xref: /freebsd/sys/netinet/in_pcb.c (revision 54ebdd631db8c0bba2baab0155f603a8b5cf014a)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993, 1995
3  *	The Regents of the University of California.
4  * Copyright (c) 2007-2008 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 4. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_ddb.h"
38 #include "opt_ipsec.h"
39 #include "opt_inet6.h"
40 #include "opt_mac.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/domain.h>
47 #include <sys/protosw.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/priv.h>
51 #include <sys/proc.h>
52 #include <sys/jail.h>
53 #include <sys/kernel.h>
54 #include <sys/sysctl.h>
55 #include <sys/vimage.h>
56 
57 #ifdef DDB
58 #include <ddb/ddb.h>
59 #endif
60 
61 #include <vm/uma.h>
62 
63 #include <net/if.h>
64 #include <net/if_types.h>
65 #include <net/route.h>
66 
67 #include <netinet/in.h>
68 #include <netinet/in_pcb.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip_var.h>
71 #include <netinet/tcp_var.h>
72 #include <netinet/udp.h>
73 #include <netinet/udp_var.h>
74 #include <netinet/vinet.h>
75 #ifdef INET6
76 #include <netinet/ip6.h>
77 #include <netinet6/ip6_var.h>
78 #include <netinet6/vinet6.h>
79 #endif /* INET6 */
80 
81 
82 #ifdef IPSEC
83 #include <netipsec/ipsec.h>
84 #include <netipsec/key.h>
85 #endif /* IPSEC */
86 
87 #include <security/mac/mac_framework.h>
88 
89 #ifdef VIMAGE_GLOBALS
90 /*
91  * These configure the range of local port addresses assigned to
92  * "unspecified" outgoing connections/packets/whatever.
93  */
94 int	ipport_lowfirstauto;
95 int	ipport_lowlastauto;
96 int	ipport_firstauto;
97 int	ipport_lastauto;
98 int	ipport_hifirstauto;
99 int	ipport_hilastauto;
100 
101 /*
102  * Reserved ports accessible only to root. There are significant
103  * security considerations that must be accounted for when changing these,
104  * but the security benefits can be great. Please be careful.
105  */
106 int	ipport_reservedhigh;
107 int	ipport_reservedlow;
108 
109 /* Variables dealing with random ephemeral port allocation. */
110 int	ipport_randomized;
111 int	ipport_randomcps;
112 int	ipport_randomtime;
113 int	ipport_stoprandom;
114 int	ipport_tcpallocs;
115 int	ipport_tcplastcount;
116 #endif
117 
118 #define RANGECHK(var, min, max) \
119 	if ((var) < (min)) { (var) = (min); } \
120 	else if ((var) > (max)) { (var) = (max); }
121 
122 static int
123 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
124 {
125 	INIT_VNET_INET(curvnet);
126 	int error;
127 
128 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
129 	if (error == 0) {
130 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
131 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
132 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
133 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
134 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
135 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
136 	}
137 	return (error);
138 }
139 
140 #undef RANGECHK
141 
142 SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports");
143 
144 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
145 	lowfirst, CTLTYPE_INT|CTLFLAG_RW, ipport_lowfirstauto, 0,
146 	&sysctl_net_ipport_check, "I", "");
147 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
148 	lowlast, CTLTYPE_INT|CTLFLAG_RW, ipport_lowlastauto, 0,
149 	&sysctl_net_ipport_check, "I", "");
150 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
151 	first, CTLTYPE_INT|CTLFLAG_RW, ipport_firstauto, 0,
152 	&sysctl_net_ipport_check, "I", "");
153 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
154 	last, CTLTYPE_INT|CTLFLAG_RW, ipport_lastauto, 0,
155 	&sysctl_net_ipport_check, "I", "");
156 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
157 	hifirst, CTLTYPE_INT|CTLFLAG_RW, ipport_hifirstauto, 0,
158 	&sysctl_net_ipport_check, "I", "");
159 SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
160 	hilast, CTLTYPE_INT|CTLFLAG_RW, ipport_hilastauto, 0,
161 	&sysctl_net_ipport_check, "I", "");
162 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
163 	reservedhigh, CTLFLAG_RW|CTLFLAG_SECURE, ipport_reservedhigh, 0, "");
164 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, reservedlow,
165 	CTLFLAG_RW|CTLFLAG_SECURE, ipport_reservedlow, 0, "");
166 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, randomized,
167 	CTLFLAG_RW, ipport_randomized, 0, "Enable random port allocation");
168 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, randomcps,
169 	CTLFLAG_RW, ipport_randomcps, 0, "Maximum number of random port "
170 	"allocations before switching to a sequental one");
171 SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, randomtime,
172 	CTLFLAG_RW, ipport_randomtime, 0,
173 	"Minimum time to keep sequental port "
174 	"allocation before switching to a random one");
175 
176 /*
177  * in_pcb.c: manage the Protocol Control Blocks.
178  *
179  * NOTE: It is assumed that most of these functions will be called with
180  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
181  * functions often modify hash chains or addresses in pcbs.
182  */
183 
184 /*
185  * Allocate a PCB and associate it with the socket.
186  * On success return with the PCB locked.
187  */
188 int
189 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
190 {
191 #ifdef INET6
192 	INIT_VNET_INET6(curvnet);
193 #endif
194 	struct inpcb *inp;
195 	int error;
196 
197 	INP_INFO_WLOCK_ASSERT(pcbinfo);
198 	error = 0;
199 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
200 	if (inp == NULL)
201 		return (ENOBUFS);
202 	bzero(inp, inp_zero_size);
203 	inp->inp_pcbinfo = pcbinfo;
204 	inp->inp_socket = so;
205 	inp->inp_cred = crhold(so->so_cred);
206 	inp->inp_inc.inc_fibnum = so->so_fibnum;
207 #ifdef MAC
208 	error = mac_inpcb_init(inp, M_NOWAIT);
209 	if (error != 0)
210 		goto out;
211 	SOCK_LOCK(so);
212 	mac_inpcb_create(so, inp);
213 	SOCK_UNLOCK(so);
214 #endif
215 #ifdef IPSEC
216 	error = ipsec_init_policy(so, &inp->inp_sp);
217 	if (error != 0) {
218 #ifdef MAC
219 		mac_inpcb_destroy(inp);
220 #endif
221 		goto out;
222 	}
223 #endif /*IPSEC*/
224 #ifdef INET6
225 	if (INP_SOCKAF(so) == AF_INET6) {
226 		inp->inp_vflag |= INP_IPV6PROTO;
227 		if (V_ip6_v6only)
228 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
229 	}
230 #endif
231 	LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
232 	pcbinfo->ipi_count++;
233 	so->so_pcb = (caddr_t)inp;
234 #ifdef INET6
235 	if (V_ip6_auto_flowlabel)
236 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
237 #endif
238 	INP_WLOCK(inp);
239 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
240 	inp->inp_refcount = 1;	/* Reference from the inpcbinfo */
241 #if defined(IPSEC) || defined(MAC)
242 out:
243 	if (error != 0) {
244 		crfree(inp->inp_cred);
245 		uma_zfree(pcbinfo->ipi_zone, inp);
246 	}
247 #endif
248 	return (error);
249 }
250 
251 int
252 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
253 {
254 	int anonport, error;
255 
256 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
257 	INP_WLOCK_ASSERT(inp);
258 
259 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
260 		return (EINVAL);
261 	anonport = inp->inp_lport == 0 && (nam == NULL ||
262 	    ((struct sockaddr_in *)nam)->sin_port == 0);
263 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
264 	    &inp->inp_lport, cred);
265 	if (error)
266 		return (error);
267 	if (in_pcbinshash(inp) != 0) {
268 		inp->inp_laddr.s_addr = INADDR_ANY;
269 		inp->inp_lport = 0;
270 		return (EAGAIN);
271 	}
272 	if (anonport)
273 		inp->inp_flags |= INP_ANONPORT;
274 	return (0);
275 }
276 
277 /*
278  * Set up a bind operation on a PCB, performing port allocation
279  * as required, but do not actually modify the PCB. Callers can
280  * either complete the bind by setting inp_laddr/inp_lport and
281  * calling in_pcbinshash(), or they can just use the resulting
282  * port and address to authorise the sending of a once-off packet.
283  *
284  * On error, the values of *laddrp and *lportp are not changed.
285  */
286 int
287 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
288     u_short *lportp, struct ucred *cred)
289 {
290 	INIT_VNET_INET(inp->inp_vnet);
291 	struct socket *so = inp->inp_socket;
292 	unsigned short *lastport;
293 	struct sockaddr_in *sin;
294 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
295 	struct in_addr laddr;
296 	u_short lport = 0;
297 	int wild = 0, reuseport = (so->so_options & SO_REUSEPORT);
298 	int error;
299 	int dorandom;
300 
301 	/*
302 	 * Because no actual state changes occur here, a global write lock on
303 	 * the pcbinfo isn't required.
304 	 */
305 	INP_INFO_LOCK_ASSERT(pcbinfo);
306 	INP_LOCK_ASSERT(inp);
307 
308 	if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
309 		return (EADDRNOTAVAIL);
310 	laddr.s_addr = *laddrp;
311 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
312 		return (EINVAL);
313 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
314 		wild = INPLOOKUP_WILDCARD;
315 	if (nam) {
316 		sin = (struct sockaddr_in *)nam;
317 		if (nam->sa_len != sizeof (*sin))
318 			return (EINVAL);
319 #ifdef notdef
320 		/*
321 		 * We should check the family, but old programs
322 		 * incorrectly fail to initialize it.
323 		 */
324 		if (sin->sin_family != AF_INET)
325 			return (EAFNOSUPPORT);
326 #endif
327 		if (prison_local_ip4(cred, &sin->sin_addr))
328 			return (EINVAL);
329 		if (sin->sin_port != *lportp) {
330 			/* Don't allow the port to change. */
331 			if (*lportp != 0)
332 				return (EINVAL);
333 			lport = sin->sin_port;
334 		}
335 		/* NB: lport is left as 0 if the port isn't being changed. */
336 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
337 			/*
338 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
339 			 * allow complete duplication of binding if
340 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
341 			 * and a multicast address is bound on both
342 			 * new and duplicated sockets.
343 			 */
344 			if (so->so_options & SO_REUSEADDR)
345 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
346 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
347 			sin->sin_port = 0;		/* yech... */
348 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
349 			if (ifa_ifwithaddr((struct sockaddr *)sin) == 0)
350 				return (EADDRNOTAVAIL);
351 		}
352 		laddr = sin->sin_addr;
353 		if (lport) {
354 			struct inpcb *t;
355 			struct tcptw *tw;
356 
357 			/* GROSS */
358 			if (ntohs(lport) <= V_ipport_reservedhigh &&
359 			    ntohs(lport) >= V_ipport_reservedlow &&
360 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
361 			    0))
362 				return (EACCES);
363 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
364 			    priv_check_cred(inp->inp_cred,
365 			    PRIV_NETINET_REUSEPORT, 0) != 0) {
366 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
367 				    lport, INPLOOKUP_WILDCARD, cred);
368 	/*
369 	 * XXX
370 	 * This entire block sorely needs a rewrite.
371 	 */
372 				if (t &&
373 				    ((t->inp_vflag & INP_TIMEWAIT) == 0) &&
374 				    (so->so_type != SOCK_STREAM ||
375 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
376 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
377 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
378 				     (t->inp_socket->so_options &
379 					 SO_REUSEPORT) == 0) &&
380 				    (inp->inp_cred->cr_uid !=
381 				     t->inp_cred->cr_uid))
382 					return (EADDRINUSE);
383 			}
384 			if (prison_local_ip4(cred, &sin->sin_addr))
385 				return (EADDRNOTAVAIL);
386 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
387 			    lport, wild, cred);
388 			if (t && (t->inp_vflag & INP_TIMEWAIT)) {
389 				/*
390 				 * XXXRW: If an incpb has had its timewait
391 				 * state recycled, we treat the address as
392 				 * being in use (for now).  This is better
393 				 * than a panic, but not desirable.
394 				 */
395 				tw = intotw(inp);
396 				if (tw == NULL ||
397 				    (reuseport & tw->tw_so_options) == 0)
398 					return (EADDRINUSE);
399 			} else if (t &&
400 			    (reuseport & t->inp_socket->so_options) == 0) {
401 #ifdef INET6
402 				if (ntohl(sin->sin_addr.s_addr) !=
403 				    INADDR_ANY ||
404 				    ntohl(t->inp_laddr.s_addr) !=
405 				    INADDR_ANY ||
406 				    INP_SOCKAF(so) ==
407 				    INP_SOCKAF(t->inp_socket))
408 #endif
409 				return (EADDRINUSE);
410 			}
411 		}
412 	}
413 	if (*lportp != 0)
414 		lport = *lportp;
415 	if (lport == 0) {
416 		u_short first, last, aux;
417 		int count;
418 
419 		if (prison_local_ip4(cred, &laddr))
420 			return (EINVAL);
421 
422 		if (inp->inp_flags & INP_HIGHPORT) {
423 			first = V_ipport_hifirstauto;	/* sysctl */
424 			last  = V_ipport_hilastauto;
425 			lastport = &pcbinfo->ipi_lasthi;
426 		} else if (inp->inp_flags & INP_LOWPORT) {
427 			error = priv_check_cred(cred,
428 			    PRIV_NETINET_RESERVEDPORT, 0);
429 			if (error)
430 				return error;
431 			first = V_ipport_lowfirstauto;	/* 1023 */
432 			last  = V_ipport_lowlastauto;	/* 600 */
433 			lastport = &pcbinfo->ipi_lastlow;
434 		} else {
435 			first = V_ipport_firstauto;	/* sysctl */
436 			last  = V_ipport_lastauto;
437 			lastport = &pcbinfo->ipi_lastport;
438 		}
439 		/*
440 		 * For UDP, use random port allocation as long as the user
441 		 * allows it.  For TCP (and as of yet unknown) connections,
442 		 * use random port allocation only if the user allows it AND
443 		 * ipport_tick() allows it.
444 		 */
445 		if (V_ipport_randomized &&
446 			(!V_ipport_stoprandom || pcbinfo == &V_udbinfo))
447 			dorandom = 1;
448 		else
449 			dorandom = 0;
450 		/*
451 		 * It makes no sense to do random port allocation if
452 		 * we have the only port available.
453 		 */
454 		if (first == last)
455 			dorandom = 0;
456 		/* Make sure to not include UDP packets in the count. */
457 		if (pcbinfo != &V_udbinfo)
458 			V_ipport_tcpallocs++;
459 		/*
460 		 * Instead of having two loops further down counting up or down
461 		 * make sure that first is always <= last and go with only one
462 		 * code path implementing all logic.
463 		 */
464 		if (first > last) {
465 			aux = first;
466 			first = last;
467 			last = aux;
468 		}
469 
470 		if (dorandom)
471 			*lastport = first +
472 				    (arc4random() % (last - first));
473 
474 		count = last - first;
475 
476 		do {
477 			if (count-- < 0)	/* completely used? */
478 				return (EADDRNOTAVAIL);
479 			++*lastport;
480 			if (*lastport < first || *lastport > last)
481 				*lastport = first;
482 			lport = htons(*lastport);
483 		} while (in_pcblookup_local(pcbinfo, laddr,
484 		    lport, wild, cred));
485 	}
486 	if (prison_local_ip4(cred, &laddr))
487 		return (EINVAL);
488 	*laddrp = laddr.s_addr;
489 	*lportp = lport;
490 	return (0);
491 }
492 
493 /*
494  * Connect from a socket to a specified address.
495  * Both address and port must be specified in argument sin.
496  * If don't have a local address for this socket yet,
497  * then pick one.
498  */
499 int
500 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
501 {
502 	u_short lport, fport;
503 	in_addr_t laddr, faddr;
504 	int anonport, error;
505 
506 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
507 	INP_WLOCK_ASSERT(inp);
508 
509 	lport = inp->inp_lport;
510 	laddr = inp->inp_laddr.s_addr;
511 	anonport = (lport == 0);
512 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
513 	    NULL, cred);
514 	if (error)
515 		return (error);
516 
517 	/* Do the initial binding of the local address if required. */
518 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
519 		inp->inp_lport = lport;
520 		inp->inp_laddr.s_addr = laddr;
521 		if (in_pcbinshash(inp) != 0) {
522 			inp->inp_laddr.s_addr = INADDR_ANY;
523 			inp->inp_lport = 0;
524 			return (EAGAIN);
525 		}
526 	}
527 
528 	/* Commit the remaining changes. */
529 	inp->inp_lport = lport;
530 	inp->inp_laddr.s_addr = laddr;
531 	inp->inp_faddr.s_addr = faddr;
532 	inp->inp_fport = fport;
533 	in_pcbrehash(inp);
534 
535 	if (anonport)
536 		inp->inp_flags |= INP_ANONPORT;
537 	return (0);
538 }
539 
540 /*
541  * Do proper source address selection on an unbound socket in case
542  * of connect. Take jails into account as well.
543  */
544 static int
545 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
546     struct ucred *cred)
547 {
548 	struct in_ifaddr *ia;
549 	struct ifaddr *ifa;
550 	struct sockaddr *sa;
551 	struct sockaddr_in *sin;
552 	struct route sro;
553 	int error;
554 
555 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
556 
557 	error = 0;
558 	ia = NULL;
559 	bzero(&sro, sizeof(sro));
560 
561 	sin = (struct sockaddr_in *)&sro.ro_dst;
562 	sin->sin_family = AF_INET;
563 	sin->sin_len = sizeof(struct sockaddr_in);
564 	sin->sin_addr.s_addr = faddr->s_addr;
565 
566 	/*
567 	 * If route is known our src addr is taken from the i/f,
568 	 * else punt.
569 	 *
570 	 * Find out route to destination.
571 	 */
572 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
573 		in_rtalloc_ign(&sro, RTF_CLONING, inp->inp_inc.inc_fibnum);
574 
575 	/*
576 	 * If we found a route, use the address corresponding to
577 	 * the outgoing interface.
578 	 *
579 	 * Otherwise assume faddr is reachable on a directly connected
580 	 * network and try to find a corresponding interface to take
581 	 * the source address from.
582 	 */
583 	if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
584 		struct ifnet *ifp;
585 
586 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin));
587 		if (ia == NULL)
588 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin));
589 		if (ia == NULL) {
590 			error = ENETUNREACH;
591 			goto done;
592 		}
593 
594 		if (cred == NULL || !jailed(cred)) {
595 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
596 			goto done;
597 		}
598 
599 		ifp = ia->ia_ifp;
600 		ia = NULL;
601 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
602 
603 			sa = ifa->ifa_addr;
604 			if (sa->sa_family != AF_INET)
605 				continue;
606 			sin = (struct sockaddr_in *)sa;
607 			if (prison_check_ip4(cred, &sin->sin_addr)) {
608 				ia = (struct in_ifaddr *)ifa;
609 				break;
610 			}
611 		}
612 		if (ia != NULL) {
613 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
614 			goto done;
615 		}
616 
617 		/* 3. As a last resort return the 'default' jail address. */
618 		if (prison_getip4(cred, laddr) != 0)
619 			error = EADDRNOTAVAIL;
620 		goto done;
621 	}
622 
623 	/*
624 	 * If the outgoing interface on the route found is not
625 	 * a loopback interface, use the address from that interface.
626 	 * In case of jails do those three steps:
627 	 * 1. check if the interface address belongs to the jail. If so use it.
628 	 * 2. check if we have any address on the outgoing interface
629 	 *    belonging to this jail. If so use it.
630 	 * 3. as a last resort return the 'default' jail address.
631 	 */
632 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
633 
634 		/* If not jailed, use the default returned. */
635 		if (cred == NULL || !jailed(cred)) {
636 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
637 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
638 			goto done;
639 		}
640 
641 		/* Jailed. */
642 		/* 1. Check if the iface address belongs to the jail. */
643 		sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
644 		if (prison_check_ip4(cred, &sin->sin_addr)) {
645 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
646 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
647 			goto done;
648 		}
649 
650 		/*
651 		 * 2. Check if we have any address on the outgoing interface
652 		 *    belonging to this jail.
653 		 */
654 		TAILQ_FOREACH(ifa, &sro.ro_rt->rt_ifp->if_addrhead, ifa_link) {
655 
656 			sa = ifa->ifa_addr;
657 			if (sa->sa_family != AF_INET)
658 				continue;
659 			sin = (struct sockaddr_in *)sa;
660 			if (prison_check_ip4(cred, &sin->sin_addr)) {
661 				ia = (struct in_ifaddr *)ifa;
662 				break;
663 			}
664 		}
665 		if (ia != NULL) {
666 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
667 			goto done;
668 		}
669 
670 		/* 3. As a last resort return the 'default' jail address. */
671 		if (prison_getip4(cred, laddr) != 0)
672 			error = EADDRNOTAVAIL;
673 		goto done;
674 	}
675 
676 	/*
677 	 * The outgoing interface is marked with 'loopback net', so a route
678 	 * to ourselves is here.
679 	 * Try to find the interface of the destination address and then
680 	 * take the address from there. That interface is not necessarily
681 	 * a loopback interface.
682 	 * In case of jails, check that it is an address of the jail
683 	 * and if we cannot find, fall back to the 'default' jail address.
684 	 */
685 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
686 		struct sockaddr_in sain;
687 
688 		bzero(&sain, sizeof(struct sockaddr_in));
689 		sain.sin_family = AF_INET;
690 		sain.sin_len = sizeof(struct sockaddr_in);
691 		sain.sin_addr.s_addr = faddr->s_addr;
692 
693 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain)));
694 		if (ia == NULL)
695 			ia = ifatoia(ifa_ifwithnet(sintosa(&sain)));
696 
697 		if (cred == NULL || !jailed(cred)) {
698 #if __FreeBSD_version < 800000
699 			if (ia == NULL)
700 				ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
701 #endif
702 			if (ia == NULL) {
703 				error = ENETUNREACH;
704 				goto done;
705 			}
706 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
707 			goto done;
708 		}
709 
710 		/* Jailed. */
711 		if (ia != NULL) {
712 			struct ifnet *ifp;
713 
714 			ifp = ia->ia_ifp;
715 			ia = NULL;
716 			TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
717 
718 				sa = ifa->ifa_addr;
719 				if (sa->sa_family != AF_INET)
720 					continue;
721 				sin = (struct sockaddr_in *)sa;
722 				if (prison_check_ip4(cred, &sin->sin_addr)) {
723 					ia = (struct in_ifaddr *)ifa;
724 					break;
725 				}
726 			}
727 			if (ia != NULL) {
728 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
729 				goto done;
730 			}
731 		}
732 
733 		/* 3. As a last resort return the 'default' jail address. */
734 		if (prison_getip4(cred, laddr) != 0)
735 			error = EADDRNOTAVAIL;
736 		goto done;
737 	}
738 
739 done:
740 	if (sro.ro_rt != NULL)
741 		RTFREE(sro.ro_rt);
742 	return (error);
743 }
744 
745 /*
746  * Set up for a connect from a socket to the specified address.
747  * On entry, *laddrp and *lportp should contain the current local
748  * address and port for the PCB; these are updated to the values
749  * that should be placed in inp_laddr and inp_lport to complete
750  * the connect.
751  *
752  * On success, *faddrp and *fportp will be set to the remote address
753  * and port. These are not updated in the error case.
754  *
755  * If the operation fails because the connection already exists,
756  * *oinpp will be set to the PCB of that connection so that the
757  * caller can decide to override it. In all other cases, *oinpp
758  * is set to NULL.
759  */
760 int
761 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
762     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
763     struct inpcb **oinpp, struct ucred *cred)
764 {
765 	INIT_VNET_INET(inp->inp_vnet);
766 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
767 	struct in_ifaddr *ia;
768 	struct inpcb *oinp;
769 	struct in_addr laddr, faddr, jailia;
770 	u_short lport, fport;
771 	int error;
772 
773 	/*
774 	 * Because a global state change doesn't actually occur here, a read
775 	 * lock is sufficient.
776 	 */
777 	INP_INFO_LOCK_ASSERT(inp->inp_pcbinfo);
778 	INP_LOCK_ASSERT(inp);
779 
780 	if (oinpp != NULL)
781 		*oinpp = NULL;
782 	if (nam->sa_len != sizeof (*sin))
783 		return (EINVAL);
784 	if (sin->sin_family != AF_INET)
785 		return (EAFNOSUPPORT);
786 	if (sin->sin_port == 0)
787 		return (EADDRNOTAVAIL);
788 	laddr.s_addr = *laddrp;
789 	lport = *lportp;
790 	faddr = sin->sin_addr;
791 	fport = sin->sin_port;
792 
793 	if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
794 		/*
795 		 * If the destination address is INADDR_ANY,
796 		 * use the primary local address.
797 		 * If the supplied address is INADDR_BROADCAST,
798 		 * and the primary interface supports broadcast,
799 		 * choose the broadcast address for that interface.
800 		 */
801 		if (faddr.s_addr == INADDR_ANY) {
802 			if (cred != NULL && jailed(cred)) {
803 				if (prison_getip4(cred, &jailia) != 0)
804 					return (EADDRNOTAVAIL);
805 				faddr.s_addr = jailia.s_addr;
806 			} else {
807 				faddr =
808 				    IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->
809 				    sin_addr;
810 			}
811 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST &&
812 		    (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
813 		    IFF_BROADCAST))
814 			faddr = satosin(&TAILQ_FIRST(
815 			    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
816 	}
817 	if (laddr.s_addr == INADDR_ANY) {
818 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
819 		if (error)
820 			return (error);
821 
822 		/*
823 		 * If the destination address is multicast and an outgoing
824 		 * interface has been set as a multicast option, use the
825 		 * address of that interface as our source address.
826 		 */
827 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
828 		    inp->inp_moptions != NULL) {
829 			struct ip_moptions *imo;
830 			struct ifnet *ifp;
831 
832 			imo = inp->inp_moptions;
833 			if (imo->imo_multicast_ifp != NULL) {
834 				ifp = imo->imo_multicast_ifp;
835 				TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link)
836 					if (ia->ia_ifp == ifp)
837 						break;
838 				if (ia == NULL)
839 					return (EADDRNOTAVAIL);
840 				laddr = ia->ia_addr.sin_addr;
841 			}
842 		}
843 	}
844 
845 	oinp = in_pcblookup_hash(inp->inp_pcbinfo, faddr, fport, laddr, lport,
846 	    0, NULL);
847 	if (oinp != NULL) {
848 		if (oinpp != NULL)
849 			*oinpp = oinp;
850 		return (EADDRINUSE);
851 	}
852 	if (lport == 0) {
853 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
854 		    cred);
855 		if (error)
856 			return (error);
857 	}
858 	*laddrp = laddr.s_addr;
859 	*lportp = lport;
860 	*faddrp = faddr.s_addr;
861 	*fportp = fport;
862 	return (0);
863 }
864 
865 void
866 in_pcbdisconnect(struct inpcb *inp)
867 {
868 
869 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
870 	INP_WLOCK_ASSERT(inp);
871 
872 	inp->inp_faddr.s_addr = INADDR_ANY;
873 	inp->inp_fport = 0;
874 	in_pcbrehash(inp);
875 }
876 
877 /*
878  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
879  * For most protocols, this will be invoked immediately prior to calling
880  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
881  * socket, in which case in_pcbfree() is deferred.
882  */
883 void
884 in_pcbdetach(struct inpcb *inp)
885 {
886 
887 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
888 
889 	inp->inp_socket->so_pcb = NULL;
890 	inp->inp_socket = NULL;
891 }
892 
893 /*
894  * in_pcbfree_internal() frees an inpcb that has been detached from its
895  * socket, and whose reference count has reached 0.  It will also remove the
896  * inpcb from any global lists it might remain on.
897  */
898 static void
899 in_pcbfree_internal(struct inpcb *inp)
900 {
901 	struct inpcbinfo *ipi = inp->inp_pcbinfo;
902 
903 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
904 	KASSERT(inp->inp_refcount == 0, ("%s: refcount !0", __func__));
905 
906 	INP_INFO_WLOCK_ASSERT(ipi);
907 	INP_WLOCK_ASSERT(inp);
908 
909 #ifdef IPSEC
910 	if (inp->inp_sp != NULL)
911 		ipsec_delete_pcbpolicy(inp);
912 #endif /* IPSEC */
913 	inp->inp_gencnt = ++ipi->ipi_gencnt;
914 	in_pcbremlists(inp);
915 #ifdef INET6
916 	if (inp->inp_vflag & INP_IPV6PROTO) {
917 		ip6_freepcbopts(inp->in6p_outputopts);
918 		ip6_freemoptions(inp->in6p_moptions);
919 	}
920 #endif
921 	if (inp->inp_options)
922 		(void)m_free(inp->inp_options);
923 	if (inp->inp_moptions != NULL)
924 		inp_freemoptions(inp->inp_moptions);
925 	inp->inp_vflag = 0;
926 	crfree(inp->inp_cred);
927 
928 #ifdef MAC
929 	mac_inpcb_destroy(inp);
930 #endif
931 	INP_WUNLOCK(inp);
932 	uma_zfree(ipi->ipi_zone, inp);
933 }
934 
935 /*
936  * in_pcbref() bumps the reference count on an inpcb in order to maintain
937  * stability of an inpcb pointer despite the inpcb lock being released.  This
938  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
939  * but where the inpcb lock is already held.
940  *
941  * While the inpcb will not be freed, releasing the inpcb lock means that the
942  * connection's state may change, so the caller should be careful to
943  * revalidate any cached state on reacquiring the lock.  Drop the reference
944  * using in_pcbrele().
945  */
946 void
947 in_pcbref(struct inpcb *inp)
948 {
949 
950 	INP_WLOCK_ASSERT(inp);
951 
952 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
953 
954 	inp->inp_refcount++;
955 }
956 
957 /*
958  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
959  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
960  * return a flag indicating whether or not the inpcb remains valid.  If it is
961  * valid, we return with the inpcb lock held.
962  */
963 int
964 in_pcbrele(struct inpcb *inp)
965 {
966 #ifdef INVARIANTS
967 	struct inpcbinfo *ipi = inp->inp_pcbinfo;
968 #endif
969 
970 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
971 
972 	INP_INFO_WLOCK_ASSERT(ipi);
973 	INP_WLOCK_ASSERT(inp);
974 
975 	inp->inp_refcount--;
976 	if (inp->inp_refcount > 0)
977 		return (0);
978 	in_pcbfree_internal(inp);
979 	return (1);
980 }
981 
982 /*
983  * Unconditionally schedule an inpcb to be freed by decrementing its
984  * reference count, which should occur only after the inpcb has been detached
985  * from its socket.  If another thread holds a temporary reference (acquired
986  * using in_pcbref()) then the free is deferred until that reference is
987  * released using in_pcbrele(), but the inpcb is still unlocked.
988  */
989 void
990 in_pcbfree(struct inpcb *inp)
991 {
992 #ifdef INVARIANTS
993 	struct inpcbinfo *ipi = inp->inp_pcbinfo;
994 #endif
995 
996 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL",
997 	    __func__));
998 
999 	INP_INFO_WLOCK_ASSERT(ipi);
1000 	INP_WLOCK_ASSERT(inp);
1001 
1002 	if (!in_pcbrele(inp))
1003 		INP_WUNLOCK(inp);
1004 }
1005 
1006 /*
1007  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1008  * port reservation, and preventing it from being returned by inpcb lookups.
1009  *
1010  * It is used by TCP to mark an inpcb as unused and avoid future packet
1011  * delivery or event notification when a socket remains open but TCP has
1012  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1013  * or a RST on the wire, and allows the port binding to be reused while still
1014  * maintaining the invariant that so_pcb always points to a valid inpcb until
1015  * in_pcbdetach().
1016  *
1017  * XXXRW: An inp_lport of 0 is used to indicate that the inpcb is not on hash
1018  * lists, but can lead to confusing netstat output, as open sockets with
1019  * closed TCP connections will no longer appear to have their bound port
1020  * number.  An explicit flag would be better, as it would allow us to leave
1021  * the port number intact after the connection is dropped.
1022  *
1023  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1024  * in_pcbnotifyall() and in_pcbpurgeif0()?
1025  */
1026 void
1027 in_pcbdrop(struct inpcb *inp)
1028 {
1029 
1030 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
1031 	INP_WLOCK_ASSERT(inp);
1032 
1033 	inp->inp_vflag |= INP_DROPPED;
1034 	if (inp->inp_lport) {
1035 		struct inpcbport *phd = inp->inp_phd;
1036 
1037 		LIST_REMOVE(inp, inp_hash);
1038 		LIST_REMOVE(inp, inp_portlist);
1039 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1040 			LIST_REMOVE(phd, phd_hash);
1041 			free(phd, M_PCB);
1042 		}
1043 		inp->inp_lport = 0;
1044 	}
1045 }
1046 
1047 /*
1048  * Common routines to return the socket addresses associated with inpcbs.
1049  */
1050 struct sockaddr *
1051 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1052 {
1053 	struct sockaddr_in *sin;
1054 
1055 	sin = malloc(sizeof *sin, M_SONAME,
1056 		M_WAITOK | M_ZERO);
1057 	sin->sin_family = AF_INET;
1058 	sin->sin_len = sizeof(*sin);
1059 	sin->sin_addr = *addr_p;
1060 	sin->sin_port = port;
1061 
1062 	return (struct sockaddr *)sin;
1063 }
1064 
1065 int
1066 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1067 {
1068 	struct inpcb *inp;
1069 	struct in_addr addr;
1070 	in_port_t port;
1071 
1072 	inp = sotoinpcb(so);
1073 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1074 
1075 	INP_RLOCK(inp);
1076 	port = inp->inp_lport;
1077 	addr = inp->inp_laddr;
1078 	INP_RUNLOCK(inp);
1079 
1080 	*nam = in_sockaddr(port, &addr);
1081 	return 0;
1082 }
1083 
1084 int
1085 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1086 {
1087 	struct inpcb *inp;
1088 	struct in_addr addr;
1089 	in_port_t port;
1090 
1091 	inp = sotoinpcb(so);
1092 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1093 
1094 	INP_RLOCK(inp);
1095 	port = inp->inp_fport;
1096 	addr = inp->inp_faddr;
1097 	INP_RUNLOCK(inp);
1098 
1099 	*nam = in_sockaddr(port, &addr);
1100 	return 0;
1101 }
1102 
1103 void
1104 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1105     struct inpcb *(*notify)(struct inpcb *, int))
1106 {
1107 	struct inpcb *inp, *inp_temp;
1108 
1109 	INP_INFO_WLOCK(pcbinfo);
1110 	LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1111 		INP_WLOCK(inp);
1112 #ifdef INET6
1113 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1114 			INP_WUNLOCK(inp);
1115 			continue;
1116 		}
1117 #endif
1118 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1119 		    inp->inp_socket == NULL) {
1120 			INP_WUNLOCK(inp);
1121 			continue;
1122 		}
1123 		if ((*notify)(inp, errno))
1124 			INP_WUNLOCK(inp);
1125 	}
1126 	INP_INFO_WUNLOCK(pcbinfo);
1127 }
1128 
1129 void
1130 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1131 {
1132 	struct inpcb *inp;
1133 	struct ip_moptions *imo;
1134 	int i, gap;
1135 
1136 	INP_INFO_RLOCK(pcbinfo);
1137 	LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1138 		INP_WLOCK(inp);
1139 		imo = inp->inp_moptions;
1140 		if ((inp->inp_vflag & INP_IPV4) &&
1141 		    imo != NULL) {
1142 			/*
1143 			 * Unselect the outgoing interface if it is being
1144 			 * detached.
1145 			 */
1146 			if (imo->imo_multicast_ifp == ifp)
1147 				imo->imo_multicast_ifp = NULL;
1148 
1149 			/*
1150 			 * Drop multicast group membership if we joined
1151 			 * through the interface being detached.
1152 			 */
1153 			for (i = 0, gap = 0; i < imo->imo_num_memberships;
1154 			    i++) {
1155 				if (imo->imo_membership[i]->inm_ifp == ifp) {
1156 					in_delmulti(imo->imo_membership[i]);
1157 					gap++;
1158 				} else if (gap != 0)
1159 					imo->imo_membership[i - gap] =
1160 					    imo->imo_membership[i];
1161 			}
1162 			imo->imo_num_memberships -= gap;
1163 		}
1164 		INP_WUNLOCK(inp);
1165 	}
1166 	INP_INFO_RUNLOCK(pcbinfo);
1167 }
1168 
1169 /*
1170  * Lookup a PCB based on the local address and port.
1171  */
1172 #define INP_LOOKUP_MAPPED_PCB_COST	3
1173 struct inpcb *
1174 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1175     u_short lport, int wild_okay, struct ucred *cred)
1176 {
1177 	struct inpcb *inp;
1178 #ifdef INET6
1179 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1180 #else
1181 	int matchwild = 3;
1182 #endif
1183 	int wildcard;
1184 
1185 	INP_INFO_LOCK_ASSERT(pcbinfo);
1186 
1187 	if (!wild_okay) {
1188 		struct inpcbhead *head;
1189 		/*
1190 		 * Look for an unconnected (wildcard foreign addr) PCB that
1191 		 * matches the local address and port we're looking for.
1192 		 */
1193 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1194 		    0, pcbinfo->ipi_hashmask)];
1195 		LIST_FOREACH(inp, head, inp_hash) {
1196 #ifdef INET6
1197 			/* XXX inp locking */
1198 			if ((inp->inp_vflag & INP_IPV4) == 0)
1199 				continue;
1200 #endif
1201 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1202 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1203 			    inp->inp_lport == lport) {
1204 				/*
1205 				 * Found?
1206 				 */
1207 				if (cred == NULL ||
1208 				    inp->inp_cred->cr_prison == cred->cr_prison)
1209 					return (inp);
1210 			}
1211 		}
1212 		/*
1213 		 * Not found.
1214 		 */
1215 		return (NULL);
1216 	} else {
1217 		struct inpcbporthead *porthash;
1218 		struct inpcbport *phd;
1219 		struct inpcb *match = NULL;
1220 		/*
1221 		 * Best fit PCB lookup.
1222 		 *
1223 		 * First see if this local port is in use by looking on the
1224 		 * port hash list.
1225 		 */
1226 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1227 		    pcbinfo->ipi_porthashmask)];
1228 		LIST_FOREACH(phd, porthash, phd_hash) {
1229 			if (phd->phd_port == lport)
1230 				break;
1231 		}
1232 		if (phd != NULL) {
1233 			/*
1234 			 * Port is in use by one or more PCBs. Look for best
1235 			 * fit.
1236 			 */
1237 			LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1238 				wildcard = 0;
1239 				if (cred != NULL &&
1240 				    inp->inp_cred->cr_prison != cred->cr_prison)
1241 					continue;
1242 #ifdef INET6
1243 				/* XXX inp locking */
1244 				if ((inp->inp_vflag & INP_IPV4) == 0)
1245 					continue;
1246 				/*
1247 				 * We never select the PCB that has
1248 				 * INP_IPV6 flag and is bound to :: if
1249 				 * we have another PCB which is bound
1250 				 * to 0.0.0.0.  If a PCB has the
1251 				 * INP_IPV6 flag, then we set its cost
1252 				 * higher than IPv4 only PCBs.
1253 				 *
1254 				 * Note that the case only happens
1255 				 * when a socket is bound to ::, under
1256 				 * the condition that the use of the
1257 				 * mapped address is allowed.
1258 				 */
1259 				if ((inp->inp_vflag & INP_IPV6) != 0)
1260 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1261 #endif
1262 				if (inp->inp_faddr.s_addr != INADDR_ANY)
1263 					wildcard++;
1264 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
1265 					if (laddr.s_addr == INADDR_ANY)
1266 						wildcard++;
1267 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
1268 						continue;
1269 				} else {
1270 					if (laddr.s_addr != INADDR_ANY)
1271 						wildcard++;
1272 				}
1273 				if (wildcard < matchwild) {
1274 					match = inp;
1275 					matchwild = wildcard;
1276 					if (matchwild == 0)
1277 						break;
1278 				}
1279 			}
1280 		}
1281 		return (match);
1282 	}
1283 }
1284 #undef INP_LOOKUP_MAPPED_PCB_COST
1285 
1286 /*
1287  * Lookup PCB in hash list.
1288  */
1289 struct inpcb *
1290 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1291     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard,
1292     struct ifnet *ifp)
1293 {
1294 	struct inpcbhead *head;
1295 	struct inpcb *inp, *tmpinp;
1296 	u_short fport = fport_arg, lport = lport_arg;
1297 
1298 	INP_INFO_LOCK_ASSERT(pcbinfo);
1299 
1300 	/*
1301 	 * First look for an exact match.
1302 	 */
1303 	tmpinp = NULL;
1304 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1305 	    pcbinfo->ipi_hashmask)];
1306 	LIST_FOREACH(inp, head, inp_hash) {
1307 #ifdef INET6
1308 		/* XXX inp locking */
1309 		if ((inp->inp_vflag & INP_IPV4) == 0)
1310 			continue;
1311 #endif
1312 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1313 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1314 		    inp->inp_fport == fport &&
1315 		    inp->inp_lport == lport) {
1316 			/*
1317 			 * XXX We should be able to directly return
1318 			 * the inp here, without any checks.
1319 			 * Well unless both bound with SO_REUSEPORT?
1320 			 */
1321 			if (jailed(inp->inp_cred))
1322 				return (inp);
1323 			if (tmpinp == NULL)
1324 				tmpinp = inp;
1325 		}
1326 	}
1327 	if (tmpinp != NULL)
1328 		return (tmpinp);
1329 
1330 	/*
1331 	 * Then look for a wildcard match, if requested.
1332 	 */
1333 	if (wildcard == INPLOOKUP_WILDCARD) {
1334 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1335 #ifdef INET6
1336 		struct inpcb *local_wild_mapped = NULL;
1337 #endif
1338 		struct inpcb *jail_wild = NULL;
1339 		int injail;
1340 
1341 		/*
1342 		 * Order of socket selection - we always prefer jails.
1343 		 *      1. jailed, non-wild.
1344 		 *      2. jailed, wild.
1345 		 *      3. non-jailed, non-wild.
1346 		 *      4. non-jailed, wild.
1347 		 */
1348 
1349 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1350 		    0, pcbinfo->ipi_hashmask)];
1351 		LIST_FOREACH(inp, head, inp_hash) {
1352 #ifdef INET6
1353 			/* XXX inp locking */
1354 			if ((inp->inp_vflag & INP_IPV4) == 0)
1355 				continue;
1356 #endif
1357 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1358 			    inp->inp_lport != lport)
1359 				continue;
1360 
1361 			/* XXX inp locking */
1362 			if (ifp && ifp->if_type == IFT_FAITH &&
1363 			    (inp->inp_flags & INP_FAITH) == 0)
1364 				continue;
1365 
1366 			injail = jailed(inp->inp_cred);
1367 			if (injail) {
1368 				if (!prison_check_ip4(inp->inp_cred, &laddr))
1369 					continue;
1370 			} else {
1371 				if (local_exact != NULL)
1372 					continue;
1373 			}
1374 
1375 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1376 				if (injail)
1377 					return (inp);
1378 				else
1379 					local_exact = inp;
1380 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1381 #ifdef INET6
1382 				/* XXX inp locking, NULL check */
1383 				if (inp->inp_vflag & INP_IPV6PROTO)
1384 					local_wild_mapped = inp;
1385 				else
1386 #endif /* INET6 */
1387 					if (injail)
1388 						jail_wild = inp;
1389 					else
1390 						local_wild = inp;
1391 			}
1392 		} /* LIST_FOREACH */
1393 		if (jail_wild != NULL)
1394 			return (jail_wild);
1395 		if (local_exact != NULL)
1396 			return (local_exact);
1397 		if (local_wild != NULL)
1398 			return (local_wild);
1399 #ifdef INET6
1400 		if (local_wild_mapped != NULL)
1401 			return (local_wild_mapped);
1402 #endif /* defined(INET6) */
1403 	} /* if (wildcard == INPLOOKUP_WILDCARD) */
1404 
1405 	return (NULL);
1406 }
1407 
1408 /*
1409  * Insert PCB onto various hash lists.
1410  */
1411 int
1412 in_pcbinshash(struct inpcb *inp)
1413 {
1414 	struct inpcbhead *pcbhash;
1415 	struct inpcbporthead *pcbporthash;
1416 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1417 	struct inpcbport *phd;
1418 	u_int32_t hashkey_faddr;
1419 
1420 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1421 	INP_WLOCK_ASSERT(inp);
1422 
1423 #ifdef INET6
1424 	if (inp->inp_vflag & INP_IPV6)
1425 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1426 	else
1427 #endif /* INET6 */
1428 	hashkey_faddr = inp->inp_faddr.s_addr;
1429 
1430 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
1431 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
1432 
1433 	pcbporthash = &pcbinfo->ipi_porthashbase[
1434 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
1435 
1436 	/*
1437 	 * Go through port list and look for a head for this lport.
1438 	 */
1439 	LIST_FOREACH(phd, pcbporthash, phd_hash) {
1440 		if (phd->phd_port == inp->inp_lport)
1441 			break;
1442 	}
1443 	/*
1444 	 * If none exists, malloc one and tack it on.
1445 	 */
1446 	if (phd == NULL) {
1447 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
1448 		if (phd == NULL) {
1449 			return (ENOBUFS); /* XXX */
1450 		}
1451 		phd->phd_port = inp->inp_lport;
1452 		LIST_INIT(&phd->phd_pcblist);
1453 		LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
1454 	}
1455 	inp->inp_phd = phd;
1456 	LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
1457 	LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
1458 	return (0);
1459 }
1460 
1461 /*
1462  * Move PCB to the proper hash bucket when { faddr, fport } have  been
1463  * changed. NOTE: This does not handle the case of the lport changing (the
1464  * hashed port list would have to be updated as well), so the lport must
1465  * not change after in_pcbinshash() has been called.
1466  */
1467 void
1468 in_pcbrehash(struct inpcb *inp)
1469 {
1470 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1471 	struct inpcbhead *head;
1472 	u_int32_t hashkey_faddr;
1473 
1474 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1475 	INP_WLOCK_ASSERT(inp);
1476 
1477 #ifdef INET6
1478 	if (inp->inp_vflag & INP_IPV6)
1479 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1480 	else
1481 #endif /* INET6 */
1482 	hashkey_faddr = inp->inp_faddr.s_addr;
1483 
1484 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
1485 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
1486 
1487 	LIST_REMOVE(inp, inp_hash);
1488 	LIST_INSERT_HEAD(head, inp, inp_hash);
1489 }
1490 
1491 /*
1492  * Remove PCB from various lists.
1493  */
1494 void
1495 in_pcbremlists(struct inpcb *inp)
1496 {
1497 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1498 
1499 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1500 	INP_WLOCK_ASSERT(inp);
1501 
1502 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1503 	if (inp->inp_lport) {
1504 		struct inpcbport *phd = inp->inp_phd;
1505 
1506 		LIST_REMOVE(inp, inp_hash);
1507 		LIST_REMOVE(inp, inp_portlist);
1508 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1509 			LIST_REMOVE(phd, phd_hash);
1510 			free(phd, M_PCB);
1511 		}
1512 	}
1513 	LIST_REMOVE(inp, inp_list);
1514 	pcbinfo->ipi_count--;
1515 }
1516 
1517 /*
1518  * A set label operation has occurred at the socket layer, propagate the
1519  * label change into the in_pcb for the socket.
1520  */
1521 void
1522 in_pcbsosetlabel(struct socket *so)
1523 {
1524 #ifdef MAC
1525 	struct inpcb *inp;
1526 
1527 	inp = sotoinpcb(so);
1528 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
1529 
1530 	INP_WLOCK(inp);
1531 	SOCK_LOCK(so);
1532 	mac_inpcb_sosetlabel(so, inp);
1533 	SOCK_UNLOCK(so);
1534 	INP_WUNLOCK(inp);
1535 #endif
1536 }
1537 
1538 /*
1539  * ipport_tick runs once per second, determining if random port allocation
1540  * should be continued.  If more than ipport_randomcps ports have been
1541  * allocated in the last second, then we return to sequential port
1542  * allocation. We return to random allocation only once we drop below
1543  * ipport_randomcps for at least ipport_randomtime seconds.
1544  */
1545 void
1546 ipport_tick(void *xtp)
1547 {
1548 	VNET_ITERATOR_DECL(vnet_iter);
1549 
1550 	VNET_LIST_RLOCK();
1551 	VNET_FOREACH(vnet_iter) {
1552 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
1553 		INIT_VNET_INET(vnet_iter);
1554 		if (V_ipport_tcpallocs <=
1555 		    V_ipport_tcplastcount + V_ipport_randomcps) {
1556 			if (V_ipport_stoprandom > 0)
1557 				V_ipport_stoprandom--;
1558 		} else
1559 			V_ipport_stoprandom = V_ipport_randomtime;
1560 		V_ipport_tcplastcount = V_ipport_tcpallocs;
1561 		CURVNET_RESTORE();
1562 	}
1563 	VNET_LIST_RUNLOCK();
1564 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
1565 }
1566 
1567 void
1568 inp_wlock(struct inpcb *inp)
1569 {
1570 
1571 	INP_WLOCK(inp);
1572 }
1573 
1574 void
1575 inp_wunlock(struct inpcb *inp)
1576 {
1577 
1578 	INP_WUNLOCK(inp);
1579 }
1580 
1581 void
1582 inp_rlock(struct inpcb *inp)
1583 {
1584 
1585 	INP_RLOCK(inp);
1586 }
1587 
1588 void
1589 inp_runlock(struct inpcb *inp)
1590 {
1591 
1592 	INP_RUNLOCK(inp);
1593 }
1594 
1595 #ifdef INVARIANTS
1596 void
1597 inp_lock_assert(struct inpcb *inp)
1598 {
1599 
1600 	INP_WLOCK_ASSERT(inp);
1601 }
1602 
1603 void
1604 inp_unlock_assert(struct inpcb *inp)
1605 {
1606 
1607 	INP_UNLOCK_ASSERT(inp);
1608 }
1609 #endif
1610 
1611 void
1612 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
1613 {
1614 	INIT_VNET_INET(curvnet);
1615 	struct inpcb *inp;
1616 
1617 	INP_INFO_RLOCK(&V_tcbinfo);
1618 	LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
1619 		INP_WLOCK(inp);
1620 		func(inp, arg);
1621 		INP_WUNLOCK(inp);
1622 	}
1623 	INP_INFO_RUNLOCK(&V_tcbinfo);
1624 }
1625 
1626 struct socket *
1627 inp_inpcbtosocket(struct inpcb *inp)
1628 {
1629 
1630 	INP_WLOCK_ASSERT(inp);
1631 	return (inp->inp_socket);
1632 }
1633 
1634 struct tcpcb *
1635 inp_inpcbtotcpcb(struct inpcb *inp)
1636 {
1637 
1638 	INP_WLOCK_ASSERT(inp);
1639 	return ((struct tcpcb *)inp->inp_ppcb);
1640 }
1641 
1642 int
1643 inp_ip_tos_get(const struct inpcb *inp)
1644 {
1645 
1646 	return (inp->inp_ip_tos);
1647 }
1648 
1649 void
1650 inp_ip_tos_set(struct inpcb *inp, int val)
1651 {
1652 
1653 	inp->inp_ip_tos = val;
1654 }
1655 
1656 void
1657 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
1658     uint32_t *faddr, uint16_t *fp)
1659 {
1660 
1661 	INP_LOCK_ASSERT(inp);
1662 	*laddr = inp->inp_laddr.s_addr;
1663 	*faddr = inp->inp_faddr.s_addr;
1664 	*lp = inp->inp_lport;
1665 	*fp = inp->inp_fport;
1666 }
1667 
1668 struct inpcb *
1669 so_sotoinpcb(struct socket *so)
1670 {
1671 
1672 	return (sotoinpcb(so));
1673 }
1674 
1675 struct tcpcb *
1676 so_sototcpcb(struct socket *so)
1677 {
1678 
1679 	return (sototcpcb(so));
1680 }
1681 
1682 #ifdef DDB
1683 static void
1684 db_print_indent(int indent)
1685 {
1686 	int i;
1687 
1688 	for (i = 0; i < indent; i++)
1689 		db_printf(" ");
1690 }
1691 
1692 static void
1693 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
1694 {
1695 	char faddr_str[48], laddr_str[48];
1696 
1697 	db_print_indent(indent);
1698 	db_printf("%s at %p\n", name, inc);
1699 
1700 	indent += 2;
1701 
1702 #ifdef INET6
1703 	if (inc->inc_flags == 1) {
1704 		/* IPv6. */
1705 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
1706 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
1707 	} else {
1708 #endif
1709 		/* IPv4. */
1710 		inet_ntoa_r(inc->inc_laddr, laddr_str);
1711 		inet_ntoa_r(inc->inc_faddr, faddr_str);
1712 #ifdef INET6
1713 	}
1714 #endif
1715 	db_print_indent(indent);
1716 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
1717 	    ntohs(inc->inc_lport));
1718 	db_print_indent(indent);
1719 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
1720 	    ntohs(inc->inc_fport));
1721 }
1722 
1723 static void
1724 db_print_inpflags(int inp_flags)
1725 {
1726 	int comma;
1727 
1728 	comma = 0;
1729 	if (inp_flags & INP_RECVOPTS) {
1730 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
1731 		comma = 1;
1732 	}
1733 	if (inp_flags & INP_RECVRETOPTS) {
1734 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
1735 		comma = 1;
1736 	}
1737 	if (inp_flags & INP_RECVDSTADDR) {
1738 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
1739 		comma = 1;
1740 	}
1741 	if (inp_flags & INP_HDRINCL) {
1742 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
1743 		comma = 1;
1744 	}
1745 	if (inp_flags & INP_HIGHPORT) {
1746 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
1747 		comma = 1;
1748 	}
1749 	if (inp_flags & INP_LOWPORT) {
1750 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
1751 		comma = 1;
1752 	}
1753 	if (inp_flags & INP_ANONPORT) {
1754 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
1755 		comma = 1;
1756 	}
1757 	if (inp_flags & INP_RECVIF) {
1758 		db_printf("%sINP_RECVIF", comma ? ", " : "");
1759 		comma = 1;
1760 	}
1761 	if (inp_flags & INP_MTUDISC) {
1762 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
1763 		comma = 1;
1764 	}
1765 	if (inp_flags & INP_FAITH) {
1766 		db_printf("%sINP_FAITH", comma ? ", " : "");
1767 		comma = 1;
1768 	}
1769 	if (inp_flags & INP_RECVTTL) {
1770 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
1771 		comma = 1;
1772 	}
1773 	if (inp_flags & INP_DONTFRAG) {
1774 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
1775 		comma = 1;
1776 	}
1777 	if (inp_flags & IN6P_IPV6_V6ONLY) {
1778 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
1779 		comma = 1;
1780 	}
1781 	if (inp_flags & IN6P_PKTINFO) {
1782 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
1783 		comma = 1;
1784 	}
1785 	if (inp_flags & IN6P_HOPLIMIT) {
1786 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
1787 		comma = 1;
1788 	}
1789 	if (inp_flags & IN6P_HOPOPTS) {
1790 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
1791 		comma = 1;
1792 	}
1793 	if (inp_flags & IN6P_DSTOPTS) {
1794 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
1795 		comma = 1;
1796 	}
1797 	if (inp_flags & IN6P_RTHDR) {
1798 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
1799 		comma = 1;
1800 	}
1801 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
1802 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
1803 		comma = 1;
1804 	}
1805 	if (inp_flags & IN6P_TCLASS) {
1806 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
1807 		comma = 1;
1808 	}
1809 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
1810 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
1811 		comma = 1;
1812 	}
1813 	if (inp_flags & IN6P_RFC2292) {
1814 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
1815 		comma = 1;
1816 	}
1817 	if (inp_flags & IN6P_MTU) {
1818 		db_printf("IN6P_MTU%s", comma ? ", " : "");
1819 		comma = 1;
1820 	}
1821 }
1822 
1823 static void
1824 db_print_inpvflag(u_char inp_vflag)
1825 {
1826 	int comma;
1827 
1828 	comma = 0;
1829 	if (inp_vflag & INP_IPV4) {
1830 		db_printf("%sINP_IPV4", comma ? ", " : "");
1831 		comma  = 1;
1832 	}
1833 	if (inp_vflag & INP_IPV6) {
1834 		db_printf("%sINP_IPV6", comma ? ", " : "");
1835 		comma  = 1;
1836 	}
1837 	if (inp_vflag & INP_IPV6PROTO) {
1838 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
1839 		comma  = 1;
1840 	}
1841 	if (inp_vflag & INP_TIMEWAIT) {
1842 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
1843 		comma  = 1;
1844 	}
1845 	if (inp_vflag & INP_ONESBCAST) {
1846 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
1847 		comma  = 1;
1848 	}
1849 	if (inp_vflag & INP_DROPPED) {
1850 		db_printf("%sINP_DROPPED", comma ? ", " : "");
1851 		comma  = 1;
1852 	}
1853 	if (inp_vflag & INP_SOCKREF) {
1854 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
1855 		comma  = 1;
1856 	}
1857 }
1858 
1859 void
1860 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
1861 {
1862 
1863 	db_print_indent(indent);
1864 	db_printf("%s at %p\n", name, inp);
1865 
1866 	indent += 2;
1867 
1868 	db_print_indent(indent);
1869 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
1870 
1871 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
1872 
1873 	db_print_indent(indent);
1874 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
1875 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
1876 
1877 	db_print_indent(indent);
1878 	db_printf("inp_label: %p   inp_flags: 0x%x (",
1879 	   inp->inp_label, inp->inp_flags);
1880 	db_print_inpflags(inp->inp_flags);
1881 	db_printf(")\n");
1882 
1883 	db_print_indent(indent);
1884 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
1885 	    inp->inp_vflag);
1886 	db_print_inpvflag(inp->inp_vflag);
1887 	db_printf(")\n");
1888 
1889 	db_print_indent(indent);
1890 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
1891 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
1892 
1893 	db_print_indent(indent);
1894 #ifdef INET6
1895 	if (inp->inp_vflag & INP_IPV6) {
1896 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
1897 		    "in6p_moptions: %p\n", inp->in6p_options,
1898 		    inp->in6p_outputopts, inp->in6p_moptions);
1899 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
1900 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
1901 		    inp->in6p_hops);
1902 	} else
1903 #endif
1904 	{
1905 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
1906 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
1907 		    inp->inp_options, inp->inp_moptions);
1908 	}
1909 
1910 	db_print_indent(indent);
1911 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
1912 	    (uintmax_t)inp->inp_gencnt);
1913 }
1914 
1915 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
1916 {
1917 	struct inpcb *inp;
1918 
1919 	if (!have_addr) {
1920 		db_printf("usage: show inpcb <addr>\n");
1921 		return;
1922 	}
1923 	inp = (struct inpcb *)addr;
1924 
1925 	db_print_inpcb(inp, "inpcb", 0);
1926 }
1927 #endif
1928