1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Robert N. M. Watson under 11 * contract to Juniper Networks, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_ddb.h" 44 #include "opt_ipsec.h" 45 #include "opt_inet.h" 46 #include "opt_inet6.h" 47 #include "opt_ratelimit.h" 48 #include "opt_pcbgroup.h" 49 #include "opt_rss.h" 50 51 #include <sys/param.h> 52 #include <sys/systm.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/mbuf.h> 56 #include <sys/callout.h> 57 #include <sys/eventhandler.h> 58 #include <sys/domain.h> 59 #include <sys/protosw.h> 60 #include <sys/rmlock.h> 61 #include <sys/smp.h> 62 #include <sys/socket.h> 63 #include <sys/socketvar.h> 64 #include <sys/sockio.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/refcount.h> 68 #include <sys/jail.h> 69 #include <sys/kernel.h> 70 #include <sys/sysctl.h> 71 72 #ifdef DDB 73 #include <ddb/ddb.h> 74 #endif 75 76 #include <vm/uma.h> 77 78 #include <net/if.h> 79 #include <net/if_var.h> 80 #include <net/if_types.h> 81 #include <net/if_llatbl.h> 82 #include <net/route.h> 83 #include <net/rss_config.h> 84 #include <net/vnet.h> 85 86 #if defined(INET) || defined(INET6) 87 #include <netinet/in.h> 88 #include <netinet/in_pcb.h> 89 #ifdef INET 90 #include <netinet/in_var.h> 91 #include <netinet/in_fib.h> 92 #endif 93 #include <netinet/ip_var.h> 94 #include <netinet/tcp_var.h> 95 #ifdef TCPHPTS 96 #include <netinet/tcp_hpts.h> 97 #endif 98 #include <netinet/udp.h> 99 #include <netinet/udp_var.h> 100 #ifdef INET6 101 #include <netinet/ip6.h> 102 #include <netinet6/in6_pcb.h> 103 #include <netinet6/in6_var.h> 104 #include <netinet6/ip6_var.h> 105 #endif /* INET6 */ 106 #include <net/route/nhop.h> 107 #endif 108 109 #include <netipsec/ipsec_support.h> 110 111 #include <security/mac/mac_framework.h> 112 113 #define INPCBLBGROUP_SIZMIN 8 114 #define INPCBLBGROUP_SIZMAX 256 115 116 static struct callout ipport_tick_callout; 117 118 /* 119 * These configure the range of local port addresses assigned to 120 * "unspecified" outgoing connections/packets/whatever. 121 */ 122 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 123 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 124 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 125 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 126 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 127 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 128 129 /* 130 * Reserved ports accessible only to root. There are significant 131 * security considerations that must be accounted for when changing these, 132 * but the security benefits can be great. Please be careful. 133 */ 134 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 135 VNET_DEFINE(int, ipport_reservedlow); 136 137 /* Variables dealing with random ephemeral port allocation. */ 138 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 139 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 140 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 141 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 142 VNET_DEFINE(int, ipport_tcpallocs); 143 VNET_DEFINE_STATIC(int, ipport_tcplastcount); 144 145 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 146 147 static void in_pcbremlists(struct inpcb *inp); 148 #ifdef INET 149 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 150 struct in_addr faddr, u_int fport_arg, 151 struct in_addr laddr, u_int lport_arg, 152 int lookupflags, struct ifnet *ifp); 153 154 #define RANGECHK(var, min, max) \ 155 if ((var) < (min)) { (var) = (min); } \ 156 else if ((var) > (max)) { (var) = (max); } 157 158 static int 159 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 160 { 161 int error; 162 163 error = sysctl_handle_int(oidp, arg1, arg2, req); 164 if (error == 0) { 165 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 166 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 167 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 168 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 169 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 170 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 171 } 172 return (error); 173 } 174 175 #undef RANGECHK 176 177 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, 178 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 179 "IP Ports"); 180 181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 182 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 183 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", 184 ""); 185 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 186 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 187 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", 188 ""); 189 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 190 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 191 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", 192 ""); 193 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 194 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 195 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", 196 ""); 197 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 198 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 199 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", 200 ""); 201 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 202 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 203 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", 204 ""); 205 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 206 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 207 &VNET_NAME(ipport_reservedhigh), 0, ""); 208 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 209 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 210 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 211 CTLFLAG_VNET | CTLFLAG_RW, 212 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 213 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 214 CTLFLAG_VNET | CTLFLAG_RW, 215 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 216 "allocations before switching to a sequental one"); 217 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 218 CTLFLAG_VNET | CTLFLAG_RW, 219 &VNET_NAME(ipport_randomtime), 0, 220 "Minimum time to keep sequental port " 221 "allocation before switching to a random one"); 222 223 #ifdef RATELIMIT 224 counter_u64_t rate_limit_active; 225 counter_u64_t rate_limit_alloc_fail; 226 counter_u64_t rate_limit_set_ok; 227 228 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 229 "IP Rate Limiting"); 230 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD, 231 &rate_limit_active, "Active rate limited connections"); 232 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD, 233 &rate_limit_alloc_fail, "Rate limited connection failures"); 234 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD, 235 &rate_limit_set_ok, "Rate limited setting succeeded"); 236 #endif /* RATELIMIT */ 237 238 #endif /* INET */ 239 240 /* 241 * in_pcb.c: manage the Protocol Control Blocks. 242 * 243 * NOTE: It is assumed that most of these functions will be called with 244 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 245 * functions often modify hash chains or addresses in pcbs. 246 */ 247 248 static struct inpcblbgroup * 249 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag, 250 uint16_t port, const union in_dependaddr *addr, int size) 251 { 252 struct inpcblbgroup *grp; 253 size_t bytes; 254 255 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 256 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 257 if (!grp) 258 return (NULL); 259 grp->il_vflag = vflag; 260 grp->il_lport = port; 261 grp->il_dependladdr = *addr; 262 grp->il_inpsiz = size; 263 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 264 return (grp); 265 } 266 267 static void 268 in_pcblbgroup_free_deferred(epoch_context_t ctx) 269 { 270 struct inpcblbgroup *grp; 271 272 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); 273 free(grp, M_PCB); 274 } 275 276 static void 277 in_pcblbgroup_free(struct inpcblbgroup *grp) 278 { 279 280 CK_LIST_REMOVE(grp, il_list); 281 NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx); 282 } 283 284 static struct inpcblbgroup * 285 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 286 struct inpcblbgroup *old_grp, int size) 287 { 288 struct inpcblbgroup *grp; 289 int i; 290 291 grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag, 292 old_grp->il_lport, &old_grp->il_dependladdr, size); 293 if (grp == NULL) 294 return (NULL); 295 296 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 297 ("invalid new local group size %d and old local group count %d", 298 grp->il_inpsiz, old_grp->il_inpcnt)); 299 300 for (i = 0; i < old_grp->il_inpcnt; ++i) 301 grp->il_inp[i] = old_grp->il_inp[i]; 302 grp->il_inpcnt = old_grp->il_inpcnt; 303 in_pcblbgroup_free(old_grp); 304 return (grp); 305 } 306 307 /* 308 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] 309 * and shrink group if possible. 310 */ 311 static void 312 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, 313 int i) 314 { 315 struct inpcblbgroup *grp, *new_grp; 316 317 grp = *grpp; 318 for (; i + 1 < grp->il_inpcnt; ++i) 319 grp->il_inp[i] = grp->il_inp[i + 1]; 320 grp->il_inpcnt--; 321 322 if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && 323 grp->il_inpcnt <= grp->il_inpsiz / 4) { 324 /* Shrink this group. */ 325 new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); 326 if (new_grp != NULL) 327 *grpp = new_grp; 328 } 329 } 330 331 /* 332 * Add PCB to load balance group for SO_REUSEPORT_LB option. 333 */ 334 static int 335 in_pcbinslbgrouphash(struct inpcb *inp) 336 { 337 const static struct timeval interval = { 60, 0 }; 338 static struct timeval lastprint; 339 struct inpcbinfo *pcbinfo; 340 struct inpcblbgrouphead *hdr; 341 struct inpcblbgroup *grp; 342 uint32_t idx; 343 344 pcbinfo = inp->inp_pcbinfo; 345 346 INP_WLOCK_ASSERT(inp); 347 INP_HASH_WLOCK_ASSERT(pcbinfo); 348 349 /* 350 * Don't allow jailed socket to join local group. 351 */ 352 if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred)) 353 return (0); 354 355 #ifdef INET6 356 /* 357 * Don't allow IPv4 mapped INET6 wild socket. 358 */ 359 if ((inp->inp_vflag & INP_IPV4) && 360 inp->inp_laddr.s_addr == INADDR_ANY && 361 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 362 return (0); 363 } 364 #endif 365 366 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); 367 hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; 368 CK_LIST_FOREACH(grp, hdr, il_list) { 369 if (grp->il_vflag == inp->inp_vflag && 370 grp->il_lport == inp->inp_lport && 371 memcmp(&grp->il_dependladdr, 372 &inp->inp_inc.inc_ie.ie_dependladdr, 373 sizeof(grp->il_dependladdr)) == 0) 374 break; 375 } 376 if (grp == NULL) { 377 /* Create new load balance group. */ 378 grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag, 379 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 380 INPCBLBGROUP_SIZMIN); 381 if (grp == NULL) 382 return (ENOBUFS); 383 } else if (grp->il_inpcnt == grp->il_inpsiz) { 384 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 385 if (ratecheck(&lastprint, &interval)) 386 printf("lb group port %d, limit reached\n", 387 ntohs(grp->il_lport)); 388 return (0); 389 } 390 391 /* Expand this local group. */ 392 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 393 if (grp == NULL) 394 return (ENOBUFS); 395 } 396 397 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 398 ("invalid local group size %d and count %d", grp->il_inpsiz, 399 grp->il_inpcnt)); 400 401 grp->il_inp[grp->il_inpcnt] = inp; 402 grp->il_inpcnt++; 403 return (0); 404 } 405 406 /* 407 * Remove PCB from load balance group. 408 */ 409 static void 410 in_pcbremlbgrouphash(struct inpcb *inp) 411 { 412 struct inpcbinfo *pcbinfo; 413 struct inpcblbgrouphead *hdr; 414 struct inpcblbgroup *grp; 415 int i; 416 417 pcbinfo = inp->inp_pcbinfo; 418 419 INP_WLOCK_ASSERT(inp); 420 INP_HASH_WLOCK_ASSERT(pcbinfo); 421 422 hdr = &pcbinfo->ipi_lbgrouphashbase[ 423 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 424 CK_LIST_FOREACH(grp, hdr, il_list) { 425 for (i = 0; i < grp->il_inpcnt; ++i) { 426 if (grp->il_inp[i] != inp) 427 continue; 428 429 if (grp->il_inpcnt == 1) { 430 /* We are the last, free this local group. */ 431 in_pcblbgroup_free(grp); 432 } else { 433 /* Pull up inpcbs, shrink group if possible. */ 434 in_pcblbgroup_reorder(hdr, &grp, i); 435 } 436 return; 437 } 438 } 439 } 440 441 /* 442 * Different protocols initialize their inpcbs differently - giving 443 * different name to the lock. But they all are disposed the same. 444 */ 445 static void 446 inpcb_fini(void *mem, int size) 447 { 448 struct inpcb *inp = mem; 449 450 INP_LOCK_DESTROY(inp); 451 } 452 453 /* 454 * Initialize an inpcbinfo -- we should be able to reduce the number of 455 * arguments in time. 456 */ 457 void 458 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 459 struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, 460 char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields) 461 { 462 463 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); 464 465 INP_INFO_LOCK_INIT(pcbinfo, name); 466 INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ 467 INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist"); 468 #ifdef VIMAGE 469 pcbinfo->ipi_vnet = curvnet; 470 #endif 471 pcbinfo->ipi_listhead = listhead; 472 CK_LIST_INIT(pcbinfo->ipi_listhead); 473 pcbinfo->ipi_count = 0; 474 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 475 &pcbinfo->ipi_hashmask); 476 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 477 &pcbinfo->ipi_porthashmask); 478 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, 479 &pcbinfo->ipi_lbgrouphashmask); 480 #ifdef PCBGROUP 481 in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); 482 #endif 483 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 484 NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0); 485 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 486 uma_zone_set_warning(pcbinfo->ipi_zone, 487 "kern.ipc.maxsockets limit reached"); 488 } 489 490 /* 491 * Destroy an inpcbinfo. 492 */ 493 void 494 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 495 { 496 497 KASSERT(pcbinfo->ipi_count == 0, 498 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 499 500 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 501 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 502 pcbinfo->ipi_porthashmask); 503 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 504 pcbinfo->ipi_lbgrouphashmask); 505 #ifdef PCBGROUP 506 in_pcbgroup_destroy(pcbinfo); 507 #endif 508 uma_zdestroy(pcbinfo->ipi_zone); 509 INP_LIST_LOCK_DESTROY(pcbinfo); 510 INP_HASH_LOCK_DESTROY(pcbinfo); 511 INP_INFO_LOCK_DESTROY(pcbinfo); 512 } 513 514 /* 515 * Allocate a PCB and associate it with the socket. 516 * On success return with the PCB locked. 517 */ 518 int 519 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 520 { 521 struct inpcb *inp; 522 int error; 523 524 error = 0; 525 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 526 if (inp == NULL) 527 return (ENOBUFS); 528 bzero(&inp->inp_start_zero, inp_zero_size); 529 #ifdef NUMA 530 inp->inp_numa_domain = M_NODOM; 531 #endif 532 inp->inp_pcbinfo = pcbinfo; 533 inp->inp_socket = so; 534 inp->inp_cred = crhold(so->so_cred); 535 inp->inp_inc.inc_fibnum = so->so_fibnum; 536 #ifdef MAC 537 error = mac_inpcb_init(inp, M_NOWAIT); 538 if (error != 0) 539 goto out; 540 mac_inpcb_create(so, inp); 541 #endif 542 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 543 error = ipsec_init_pcbpolicy(inp); 544 if (error != 0) { 545 #ifdef MAC 546 mac_inpcb_destroy(inp); 547 #endif 548 goto out; 549 } 550 #endif /*IPSEC*/ 551 #ifdef INET6 552 if (INP_SOCKAF(so) == AF_INET6) { 553 inp->inp_vflag |= INP_IPV6PROTO; 554 if (V_ip6_v6only) 555 inp->inp_flags |= IN6P_IPV6_V6ONLY; 556 } 557 #endif 558 INP_WLOCK(inp); 559 INP_LIST_WLOCK(pcbinfo); 560 CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 561 pcbinfo->ipi_count++; 562 so->so_pcb = (caddr_t)inp; 563 #ifdef INET6 564 if (V_ip6_auto_flowlabel) 565 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 566 #endif 567 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 568 refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ 569 570 /* 571 * Routes in inpcb's can cache L2 as well; they are guaranteed 572 * to be cleaned up. 573 */ 574 inp->inp_route.ro_flags = RT_LLE_CACHE; 575 INP_LIST_WUNLOCK(pcbinfo); 576 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 577 out: 578 if (error != 0) { 579 crfree(inp->inp_cred); 580 uma_zfree(pcbinfo->ipi_zone, inp); 581 } 582 #endif 583 return (error); 584 } 585 586 #ifdef INET 587 int 588 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 589 { 590 int anonport, error; 591 592 INP_WLOCK_ASSERT(inp); 593 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 594 595 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 596 return (EINVAL); 597 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 598 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 599 &inp->inp_lport, cred); 600 if (error) 601 return (error); 602 if (in_pcbinshash(inp) != 0) { 603 inp->inp_laddr.s_addr = INADDR_ANY; 604 inp->inp_lport = 0; 605 return (EAGAIN); 606 } 607 if (anonport) 608 inp->inp_flags |= INP_ANONPORT; 609 return (0); 610 } 611 #endif 612 613 #if defined(INET) || defined(INET6) 614 /* 615 * Assign a local port like in_pcb_lport(), but also used with connect() 616 * and a foreign address and port. If fsa is non-NULL, choose a local port 617 * that is unused with those, otherwise one that is completely unused. 618 * lsa can be NULL for IPv6. 619 */ 620 int 621 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp, 622 struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags) 623 { 624 struct inpcbinfo *pcbinfo; 625 struct inpcb *tmpinp; 626 unsigned short *lastport; 627 int count, dorandom, error; 628 u_short aux, first, last, lport; 629 #ifdef INET 630 struct in_addr laddr, faddr; 631 #endif 632 #ifdef INET6 633 struct in6_addr *laddr6, *faddr6; 634 #endif 635 636 pcbinfo = inp->inp_pcbinfo; 637 638 /* 639 * Because no actual state changes occur here, a global write lock on 640 * the pcbinfo isn't required. 641 */ 642 INP_LOCK_ASSERT(inp); 643 INP_HASH_LOCK_ASSERT(pcbinfo); 644 645 if (inp->inp_flags & INP_HIGHPORT) { 646 first = V_ipport_hifirstauto; /* sysctl */ 647 last = V_ipport_hilastauto; 648 lastport = &pcbinfo->ipi_lasthi; 649 } else if (inp->inp_flags & INP_LOWPORT) { 650 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); 651 if (error) 652 return (error); 653 first = V_ipport_lowfirstauto; /* 1023 */ 654 last = V_ipport_lowlastauto; /* 600 */ 655 lastport = &pcbinfo->ipi_lastlow; 656 } else { 657 first = V_ipport_firstauto; /* sysctl */ 658 last = V_ipport_lastauto; 659 lastport = &pcbinfo->ipi_lastport; 660 } 661 /* 662 * For UDP(-Lite), use random port allocation as long as the user 663 * allows it. For TCP (and as of yet unknown) connections, 664 * use random port allocation only if the user allows it AND 665 * ipport_tick() allows it. 666 */ 667 if (V_ipport_randomized && 668 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 669 pcbinfo == &V_ulitecbinfo)) 670 dorandom = 1; 671 else 672 dorandom = 0; 673 /* 674 * It makes no sense to do random port allocation if 675 * we have the only port available. 676 */ 677 if (first == last) 678 dorandom = 0; 679 /* Make sure to not include UDP(-Lite) packets in the count. */ 680 if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) 681 V_ipport_tcpallocs++; 682 /* 683 * Instead of having two loops further down counting up or down 684 * make sure that first is always <= last and go with only one 685 * code path implementing all logic. 686 */ 687 if (first > last) { 688 aux = first; 689 first = last; 690 last = aux; 691 } 692 693 #ifdef INET 694 laddr.s_addr = INADDR_ANY; 695 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 696 if (lsa != NULL) 697 laddr = ((struct sockaddr_in *)lsa)->sin_addr; 698 if (fsa != NULL) 699 faddr = ((struct sockaddr_in *)fsa)->sin_addr; 700 } 701 #endif 702 #ifdef INET6 703 laddr6 = NULL; 704 if ((inp->inp_vflag & INP_IPV6) != 0) { 705 if (lsa != NULL) 706 laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr; 707 if (fsa != NULL) 708 faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr; 709 } 710 #endif 711 712 tmpinp = NULL; 713 lport = *lportp; 714 715 if (dorandom) 716 *lastport = first + (arc4random() % (last - first)); 717 718 count = last - first; 719 720 do { 721 if (count-- < 0) /* completely used? */ 722 return (EADDRNOTAVAIL); 723 ++*lastport; 724 if (*lastport < first || *lastport > last) 725 *lastport = first; 726 lport = htons(*lastport); 727 728 if (fsa != NULL) { 729 730 #ifdef INET 731 if (lsa->sa_family == AF_INET) { 732 tmpinp = in_pcblookup_hash_locked(pcbinfo, 733 faddr, fport, laddr, lport, lookupflags, 734 NULL); 735 } 736 #endif 737 #ifdef INET6 738 if (lsa->sa_family == AF_INET6) { 739 tmpinp = in6_pcblookup_hash_locked(pcbinfo, 740 faddr6, fport, laddr6, lport, lookupflags, 741 NULL); 742 } 743 #endif 744 } else { 745 #ifdef INET6 746 if ((inp->inp_vflag & INP_IPV6) != 0) 747 tmpinp = in6_pcblookup_local(pcbinfo, 748 &inp->in6p_laddr, lport, lookupflags, cred); 749 #endif 750 #if defined(INET) && defined(INET6) 751 else 752 #endif 753 #ifdef INET 754 tmpinp = in_pcblookup_local(pcbinfo, laddr, 755 lport, lookupflags, cred); 756 #endif 757 } 758 } while (tmpinp != NULL); 759 760 *lportp = lport; 761 762 return (0); 763 } 764 765 /* 766 * Select a local port (number) to use. 767 */ 768 int 769 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 770 struct ucred *cred, int lookupflags) 771 { 772 struct sockaddr_in laddr; 773 774 if (laddrp) { 775 bzero(&laddr, sizeof(laddr)); 776 laddr.sin_family = AF_INET; 777 laddr.sin_addr = *laddrp; 778 } 779 return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr : 780 NULL, lportp, NULL, 0, cred, lookupflags)); 781 } 782 783 /* 784 * Return cached socket options. 785 */ 786 int 787 inp_so_options(const struct inpcb *inp) 788 { 789 int so_options; 790 791 so_options = 0; 792 793 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 794 so_options |= SO_REUSEPORT_LB; 795 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 796 so_options |= SO_REUSEPORT; 797 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 798 so_options |= SO_REUSEADDR; 799 return (so_options); 800 } 801 #endif /* INET || INET6 */ 802 803 /* 804 * Check if a new BINDMULTI socket is allowed to be created. 805 * 806 * ni points to the new inp. 807 * oi points to the exisitng inp. 808 * 809 * This checks whether the existing inp also has BINDMULTI and 810 * whether the credentials match. 811 */ 812 int 813 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 814 { 815 /* Check permissions match */ 816 if ((ni->inp_flags2 & INP_BINDMULTI) && 817 (ni->inp_cred->cr_uid != 818 oi->inp_cred->cr_uid)) 819 return (0); 820 821 /* Check the existing inp has BINDMULTI set */ 822 if ((ni->inp_flags2 & INP_BINDMULTI) && 823 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 824 return (0); 825 826 /* 827 * We're okay - either INP_BINDMULTI isn't set on ni, or 828 * it is and it matches the checks. 829 */ 830 return (1); 831 } 832 833 #ifdef INET 834 /* 835 * Set up a bind operation on a PCB, performing port allocation 836 * as required, but do not actually modify the PCB. Callers can 837 * either complete the bind by setting inp_laddr/inp_lport and 838 * calling in_pcbinshash(), or they can just use the resulting 839 * port and address to authorise the sending of a once-off packet. 840 * 841 * On error, the values of *laddrp and *lportp are not changed. 842 */ 843 int 844 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 845 u_short *lportp, struct ucred *cred) 846 { 847 struct socket *so = inp->inp_socket; 848 struct sockaddr_in *sin; 849 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 850 struct in_addr laddr; 851 u_short lport = 0; 852 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 853 int error; 854 855 /* 856 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here 857 * so that we don't have to add to the (already messy) code below. 858 */ 859 int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); 860 861 /* 862 * No state changes, so read locks are sufficient here. 863 */ 864 INP_LOCK_ASSERT(inp); 865 INP_HASH_LOCK_ASSERT(pcbinfo); 866 867 if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 868 return (EADDRNOTAVAIL); 869 laddr.s_addr = *laddrp; 870 if (nam != NULL && laddr.s_addr != INADDR_ANY) 871 return (EINVAL); 872 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) 873 lookupflags = INPLOOKUP_WILDCARD; 874 if (nam == NULL) { 875 if ((error = prison_local_ip4(cred, &laddr)) != 0) 876 return (error); 877 } else { 878 sin = (struct sockaddr_in *)nam; 879 if (nam->sa_len != sizeof (*sin)) 880 return (EINVAL); 881 #ifdef notdef 882 /* 883 * We should check the family, but old programs 884 * incorrectly fail to initialize it. 885 */ 886 if (sin->sin_family != AF_INET) 887 return (EAFNOSUPPORT); 888 #endif 889 error = prison_local_ip4(cred, &sin->sin_addr); 890 if (error) 891 return (error); 892 if (sin->sin_port != *lportp) { 893 /* Don't allow the port to change. */ 894 if (*lportp != 0) 895 return (EINVAL); 896 lport = sin->sin_port; 897 } 898 /* NB: lport is left as 0 if the port isn't being changed. */ 899 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 900 /* 901 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 902 * allow complete duplication of binding if 903 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 904 * and a multicast address is bound on both 905 * new and duplicated sockets. 906 */ 907 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 908 reuseport = SO_REUSEADDR|SO_REUSEPORT; 909 /* 910 * XXX: How to deal with SO_REUSEPORT_LB here? 911 * Treat same as SO_REUSEPORT for now. 912 */ 913 if ((so->so_options & 914 (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) 915 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; 916 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 917 sin->sin_port = 0; /* yech... */ 918 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 919 /* 920 * Is the address a local IP address? 921 * If INP_BINDANY is set, then the socket may be bound 922 * to any endpoint address, local or not. 923 */ 924 if ((inp->inp_flags & INP_BINDANY) == 0 && 925 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 926 return (EADDRNOTAVAIL); 927 } 928 laddr = sin->sin_addr; 929 if (lport) { 930 struct inpcb *t; 931 struct tcptw *tw; 932 933 /* GROSS */ 934 if (ntohs(lport) <= V_ipport_reservedhigh && 935 ntohs(lport) >= V_ipport_reservedlow && 936 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) 937 return (EACCES); 938 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 939 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { 940 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 941 lport, INPLOOKUP_WILDCARD, cred); 942 /* 943 * XXX 944 * This entire block sorely needs a rewrite. 945 */ 946 if (t && 947 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 948 ((t->inp_flags & INP_TIMEWAIT) == 0) && 949 (so->so_type != SOCK_STREAM || 950 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 951 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 952 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 953 (t->inp_flags2 & INP_REUSEPORT) || 954 (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && 955 (inp->inp_cred->cr_uid != 956 t->inp_cred->cr_uid)) 957 return (EADDRINUSE); 958 959 /* 960 * If the socket is a BINDMULTI socket, then 961 * the credentials need to match and the 962 * original socket also has to have been bound 963 * with BINDMULTI. 964 */ 965 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 966 return (EADDRINUSE); 967 } 968 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 969 lport, lookupflags, cred); 970 if (t && (t->inp_flags & INP_TIMEWAIT)) { 971 /* 972 * XXXRW: If an incpb has had its timewait 973 * state recycled, we treat the address as 974 * being in use (for now). This is better 975 * than a panic, but not desirable. 976 */ 977 tw = intotw(t); 978 if (tw == NULL || 979 ((reuseport & tw->tw_so_options) == 0 && 980 (reuseport_lb & 981 tw->tw_so_options) == 0)) { 982 return (EADDRINUSE); 983 } 984 } else if (t && 985 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 986 (reuseport & inp_so_options(t)) == 0 && 987 (reuseport_lb & inp_so_options(t)) == 0) { 988 #ifdef INET6 989 if (ntohl(sin->sin_addr.s_addr) != 990 INADDR_ANY || 991 ntohl(t->inp_laddr.s_addr) != 992 INADDR_ANY || 993 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 994 (t->inp_vflag & INP_IPV6PROTO) == 0) 995 #endif 996 return (EADDRINUSE); 997 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 998 return (EADDRINUSE); 999 } 1000 } 1001 } 1002 if (*lportp != 0) 1003 lport = *lportp; 1004 if (lport == 0) { 1005 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 1006 if (error != 0) 1007 return (error); 1008 1009 } 1010 *laddrp = laddr.s_addr; 1011 *lportp = lport; 1012 return (0); 1013 } 1014 1015 /* 1016 * Connect from a socket to a specified address. 1017 * Both address and port must be specified in argument sin. 1018 * If don't have a local address for this socket yet, 1019 * then pick one. 1020 */ 1021 int 1022 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, 1023 struct ucred *cred, struct mbuf *m, bool rehash) 1024 { 1025 u_short lport, fport; 1026 in_addr_t laddr, faddr; 1027 int anonport, error; 1028 1029 INP_WLOCK_ASSERT(inp); 1030 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1031 1032 lport = inp->inp_lport; 1033 laddr = inp->inp_laddr.s_addr; 1034 anonport = (lport == 0); 1035 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 1036 NULL, cred); 1037 if (error) 1038 return (error); 1039 1040 /* Do the initial binding of the local address if required. */ 1041 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 1042 KASSERT(rehash == true, 1043 ("Rehashing required for unbound inps")); 1044 inp->inp_lport = lport; 1045 inp->inp_laddr.s_addr = laddr; 1046 if (in_pcbinshash(inp) != 0) { 1047 inp->inp_laddr.s_addr = INADDR_ANY; 1048 inp->inp_lport = 0; 1049 return (EAGAIN); 1050 } 1051 } 1052 1053 /* Commit the remaining changes. */ 1054 inp->inp_lport = lport; 1055 inp->inp_laddr.s_addr = laddr; 1056 inp->inp_faddr.s_addr = faddr; 1057 inp->inp_fport = fport; 1058 if (rehash) { 1059 in_pcbrehash_mbuf(inp, m); 1060 } else { 1061 in_pcbinshash_mbuf(inp, m); 1062 } 1063 1064 if (anonport) 1065 inp->inp_flags |= INP_ANONPORT; 1066 return (0); 1067 } 1068 1069 int 1070 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 1071 { 1072 1073 return (in_pcbconnect_mbuf(inp, nam, cred, NULL, true)); 1074 } 1075 1076 /* 1077 * Do proper source address selection on an unbound socket in case 1078 * of connect. Take jails into account as well. 1079 */ 1080 int 1081 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 1082 struct ucred *cred) 1083 { 1084 struct ifaddr *ifa; 1085 struct sockaddr *sa; 1086 struct sockaddr_in *sin, dst; 1087 struct nhop_object *nh; 1088 int error; 1089 1090 NET_EPOCH_ASSERT(); 1091 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1092 /* 1093 * Bypass source address selection and use the primary jail IP 1094 * if requested. 1095 */ 1096 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 1097 return (0); 1098 1099 error = 0; 1100 1101 nh = NULL; 1102 bzero(&dst, sizeof(dst)); 1103 sin = &dst; 1104 sin->sin_family = AF_INET; 1105 sin->sin_len = sizeof(struct sockaddr_in); 1106 sin->sin_addr.s_addr = faddr->s_addr; 1107 1108 /* 1109 * If route is known our src addr is taken from the i/f, 1110 * else punt. 1111 * 1112 * Find out route to destination. 1113 */ 1114 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1115 nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr, 1116 0, NHR_NONE, 0); 1117 1118 /* 1119 * If we found a route, use the address corresponding to 1120 * the outgoing interface. 1121 * 1122 * Otherwise assume faddr is reachable on a directly connected 1123 * network and try to find a corresponding interface to take 1124 * the source address from. 1125 */ 1126 if (nh == NULL || nh->nh_ifp == NULL) { 1127 struct in_ifaddr *ia; 1128 struct ifnet *ifp; 1129 1130 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1131 inp->inp_socket->so_fibnum)); 1132 if (ia == NULL) { 1133 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1134 inp->inp_socket->so_fibnum)); 1135 1136 } 1137 if (ia == NULL) { 1138 error = ENETUNREACH; 1139 goto done; 1140 } 1141 1142 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1143 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1144 goto done; 1145 } 1146 1147 ifp = ia->ia_ifp; 1148 ia = NULL; 1149 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1150 1151 sa = ifa->ifa_addr; 1152 if (sa->sa_family != AF_INET) 1153 continue; 1154 sin = (struct sockaddr_in *)sa; 1155 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1156 ia = (struct in_ifaddr *)ifa; 1157 break; 1158 } 1159 } 1160 if (ia != NULL) { 1161 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1162 goto done; 1163 } 1164 1165 /* 3. As a last resort return the 'default' jail address. */ 1166 error = prison_get_ip4(cred, laddr); 1167 goto done; 1168 } 1169 1170 /* 1171 * If the outgoing interface on the route found is not 1172 * a loopback interface, use the address from that interface. 1173 * In case of jails do those three steps: 1174 * 1. check if the interface address belongs to the jail. If so use it. 1175 * 2. check if we have any address on the outgoing interface 1176 * belonging to this jail. If so use it. 1177 * 3. as a last resort return the 'default' jail address. 1178 */ 1179 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) { 1180 struct in_ifaddr *ia; 1181 struct ifnet *ifp; 1182 1183 /* If not jailed, use the default returned. */ 1184 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1185 ia = (struct in_ifaddr *)nh->nh_ifa; 1186 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1187 goto done; 1188 } 1189 1190 /* Jailed. */ 1191 /* 1. Check if the iface address belongs to the jail. */ 1192 sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr; 1193 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1194 ia = (struct in_ifaddr *)nh->nh_ifa; 1195 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1196 goto done; 1197 } 1198 1199 /* 1200 * 2. Check if we have any address on the outgoing interface 1201 * belonging to this jail. 1202 */ 1203 ia = NULL; 1204 ifp = nh->nh_ifp; 1205 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1206 sa = ifa->ifa_addr; 1207 if (sa->sa_family != AF_INET) 1208 continue; 1209 sin = (struct sockaddr_in *)sa; 1210 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1211 ia = (struct in_ifaddr *)ifa; 1212 break; 1213 } 1214 } 1215 if (ia != NULL) { 1216 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1217 goto done; 1218 } 1219 1220 /* 3. As a last resort return the 'default' jail address. */ 1221 error = prison_get_ip4(cred, laddr); 1222 goto done; 1223 } 1224 1225 /* 1226 * The outgoing interface is marked with 'loopback net', so a route 1227 * to ourselves is here. 1228 * Try to find the interface of the destination address and then 1229 * take the address from there. That interface is not necessarily 1230 * a loopback interface. 1231 * In case of jails, check that it is an address of the jail 1232 * and if we cannot find, fall back to the 'default' jail address. 1233 */ 1234 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) { 1235 struct in_ifaddr *ia; 1236 1237 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst), 1238 inp->inp_socket->so_fibnum)); 1239 if (ia == NULL) 1240 ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0, 1241 inp->inp_socket->so_fibnum)); 1242 if (ia == NULL) 1243 ia = ifatoia(ifa_ifwithaddr(sintosa(&dst))); 1244 1245 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1246 if (ia == NULL) { 1247 error = ENETUNREACH; 1248 goto done; 1249 } 1250 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1251 goto done; 1252 } 1253 1254 /* Jailed. */ 1255 if (ia != NULL) { 1256 struct ifnet *ifp; 1257 1258 ifp = ia->ia_ifp; 1259 ia = NULL; 1260 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1261 sa = ifa->ifa_addr; 1262 if (sa->sa_family != AF_INET) 1263 continue; 1264 sin = (struct sockaddr_in *)sa; 1265 if (prison_check_ip4(cred, 1266 &sin->sin_addr) == 0) { 1267 ia = (struct in_ifaddr *)ifa; 1268 break; 1269 } 1270 } 1271 if (ia != NULL) { 1272 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1273 goto done; 1274 } 1275 } 1276 1277 /* 3. As a last resort return the 'default' jail address. */ 1278 error = prison_get_ip4(cred, laddr); 1279 goto done; 1280 } 1281 1282 done: 1283 return (error); 1284 } 1285 1286 /* 1287 * Set up for a connect from a socket to the specified address. 1288 * On entry, *laddrp and *lportp should contain the current local 1289 * address and port for the PCB; these are updated to the values 1290 * that should be placed in inp_laddr and inp_lport to complete 1291 * the connect. 1292 * 1293 * On success, *faddrp and *fportp will be set to the remote address 1294 * and port. These are not updated in the error case. 1295 * 1296 * If the operation fails because the connection already exists, 1297 * *oinpp will be set to the PCB of that connection so that the 1298 * caller can decide to override it. In all other cases, *oinpp 1299 * is set to NULL. 1300 */ 1301 int 1302 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1303 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1304 struct inpcb **oinpp, struct ucred *cred) 1305 { 1306 struct rm_priotracker in_ifa_tracker; 1307 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1308 struct in_ifaddr *ia; 1309 struct inpcb *oinp; 1310 struct in_addr laddr, faddr; 1311 u_short lport, fport; 1312 int error; 1313 1314 /* 1315 * Because a global state change doesn't actually occur here, a read 1316 * lock is sufficient. 1317 */ 1318 NET_EPOCH_ASSERT(); 1319 INP_LOCK_ASSERT(inp); 1320 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1321 1322 if (oinpp != NULL) 1323 *oinpp = NULL; 1324 if (nam->sa_len != sizeof (*sin)) 1325 return (EINVAL); 1326 if (sin->sin_family != AF_INET) 1327 return (EAFNOSUPPORT); 1328 if (sin->sin_port == 0) 1329 return (EADDRNOTAVAIL); 1330 laddr.s_addr = *laddrp; 1331 lport = *lportp; 1332 faddr = sin->sin_addr; 1333 fport = sin->sin_port; 1334 1335 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1336 /* 1337 * If the destination address is INADDR_ANY, 1338 * use the primary local address. 1339 * If the supplied address is INADDR_BROADCAST, 1340 * and the primary interface supports broadcast, 1341 * choose the broadcast address for that interface. 1342 */ 1343 if (faddr.s_addr == INADDR_ANY) { 1344 IN_IFADDR_RLOCK(&in_ifa_tracker); 1345 faddr = 1346 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1347 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1348 if (cred != NULL && 1349 (error = prison_get_ip4(cred, &faddr)) != 0) 1350 return (error); 1351 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1352 IN_IFADDR_RLOCK(&in_ifa_tracker); 1353 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1354 IFF_BROADCAST) 1355 faddr = satosin(&CK_STAILQ_FIRST( 1356 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1357 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1358 } 1359 } 1360 if (laddr.s_addr == INADDR_ANY) { 1361 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1362 /* 1363 * If the destination address is multicast and an outgoing 1364 * interface has been set as a multicast option, prefer the 1365 * address of that interface as our source address. 1366 */ 1367 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1368 inp->inp_moptions != NULL) { 1369 struct ip_moptions *imo; 1370 struct ifnet *ifp; 1371 1372 imo = inp->inp_moptions; 1373 if (imo->imo_multicast_ifp != NULL) { 1374 ifp = imo->imo_multicast_ifp; 1375 IN_IFADDR_RLOCK(&in_ifa_tracker); 1376 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1377 if ((ia->ia_ifp == ifp) && 1378 (cred == NULL || 1379 prison_check_ip4(cred, 1380 &ia->ia_addr.sin_addr) == 0)) 1381 break; 1382 } 1383 if (ia == NULL) 1384 error = EADDRNOTAVAIL; 1385 else { 1386 laddr = ia->ia_addr.sin_addr; 1387 error = 0; 1388 } 1389 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1390 } 1391 } 1392 if (error) 1393 return (error); 1394 } 1395 if (lport != 0) { 1396 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, 1397 fport, laddr, lport, 0, NULL); 1398 if (oinp != NULL) { 1399 if (oinpp != NULL) 1400 *oinpp = oinp; 1401 return (EADDRINUSE); 1402 } 1403 } else { 1404 struct sockaddr_in lsin, fsin; 1405 1406 bzero(&lsin, sizeof(lsin)); 1407 bzero(&fsin, sizeof(fsin)); 1408 lsin.sin_family = AF_INET; 1409 lsin.sin_addr = laddr; 1410 fsin.sin_family = AF_INET; 1411 fsin.sin_addr = faddr; 1412 error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin, 1413 &lport, (struct sockaddr *)& fsin, fport, cred, 1414 INPLOOKUP_WILDCARD); 1415 if (error) 1416 return (error); 1417 } 1418 *laddrp = laddr.s_addr; 1419 *lportp = lport; 1420 *faddrp = faddr.s_addr; 1421 *fportp = fport; 1422 return (0); 1423 } 1424 1425 void 1426 in_pcbdisconnect(struct inpcb *inp) 1427 { 1428 1429 INP_WLOCK_ASSERT(inp); 1430 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1431 1432 inp->inp_faddr.s_addr = INADDR_ANY; 1433 inp->inp_fport = 0; 1434 in_pcbrehash(inp); 1435 } 1436 #endif /* INET */ 1437 1438 /* 1439 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1440 * For most protocols, this will be invoked immediately prior to calling 1441 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1442 * socket, in which case in_pcbfree() is deferred. 1443 */ 1444 void 1445 in_pcbdetach(struct inpcb *inp) 1446 { 1447 1448 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1449 1450 #ifdef RATELIMIT 1451 if (inp->inp_snd_tag != NULL) 1452 in_pcbdetach_txrtlmt(inp); 1453 #endif 1454 inp->inp_socket->so_pcb = NULL; 1455 inp->inp_socket = NULL; 1456 } 1457 1458 /* 1459 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1460 * stability of an inpcb pointer despite the inpcb lock being released. This 1461 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 1462 * but where the inpcb lock may already held, or when acquiring a reference 1463 * via a pcbgroup. 1464 * 1465 * in_pcbref() should be used only to provide brief memory stability, and 1466 * must always be followed by a call to INP_WLOCK() and in_pcbrele() to 1467 * garbage collect the inpcb if it has been in_pcbfree()'d from another 1468 * context. Until in_pcbrele() has returned that the inpcb is still valid, 1469 * lock and rele are the *only* safe operations that may be performed on the 1470 * inpcb. 1471 * 1472 * While the inpcb will not be freed, releasing the inpcb lock means that the 1473 * connection's state may change, so the caller should be careful to 1474 * revalidate any cached state on reacquiring the lock. Drop the reference 1475 * using in_pcbrele(). 1476 */ 1477 void 1478 in_pcbref(struct inpcb *inp) 1479 { 1480 1481 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1482 1483 refcount_acquire(&inp->inp_refcount); 1484 } 1485 1486 /* 1487 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 1488 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 1489 * return a flag indicating whether or not the inpcb remains valid. If it is 1490 * valid, we return with the inpcb lock held. 1491 * 1492 * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a 1493 * reference on an inpcb. Historically more work was done here (actually, in 1494 * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the 1495 * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely 1496 * about memory stability (and continued use of the write lock). 1497 */ 1498 int 1499 in_pcbrele_rlocked(struct inpcb *inp) 1500 { 1501 struct inpcbinfo *pcbinfo; 1502 1503 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1504 1505 INP_RLOCK_ASSERT(inp); 1506 1507 if (refcount_release(&inp->inp_refcount) == 0) { 1508 /* 1509 * If the inpcb has been freed, let the caller know, even if 1510 * this isn't the last reference. 1511 */ 1512 if (inp->inp_flags2 & INP_FREED) { 1513 INP_RUNLOCK(inp); 1514 return (1); 1515 } 1516 return (0); 1517 } 1518 1519 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1520 #ifdef TCPHPTS 1521 if (inp->inp_in_hpts || inp->inp_in_input) { 1522 struct tcp_hpts_entry *hpts; 1523 /* 1524 * We should not be on the hpts at 1525 * this point in any form. we must 1526 * get the lock to be sure. 1527 */ 1528 hpts = tcp_hpts_lock(inp); 1529 if (inp->inp_in_hpts) 1530 panic("Hpts:%p inp:%p at free still on hpts", 1531 hpts, inp); 1532 mtx_unlock(&hpts->p_mtx); 1533 hpts = tcp_input_lock(inp); 1534 if (inp->inp_in_input) 1535 panic("Hpts:%p inp:%p at free still on input hpts", 1536 hpts, inp); 1537 mtx_unlock(&hpts->p_mtx); 1538 } 1539 #endif 1540 INP_RUNLOCK(inp); 1541 pcbinfo = inp->inp_pcbinfo; 1542 uma_zfree(pcbinfo->ipi_zone, inp); 1543 return (1); 1544 } 1545 1546 int 1547 in_pcbrele_wlocked(struct inpcb *inp) 1548 { 1549 struct inpcbinfo *pcbinfo; 1550 1551 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1552 1553 INP_WLOCK_ASSERT(inp); 1554 1555 if (refcount_release(&inp->inp_refcount) == 0) { 1556 /* 1557 * If the inpcb has been freed, let the caller know, even if 1558 * this isn't the last reference. 1559 */ 1560 if (inp->inp_flags2 & INP_FREED) { 1561 INP_WUNLOCK(inp); 1562 return (1); 1563 } 1564 return (0); 1565 } 1566 1567 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1568 #ifdef TCPHPTS 1569 if (inp->inp_in_hpts || inp->inp_in_input) { 1570 struct tcp_hpts_entry *hpts; 1571 /* 1572 * We should not be on the hpts at 1573 * this point in any form. we must 1574 * get the lock to be sure. 1575 */ 1576 hpts = tcp_hpts_lock(inp); 1577 if (inp->inp_in_hpts) 1578 panic("Hpts:%p inp:%p at free still on hpts", 1579 hpts, inp); 1580 mtx_unlock(&hpts->p_mtx); 1581 hpts = tcp_input_lock(inp); 1582 if (inp->inp_in_input) 1583 panic("Hpts:%p inp:%p at free still on input hpts", 1584 hpts, inp); 1585 mtx_unlock(&hpts->p_mtx); 1586 } 1587 #endif 1588 INP_WUNLOCK(inp); 1589 pcbinfo = inp->inp_pcbinfo; 1590 uma_zfree(pcbinfo->ipi_zone, inp); 1591 return (1); 1592 } 1593 1594 /* 1595 * Temporary wrapper. 1596 */ 1597 int 1598 in_pcbrele(struct inpcb *inp) 1599 { 1600 1601 return (in_pcbrele_wlocked(inp)); 1602 } 1603 1604 void 1605 in_pcblist_rele_rlocked(epoch_context_t ctx) 1606 { 1607 struct in_pcblist *il; 1608 struct inpcb *inp; 1609 struct inpcbinfo *pcbinfo; 1610 int i, n; 1611 1612 il = __containerof(ctx, struct in_pcblist, il_epoch_ctx); 1613 pcbinfo = il->il_pcbinfo; 1614 n = il->il_count; 1615 INP_INFO_WLOCK(pcbinfo); 1616 for (i = 0; i < n; i++) { 1617 inp = il->il_inp_list[i]; 1618 INP_RLOCK(inp); 1619 if (!in_pcbrele_rlocked(inp)) 1620 INP_RUNLOCK(inp); 1621 } 1622 INP_INFO_WUNLOCK(pcbinfo); 1623 free(il, M_TEMP); 1624 } 1625 1626 static void 1627 inpcbport_free(epoch_context_t ctx) 1628 { 1629 struct inpcbport *phd; 1630 1631 phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx); 1632 free(phd, M_PCB); 1633 } 1634 1635 static void 1636 in_pcbfree_deferred(epoch_context_t ctx) 1637 { 1638 struct inpcb *inp; 1639 int released __unused; 1640 1641 inp = __containerof(ctx, struct inpcb, inp_epoch_ctx); 1642 1643 INP_WLOCK(inp); 1644 CURVNET_SET(inp->inp_vnet); 1645 #ifdef INET 1646 struct ip_moptions *imo = inp->inp_moptions; 1647 inp->inp_moptions = NULL; 1648 #endif 1649 /* XXXRW: Do as much as possible here. */ 1650 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1651 if (inp->inp_sp != NULL) 1652 ipsec_delete_pcbpolicy(inp); 1653 #endif 1654 #ifdef INET6 1655 struct ip6_moptions *im6o = NULL; 1656 if (inp->inp_vflag & INP_IPV6PROTO) { 1657 ip6_freepcbopts(inp->in6p_outputopts); 1658 im6o = inp->in6p_moptions; 1659 inp->in6p_moptions = NULL; 1660 } 1661 #endif 1662 if (inp->inp_options) 1663 (void)m_free(inp->inp_options); 1664 inp->inp_vflag = 0; 1665 crfree(inp->inp_cred); 1666 #ifdef MAC 1667 mac_inpcb_destroy(inp); 1668 #endif 1669 released = in_pcbrele_wlocked(inp); 1670 MPASS(released); 1671 #ifdef INET6 1672 ip6_freemoptions(im6o); 1673 #endif 1674 #ifdef INET 1675 inp_freemoptions(imo); 1676 #endif 1677 CURVNET_RESTORE(); 1678 } 1679 1680 /* 1681 * Unconditionally schedule an inpcb to be freed by decrementing its 1682 * reference count, which should occur only after the inpcb has been detached 1683 * from its socket. If another thread holds a temporary reference (acquired 1684 * using in_pcbref()) then the free is deferred until that reference is 1685 * released using in_pcbrele(), but the inpcb is still unlocked. Almost all 1686 * work, including removal from global lists, is done in this context, where 1687 * the pcbinfo lock is held. 1688 */ 1689 void 1690 in_pcbfree(struct inpcb *inp) 1691 { 1692 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1693 1694 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1695 KASSERT((inp->inp_flags2 & INP_FREED) == 0, 1696 ("%s: called twice for pcb %p", __func__, inp)); 1697 if (inp->inp_flags2 & INP_FREED) { 1698 INP_WUNLOCK(inp); 1699 return; 1700 } 1701 1702 INP_WLOCK_ASSERT(inp); 1703 INP_LIST_WLOCK(pcbinfo); 1704 in_pcbremlists(inp); 1705 INP_LIST_WUNLOCK(pcbinfo); 1706 RO_INVALIDATE_CACHE(&inp->inp_route); 1707 /* mark as destruction in progress */ 1708 inp->inp_flags2 |= INP_FREED; 1709 INP_WUNLOCK(inp); 1710 NET_EPOCH_CALL(in_pcbfree_deferred, &inp->inp_epoch_ctx); 1711 } 1712 1713 /* 1714 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1715 * port reservation, and preventing it from being returned by inpcb lookups. 1716 * 1717 * It is used by TCP to mark an inpcb as unused and avoid future packet 1718 * delivery or event notification when a socket remains open but TCP has 1719 * closed. This might occur as a result of a shutdown()-initiated TCP close 1720 * or a RST on the wire, and allows the port binding to be reused while still 1721 * maintaining the invariant that so_pcb always points to a valid inpcb until 1722 * in_pcbdetach(). 1723 * 1724 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1725 * in_pcbnotifyall() and in_pcbpurgeif0()? 1726 */ 1727 void 1728 in_pcbdrop(struct inpcb *inp) 1729 { 1730 1731 INP_WLOCK_ASSERT(inp); 1732 #ifdef INVARIANTS 1733 if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) 1734 MPASS(inp->inp_refcount > 1); 1735 #endif 1736 1737 /* 1738 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1739 * the hash lock...? 1740 */ 1741 inp->inp_flags |= INP_DROPPED; 1742 if (inp->inp_flags & INP_INHASHLIST) { 1743 struct inpcbport *phd = inp->inp_phd; 1744 1745 INP_HASH_WLOCK(inp->inp_pcbinfo); 1746 in_pcbremlbgrouphash(inp); 1747 CK_LIST_REMOVE(inp, inp_hash); 1748 CK_LIST_REMOVE(inp, inp_portlist); 1749 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 1750 CK_LIST_REMOVE(phd, phd_hash); 1751 NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx); 1752 } 1753 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1754 inp->inp_flags &= ~INP_INHASHLIST; 1755 #ifdef PCBGROUP 1756 in_pcbgroup_remove(inp); 1757 #endif 1758 } 1759 } 1760 1761 #ifdef INET 1762 /* 1763 * Common routines to return the socket addresses associated with inpcbs. 1764 */ 1765 struct sockaddr * 1766 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1767 { 1768 struct sockaddr_in *sin; 1769 1770 sin = malloc(sizeof *sin, M_SONAME, 1771 M_WAITOK | M_ZERO); 1772 sin->sin_family = AF_INET; 1773 sin->sin_len = sizeof(*sin); 1774 sin->sin_addr = *addr_p; 1775 sin->sin_port = port; 1776 1777 return (struct sockaddr *)sin; 1778 } 1779 1780 int 1781 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1782 { 1783 struct inpcb *inp; 1784 struct in_addr addr; 1785 in_port_t port; 1786 1787 inp = sotoinpcb(so); 1788 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1789 1790 INP_RLOCK(inp); 1791 port = inp->inp_lport; 1792 addr = inp->inp_laddr; 1793 INP_RUNLOCK(inp); 1794 1795 *nam = in_sockaddr(port, &addr); 1796 return 0; 1797 } 1798 1799 int 1800 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1801 { 1802 struct inpcb *inp; 1803 struct in_addr addr; 1804 in_port_t port; 1805 1806 inp = sotoinpcb(so); 1807 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1808 1809 INP_RLOCK(inp); 1810 port = inp->inp_fport; 1811 addr = inp->inp_faddr; 1812 INP_RUNLOCK(inp); 1813 1814 *nam = in_sockaddr(port, &addr); 1815 return 0; 1816 } 1817 1818 void 1819 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1820 struct inpcb *(*notify)(struct inpcb *, int)) 1821 { 1822 struct inpcb *inp, *inp_temp; 1823 1824 INP_INFO_WLOCK(pcbinfo); 1825 CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1826 INP_WLOCK(inp); 1827 #ifdef INET6 1828 if ((inp->inp_vflag & INP_IPV4) == 0) { 1829 INP_WUNLOCK(inp); 1830 continue; 1831 } 1832 #endif 1833 if (inp->inp_faddr.s_addr != faddr.s_addr || 1834 inp->inp_socket == NULL) { 1835 INP_WUNLOCK(inp); 1836 continue; 1837 } 1838 if ((*notify)(inp, errno)) 1839 INP_WUNLOCK(inp); 1840 } 1841 INP_INFO_WUNLOCK(pcbinfo); 1842 } 1843 1844 void 1845 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1846 { 1847 struct inpcb *inp; 1848 struct in_multi *inm; 1849 struct in_mfilter *imf; 1850 struct ip_moptions *imo; 1851 1852 INP_INFO_WLOCK(pcbinfo); 1853 CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1854 INP_WLOCK(inp); 1855 imo = inp->inp_moptions; 1856 if ((inp->inp_vflag & INP_IPV4) && 1857 imo != NULL) { 1858 /* 1859 * Unselect the outgoing interface if it is being 1860 * detached. 1861 */ 1862 if (imo->imo_multicast_ifp == ifp) 1863 imo->imo_multicast_ifp = NULL; 1864 1865 /* 1866 * Drop multicast group membership if we joined 1867 * through the interface being detached. 1868 * 1869 * XXX This can all be deferred to an epoch_call 1870 */ 1871 restart: 1872 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 1873 if ((inm = imf->imf_inm) == NULL) 1874 continue; 1875 if (inm->inm_ifp != ifp) 1876 continue; 1877 ip_mfilter_remove(&imo->imo_head, imf); 1878 IN_MULTI_LOCK_ASSERT(); 1879 in_leavegroup_locked(inm, NULL); 1880 ip_mfilter_free(imf); 1881 goto restart; 1882 } 1883 } 1884 INP_WUNLOCK(inp); 1885 } 1886 INP_INFO_WUNLOCK(pcbinfo); 1887 } 1888 1889 /* 1890 * Lookup a PCB based on the local address and port. Caller must hold the 1891 * hash lock. No inpcb locks or references are acquired. 1892 */ 1893 #define INP_LOOKUP_MAPPED_PCB_COST 3 1894 struct inpcb * 1895 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1896 u_short lport, int lookupflags, struct ucred *cred) 1897 { 1898 struct inpcb *inp; 1899 #ifdef INET6 1900 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1901 #else 1902 int matchwild = 3; 1903 #endif 1904 int wildcard; 1905 1906 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1907 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1908 1909 INP_HASH_LOCK_ASSERT(pcbinfo); 1910 1911 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1912 struct inpcbhead *head; 1913 /* 1914 * Look for an unconnected (wildcard foreign addr) PCB that 1915 * matches the local address and port we're looking for. 1916 */ 1917 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1918 0, pcbinfo->ipi_hashmask)]; 1919 CK_LIST_FOREACH(inp, head, inp_hash) { 1920 #ifdef INET6 1921 /* XXX inp locking */ 1922 if ((inp->inp_vflag & INP_IPV4) == 0) 1923 continue; 1924 #endif 1925 if (inp->inp_faddr.s_addr == INADDR_ANY && 1926 inp->inp_laddr.s_addr == laddr.s_addr && 1927 inp->inp_lport == lport) { 1928 /* 1929 * Found? 1930 */ 1931 if (cred == NULL || 1932 prison_equal_ip4(cred->cr_prison, 1933 inp->inp_cred->cr_prison)) 1934 return (inp); 1935 } 1936 } 1937 /* 1938 * Not found. 1939 */ 1940 return (NULL); 1941 } else { 1942 struct inpcbporthead *porthash; 1943 struct inpcbport *phd; 1944 struct inpcb *match = NULL; 1945 /* 1946 * Best fit PCB lookup. 1947 * 1948 * First see if this local port is in use by looking on the 1949 * port hash list. 1950 */ 1951 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1952 pcbinfo->ipi_porthashmask)]; 1953 CK_LIST_FOREACH(phd, porthash, phd_hash) { 1954 if (phd->phd_port == lport) 1955 break; 1956 } 1957 if (phd != NULL) { 1958 /* 1959 * Port is in use by one or more PCBs. Look for best 1960 * fit. 1961 */ 1962 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1963 wildcard = 0; 1964 if (cred != NULL && 1965 !prison_equal_ip4(inp->inp_cred->cr_prison, 1966 cred->cr_prison)) 1967 continue; 1968 #ifdef INET6 1969 /* XXX inp locking */ 1970 if ((inp->inp_vflag & INP_IPV4) == 0) 1971 continue; 1972 /* 1973 * We never select the PCB that has 1974 * INP_IPV6 flag and is bound to :: if 1975 * we have another PCB which is bound 1976 * to 0.0.0.0. If a PCB has the 1977 * INP_IPV6 flag, then we set its cost 1978 * higher than IPv4 only PCBs. 1979 * 1980 * Note that the case only happens 1981 * when a socket is bound to ::, under 1982 * the condition that the use of the 1983 * mapped address is allowed. 1984 */ 1985 if ((inp->inp_vflag & INP_IPV6) != 0) 1986 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1987 #endif 1988 if (inp->inp_faddr.s_addr != INADDR_ANY) 1989 wildcard++; 1990 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1991 if (laddr.s_addr == INADDR_ANY) 1992 wildcard++; 1993 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1994 continue; 1995 } else { 1996 if (laddr.s_addr != INADDR_ANY) 1997 wildcard++; 1998 } 1999 if (wildcard < matchwild) { 2000 match = inp; 2001 matchwild = wildcard; 2002 if (matchwild == 0) 2003 break; 2004 } 2005 } 2006 } 2007 return (match); 2008 } 2009 } 2010 #undef INP_LOOKUP_MAPPED_PCB_COST 2011 2012 static struct inpcb * 2013 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 2014 const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr, 2015 uint16_t fport, int lookupflags) 2016 { 2017 struct inpcb *local_wild; 2018 const struct inpcblbgrouphead *hdr; 2019 struct inpcblbgroup *grp; 2020 uint32_t idx; 2021 2022 INP_HASH_LOCK_ASSERT(pcbinfo); 2023 2024 hdr = &pcbinfo->ipi_lbgrouphashbase[ 2025 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; 2026 2027 /* 2028 * Order of socket selection: 2029 * 1. non-wild. 2030 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD). 2031 * 2032 * NOTE: 2033 * - Load balanced group does not contain jailed sockets 2034 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets 2035 */ 2036 local_wild = NULL; 2037 CK_LIST_FOREACH(grp, hdr, il_list) { 2038 #ifdef INET6 2039 if (!(grp->il_vflag & INP_IPV4)) 2040 continue; 2041 #endif 2042 if (grp->il_lport != lport) 2043 continue; 2044 2045 idx = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport) % 2046 grp->il_inpcnt; 2047 if (grp->il_laddr.s_addr == laddr->s_addr) 2048 return (grp->il_inp[idx]); 2049 if (grp->il_laddr.s_addr == INADDR_ANY && 2050 (lookupflags & INPLOOKUP_WILDCARD) != 0) 2051 local_wild = grp->il_inp[idx]; 2052 } 2053 return (local_wild); 2054 } 2055 2056 #ifdef PCBGROUP 2057 /* 2058 * Lookup PCB in hash list, using pcbgroup tables. 2059 */ 2060 static struct inpcb * 2061 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, 2062 struct in_addr faddr, u_int fport_arg, struct in_addr laddr, 2063 u_int lport_arg, int lookupflags, struct ifnet *ifp) 2064 { 2065 struct inpcbhead *head; 2066 struct inpcb *inp, *tmpinp; 2067 u_short fport = fport_arg, lport = lport_arg; 2068 bool locked; 2069 2070 /* 2071 * First look for an exact match. 2072 */ 2073 tmpinp = NULL; 2074 INP_GROUP_LOCK(pcbgroup); 2075 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 2076 pcbgroup->ipg_hashmask)]; 2077 CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) { 2078 #ifdef INET6 2079 /* XXX inp locking */ 2080 if ((inp->inp_vflag & INP_IPV4) == 0) 2081 continue; 2082 #endif 2083 if (inp->inp_faddr.s_addr == faddr.s_addr && 2084 inp->inp_laddr.s_addr == laddr.s_addr && 2085 inp->inp_fport == fport && 2086 inp->inp_lport == lport) { 2087 /* 2088 * XXX We should be able to directly return 2089 * the inp here, without any checks. 2090 * Well unless both bound with SO_REUSEPORT? 2091 */ 2092 if (prison_flag(inp->inp_cred, PR_IP4)) 2093 goto found; 2094 if (tmpinp == NULL) 2095 tmpinp = inp; 2096 } 2097 } 2098 if (tmpinp != NULL) { 2099 inp = tmpinp; 2100 goto found; 2101 } 2102 2103 #ifdef RSS 2104 /* 2105 * For incoming connections, we may wish to do a wildcard 2106 * match for an RSS-local socket. 2107 */ 2108 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2109 struct inpcb *local_wild = NULL, *local_exact = NULL; 2110 #ifdef INET6 2111 struct inpcb *local_wild_mapped = NULL; 2112 #endif 2113 struct inpcb *jail_wild = NULL; 2114 struct inpcbhead *head; 2115 int injail; 2116 2117 /* 2118 * Order of socket selection - we always prefer jails. 2119 * 1. jailed, non-wild. 2120 * 2. jailed, wild. 2121 * 3. non-jailed, non-wild. 2122 * 4. non-jailed, wild. 2123 */ 2124 2125 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, 2126 lport, 0, pcbgroup->ipg_hashmask)]; 2127 CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) { 2128 #ifdef INET6 2129 /* XXX inp locking */ 2130 if ((inp->inp_vflag & INP_IPV4) == 0) 2131 continue; 2132 #endif 2133 if (inp->inp_faddr.s_addr != INADDR_ANY || 2134 inp->inp_lport != lport) 2135 continue; 2136 2137 injail = prison_flag(inp->inp_cred, PR_IP4); 2138 if (injail) { 2139 if (prison_check_ip4(inp->inp_cred, 2140 &laddr) != 0) 2141 continue; 2142 } else { 2143 if (local_exact != NULL) 2144 continue; 2145 } 2146 2147 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2148 if (injail) 2149 goto found; 2150 else 2151 local_exact = inp; 2152 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2153 #ifdef INET6 2154 /* XXX inp locking, NULL check */ 2155 if (inp->inp_vflag & INP_IPV6PROTO) 2156 local_wild_mapped = inp; 2157 else 2158 #endif 2159 if (injail) 2160 jail_wild = inp; 2161 else 2162 local_wild = inp; 2163 } 2164 } /* LIST_FOREACH */ 2165 2166 inp = jail_wild; 2167 if (inp == NULL) 2168 inp = local_exact; 2169 if (inp == NULL) 2170 inp = local_wild; 2171 #ifdef INET6 2172 if (inp == NULL) 2173 inp = local_wild_mapped; 2174 #endif 2175 if (inp != NULL) 2176 goto found; 2177 } 2178 #endif 2179 2180 /* 2181 * Then look for a wildcard match, if requested. 2182 */ 2183 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2184 struct inpcb *local_wild = NULL, *local_exact = NULL; 2185 #ifdef INET6 2186 struct inpcb *local_wild_mapped = NULL; 2187 #endif 2188 struct inpcb *jail_wild = NULL; 2189 struct inpcbhead *head; 2190 int injail; 2191 2192 /* 2193 * Order of socket selection - we always prefer jails. 2194 * 1. jailed, non-wild. 2195 * 2. jailed, wild. 2196 * 3. non-jailed, non-wild. 2197 * 4. non-jailed, wild. 2198 */ 2199 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 2200 0, pcbinfo->ipi_wildmask)]; 2201 CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) { 2202 #ifdef INET6 2203 /* XXX inp locking */ 2204 if ((inp->inp_vflag & INP_IPV4) == 0) 2205 continue; 2206 #endif 2207 if (inp->inp_faddr.s_addr != INADDR_ANY || 2208 inp->inp_lport != lport) 2209 continue; 2210 2211 injail = prison_flag(inp->inp_cred, PR_IP4); 2212 if (injail) { 2213 if (prison_check_ip4(inp->inp_cred, 2214 &laddr) != 0) 2215 continue; 2216 } else { 2217 if (local_exact != NULL) 2218 continue; 2219 } 2220 2221 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2222 if (injail) 2223 goto found; 2224 else 2225 local_exact = inp; 2226 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2227 #ifdef INET6 2228 /* XXX inp locking, NULL check */ 2229 if (inp->inp_vflag & INP_IPV6PROTO) 2230 local_wild_mapped = inp; 2231 else 2232 #endif 2233 if (injail) 2234 jail_wild = inp; 2235 else 2236 local_wild = inp; 2237 } 2238 } /* LIST_FOREACH */ 2239 inp = jail_wild; 2240 if (inp == NULL) 2241 inp = local_exact; 2242 if (inp == NULL) 2243 inp = local_wild; 2244 #ifdef INET6 2245 if (inp == NULL) 2246 inp = local_wild_mapped; 2247 #endif 2248 if (inp != NULL) 2249 goto found; 2250 } /* if (lookupflags & INPLOOKUP_WILDCARD) */ 2251 INP_GROUP_UNLOCK(pcbgroup); 2252 return (NULL); 2253 2254 found: 2255 if (lookupflags & INPLOOKUP_WLOCKPCB) 2256 locked = INP_TRY_WLOCK(inp); 2257 else if (lookupflags & INPLOOKUP_RLOCKPCB) 2258 locked = INP_TRY_RLOCK(inp); 2259 else 2260 panic("%s: locking bug", __func__); 2261 if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) { 2262 if (lookupflags & INPLOOKUP_WLOCKPCB) 2263 INP_WUNLOCK(inp); 2264 else 2265 INP_RUNLOCK(inp); 2266 return (NULL); 2267 } else if (!locked) 2268 in_pcbref(inp); 2269 INP_GROUP_UNLOCK(pcbgroup); 2270 if (!locked) { 2271 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2272 INP_WLOCK(inp); 2273 if (in_pcbrele_wlocked(inp)) 2274 return (NULL); 2275 } else { 2276 INP_RLOCK(inp); 2277 if (in_pcbrele_rlocked(inp)) 2278 return (NULL); 2279 } 2280 } 2281 #ifdef INVARIANTS 2282 if (lookupflags & INPLOOKUP_WLOCKPCB) 2283 INP_WLOCK_ASSERT(inp); 2284 else 2285 INP_RLOCK_ASSERT(inp); 2286 #endif 2287 return (inp); 2288 } 2289 #endif /* PCBGROUP */ 2290 2291 /* 2292 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2293 * that the caller has locked the hash list, and will not perform any further 2294 * locking or reference operations on either the hash list or the connection. 2295 */ 2296 static struct inpcb * 2297 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2298 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2299 struct ifnet *ifp) 2300 { 2301 struct inpcbhead *head; 2302 struct inpcb *inp, *tmpinp; 2303 u_short fport = fport_arg, lport = lport_arg; 2304 2305 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2306 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2307 INP_HASH_LOCK_ASSERT(pcbinfo); 2308 2309 /* 2310 * First look for an exact match. 2311 */ 2312 tmpinp = NULL; 2313 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 2314 pcbinfo->ipi_hashmask)]; 2315 CK_LIST_FOREACH(inp, head, inp_hash) { 2316 #ifdef INET6 2317 /* XXX inp locking */ 2318 if ((inp->inp_vflag & INP_IPV4) == 0) 2319 continue; 2320 #endif 2321 if (inp->inp_faddr.s_addr == faddr.s_addr && 2322 inp->inp_laddr.s_addr == laddr.s_addr && 2323 inp->inp_fport == fport && 2324 inp->inp_lport == lport) { 2325 /* 2326 * XXX We should be able to directly return 2327 * the inp here, without any checks. 2328 * Well unless both bound with SO_REUSEPORT? 2329 */ 2330 if (prison_flag(inp->inp_cred, PR_IP4)) 2331 return (inp); 2332 if (tmpinp == NULL) 2333 tmpinp = inp; 2334 } 2335 } 2336 if (tmpinp != NULL) 2337 return (tmpinp); 2338 2339 /* 2340 * Then look in lb group (for wildcard match). 2341 */ 2342 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2343 inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr, 2344 fport, lookupflags); 2345 if (inp != NULL) 2346 return (inp); 2347 } 2348 2349 /* 2350 * Then look for a wildcard match, if requested. 2351 */ 2352 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2353 struct inpcb *local_wild = NULL, *local_exact = NULL; 2354 #ifdef INET6 2355 struct inpcb *local_wild_mapped = NULL; 2356 #endif 2357 struct inpcb *jail_wild = NULL; 2358 int injail; 2359 2360 /* 2361 * Order of socket selection - we always prefer jails. 2362 * 1. jailed, non-wild. 2363 * 2. jailed, wild. 2364 * 3. non-jailed, non-wild. 2365 * 4. non-jailed, wild. 2366 */ 2367 2368 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 2369 0, pcbinfo->ipi_hashmask)]; 2370 CK_LIST_FOREACH(inp, head, inp_hash) { 2371 #ifdef INET6 2372 /* XXX inp locking */ 2373 if ((inp->inp_vflag & INP_IPV4) == 0) 2374 continue; 2375 #endif 2376 if (inp->inp_faddr.s_addr != INADDR_ANY || 2377 inp->inp_lport != lport) 2378 continue; 2379 2380 injail = prison_flag(inp->inp_cred, PR_IP4); 2381 if (injail) { 2382 if (prison_check_ip4(inp->inp_cred, 2383 &laddr) != 0) 2384 continue; 2385 } else { 2386 if (local_exact != NULL) 2387 continue; 2388 } 2389 2390 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2391 if (injail) 2392 return (inp); 2393 else 2394 local_exact = inp; 2395 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2396 #ifdef INET6 2397 /* XXX inp locking, NULL check */ 2398 if (inp->inp_vflag & INP_IPV6PROTO) 2399 local_wild_mapped = inp; 2400 else 2401 #endif 2402 if (injail) 2403 jail_wild = inp; 2404 else 2405 local_wild = inp; 2406 } 2407 } /* LIST_FOREACH */ 2408 if (jail_wild != NULL) 2409 return (jail_wild); 2410 if (local_exact != NULL) 2411 return (local_exact); 2412 if (local_wild != NULL) 2413 return (local_wild); 2414 #ifdef INET6 2415 if (local_wild_mapped != NULL) 2416 return (local_wild_mapped); 2417 #endif 2418 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 2419 2420 return (NULL); 2421 } 2422 2423 /* 2424 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 2425 * hash list lock, and will return the inpcb locked (i.e., requires 2426 * INPLOOKUP_LOCKPCB). 2427 */ 2428 static struct inpcb * 2429 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2430 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2431 struct ifnet *ifp) 2432 { 2433 struct inpcb *inp; 2434 2435 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2436 (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp); 2437 if (inp != NULL) { 2438 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2439 INP_WLOCK(inp); 2440 if (__predict_false(inp->inp_flags2 & INP_FREED)) { 2441 INP_WUNLOCK(inp); 2442 inp = NULL; 2443 } 2444 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 2445 INP_RLOCK(inp); 2446 if (__predict_false(inp->inp_flags2 & INP_FREED)) { 2447 INP_RUNLOCK(inp); 2448 inp = NULL; 2449 } 2450 } else 2451 panic("%s: locking bug", __func__); 2452 #ifdef INVARIANTS 2453 if (inp != NULL) { 2454 if (lookupflags & INPLOOKUP_WLOCKPCB) 2455 INP_WLOCK_ASSERT(inp); 2456 else 2457 INP_RLOCK_ASSERT(inp); 2458 } 2459 #endif 2460 } 2461 2462 return (inp); 2463 } 2464 2465 /* 2466 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2467 * from which a pre-calculated hash value may be extracted. 2468 * 2469 * Possibly more of this logic should be in in_pcbgroup.c. 2470 */ 2471 struct inpcb * 2472 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2473 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 2474 { 2475 #if defined(PCBGROUP) && !defined(RSS) 2476 struct inpcbgroup *pcbgroup; 2477 #endif 2478 2479 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2480 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2481 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2482 ("%s: LOCKPCB not set", __func__)); 2483 2484 /* 2485 * When not using RSS, use connection groups in preference to the 2486 * reservation table when looking up 4-tuples. When using RSS, just 2487 * use the reservation table, due to the cost of the Toeplitz hash 2488 * in software. 2489 * 2490 * XXXRW: This policy belongs in the pcbgroup code, as in principle 2491 * we could be doing RSS with a non-Toeplitz hash that is affordable 2492 * in software. 2493 */ 2494 #if defined(PCBGROUP) && !defined(RSS) 2495 if (in_pcbgroup_enabled(pcbinfo)) { 2496 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2497 fport); 2498 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2499 laddr, lport, lookupflags, ifp)); 2500 } 2501 #endif 2502 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2503 lookupflags, ifp)); 2504 } 2505 2506 struct inpcb * 2507 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2508 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2509 struct ifnet *ifp, struct mbuf *m) 2510 { 2511 #ifdef PCBGROUP 2512 struct inpcbgroup *pcbgroup; 2513 #endif 2514 2515 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2516 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2517 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2518 ("%s: LOCKPCB not set", __func__)); 2519 2520 #ifdef PCBGROUP 2521 /* 2522 * If we can use a hardware-generated hash to look up the connection 2523 * group, use that connection group to find the inpcb. Otherwise 2524 * fall back on a software hash -- or the reservation table if we're 2525 * using RSS. 2526 * 2527 * XXXRW: As above, that policy belongs in the pcbgroup code. 2528 */ 2529 if (in_pcbgroup_enabled(pcbinfo) && 2530 !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { 2531 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), 2532 m->m_pkthdr.flowid); 2533 if (pcbgroup != NULL) 2534 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, 2535 fport, laddr, lport, lookupflags, ifp)); 2536 #ifndef RSS 2537 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2538 fport); 2539 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2540 laddr, lport, lookupflags, ifp)); 2541 #endif 2542 } 2543 #endif 2544 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2545 lookupflags, ifp)); 2546 } 2547 #endif /* INET */ 2548 2549 /* 2550 * Insert PCB onto various hash lists. 2551 */ 2552 static int 2553 in_pcbinshash_internal(struct inpcb *inp, struct mbuf *m) 2554 { 2555 struct inpcbhead *pcbhash; 2556 struct inpcbporthead *pcbporthash; 2557 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2558 struct inpcbport *phd; 2559 u_int32_t hashkey_faddr; 2560 int so_options; 2561 2562 INP_WLOCK_ASSERT(inp); 2563 INP_HASH_WLOCK_ASSERT(pcbinfo); 2564 2565 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2566 ("in_pcbinshash: INP_INHASHLIST")); 2567 2568 #ifdef INET6 2569 if (inp->inp_vflag & INP_IPV6) 2570 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2571 else 2572 #endif 2573 hashkey_faddr = inp->inp_faddr.s_addr; 2574 2575 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2576 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2577 2578 pcbporthash = &pcbinfo->ipi_porthashbase[ 2579 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2580 2581 /* 2582 * Add entry to load balance group. 2583 * Only do this if SO_REUSEPORT_LB is set. 2584 */ 2585 so_options = inp_so_options(inp); 2586 if (so_options & SO_REUSEPORT_LB) { 2587 int ret = in_pcbinslbgrouphash(inp); 2588 if (ret) { 2589 /* pcb lb group malloc fail (ret=ENOBUFS). */ 2590 return (ret); 2591 } 2592 } 2593 2594 /* 2595 * Go through port list and look for a head for this lport. 2596 */ 2597 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2598 if (phd->phd_port == inp->inp_lport) 2599 break; 2600 } 2601 /* 2602 * If none exists, malloc one and tack it on. 2603 */ 2604 if (phd == NULL) { 2605 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 2606 if (phd == NULL) { 2607 return (ENOBUFS); /* XXX */ 2608 } 2609 bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context)); 2610 phd->phd_port = inp->inp_lport; 2611 CK_LIST_INIT(&phd->phd_pcblist); 2612 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2613 } 2614 inp->inp_phd = phd; 2615 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2616 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2617 inp->inp_flags |= INP_INHASHLIST; 2618 #ifdef PCBGROUP 2619 if (m != NULL) { 2620 in_pcbgroup_update_mbuf(inp, m); 2621 } else { 2622 in_pcbgroup_update(inp); 2623 } 2624 #endif 2625 return (0); 2626 } 2627 2628 int 2629 in_pcbinshash(struct inpcb *inp) 2630 { 2631 2632 return (in_pcbinshash_internal(inp, NULL)); 2633 } 2634 2635 int 2636 in_pcbinshash_mbuf(struct inpcb *inp, struct mbuf *m) 2637 { 2638 2639 return (in_pcbinshash_internal(inp, m)); 2640 } 2641 2642 /* 2643 * Move PCB to the proper hash bucket when { faddr, fport } have been 2644 * changed. NOTE: This does not handle the case of the lport changing (the 2645 * hashed port list would have to be updated as well), so the lport must 2646 * not change after in_pcbinshash() has been called. 2647 */ 2648 void 2649 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) 2650 { 2651 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2652 struct inpcbhead *head; 2653 u_int32_t hashkey_faddr; 2654 2655 INP_WLOCK_ASSERT(inp); 2656 INP_HASH_WLOCK_ASSERT(pcbinfo); 2657 2658 KASSERT(inp->inp_flags & INP_INHASHLIST, 2659 ("in_pcbrehash: !INP_INHASHLIST")); 2660 2661 #ifdef INET6 2662 if (inp->inp_vflag & INP_IPV6) 2663 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2664 else 2665 #endif 2666 hashkey_faddr = inp->inp_faddr.s_addr; 2667 2668 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2669 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2670 2671 CK_LIST_REMOVE(inp, inp_hash); 2672 CK_LIST_INSERT_HEAD(head, inp, inp_hash); 2673 2674 #ifdef PCBGROUP 2675 if (m != NULL) 2676 in_pcbgroup_update_mbuf(inp, m); 2677 else 2678 in_pcbgroup_update(inp); 2679 #endif 2680 } 2681 2682 void 2683 in_pcbrehash(struct inpcb *inp) 2684 { 2685 2686 in_pcbrehash_mbuf(inp, NULL); 2687 } 2688 2689 /* 2690 * Remove PCB from various lists. 2691 */ 2692 static void 2693 in_pcbremlists(struct inpcb *inp) 2694 { 2695 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2696 2697 INP_WLOCK_ASSERT(inp); 2698 INP_LIST_WLOCK_ASSERT(pcbinfo); 2699 2700 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 2701 if (inp->inp_flags & INP_INHASHLIST) { 2702 struct inpcbport *phd = inp->inp_phd; 2703 2704 INP_HASH_WLOCK(pcbinfo); 2705 2706 /* XXX: Only do if SO_REUSEPORT_LB set? */ 2707 in_pcbremlbgrouphash(inp); 2708 2709 CK_LIST_REMOVE(inp, inp_hash); 2710 CK_LIST_REMOVE(inp, inp_portlist); 2711 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 2712 CK_LIST_REMOVE(phd, phd_hash); 2713 NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx); 2714 } 2715 INP_HASH_WUNLOCK(pcbinfo); 2716 inp->inp_flags &= ~INP_INHASHLIST; 2717 } 2718 CK_LIST_REMOVE(inp, inp_list); 2719 pcbinfo->ipi_count--; 2720 #ifdef PCBGROUP 2721 in_pcbgroup_remove(inp); 2722 #endif 2723 } 2724 2725 /* 2726 * Check for alternatives when higher level complains 2727 * about service problems. For now, invalidate cached 2728 * routing information. If the route was created dynamically 2729 * (by a redirect), time to try a default gateway again. 2730 */ 2731 void 2732 in_losing(struct inpcb *inp) 2733 { 2734 2735 RO_INVALIDATE_CACHE(&inp->inp_route); 2736 return; 2737 } 2738 2739 /* 2740 * A set label operation has occurred at the socket layer, propagate the 2741 * label change into the in_pcb for the socket. 2742 */ 2743 void 2744 in_pcbsosetlabel(struct socket *so) 2745 { 2746 #ifdef MAC 2747 struct inpcb *inp; 2748 2749 inp = sotoinpcb(so); 2750 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2751 2752 INP_WLOCK(inp); 2753 SOCK_LOCK(so); 2754 mac_inpcb_sosetlabel(so, inp); 2755 SOCK_UNLOCK(so); 2756 INP_WUNLOCK(inp); 2757 #endif 2758 } 2759 2760 /* 2761 * ipport_tick runs once per second, determining if random port allocation 2762 * should be continued. If more than ipport_randomcps ports have been 2763 * allocated in the last second, then we return to sequential port 2764 * allocation. We return to random allocation only once we drop below 2765 * ipport_randomcps for at least ipport_randomtime seconds. 2766 */ 2767 static void 2768 ipport_tick(void *xtp) 2769 { 2770 VNET_ITERATOR_DECL(vnet_iter); 2771 2772 VNET_LIST_RLOCK_NOSLEEP(); 2773 VNET_FOREACH(vnet_iter) { 2774 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2775 if (V_ipport_tcpallocs <= 2776 V_ipport_tcplastcount + V_ipport_randomcps) { 2777 if (V_ipport_stoprandom > 0) 2778 V_ipport_stoprandom--; 2779 } else 2780 V_ipport_stoprandom = V_ipport_randomtime; 2781 V_ipport_tcplastcount = V_ipport_tcpallocs; 2782 CURVNET_RESTORE(); 2783 } 2784 VNET_LIST_RUNLOCK_NOSLEEP(); 2785 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2786 } 2787 2788 static void 2789 ip_fini(void *xtp) 2790 { 2791 2792 callout_stop(&ipport_tick_callout); 2793 } 2794 2795 /* 2796 * The ipport_callout should start running at about the time we attach the 2797 * inet or inet6 domains. 2798 */ 2799 static void 2800 ipport_tick_init(const void *unused __unused) 2801 { 2802 2803 /* Start ipport_tick. */ 2804 callout_init(&ipport_tick_callout, 1); 2805 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2806 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2807 SHUTDOWN_PRI_DEFAULT); 2808 } 2809 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2810 ipport_tick_init, NULL); 2811 2812 void 2813 inp_wlock(struct inpcb *inp) 2814 { 2815 2816 INP_WLOCK(inp); 2817 } 2818 2819 void 2820 inp_wunlock(struct inpcb *inp) 2821 { 2822 2823 INP_WUNLOCK(inp); 2824 } 2825 2826 void 2827 inp_rlock(struct inpcb *inp) 2828 { 2829 2830 INP_RLOCK(inp); 2831 } 2832 2833 void 2834 inp_runlock(struct inpcb *inp) 2835 { 2836 2837 INP_RUNLOCK(inp); 2838 } 2839 2840 #ifdef INVARIANT_SUPPORT 2841 void 2842 inp_lock_assert(struct inpcb *inp) 2843 { 2844 2845 INP_WLOCK_ASSERT(inp); 2846 } 2847 2848 void 2849 inp_unlock_assert(struct inpcb *inp) 2850 { 2851 2852 INP_UNLOCK_ASSERT(inp); 2853 } 2854 #endif 2855 2856 void 2857 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2858 { 2859 struct inpcb *inp; 2860 2861 INP_INFO_WLOCK(&V_tcbinfo); 2862 CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 2863 INP_WLOCK(inp); 2864 func(inp, arg); 2865 INP_WUNLOCK(inp); 2866 } 2867 INP_INFO_WUNLOCK(&V_tcbinfo); 2868 } 2869 2870 struct socket * 2871 inp_inpcbtosocket(struct inpcb *inp) 2872 { 2873 2874 INP_WLOCK_ASSERT(inp); 2875 return (inp->inp_socket); 2876 } 2877 2878 struct tcpcb * 2879 inp_inpcbtotcpcb(struct inpcb *inp) 2880 { 2881 2882 INP_WLOCK_ASSERT(inp); 2883 return ((struct tcpcb *)inp->inp_ppcb); 2884 } 2885 2886 int 2887 inp_ip_tos_get(const struct inpcb *inp) 2888 { 2889 2890 return (inp->inp_ip_tos); 2891 } 2892 2893 void 2894 inp_ip_tos_set(struct inpcb *inp, int val) 2895 { 2896 2897 inp->inp_ip_tos = val; 2898 } 2899 2900 void 2901 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2902 uint32_t *faddr, uint16_t *fp) 2903 { 2904 2905 INP_LOCK_ASSERT(inp); 2906 *laddr = inp->inp_laddr.s_addr; 2907 *faddr = inp->inp_faddr.s_addr; 2908 *lp = inp->inp_lport; 2909 *fp = inp->inp_fport; 2910 } 2911 2912 struct inpcb * 2913 so_sotoinpcb(struct socket *so) 2914 { 2915 2916 return (sotoinpcb(so)); 2917 } 2918 2919 struct tcpcb * 2920 so_sototcpcb(struct socket *so) 2921 { 2922 2923 return (sototcpcb(so)); 2924 } 2925 2926 /* 2927 * Create an external-format (``xinpcb'') structure using the information in 2928 * the kernel-format in_pcb structure pointed to by inp. This is done to 2929 * reduce the spew of irrelevant information over this interface, to isolate 2930 * user code from changes in the kernel structure, and potentially to provide 2931 * information-hiding if we decide that some of this information should be 2932 * hidden from users. 2933 */ 2934 void 2935 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2936 { 2937 2938 bzero(xi, sizeof(*xi)); 2939 xi->xi_len = sizeof(struct xinpcb); 2940 if (inp->inp_socket) 2941 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2942 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2943 xi->inp_gencnt = inp->inp_gencnt; 2944 xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; 2945 xi->inp_flow = inp->inp_flow; 2946 xi->inp_flowid = inp->inp_flowid; 2947 xi->inp_flowtype = inp->inp_flowtype; 2948 xi->inp_flags = inp->inp_flags; 2949 xi->inp_flags2 = inp->inp_flags2; 2950 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2951 xi->in6p_cksum = inp->in6p_cksum; 2952 xi->in6p_hops = inp->in6p_hops; 2953 xi->inp_ip_tos = inp->inp_ip_tos; 2954 xi->inp_vflag = inp->inp_vflag; 2955 xi->inp_ip_ttl = inp->inp_ip_ttl; 2956 xi->inp_ip_p = inp->inp_ip_p; 2957 xi->inp_ip_minttl = inp->inp_ip_minttl; 2958 } 2959 2960 #ifdef DDB 2961 static void 2962 db_print_indent(int indent) 2963 { 2964 int i; 2965 2966 for (i = 0; i < indent; i++) 2967 db_printf(" "); 2968 } 2969 2970 static void 2971 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2972 { 2973 char faddr_str[48], laddr_str[48]; 2974 2975 db_print_indent(indent); 2976 db_printf("%s at %p\n", name, inc); 2977 2978 indent += 2; 2979 2980 #ifdef INET6 2981 if (inc->inc_flags & INC_ISIPV6) { 2982 /* IPv6. */ 2983 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2984 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2985 } else 2986 #endif 2987 { 2988 /* IPv4. */ 2989 inet_ntoa_r(inc->inc_laddr, laddr_str); 2990 inet_ntoa_r(inc->inc_faddr, faddr_str); 2991 } 2992 db_print_indent(indent); 2993 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2994 ntohs(inc->inc_lport)); 2995 db_print_indent(indent); 2996 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2997 ntohs(inc->inc_fport)); 2998 } 2999 3000 static void 3001 db_print_inpflags(int inp_flags) 3002 { 3003 int comma; 3004 3005 comma = 0; 3006 if (inp_flags & INP_RECVOPTS) { 3007 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 3008 comma = 1; 3009 } 3010 if (inp_flags & INP_RECVRETOPTS) { 3011 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 3012 comma = 1; 3013 } 3014 if (inp_flags & INP_RECVDSTADDR) { 3015 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 3016 comma = 1; 3017 } 3018 if (inp_flags & INP_ORIGDSTADDR) { 3019 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 3020 comma = 1; 3021 } 3022 if (inp_flags & INP_HDRINCL) { 3023 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 3024 comma = 1; 3025 } 3026 if (inp_flags & INP_HIGHPORT) { 3027 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 3028 comma = 1; 3029 } 3030 if (inp_flags & INP_LOWPORT) { 3031 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 3032 comma = 1; 3033 } 3034 if (inp_flags & INP_ANONPORT) { 3035 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 3036 comma = 1; 3037 } 3038 if (inp_flags & INP_RECVIF) { 3039 db_printf("%sINP_RECVIF", comma ? ", " : ""); 3040 comma = 1; 3041 } 3042 if (inp_flags & INP_MTUDISC) { 3043 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 3044 comma = 1; 3045 } 3046 if (inp_flags & INP_RECVTTL) { 3047 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 3048 comma = 1; 3049 } 3050 if (inp_flags & INP_DONTFRAG) { 3051 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 3052 comma = 1; 3053 } 3054 if (inp_flags & INP_RECVTOS) { 3055 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 3056 comma = 1; 3057 } 3058 if (inp_flags & IN6P_IPV6_V6ONLY) { 3059 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 3060 comma = 1; 3061 } 3062 if (inp_flags & IN6P_PKTINFO) { 3063 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 3064 comma = 1; 3065 } 3066 if (inp_flags & IN6P_HOPLIMIT) { 3067 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 3068 comma = 1; 3069 } 3070 if (inp_flags & IN6P_HOPOPTS) { 3071 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 3072 comma = 1; 3073 } 3074 if (inp_flags & IN6P_DSTOPTS) { 3075 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 3076 comma = 1; 3077 } 3078 if (inp_flags & IN6P_RTHDR) { 3079 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 3080 comma = 1; 3081 } 3082 if (inp_flags & IN6P_RTHDRDSTOPTS) { 3083 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 3084 comma = 1; 3085 } 3086 if (inp_flags & IN6P_TCLASS) { 3087 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 3088 comma = 1; 3089 } 3090 if (inp_flags & IN6P_AUTOFLOWLABEL) { 3091 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 3092 comma = 1; 3093 } 3094 if (inp_flags & INP_TIMEWAIT) { 3095 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 3096 comma = 1; 3097 } 3098 if (inp_flags & INP_ONESBCAST) { 3099 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 3100 comma = 1; 3101 } 3102 if (inp_flags & INP_DROPPED) { 3103 db_printf("%sINP_DROPPED", comma ? ", " : ""); 3104 comma = 1; 3105 } 3106 if (inp_flags & INP_SOCKREF) { 3107 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 3108 comma = 1; 3109 } 3110 if (inp_flags & IN6P_RFC2292) { 3111 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 3112 comma = 1; 3113 } 3114 if (inp_flags & IN6P_MTU) { 3115 db_printf("IN6P_MTU%s", comma ? ", " : ""); 3116 comma = 1; 3117 } 3118 } 3119 3120 static void 3121 db_print_inpvflag(u_char inp_vflag) 3122 { 3123 int comma; 3124 3125 comma = 0; 3126 if (inp_vflag & INP_IPV4) { 3127 db_printf("%sINP_IPV4", comma ? ", " : ""); 3128 comma = 1; 3129 } 3130 if (inp_vflag & INP_IPV6) { 3131 db_printf("%sINP_IPV6", comma ? ", " : ""); 3132 comma = 1; 3133 } 3134 if (inp_vflag & INP_IPV6PROTO) { 3135 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 3136 comma = 1; 3137 } 3138 } 3139 3140 static void 3141 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 3142 { 3143 3144 db_print_indent(indent); 3145 db_printf("%s at %p\n", name, inp); 3146 3147 indent += 2; 3148 3149 db_print_indent(indent); 3150 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 3151 3152 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 3153 3154 db_print_indent(indent); 3155 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 3156 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 3157 3158 db_print_indent(indent); 3159 db_printf("inp_label: %p inp_flags: 0x%x (", 3160 inp->inp_label, inp->inp_flags); 3161 db_print_inpflags(inp->inp_flags); 3162 db_printf(")\n"); 3163 3164 db_print_indent(indent); 3165 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 3166 inp->inp_vflag); 3167 db_print_inpvflag(inp->inp_vflag); 3168 db_printf(")\n"); 3169 3170 db_print_indent(indent); 3171 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 3172 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 3173 3174 db_print_indent(indent); 3175 #ifdef INET6 3176 if (inp->inp_vflag & INP_IPV6) { 3177 db_printf("in6p_options: %p in6p_outputopts: %p " 3178 "in6p_moptions: %p\n", inp->in6p_options, 3179 inp->in6p_outputopts, inp->in6p_moptions); 3180 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 3181 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 3182 inp->in6p_hops); 3183 } else 3184 #endif 3185 { 3186 db_printf("inp_ip_tos: %d inp_ip_options: %p " 3187 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 3188 inp->inp_options, inp->inp_moptions); 3189 } 3190 3191 db_print_indent(indent); 3192 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 3193 (uintmax_t)inp->inp_gencnt); 3194 } 3195 3196 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 3197 { 3198 struct inpcb *inp; 3199 3200 if (!have_addr) { 3201 db_printf("usage: show inpcb <addr>\n"); 3202 return; 3203 } 3204 inp = (struct inpcb *)addr; 3205 3206 db_print_inpcb(inp, "inpcb", 0); 3207 } 3208 #endif /* DDB */ 3209 3210 #ifdef RATELIMIT 3211 /* 3212 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 3213 * if any. 3214 */ 3215 int 3216 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 3217 { 3218 union if_snd_tag_modify_params params = { 3219 .rate_limit.max_rate = max_pacing_rate, 3220 .rate_limit.flags = M_NOWAIT, 3221 }; 3222 struct m_snd_tag *mst; 3223 struct ifnet *ifp; 3224 int error; 3225 3226 mst = inp->inp_snd_tag; 3227 if (mst == NULL) 3228 return (EINVAL); 3229 3230 ifp = mst->ifp; 3231 if (ifp == NULL) 3232 return (EINVAL); 3233 3234 if (ifp->if_snd_tag_modify == NULL) { 3235 error = EOPNOTSUPP; 3236 } else { 3237 error = ifp->if_snd_tag_modify(mst, ¶ms); 3238 } 3239 return (error); 3240 } 3241 3242 /* 3243 * Query existing TX rate limit based on the existing 3244 * "inp->inp_snd_tag", if any. 3245 */ 3246 int 3247 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3248 { 3249 union if_snd_tag_query_params params = { }; 3250 struct m_snd_tag *mst; 3251 struct ifnet *ifp; 3252 int error; 3253 3254 mst = inp->inp_snd_tag; 3255 if (mst == NULL) 3256 return (EINVAL); 3257 3258 ifp = mst->ifp; 3259 if (ifp == NULL) 3260 return (EINVAL); 3261 3262 if (ifp->if_snd_tag_query == NULL) { 3263 error = EOPNOTSUPP; 3264 } else { 3265 error = ifp->if_snd_tag_query(mst, ¶ms); 3266 if (error == 0 && p_max_pacing_rate != NULL) 3267 *p_max_pacing_rate = params.rate_limit.max_rate; 3268 } 3269 return (error); 3270 } 3271 3272 /* 3273 * Query existing TX queue level based on the existing 3274 * "inp->inp_snd_tag", if any. 3275 */ 3276 int 3277 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3278 { 3279 union if_snd_tag_query_params params = { }; 3280 struct m_snd_tag *mst; 3281 struct ifnet *ifp; 3282 int error; 3283 3284 mst = inp->inp_snd_tag; 3285 if (mst == NULL) 3286 return (EINVAL); 3287 3288 ifp = mst->ifp; 3289 if (ifp == NULL) 3290 return (EINVAL); 3291 3292 if (ifp->if_snd_tag_query == NULL) 3293 return (EOPNOTSUPP); 3294 3295 error = ifp->if_snd_tag_query(mst, ¶ms); 3296 if (error == 0 && p_txqueue_level != NULL) 3297 *p_txqueue_level = params.rate_limit.queue_level; 3298 return (error); 3299 } 3300 3301 /* 3302 * Allocate a new TX rate limit send tag from the network interface 3303 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3304 */ 3305 int 3306 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3307 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st) 3308 3309 { 3310 union if_snd_tag_alloc_params params = { 3311 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3312 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3313 .rate_limit.hdr.flowid = flowid, 3314 .rate_limit.hdr.flowtype = flowtype, 3315 .rate_limit.hdr.numa_domain = inp->inp_numa_domain, 3316 .rate_limit.max_rate = max_pacing_rate, 3317 .rate_limit.flags = M_NOWAIT, 3318 }; 3319 int error; 3320 3321 INP_WLOCK_ASSERT(inp); 3322 3323 if (*st != NULL) 3324 return (EINVAL); 3325 3326 if (ifp->if_snd_tag_alloc == NULL) { 3327 error = EOPNOTSUPP; 3328 } else { 3329 error = ifp->if_snd_tag_alloc(ifp, ¶ms, &inp->inp_snd_tag); 3330 3331 #ifdef INET 3332 if (error == 0) { 3333 counter_u64_add(rate_limit_set_ok, 1); 3334 counter_u64_add(rate_limit_active, 1); 3335 } else 3336 counter_u64_add(rate_limit_alloc_fail, 1); 3337 #endif 3338 } 3339 return (error); 3340 } 3341 3342 void 3343 in_pcbdetach_tag(struct ifnet *ifp, struct m_snd_tag *mst) 3344 { 3345 if (ifp == NULL) 3346 return; 3347 3348 /* 3349 * If the device was detached while we still had reference(s) 3350 * on the ifp, we assume if_snd_tag_free() was replaced with 3351 * stubs. 3352 */ 3353 ifp->if_snd_tag_free(mst); 3354 3355 /* release reference count on network interface */ 3356 if_rele(ifp); 3357 #ifdef INET 3358 counter_u64_add(rate_limit_active, -1); 3359 #endif 3360 } 3361 3362 /* 3363 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3364 * if any: 3365 */ 3366 void 3367 in_pcbdetach_txrtlmt(struct inpcb *inp) 3368 { 3369 struct m_snd_tag *mst; 3370 3371 INP_WLOCK_ASSERT(inp); 3372 3373 mst = inp->inp_snd_tag; 3374 inp->inp_snd_tag = NULL; 3375 3376 if (mst == NULL) 3377 return; 3378 3379 m_snd_tag_rele(mst); 3380 } 3381 3382 int 3383 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate) 3384 { 3385 int error; 3386 3387 /* 3388 * If the existing send tag is for the wrong interface due to 3389 * a route change, first drop the existing tag. Set the 3390 * CHANGED flag so that we will keep trying to allocate a new 3391 * tag if we fail to allocate one this time. 3392 */ 3393 if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) { 3394 in_pcbdetach_txrtlmt(inp); 3395 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3396 } 3397 3398 /* 3399 * NOTE: When attaching to a network interface a reference is 3400 * made to ensure the network interface doesn't go away until 3401 * all ratelimit connections are gone. The network interface 3402 * pointers compared below represent valid network interfaces, 3403 * except when comparing towards NULL. 3404 */ 3405 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3406 error = 0; 3407 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3408 if (inp->inp_snd_tag != NULL) 3409 in_pcbdetach_txrtlmt(inp); 3410 error = 0; 3411 } else if (inp->inp_snd_tag == NULL) { 3412 /* 3413 * In order to utilize packet pacing with RSS, we need 3414 * to wait until there is a valid RSS hash before we 3415 * can proceed: 3416 */ 3417 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3418 error = EAGAIN; 3419 } else { 3420 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3421 mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag); 3422 } 3423 } else { 3424 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3425 } 3426 if (error == 0 || error == EOPNOTSUPP) 3427 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3428 3429 return (error); 3430 } 3431 3432 /* 3433 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3434 * is set in the fast path and will attach/detach/modify the TX rate 3435 * limit send tag based on the socket's so_max_pacing_rate value. 3436 */ 3437 void 3438 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3439 { 3440 struct socket *socket; 3441 uint32_t max_pacing_rate; 3442 bool did_upgrade; 3443 int error; 3444 3445 if (inp == NULL) 3446 return; 3447 3448 socket = inp->inp_socket; 3449 if (socket == NULL) 3450 return; 3451 3452 if (!INP_WLOCKED(inp)) { 3453 /* 3454 * NOTE: If the write locking fails, we need to bail 3455 * out and use the non-ratelimited ring for the 3456 * transmit until there is a new chance to get the 3457 * write lock. 3458 */ 3459 if (!INP_TRY_UPGRADE(inp)) 3460 return; 3461 did_upgrade = 1; 3462 } else { 3463 did_upgrade = 0; 3464 } 3465 3466 /* 3467 * NOTE: The so_max_pacing_rate value is read unlocked, 3468 * because atomic updates are not required since the variable 3469 * is checked at every mbuf we send. It is assumed that the 3470 * variable read itself will be atomic. 3471 */ 3472 max_pacing_rate = socket->so_max_pacing_rate; 3473 3474 error = in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate); 3475 3476 if (did_upgrade) 3477 INP_DOWNGRADE(inp); 3478 } 3479 3480 /* 3481 * Track route changes for TX rate limiting. 3482 */ 3483 void 3484 in_pcboutput_eagain(struct inpcb *inp) 3485 { 3486 bool did_upgrade; 3487 3488 if (inp == NULL) 3489 return; 3490 3491 if (inp->inp_snd_tag == NULL) 3492 return; 3493 3494 if (!INP_WLOCKED(inp)) { 3495 /* 3496 * NOTE: If the write locking fails, we need to bail 3497 * out and use the non-ratelimited ring for the 3498 * transmit until there is a new chance to get the 3499 * write lock. 3500 */ 3501 if (!INP_TRY_UPGRADE(inp)) 3502 return; 3503 did_upgrade = 1; 3504 } else { 3505 did_upgrade = 0; 3506 } 3507 3508 /* detach rate limiting */ 3509 in_pcbdetach_txrtlmt(inp); 3510 3511 /* make sure new mbuf send tag allocation is made */ 3512 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3513 3514 if (did_upgrade) 3515 INP_DOWNGRADE(inp); 3516 } 3517 3518 #ifdef INET 3519 static void 3520 rl_init(void *st) 3521 { 3522 rate_limit_active = counter_u64_alloc(M_WAITOK); 3523 rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK); 3524 rate_limit_set_ok = counter_u64_alloc(M_WAITOK); 3525 } 3526 3527 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL); 3528 #endif 3529 #endif /* RATELIMIT */ 3530