1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Robert N. M. Watson under 11 * contract to Juniper Networks, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_ddb.h" 44 #include "opt_ipsec.h" 45 #include "opt_inet.h" 46 #include "opt_inet6.h" 47 #include "opt_ratelimit.h" 48 #include "opt_pcbgroup.h" 49 #include "opt_route.h" 50 #include "opt_rss.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/lock.h> 55 #include <sys/malloc.h> 56 #include <sys/mbuf.h> 57 #include <sys/callout.h> 58 #include <sys/eventhandler.h> 59 #include <sys/domain.h> 60 #include <sys/protosw.h> 61 #include <sys/rmlock.h> 62 #include <sys/smp.h> 63 #include <sys/socket.h> 64 #include <sys/socketvar.h> 65 #include <sys/sockio.h> 66 #include <sys/priv.h> 67 #include <sys/proc.h> 68 #include <sys/refcount.h> 69 #include <sys/jail.h> 70 #include <sys/kernel.h> 71 #include <sys/sysctl.h> 72 73 #ifdef DDB 74 #include <ddb/ddb.h> 75 #endif 76 77 #include <vm/uma.h> 78 79 #include <net/if.h> 80 #include <net/if_var.h> 81 #include <net/if_types.h> 82 #include <net/if_llatbl.h> 83 #include <net/route.h> 84 #include <net/rss_config.h> 85 #include <net/vnet.h> 86 87 #if defined(INET) || defined(INET6) 88 #include <netinet/in.h> 89 #include <netinet/in_pcb.h> 90 #ifdef INET 91 #include <netinet/in_var.h> 92 #include <netinet/in_fib.h> 93 #endif 94 #include <netinet/ip_var.h> 95 #include <netinet/tcp_var.h> 96 #ifdef TCPHPTS 97 #include <netinet/tcp_hpts.h> 98 #endif 99 #include <netinet/udp.h> 100 #include <netinet/udp_var.h> 101 #ifdef INET6 102 #include <netinet/ip6.h> 103 #include <netinet6/in6_pcb.h> 104 #include <netinet6/in6_var.h> 105 #include <netinet6/ip6_var.h> 106 #endif /* INET6 */ 107 #include <net/route/nhop.h> 108 #endif 109 110 #include <netipsec/ipsec_support.h> 111 112 #include <security/mac/mac_framework.h> 113 114 #define INPCBLBGROUP_SIZMIN 8 115 #define INPCBLBGROUP_SIZMAX 256 116 117 static struct callout ipport_tick_callout; 118 119 /* 120 * These configure the range of local port addresses assigned to 121 * "unspecified" outgoing connections/packets/whatever. 122 */ 123 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 124 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 125 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 126 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 127 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 128 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 129 130 /* 131 * Reserved ports accessible only to root. There are significant 132 * security considerations that must be accounted for when changing these, 133 * but the security benefits can be great. Please be careful. 134 */ 135 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 136 VNET_DEFINE(int, ipport_reservedlow); 137 138 /* Variables dealing with random ephemeral port allocation. */ 139 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 140 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 141 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 142 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 143 VNET_DEFINE(int, ipport_tcpallocs); 144 VNET_DEFINE_STATIC(int, ipport_tcplastcount); 145 146 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 147 148 static void in_pcbremlists(struct inpcb *inp); 149 #ifdef INET 150 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 151 struct in_addr faddr, u_int fport_arg, 152 struct in_addr laddr, u_int lport_arg, 153 int lookupflags, struct ifnet *ifp); 154 155 #define RANGECHK(var, min, max) \ 156 if ((var) < (min)) { (var) = (min); } \ 157 else if ((var) > (max)) { (var) = (max); } 158 159 static int 160 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 161 { 162 int error; 163 164 error = sysctl_handle_int(oidp, arg1, arg2, req); 165 if (error == 0) { 166 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 167 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 168 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 169 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 170 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 171 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 172 } 173 return (error); 174 } 175 176 #undef RANGECHK 177 178 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, 179 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 180 "IP Ports"); 181 182 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 183 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 184 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", 185 ""); 186 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 187 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 188 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", 189 ""); 190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 191 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 192 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", 193 ""); 194 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 195 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 196 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", 197 ""); 198 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 199 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 200 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", 201 ""); 202 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 203 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 204 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", 205 ""); 206 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 207 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 208 &VNET_NAME(ipport_reservedhigh), 0, ""); 209 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 210 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 211 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 212 CTLFLAG_VNET | CTLFLAG_RW, 213 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 214 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 215 CTLFLAG_VNET | CTLFLAG_RW, 216 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 217 "allocations before switching to a sequental one"); 218 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 219 CTLFLAG_VNET | CTLFLAG_RW, 220 &VNET_NAME(ipport_randomtime), 0, 221 "Minimum time to keep sequental port " 222 "allocation before switching to a random one"); 223 224 #ifdef RATELIMIT 225 counter_u64_t rate_limit_active; 226 counter_u64_t rate_limit_alloc_fail; 227 counter_u64_t rate_limit_set_ok; 228 229 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 230 "IP Rate Limiting"); 231 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD, 232 &rate_limit_active, "Active rate limited connections"); 233 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD, 234 &rate_limit_alloc_fail, "Rate limited connection failures"); 235 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD, 236 &rate_limit_set_ok, "Rate limited setting succeeded"); 237 #endif /* RATELIMIT */ 238 239 #endif /* INET */ 240 241 /* 242 * in_pcb.c: manage the Protocol Control Blocks. 243 * 244 * NOTE: It is assumed that most of these functions will be called with 245 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 246 * functions often modify hash chains or addresses in pcbs. 247 */ 248 249 static struct inpcblbgroup * 250 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, u_char vflag, 251 uint16_t port, const union in_dependaddr *addr, int size) 252 { 253 struct inpcblbgroup *grp; 254 size_t bytes; 255 256 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 257 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 258 if (!grp) 259 return (NULL); 260 grp->il_vflag = vflag; 261 grp->il_lport = port; 262 grp->il_dependladdr = *addr; 263 grp->il_inpsiz = size; 264 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 265 return (grp); 266 } 267 268 static void 269 in_pcblbgroup_free_deferred(epoch_context_t ctx) 270 { 271 struct inpcblbgroup *grp; 272 273 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); 274 free(grp, M_PCB); 275 } 276 277 static void 278 in_pcblbgroup_free(struct inpcblbgroup *grp) 279 { 280 281 CK_LIST_REMOVE(grp, il_list); 282 NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx); 283 } 284 285 static struct inpcblbgroup * 286 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 287 struct inpcblbgroup *old_grp, int size) 288 { 289 struct inpcblbgroup *grp; 290 int i; 291 292 grp = in_pcblbgroup_alloc(hdr, old_grp->il_vflag, 293 old_grp->il_lport, &old_grp->il_dependladdr, size); 294 if (grp == NULL) 295 return (NULL); 296 297 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 298 ("invalid new local group size %d and old local group count %d", 299 grp->il_inpsiz, old_grp->il_inpcnt)); 300 301 for (i = 0; i < old_grp->il_inpcnt; ++i) 302 grp->il_inp[i] = old_grp->il_inp[i]; 303 grp->il_inpcnt = old_grp->il_inpcnt; 304 in_pcblbgroup_free(old_grp); 305 return (grp); 306 } 307 308 /* 309 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] 310 * and shrink group if possible. 311 */ 312 static void 313 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, 314 int i) 315 { 316 struct inpcblbgroup *grp, *new_grp; 317 318 grp = *grpp; 319 for (; i + 1 < grp->il_inpcnt; ++i) 320 grp->il_inp[i] = grp->il_inp[i + 1]; 321 grp->il_inpcnt--; 322 323 if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && 324 grp->il_inpcnt <= grp->il_inpsiz / 4) { 325 /* Shrink this group. */ 326 new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); 327 if (new_grp != NULL) 328 *grpp = new_grp; 329 } 330 } 331 332 /* 333 * Add PCB to load balance group for SO_REUSEPORT_LB option. 334 */ 335 static int 336 in_pcbinslbgrouphash(struct inpcb *inp) 337 { 338 const static struct timeval interval = { 60, 0 }; 339 static struct timeval lastprint; 340 struct inpcbinfo *pcbinfo; 341 struct inpcblbgrouphead *hdr; 342 struct inpcblbgroup *grp; 343 uint32_t idx; 344 345 pcbinfo = inp->inp_pcbinfo; 346 347 INP_WLOCK_ASSERT(inp); 348 INP_HASH_WLOCK_ASSERT(pcbinfo); 349 350 /* 351 * Don't allow jailed socket to join local group. 352 */ 353 if (inp->inp_socket != NULL && jailed(inp->inp_socket->so_cred)) 354 return (0); 355 356 #ifdef INET6 357 /* 358 * Don't allow IPv4 mapped INET6 wild socket. 359 */ 360 if ((inp->inp_vflag & INP_IPV4) && 361 inp->inp_laddr.s_addr == INADDR_ANY && 362 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 363 return (0); 364 } 365 #endif 366 367 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); 368 hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; 369 CK_LIST_FOREACH(grp, hdr, il_list) { 370 if (grp->il_vflag == inp->inp_vflag && 371 grp->il_lport == inp->inp_lport && 372 memcmp(&grp->il_dependladdr, 373 &inp->inp_inc.inc_ie.ie_dependladdr, 374 sizeof(grp->il_dependladdr)) == 0) 375 break; 376 } 377 if (grp == NULL) { 378 /* Create new load balance group. */ 379 grp = in_pcblbgroup_alloc(hdr, inp->inp_vflag, 380 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 381 INPCBLBGROUP_SIZMIN); 382 if (grp == NULL) 383 return (ENOBUFS); 384 } else if (grp->il_inpcnt == grp->il_inpsiz) { 385 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 386 if (ratecheck(&lastprint, &interval)) 387 printf("lb group port %d, limit reached\n", 388 ntohs(grp->il_lport)); 389 return (0); 390 } 391 392 /* Expand this local group. */ 393 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 394 if (grp == NULL) 395 return (ENOBUFS); 396 } 397 398 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 399 ("invalid local group size %d and count %d", grp->il_inpsiz, 400 grp->il_inpcnt)); 401 402 grp->il_inp[grp->il_inpcnt] = inp; 403 grp->il_inpcnt++; 404 return (0); 405 } 406 407 /* 408 * Remove PCB from load balance group. 409 */ 410 static void 411 in_pcbremlbgrouphash(struct inpcb *inp) 412 { 413 struct inpcbinfo *pcbinfo; 414 struct inpcblbgrouphead *hdr; 415 struct inpcblbgroup *grp; 416 int i; 417 418 pcbinfo = inp->inp_pcbinfo; 419 420 INP_WLOCK_ASSERT(inp); 421 INP_HASH_WLOCK_ASSERT(pcbinfo); 422 423 hdr = &pcbinfo->ipi_lbgrouphashbase[ 424 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 425 CK_LIST_FOREACH(grp, hdr, il_list) { 426 for (i = 0; i < grp->il_inpcnt; ++i) { 427 if (grp->il_inp[i] != inp) 428 continue; 429 430 if (grp->il_inpcnt == 1) { 431 /* We are the last, free this local group. */ 432 in_pcblbgroup_free(grp); 433 } else { 434 /* Pull up inpcbs, shrink group if possible. */ 435 in_pcblbgroup_reorder(hdr, &grp, i); 436 } 437 return; 438 } 439 } 440 } 441 442 /* 443 * Different protocols initialize their inpcbs differently - giving 444 * different name to the lock. But they all are disposed the same. 445 */ 446 static void 447 inpcb_fini(void *mem, int size) 448 { 449 struct inpcb *inp = mem; 450 451 INP_LOCK_DESTROY(inp); 452 } 453 454 /* 455 * Initialize an inpcbinfo -- we should be able to reduce the number of 456 * arguments in time. 457 */ 458 void 459 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 460 struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, 461 char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields) 462 { 463 464 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); 465 466 INP_INFO_LOCK_INIT(pcbinfo, name); 467 INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ 468 INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist"); 469 #ifdef VIMAGE 470 pcbinfo->ipi_vnet = curvnet; 471 #endif 472 pcbinfo->ipi_listhead = listhead; 473 CK_LIST_INIT(pcbinfo->ipi_listhead); 474 pcbinfo->ipi_count = 0; 475 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 476 &pcbinfo->ipi_hashmask); 477 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 478 &pcbinfo->ipi_porthashmask); 479 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, 480 &pcbinfo->ipi_lbgrouphashmask); 481 #ifdef PCBGROUP 482 in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); 483 #endif 484 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 485 NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0); 486 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 487 uma_zone_set_warning(pcbinfo->ipi_zone, 488 "kern.ipc.maxsockets limit reached"); 489 } 490 491 /* 492 * Destroy an inpcbinfo. 493 */ 494 void 495 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 496 { 497 498 KASSERT(pcbinfo->ipi_count == 0, 499 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 500 501 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 502 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 503 pcbinfo->ipi_porthashmask); 504 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 505 pcbinfo->ipi_lbgrouphashmask); 506 #ifdef PCBGROUP 507 in_pcbgroup_destroy(pcbinfo); 508 #endif 509 uma_zdestroy(pcbinfo->ipi_zone); 510 INP_LIST_LOCK_DESTROY(pcbinfo); 511 INP_HASH_LOCK_DESTROY(pcbinfo); 512 INP_INFO_LOCK_DESTROY(pcbinfo); 513 } 514 515 /* 516 * Allocate a PCB and associate it with the socket. 517 * On success return with the PCB locked. 518 */ 519 int 520 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 521 { 522 struct inpcb *inp; 523 int error; 524 525 error = 0; 526 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 527 if (inp == NULL) 528 return (ENOBUFS); 529 bzero(&inp->inp_start_zero, inp_zero_size); 530 #ifdef NUMA 531 inp->inp_numa_domain = M_NODOM; 532 #endif 533 inp->inp_pcbinfo = pcbinfo; 534 inp->inp_socket = so; 535 inp->inp_cred = crhold(so->so_cred); 536 inp->inp_inc.inc_fibnum = so->so_fibnum; 537 #ifdef MAC 538 error = mac_inpcb_init(inp, M_NOWAIT); 539 if (error != 0) 540 goto out; 541 mac_inpcb_create(so, inp); 542 #endif 543 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 544 error = ipsec_init_pcbpolicy(inp); 545 if (error != 0) { 546 #ifdef MAC 547 mac_inpcb_destroy(inp); 548 #endif 549 goto out; 550 } 551 #endif /*IPSEC*/ 552 #ifdef INET6 553 if (INP_SOCKAF(so) == AF_INET6) { 554 inp->inp_vflag |= INP_IPV6PROTO; 555 if (V_ip6_v6only) 556 inp->inp_flags |= IN6P_IPV6_V6ONLY; 557 } 558 #endif 559 INP_WLOCK(inp); 560 INP_LIST_WLOCK(pcbinfo); 561 CK_LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 562 pcbinfo->ipi_count++; 563 so->so_pcb = (caddr_t)inp; 564 #ifdef INET6 565 if (V_ip6_auto_flowlabel) 566 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 567 #endif 568 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 569 refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ 570 571 /* 572 * Routes in inpcb's can cache L2 as well; they are guaranteed 573 * to be cleaned up. 574 */ 575 inp->inp_route.ro_flags = RT_LLE_CACHE; 576 INP_LIST_WUNLOCK(pcbinfo); 577 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 578 out: 579 if (error != 0) { 580 crfree(inp->inp_cred); 581 uma_zfree(pcbinfo->ipi_zone, inp); 582 } 583 #endif 584 return (error); 585 } 586 587 #ifdef INET 588 int 589 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 590 { 591 int anonport, error; 592 593 INP_WLOCK_ASSERT(inp); 594 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 595 596 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 597 return (EINVAL); 598 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 599 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 600 &inp->inp_lport, cred); 601 if (error) 602 return (error); 603 if (in_pcbinshash(inp) != 0) { 604 inp->inp_laddr.s_addr = INADDR_ANY; 605 inp->inp_lport = 0; 606 return (EAGAIN); 607 } 608 if (anonport) 609 inp->inp_flags |= INP_ANONPORT; 610 return (0); 611 } 612 #endif 613 614 #if defined(INET) || defined(INET6) 615 /* 616 * Assign a local port like in_pcb_lport(), but also used with connect() 617 * and a foreign address and port. If fsa is non-NULL, choose a local port 618 * that is unused with those, otherwise one that is completely unused. 619 * lsa can be NULL for IPv6. 620 */ 621 int 622 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp, 623 struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags) 624 { 625 struct inpcbinfo *pcbinfo; 626 struct inpcb *tmpinp; 627 unsigned short *lastport; 628 int count, dorandom, error; 629 u_short aux, first, last, lport; 630 #ifdef INET 631 struct in_addr laddr, faddr; 632 #endif 633 #ifdef INET6 634 struct in6_addr *laddr6, *faddr6; 635 #endif 636 637 pcbinfo = inp->inp_pcbinfo; 638 639 /* 640 * Because no actual state changes occur here, a global write lock on 641 * the pcbinfo isn't required. 642 */ 643 INP_LOCK_ASSERT(inp); 644 INP_HASH_LOCK_ASSERT(pcbinfo); 645 646 if (inp->inp_flags & INP_HIGHPORT) { 647 first = V_ipport_hifirstauto; /* sysctl */ 648 last = V_ipport_hilastauto; 649 lastport = &pcbinfo->ipi_lasthi; 650 } else if (inp->inp_flags & INP_LOWPORT) { 651 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); 652 if (error) 653 return (error); 654 first = V_ipport_lowfirstauto; /* 1023 */ 655 last = V_ipport_lowlastauto; /* 600 */ 656 lastport = &pcbinfo->ipi_lastlow; 657 } else { 658 first = V_ipport_firstauto; /* sysctl */ 659 last = V_ipport_lastauto; 660 lastport = &pcbinfo->ipi_lastport; 661 } 662 /* 663 * For UDP(-Lite), use random port allocation as long as the user 664 * allows it. For TCP (and as of yet unknown) connections, 665 * use random port allocation only if the user allows it AND 666 * ipport_tick() allows it. 667 */ 668 if (V_ipport_randomized && 669 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 670 pcbinfo == &V_ulitecbinfo)) 671 dorandom = 1; 672 else 673 dorandom = 0; 674 /* 675 * It makes no sense to do random port allocation if 676 * we have the only port available. 677 */ 678 if (first == last) 679 dorandom = 0; 680 /* Make sure to not include UDP(-Lite) packets in the count. */ 681 if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) 682 V_ipport_tcpallocs++; 683 /* 684 * Instead of having two loops further down counting up or down 685 * make sure that first is always <= last and go with only one 686 * code path implementing all logic. 687 */ 688 if (first > last) { 689 aux = first; 690 first = last; 691 last = aux; 692 } 693 694 #ifdef INET 695 laddr.s_addr = INADDR_ANY; 696 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 697 if (lsa != NULL) 698 laddr = ((struct sockaddr_in *)lsa)->sin_addr; 699 if (fsa != NULL) 700 faddr = ((struct sockaddr_in *)fsa)->sin_addr; 701 } 702 #endif 703 #ifdef INET6 704 laddr6 = NULL; 705 if ((inp->inp_vflag & INP_IPV6) != 0) { 706 if (lsa != NULL) 707 laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr; 708 if (fsa != NULL) 709 faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr; 710 } 711 #endif 712 713 tmpinp = NULL; 714 lport = *lportp; 715 716 if (dorandom) 717 *lastport = first + (arc4random() % (last - first)); 718 719 count = last - first; 720 721 do { 722 if (count-- < 0) /* completely used? */ 723 return (EADDRNOTAVAIL); 724 ++*lastport; 725 if (*lastport < first || *lastport > last) 726 *lastport = first; 727 lport = htons(*lastport); 728 729 if (fsa != NULL) { 730 #ifdef INET 731 if (lsa->sa_family == AF_INET) { 732 tmpinp = in_pcblookup_hash_locked(pcbinfo, 733 faddr, fport, laddr, lport, lookupflags, 734 NULL); 735 } 736 #endif 737 #ifdef INET6 738 if (lsa->sa_family == AF_INET6) { 739 tmpinp = in6_pcblookup_hash_locked(pcbinfo, 740 faddr6, fport, laddr6, lport, lookupflags, 741 NULL); 742 } 743 #endif 744 } else { 745 #ifdef INET6 746 if ((inp->inp_vflag & INP_IPV6) != 0) 747 tmpinp = in6_pcblookup_local(pcbinfo, 748 &inp->in6p_laddr, lport, lookupflags, cred); 749 #endif 750 #if defined(INET) && defined(INET6) 751 else 752 #endif 753 #ifdef INET 754 tmpinp = in_pcblookup_local(pcbinfo, laddr, 755 lport, lookupflags, cred); 756 #endif 757 } 758 } while (tmpinp != NULL); 759 760 *lportp = lport; 761 762 return (0); 763 } 764 765 /* 766 * Select a local port (number) to use. 767 */ 768 int 769 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 770 struct ucred *cred, int lookupflags) 771 { 772 struct sockaddr_in laddr; 773 774 if (laddrp) { 775 bzero(&laddr, sizeof(laddr)); 776 laddr.sin_family = AF_INET; 777 laddr.sin_addr = *laddrp; 778 } 779 return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr : 780 NULL, lportp, NULL, 0, cred, lookupflags)); 781 } 782 783 /* 784 * Return cached socket options. 785 */ 786 int 787 inp_so_options(const struct inpcb *inp) 788 { 789 int so_options; 790 791 so_options = 0; 792 793 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 794 so_options |= SO_REUSEPORT_LB; 795 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 796 so_options |= SO_REUSEPORT; 797 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 798 so_options |= SO_REUSEADDR; 799 return (so_options); 800 } 801 #endif /* INET || INET6 */ 802 803 /* 804 * Check if a new BINDMULTI socket is allowed to be created. 805 * 806 * ni points to the new inp. 807 * oi points to the exisitng inp. 808 * 809 * This checks whether the existing inp also has BINDMULTI and 810 * whether the credentials match. 811 */ 812 int 813 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 814 { 815 /* Check permissions match */ 816 if ((ni->inp_flags2 & INP_BINDMULTI) && 817 (ni->inp_cred->cr_uid != 818 oi->inp_cred->cr_uid)) 819 return (0); 820 821 /* Check the existing inp has BINDMULTI set */ 822 if ((ni->inp_flags2 & INP_BINDMULTI) && 823 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 824 return (0); 825 826 /* 827 * We're okay - either INP_BINDMULTI isn't set on ni, or 828 * it is and it matches the checks. 829 */ 830 return (1); 831 } 832 833 #ifdef INET 834 /* 835 * Set up a bind operation on a PCB, performing port allocation 836 * as required, but do not actually modify the PCB. Callers can 837 * either complete the bind by setting inp_laddr/inp_lport and 838 * calling in_pcbinshash(), or they can just use the resulting 839 * port and address to authorise the sending of a once-off packet. 840 * 841 * On error, the values of *laddrp and *lportp are not changed. 842 */ 843 int 844 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 845 u_short *lportp, struct ucred *cred) 846 { 847 struct socket *so = inp->inp_socket; 848 struct sockaddr_in *sin; 849 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 850 struct in_addr laddr; 851 u_short lport = 0; 852 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 853 int error; 854 855 /* 856 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here 857 * so that we don't have to add to the (already messy) code below. 858 */ 859 int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); 860 861 /* 862 * No state changes, so read locks are sufficient here. 863 */ 864 INP_LOCK_ASSERT(inp); 865 INP_HASH_LOCK_ASSERT(pcbinfo); 866 867 if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 868 return (EADDRNOTAVAIL); 869 laddr.s_addr = *laddrp; 870 if (nam != NULL && laddr.s_addr != INADDR_ANY) 871 return (EINVAL); 872 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) 873 lookupflags = INPLOOKUP_WILDCARD; 874 if (nam == NULL) { 875 if ((error = prison_local_ip4(cred, &laddr)) != 0) 876 return (error); 877 } else { 878 sin = (struct sockaddr_in *)nam; 879 if (nam->sa_len != sizeof (*sin)) 880 return (EINVAL); 881 #ifdef notdef 882 /* 883 * We should check the family, but old programs 884 * incorrectly fail to initialize it. 885 */ 886 if (sin->sin_family != AF_INET) 887 return (EAFNOSUPPORT); 888 #endif 889 error = prison_local_ip4(cred, &sin->sin_addr); 890 if (error) 891 return (error); 892 if (sin->sin_port != *lportp) { 893 /* Don't allow the port to change. */ 894 if (*lportp != 0) 895 return (EINVAL); 896 lport = sin->sin_port; 897 } 898 /* NB: lport is left as 0 if the port isn't being changed. */ 899 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 900 /* 901 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 902 * allow complete duplication of binding if 903 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 904 * and a multicast address is bound on both 905 * new and duplicated sockets. 906 */ 907 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 908 reuseport = SO_REUSEADDR|SO_REUSEPORT; 909 /* 910 * XXX: How to deal with SO_REUSEPORT_LB here? 911 * Treat same as SO_REUSEPORT for now. 912 */ 913 if ((so->so_options & 914 (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) 915 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; 916 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 917 sin->sin_port = 0; /* yech... */ 918 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 919 /* 920 * Is the address a local IP address? 921 * If INP_BINDANY is set, then the socket may be bound 922 * to any endpoint address, local or not. 923 */ 924 if ((inp->inp_flags & INP_BINDANY) == 0 && 925 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 926 return (EADDRNOTAVAIL); 927 } 928 laddr = sin->sin_addr; 929 if (lport) { 930 struct inpcb *t; 931 struct tcptw *tw; 932 933 /* GROSS */ 934 if (ntohs(lport) <= V_ipport_reservedhigh && 935 ntohs(lport) >= V_ipport_reservedlow && 936 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) 937 return (EACCES); 938 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 939 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { 940 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 941 lport, INPLOOKUP_WILDCARD, cred); 942 /* 943 * XXX 944 * This entire block sorely needs a rewrite. 945 */ 946 if (t && 947 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 948 ((t->inp_flags & INP_TIMEWAIT) == 0) && 949 (so->so_type != SOCK_STREAM || 950 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 951 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 952 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 953 (t->inp_flags2 & INP_REUSEPORT) || 954 (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && 955 (inp->inp_cred->cr_uid != 956 t->inp_cred->cr_uid)) 957 return (EADDRINUSE); 958 959 /* 960 * If the socket is a BINDMULTI socket, then 961 * the credentials need to match and the 962 * original socket also has to have been bound 963 * with BINDMULTI. 964 */ 965 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 966 return (EADDRINUSE); 967 } 968 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 969 lport, lookupflags, cred); 970 if (t && (t->inp_flags & INP_TIMEWAIT)) { 971 /* 972 * XXXRW: If an incpb has had its timewait 973 * state recycled, we treat the address as 974 * being in use (for now). This is better 975 * than a panic, but not desirable. 976 */ 977 tw = intotw(t); 978 if (tw == NULL || 979 ((reuseport & tw->tw_so_options) == 0 && 980 (reuseport_lb & 981 tw->tw_so_options) == 0)) { 982 return (EADDRINUSE); 983 } 984 } else if (t && 985 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 986 (reuseport & inp_so_options(t)) == 0 && 987 (reuseport_lb & inp_so_options(t)) == 0) { 988 #ifdef INET6 989 if (ntohl(sin->sin_addr.s_addr) != 990 INADDR_ANY || 991 ntohl(t->inp_laddr.s_addr) != 992 INADDR_ANY || 993 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 994 (t->inp_vflag & INP_IPV6PROTO) == 0) 995 #endif 996 return (EADDRINUSE); 997 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 998 return (EADDRINUSE); 999 } 1000 } 1001 } 1002 if (*lportp != 0) 1003 lport = *lportp; 1004 if (lport == 0) { 1005 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 1006 if (error != 0) 1007 return (error); 1008 } 1009 *laddrp = laddr.s_addr; 1010 *lportp = lport; 1011 return (0); 1012 } 1013 1014 /* 1015 * Connect from a socket to a specified address. 1016 * Both address and port must be specified in argument sin. 1017 * If don't have a local address for this socket yet, 1018 * then pick one. 1019 */ 1020 int 1021 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, 1022 struct ucred *cred, struct mbuf *m, bool rehash) 1023 { 1024 u_short lport, fport; 1025 in_addr_t laddr, faddr; 1026 int anonport, error; 1027 1028 INP_WLOCK_ASSERT(inp); 1029 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1030 1031 lport = inp->inp_lport; 1032 laddr = inp->inp_laddr.s_addr; 1033 anonport = (lport == 0); 1034 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 1035 NULL, cred); 1036 if (error) 1037 return (error); 1038 1039 /* Do the initial binding of the local address if required. */ 1040 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 1041 KASSERT(rehash == true, 1042 ("Rehashing required for unbound inps")); 1043 inp->inp_lport = lport; 1044 inp->inp_laddr.s_addr = laddr; 1045 if (in_pcbinshash(inp) != 0) { 1046 inp->inp_laddr.s_addr = INADDR_ANY; 1047 inp->inp_lport = 0; 1048 return (EAGAIN); 1049 } 1050 } 1051 1052 /* Commit the remaining changes. */ 1053 inp->inp_lport = lport; 1054 inp->inp_laddr.s_addr = laddr; 1055 inp->inp_faddr.s_addr = faddr; 1056 inp->inp_fport = fport; 1057 if (rehash) { 1058 in_pcbrehash_mbuf(inp, m); 1059 } else { 1060 in_pcbinshash_mbuf(inp, m); 1061 } 1062 1063 if (anonport) 1064 inp->inp_flags |= INP_ANONPORT; 1065 return (0); 1066 } 1067 1068 int 1069 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 1070 { 1071 1072 return (in_pcbconnect_mbuf(inp, nam, cred, NULL, true)); 1073 } 1074 1075 /* 1076 * Do proper source address selection on an unbound socket in case 1077 * of connect. Take jails into account as well. 1078 */ 1079 int 1080 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 1081 struct ucred *cred) 1082 { 1083 struct ifaddr *ifa; 1084 struct sockaddr *sa; 1085 struct sockaddr_in *sin, dst; 1086 struct nhop_object *nh; 1087 int error; 1088 1089 NET_EPOCH_ASSERT(); 1090 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1091 /* 1092 * Bypass source address selection and use the primary jail IP 1093 * if requested. 1094 */ 1095 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 1096 return (0); 1097 1098 error = 0; 1099 1100 nh = NULL; 1101 bzero(&dst, sizeof(dst)); 1102 sin = &dst; 1103 sin->sin_family = AF_INET; 1104 sin->sin_len = sizeof(struct sockaddr_in); 1105 sin->sin_addr.s_addr = faddr->s_addr; 1106 1107 /* 1108 * If route is known our src addr is taken from the i/f, 1109 * else punt. 1110 * 1111 * Find out route to destination. 1112 */ 1113 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1114 nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr, 1115 0, NHR_NONE, 0); 1116 1117 /* 1118 * If we found a route, use the address corresponding to 1119 * the outgoing interface. 1120 * 1121 * Otherwise assume faddr is reachable on a directly connected 1122 * network and try to find a corresponding interface to take 1123 * the source address from. 1124 */ 1125 if (nh == NULL || nh->nh_ifp == NULL) { 1126 struct in_ifaddr *ia; 1127 struct ifnet *ifp; 1128 1129 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1130 inp->inp_socket->so_fibnum)); 1131 if (ia == NULL) { 1132 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1133 inp->inp_socket->so_fibnum)); 1134 } 1135 if (ia == NULL) { 1136 error = ENETUNREACH; 1137 goto done; 1138 } 1139 1140 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1141 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1142 goto done; 1143 } 1144 1145 ifp = ia->ia_ifp; 1146 ia = NULL; 1147 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1148 sa = ifa->ifa_addr; 1149 if (sa->sa_family != AF_INET) 1150 continue; 1151 sin = (struct sockaddr_in *)sa; 1152 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1153 ia = (struct in_ifaddr *)ifa; 1154 break; 1155 } 1156 } 1157 if (ia != NULL) { 1158 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1159 goto done; 1160 } 1161 1162 /* 3. As a last resort return the 'default' jail address. */ 1163 error = prison_get_ip4(cred, laddr); 1164 goto done; 1165 } 1166 1167 /* 1168 * If the outgoing interface on the route found is not 1169 * a loopback interface, use the address from that interface. 1170 * In case of jails do those three steps: 1171 * 1. check if the interface address belongs to the jail. If so use it. 1172 * 2. check if we have any address on the outgoing interface 1173 * belonging to this jail. If so use it. 1174 * 3. as a last resort return the 'default' jail address. 1175 */ 1176 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) { 1177 struct in_ifaddr *ia; 1178 struct ifnet *ifp; 1179 1180 /* If not jailed, use the default returned. */ 1181 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1182 ia = (struct in_ifaddr *)nh->nh_ifa; 1183 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1184 goto done; 1185 } 1186 1187 /* Jailed. */ 1188 /* 1. Check if the iface address belongs to the jail. */ 1189 sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr; 1190 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1191 ia = (struct in_ifaddr *)nh->nh_ifa; 1192 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1193 goto done; 1194 } 1195 1196 /* 1197 * 2. Check if we have any address on the outgoing interface 1198 * belonging to this jail. 1199 */ 1200 ia = NULL; 1201 ifp = nh->nh_ifp; 1202 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1203 sa = ifa->ifa_addr; 1204 if (sa->sa_family != AF_INET) 1205 continue; 1206 sin = (struct sockaddr_in *)sa; 1207 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1208 ia = (struct in_ifaddr *)ifa; 1209 break; 1210 } 1211 } 1212 if (ia != NULL) { 1213 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1214 goto done; 1215 } 1216 1217 /* 3. As a last resort return the 'default' jail address. */ 1218 error = prison_get_ip4(cred, laddr); 1219 goto done; 1220 } 1221 1222 /* 1223 * The outgoing interface is marked with 'loopback net', so a route 1224 * to ourselves is here. 1225 * Try to find the interface of the destination address and then 1226 * take the address from there. That interface is not necessarily 1227 * a loopback interface. 1228 * In case of jails, check that it is an address of the jail 1229 * and if we cannot find, fall back to the 'default' jail address. 1230 */ 1231 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) { 1232 struct in_ifaddr *ia; 1233 1234 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst), 1235 inp->inp_socket->so_fibnum)); 1236 if (ia == NULL) 1237 ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0, 1238 inp->inp_socket->so_fibnum)); 1239 if (ia == NULL) 1240 ia = ifatoia(ifa_ifwithaddr(sintosa(&dst))); 1241 1242 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 1243 if (ia == NULL) { 1244 error = ENETUNREACH; 1245 goto done; 1246 } 1247 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1248 goto done; 1249 } 1250 1251 /* Jailed. */ 1252 if (ia != NULL) { 1253 struct ifnet *ifp; 1254 1255 ifp = ia->ia_ifp; 1256 ia = NULL; 1257 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1258 sa = ifa->ifa_addr; 1259 if (sa->sa_family != AF_INET) 1260 continue; 1261 sin = (struct sockaddr_in *)sa; 1262 if (prison_check_ip4(cred, 1263 &sin->sin_addr) == 0) { 1264 ia = (struct in_ifaddr *)ifa; 1265 break; 1266 } 1267 } 1268 if (ia != NULL) { 1269 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1270 goto done; 1271 } 1272 } 1273 1274 /* 3. As a last resort return the 'default' jail address. */ 1275 error = prison_get_ip4(cred, laddr); 1276 goto done; 1277 } 1278 1279 done: 1280 return (error); 1281 } 1282 1283 /* 1284 * Set up for a connect from a socket to the specified address. 1285 * On entry, *laddrp and *lportp should contain the current local 1286 * address and port for the PCB; these are updated to the values 1287 * that should be placed in inp_laddr and inp_lport to complete 1288 * the connect. 1289 * 1290 * On success, *faddrp and *fportp will be set to the remote address 1291 * and port. These are not updated in the error case. 1292 * 1293 * If the operation fails because the connection already exists, 1294 * *oinpp will be set to the PCB of that connection so that the 1295 * caller can decide to override it. In all other cases, *oinpp 1296 * is set to NULL. 1297 */ 1298 int 1299 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1300 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1301 struct inpcb **oinpp, struct ucred *cred) 1302 { 1303 struct rm_priotracker in_ifa_tracker; 1304 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1305 struct in_ifaddr *ia; 1306 struct inpcb *oinp; 1307 struct in_addr laddr, faddr; 1308 u_short lport, fport; 1309 int error; 1310 1311 /* 1312 * Because a global state change doesn't actually occur here, a read 1313 * lock is sufficient. 1314 */ 1315 NET_EPOCH_ASSERT(); 1316 INP_LOCK_ASSERT(inp); 1317 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1318 1319 if (oinpp != NULL) 1320 *oinpp = NULL; 1321 if (nam->sa_len != sizeof (*sin)) 1322 return (EINVAL); 1323 if (sin->sin_family != AF_INET) 1324 return (EAFNOSUPPORT); 1325 if (sin->sin_port == 0) 1326 return (EADDRNOTAVAIL); 1327 laddr.s_addr = *laddrp; 1328 lport = *lportp; 1329 faddr = sin->sin_addr; 1330 fport = sin->sin_port; 1331 #ifdef ROUTE_MPATH 1332 if (CALC_FLOWID_OUTBOUND) { 1333 uint32_t hash_val, hash_type; 1334 1335 hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport, 1336 inp->inp_socket->so_proto->pr_protocol, &hash_type); 1337 1338 inp->inp_flowid = hash_val; 1339 inp->inp_flowtype = hash_type; 1340 } 1341 #endif 1342 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1343 /* 1344 * If the destination address is INADDR_ANY, 1345 * use the primary local address. 1346 * If the supplied address is INADDR_BROADCAST, 1347 * and the primary interface supports broadcast, 1348 * choose the broadcast address for that interface. 1349 */ 1350 if (faddr.s_addr == INADDR_ANY) { 1351 IN_IFADDR_RLOCK(&in_ifa_tracker); 1352 faddr = 1353 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1354 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1355 if (cred != NULL && 1356 (error = prison_get_ip4(cred, &faddr)) != 0) 1357 return (error); 1358 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1359 IN_IFADDR_RLOCK(&in_ifa_tracker); 1360 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1361 IFF_BROADCAST) 1362 faddr = satosin(&CK_STAILQ_FIRST( 1363 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1364 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1365 } 1366 } 1367 if (laddr.s_addr == INADDR_ANY) { 1368 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1369 /* 1370 * If the destination address is multicast and an outgoing 1371 * interface has been set as a multicast option, prefer the 1372 * address of that interface as our source address. 1373 */ 1374 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1375 inp->inp_moptions != NULL) { 1376 struct ip_moptions *imo; 1377 struct ifnet *ifp; 1378 1379 imo = inp->inp_moptions; 1380 if (imo->imo_multicast_ifp != NULL) { 1381 ifp = imo->imo_multicast_ifp; 1382 IN_IFADDR_RLOCK(&in_ifa_tracker); 1383 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1384 if ((ia->ia_ifp == ifp) && 1385 (cred == NULL || 1386 prison_check_ip4(cred, 1387 &ia->ia_addr.sin_addr) == 0)) 1388 break; 1389 } 1390 if (ia == NULL) 1391 error = EADDRNOTAVAIL; 1392 else { 1393 laddr = ia->ia_addr.sin_addr; 1394 error = 0; 1395 } 1396 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1397 } 1398 } 1399 if (error) 1400 return (error); 1401 } 1402 if (lport != 0) { 1403 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, 1404 fport, laddr, lport, 0, NULL); 1405 if (oinp != NULL) { 1406 if (oinpp != NULL) 1407 *oinpp = oinp; 1408 return (EADDRINUSE); 1409 } 1410 } else { 1411 struct sockaddr_in lsin, fsin; 1412 1413 bzero(&lsin, sizeof(lsin)); 1414 bzero(&fsin, sizeof(fsin)); 1415 lsin.sin_family = AF_INET; 1416 lsin.sin_addr = laddr; 1417 fsin.sin_family = AF_INET; 1418 fsin.sin_addr = faddr; 1419 error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin, 1420 &lport, (struct sockaddr *)& fsin, fport, cred, 1421 INPLOOKUP_WILDCARD); 1422 if (error) 1423 return (error); 1424 } 1425 *laddrp = laddr.s_addr; 1426 *lportp = lport; 1427 *faddrp = faddr.s_addr; 1428 *fportp = fport; 1429 return (0); 1430 } 1431 1432 void 1433 in_pcbdisconnect(struct inpcb *inp) 1434 { 1435 1436 INP_WLOCK_ASSERT(inp); 1437 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1438 1439 inp->inp_faddr.s_addr = INADDR_ANY; 1440 inp->inp_fport = 0; 1441 in_pcbrehash(inp); 1442 } 1443 #endif /* INET */ 1444 1445 /* 1446 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1447 * For most protocols, this will be invoked immediately prior to calling 1448 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1449 * socket, in which case in_pcbfree() is deferred. 1450 */ 1451 void 1452 in_pcbdetach(struct inpcb *inp) 1453 { 1454 1455 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1456 1457 #ifdef RATELIMIT 1458 if (inp->inp_snd_tag != NULL) 1459 in_pcbdetach_txrtlmt(inp); 1460 #endif 1461 inp->inp_socket->so_pcb = NULL; 1462 inp->inp_socket = NULL; 1463 } 1464 1465 /* 1466 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1467 * stability of an inpcb pointer despite the inpcb lock being released. This 1468 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 1469 * but where the inpcb lock may already held, or when acquiring a reference 1470 * via a pcbgroup. 1471 * 1472 * in_pcbref() should be used only to provide brief memory stability, and 1473 * must always be followed by a call to INP_WLOCK() and in_pcbrele() to 1474 * garbage collect the inpcb if it has been in_pcbfree()'d from another 1475 * context. Until in_pcbrele() has returned that the inpcb is still valid, 1476 * lock and rele are the *only* safe operations that may be performed on the 1477 * inpcb. 1478 * 1479 * While the inpcb will not be freed, releasing the inpcb lock means that the 1480 * connection's state may change, so the caller should be careful to 1481 * revalidate any cached state on reacquiring the lock. Drop the reference 1482 * using in_pcbrele(). 1483 */ 1484 void 1485 in_pcbref(struct inpcb *inp) 1486 { 1487 1488 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1489 1490 refcount_acquire(&inp->inp_refcount); 1491 } 1492 1493 /* 1494 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 1495 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 1496 * return a flag indicating whether or not the inpcb remains valid. If it is 1497 * valid, we return with the inpcb lock held. 1498 * 1499 * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a 1500 * reference on an inpcb. Historically more work was done here (actually, in 1501 * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the 1502 * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely 1503 * about memory stability (and continued use of the write lock). 1504 */ 1505 int 1506 in_pcbrele_rlocked(struct inpcb *inp) 1507 { 1508 struct inpcbinfo *pcbinfo; 1509 1510 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1511 1512 INP_RLOCK_ASSERT(inp); 1513 1514 if (refcount_release(&inp->inp_refcount) == 0) { 1515 /* 1516 * If the inpcb has been freed, let the caller know, even if 1517 * this isn't the last reference. 1518 */ 1519 if (inp->inp_flags2 & INP_FREED) { 1520 INP_RUNLOCK(inp); 1521 return (1); 1522 } 1523 return (0); 1524 } 1525 1526 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1527 #ifdef TCPHPTS 1528 if (inp->inp_in_hpts || inp->inp_in_input) { 1529 struct tcp_hpts_entry *hpts; 1530 /* 1531 * We should not be on the hpts at 1532 * this point in any form. we must 1533 * get the lock to be sure. 1534 */ 1535 hpts = tcp_hpts_lock(inp); 1536 if (inp->inp_in_hpts) 1537 panic("Hpts:%p inp:%p at free still on hpts", 1538 hpts, inp); 1539 mtx_unlock(&hpts->p_mtx); 1540 hpts = tcp_input_lock(inp); 1541 if (inp->inp_in_input) 1542 panic("Hpts:%p inp:%p at free still on input hpts", 1543 hpts, inp); 1544 mtx_unlock(&hpts->p_mtx); 1545 } 1546 #endif 1547 INP_RUNLOCK(inp); 1548 pcbinfo = inp->inp_pcbinfo; 1549 uma_zfree(pcbinfo->ipi_zone, inp); 1550 return (1); 1551 } 1552 1553 int 1554 in_pcbrele_wlocked(struct inpcb *inp) 1555 { 1556 struct inpcbinfo *pcbinfo; 1557 1558 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1559 1560 INP_WLOCK_ASSERT(inp); 1561 1562 if (refcount_release(&inp->inp_refcount) == 0) { 1563 /* 1564 * If the inpcb has been freed, let the caller know, even if 1565 * this isn't the last reference. 1566 */ 1567 if (inp->inp_flags2 & INP_FREED) { 1568 INP_WUNLOCK(inp); 1569 return (1); 1570 } 1571 return (0); 1572 } 1573 1574 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1575 #ifdef TCPHPTS 1576 if (inp->inp_in_hpts || inp->inp_in_input) { 1577 struct tcp_hpts_entry *hpts; 1578 /* 1579 * We should not be on the hpts at 1580 * this point in any form. we must 1581 * get the lock to be sure. 1582 */ 1583 hpts = tcp_hpts_lock(inp); 1584 if (inp->inp_in_hpts) 1585 panic("Hpts:%p inp:%p at free still on hpts", 1586 hpts, inp); 1587 mtx_unlock(&hpts->p_mtx); 1588 hpts = tcp_input_lock(inp); 1589 if (inp->inp_in_input) 1590 panic("Hpts:%p inp:%p at free still on input hpts", 1591 hpts, inp); 1592 mtx_unlock(&hpts->p_mtx); 1593 } 1594 #endif 1595 INP_WUNLOCK(inp); 1596 pcbinfo = inp->inp_pcbinfo; 1597 uma_zfree(pcbinfo->ipi_zone, inp); 1598 return (1); 1599 } 1600 1601 /* 1602 * Temporary wrapper. 1603 */ 1604 int 1605 in_pcbrele(struct inpcb *inp) 1606 { 1607 1608 return (in_pcbrele_wlocked(inp)); 1609 } 1610 1611 void 1612 in_pcblist_rele_rlocked(epoch_context_t ctx) 1613 { 1614 struct in_pcblist *il; 1615 struct inpcb *inp; 1616 struct inpcbinfo *pcbinfo; 1617 int i, n; 1618 1619 il = __containerof(ctx, struct in_pcblist, il_epoch_ctx); 1620 pcbinfo = il->il_pcbinfo; 1621 n = il->il_count; 1622 INP_INFO_WLOCK(pcbinfo); 1623 for (i = 0; i < n; i++) { 1624 inp = il->il_inp_list[i]; 1625 INP_RLOCK(inp); 1626 if (!in_pcbrele_rlocked(inp)) 1627 INP_RUNLOCK(inp); 1628 } 1629 INP_INFO_WUNLOCK(pcbinfo); 1630 free(il, M_TEMP); 1631 } 1632 1633 static void 1634 inpcbport_free(epoch_context_t ctx) 1635 { 1636 struct inpcbport *phd; 1637 1638 phd = __containerof(ctx, struct inpcbport, phd_epoch_ctx); 1639 free(phd, M_PCB); 1640 } 1641 1642 static void 1643 in_pcbfree_deferred(epoch_context_t ctx) 1644 { 1645 struct inpcb *inp; 1646 int released __unused; 1647 1648 inp = __containerof(ctx, struct inpcb, inp_epoch_ctx); 1649 1650 INP_WLOCK(inp); 1651 CURVNET_SET(inp->inp_vnet); 1652 #ifdef INET 1653 struct ip_moptions *imo = inp->inp_moptions; 1654 inp->inp_moptions = NULL; 1655 #endif 1656 /* XXXRW: Do as much as possible here. */ 1657 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1658 if (inp->inp_sp != NULL) 1659 ipsec_delete_pcbpolicy(inp); 1660 #endif 1661 #ifdef INET6 1662 struct ip6_moptions *im6o = NULL; 1663 if (inp->inp_vflag & INP_IPV6PROTO) { 1664 ip6_freepcbopts(inp->in6p_outputopts); 1665 im6o = inp->in6p_moptions; 1666 inp->in6p_moptions = NULL; 1667 } 1668 #endif 1669 if (inp->inp_options) 1670 (void)m_free(inp->inp_options); 1671 inp->inp_vflag = 0; 1672 crfree(inp->inp_cred); 1673 #ifdef MAC 1674 mac_inpcb_destroy(inp); 1675 #endif 1676 released = in_pcbrele_wlocked(inp); 1677 MPASS(released); 1678 #ifdef INET6 1679 ip6_freemoptions(im6o); 1680 #endif 1681 #ifdef INET 1682 inp_freemoptions(imo); 1683 #endif 1684 CURVNET_RESTORE(); 1685 } 1686 1687 /* 1688 * Unconditionally schedule an inpcb to be freed by decrementing its 1689 * reference count, which should occur only after the inpcb has been detached 1690 * from its socket. If another thread holds a temporary reference (acquired 1691 * using in_pcbref()) then the free is deferred until that reference is 1692 * released using in_pcbrele(), but the inpcb is still unlocked. Almost all 1693 * work, including removal from global lists, is done in this context, where 1694 * the pcbinfo lock is held. 1695 */ 1696 void 1697 in_pcbfree(struct inpcb *inp) 1698 { 1699 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1700 1701 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1702 KASSERT((inp->inp_flags2 & INP_FREED) == 0, 1703 ("%s: called twice for pcb %p", __func__, inp)); 1704 if (inp->inp_flags2 & INP_FREED) { 1705 INP_WUNLOCK(inp); 1706 return; 1707 } 1708 1709 INP_WLOCK_ASSERT(inp); 1710 INP_LIST_WLOCK(pcbinfo); 1711 in_pcbremlists(inp); 1712 INP_LIST_WUNLOCK(pcbinfo); 1713 RO_INVALIDATE_CACHE(&inp->inp_route); 1714 /* mark as destruction in progress */ 1715 inp->inp_flags2 |= INP_FREED; 1716 INP_WUNLOCK(inp); 1717 NET_EPOCH_CALL(in_pcbfree_deferred, &inp->inp_epoch_ctx); 1718 } 1719 1720 /* 1721 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1722 * port reservation, and preventing it from being returned by inpcb lookups. 1723 * 1724 * It is used by TCP to mark an inpcb as unused and avoid future packet 1725 * delivery or event notification when a socket remains open but TCP has 1726 * closed. This might occur as a result of a shutdown()-initiated TCP close 1727 * or a RST on the wire, and allows the port binding to be reused while still 1728 * maintaining the invariant that so_pcb always points to a valid inpcb until 1729 * in_pcbdetach(). 1730 * 1731 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1732 * in_pcbnotifyall() and in_pcbpurgeif0()? 1733 */ 1734 void 1735 in_pcbdrop(struct inpcb *inp) 1736 { 1737 1738 INP_WLOCK_ASSERT(inp); 1739 #ifdef INVARIANTS 1740 if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) 1741 MPASS(inp->inp_refcount > 1); 1742 #endif 1743 1744 /* 1745 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1746 * the hash lock...? 1747 */ 1748 inp->inp_flags |= INP_DROPPED; 1749 if (inp->inp_flags & INP_INHASHLIST) { 1750 struct inpcbport *phd = inp->inp_phd; 1751 1752 INP_HASH_WLOCK(inp->inp_pcbinfo); 1753 in_pcbremlbgrouphash(inp); 1754 CK_LIST_REMOVE(inp, inp_hash); 1755 CK_LIST_REMOVE(inp, inp_portlist); 1756 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 1757 CK_LIST_REMOVE(phd, phd_hash); 1758 NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx); 1759 } 1760 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1761 inp->inp_flags &= ~INP_INHASHLIST; 1762 #ifdef PCBGROUP 1763 in_pcbgroup_remove(inp); 1764 #endif 1765 } 1766 } 1767 1768 #ifdef INET 1769 /* 1770 * Common routines to return the socket addresses associated with inpcbs. 1771 */ 1772 struct sockaddr * 1773 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1774 { 1775 struct sockaddr_in *sin; 1776 1777 sin = malloc(sizeof *sin, M_SONAME, 1778 M_WAITOK | M_ZERO); 1779 sin->sin_family = AF_INET; 1780 sin->sin_len = sizeof(*sin); 1781 sin->sin_addr = *addr_p; 1782 sin->sin_port = port; 1783 1784 return (struct sockaddr *)sin; 1785 } 1786 1787 int 1788 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1789 { 1790 struct inpcb *inp; 1791 struct in_addr addr; 1792 in_port_t port; 1793 1794 inp = sotoinpcb(so); 1795 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1796 1797 INP_RLOCK(inp); 1798 port = inp->inp_lport; 1799 addr = inp->inp_laddr; 1800 INP_RUNLOCK(inp); 1801 1802 *nam = in_sockaddr(port, &addr); 1803 return 0; 1804 } 1805 1806 int 1807 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1808 { 1809 struct inpcb *inp; 1810 struct in_addr addr; 1811 in_port_t port; 1812 1813 inp = sotoinpcb(so); 1814 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1815 1816 INP_RLOCK(inp); 1817 port = inp->inp_fport; 1818 addr = inp->inp_faddr; 1819 INP_RUNLOCK(inp); 1820 1821 *nam = in_sockaddr(port, &addr); 1822 return 0; 1823 } 1824 1825 void 1826 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1827 struct inpcb *(*notify)(struct inpcb *, int)) 1828 { 1829 struct inpcb *inp, *inp_temp; 1830 1831 INP_INFO_WLOCK(pcbinfo); 1832 CK_LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1833 INP_WLOCK(inp); 1834 #ifdef INET6 1835 if ((inp->inp_vflag & INP_IPV4) == 0) { 1836 INP_WUNLOCK(inp); 1837 continue; 1838 } 1839 #endif 1840 if (inp->inp_faddr.s_addr != faddr.s_addr || 1841 inp->inp_socket == NULL) { 1842 INP_WUNLOCK(inp); 1843 continue; 1844 } 1845 if ((*notify)(inp, errno)) 1846 INP_WUNLOCK(inp); 1847 } 1848 INP_INFO_WUNLOCK(pcbinfo); 1849 } 1850 1851 void 1852 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1853 { 1854 struct inpcb *inp; 1855 struct in_multi *inm; 1856 struct in_mfilter *imf; 1857 struct ip_moptions *imo; 1858 1859 INP_INFO_WLOCK(pcbinfo); 1860 CK_LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1861 INP_WLOCK(inp); 1862 imo = inp->inp_moptions; 1863 if ((inp->inp_vflag & INP_IPV4) && 1864 imo != NULL) { 1865 /* 1866 * Unselect the outgoing interface if it is being 1867 * detached. 1868 */ 1869 if (imo->imo_multicast_ifp == ifp) 1870 imo->imo_multicast_ifp = NULL; 1871 1872 /* 1873 * Drop multicast group membership if we joined 1874 * through the interface being detached. 1875 * 1876 * XXX This can all be deferred to an epoch_call 1877 */ 1878 restart: 1879 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 1880 if ((inm = imf->imf_inm) == NULL) 1881 continue; 1882 if (inm->inm_ifp != ifp) 1883 continue; 1884 ip_mfilter_remove(&imo->imo_head, imf); 1885 IN_MULTI_LOCK_ASSERT(); 1886 in_leavegroup_locked(inm, NULL); 1887 ip_mfilter_free(imf); 1888 goto restart; 1889 } 1890 } 1891 INP_WUNLOCK(inp); 1892 } 1893 INP_INFO_WUNLOCK(pcbinfo); 1894 } 1895 1896 /* 1897 * Lookup a PCB based on the local address and port. Caller must hold the 1898 * hash lock. No inpcb locks or references are acquired. 1899 */ 1900 #define INP_LOOKUP_MAPPED_PCB_COST 3 1901 struct inpcb * 1902 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1903 u_short lport, int lookupflags, struct ucred *cred) 1904 { 1905 struct inpcb *inp; 1906 #ifdef INET6 1907 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1908 #else 1909 int matchwild = 3; 1910 #endif 1911 int wildcard; 1912 1913 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1914 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1915 1916 INP_HASH_LOCK_ASSERT(pcbinfo); 1917 1918 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1919 struct inpcbhead *head; 1920 /* 1921 * Look for an unconnected (wildcard foreign addr) PCB that 1922 * matches the local address and port we're looking for. 1923 */ 1924 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1925 0, pcbinfo->ipi_hashmask)]; 1926 CK_LIST_FOREACH(inp, head, inp_hash) { 1927 #ifdef INET6 1928 /* XXX inp locking */ 1929 if ((inp->inp_vflag & INP_IPV4) == 0) 1930 continue; 1931 #endif 1932 if (inp->inp_faddr.s_addr == INADDR_ANY && 1933 inp->inp_laddr.s_addr == laddr.s_addr && 1934 inp->inp_lport == lport) { 1935 /* 1936 * Found? 1937 */ 1938 if (cred == NULL || 1939 prison_equal_ip4(cred->cr_prison, 1940 inp->inp_cred->cr_prison)) 1941 return (inp); 1942 } 1943 } 1944 /* 1945 * Not found. 1946 */ 1947 return (NULL); 1948 } else { 1949 struct inpcbporthead *porthash; 1950 struct inpcbport *phd; 1951 struct inpcb *match = NULL; 1952 /* 1953 * Best fit PCB lookup. 1954 * 1955 * First see if this local port is in use by looking on the 1956 * port hash list. 1957 */ 1958 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1959 pcbinfo->ipi_porthashmask)]; 1960 CK_LIST_FOREACH(phd, porthash, phd_hash) { 1961 if (phd->phd_port == lport) 1962 break; 1963 } 1964 if (phd != NULL) { 1965 /* 1966 * Port is in use by one or more PCBs. Look for best 1967 * fit. 1968 */ 1969 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1970 wildcard = 0; 1971 if (cred != NULL && 1972 !prison_equal_ip4(inp->inp_cred->cr_prison, 1973 cred->cr_prison)) 1974 continue; 1975 #ifdef INET6 1976 /* XXX inp locking */ 1977 if ((inp->inp_vflag & INP_IPV4) == 0) 1978 continue; 1979 /* 1980 * We never select the PCB that has 1981 * INP_IPV6 flag and is bound to :: if 1982 * we have another PCB which is bound 1983 * to 0.0.0.0. If a PCB has the 1984 * INP_IPV6 flag, then we set its cost 1985 * higher than IPv4 only PCBs. 1986 * 1987 * Note that the case only happens 1988 * when a socket is bound to ::, under 1989 * the condition that the use of the 1990 * mapped address is allowed. 1991 */ 1992 if ((inp->inp_vflag & INP_IPV6) != 0) 1993 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1994 #endif 1995 if (inp->inp_faddr.s_addr != INADDR_ANY) 1996 wildcard++; 1997 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1998 if (laddr.s_addr == INADDR_ANY) 1999 wildcard++; 2000 else if (inp->inp_laddr.s_addr != laddr.s_addr) 2001 continue; 2002 } else { 2003 if (laddr.s_addr != INADDR_ANY) 2004 wildcard++; 2005 } 2006 if (wildcard < matchwild) { 2007 match = inp; 2008 matchwild = wildcard; 2009 if (matchwild == 0) 2010 break; 2011 } 2012 } 2013 } 2014 return (match); 2015 } 2016 } 2017 #undef INP_LOOKUP_MAPPED_PCB_COST 2018 2019 static struct inpcb * 2020 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 2021 const struct in_addr *laddr, uint16_t lport, const struct in_addr *faddr, 2022 uint16_t fport, int lookupflags) 2023 { 2024 struct inpcb *local_wild; 2025 const struct inpcblbgrouphead *hdr; 2026 struct inpcblbgroup *grp; 2027 uint32_t idx; 2028 2029 INP_HASH_LOCK_ASSERT(pcbinfo); 2030 2031 hdr = &pcbinfo->ipi_lbgrouphashbase[ 2032 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; 2033 2034 /* 2035 * Order of socket selection: 2036 * 1. non-wild. 2037 * 2. wild (if lookupflags contains INPLOOKUP_WILDCARD). 2038 * 2039 * NOTE: 2040 * - Load balanced group does not contain jailed sockets 2041 * - Load balanced group does not contain IPv4 mapped INET6 wild sockets 2042 */ 2043 local_wild = NULL; 2044 CK_LIST_FOREACH(grp, hdr, il_list) { 2045 #ifdef INET6 2046 if (!(grp->il_vflag & INP_IPV4)) 2047 continue; 2048 #endif 2049 if (grp->il_lport != lport) 2050 continue; 2051 2052 idx = INP_PCBLBGROUP_PKTHASH(faddr->s_addr, lport, fport) % 2053 grp->il_inpcnt; 2054 if (grp->il_laddr.s_addr == laddr->s_addr) 2055 return (grp->il_inp[idx]); 2056 if (grp->il_laddr.s_addr == INADDR_ANY && 2057 (lookupflags & INPLOOKUP_WILDCARD) != 0) 2058 local_wild = grp->il_inp[idx]; 2059 } 2060 return (local_wild); 2061 } 2062 2063 #ifdef PCBGROUP 2064 /* 2065 * Lookup PCB in hash list, using pcbgroup tables. 2066 */ 2067 static struct inpcb * 2068 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, 2069 struct in_addr faddr, u_int fport_arg, struct in_addr laddr, 2070 u_int lport_arg, int lookupflags, struct ifnet *ifp) 2071 { 2072 struct inpcbhead *head; 2073 struct inpcb *inp, *tmpinp; 2074 u_short fport = fport_arg, lport = lport_arg; 2075 bool locked; 2076 2077 /* 2078 * First look for an exact match. 2079 */ 2080 tmpinp = NULL; 2081 INP_GROUP_LOCK(pcbgroup); 2082 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 2083 pcbgroup->ipg_hashmask)]; 2084 CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) { 2085 #ifdef INET6 2086 /* XXX inp locking */ 2087 if ((inp->inp_vflag & INP_IPV4) == 0) 2088 continue; 2089 #endif 2090 if (inp->inp_faddr.s_addr == faddr.s_addr && 2091 inp->inp_laddr.s_addr == laddr.s_addr && 2092 inp->inp_fport == fport && 2093 inp->inp_lport == lport) { 2094 /* 2095 * XXX We should be able to directly return 2096 * the inp here, without any checks. 2097 * Well unless both bound with SO_REUSEPORT? 2098 */ 2099 if (prison_flag(inp->inp_cred, PR_IP4)) 2100 goto found; 2101 if (tmpinp == NULL) 2102 tmpinp = inp; 2103 } 2104 } 2105 if (tmpinp != NULL) { 2106 inp = tmpinp; 2107 goto found; 2108 } 2109 2110 #ifdef RSS 2111 /* 2112 * For incoming connections, we may wish to do a wildcard 2113 * match for an RSS-local socket. 2114 */ 2115 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2116 struct inpcb *local_wild = NULL, *local_exact = NULL; 2117 #ifdef INET6 2118 struct inpcb *local_wild_mapped = NULL; 2119 #endif 2120 struct inpcb *jail_wild = NULL; 2121 struct inpcbhead *head; 2122 int injail; 2123 2124 /* 2125 * Order of socket selection - we always prefer jails. 2126 * 1. jailed, non-wild. 2127 * 2. jailed, wild. 2128 * 3. non-jailed, non-wild. 2129 * 4. non-jailed, wild. 2130 */ 2131 2132 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, 2133 lport, 0, pcbgroup->ipg_hashmask)]; 2134 CK_LIST_FOREACH(inp, head, inp_pcbgrouphash) { 2135 #ifdef INET6 2136 /* XXX inp locking */ 2137 if ((inp->inp_vflag & INP_IPV4) == 0) 2138 continue; 2139 #endif 2140 if (inp->inp_faddr.s_addr != INADDR_ANY || 2141 inp->inp_lport != lport) 2142 continue; 2143 2144 injail = prison_flag(inp->inp_cred, PR_IP4); 2145 if (injail) { 2146 if (prison_check_ip4(inp->inp_cred, 2147 &laddr) != 0) 2148 continue; 2149 } else { 2150 if (local_exact != NULL) 2151 continue; 2152 } 2153 2154 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2155 if (injail) 2156 goto found; 2157 else 2158 local_exact = inp; 2159 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2160 #ifdef INET6 2161 /* XXX inp locking, NULL check */ 2162 if (inp->inp_vflag & INP_IPV6PROTO) 2163 local_wild_mapped = inp; 2164 else 2165 #endif 2166 if (injail) 2167 jail_wild = inp; 2168 else 2169 local_wild = inp; 2170 } 2171 } /* LIST_FOREACH */ 2172 2173 inp = jail_wild; 2174 if (inp == NULL) 2175 inp = local_exact; 2176 if (inp == NULL) 2177 inp = local_wild; 2178 #ifdef INET6 2179 if (inp == NULL) 2180 inp = local_wild_mapped; 2181 #endif 2182 if (inp != NULL) 2183 goto found; 2184 } 2185 #endif 2186 2187 /* 2188 * Then look for a wildcard match, if requested. 2189 */ 2190 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2191 struct inpcb *local_wild = NULL, *local_exact = NULL; 2192 #ifdef INET6 2193 struct inpcb *local_wild_mapped = NULL; 2194 #endif 2195 struct inpcb *jail_wild = NULL; 2196 struct inpcbhead *head; 2197 int injail; 2198 2199 /* 2200 * Order of socket selection - we always prefer jails. 2201 * 1. jailed, non-wild. 2202 * 2. jailed, wild. 2203 * 3. non-jailed, non-wild. 2204 * 4. non-jailed, wild. 2205 */ 2206 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 2207 0, pcbinfo->ipi_wildmask)]; 2208 CK_LIST_FOREACH(inp, head, inp_pcbgroup_wild) { 2209 #ifdef INET6 2210 /* XXX inp locking */ 2211 if ((inp->inp_vflag & INP_IPV4) == 0) 2212 continue; 2213 #endif 2214 if (inp->inp_faddr.s_addr != INADDR_ANY || 2215 inp->inp_lport != lport) 2216 continue; 2217 2218 injail = prison_flag(inp->inp_cred, PR_IP4); 2219 if (injail) { 2220 if (prison_check_ip4(inp->inp_cred, 2221 &laddr) != 0) 2222 continue; 2223 } else { 2224 if (local_exact != NULL) 2225 continue; 2226 } 2227 2228 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2229 if (injail) 2230 goto found; 2231 else 2232 local_exact = inp; 2233 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2234 #ifdef INET6 2235 /* XXX inp locking, NULL check */ 2236 if (inp->inp_vflag & INP_IPV6PROTO) 2237 local_wild_mapped = inp; 2238 else 2239 #endif 2240 if (injail) 2241 jail_wild = inp; 2242 else 2243 local_wild = inp; 2244 } 2245 } /* LIST_FOREACH */ 2246 inp = jail_wild; 2247 if (inp == NULL) 2248 inp = local_exact; 2249 if (inp == NULL) 2250 inp = local_wild; 2251 #ifdef INET6 2252 if (inp == NULL) 2253 inp = local_wild_mapped; 2254 #endif 2255 if (inp != NULL) 2256 goto found; 2257 } /* if (lookupflags & INPLOOKUP_WILDCARD) */ 2258 INP_GROUP_UNLOCK(pcbgroup); 2259 return (NULL); 2260 2261 found: 2262 if (lookupflags & INPLOOKUP_WLOCKPCB) 2263 locked = INP_TRY_WLOCK(inp); 2264 else if (lookupflags & INPLOOKUP_RLOCKPCB) 2265 locked = INP_TRY_RLOCK(inp); 2266 else 2267 panic("%s: locking bug", __func__); 2268 if (__predict_false(locked && (inp->inp_flags2 & INP_FREED))) { 2269 if (lookupflags & INPLOOKUP_WLOCKPCB) 2270 INP_WUNLOCK(inp); 2271 else 2272 INP_RUNLOCK(inp); 2273 return (NULL); 2274 } else if (!locked) 2275 in_pcbref(inp); 2276 INP_GROUP_UNLOCK(pcbgroup); 2277 if (!locked) { 2278 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2279 INP_WLOCK(inp); 2280 if (in_pcbrele_wlocked(inp)) 2281 return (NULL); 2282 } else { 2283 INP_RLOCK(inp); 2284 if (in_pcbrele_rlocked(inp)) 2285 return (NULL); 2286 } 2287 } 2288 #ifdef INVARIANTS 2289 if (lookupflags & INPLOOKUP_WLOCKPCB) 2290 INP_WLOCK_ASSERT(inp); 2291 else 2292 INP_RLOCK_ASSERT(inp); 2293 #endif 2294 return (inp); 2295 } 2296 #endif /* PCBGROUP */ 2297 2298 /* 2299 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2300 * that the caller has locked the hash list, and will not perform any further 2301 * locking or reference operations on either the hash list or the connection. 2302 */ 2303 static struct inpcb * 2304 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2305 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2306 struct ifnet *ifp) 2307 { 2308 struct inpcbhead *head; 2309 struct inpcb *inp, *tmpinp; 2310 u_short fport = fport_arg, lport = lport_arg; 2311 2312 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2313 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2314 INP_HASH_LOCK_ASSERT(pcbinfo); 2315 2316 /* 2317 * First look for an exact match. 2318 */ 2319 tmpinp = NULL; 2320 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 2321 pcbinfo->ipi_hashmask)]; 2322 CK_LIST_FOREACH(inp, head, inp_hash) { 2323 #ifdef INET6 2324 /* XXX inp locking */ 2325 if ((inp->inp_vflag & INP_IPV4) == 0) 2326 continue; 2327 #endif 2328 if (inp->inp_faddr.s_addr == faddr.s_addr && 2329 inp->inp_laddr.s_addr == laddr.s_addr && 2330 inp->inp_fport == fport && 2331 inp->inp_lport == lport) { 2332 /* 2333 * XXX We should be able to directly return 2334 * the inp here, without any checks. 2335 * Well unless both bound with SO_REUSEPORT? 2336 */ 2337 if (prison_flag(inp->inp_cred, PR_IP4)) 2338 return (inp); 2339 if (tmpinp == NULL) 2340 tmpinp = inp; 2341 } 2342 } 2343 if (tmpinp != NULL) 2344 return (tmpinp); 2345 2346 /* 2347 * Then look in lb group (for wildcard match). 2348 */ 2349 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2350 inp = in_pcblookup_lbgroup(pcbinfo, &laddr, lport, &faddr, 2351 fport, lookupflags); 2352 if (inp != NULL) 2353 return (inp); 2354 } 2355 2356 /* 2357 * Then look for a wildcard match, if requested. 2358 */ 2359 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2360 struct inpcb *local_wild = NULL, *local_exact = NULL; 2361 #ifdef INET6 2362 struct inpcb *local_wild_mapped = NULL; 2363 #endif 2364 struct inpcb *jail_wild = NULL; 2365 int injail; 2366 2367 /* 2368 * Order of socket selection - we always prefer jails. 2369 * 1. jailed, non-wild. 2370 * 2. jailed, wild. 2371 * 3. non-jailed, non-wild. 2372 * 4. non-jailed, wild. 2373 */ 2374 2375 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 2376 0, pcbinfo->ipi_hashmask)]; 2377 CK_LIST_FOREACH(inp, head, inp_hash) { 2378 #ifdef INET6 2379 /* XXX inp locking */ 2380 if ((inp->inp_vflag & INP_IPV4) == 0) 2381 continue; 2382 #endif 2383 if (inp->inp_faddr.s_addr != INADDR_ANY || 2384 inp->inp_lport != lport) 2385 continue; 2386 2387 injail = prison_flag(inp->inp_cred, PR_IP4); 2388 if (injail) { 2389 if (prison_check_ip4(inp->inp_cred, 2390 &laddr) != 0) 2391 continue; 2392 } else { 2393 if (local_exact != NULL) 2394 continue; 2395 } 2396 2397 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2398 if (injail) 2399 return (inp); 2400 else 2401 local_exact = inp; 2402 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2403 #ifdef INET6 2404 /* XXX inp locking, NULL check */ 2405 if (inp->inp_vflag & INP_IPV6PROTO) 2406 local_wild_mapped = inp; 2407 else 2408 #endif 2409 if (injail) 2410 jail_wild = inp; 2411 else 2412 local_wild = inp; 2413 } 2414 } /* LIST_FOREACH */ 2415 if (jail_wild != NULL) 2416 return (jail_wild); 2417 if (local_exact != NULL) 2418 return (local_exact); 2419 if (local_wild != NULL) 2420 return (local_wild); 2421 #ifdef INET6 2422 if (local_wild_mapped != NULL) 2423 return (local_wild_mapped); 2424 #endif 2425 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 2426 2427 return (NULL); 2428 } 2429 2430 /* 2431 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 2432 * hash list lock, and will return the inpcb locked (i.e., requires 2433 * INPLOOKUP_LOCKPCB). 2434 */ 2435 static struct inpcb * 2436 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2437 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2438 struct ifnet *ifp) 2439 { 2440 struct inpcb *inp; 2441 2442 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2443 (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp); 2444 if (inp != NULL) { 2445 if (lookupflags & INPLOOKUP_WLOCKPCB) { 2446 INP_WLOCK(inp); 2447 if (__predict_false(inp->inp_flags2 & INP_FREED)) { 2448 INP_WUNLOCK(inp); 2449 inp = NULL; 2450 } 2451 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 2452 INP_RLOCK(inp); 2453 if (__predict_false(inp->inp_flags2 & INP_FREED)) { 2454 INP_RUNLOCK(inp); 2455 inp = NULL; 2456 } 2457 } else 2458 panic("%s: locking bug", __func__); 2459 #ifdef INVARIANTS 2460 if (inp != NULL) { 2461 if (lookupflags & INPLOOKUP_WLOCKPCB) 2462 INP_WLOCK_ASSERT(inp); 2463 else 2464 INP_RLOCK_ASSERT(inp); 2465 } 2466 #endif 2467 } 2468 2469 return (inp); 2470 } 2471 2472 /* 2473 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2474 * from which a pre-calculated hash value may be extracted. 2475 * 2476 * Possibly more of this logic should be in in_pcbgroup.c. 2477 */ 2478 struct inpcb * 2479 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2480 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 2481 { 2482 #if defined(PCBGROUP) && !defined(RSS) 2483 struct inpcbgroup *pcbgroup; 2484 #endif 2485 2486 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2487 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2488 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2489 ("%s: LOCKPCB not set", __func__)); 2490 2491 /* 2492 * When not using RSS, use connection groups in preference to the 2493 * reservation table when looking up 4-tuples. When using RSS, just 2494 * use the reservation table, due to the cost of the Toeplitz hash 2495 * in software. 2496 * 2497 * XXXRW: This policy belongs in the pcbgroup code, as in principle 2498 * we could be doing RSS with a non-Toeplitz hash that is affordable 2499 * in software. 2500 */ 2501 #if defined(PCBGROUP) && !defined(RSS) 2502 if (in_pcbgroup_enabled(pcbinfo)) { 2503 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2504 fport); 2505 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2506 laddr, lport, lookupflags, ifp)); 2507 } 2508 #endif 2509 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2510 lookupflags, ifp)); 2511 } 2512 2513 struct inpcb * 2514 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2515 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2516 struct ifnet *ifp, struct mbuf *m) 2517 { 2518 #ifdef PCBGROUP 2519 struct inpcbgroup *pcbgroup; 2520 #endif 2521 2522 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2523 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2524 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2525 ("%s: LOCKPCB not set", __func__)); 2526 2527 #ifdef PCBGROUP 2528 /* 2529 * If we can use a hardware-generated hash to look up the connection 2530 * group, use that connection group to find the inpcb. Otherwise 2531 * fall back on a software hash -- or the reservation table if we're 2532 * using RSS. 2533 * 2534 * XXXRW: As above, that policy belongs in the pcbgroup code. 2535 */ 2536 if (in_pcbgroup_enabled(pcbinfo) && 2537 !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { 2538 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), 2539 m->m_pkthdr.flowid); 2540 if (pcbgroup != NULL) 2541 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, 2542 fport, laddr, lport, lookupflags, ifp)); 2543 #ifndef RSS 2544 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2545 fport); 2546 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2547 laddr, lport, lookupflags, ifp)); 2548 #endif 2549 } 2550 #endif 2551 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2552 lookupflags, ifp)); 2553 } 2554 #endif /* INET */ 2555 2556 /* 2557 * Insert PCB onto various hash lists. 2558 */ 2559 static int 2560 in_pcbinshash_internal(struct inpcb *inp, struct mbuf *m) 2561 { 2562 struct inpcbhead *pcbhash; 2563 struct inpcbporthead *pcbporthash; 2564 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2565 struct inpcbport *phd; 2566 u_int32_t hashkey_faddr; 2567 int so_options; 2568 2569 INP_WLOCK_ASSERT(inp); 2570 INP_HASH_WLOCK_ASSERT(pcbinfo); 2571 2572 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2573 ("in_pcbinshash: INP_INHASHLIST")); 2574 2575 #ifdef INET6 2576 if (inp->inp_vflag & INP_IPV6) 2577 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2578 else 2579 #endif 2580 hashkey_faddr = inp->inp_faddr.s_addr; 2581 2582 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2583 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2584 2585 pcbporthash = &pcbinfo->ipi_porthashbase[ 2586 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2587 2588 /* 2589 * Add entry to load balance group. 2590 * Only do this if SO_REUSEPORT_LB is set. 2591 */ 2592 so_options = inp_so_options(inp); 2593 if (so_options & SO_REUSEPORT_LB) { 2594 int ret = in_pcbinslbgrouphash(inp); 2595 if (ret) { 2596 /* pcb lb group malloc fail (ret=ENOBUFS). */ 2597 return (ret); 2598 } 2599 } 2600 2601 /* 2602 * Go through port list and look for a head for this lport. 2603 */ 2604 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2605 if (phd->phd_port == inp->inp_lport) 2606 break; 2607 } 2608 /* 2609 * If none exists, malloc one and tack it on. 2610 */ 2611 if (phd == NULL) { 2612 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 2613 if (phd == NULL) { 2614 return (ENOBUFS); /* XXX */ 2615 } 2616 bzero(&phd->phd_epoch_ctx, sizeof(struct epoch_context)); 2617 phd->phd_port = inp->inp_lport; 2618 CK_LIST_INIT(&phd->phd_pcblist); 2619 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2620 } 2621 inp->inp_phd = phd; 2622 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2623 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2624 inp->inp_flags |= INP_INHASHLIST; 2625 #ifdef PCBGROUP 2626 if (m != NULL) { 2627 in_pcbgroup_update_mbuf(inp, m); 2628 } else { 2629 in_pcbgroup_update(inp); 2630 } 2631 #endif 2632 return (0); 2633 } 2634 2635 int 2636 in_pcbinshash(struct inpcb *inp) 2637 { 2638 2639 return (in_pcbinshash_internal(inp, NULL)); 2640 } 2641 2642 int 2643 in_pcbinshash_mbuf(struct inpcb *inp, struct mbuf *m) 2644 { 2645 2646 return (in_pcbinshash_internal(inp, m)); 2647 } 2648 2649 /* 2650 * Move PCB to the proper hash bucket when { faddr, fport } have been 2651 * changed. NOTE: This does not handle the case of the lport changing (the 2652 * hashed port list would have to be updated as well), so the lport must 2653 * not change after in_pcbinshash() has been called. 2654 */ 2655 void 2656 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) 2657 { 2658 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2659 struct inpcbhead *head; 2660 u_int32_t hashkey_faddr; 2661 2662 INP_WLOCK_ASSERT(inp); 2663 INP_HASH_WLOCK_ASSERT(pcbinfo); 2664 2665 KASSERT(inp->inp_flags & INP_INHASHLIST, 2666 ("in_pcbrehash: !INP_INHASHLIST")); 2667 2668 #ifdef INET6 2669 if (inp->inp_vflag & INP_IPV6) 2670 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2671 else 2672 #endif 2673 hashkey_faddr = inp->inp_faddr.s_addr; 2674 2675 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2676 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2677 2678 CK_LIST_REMOVE(inp, inp_hash); 2679 CK_LIST_INSERT_HEAD(head, inp, inp_hash); 2680 2681 #ifdef PCBGROUP 2682 if (m != NULL) 2683 in_pcbgroup_update_mbuf(inp, m); 2684 else 2685 in_pcbgroup_update(inp); 2686 #endif 2687 } 2688 2689 void 2690 in_pcbrehash(struct inpcb *inp) 2691 { 2692 2693 in_pcbrehash_mbuf(inp, NULL); 2694 } 2695 2696 /* 2697 * Remove PCB from various lists. 2698 */ 2699 static void 2700 in_pcbremlists(struct inpcb *inp) 2701 { 2702 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2703 2704 INP_WLOCK_ASSERT(inp); 2705 INP_LIST_WLOCK_ASSERT(pcbinfo); 2706 2707 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 2708 if (inp->inp_flags & INP_INHASHLIST) { 2709 struct inpcbport *phd = inp->inp_phd; 2710 2711 INP_HASH_WLOCK(pcbinfo); 2712 2713 /* XXX: Only do if SO_REUSEPORT_LB set? */ 2714 in_pcbremlbgrouphash(inp); 2715 2716 CK_LIST_REMOVE(inp, inp_hash); 2717 CK_LIST_REMOVE(inp, inp_portlist); 2718 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 2719 CK_LIST_REMOVE(phd, phd_hash); 2720 NET_EPOCH_CALL(inpcbport_free, &phd->phd_epoch_ctx); 2721 } 2722 INP_HASH_WUNLOCK(pcbinfo); 2723 inp->inp_flags &= ~INP_INHASHLIST; 2724 } 2725 CK_LIST_REMOVE(inp, inp_list); 2726 pcbinfo->ipi_count--; 2727 #ifdef PCBGROUP 2728 in_pcbgroup_remove(inp); 2729 #endif 2730 } 2731 2732 /* 2733 * Check for alternatives when higher level complains 2734 * about service problems. For now, invalidate cached 2735 * routing information. If the route was created dynamically 2736 * (by a redirect), time to try a default gateway again. 2737 */ 2738 void 2739 in_losing(struct inpcb *inp) 2740 { 2741 2742 RO_INVALIDATE_CACHE(&inp->inp_route); 2743 return; 2744 } 2745 2746 /* 2747 * A set label operation has occurred at the socket layer, propagate the 2748 * label change into the in_pcb for the socket. 2749 */ 2750 void 2751 in_pcbsosetlabel(struct socket *so) 2752 { 2753 #ifdef MAC 2754 struct inpcb *inp; 2755 2756 inp = sotoinpcb(so); 2757 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2758 2759 INP_WLOCK(inp); 2760 SOCK_LOCK(so); 2761 mac_inpcb_sosetlabel(so, inp); 2762 SOCK_UNLOCK(so); 2763 INP_WUNLOCK(inp); 2764 #endif 2765 } 2766 2767 /* 2768 * ipport_tick runs once per second, determining if random port allocation 2769 * should be continued. If more than ipport_randomcps ports have been 2770 * allocated in the last second, then we return to sequential port 2771 * allocation. We return to random allocation only once we drop below 2772 * ipport_randomcps for at least ipport_randomtime seconds. 2773 */ 2774 static void 2775 ipport_tick(void *xtp) 2776 { 2777 VNET_ITERATOR_DECL(vnet_iter); 2778 2779 VNET_LIST_RLOCK_NOSLEEP(); 2780 VNET_FOREACH(vnet_iter) { 2781 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2782 if (V_ipport_tcpallocs <= 2783 V_ipport_tcplastcount + V_ipport_randomcps) { 2784 if (V_ipport_stoprandom > 0) 2785 V_ipport_stoprandom--; 2786 } else 2787 V_ipport_stoprandom = V_ipport_randomtime; 2788 V_ipport_tcplastcount = V_ipport_tcpallocs; 2789 CURVNET_RESTORE(); 2790 } 2791 VNET_LIST_RUNLOCK_NOSLEEP(); 2792 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2793 } 2794 2795 static void 2796 ip_fini(void *xtp) 2797 { 2798 2799 callout_stop(&ipport_tick_callout); 2800 } 2801 2802 /* 2803 * The ipport_callout should start running at about the time we attach the 2804 * inet or inet6 domains. 2805 */ 2806 static void 2807 ipport_tick_init(const void *unused __unused) 2808 { 2809 2810 /* Start ipport_tick. */ 2811 callout_init(&ipport_tick_callout, 1); 2812 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2813 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2814 SHUTDOWN_PRI_DEFAULT); 2815 } 2816 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2817 ipport_tick_init, NULL); 2818 2819 void 2820 inp_wlock(struct inpcb *inp) 2821 { 2822 2823 INP_WLOCK(inp); 2824 } 2825 2826 void 2827 inp_wunlock(struct inpcb *inp) 2828 { 2829 2830 INP_WUNLOCK(inp); 2831 } 2832 2833 void 2834 inp_rlock(struct inpcb *inp) 2835 { 2836 2837 INP_RLOCK(inp); 2838 } 2839 2840 void 2841 inp_runlock(struct inpcb *inp) 2842 { 2843 2844 INP_RUNLOCK(inp); 2845 } 2846 2847 #ifdef INVARIANT_SUPPORT 2848 void 2849 inp_lock_assert(struct inpcb *inp) 2850 { 2851 2852 INP_WLOCK_ASSERT(inp); 2853 } 2854 2855 void 2856 inp_unlock_assert(struct inpcb *inp) 2857 { 2858 2859 INP_UNLOCK_ASSERT(inp); 2860 } 2861 #endif 2862 2863 void 2864 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2865 { 2866 struct inpcb *inp; 2867 2868 INP_INFO_WLOCK(&V_tcbinfo); 2869 CK_LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 2870 INP_WLOCK(inp); 2871 func(inp, arg); 2872 INP_WUNLOCK(inp); 2873 } 2874 INP_INFO_WUNLOCK(&V_tcbinfo); 2875 } 2876 2877 struct socket * 2878 inp_inpcbtosocket(struct inpcb *inp) 2879 { 2880 2881 INP_WLOCK_ASSERT(inp); 2882 return (inp->inp_socket); 2883 } 2884 2885 struct tcpcb * 2886 inp_inpcbtotcpcb(struct inpcb *inp) 2887 { 2888 2889 INP_WLOCK_ASSERT(inp); 2890 return ((struct tcpcb *)inp->inp_ppcb); 2891 } 2892 2893 int 2894 inp_ip_tos_get(const struct inpcb *inp) 2895 { 2896 2897 return (inp->inp_ip_tos); 2898 } 2899 2900 void 2901 inp_ip_tos_set(struct inpcb *inp, int val) 2902 { 2903 2904 inp->inp_ip_tos = val; 2905 } 2906 2907 void 2908 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2909 uint32_t *faddr, uint16_t *fp) 2910 { 2911 2912 INP_LOCK_ASSERT(inp); 2913 *laddr = inp->inp_laddr.s_addr; 2914 *faddr = inp->inp_faddr.s_addr; 2915 *lp = inp->inp_lport; 2916 *fp = inp->inp_fport; 2917 } 2918 2919 struct inpcb * 2920 so_sotoinpcb(struct socket *so) 2921 { 2922 2923 return (sotoinpcb(so)); 2924 } 2925 2926 struct tcpcb * 2927 so_sototcpcb(struct socket *so) 2928 { 2929 2930 return (sototcpcb(so)); 2931 } 2932 2933 /* 2934 * Create an external-format (``xinpcb'') structure using the information in 2935 * the kernel-format in_pcb structure pointed to by inp. This is done to 2936 * reduce the spew of irrelevant information over this interface, to isolate 2937 * user code from changes in the kernel structure, and potentially to provide 2938 * information-hiding if we decide that some of this information should be 2939 * hidden from users. 2940 */ 2941 void 2942 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2943 { 2944 2945 bzero(xi, sizeof(*xi)); 2946 xi->xi_len = sizeof(struct xinpcb); 2947 if (inp->inp_socket) 2948 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2949 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2950 xi->inp_gencnt = inp->inp_gencnt; 2951 xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; 2952 xi->inp_flow = inp->inp_flow; 2953 xi->inp_flowid = inp->inp_flowid; 2954 xi->inp_flowtype = inp->inp_flowtype; 2955 xi->inp_flags = inp->inp_flags; 2956 xi->inp_flags2 = inp->inp_flags2; 2957 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2958 xi->in6p_cksum = inp->in6p_cksum; 2959 xi->in6p_hops = inp->in6p_hops; 2960 xi->inp_ip_tos = inp->inp_ip_tos; 2961 xi->inp_vflag = inp->inp_vflag; 2962 xi->inp_ip_ttl = inp->inp_ip_ttl; 2963 xi->inp_ip_p = inp->inp_ip_p; 2964 xi->inp_ip_minttl = inp->inp_ip_minttl; 2965 } 2966 2967 #ifdef DDB 2968 static void 2969 db_print_indent(int indent) 2970 { 2971 int i; 2972 2973 for (i = 0; i < indent; i++) 2974 db_printf(" "); 2975 } 2976 2977 static void 2978 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2979 { 2980 char faddr_str[48], laddr_str[48]; 2981 2982 db_print_indent(indent); 2983 db_printf("%s at %p\n", name, inc); 2984 2985 indent += 2; 2986 2987 #ifdef INET6 2988 if (inc->inc_flags & INC_ISIPV6) { 2989 /* IPv6. */ 2990 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2991 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2992 } else 2993 #endif 2994 { 2995 /* IPv4. */ 2996 inet_ntoa_r(inc->inc_laddr, laddr_str); 2997 inet_ntoa_r(inc->inc_faddr, faddr_str); 2998 } 2999 db_print_indent(indent); 3000 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 3001 ntohs(inc->inc_lport)); 3002 db_print_indent(indent); 3003 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 3004 ntohs(inc->inc_fport)); 3005 } 3006 3007 static void 3008 db_print_inpflags(int inp_flags) 3009 { 3010 int comma; 3011 3012 comma = 0; 3013 if (inp_flags & INP_RECVOPTS) { 3014 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 3015 comma = 1; 3016 } 3017 if (inp_flags & INP_RECVRETOPTS) { 3018 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 3019 comma = 1; 3020 } 3021 if (inp_flags & INP_RECVDSTADDR) { 3022 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 3023 comma = 1; 3024 } 3025 if (inp_flags & INP_ORIGDSTADDR) { 3026 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 3027 comma = 1; 3028 } 3029 if (inp_flags & INP_HDRINCL) { 3030 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 3031 comma = 1; 3032 } 3033 if (inp_flags & INP_HIGHPORT) { 3034 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 3035 comma = 1; 3036 } 3037 if (inp_flags & INP_LOWPORT) { 3038 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 3039 comma = 1; 3040 } 3041 if (inp_flags & INP_ANONPORT) { 3042 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 3043 comma = 1; 3044 } 3045 if (inp_flags & INP_RECVIF) { 3046 db_printf("%sINP_RECVIF", comma ? ", " : ""); 3047 comma = 1; 3048 } 3049 if (inp_flags & INP_MTUDISC) { 3050 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 3051 comma = 1; 3052 } 3053 if (inp_flags & INP_RECVTTL) { 3054 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 3055 comma = 1; 3056 } 3057 if (inp_flags & INP_DONTFRAG) { 3058 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 3059 comma = 1; 3060 } 3061 if (inp_flags & INP_RECVTOS) { 3062 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 3063 comma = 1; 3064 } 3065 if (inp_flags & IN6P_IPV6_V6ONLY) { 3066 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 3067 comma = 1; 3068 } 3069 if (inp_flags & IN6P_PKTINFO) { 3070 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 3071 comma = 1; 3072 } 3073 if (inp_flags & IN6P_HOPLIMIT) { 3074 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 3075 comma = 1; 3076 } 3077 if (inp_flags & IN6P_HOPOPTS) { 3078 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 3079 comma = 1; 3080 } 3081 if (inp_flags & IN6P_DSTOPTS) { 3082 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 3083 comma = 1; 3084 } 3085 if (inp_flags & IN6P_RTHDR) { 3086 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 3087 comma = 1; 3088 } 3089 if (inp_flags & IN6P_RTHDRDSTOPTS) { 3090 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 3091 comma = 1; 3092 } 3093 if (inp_flags & IN6P_TCLASS) { 3094 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 3095 comma = 1; 3096 } 3097 if (inp_flags & IN6P_AUTOFLOWLABEL) { 3098 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 3099 comma = 1; 3100 } 3101 if (inp_flags & INP_TIMEWAIT) { 3102 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 3103 comma = 1; 3104 } 3105 if (inp_flags & INP_ONESBCAST) { 3106 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 3107 comma = 1; 3108 } 3109 if (inp_flags & INP_DROPPED) { 3110 db_printf("%sINP_DROPPED", comma ? ", " : ""); 3111 comma = 1; 3112 } 3113 if (inp_flags & INP_SOCKREF) { 3114 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 3115 comma = 1; 3116 } 3117 if (inp_flags & IN6P_RFC2292) { 3118 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 3119 comma = 1; 3120 } 3121 if (inp_flags & IN6P_MTU) { 3122 db_printf("IN6P_MTU%s", comma ? ", " : ""); 3123 comma = 1; 3124 } 3125 } 3126 3127 static void 3128 db_print_inpvflag(u_char inp_vflag) 3129 { 3130 int comma; 3131 3132 comma = 0; 3133 if (inp_vflag & INP_IPV4) { 3134 db_printf("%sINP_IPV4", comma ? ", " : ""); 3135 comma = 1; 3136 } 3137 if (inp_vflag & INP_IPV6) { 3138 db_printf("%sINP_IPV6", comma ? ", " : ""); 3139 comma = 1; 3140 } 3141 if (inp_vflag & INP_IPV6PROTO) { 3142 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 3143 comma = 1; 3144 } 3145 } 3146 3147 static void 3148 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 3149 { 3150 3151 db_print_indent(indent); 3152 db_printf("%s at %p\n", name, inp); 3153 3154 indent += 2; 3155 3156 db_print_indent(indent); 3157 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 3158 3159 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 3160 3161 db_print_indent(indent); 3162 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 3163 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 3164 3165 db_print_indent(indent); 3166 db_printf("inp_label: %p inp_flags: 0x%x (", 3167 inp->inp_label, inp->inp_flags); 3168 db_print_inpflags(inp->inp_flags); 3169 db_printf(")\n"); 3170 3171 db_print_indent(indent); 3172 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 3173 inp->inp_vflag); 3174 db_print_inpvflag(inp->inp_vflag); 3175 db_printf(")\n"); 3176 3177 db_print_indent(indent); 3178 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 3179 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 3180 3181 db_print_indent(indent); 3182 #ifdef INET6 3183 if (inp->inp_vflag & INP_IPV6) { 3184 db_printf("in6p_options: %p in6p_outputopts: %p " 3185 "in6p_moptions: %p\n", inp->in6p_options, 3186 inp->in6p_outputopts, inp->in6p_moptions); 3187 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 3188 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 3189 inp->in6p_hops); 3190 } else 3191 #endif 3192 { 3193 db_printf("inp_ip_tos: %d inp_ip_options: %p " 3194 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 3195 inp->inp_options, inp->inp_moptions); 3196 } 3197 3198 db_print_indent(indent); 3199 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 3200 (uintmax_t)inp->inp_gencnt); 3201 } 3202 3203 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 3204 { 3205 struct inpcb *inp; 3206 3207 if (!have_addr) { 3208 db_printf("usage: show inpcb <addr>\n"); 3209 return; 3210 } 3211 inp = (struct inpcb *)addr; 3212 3213 db_print_inpcb(inp, "inpcb", 0); 3214 } 3215 #endif /* DDB */ 3216 3217 #ifdef RATELIMIT 3218 /* 3219 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 3220 * if any. 3221 */ 3222 int 3223 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 3224 { 3225 union if_snd_tag_modify_params params = { 3226 .rate_limit.max_rate = max_pacing_rate, 3227 .rate_limit.flags = M_NOWAIT, 3228 }; 3229 struct m_snd_tag *mst; 3230 struct ifnet *ifp; 3231 int error; 3232 3233 mst = inp->inp_snd_tag; 3234 if (mst == NULL) 3235 return (EINVAL); 3236 3237 ifp = mst->ifp; 3238 if (ifp == NULL) 3239 return (EINVAL); 3240 3241 if (ifp->if_snd_tag_modify == NULL) { 3242 error = EOPNOTSUPP; 3243 } else { 3244 error = ifp->if_snd_tag_modify(mst, ¶ms); 3245 } 3246 return (error); 3247 } 3248 3249 /* 3250 * Query existing TX rate limit based on the existing 3251 * "inp->inp_snd_tag", if any. 3252 */ 3253 int 3254 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3255 { 3256 union if_snd_tag_query_params params = { }; 3257 struct m_snd_tag *mst; 3258 struct ifnet *ifp; 3259 int error; 3260 3261 mst = inp->inp_snd_tag; 3262 if (mst == NULL) 3263 return (EINVAL); 3264 3265 ifp = mst->ifp; 3266 if (ifp == NULL) 3267 return (EINVAL); 3268 3269 if (ifp->if_snd_tag_query == NULL) { 3270 error = EOPNOTSUPP; 3271 } else { 3272 error = ifp->if_snd_tag_query(mst, ¶ms); 3273 if (error == 0 && p_max_pacing_rate != NULL) 3274 *p_max_pacing_rate = params.rate_limit.max_rate; 3275 } 3276 return (error); 3277 } 3278 3279 /* 3280 * Query existing TX queue level based on the existing 3281 * "inp->inp_snd_tag", if any. 3282 */ 3283 int 3284 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3285 { 3286 union if_snd_tag_query_params params = { }; 3287 struct m_snd_tag *mst; 3288 struct ifnet *ifp; 3289 int error; 3290 3291 mst = inp->inp_snd_tag; 3292 if (mst == NULL) 3293 return (EINVAL); 3294 3295 ifp = mst->ifp; 3296 if (ifp == NULL) 3297 return (EINVAL); 3298 3299 if (ifp->if_snd_tag_query == NULL) 3300 return (EOPNOTSUPP); 3301 3302 error = ifp->if_snd_tag_query(mst, ¶ms); 3303 if (error == 0 && p_txqueue_level != NULL) 3304 *p_txqueue_level = params.rate_limit.queue_level; 3305 return (error); 3306 } 3307 3308 /* 3309 * Allocate a new TX rate limit send tag from the network interface 3310 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3311 */ 3312 int 3313 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3314 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st) 3315 3316 { 3317 union if_snd_tag_alloc_params params = { 3318 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3319 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3320 .rate_limit.hdr.flowid = flowid, 3321 .rate_limit.hdr.flowtype = flowtype, 3322 .rate_limit.hdr.numa_domain = inp->inp_numa_domain, 3323 .rate_limit.max_rate = max_pacing_rate, 3324 .rate_limit.flags = M_NOWAIT, 3325 }; 3326 int error; 3327 3328 INP_WLOCK_ASSERT(inp); 3329 3330 if (*st != NULL) 3331 return (EINVAL); 3332 3333 error = m_snd_tag_alloc(ifp, ¶ms, st); 3334 #ifdef INET 3335 if (error == 0) { 3336 counter_u64_add(rate_limit_set_ok, 1); 3337 counter_u64_add(rate_limit_active, 1); 3338 } else if (error != EOPNOTSUPP) 3339 counter_u64_add(rate_limit_alloc_fail, 1); 3340 #endif 3341 return (error); 3342 } 3343 3344 void 3345 in_pcbdetach_tag(struct m_snd_tag *mst) 3346 { 3347 3348 m_snd_tag_rele(mst); 3349 #ifdef INET 3350 counter_u64_add(rate_limit_active, -1); 3351 #endif 3352 } 3353 3354 /* 3355 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3356 * if any: 3357 */ 3358 void 3359 in_pcbdetach_txrtlmt(struct inpcb *inp) 3360 { 3361 struct m_snd_tag *mst; 3362 3363 INP_WLOCK_ASSERT(inp); 3364 3365 mst = inp->inp_snd_tag; 3366 inp->inp_snd_tag = NULL; 3367 3368 if (mst == NULL) 3369 return; 3370 3371 m_snd_tag_rele(mst); 3372 } 3373 3374 int 3375 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate) 3376 { 3377 int error; 3378 3379 /* 3380 * If the existing send tag is for the wrong interface due to 3381 * a route change, first drop the existing tag. Set the 3382 * CHANGED flag so that we will keep trying to allocate a new 3383 * tag if we fail to allocate one this time. 3384 */ 3385 if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) { 3386 in_pcbdetach_txrtlmt(inp); 3387 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3388 } 3389 3390 /* 3391 * NOTE: When attaching to a network interface a reference is 3392 * made to ensure the network interface doesn't go away until 3393 * all ratelimit connections are gone. The network interface 3394 * pointers compared below represent valid network interfaces, 3395 * except when comparing towards NULL. 3396 */ 3397 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3398 error = 0; 3399 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3400 if (inp->inp_snd_tag != NULL) 3401 in_pcbdetach_txrtlmt(inp); 3402 error = 0; 3403 } else if (inp->inp_snd_tag == NULL) { 3404 /* 3405 * In order to utilize packet pacing with RSS, we need 3406 * to wait until there is a valid RSS hash before we 3407 * can proceed: 3408 */ 3409 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3410 error = EAGAIN; 3411 } else { 3412 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3413 mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag); 3414 } 3415 } else { 3416 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3417 } 3418 if (error == 0 || error == EOPNOTSUPP) 3419 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3420 3421 return (error); 3422 } 3423 3424 /* 3425 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3426 * is set in the fast path and will attach/detach/modify the TX rate 3427 * limit send tag based on the socket's so_max_pacing_rate value. 3428 */ 3429 void 3430 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3431 { 3432 struct socket *socket; 3433 uint32_t max_pacing_rate; 3434 bool did_upgrade; 3435 int error; 3436 3437 if (inp == NULL) 3438 return; 3439 3440 socket = inp->inp_socket; 3441 if (socket == NULL) 3442 return; 3443 3444 if (!INP_WLOCKED(inp)) { 3445 /* 3446 * NOTE: If the write locking fails, we need to bail 3447 * out and use the non-ratelimited ring for the 3448 * transmit until there is a new chance to get the 3449 * write lock. 3450 */ 3451 if (!INP_TRY_UPGRADE(inp)) 3452 return; 3453 did_upgrade = 1; 3454 } else { 3455 did_upgrade = 0; 3456 } 3457 3458 /* 3459 * NOTE: The so_max_pacing_rate value is read unlocked, 3460 * because atomic updates are not required since the variable 3461 * is checked at every mbuf we send. It is assumed that the 3462 * variable read itself will be atomic. 3463 */ 3464 max_pacing_rate = socket->so_max_pacing_rate; 3465 3466 error = in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate); 3467 3468 if (did_upgrade) 3469 INP_DOWNGRADE(inp); 3470 } 3471 3472 /* 3473 * Track route changes for TX rate limiting. 3474 */ 3475 void 3476 in_pcboutput_eagain(struct inpcb *inp) 3477 { 3478 bool did_upgrade; 3479 3480 if (inp == NULL) 3481 return; 3482 3483 if (inp->inp_snd_tag == NULL) 3484 return; 3485 3486 if (!INP_WLOCKED(inp)) { 3487 /* 3488 * NOTE: If the write locking fails, we need to bail 3489 * out and use the non-ratelimited ring for the 3490 * transmit until there is a new chance to get the 3491 * write lock. 3492 */ 3493 if (!INP_TRY_UPGRADE(inp)) 3494 return; 3495 did_upgrade = 1; 3496 } else { 3497 did_upgrade = 0; 3498 } 3499 3500 /* detach rate limiting */ 3501 in_pcbdetach_txrtlmt(inp); 3502 3503 /* make sure new mbuf send tag allocation is made */ 3504 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3505 3506 if (did_upgrade) 3507 INP_DOWNGRADE(inp); 3508 } 3509 3510 #ifdef INET 3511 static void 3512 rl_init(void *st) 3513 { 3514 rate_limit_active = counter_u64_alloc(M_WAITOK); 3515 rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK); 3516 rate_limit_set_ok = counter_u64_alloc(M_WAITOK); 3517 } 3518 3519 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL); 3520 #endif 3521 #endif /* RATELIMIT */ 3522