2679 2680 struct tcpcb * 2681 inp_inpcbtotcpcb(struct inpcb *inp) 2682 { 2683 2684 INP_WLOCK_ASSERT(inp); 2685 return ((struct tcpcb *)inp->inp_ppcb); 2686 } 2687 2688 int 2689 inp_ip_tos_get(const struct inpcb *inp) 2690 { 2691 2692 return (inp->inp_ip_tos); 2693 } 2694 2695 void 2696 inp_ip_tos_set(struct inpcb *inp, int val) 2697 { 2698 2699 inp->inp_ip_tos = val; 2700 } 2701 2702 void 2703 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2704 uint32_t *faddr, uint16_t *fp) 2705 { 2706 2707 INP_LOCK_ASSERT(inp); 2708 *laddr = inp->inp_laddr.s_addr; 2709 *faddr = inp->inp_faddr.s_addr; 2710 *lp = inp->inp_lport; 2711 *fp = inp->inp_fport; 2712 } 2713 2714 struct inpcb * 2715 so_sotoinpcb(struct socket *so) 2716 { 2717 2718 return (sotoinpcb(so)); 2719 } 2720 2721 struct tcpcb * 2722 so_sototcpcb(struct socket *so) 2723 { 2724 2725 return (sototcpcb(so)); 2726 } 2727 2728 /* 2729 * Create an external-format (``xinpcb'') structure using the information in 2730 * the kernel-format in_pcb structure pointed to by inp. This is done to 2731 * reduce the spew of irrelevant information over this interface, to isolate 2732 * user code from changes in the kernel structure, and potentially to provide 2733 * information-hiding if we decide that some of this information should be 2734 * hidden from users. 2735 */ 2736 void 2737 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2738 { 2739 2740 bzero(xi, sizeof(*xi)); 2741 xi->xi_len = sizeof(struct xinpcb); 2742 if (inp->inp_socket) 2743 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2744 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2745 xi->inp_gencnt = inp->inp_gencnt; 2746 xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; 2747 xi->inp_flow = inp->inp_flow; 2748 xi->inp_flowid = inp->inp_flowid; 2749 xi->inp_flowtype = inp->inp_flowtype; 2750 xi->inp_flags = inp->inp_flags; 2751 xi->inp_flags2 = inp->inp_flags2; 2752 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2753 xi->in6p_cksum = inp->in6p_cksum; 2754 xi->in6p_hops = inp->in6p_hops; 2755 xi->inp_ip_tos = inp->inp_ip_tos; 2756 xi->inp_vflag = inp->inp_vflag; 2757 xi->inp_ip_ttl = inp->inp_ip_ttl; 2758 xi->inp_ip_p = inp->inp_ip_p; 2759 xi->inp_ip_minttl = inp->inp_ip_minttl; 2760 } 2761 2762 #ifdef DDB 2763 static void 2764 db_print_indent(int indent) 2765 { 2766 int i; 2767 2768 for (i = 0; i < indent; i++) 2769 db_printf(" "); 2770 } 2771 2772 static void 2773 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2774 { 2775 char faddr_str[48], laddr_str[48]; 2776 2777 db_print_indent(indent); 2778 db_printf("%s at %p\n", name, inc); 2779 2780 indent += 2; 2781 2782 #ifdef INET6 2783 if (inc->inc_flags & INC_ISIPV6) { 2784 /* IPv6. */ 2785 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2786 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2787 } else 2788 #endif 2789 { 2790 /* IPv4. */ 2791 inet_ntoa_r(inc->inc_laddr, laddr_str); 2792 inet_ntoa_r(inc->inc_faddr, faddr_str); 2793 } 2794 db_print_indent(indent); 2795 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2796 ntohs(inc->inc_lport)); 2797 db_print_indent(indent); 2798 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2799 ntohs(inc->inc_fport)); 2800 } 2801 2802 static void 2803 db_print_inpflags(int inp_flags) 2804 { 2805 int comma; 2806 2807 comma = 0; 2808 if (inp_flags & INP_RECVOPTS) { 2809 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2810 comma = 1; 2811 } 2812 if (inp_flags & INP_RECVRETOPTS) { 2813 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2814 comma = 1; 2815 } 2816 if (inp_flags & INP_RECVDSTADDR) { 2817 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2818 comma = 1; 2819 } 2820 if (inp_flags & INP_ORIGDSTADDR) { 2821 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 2822 comma = 1; 2823 } 2824 if (inp_flags & INP_HDRINCL) { 2825 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2826 comma = 1; 2827 } 2828 if (inp_flags & INP_HIGHPORT) { 2829 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2830 comma = 1; 2831 } 2832 if (inp_flags & INP_LOWPORT) { 2833 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2834 comma = 1; 2835 } 2836 if (inp_flags & INP_ANONPORT) { 2837 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2838 comma = 1; 2839 } 2840 if (inp_flags & INP_RECVIF) { 2841 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2842 comma = 1; 2843 } 2844 if (inp_flags & INP_MTUDISC) { 2845 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2846 comma = 1; 2847 } 2848 if (inp_flags & INP_RECVTTL) { 2849 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 2850 comma = 1; 2851 } 2852 if (inp_flags & INP_DONTFRAG) { 2853 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 2854 comma = 1; 2855 } 2856 if (inp_flags & INP_RECVTOS) { 2857 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 2858 comma = 1; 2859 } 2860 if (inp_flags & IN6P_IPV6_V6ONLY) { 2861 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 2862 comma = 1; 2863 } 2864 if (inp_flags & IN6P_PKTINFO) { 2865 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 2866 comma = 1; 2867 } 2868 if (inp_flags & IN6P_HOPLIMIT) { 2869 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 2870 comma = 1; 2871 } 2872 if (inp_flags & IN6P_HOPOPTS) { 2873 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 2874 comma = 1; 2875 } 2876 if (inp_flags & IN6P_DSTOPTS) { 2877 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 2878 comma = 1; 2879 } 2880 if (inp_flags & IN6P_RTHDR) { 2881 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 2882 comma = 1; 2883 } 2884 if (inp_flags & IN6P_RTHDRDSTOPTS) { 2885 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 2886 comma = 1; 2887 } 2888 if (inp_flags & IN6P_TCLASS) { 2889 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 2890 comma = 1; 2891 } 2892 if (inp_flags & IN6P_AUTOFLOWLABEL) { 2893 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 2894 comma = 1; 2895 } 2896 if (inp_flags & INP_TIMEWAIT) { 2897 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 2898 comma = 1; 2899 } 2900 if (inp_flags & INP_ONESBCAST) { 2901 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 2902 comma = 1; 2903 } 2904 if (inp_flags & INP_DROPPED) { 2905 db_printf("%sINP_DROPPED", comma ? ", " : ""); 2906 comma = 1; 2907 } 2908 if (inp_flags & INP_SOCKREF) { 2909 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 2910 comma = 1; 2911 } 2912 if (inp_flags & IN6P_RFC2292) { 2913 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 2914 comma = 1; 2915 } 2916 if (inp_flags & IN6P_MTU) { 2917 db_printf("IN6P_MTU%s", comma ? ", " : ""); 2918 comma = 1; 2919 } 2920 } 2921 2922 static void 2923 db_print_inpvflag(u_char inp_vflag) 2924 { 2925 int comma; 2926 2927 comma = 0; 2928 if (inp_vflag & INP_IPV4) { 2929 db_printf("%sINP_IPV4", comma ? ", " : ""); 2930 comma = 1; 2931 } 2932 if (inp_vflag & INP_IPV6) { 2933 db_printf("%sINP_IPV6", comma ? ", " : ""); 2934 comma = 1; 2935 } 2936 if (inp_vflag & INP_IPV6PROTO) { 2937 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 2938 comma = 1; 2939 } 2940 } 2941 2942 static void 2943 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 2944 { 2945 2946 db_print_indent(indent); 2947 db_printf("%s at %p\n", name, inp); 2948 2949 indent += 2; 2950 2951 db_print_indent(indent); 2952 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 2953 2954 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 2955 2956 db_print_indent(indent); 2957 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 2958 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 2959 2960 db_print_indent(indent); 2961 db_printf("inp_label: %p inp_flags: 0x%x (", 2962 inp->inp_label, inp->inp_flags); 2963 db_print_inpflags(inp->inp_flags); 2964 db_printf(")\n"); 2965 2966 db_print_indent(indent); 2967 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 2968 inp->inp_vflag); 2969 db_print_inpvflag(inp->inp_vflag); 2970 db_printf(")\n"); 2971 2972 db_print_indent(indent); 2973 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 2974 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 2975 2976 db_print_indent(indent); 2977 #ifdef INET6 2978 if (inp->inp_vflag & INP_IPV6) { 2979 db_printf("in6p_options: %p in6p_outputopts: %p " 2980 "in6p_moptions: %p\n", inp->in6p_options, 2981 inp->in6p_outputopts, inp->in6p_moptions); 2982 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 2983 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 2984 inp->in6p_hops); 2985 } else 2986 #endif 2987 { 2988 db_printf("inp_ip_tos: %d inp_ip_options: %p " 2989 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 2990 inp->inp_options, inp->inp_moptions); 2991 } 2992 2993 db_print_indent(indent); 2994 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 2995 (uintmax_t)inp->inp_gencnt); 2996 } 2997 2998 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 2999 { 3000 struct inpcb *inp; 3001 3002 if (!have_addr) { 3003 db_printf("usage: show inpcb <addr>\n"); 3004 return; 3005 } 3006 inp = (struct inpcb *)addr; 3007 3008 db_print_inpcb(inp, "inpcb", 0); 3009 } 3010 #endif /* DDB */ 3011 3012 #ifdef RATELIMIT 3013 /* 3014 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 3015 * if any. 3016 */ 3017 int 3018 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 3019 { 3020 union if_snd_tag_modify_params params = { 3021 .rate_limit.max_rate = max_pacing_rate, 3022 .rate_limit.flags = M_NOWAIT, 3023 }; 3024 struct m_snd_tag *mst; 3025 int error; 3026 3027 mst = inp->inp_snd_tag; 3028 if (mst == NULL) 3029 return (EINVAL); 3030 3031 if (mst->sw->snd_tag_modify == NULL) { 3032 error = EOPNOTSUPP; 3033 } else { 3034 error = mst->sw->snd_tag_modify(mst, ¶ms); 3035 } 3036 return (error); 3037 } 3038 3039 /* 3040 * Query existing TX rate limit based on the existing 3041 * "inp->inp_snd_tag", if any. 3042 */ 3043 int 3044 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3045 { 3046 union if_snd_tag_query_params params = { }; 3047 struct m_snd_tag *mst; 3048 int error; 3049 3050 mst = inp->inp_snd_tag; 3051 if (mst == NULL) 3052 return (EINVAL); 3053 3054 if (mst->sw->snd_tag_query == NULL) { 3055 error = EOPNOTSUPP; 3056 } else { 3057 error = mst->sw->snd_tag_query(mst, ¶ms); 3058 if (error == 0 && p_max_pacing_rate != NULL) 3059 *p_max_pacing_rate = params.rate_limit.max_rate; 3060 } 3061 return (error); 3062 } 3063 3064 /* 3065 * Query existing TX queue level based on the existing 3066 * "inp->inp_snd_tag", if any. 3067 */ 3068 int 3069 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3070 { 3071 union if_snd_tag_query_params params = { }; 3072 struct m_snd_tag *mst; 3073 int error; 3074 3075 mst = inp->inp_snd_tag; 3076 if (mst == NULL) 3077 return (EINVAL); 3078 3079 if (mst->sw->snd_tag_query == NULL) 3080 return (EOPNOTSUPP); 3081 3082 error = mst->sw->snd_tag_query(mst, ¶ms); 3083 if (error == 0 && p_txqueue_level != NULL) 3084 *p_txqueue_level = params.rate_limit.queue_level; 3085 return (error); 3086 } 3087 3088 /* 3089 * Allocate a new TX rate limit send tag from the network interface 3090 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3091 */ 3092 int 3093 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3094 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st) 3095 3096 { 3097 union if_snd_tag_alloc_params params = { 3098 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3099 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3100 .rate_limit.hdr.flowid = flowid, 3101 .rate_limit.hdr.flowtype = flowtype, 3102 .rate_limit.hdr.numa_domain = inp->inp_numa_domain, 3103 .rate_limit.max_rate = max_pacing_rate, 3104 .rate_limit.flags = M_NOWAIT, 3105 }; 3106 int error; 3107 3108 INP_WLOCK_ASSERT(inp); 3109 3110 /* 3111 * If there is already a send tag, or the INP is being torn 3112 * down, allocating a new send tag is not allowed. Else send 3113 * tags may leak. 3114 */ 3115 if (*st != NULL || (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) != 0) 3116 return (EINVAL); 3117 3118 error = m_snd_tag_alloc(ifp, ¶ms, st); 3119 #ifdef INET 3120 if (error == 0) { 3121 counter_u64_add(rate_limit_set_ok, 1); 3122 counter_u64_add(rate_limit_active, 1); 3123 } else if (error != EOPNOTSUPP) 3124 counter_u64_add(rate_limit_alloc_fail, 1); 3125 #endif 3126 return (error); 3127 } 3128 3129 void 3130 in_pcbdetach_tag(struct m_snd_tag *mst) 3131 { 3132 3133 m_snd_tag_rele(mst); 3134 #ifdef INET 3135 counter_u64_add(rate_limit_active, -1); 3136 #endif 3137 } 3138 3139 /* 3140 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3141 * if any: 3142 */ 3143 void 3144 in_pcbdetach_txrtlmt(struct inpcb *inp) 3145 { 3146 struct m_snd_tag *mst; 3147 3148 INP_WLOCK_ASSERT(inp); 3149 3150 mst = inp->inp_snd_tag; 3151 inp->inp_snd_tag = NULL; 3152 3153 if (mst == NULL) 3154 return; 3155 3156 m_snd_tag_rele(mst); 3157 #ifdef INET 3158 counter_u64_add(rate_limit_active, -1); 3159 #endif 3160 } 3161 3162 int 3163 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate) 3164 { 3165 int error; 3166 3167 /* 3168 * If the existing send tag is for the wrong interface due to 3169 * a route change, first drop the existing tag. Set the 3170 * CHANGED flag so that we will keep trying to allocate a new 3171 * tag if we fail to allocate one this time. 3172 */ 3173 if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) { 3174 in_pcbdetach_txrtlmt(inp); 3175 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3176 } 3177 3178 /* 3179 * NOTE: When attaching to a network interface a reference is 3180 * made to ensure the network interface doesn't go away until 3181 * all ratelimit connections are gone. The network interface 3182 * pointers compared below represent valid network interfaces, 3183 * except when comparing towards NULL. 3184 */ 3185 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3186 error = 0; 3187 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3188 if (inp->inp_snd_tag != NULL) 3189 in_pcbdetach_txrtlmt(inp); 3190 error = 0; 3191 } else if (inp->inp_snd_tag == NULL) { 3192 /* 3193 * In order to utilize packet pacing with RSS, we need 3194 * to wait until there is a valid RSS hash before we 3195 * can proceed: 3196 */ 3197 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3198 error = EAGAIN; 3199 } else { 3200 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3201 mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag); 3202 } 3203 } else { 3204 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3205 } 3206 if (error == 0 || error == EOPNOTSUPP) 3207 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3208 3209 return (error); 3210 } 3211 3212 /* 3213 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3214 * is set in the fast path and will attach/detach/modify the TX rate 3215 * limit send tag based on the socket's so_max_pacing_rate value. 3216 */ 3217 void 3218 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3219 { 3220 struct socket *socket; 3221 uint32_t max_pacing_rate; 3222 bool did_upgrade; 3223 int error; 3224 3225 if (inp == NULL) 3226 return; 3227 3228 socket = inp->inp_socket; 3229 if (socket == NULL) 3230 return; 3231 3232 if (!INP_WLOCKED(inp)) { 3233 /* 3234 * NOTE: If the write locking fails, we need to bail 3235 * out and use the non-ratelimited ring for the 3236 * transmit until there is a new chance to get the 3237 * write lock. 3238 */ 3239 if (!INP_TRY_UPGRADE(inp)) 3240 return; 3241 did_upgrade = 1; 3242 } else { 3243 did_upgrade = 0; 3244 } 3245 3246 /* 3247 * NOTE: The so_max_pacing_rate value is read unlocked, 3248 * because atomic updates are not required since the variable 3249 * is checked at every mbuf we send. It is assumed that the 3250 * variable read itself will be atomic. 3251 */ 3252 max_pacing_rate = socket->so_max_pacing_rate; 3253 3254 error = in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate); 3255 3256 if (did_upgrade) 3257 INP_DOWNGRADE(inp); 3258 } 3259 3260 /* 3261 * Track route changes for TX rate limiting. 3262 */ 3263 void 3264 in_pcboutput_eagain(struct inpcb *inp) 3265 { 3266 bool did_upgrade; 3267 3268 if (inp == NULL) 3269 return; 3270 3271 if (inp->inp_snd_tag == NULL) 3272 return; 3273 3274 if (!INP_WLOCKED(inp)) { 3275 /* 3276 * NOTE: If the write locking fails, we need to bail 3277 * out and use the non-ratelimited ring for the 3278 * transmit until there is a new chance to get the 3279 * write lock. 3280 */ 3281 if (!INP_TRY_UPGRADE(inp)) 3282 return; 3283 did_upgrade = 1; 3284 } else { 3285 did_upgrade = 0; 3286 } 3287 3288 /* detach rate limiting */ 3289 in_pcbdetach_txrtlmt(inp); 3290 3291 /* make sure new mbuf send tag allocation is made */ 3292 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3293 3294 if (did_upgrade) 3295 INP_DOWNGRADE(inp); 3296 } 3297 3298 #ifdef INET 3299 static void 3300 rl_init(void *st) 3301 { 3302 rate_limit_new = counter_u64_alloc(M_WAITOK); 3303 rate_limit_chg = counter_u64_alloc(M_WAITOK); 3304 rate_limit_active = counter_u64_alloc(M_WAITOK); 3305 rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK); 3306 rate_limit_set_ok = counter_u64_alloc(M_WAITOK); 3307 } 3308 3309 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL); 3310 #endif 3311 #endif /* RATELIMIT */ 3312