xref: /freebsd/sys/netinet/in_pcb.c (revision 4928135658a9d0eaee37003df6137ab363fcb0b4)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1991, 1993, 1995
5  *	The Regents of the University of California.
6  * Copyright (c) 2007-2009 Robert N. M. Watson
7  * Copyright (c) 2010-2011 Juniper Networks, Inc.
8  * All rights reserved.
9  *
10  * Portions of this software were developed by Robert N. M. Watson under
11  * contract to Juniper Networks, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #include "opt_ddb.h"
44 #include "opt_ipsec.h"
45 #include "opt_inet.h"
46 #include "opt_inet6.h"
47 #include "opt_ratelimit.h"
48 #include "opt_pcbgroup.h"
49 #include "opt_rss.h"
50 
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mbuf.h>
56 #include <sys/callout.h>
57 #include <sys/eventhandler.h>
58 #include <sys/domain.h>
59 #include <sys/protosw.h>
60 #include <sys/rmlock.h>
61 #include <sys/smp.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/sockio.h>
65 #include <sys/priv.h>
66 #include <sys/proc.h>
67 #include <sys/refcount.h>
68 #include <sys/jail.h>
69 #include <sys/kernel.h>
70 #include <sys/sysctl.h>
71 
72 #ifdef DDB
73 #include <ddb/ddb.h>
74 #endif
75 
76 #include <vm/uma.h>
77 
78 #include <net/if.h>
79 #include <net/if_var.h>
80 #include <net/if_types.h>
81 #include <net/if_llatbl.h>
82 #include <net/route.h>
83 #include <net/rss_config.h>
84 #include <net/vnet.h>
85 
86 #if defined(INET) || defined(INET6)
87 #include <netinet/in.h>
88 #include <netinet/in_pcb.h>
89 #include <netinet/ip_var.h>
90 #include <netinet/tcp_var.h>
91 #ifdef TCPHPTS
92 #include <netinet/tcp_hpts.h>
93 #endif
94 #include <netinet/udp.h>
95 #include <netinet/udp_var.h>
96 #endif
97 #ifdef INET
98 #include <netinet/in_var.h>
99 #endif
100 #ifdef INET6
101 #include <netinet/ip6.h>
102 #include <netinet6/in6_pcb.h>
103 #include <netinet6/in6_var.h>
104 #include <netinet6/ip6_var.h>
105 #endif /* INET6 */
106 
107 #include <netipsec/ipsec_support.h>
108 
109 #include <security/mac/mac_framework.h>
110 
111 static struct callout	ipport_tick_callout;
112 
113 /*
114  * These configure the range of local port addresses assigned to
115  * "unspecified" outgoing connections/packets/whatever.
116  */
117 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
118 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
119 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
120 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
121 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
122 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
123 
124 /*
125  * Reserved ports accessible only to root. There are significant
126  * security considerations that must be accounted for when changing these,
127  * but the security benefits can be great. Please be careful.
128  */
129 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
130 VNET_DEFINE(int, ipport_reservedlow);
131 
132 /* Variables dealing with random ephemeral port allocation. */
133 VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
134 VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
135 VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
136 VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
137 VNET_DEFINE(int, ipport_tcpallocs);
138 static VNET_DEFINE(int, ipport_tcplastcount);
139 
140 #define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
141 
142 static void	in_pcbremlists(struct inpcb *inp);
143 #ifdef INET
144 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
145 			    struct in_addr faddr, u_int fport_arg,
146 			    struct in_addr laddr, u_int lport_arg,
147 			    int lookupflags, struct ifnet *ifp);
148 
149 #define RANGECHK(var, min, max) \
150 	if ((var) < (min)) { (var) = (min); } \
151 	else if ((var) > (max)) { (var) = (max); }
152 
153 static int
154 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
155 {
156 	int error;
157 
158 	error = sysctl_handle_int(oidp, arg1, arg2, req);
159 	if (error == 0) {
160 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
161 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
162 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
163 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
164 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
165 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
166 	}
167 	return (error);
168 }
169 
170 #undef RANGECHK
171 
172 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
173     "IP Ports");
174 
175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
176 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
177 	&VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", "");
178 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
179 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
180 	&VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", "");
181 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
182 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
183 	&VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", "");
184 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
185 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
186 	&VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", "");
187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
188 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
189 	&VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", "");
190 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
191 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
192 	&VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", "");
193 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
194 	CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
195 	&VNET_NAME(ipport_reservedhigh), 0, "");
196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
197 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
198 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
199 	CTLFLAG_VNET | CTLFLAG_RW,
200 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
202 	CTLFLAG_VNET | CTLFLAG_RW,
203 	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
204 	"allocations before switching to a sequental one");
205 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
206 	CTLFLAG_VNET | CTLFLAG_RW,
207 	&VNET_NAME(ipport_randomtime), 0,
208 	"Minimum time to keep sequental port "
209 	"allocation before switching to a random one");
210 #endif /* INET */
211 
212 /*
213  * in_pcb.c: manage the Protocol Control Blocks.
214  *
215  * NOTE: It is assumed that most of these functions will be called with
216  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
217  * functions often modify hash chains or addresses in pcbs.
218  */
219 
220 /*
221  * Different protocols initialize their inpcbs differently - giving
222  * different name to the lock.  But they all are disposed the same.
223  */
224 static void
225 inpcb_fini(void *mem, int size)
226 {
227 	struct inpcb *inp = mem;
228 
229 	INP_LOCK_DESTROY(inp);
230 }
231 
232 /*
233  * Initialize an inpcbinfo -- we should be able to reduce the number of
234  * arguments in time.
235  */
236 void
237 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
238     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
239     char *inpcbzone_name, uma_init inpcbzone_init, u_int hashfields)
240 {
241 
242 	INP_INFO_LOCK_INIT(pcbinfo, name);
243 	INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");	/* XXXRW: argument? */
244 	INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist");
245 #ifdef VIMAGE
246 	pcbinfo->ipi_vnet = curvnet;
247 #endif
248 	pcbinfo->ipi_listhead = listhead;
249 	LIST_INIT(pcbinfo->ipi_listhead);
250 	pcbinfo->ipi_count = 0;
251 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
252 	    &pcbinfo->ipi_hashmask);
253 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
254 	    &pcbinfo->ipi_porthashmask);
255 #ifdef PCBGROUP
256 	in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
257 #endif
258 	pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
259 	    NULL, NULL, inpcbzone_init, inpcb_fini, UMA_ALIGN_PTR, 0);
260 	uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
261 	uma_zone_set_warning(pcbinfo->ipi_zone,
262 	    "kern.ipc.maxsockets limit reached");
263 }
264 
265 /*
266  * Destroy an inpcbinfo.
267  */
268 void
269 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
270 {
271 
272 	KASSERT(pcbinfo->ipi_count == 0,
273 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
274 
275 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
276 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
277 	    pcbinfo->ipi_porthashmask);
278 #ifdef PCBGROUP
279 	in_pcbgroup_destroy(pcbinfo);
280 #endif
281 	uma_zdestroy(pcbinfo->ipi_zone);
282 	INP_LIST_LOCK_DESTROY(pcbinfo);
283 	INP_HASH_LOCK_DESTROY(pcbinfo);
284 	INP_INFO_LOCK_DESTROY(pcbinfo);
285 }
286 
287 /*
288  * Allocate a PCB and associate it with the socket.
289  * On success return with the PCB locked.
290  */
291 int
292 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
293 {
294 	struct inpcb *inp;
295 	int error;
296 
297 #ifdef INVARIANTS
298 	if (pcbinfo == &V_tcbinfo) {
299 		INP_INFO_RLOCK_ASSERT(pcbinfo);
300 	} else {
301 		INP_INFO_WLOCK_ASSERT(pcbinfo);
302 	}
303 #endif
304 
305 	error = 0;
306 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
307 	if (inp == NULL)
308 		return (ENOBUFS);
309 	bzero(&inp->inp_start_zero, inp_zero_size);
310 	inp->inp_pcbinfo = pcbinfo;
311 	inp->inp_socket = so;
312 	inp->inp_cred = crhold(so->so_cred);
313 	inp->inp_inc.inc_fibnum = so->so_fibnum;
314 #ifdef MAC
315 	error = mac_inpcb_init(inp, M_NOWAIT);
316 	if (error != 0)
317 		goto out;
318 	mac_inpcb_create(so, inp);
319 #endif
320 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
321 	error = ipsec_init_pcbpolicy(inp);
322 	if (error != 0) {
323 #ifdef MAC
324 		mac_inpcb_destroy(inp);
325 #endif
326 		goto out;
327 	}
328 #endif /*IPSEC*/
329 #ifdef INET6
330 	if (INP_SOCKAF(so) == AF_INET6) {
331 		inp->inp_vflag |= INP_IPV6PROTO;
332 		if (V_ip6_v6only)
333 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
334 	}
335 #endif
336 	INP_WLOCK(inp);
337 	INP_LIST_WLOCK(pcbinfo);
338 	LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
339 	pcbinfo->ipi_count++;
340 	so->so_pcb = (caddr_t)inp;
341 #ifdef INET6
342 	if (V_ip6_auto_flowlabel)
343 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
344 #endif
345 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
346 	refcount_init(&inp->inp_refcount, 1);	/* Reference from inpcbinfo */
347 
348 	/*
349 	 * Routes in inpcb's can cache L2 as well; they are guaranteed
350 	 * to be cleaned up.
351 	 */
352 	inp->inp_route.ro_flags = RT_LLE_CACHE;
353 	INP_LIST_WUNLOCK(pcbinfo);
354 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC)
355 out:
356 	if (error != 0) {
357 		crfree(inp->inp_cred);
358 		uma_zfree(pcbinfo->ipi_zone, inp);
359 	}
360 #endif
361 	return (error);
362 }
363 
364 #ifdef INET
365 int
366 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
367 {
368 	int anonport, error;
369 
370 	INP_WLOCK_ASSERT(inp);
371 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
372 
373 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
374 		return (EINVAL);
375 	anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
376 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
377 	    &inp->inp_lport, cred);
378 	if (error)
379 		return (error);
380 	if (in_pcbinshash(inp) != 0) {
381 		inp->inp_laddr.s_addr = INADDR_ANY;
382 		inp->inp_lport = 0;
383 		return (EAGAIN);
384 	}
385 	if (anonport)
386 		inp->inp_flags |= INP_ANONPORT;
387 	return (0);
388 }
389 #endif
390 
391 /*
392  * Select a local port (number) to use.
393  */
394 #if defined(INET) || defined(INET6)
395 int
396 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
397     struct ucred *cred, int lookupflags)
398 {
399 	struct inpcbinfo *pcbinfo;
400 	struct inpcb *tmpinp;
401 	unsigned short *lastport;
402 	int count, dorandom, error;
403 	u_short aux, first, last, lport;
404 #ifdef INET
405 	struct in_addr laddr;
406 #endif
407 
408 	pcbinfo = inp->inp_pcbinfo;
409 
410 	/*
411 	 * Because no actual state changes occur here, a global write lock on
412 	 * the pcbinfo isn't required.
413 	 */
414 	INP_LOCK_ASSERT(inp);
415 	INP_HASH_LOCK_ASSERT(pcbinfo);
416 
417 	if (inp->inp_flags & INP_HIGHPORT) {
418 		first = V_ipport_hifirstauto;	/* sysctl */
419 		last  = V_ipport_hilastauto;
420 		lastport = &pcbinfo->ipi_lasthi;
421 	} else if (inp->inp_flags & INP_LOWPORT) {
422 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
423 		if (error)
424 			return (error);
425 		first = V_ipport_lowfirstauto;	/* 1023 */
426 		last  = V_ipport_lowlastauto;	/* 600 */
427 		lastport = &pcbinfo->ipi_lastlow;
428 	} else {
429 		first = V_ipport_firstauto;	/* sysctl */
430 		last  = V_ipport_lastauto;
431 		lastport = &pcbinfo->ipi_lastport;
432 	}
433 	/*
434 	 * For UDP(-Lite), use random port allocation as long as the user
435 	 * allows it.  For TCP (and as of yet unknown) connections,
436 	 * use random port allocation only if the user allows it AND
437 	 * ipport_tick() allows it.
438 	 */
439 	if (V_ipport_randomized &&
440 		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
441 		pcbinfo == &V_ulitecbinfo))
442 		dorandom = 1;
443 	else
444 		dorandom = 0;
445 	/*
446 	 * It makes no sense to do random port allocation if
447 	 * we have the only port available.
448 	 */
449 	if (first == last)
450 		dorandom = 0;
451 	/* Make sure to not include UDP(-Lite) packets in the count. */
452 	if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
453 		V_ipport_tcpallocs++;
454 	/*
455 	 * Instead of having two loops further down counting up or down
456 	 * make sure that first is always <= last and go with only one
457 	 * code path implementing all logic.
458 	 */
459 	if (first > last) {
460 		aux = first;
461 		first = last;
462 		last = aux;
463 	}
464 
465 #ifdef INET
466 	/* Make the compiler happy. */
467 	laddr.s_addr = 0;
468 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
469 		KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
470 		    __func__, inp));
471 		laddr = *laddrp;
472 	}
473 #endif
474 	tmpinp = NULL;	/* Make compiler happy. */
475 	lport = *lportp;
476 
477 	if (dorandom)
478 		*lastport = first + (arc4random() % (last - first));
479 
480 	count = last - first;
481 
482 	do {
483 		if (count-- < 0)	/* completely used? */
484 			return (EADDRNOTAVAIL);
485 		++*lastport;
486 		if (*lastport < first || *lastport > last)
487 			*lastport = first;
488 		lport = htons(*lastport);
489 
490 #ifdef INET6
491 		if ((inp->inp_vflag & INP_IPV6) != 0)
492 			tmpinp = in6_pcblookup_local(pcbinfo,
493 			    &inp->in6p_laddr, lport, lookupflags, cred);
494 #endif
495 #if defined(INET) && defined(INET6)
496 		else
497 #endif
498 #ifdef INET
499 			tmpinp = in_pcblookup_local(pcbinfo, laddr,
500 			    lport, lookupflags, cred);
501 #endif
502 	} while (tmpinp != NULL);
503 
504 #ifdef INET
505 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
506 		laddrp->s_addr = laddr.s_addr;
507 #endif
508 	*lportp = lport;
509 
510 	return (0);
511 }
512 
513 /*
514  * Return cached socket options.
515  */
516 short
517 inp_so_options(const struct inpcb *inp)
518 {
519    short so_options;
520 
521    so_options = 0;
522 
523    if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
524 	   so_options |= SO_REUSEPORT;
525    if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
526 	   so_options |= SO_REUSEADDR;
527    return (so_options);
528 }
529 #endif /* INET || INET6 */
530 
531 /*
532  * Check if a new BINDMULTI socket is allowed to be created.
533  *
534  * ni points to the new inp.
535  * oi points to the exisitng inp.
536  *
537  * This checks whether the existing inp also has BINDMULTI and
538  * whether the credentials match.
539  */
540 int
541 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
542 {
543 	/* Check permissions match */
544 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
545 	    (ni->inp_cred->cr_uid !=
546 	    oi->inp_cred->cr_uid))
547 		return (0);
548 
549 	/* Check the existing inp has BINDMULTI set */
550 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
551 	    ((oi->inp_flags2 & INP_BINDMULTI) == 0))
552 		return (0);
553 
554 	/*
555 	 * We're okay - either INP_BINDMULTI isn't set on ni, or
556 	 * it is and it matches the checks.
557 	 */
558 	return (1);
559 }
560 
561 #ifdef INET
562 /*
563  * Set up a bind operation on a PCB, performing port allocation
564  * as required, but do not actually modify the PCB. Callers can
565  * either complete the bind by setting inp_laddr/inp_lport and
566  * calling in_pcbinshash(), or they can just use the resulting
567  * port and address to authorise the sending of a once-off packet.
568  *
569  * On error, the values of *laddrp and *lportp are not changed.
570  */
571 int
572 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
573     u_short *lportp, struct ucred *cred)
574 {
575 	struct socket *so = inp->inp_socket;
576 	struct sockaddr_in *sin;
577 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
578 	struct in_addr laddr;
579 	u_short lport = 0;
580 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
581 	int error;
582 
583 	/*
584 	 * No state changes, so read locks are sufficient here.
585 	 */
586 	INP_LOCK_ASSERT(inp);
587 	INP_HASH_LOCK_ASSERT(pcbinfo);
588 
589 	if (CK_STAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
590 		return (EADDRNOTAVAIL);
591 	laddr.s_addr = *laddrp;
592 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
593 		return (EINVAL);
594 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
595 		lookupflags = INPLOOKUP_WILDCARD;
596 	if (nam == NULL) {
597 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
598 			return (error);
599 	} else {
600 		sin = (struct sockaddr_in *)nam;
601 		if (nam->sa_len != sizeof (*sin))
602 			return (EINVAL);
603 #ifdef notdef
604 		/*
605 		 * We should check the family, but old programs
606 		 * incorrectly fail to initialize it.
607 		 */
608 		if (sin->sin_family != AF_INET)
609 			return (EAFNOSUPPORT);
610 #endif
611 		error = prison_local_ip4(cred, &sin->sin_addr);
612 		if (error)
613 			return (error);
614 		if (sin->sin_port != *lportp) {
615 			/* Don't allow the port to change. */
616 			if (*lportp != 0)
617 				return (EINVAL);
618 			lport = sin->sin_port;
619 		}
620 		/* NB: lport is left as 0 if the port isn't being changed. */
621 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
622 			/*
623 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
624 			 * allow complete duplication of binding if
625 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
626 			 * and a multicast address is bound on both
627 			 * new and duplicated sockets.
628 			 */
629 			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
630 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
631 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
632 			sin->sin_port = 0;		/* yech... */
633 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
634 			/*
635 			 * Is the address a local IP address?
636 			 * If INP_BINDANY is set, then the socket may be bound
637 			 * to any endpoint address, local or not.
638 			 */
639 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
640 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
641 				return (EADDRNOTAVAIL);
642 		}
643 		laddr = sin->sin_addr;
644 		if (lport) {
645 			struct inpcb *t;
646 			struct tcptw *tw;
647 
648 			/* GROSS */
649 			if (ntohs(lport) <= V_ipport_reservedhigh &&
650 			    ntohs(lport) >= V_ipport_reservedlow &&
651 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
652 			    0))
653 				return (EACCES);
654 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
655 			    priv_check_cred(inp->inp_cred,
656 			    PRIV_NETINET_REUSEPORT, 0) != 0) {
657 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
658 				    lport, INPLOOKUP_WILDCARD, cred);
659 	/*
660 	 * XXX
661 	 * This entire block sorely needs a rewrite.
662 	 */
663 				if (t &&
664 				    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
665 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
666 				    (so->so_type != SOCK_STREAM ||
667 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
668 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
669 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
670 				     (t->inp_flags2 & INP_REUSEPORT) == 0) &&
671 				    (inp->inp_cred->cr_uid !=
672 				     t->inp_cred->cr_uid))
673 					return (EADDRINUSE);
674 
675 				/*
676 				 * If the socket is a BINDMULTI socket, then
677 				 * the credentials need to match and the
678 				 * original socket also has to have been bound
679 				 * with BINDMULTI.
680 				 */
681 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
682 					return (EADDRINUSE);
683 			}
684 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
685 			    lport, lookupflags, cred);
686 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
687 				/*
688 				 * XXXRW: If an incpb has had its timewait
689 				 * state recycled, we treat the address as
690 				 * being in use (for now).  This is better
691 				 * than a panic, but not desirable.
692 				 */
693 				tw = intotw(t);
694 				if (tw == NULL ||
695 				    (reuseport & tw->tw_so_options) == 0)
696 					return (EADDRINUSE);
697 			} else if (t &&
698 			    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
699 			    (reuseport & inp_so_options(t)) == 0) {
700 #ifdef INET6
701 				if (ntohl(sin->sin_addr.s_addr) !=
702 				    INADDR_ANY ||
703 				    ntohl(t->inp_laddr.s_addr) !=
704 				    INADDR_ANY ||
705 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
706 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
707 #endif
708 				return (EADDRINUSE);
709 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
710 					return (EADDRINUSE);
711 			}
712 		}
713 	}
714 	if (*lportp != 0)
715 		lport = *lportp;
716 	if (lport == 0) {
717 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
718 		if (error != 0)
719 			return (error);
720 
721 	}
722 	*laddrp = laddr.s_addr;
723 	*lportp = lport;
724 	return (0);
725 }
726 
727 /*
728  * Connect from a socket to a specified address.
729  * Both address and port must be specified in argument sin.
730  * If don't have a local address for this socket yet,
731  * then pick one.
732  */
733 int
734 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
735     struct ucred *cred, struct mbuf *m)
736 {
737 	u_short lport, fport;
738 	in_addr_t laddr, faddr;
739 	int anonport, error;
740 
741 	INP_WLOCK_ASSERT(inp);
742 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
743 
744 	lport = inp->inp_lport;
745 	laddr = inp->inp_laddr.s_addr;
746 	anonport = (lport == 0);
747 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
748 	    NULL, cred);
749 	if (error)
750 		return (error);
751 
752 	/* Do the initial binding of the local address if required. */
753 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
754 		inp->inp_lport = lport;
755 		inp->inp_laddr.s_addr = laddr;
756 		if (in_pcbinshash(inp) != 0) {
757 			inp->inp_laddr.s_addr = INADDR_ANY;
758 			inp->inp_lport = 0;
759 			return (EAGAIN);
760 		}
761 	}
762 
763 	/* Commit the remaining changes. */
764 	inp->inp_lport = lport;
765 	inp->inp_laddr.s_addr = laddr;
766 	inp->inp_faddr.s_addr = faddr;
767 	inp->inp_fport = fport;
768 	in_pcbrehash_mbuf(inp, m);
769 
770 	if (anonport)
771 		inp->inp_flags |= INP_ANONPORT;
772 	return (0);
773 }
774 
775 int
776 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
777 {
778 
779 	return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
780 }
781 
782 /*
783  * Do proper source address selection on an unbound socket in case
784  * of connect. Take jails into account as well.
785  */
786 int
787 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
788     struct ucred *cred)
789 {
790 	struct ifaddr *ifa;
791 	struct sockaddr *sa;
792 	struct sockaddr_in *sin;
793 	struct route sro;
794 	int error;
795 
796 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
797 	/*
798 	 * Bypass source address selection and use the primary jail IP
799 	 * if requested.
800 	 */
801 	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
802 		return (0);
803 
804 	error = 0;
805 	bzero(&sro, sizeof(sro));
806 
807 	sin = (struct sockaddr_in *)&sro.ro_dst;
808 	sin->sin_family = AF_INET;
809 	sin->sin_len = sizeof(struct sockaddr_in);
810 	sin->sin_addr.s_addr = faddr->s_addr;
811 
812 	/*
813 	 * If route is known our src addr is taken from the i/f,
814 	 * else punt.
815 	 *
816 	 * Find out route to destination.
817 	 */
818 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
819 		in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
820 
821 	/*
822 	 * If we found a route, use the address corresponding to
823 	 * the outgoing interface.
824 	 *
825 	 * Otherwise assume faddr is reachable on a directly connected
826 	 * network and try to find a corresponding interface to take
827 	 * the source address from.
828 	 */
829 	NET_EPOCH_ENTER();
830 	if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
831 		struct in_ifaddr *ia;
832 		struct ifnet *ifp;
833 
834 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
835 					inp->inp_socket->so_fibnum));
836 		if (ia == NULL) {
837 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
838 						inp->inp_socket->so_fibnum));
839 
840 		}
841 		if (ia == NULL) {
842 			printf("ifa_ifwithnet failed\n");
843 			error = ENETUNREACH;
844 			goto done;
845 		}
846 
847 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
848 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
849 			goto done;
850 		}
851 
852 		ifp = ia->ia_ifp;
853 		ia = NULL;
854 		IF_ADDR_RLOCK(ifp);
855 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
856 
857 			sa = ifa->ifa_addr;
858 			if (sa->sa_family != AF_INET)
859 				continue;
860 			sin = (struct sockaddr_in *)sa;
861 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
862 				ia = (struct in_ifaddr *)ifa;
863 				break;
864 			}
865 		}
866 		if (ia != NULL) {
867 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
868 			IF_ADDR_RUNLOCK(ifp);
869 			goto done;
870 		}
871 		IF_ADDR_RUNLOCK(ifp);
872 
873 		/* 3. As a last resort return the 'default' jail address. */
874 		error = prison_get_ip4(cred, laddr);
875 		goto done;
876 	}
877 
878 	/*
879 	 * If the outgoing interface on the route found is not
880 	 * a loopback interface, use the address from that interface.
881 	 * In case of jails do those three steps:
882 	 * 1. check if the interface address belongs to the jail. If so use it.
883 	 * 2. check if we have any address on the outgoing interface
884 	 *    belonging to this jail. If so use it.
885 	 * 3. as a last resort return the 'default' jail address.
886 	 */
887 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
888 		struct in_ifaddr *ia;
889 		struct ifnet *ifp;
890 
891 		/* If not jailed, use the default returned. */
892 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
893 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
894 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
895 			goto done;
896 		}
897 
898 		/* Jailed. */
899 		/* 1. Check if the iface address belongs to the jail. */
900 		sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
901 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
902 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
903 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
904 			goto done;
905 		}
906 
907 		/*
908 		 * 2. Check if we have any address on the outgoing interface
909 		 *    belonging to this jail.
910 		 */
911 		ia = NULL;
912 		ifp = sro.ro_rt->rt_ifp;
913 		IF_ADDR_RLOCK(ifp);
914 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
915 			sa = ifa->ifa_addr;
916 			if (sa->sa_family != AF_INET)
917 				continue;
918 			sin = (struct sockaddr_in *)sa;
919 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
920 				ia = (struct in_ifaddr *)ifa;
921 				break;
922 			}
923 		}
924 		if (ia != NULL) {
925 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
926 			IF_ADDR_RUNLOCK(ifp);
927 			goto done;
928 		}
929 		IF_ADDR_RUNLOCK(ifp);
930 
931 		/* 3. As a last resort return the 'default' jail address. */
932 		error = prison_get_ip4(cred, laddr);
933 		goto done;
934 	}
935 
936 	/*
937 	 * The outgoing interface is marked with 'loopback net', so a route
938 	 * to ourselves is here.
939 	 * Try to find the interface of the destination address and then
940 	 * take the address from there. That interface is not necessarily
941 	 * a loopback interface.
942 	 * In case of jails, check that it is an address of the jail
943 	 * and if we cannot find, fall back to the 'default' jail address.
944 	 */
945 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
946 		struct sockaddr_in sain;
947 		struct in_ifaddr *ia;
948 
949 		bzero(&sain, sizeof(struct sockaddr_in));
950 		sain.sin_family = AF_INET;
951 		sain.sin_len = sizeof(struct sockaddr_in);
952 		sain.sin_addr.s_addr = faddr->s_addr;
953 
954 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain),
955 					inp->inp_socket->so_fibnum));
956 		if (ia == NULL)
957 			ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0,
958 						inp->inp_socket->so_fibnum));
959 		if (ia == NULL)
960 			ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
961 
962 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
963 			if (ia == NULL) {
964 				error = ENETUNREACH;
965 				goto done;
966 			}
967 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
968 			goto done;
969 		}
970 
971 		/* Jailed. */
972 		if (ia != NULL) {
973 			struct ifnet *ifp;
974 
975 			ifp = ia->ia_ifp;
976 			ia = NULL;
977 			IF_ADDR_RLOCK(ifp);
978 			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
979 
980 				sa = ifa->ifa_addr;
981 				if (sa->sa_family != AF_INET)
982 					continue;
983 				sin = (struct sockaddr_in *)sa;
984 				if (prison_check_ip4(cred,
985 				    &sin->sin_addr) == 0) {
986 					ia = (struct in_ifaddr *)ifa;
987 					break;
988 				}
989 			}
990 			if (ia != NULL) {
991 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
992 				IF_ADDR_RUNLOCK(ifp);
993 				goto done;
994 			}
995 			IF_ADDR_RUNLOCK(ifp);
996 		}
997 
998 		/* 3. As a last resort return the 'default' jail address. */
999 		error = prison_get_ip4(cred, laddr);
1000 		goto done;
1001 	}
1002 
1003 done:
1004 	NET_EPOCH_EXIT();
1005 	if (sro.ro_rt != NULL)
1006 		RTFREE(sro.ro_rt);
1007 	return (error);
1008 }
1009 
1010 /*
1011  * Set up for a connect from a socket to the specified address.
1012  * On entry, *laddrp and *lportp should contain the current local
1013  * address and port for the PCB; these are updated to the values
1014  * that should be placed in inp_laddr and inp_lport to complete
1015  * the connect.
1016  *
1017  * On success, *faddrp and *fportp will be set to the remote address
1018  * and port. These are not updated in the error case.
1019  *
1020  * If the operation fails because the connection already exists,
1021  * *oinpp will be set to the PCB of that connection so that the
1022  * caller can decide to override it. In all other cases, *oinpp
1023  * is set to NULL.
1024  */
1025 int
1026 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
1027     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1028     struct inpcb **oinpp, struct ucred *cred)
1029 {
1030 	struct rm_priotracker in_ifa_tracker;
1031 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1032 	struct in_ifaddr *ia;
1033 	struct inpcb *oinp;
1034 	struct in_addr laddr, faddr;
1035 	u_short lport, fport;
1036 	int error;
1037 
1038 	/*
1039 	 * Because a global state change doesn't actually occur here, a read
1040 	 * lock is sufficient.
1041 	 */
1042 	INP_LOCK_ASSERT(inp);
1043 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1044 
1045 	if (oinpp != NULL)
1046 		*oinpp = NULL;
1047 	if (nam->sa_len != sizeof (*sin))
1048 		return (EINVAL);
1049 	if (sin->sin_family != AF_INET)
1050 		return (EAFNOSUPPORT);
1051 	if (sin->sin_port == 0)
1052 		return (EADDRNOTAVAIL);
1053 	laddr.s_addr = *laddrp;
1054 	lport = *lportp;
1055 	faddr = sin->sin_addr;
1056 	fport = sin->sin_port;
1057 
1058 	if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) {
1059 		/*
1060 		 * If the destination address is INADDR_ANY,
1061 		 * use the primary local address.
1062 		 * If the supplied address is INADDR_BROADCAST,
1063 		 * and the primary interface supports broadcast,
1064 		 * choose the broadcast address for that interface.
1065 		 */
1066 		if (faddr.s_addr == INADDR_ANY) {
1067 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1068 			faddr =
1069 			    IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1070 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1071 			if (cred != NULL &&
1072 			    (error = prison_get_ip4(cred, &faddr)) != 0)
1073 				return (error);
1074 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1075 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1076 			if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1077 			    IFF_BROADCAST)
1078 				faddr = satosin(&CK_STAILQ_FIRST(
1079 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1080 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1081 		}
1082 	}
1083 	if (laddr.s_addr == INADDR_ANY) {
1084 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
1085 		/*
1086 		 * If the destination address is multicast and an outgoing
1087 		 * interface has been set as a multicast option, prefer the
1088 		 * address of that interface as our source address.
1089 		 */
1090 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1091 		    inp->inp_moptions != NULL) {
1092 			struct ip_moptions *imo;
1093 			struct ifnet *ifp;
1094 
1095 			imo = inp->inp_moptions;
1096 			if (imo->imo_multicast_ifp != NULL) {
1097 				ifp = imo->imo_multicast_ifp;
1098 				IN_IFADDR_RLOCK(&in_ifa_tracker);
1099 				CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1100 					if ((ia->ia_ifp == ifp) &&
1101 					    (cred == NULL ||
1102 					    prison_check_ip4(cred,
1103 					    &ia->ia_addr.sin_addr) == 0))
1104 						break;
1105 				}
1106 				if (ia == NULL)
1107 					error = EADDRNOTAVAIL;
1108 				else {
1109 					laddr = ia->ia_addr.sin_addr;
1110 					error = 0;
1111 				}
1112 				IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1113 			}
1114 		}
1115 		if (error)
1116 			return (error);
1117 	}
1118 	oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1119 	    laddr, lport, 0, NULL);
1120 	if (oinp != NULL) {
1121 		if (oinpp != NULL)
1122 			*oinpp = oinp;
1123 		return (EADDRINUSE);
1124 	}
1125 	if (lport == 0) {
1126 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1127 		    cred);
1128 		if (error)
1129 			return (error);
1130 	}
1131 	*laddrp = laddr.s_addr;
1132 	*lportp = lport;
1133 	*faddrp = faddr.s_addr;
1134 	*fportp = fport;
1135 	return (0);
1136 }
1137 
1138 void
1139 in_pcbdisconnect(struct inpcb *inp)
1140 {
1141 
1142 	INP_WLOCK_ASSERT(inp);
1143 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1144 
1145 	inp->inp_faddr.s_addr = INADDR_ANY;
1146 	inp->inp_fport = 0;
1147 	in_pcbrehash(inp);
1148 }
1149 #endif /* INET */
1150 
1151 /*
1152  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1153  * For most protocols, this will be invoked immediately prior to calling
1154  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1155  * socket, in which case in_pcbfree() is deferred.
1156  */
1157 void
1158 in_pcbdetach(struct inpcb *inp)
1159 {
1160 
1161 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1162 
1163 #ifdef RATELIMIT
1164 	if (inp->inp_snd_tag != NULL)
1165 		in_pcbdetach_txrtlmt(inp);
1166 #endif
1167 	inp->inp_socket->so_pcb = NULL;
1168 	inp->inp_socket = NULL;
1169 }
1170 
1171 /*
1172  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1173  * stability of an inpcb pointer despite the inpcb lock being released.  This
1174  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1175  * but where the inpcb lock may already held, or when acquiring a reference
1176  * via a pcbgroup.
1177  *
1178  * in_pcbref() should be used only to provide brief memory stability, and
1179  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1180  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1181  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1182  * lock and rele are the *only* safe operations that may be performed on the
1183  * inpcb.
1184  *
1185  * While the inpcb will not be freed, releasing the inpcb lock means that the
1186  * connection's state may change, so the caller should be careful to
1187  * revalidate any cached state on reacquiring the lock.  Drop the reference
1188  * using in_pcbrele().
1189  */
1190 void
1191 in_pcbref(struct inpcb *inp)
1192 {
1193 
1194 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1195 
1196 	refcount_acquire(&inp->inp_refcount);
1197 }
1198 
1199 /*
1200  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1201  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1202  * return a flag indicating whether or not the inpcb remains valid.  If it is
1203  * valid, we return with the inpcb lock held.
1204  *
1205  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1206  * reference on an inpcb.  Historically more work was done here (actually, in
1207  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1208  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1209  * about memory stability (and continued use of the write lock).
1210  */
1211 int
1212 in_pcbrele_rlocked(struct inpcb *inp)
1213 {
1214 	struct inpcbinfo *pcbinfo;
1215 
1216 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1217 
1218 	INP_RLOCK_ASSERT(inp);
1219 
1220 	if (refcount_release(&inp->inp_refcount) == 0) {
1221 		/*
1222 		 * If the inpcb has been freed, let the caller know, even if
1223 		 * this isn't the last reference.
1224 		 */
1225 		if (inp->inp_flags2 & INP_FREED) {
1226 			INP_RUNLOCK(inp);
1227 			return (1);
1228 		}
1229 		return (0);
1230 	}
1231 
1232 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1233 #ifdef TCPHPTS
1234 	if (inp->inp_in_hpts || inp->inp_in_input) {
1235 		struct tcp_hpts_entry *hpts;
1236 		/*
1237 		 * We should not be on the hpts at
1238 		 * this point in any form. we must
1239 		 * get the lock to be sure.
1240 		 */
1241 		hpts = tcp_hpts_lock(inp);
1242 		if (inp->inp_in_hpts)
1243 			panic("Hpts:%p inp:%p at free still on hpts",
1244 			      hpts, inp);
1245 		mtx_unlock(&hpts->p_mtx);
1246 		hpts = tcp_input_lock(inp);
1247 		if (inp->inp_in_input)
1248 			panic("Hpts:%p inp:%p at free still on input hpts",
1249 			      hpts, inp);
1250 		mtx_unlock(&hpts->p_mtx);
1251 	}
1252 #endif
1253 	INP_RUNLOCK(inp);
1254 	pcbinfo = inp->inp_pcbinfo;
1255 	uma_zfree(pcbinfo->ipi_zone, inp);
1256 	return (1);
1257 }
1258 
1259 int
1260 in_pcbrele_wlocked(struct inpcb *inp)
1261 {
1262 	struct inpcbinfo *pcbinfo;
1263 
1264 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1265 
1266 	INP_WLOCK_ASSERT(inp);
1267 
1268 	if (refcount_release(&inp->inp_refcount) == 0) {
1269 		/*
1270 		 * If the inpcb has been freed, let the caller know, even if
1271 		 * this isn't the last reference.
1272 		 */
1273 		if (inp->inp_flags2 & INP_FREED) {
1274 			INP_WUNLOCK(inp);
1275 			return (1);
1276 		}
1277 		return (0);
1278 	}
1279 
1280 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1281 #ifdef TCPHPTS
1282 	if (inp->inp_in_hpts || inp->inp_in_input) {
1283 		struct tcp_hpts_entry *hpts;
1284 		/*
1285 		 * We should not be on the hpts at
1286 		 * this point in any form. we must
1287 		 * get the lock to be sure.
1288 		 */
1289 		hpts = tcp_hpts_lock(inp);
1290 		if (inp->inp_in_hpts)
1291 			panic("Hpts:%p inp:%p at free still on hpts",
1292 			      hpts, inp);
1293 		mtx_unlock(&hpts->p_mtx);
1294 		hpts = tcp_input_lock(inp);
1295 		if (inp->inp_in_input)
1296 			panic("Hpts:%p inp:%p at free still on input hpts",
1297 			      hpts, inp);
1298 		mtx_unlock(&hpts->p_mtx);
1299 	}
1300 #endif
1301 	INP_WUNLOCK(inp);
1302 	pcbinfo = inp->inp_pcbinfo;
1303 	uma_zfree(pcbinfo->ipi_zone, inp);
1304 	return (1);
1305 }
1306 
1307 /*
1308  * Temporary wrapper.
1309  */
1310 int
1311 in_pcbrele(struct inpcb *inp)
1312 {
1313 
1314 	return (in_pcbrele_wlocked(inp));
1315 }
1316 
1317 void
1318 in_pcblist_rele_rlocked(epoch_context_t ctx)
1319 {
1320 	struct in_pcblist *il;
1321 	struct inpcb *inp;
1322 	struct inpcbinfo *pcbinfo;
1323 	int i, n;
1324 
1325 	il = __containerof(ctx, struct in_pcblist, il_epoch_ctx);
1326 	pcbinfo = il->il_pcbinfo;
1327 	n = il->il_count;
1328 	INP_INFO_WLOCK(pcbinfo);
1329 	for (i = 0; i < n; i++) {
1330 		inp = il->il_inp_list[i];
1331 		INP_RLOCK(inp);
1332 		if (!in_pcbrele_rlocked(inp))
1333 			INP_RUNLOCK(inp);
1334 	}
1335 	INP_INFO_WUNLOCK(pcbinfo);
1336 	free(il, M_TEMP);
1337 }
1338 
1339 /*
1340  * Unconditionally schedule an inpcb to be freed by decrementing its
1341  * reference count, which should occur only after the inpcb has been detached
1342  * from its socket.  If another thread holds a temporary reference (acquired
1343  * using in_pcbref()) then the free is deferred until that reference is
1344  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1345  * work, including removal from global lists, is done in this context, where
1346  * the pcbinfo lock is held.
1347  */
1348 void
1349 in_pcbfree(struct inpcb *inp)
1350 {
1351 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1352 
1353 #ifdef INET6
1354 	struct ip6_moptions *im6o = NULL;
1355 #endif
1356 #ifdef INET
1357 	struct ip_moptions *imo = NULL;
1358 #endif
1359 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1360 
1361 	KASSERT((inp->inp_flags2 & INP_FREED) == 0,
1362 	    ("%s: called twice for pcb %p", __func__, inp));
1363 	if (inp->inp_flags2 & INP_FREED) {
1364 		INP_WUNLOCK(inp);
1365 		return;
1366 	}
1367 
1368 #ifdef INVARIANTS
1369 	if (pcbinfo == &V_tcbinfo) {
1370 		INP_INFO_LOCK_ASSERT(pcbinfo);
1371 	} else {
1372 		INP_INFO_WLOCK_ASSERT(pcbinfo);
1373 	}
1374 #endif
1375 	INP_WLOCK_ASSERT(inp);
1376 
1377 #ifdef INET
1378 	imo = inp->inp_moptions;
1379 	inp->inp_moptions = NULL;
1380 #endif
1381 	/* XXXRW: Do as much as possible here. */
1382 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1383 	if (inp->inp_sp != NULL)
1384 		ipsec_delete_pcbpolicy(inp);
1385 #endif
1386 	INP_LIST_WLOCK(pcbinfo);
1387 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1388 	in_pcbremlists(inp);
1389 	INP_LIST_WUNLOCK(pcbinfo);
1390 #ifdef INET6
1391 	if (inp->inp_vflag & INP_IPV6PROTO) {
1392 		ip6_freepcbopts(inp->in6p_outputopts);
1393 		im6o = inp->in6p_moptions;
1394 		inp->in6p_moptions = NULL;
1395 	}
1396 #endif
1397 	if (inp->inp_options)
1398 		(void)m_free(inp->inp_options);
1399 	RO_INVALIDATE_CACHE(&inp->inp_route);
1400 
1401 	inp->inp_vflag = 0;
1402 	inp->inp_flags2 |= INP_FREED;
1403 	crfree(inp->inp_cred);
1404 #ifdef MAC
1405 	mac_inpcb_destroy(inp);
1406 #endif
1407 #ifdef INET6
1408 	ip6_freemoptions(im6o);
1409 #endif
1410 #ifdef INET
1411 	inp_freemoptions(imo);
1412 #endif
1413 	if (!in_pcbrele_wlocked(inp))
1414 		INP_WUNLOCK(inp);
1415 }
1416 
1417 /*
1418  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1419  * port reservation, and preventing it from being returned by inpcb lookups.
1420  *
1421  * It is used by TCP to mark an inpcb as unused and avoid future packet
1422  * delivery or event notification when a socket remains open but TCP has
1423  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1424  * or a RST on the wire, and allows the port binding to be reused while still
1425  * maintaining the invariant that so_pcb always points to a valid inpcb until
1426  * in_pcbdetach().
1427  *
1428  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1429  * in_pcbnotifyall() and in_pcbpurgeif0()?
1430  */
1431 void
1432 in_pcbdrop(struct inpcb *inp)
1433 {
1434 
1435 	INP_WLOCK_ASSERT(inp);
1436 
1437 	/*
1438 	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1439 	 * the hash lock...?
1440 	 */
1441 	inp->inp_flags |= INP_DROPPED;
1442 	if (inp->inp_flags & INP_INHASHLIST) {
1443 		struct inpcbport *phd = inp->inp_phd;
1444 
1445 		INP_HASH_WLOCK(inp->inp_pcbinfo);
1446 		LIST_REMOVE(inp, inp_hash);
1447 		LIST_REMOVE(inp, inp_portlist);
1448 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1449 			LIST_REMOVE(phd, phd_hash);
1450 			free(phd, M_PCB);
1451 		}
1452 		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1453 		inp->inp_flags &= ~INP_INHASHLIST;
1454 #ifdef PCBGROUP
1455 		in_pcbgroup_remove(inp);
1456 #endif
1457 	}
1458 }
1459 
1460 #ifdef INET
1461 /*
1462  * Common routines to return the socket addresses associated with inpcbs.
1463  */
1464 struct sockaddr *
1465 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1466 {
1467 	struct sockaddr_in *sin;
1468 
1469 	sin = malloc(sizeof *sin, M_SONAME,
1470 		M_WAITOK | M_ZERO);
1471 	sin->sin_family = AF_INET;
1472 	sin->sin_len = sizeof(*sin);
1473 	sin->sin_addr = *addr_p;
1474 	sin->sin_port = port;
1475 
1476 	return (struct sockaddr *)sin;
1477 }
1478 
1479 int
1480 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1481 {
1482 	struct inpcb *inp;
1483 	struct in_addr addr;
1484 	in_port_t port;
1485 
1486 	inp = sotoinpcb(so);
1487 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1488 
1489 	INP_RLOCK(inp);
1490 	port = inp->inp_lport;
1491 	addr = inp->inp_laddr;
1492 	INP_RUNLOCK(inp);
1493 
1494 	*nam = in_sockaddr(port, &addr);
1495 	return 0;
1496 }
1497 
1498 int
1499 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1500 {
1501 	struct inpcb *inp;
1502 	struct in_addr addr;
1503 	in_port_t port;
1504 
1505 	inp = sotoinpcb(so);
1506 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1507 
1508 	INP_RLOCK(inp);
1509 	port = inp->inp_fport;
1510 	addr = inp->inp_faddr;
1511 	INP_RUNLOCK(inp);
1512 
1513 	*nam = in_sockaddr(port, &addr);
1514 	return 0;
1515 }
1516 
1517 void
1518 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1519     struct inpcb *(*notify)(struct inpcb *, int))
1520 {
1521 	struct inpcb *inp, *inp_temp;
1522 
1523 	INP_INFO_WLOCK(pcbinfo);
1524 	LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1525 		INP_WLOCK(inp);
1526 #ifdef INET6
1527 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1528 			INP_WUNLOCK(inp);
1529 			continue;
1530 		}
1531 #endif
1532 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1533 		    inp->inp_socket == NULL) {
1534 			INP_WUNLOCK(inp);
1535 			continue;
1536 		}
1537 		if ((*notify)(inp, errno))
1538 			INP_WUNLOCK(inp);
1539 	}
1540 	INP_INFO_WUNLOCK(pcbinfo);
1541 }
1542 
1543 void
1544 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1545 {
1546 	struct inpcb *inp;
1547 	struct ip_moptions *imo;
1548 	int i, gap;
1549 
1550 	INP_INFO_WLOCK(pcbinfo);
1551 	LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1552 		INP_WLOCK(inp);
1553 		imo = inp->inp_moptions;
1554 		if ((inp->inp_vflag & INP_IPV4) &&
1555 		    imo != NULL) {
1556 			/*
1557 			 * Unselect the outgoing interface if it is being
1558 			 * detached.
1559 			 */
1560 			if (imo->imo_multicast_ifp == ifp)
1561 				imo->imo_multicast_ifp = NULL;
1562 
1563 			/*
1564 			 * Drop multicast group membership if we joined
1565 			 * through the interface being detached.
1566 			 *
1567 			 * XXX This can all be deferred to an epoch_call
1568 			 */
1569 			for (i = 0, gap = 0; i < imo->imo_num_memberships;
1570 			    i++) {
1571 				if (imo->imo_membership[i]->inm_ifp == ifp) {
1572 					IN_MULTI_LOCK_ASSERT();
1573 					in_leavegroup_locked(imo->imo_membership[i], NULL);
1574 					gap++;
1575 				} else if (gap != 0)
1576 					imo->imo_membership[i - gap] =
1577 					    imo->imo_membership[i];
1578 			}
1579 			imo->imo_num_memberships -= gap;
1580 		}
1581 		INP_WUNLOCK(inp);
1582 	}
1583 	INP_INFO_WUNLOCK(pcbinfo);
1584 }
1585 
1586 /*
1587  * Lookup a PCB based on the local address and port.  Caller must hold the
1588  * hash lock.  No inpcb locks or references are acquired.
1589  */
1590 #define INP_LOOKUP_MAPPED_PCB_COST	3
1591 struct inpcb *
1592 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1593     u_short lport, int lookupflags, struct ucred *cred)
1594 {
1595 	struct inpcb *inp;
1596 #ifdef INET6
1597 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1598 #else
1599 	int matchwild = 3;
1600 #endif
1601 	int wildcard;
1602 
1603 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1604 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1605 
1606 	INP_HASH_LOCK_ASSERT(pcbinfo);
1607 
1608 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1609 		struct inpcbhead *head;
1610 		/*
1611 		 * Look for an unconnected (wildcard foreign addr) PCB that
1612 		 * matches the local address and port we're looking for.
1613 		 */
1614 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1615 		    0, pcbinfo->ipi_hashmask)];
1616 		LIST_FOREACH(inp, head, inp_hash) {
1617 #ifdef INET6
1618 			/* XXX inp locking */
1619 			if ((inp->inp_vflag & INP_IPV4) == 0)
1620 				continue;
1621 #endif
1622 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1623 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1624 			    inp->inp_lport == lport) {
1625 				/*
1626 				 * Found?
1627 				 */
1628 				if (cred == NULL ||
1629 				    prison_equal_ip4(cred->cr_prison,
1630 					inp->inp_cred->cr_prison))
1631 					return (inp);
1632 			}
1633 		}
1634 		/*
1635 		 * Not found.
1636 		 */
1637 		return (NULL);
1638 	} else {
1639 		struct inpcbporthead *porthash;
1640 		struct inpcbport *phd;
1641 		struct inpcb *match = NULL;
1642 		/*
1643 		 * Best fit PCB lookup.
1644 		 *
1645 		 * First see if this local port is in use by looking on the
1646 		 * port hash list.
1647 		 */
1648 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1649 		    pcbinfo->ipi_porthashmask)];
1650 		LIST_FOREACH(phd, porthash, phd_hash) {
1651 			if (phd->phd_port == lport)
1652 				break;
1653 		}
1654 		if (phd != NULL) {
1655 			/*
1656 			 * Port is in use by one or more PCBs. Look for best
1657 			 * fit.
1658 			 */
1659 			LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1660 				wildcard = 0;
1661 				if (cred != NULL &&
1662 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
1663 					cred->cr_prison))
1664 					continue;
1665 #ifdef INET6
1666 				/* XXX inp locking */
1667 				if ((inp->inp_vflag & INP_IPV4) == 0)
1668 					continue;
1669 				/*
1670 				 * We never select the PCB that has
1671 				 * INP_IPV6 flag and is bound to :: if
1672 				 * we have another PCB which is bound
1673 				 * to 0.0.0.0.  If a PCB has the
1674 				 * INP_IPV6 flag, then we set its cost
1675 				 * higher than IPv4 only PCBs.
1676 				 *
1677 				 * Note that the case only happens
1678 				 * when a socket is bound to ::, under
1679 				 * the condition that the use of the
1680 				 * mapped address is allowed.
1681 				 */
1682 				if ((inp->inp_vflag & INP_IPV6) != 0)
1683 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1684 #endif
1685 				if (inp->inp_faddr.s_addr != INADDR_ANY)
1686 					wildcard++;
1687 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
1688 					if (laddr.s_addr == INADDR_ANY)
1689 						wildcard++;
1690 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
1691 						continue;
1692 				} else {
1693 					if (laddr.s_addr != INADDR_ANY)
1694 						wildcard++;
1695 				}
1696 				if (wildcard < matchwild) {
1697 					match = inp;
1698 					matchwild = wildcard;
1699 					if (matchwild == 0)
1700 						break;
1701 				}
1702 			}
1703 		}
1704 		return (match);
1705 	}
1706 }
1707 #undef INP_LOOKUP_MAPPED_PCB_COST
1708 
1709 #ifdef PCBGROUP
1710 /*
1711  * Lookup PCB in hash list, using pcbgroup tables.
1712  */
1713 static struct inpcb *
1714 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
1715     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
1716     u_int lport_arg, int lookupflags, struct ifnet *ifp)
1717 {
1718 	struct inpcbhead *head;
1719 	struct inpcb *inp, *tmpinp;
1720 	u_short fport = fport_arg, lport = lport_arg;
1721 	bool locked;
1722 
1723 	/*
1724 	 * First look for an exact match.
1725 	 */
1726 	tmpinp = NULL;
1727 	INP_GROUP_LOCK(pcbgroup);
1728 	head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1729 	    pcbgroup->ipg_hashmask)];
1730 	LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1731 #ifdef INET6
1732 		/* XXX inp locking */
1733 		if ((inp->inp_vflag & INP_IPV4) == 0)
1734 			continue;
1735 #endif
1736 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1737 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1738 		    inp->inp_fport == fport &&
1739 		    inp->inp_lport == lport) {
1740 			/*
1741 			 * XXX We should be able to directly return
1742 			 * the inp here, without any checks.
1743 			 * Well unless both bound with SO_REUSEPORT?
1744 			 */
1745 			if (prison_flag(inp->inp_cred, PR_IP4))
1746 				goto found;
1747 			if (tmpinp == NULL)
1748 				tmpinp = inp;
1749 		}
1750 	}
1751 	if (tmpinp != NULL) {
1752 		inp = tmpinp;
1753 		goto found;
1754 	}
1755 
1756 #ifdef	RSS
1757 	/*
1758 	 * For incoming connections, we may wish to do a wildcard
1759 	 * match for an RSS-local socket.
1760 	 */
1761 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1762 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1763 #ifdef INET6
1764 		struct inpcb *local_wild_mapped = NULL;
1765 #endif
1766 		struct inpcb *jail_wild = NULL;
1767 		struct inpcbhead *head;
1768 		int injail;
1769 
1770 		/*
1771 		 * Order of socket selection - we always prefer jails.
1772 		 *      1. jailed, non-wild.
1773 		 *      2. jailed, wild.
1774 		 *      3. non-jailed, non-wild.
1775 		 *      4. non-jailed, wild.
1776 		 */
1777 
1778 		head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
1779 		    lport, 0, pcbgroup->ipg_hashmask)];
1780 		LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1781 #ifdef INET6
1782 			/* XXX inp locking */
1783 			if ((inp->inp_vflag & INP_IPV4) == 0)
1784 				continue;
1785 #endif
1786 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1787 			    inp->inp_lport != lport)
1788 				continue;
1789 
1790 			injail = prison_flag(inp->inp_cred, PR_IP4);
1791 			if (injail) {
1792 				if (prison_check_ip4(inp->inp_cred,
1793 				    &laddr) != 0)
1794 					continue;
1795 			} else {
1796 				if (local_exact != NULL)
1797 					continue;
1798 			}
1799 
1800 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1801 				if (injail)
1802 					goto found;
1803 				else
1804 					local_exact = inp;
1805 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1806 #ifdef INET6
1807 				/* XXX inp locking, NULL check */
1808 				if (inp->inp_vflag & INP_IPV6PROTO)
1809 					local_wild_mapped = inp;
1810 				else
1811 #endif
1812 					if (injail)
1813 						jail_wild = inp;
1814 					else
1815 						local_wild = inp;
1816 			}
1817 		} /* LIST_FOREACH */
1818 
1819 		inp = jail_wild;
1820 		if (inp == NULL)
1821 			inp = local_exact;
1822 		if (inp == NULL)
1823 			inp = local_wild;
1824 #ifdef INET6
1825 		if (inp == NULL)
1826 			inp = local_wild_mapped;
1827 #endif
1828 		if (inp != NULL)
1829 			goto found;
1830 	}
1831 #endif
1832 
1833 	/*
1834 	 * Then look for a wildcard match, if requested.
1835 	 */
1836 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1837 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1838 #ifdef INET6
1839 		struct inpcb *local_wild_mapped = NULL;
1840 #endif
1841 		struct inpcb *jail_wild = NULL;
1842 		struct inpcbhead *head;
1843 		int injail;
1844 
1845 		/*
1846 		 * Order of socket selection - we always prefer jails.
1847 		 *      1. jailed, non-wild.
1848 		 *      2. jailed, wild.
1849 		 *      3. non-jailed, non-wild.
1850 		 *      4. non-jailed, wild.
1851 		 */
1852 		head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
1853 		    0, pcbinfo->ipi_wildmask)];
1854 		LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
1855 #ifdef INET6
1856 			/* XXX inp locking */
1857 			if ((inp->inp_vflag & INP_IPV4) == 0)
1858 				continue;
1859 #endif
1860 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1861 			    inp->inp_lport != lport)
1862 				continue;
1863 
1864 			injail = prison_flag(inp->inp_cred, PR_IP4);
1865 			if (injail) {
1866 				if (prison_check_ip4(inp->inp_cred,
1867 				    &laddr) != 0)
1868 					continue;
1869 			} else {
1870 				if (local_exact != NULL)
1871 					continue;
1872 			}
1873 
1874 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1875 				if (injail)
1876 					goto found;
1877 				else
1878 					local_exact = inp;
1879 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1880 #ifdef INET6
1881 				/* XXX inp locking, NULL check */
1882 				if (inp->inp_vflag & INP_IPV6PROTO)
1883 					local_wild_mapped = inp;
1884 				else
1885 #endif
1886 					if (injail)
1887 						jail_wild = inp;
1888 					else
1889 						local_wild = inp;
1890 			}
1891 		} /* LIST_FOREACH */
1892 		inp = jail_wild;
1893 		if (inp == NULL)
1894 			inp = local_exact;
1895 		if (inp == NULL)
1896 			inp = local_wild;
1897 #ifdef INET6
1898 		if (inp == NULL)
1899 			inp = local_wild_mapped;
1900 #endif
1901 		if (inp != NULL)
1902 			goto found;
1903 	} /* if (lookupflags & INPLOOKUP_WILDCARD) */
1904 	INP_GROUP_UNLOCK(pcbgroup);
1905 	return (NULL);
1906 
1907 found:
1908 	if (lookupflags & INPLOOKUP_WLOCKPCB)
1909 		locked = INP_TRY_WLOCK(inp);
1910 	else if (lookupflags & INPLOOKUP_RLOCKPCB)
1911 		locked = INP_TRY_RLOCK(inp);
1912 	else
1913 		panic("%s: locking bug", __func__);
1914 	if (!locked)
1915 		in_pcbref(inp);
1916 	INP_GROUP_UNLOCK(pcbgroup);
1917 	if (!locked) {
1918 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
1919 			INP_WLOCK(inp);
1920 			if (in_pcbrele_wlocked(inp))
1921 				return (NULL);
1922 		} else {
1923 			INP_RLOCK(inp);
1924 			if (in_pcbrele_rlocked(inp))
1925 				return (NULL);
1926 		}
1927 	}
1928 #ifdef INVARIANTS
1929 	if (lookupflags & INPLOOKUP_WLOCKPCB)
1930 		INP_WLOCK_ASSERT(inp);
1931 	else
1932 		INP_RLOCK_ASSERT(inp);
1933 #endif
1934 	return (inp);
1935 }
1936 #endif /* PCBGROUP */
1937 
1938 /*
1939  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
1940  * that the caller has locked the hash list, and will not perform any further
1941  * locking or reference operations on either the hash list or the connection.
1942  */
1943 static struct inpcb *
1944 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1945     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
1946     struct ifnet *ifp)
1947 {
1948 	struct inpcbhead *head;
1949 	struct inpcb *inp, *tmpinp;
1950 	u_short fport = fport_arg, lport = lport_arg;
1951 
1952 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1953 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1954 
1955 	INP_HASH_LOCK_ASSERT(pcbinfo);
1956 
1957 	/*
1958 	 * First look for an exact match.
1959 	 */
1960 	tmpinp = NULL;
1961 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1962 	    pcbinfo->ipi_hashmask)];
1963 	LIST_FOREACH(inp, head, inp_hash) {
1964 #ifdef INET6
1965 		/* XXX inp locking */
1966 		if ((inp->inp_vflag & INP_IPV4) == 0)
1967 			continue;
1968 #endif
1969 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1970 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1971 		    inp->inp_fport == fport &&
1972 		    inp->inp_lport == lport) {
1973 			/*
1974 			 * XXX We should be able to directly return
1975 			 * the inp here, without any checks.
1976 			 * Well unless both bound with SO_REUSEPORT?
1977 			 */
1978 			if (prison_flag(inp->inp_cred, PR_IP4))
1979 				return (inp);
1980 			if (tmpinp == NULL)
1981 				tmpinp = inp;
1982 		}
1983 	}
1984 	if (tmpinp != NULL)
1985 		return (tmpinp);
1986 
1987 	/*
1988 	 * Then look for a wildcard match, if requested.
1989 	 */
1990 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1991 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1992 #ifdef INET6
1993 		struct inpcb *local_wild_mapped = NULL;
1994 #endif
1995 		struct inpcb *jail_wild = NULL;
1996 		int injail;
1997 
1998 		/*
1999 		 * Order of socket selection - we always prefer jails.
2000 		 *      1. jailed, non-wild.
2001 		 *      2. jailed, wild.
2002 		 *      3. non-jailed, non-wild.
2003 		 *      4. non-jailed, wild.
2004 		 */
2005 
2006 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
2007 		    0, pcbinfo->ipi_hashmask)];
2008 		LIST_FOREACH(inp, head, inp_hash) {
2009 #ifdef INET6
2010 			/* XXX inp locking */
2011 			if ((inp->inp_vflag & INP_IPV4) == 0)
2012 				continue;
2013 #endif
2014 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
2015 			    inp->inp_lport != lport)
2016 				continue;
2017 
2018 			injail = prison_flag(inp->inp_cred, PR_IP4);
2019 			if (injail) {
2020 				if (prison_check_ip4(inp->inp_cred,
2021 				    &laddr) != 0)
2022 					continue;
2023 			} else {
2024 				if (local_exact != NULL)
2025 					continue;
2026 			}
2027 
2028 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
2029 				if (injail)
2030 					return (inp);
2031 				else
2032 					local_exact = inp;
2033 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
2034 #ifdef INET6
2035 				/* XXX inp locking, NULL check */
2036 				if (inp->inp_vflag & INP_IPV6PROTO)
2037 					local_wild_mapped = inp;
2038 				else
2039 #endif
2040 					if (injail)
2041 						jail_wild = inp;
2042 					else
2043 						local_wild = inp;
2044 			}
2045 		} /* LIST_FOREACH */
2046 		if (jail_wild != NULL)
2047 			return (jail_wild);
2048 		if (local_exact != NULL)
2049 			return (local_exact);
2050 		if (local_wild != NULL)
2051 			return (local_wild);
2052 #ifdef INET6
2053 		if (local_wild_mapped != NULL)
2054 			return (local_wild_mapped);
2055 #endif
2056 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
2057 
2058 	return (NULL);
2059 }
2060 
2061 /*
2062  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
2063  * hash list lock, and will return the inpcb locked (i.e., requires
2064  * INPLOOKUP_LOCKPCB).
2065  */
2066 static struct inpcb *
2067 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2068     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2069     struct ifnet *ifp)
2070 {
2071 	struct inpcb *inp;
2072 	bool locked;
2073 
2074 	INP_HASH_RLOCK(pcbinfo);
2075 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
2076 	    (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
2077 	if (inp != NULL) {
2078 		if (lookupflags & INPLOOKUP_WLOCKPCB)
2079 			locked = INP_TRY_WLOCK(inp);
2080 		else if (lookupflags & INPLOOKUP_RLOCKPCB)
2081 			locked = INP_TRY_RLOCK(inp);
2082 		else
2083 			panic("%s: locking bug", __func__);
2084 		if (!locked)
2085 			in_pcbref(inp);
2086 		INP_HASH_RUNLOCK(pcbinfo);
2087 		if (!locked) {
2088 			if (lookupflags & INPLOOKUP_WLOCKPCB) {
2089 				INP_WLOCK(inp);
2090 				if (in_pcbrele_wlocked(inp))
2091 					return (NULL);
2092 			} else {
2093 				INP_RLOCK(inp);
2094 				if (in_pcbrele_rlocked(inp))
2095 					return (NULL);
2096 			}
2097 		}
2098 #ifdef INVARIANTS
2099 		if (lookupflags & INPLOOKUP_WLOCKPCB)
2100 			INP_WLOCK_ASSERT(inp);
2101 		else
2102 			INP_RLOCK_ASSERT(inp);
2103 #endif
2104 	} else
2105 		INP_HASH_RUNLOCK(pcbinfo);
2106 	return (inp);
2107 }
2108 
2109 /*
2110  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
2111  * from which a pre-calculated hash value may be extracted.
2112  *
2113  * Possibly more of this logic should be in in_pcbgroup.c.
2114  */
2115 struct inpcb *
2116 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
2117     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
2118 {
2119 #if defined(PCBGROUP) && !defined(RSS)
2120 	struct inpcbgroup *pcbgroup;
2121 #endif
2122 
2123 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2124 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2125 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2126 	    ("%s: LOCKPCB not set", __func__));
2127 
2128 	/*
2129 	 * When not using RSS, use connection groups in preference to the
2130 	 * reservation table when looking up 4-tuples.  When using RSS, just
2131 	 * use the reservation table, due to the cost of the Toeplitz hash
2132 	 * in software.
2133 	 *
2134 	 * XXXRW: This policy belongs in the pcbgroup code, as in principle
2135 	 * we could be doing RSS with a non-Toeplitz hash that is affordable
2136 	 * in software.
2137 	 */
2138 #if defined(PCBGROUP) && !defined(RSS)
2139 	if (in_pcbgroup_enabled(pcbinfo)) {
2140 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2141 		    fport);
2142 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2143 		    laddr, lport, lookupflags, ifp));
2144 	}
2145 #endif
2146 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2147 	    lookupflags, ifp));
2148 }
2149 
2150 struct inpcb *
2151 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2152     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2153     struct ifnet *ifp, struct mbuf *m)
2154 {
2155 #ifdef PCBGROUP
2156 	struct inpcbgroup *pcbgroup;
2157 #endif
2158 
2159 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2160 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2161 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2162 	    ("%s: LOCKPCB not set", __func__));
2163 
2164 #ifdef PCBGROUP
2165 	/*
2166 	 * If we can use a hardware-generated hash to look up the connection
2167 	 * group, use that connection group to find the inpcb.  Otherwise
2168 	 * fall back on a software hash -- or the reservation table if we're
2169 	 * using RSS.
2170 	 *
2171 	 * XXXRW: As above, that policy belongs in the pcbgroup code.
2172 	 */
2173 	if (in_pcbgroup_enabled(pcbinfo) &&
2174 	    !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
2175 		pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
2176 		    m->m_pkthdr.flowid);
2177 		if (pcbgroup != NULL)
2178 			return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
2179 			    fport, laddr, lport, lookupflags, ifp));
2180 #ifndef RSS
2181 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2182 		    fport);
2183 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2184 		    laddr, lport, lookupflags, ifp));
2185 #endif
2186 	}
2187 #endif
2188 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2189 	    lookupflags, ifp));
2190 }
2191 #endif /* INET */
2192 
2193 /*
2194  * Insert PCB onto various hash lists.
2195  */
2196 static int
2197 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
2198 {
2199 	struct inpcbhead *pcbhash;
2200 	struct inpcbporthead *pcbporthash;
2201 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2202 	struct inpcbport *phd;
2203 	u_int32_t hashkey_faddr;
2204 
2205 	INP_WLOCK_ASSERT(inp);
2206 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2207 
2208 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2209 	    ("in_pcbinshash: INP_INHASHLIST"));
2210 
2211 #ifdef INET6
2212 	if (inp->inp_vflag & INP_IPV6)
2213 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2214 	else
2215 #endif
2216 	hashkey_faddr = inp->inp_faddr.s_addr;
2217 
2218 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2219 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2220 
2221 	pcbporthash = &pcbinfo->ipi_porthashbase[
2222 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2223 
2224 	/*
2225 	 * Go through port list and look for a head for this lport.
2226 	 */
2227 	LIST_FOREACH(phd, pcbporthash, phd_hash) {
2228 		if (phd->phd_port == inp->inp_lport)
2229 			break;
2230 	}
2231 	/*
2232 	 * If none exists, malloc one and tack it on.
2233 	 */
2234 	if (phd == NULL) {
2235 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
2236 		if (phd == NULL) {
2237 			return (ENOBUFS); /* XXX */
2238 		}
2239 		phd->phd_port = inp->inp_lport;
2240 		LIST_INIT(&phd->phd_pcblist);
2241 		LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2242 	}
2243 	inp->inp_phd = phd;
2244 	LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2245 	LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2246 	inp->inp_flags |= INP_INHASHLIST;
2247 #ifdef PCBGROUP
2248 	if (do_pcbgroup_update)
2249 		in_pcbgroup_update(inp);
2250 #endif
2251 	return (0);
2252 }
2253 
2254 /*
2255  * For now, there are two public interfaces to insert an inpcb into the hash
2256  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
2257  * is used only in the TCP syncache, where in_pcbinshash is called before the
2258  * full 4-tuple is set for the inpcb, and we don't want to install in the
2259  * pcbgroup until later.
2260  *
2261  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
2262  * connection groups, and partially initialised inpcbs should not be exposed
2263  * to either reservation hash tables or pcbgroups.
2264  */
2265 int
2266 in_pcbinshash(struct inpcb *inp)
2267 {
2268 
2269 	return (in_pcbinshash_internal(inp, 1));
2270 }
2271 
2272 int
2273 in_pcbinshash_nopcbgroup(struct inpcb *inp)
2274 {
2275 
2276 	return (in_pcbinshash_internal(inp, 0));
2277 }
2278 
2279 /*
2280  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2281  * changed. NOTE: This does not handle the case of the lport changing (the
2282  * hashed port list would have to be updated as well), so the lport must
2283  * not change after in_pcbinshash() has been called.
2284  */
2285 void
2286 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
2287 {
2288 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2289 	struct inpcbhead *head;
2290 	u_int32_t hashkey_faddr;
2291 
2292 	INP_WLOCK_ASSERT(inp);
2293 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2294 
2295 	KASSERT(inp->inp_flags & INP_INHASHLIST,
2296 	    ("in_pcbrehash: !INP_INHASHLIST"));
2297 
2298 #ifdef INET6
2299 	if (inp->inp_vflag & INP_IPV6)
2300 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2301 	else
2302 #endif
2303 	hashkey_faddr = inp->inp_faddr.s_addr;
2304 
2305 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2306 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2307 
2308 	LIST_REMOVE(inp, inp_hash);
2309 	LIST_INSERT_HEAD(head, inp, inp_hash);
2310 
2311 #ifdef PCBGROUP
2312 	if (m != NULL)
2313 		in_pcbgroup_update_mbuf(inp, m);
2314 	else
2315 		in_pcbgroup_update(inp);
2316 #endif
2317 }
2318 
2319 void
2320 in_pcbrehash(struct inpcb *inp)
2321 {
2322 
2323 	in_pcbrehash_mbuf(inp, NULL);
2324 }
2325 
2326 /*
2327  * Remove PCB from various lists.
2328  */
2329 static void
2330 in_pcbremlists(struct inpcb *inp)
2331 {
2332 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2333 
2334 #ifdef INVARIANTS
2335 	if (pcbinfo == &V_tcbinfo) {
2336 		INP_INFO_RLOCK_ASSERT(pcbinfo);
2337 	} else {
2338 		INP_INFO_WLOCK_ASSERT(pcbinfo);
2339 	}
2340 #endif
2341 
2342 	INP_WLOCK_ASSERT(inp);
2343 	INP_LIST_WLOCK_ASSERT(pcbinfo);
2344 
2345 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2346 	if (inp->inp_flags & INP_INHASHLIST) {
2347 		struct inpcbport *phd = inp->inp_phd;
2348 
2349 		INP_HASH_WLOCK(pcbinfo);
2350 		LIST_REMOVE(inp, inp_hash);
2351 		LIST_REMOVE(inp, inp_portlist);
2352 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
2353 			LIST_REMOVE(phd, phd_hash);
2354 			free(phd, M_PCB);
2355 		}
2356 		INP_HASH_WUNLOCK(pcbinfo);
2357 		inp->inp_flags &= ~INP_INHASHLIST;
2358 	}
2359 	LIST_REMOVE(inp, inp_list);
2360 	pcbinfo->ipi_count--;
2361 #ifdef PCBGROUP
2362 	in_pcbgroup_remove(inp);
2363 #endif
2364 }
2365 
2366 /*
2367  * Check for alternatives when higher level complains
2368  * about service problems.  For now, invalidate cached
2369  * routing information.  If the route was created dynamically
2370  * (by a redirect), time to try a default gateway again.
2371  */
2372 void
2373 in_losing(struct inpcb *inp)
2374 {
2375 
2376 	RO_INVALIDATE_CACHE(&inp->inp_route);
2377 	return;
2378 }
2379 
2380 /*
2381  * A set label operation has occurred at the socket layer, propagate the
2382  * label change into the in_pcb for the socket.
2383  */
2384 void
2385 in_pcbsosetlabel(struct socket *so)
2386 {
2387 #ifdef MAC
2388 	struct inpcb *inp;
2389 
2390 	inp = sotoinpcb(so);
2391 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2392 
2393 	INP_WLOCK(inp);
2394 	SOCK_LOCK(so);
2395 	mac_inpcb_sosetlabel(so, inp);
2396 	SOCK_UNLOCK(so);
2397 	INP_WUNLOCK(inp);
2398 #endif
2399 }
2400 
2401 /*
2402  * ipport_tick runs once per second, determining if random port allocation
2403  * should be continued.  If more than ipport_randomcps ports have been
2404  * allocated in the last second, then we return to sequential port
2405  * allocation. We return to random allocation only once we drop below
2406  * ipport_randomcps for at least ipport_randomtime seconds.
2407  */
2408 static void
2409 ipport_tick(void *xtp)
2410 {
2411 	VNET_ITERATOR_DECL(vnet_iter);
2412 
2413 	VNET_LIST_RLOCK_NOSLEEP();
2414 	VNET_FOREACH(vnet_iter) {
2415 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
2416 		if (V_ipport_tcpallocs <=
2417 		    V_ipport_tcplastcount + V_ipport_randomcps) {
2418 			if (V_ipport_stoprandom > 0)
2419 				V_ipport_stoprandom--;
2420 		} else
2421 			V_ipport_stoprandom = V_ipport_randomtime;
2422 		V_ipport_tcplastcount = V_ipport_tcpallocs;
2423 		CURVNET_RESTORE();
2424 	}
2425 	VNET_LIST_RUNLOCK_NOSLEEP();
2426 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2427 }
2428 
2429 static void
2430 ip_fini(void *xtp)
2431 {
2432 
2433 	callout_stop(&ipport_tick_callout);
2434 }
2435 
2436 /*
2437  * The ipport_callout should start running at about the time we attach the
2438  * inet or inet6 domains.
2439  */
2440 static void
2441 ipport_tick_init(const void *unused __unused)
2442 {
2443 
2444 	/* Start ipport_tick. */
2445 	callout_init(&ipport_tick_callout, 1);
2446 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2447 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2448 		SHUTDOWN_PRI_DEFAULT);
2449 }
2450 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
2451     ipport_tick_init, NULL);
2452 
2453 void
2454 inp_wlock(struct inpcb *inp)
2455 {
2456 
2457 	INP_WLOCK(inp);
2458 }
2459 
2460 void
2461 inp_wunlock(struct inpcb *inp)
2462 {
2463 
2464 	INP_WUNLOCK(inp);
2465 }
2466 
2467 void
2468 inp_rlock(struct inpcb *inp)
2469 {
2470 
2471 	INP_RLOCK(inp);
2472 }
2473 
2474 void
2475 inp_runlock(struct inpcb *inp)
2476 {
2477 
2478 	INP_RUNLOCK(inp);
2479 }
2480 
2481 #ifdef INVARIANT_SUPPORT
2482 void
2483 inp_lock_assert(struct inpcb *inp)
2484 {
2485 
2486 	INP_WLOCK_ASSERT(inp);
2487 }
2488 
2489 void
2490 inp_unlock_assert(struct inpcb *inp)
2491 {
2492 
2493 	INP_UNLOCK_ASSERT(inp);
2494 }
2495 #endif
2496 
2497 void
2498 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2499 {
2500 	struct inpcb *inp;
2501 
2502 	INP_INFO_WLOCK(&V_tcbinfo);
2503 	LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2504 		INP_WLOCK(inp);
2505 		func(inp, arg);
2506 		INP_WUNLOCK(inp);
2507 	}
2508 	INP_INFO_WUNLOCK(&V_tcbinfo);
2509 }
2510 
2511 struct socket *
2512 inp_inpcbtosocket(struct inpcb *inp)
2513 {
2514 
2515 	INP_WLOCK_ASSERT(inp);
2516 	return (inp->inp_socket);
2517 }
2518 
2519 struct tcpcb *
2520 inp_inpcbtotcpcb(struct inpcb *inp)
2521 {
2522 
2523 	INP_WLOCK_ASSERT(inp);
2524 	return ((struct tcpcb *)inp->inp_ppcb);
2525 }
2526 
2527 int
2528 inp_ip_tos_get(const struct inpcb *inp)
2529 {
2530 
2531 	return (inp->inp_ip_tos);
2532 }
2533 
2534 void
2535 inp_ip_tos_set(struct inpcb *inp, int val)
2536 {
2537 
2538 	inp->inp_ip_tos = val;
2539 }
2540 
2541 void
2542 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2543     uint32_t *faddr, uint16_t *fp)
2544 {
2545 
2546 	INP_LOCK_ASSERT(inp);
2547 	*laddr = inp->inp_laddr.s_addr;
2548 	*faddr = inp->inp_faddr.s_addr;
2549 	*lp = inp->inp_lport;
2550 	*fp = inp->inp_fport;
2551 }
2552 
2553 struct inpcb *
2554 so_sotoinpcb(struct socket *so)
2555 {
2556 
2557 	return (sotoinpcb(so));
2558 }
2559 
2560 struct tcpcb *
2561 so_sototcpcb(struct socket *so)
2562 {
2563 
2564 	return (sototcpcb(so));
2565 }
2566 
2567 /*
2568  * Create an external-format (``xinpcb'') structure using the information in
2569  * the kernel-format in_pcb structure pointed to by inp.  This is done to
2570  * reduce the spew of irrelevant information over this interface, to isolate
2571  * user code from changes in the kernel structure, and potentially to provide
2572  * information-hiding if we decide that some of this information should be
2573  * hidden from users.
2574  */
2575 void
2576 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi)
2577 {
2578 
2579 	xi->xi_len = sizeof(struct xinpcb);
2580 	if (inp->inp_socket)
2581 		sotoxsocket(inp->inp_socket, &xi->xi_socket);
2582 	else
2583 		bzero(&xi->xi_socket, sizeof(struct xsocket));
2584 	bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo));
2585 	xi->inp_gencnt = inp->inp_gencnt;
2586 	xi->inp_ppcb = inp->inp_ppcb;
2587 	xi->inp_flow = inp->inp_flow;
2588 	xi->inp_flowid = inp->inp_flowid;
2589 	xi->inp_flowtype = inp->inp_flowtype;
2590 	xi->inp_flags = inp->inp_flags;
2591 	xi->inp_flags2 = inp->inp_flags2;
2592 	xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket;
2593 	xi->in6p_cksum = inp->in6p_cksum;
2594 	xi->in6p_hops = inp->in6p_hops;
2595 	xi->inp_ip_tos = inp->inp_ip_tos;
2596 	xi->inp_vflag = inp->inp_vflag;
2597 	xi->inp_ip_ttl = inp->inp_ip_ttl;
2598 	xi->inp_ip_p = inp->inp_ip_p;
2599 	xi->inp_ip_minttl = inp->inp_ip_minttl;
2600 }
2601 
2602 #ifdef DDB
2603 static void
2604 db_print_indent(int indent)
2605 {
2606 	int i;
2607 
2608 	for (i = 0; i < indent; i++)
2609 		db_printf(" ");
2610 }
2611 
2612 static void
2613 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2614 {
2615 	char faddr_str[48], laddr_str[48];
2616 
2617 	db_print_indent(indent);
2618 	db_printf("%s at %p\n", name, inc);
2619 
2620 	indent += 2;
2621 
2622 #ifdef INET6
2623 	if (inc->inc_flags & INC_ISIPV6) {
2624 		/* IPv6. */
2625 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
2626 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
2627 	} else
2628 #endif
2629 	{
2630 		/* IPv4. */
2631 		inet_ntoa_r(inc->inc_laddr, laddr_str);
2632 		inet_ntoa_r(inc->inc_faddr, faddr_str);
2633 	}
2634 	db_print_indent(indent);
2635 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2636 	    ntohs(inc->inc_lport));
2637 	db_print_indent(indent);
2638 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2639 	    ntohs(inc->inc_fport));
2640 }
2641 
2642 static void
2643 db_print_inpflags(int inp_flags)
2644 {
2645 	int comma;
2646 
2647 	comma = 0;
2648 	if (inp_flags & INP_RECVOPTS) {
2649 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2650 		comma = 1;
2651 	}
2652 	if (inp_flags & INP_RECVRETOPTS) {
2653 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2654 		comma = 1;
2655 	}
2656 	if (inp_flags & INP_RECVDSTADDR) {
2657 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2658 		comma = 1;
2659 	}
2660 	if (inp_flags & INP_ORIGDSTADDR) {
2661 		db_printf("%sINP_ORIGDSTADDR", comma ? ", " : "");
2662 		comma = 1;
2663 	}
2664 	if (inp_flags & INP_HDRINCL) {
2665 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
2666 		comma = 1;
2667 	}
2668 	if (inp_flags & INP_HIGHPORT) {
2669 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2670 		comma = 1;
2671 	}
2672 	if (inp_flags & INP_LOWPORT) {
2673 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
2674 		comma = 1;
2675 	}
2676 	if (inp_flags & INP_ANONPORT) {
2677 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
2678 		comma = 1;
2679 	}
2680 	if (inp_flags & INP_RECVIF) {
2681 		db_printf("%sINP_RECVIF", comma ? ", " : "");
2682 		comma = 1;
2683 	}
2684 	if (inp_flags & INP_MTUDISC) {
2685 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
2686 		comma = 1;
2687 	}
2688 	if (inp_flags & INP_RECVTTL) {
2689 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
2690 		comma = 1;
2691 	}
2692 	if (inp_flags & INP_DONTFRAG) {
2693 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2694 		comma = 1;
2695 	}
2696 	if (inp_flags & INP_RECVTOS) {
2697 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
2698 		comma = 1;
2699 	}
2700 	if (inp_flags & IN6P_IPV6_V6ONLY) {
2701 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
2702 		comma = 1;
2703 	}
2704 	if (inp_flags & IN6P_PKTINFO) {
2705 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
2706 		comma = 1;
2707 	}
2708 	if (inp_flags & IN6P_HOPLIMIT) {
2709 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
2710 		comma = 1;
2711 	}
2712 	if (inp_flags & IN6P_HOPOPTS) {
2713 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
2714 		comma = 1;
2715 	}
2716 	if (inp_flags & IN6P_DSTOPTS) {
2717 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
2718 		comma = 1;
2719 	}
2720 	if (inp_flags & IN6P_RTHDR) {
2721 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
2722 		comma = 1;
2723 	}
2724 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
2725 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
2726 		comma = 1;
2727 	}
2728 	if (inp_flags & IN6P_TCLASS) {
2729 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
2730 		comma = 1;
2731 	}
2732 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
2733 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
2734 		comma = 1;
2735 	}
2736 	if (inp_flags & INP_TIMEWAIT) {
2737 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
2738 		comma  = 1;
2739 	}
2740 	if (inp_flags & INP_ONESBCAST) {
2741 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
2742 		comma  = 1;
2743 	}
2744 	if (inp_flags & INP_DROPPED) {
2745 		db_printf("%sINP_DROPPED", comma ? ", " : "");
2746 		comma  = 1;
2747 	}
2748 	if (inp_flags & INP_SOCKREF) {
2749 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
2750 		comma  = 1;
2751 	}
2752 	if (inp_flags & IN6P_RFC2292) {
2753 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
2754 		comma = 1;
2755 	}
2756 	if (inp_flags & IN6P_MTU) {
2757 		db_printf("IN6P_MTU%s", comma ? ", " : "");
2758 		comma = 1;
2759 	}
2760 }
2761 
2762 static void
2763 db_print_inpvflag(u_char inp_vflag)
2764 {
2765 	int comma;
2766 
2767 	comma = 0;
2768 	if (inp_vflag & INP_IPV4) {
2769 		db_printf("%sINP_IPV4", comma ? ", " : "");
2770 		comma  = 1;
2771 	}
2772 	if (inp_vflag & INP_IPV6) {
2773 		db_printf("%sINP_IPV6", comma ? ", " : "");
2774 		comma  = 1;
2775 	}
2776 	if (inp_vflag & INP_IPV6PROTO) {
2777 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
2778 		comma  = 1;
2779 	}
2780 }
2781 
2782 static void
2783 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
2784 {
2785 
2786 	db_print_indent(indent);
2787 	db_printf("%s at %p\n", name, inp);
2788 
2789 	indent += 2;
2790 
2791 	db_print_indent(indent);
2792 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
2793 
2794 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
2795 
2796 	db_print_indent(indent);
2797 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
2798 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
2799 
2800 	db_print_indent(indent);
2801 	db_printf("inp_label: %p   inp_flags: 0x%x (",
2802 	   inp->inp_label, inp->inp_flags);
2803 	db_print_inpflags(inp->inp_flags);
2804 	db_printf(")\n");
2805 
2806 	db_print_indent(indent);
2807 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
2808 	    inp->inp_vflag);
2809 	db_print_inpvflag(inp->inp_vflag);
2810 	db_printf(")\n");
2811 
2812 	db_print_indent(indent);
2813 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
2814 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
2815 
2816 	db_print_indent(indent);
2817 #ifdef INET6
2818 	if (inp->inp_vflag & INP_IPV6) {
2819 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
2820 		    "in6p_moptions: %p\n", inp->in6p_options,
2821 		    inp->in6p_outputopts, inp->in6p_moptions);
2822 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
2823 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
2824 		    inp->in6p_hops);
2825 	} else
2826 #endif
2827 	{
2828 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
2829 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
2830 		    inp->inp_options, inp->inp_moptions);
2831 	}
2832 
2833 	db_print_indent(indent);
2834 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
2835 	    (uintmax_t)inp->inp_gencnt);
2836 }
2837 
2838 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
2839 {
2840 	struct inpcb *inp;
2841 
2842 	if (!have_addr) {
2843 		db_printf("usage: show inpcb <addr>\n");
2844 		return;
2845 	}
2846 	inp = (struct inpcb *)addr;
2847 
2848 	db_print_inpcb(inp, "inpcb", 0);
2849 }
2850 #endif /* DDB */
2851 
2852 #ifdef RATELIMIT
2853 /*
2854  * Modify TX rate limit based on the existing "inp->inp_snd_tag",
2855  * if any.
2856  */
2857 int
2858 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate)
2859 {
2860 	union if_snd_tag_modify_params params = {
2861 		.rate_limit.max_rate = max_pacing_rate,
2862 	};
2863 	struct m_snd_tag *mst;
2864 	struct ifnet *ifp;
2865 	int error;
2866 
2867 	mst = inp->inp_snd_tag;
2868 	if (mst == NULL)
2869 		return (EINVAL);
2870 
2871 	ifp = mst->ifp;
2872 	if (ifp == NULL)
2873 		return (EINVAL);
2874 
2875 	if (ifp->if_snd_tag_modify == NULL) {
2876 		error = EOPNOTSUPP;
2877 	} else {
2878 		error = ifp->if_snd_tag_modify(mst, &params);
2879 	}
2880 	return (error);
2881 }
2882 
2883 /*
2884  * Query existing TX rate limit based on the existing
2885  * "inp->inp_snd_tag", if any.
2886  */
2887 int
2888 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate)
2889 {
2890 	union if_snd_tag_query_params params = { };
2891 	struct m_snd_tag *mst;
2892 	struct ifnet *ifp;
2893 	int error;
2894 
2895 	mst = inp->inp_snd_tag;
2896 	if (mst == NULL)
2897 		return (EINVAL);
2898 
2899 	ifp = mst->ifp;
2900 	if (ifp == NULL)
2901 		return (EINVAL);
2902 
2903 	if (ifp->if_snd_tag_query == NULL) {
2904 		error = EOPNOTSUPP;
2905 	} else {
2906 		error = ifp->if_snd_tag_query(mst, &params);
2907 		if (error == 0 &&  p_max_pacing_rate != NULL)
2908 			*p_max_pacing_rate = params.rate_limit.max_rate;
2909 	}
2910 	return (error);
2911 }
2912 
2913 /*
2914  * Query existing TX queue level based on the existing
2915  * "inp->inp_snd_tag", if any.
2916  */
2917 int
2918 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level)
2919 {
2920 	union if_snd_tag_query_params params = { };
2921 	struct m_snd_tag *mst;
2922 	struct ifnet *ifp;
2923 	int error;
2924 
2925 	mst = inp->inp_snd_tag;
2926 	if (mst == NULL)
2927 		return (EINVAL);
2928 
2929 	ifp = mst->ifp;
2930 	if (ifp == NULL)
2931 		return (EINVAL);
2932 
2933 	if (ifp->if_snd_tag_query == NULL)
2934 		return (EOPNOTSUPP);
2935 
2936 	error = ifp->if_snd_tag_query(mst, &params);
2937 	if (error == 0 &&  p_txqueue_level != NULL)
2938 		*p_txqueue_level = params.rate_limit.queue_level;
2939 	return (error);
2940 }
2941 
2942 /*
2943  * Allocate a new TX rate limit send tag from the network interface
2944  * given by the "ifp" argument and save it in "inp->inp_snd_tag":
2945  */
2946 int
2947 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp,
2948     uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate)
2949 {
2950 	union if_snd_tag_alloc_params params = {
2951 		.rate_limit.hdr.type = (max_pacing_rate == -1U) ?
2952 		    IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT,
2953 		.rate_limit.hdr.flowid = flowid,
2954 		.rate_limit.hdr.flowtype = flowtype,
2955 		.rate_limit.max_rate = max_pacing_rate,
2956 	};
2957 	int error;
2958 
2959 	INP_WLOCK_ASSERT(inp);
2960 
2961 	if (inp->inp_snd_tag != NULL)
2962 		return (EINVAL);
2963 
2964 	if (ifp->if_snd_tag_alloc == NULL) {
2965 		error = EOPNOTSUPP;
2966 	} else {
2967 		error = ifp->if_snd_tag_alloc(ifp, &params, &inp->inp_snd_tag);
2968 
2969 		/*
2970 		 * At success increment the refcount on
2971 		 * the send tag's network interface:
2972 		 */
2973 		if (error == 0)
2974 			if_ref(inp->inp_snd_tag->ifp);
2975 	}
2976 	return (error);
2977 }
2978 
2979 /*
2980  * Free an existing TX rate limit tag based on the "inp->inp_snd_tag",
2981  * if any:
2982  */
2983 void
2984 in_pcbdetach_txrtlmt(struct inpcb *inp)
2985 {
2986 	struct m_snd_tag *mst;
2987 	struct ifnet *ifp;
2988 
2989 	INP_WLOCK_ASSERT(inp);
2990 
2991 	mst = inp->inp_snd_tag;
2992 	inp->inp_snd_tag = NULL;
2993 
2994 	if (mst == NULL)
2995 		return;
2996 
2997 	ifp = mst->ifp;
2998 	if (ifp == NULL)
2999 		return;
3000 
3001 	/*
3002 	 * If the device was detached while we still had reference(s)
3003 	 * on the ifp, we assume if_snd_tag_free() was replaced with
3004 	 * stubs.
3005 	 */
3006 	ifp->if_snd_tag_free(mst);
3007 
3008 	/* release reference count on network interface */
3009 	if_rele(ifp);
3010 }
3011 
3012 /*
3013  * This function should be called when the INP_RATE_LIMIT_CHANGED flag
3014  * is set in the fast path and will attach/detach/modify the TX rate
3015  * limit send tag based on the socket's so_max_pacing_rate value.
3016  */
3017 void
3018 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb)
3019 {
3020 	struct socket *socket;
3021 	uint32_t max_pacing_rate;
3022 	bool did_upgrade;
3023 	int error;
3024 
3025 	if (inp == NULL)
3026 		return;
3027 
3028 	socket = inp->inp_socket;
3029 	if (socket == NULL)
3030 		return;
3031 
3032 	if (!INP_WLOCKED(inp)) {
3033 		/*
3034 		 * NOTE: If the write locking fails, we need to bail
3035 		 * out and use the non-ratelimited ring for the
3036 		 * transmit until there is a new chance to get the
3037 		 * write lock.
3038 		 */
3039 		if (!INP_TRY_UPGRADE(inp))
3040 			return;
3041 		did_upgrade = 1;
3042 	} else {
3043 		did_upgrade = 0;
3044 	}
3045 
3046 	/*
3047 	 * NOTE: The so_max_pacing_rate value is read unlocked,
3048 	 * because atomic updates are not required since the variable
3049 	 * is checked at every mbuf we send. It is assumed that the
3050 	 * variable read itself will be atomic.
3051 	 */
3052 	max_pacing_rate = socket->so_max_pacing_rate;
3053 
3054 	/*
3055 	 * NOTE: When attaching to a network interface a reference is
3056 	 * made to ensure the network interface doesn't go away until
3057 	 * all ratelimit connections are gone. The network interface
3058 	 * pointers compared below represent valid network interfaces,
3059 	 * except when comparing towards NULL.
3060 	 */
3061 	if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) {
3062 		error = 0;
3063 	} else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) {
3064 		if (inp->inp_snd_tag != NULL)
3065 			in_pcbdetach_txrtlmt(inp);
3066 		error = 0;
3067 	} else if (inp->inp_snd_tag == NULL) {
3068 		/*
3069 		 * In order to utilize packet pacing with RSS, we need
3070 		 * to wait until there is a valid RSS hash before we
3071 		 * can proceed:
3072 		 */
3073 		if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) {
3074 			error = EAGAIN;
3075 		} else {
3076 			error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb),
3077 			    mb->m_pkthdr.flowid, max_pacing_rate);
3078 		}
3079 	} else {
3080 		error = in_pcbmodify_txrtlmt(inp, max_pacing_rate);
3081 	}
3082 	if (error == 0 || error == EOPNOTSUPP)
3083 		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
3084 	if (did_upgrade)
3085 		INP_DOWNGRADE(inp);
3086 }
3087 
3088 /*
3089  * Track route changes for TX rate limiting.
3090  */
3091 void
3092 in_pcboutput_eagain(struct inpcb *inp)
3093 {
3094 	struct socket *socket;
3095 	bool did_upgrade;
3096 
3097 	if (inp == NULL)
3098 		return;
3099 
3100 	socket = inp->inp_socket;
3101 	if (socket == NULL)
3102 		return;
3103 
3104 	if (inp->inp_snd_tag == NULL)
3105 		return;
3106 
3107 	if (!INP_WLOCKED(inp)) {
3108 		/*
3109 		 * NOTE: If the write locking fails, we need to bail
3110 		 * out and use the non-ratelimited ring for the
3111 		 * transmit until there is a new chance to get the
3112 		 * write lock.
3113 		 */
3114 		if (!INP_TRY_UPGRADE(inp))
3115 			return;
3116 		did_upgrade = 1;
3117 	} else {
3118 		did_upgrade = 0;
3119 	}
3120 
3121 	/* detach rate limiting */
3122 	in_pcbdetach_txrtlmt(inp);
3123 
3124 	/* make sure new mbuf send tag allocation is made */
3125 	inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
3126 
3127 	if (did_upgrade)
3128 		INP_DOWNGRADE(inp);
3129 }
3130 #endif /* RATELIMIT */
3131