1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993, 1995 3 * The Regents of the University of California. 4 * Copyright (c) 2007-2009 Robert N. M. Watson 5 * Copyright (c) 2010-2011 Juniper Networks, Inc. 6 * All rights reserved. 7 * 8 * Portions of this software were developed by Robert N. M. Watson under 9 * contract to Juniper Networks, Inc. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 4. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_ddb.h" 42 #include "opt_ipsec.h" 43 #include "opt_inet.h" 44 #include "opt_inet6.h" 45 #include "opt_pcbgroup.h" 46 #include "opt_rss.h" 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/lock.h> 51 #include <sys/malloc.h> 52 #include <sys/mbuf.h> 53 #include <sys/callout.h> 54 #include <sys/eventhandler.h> 55 #include <sys/domain.h> 56 #include <sys/protosw.h> 57 #include <sys/rmlock.h> 58 #include <sys/socket.h> 59 #include <sys/socketvar.h> 60 #include <sys/priv.h> 61 #include <sys/proc.h> 62 #include <sys/refcount.h> 63 #include <sys/jail.h> 64 #include <sys/kernel.h> 65 #include <sys/sysctl.h> 66 67 #ifdef DDB 68 #include <ddb/ddb.h> 69 #endif 70 71 #include <vm/uma.h> 72 73 #include <net/if.h> 74 #include <net/if_var.h> 75 #include <net/if_types.h> 76 #include <net/route.h> 77 #include <net/rss_config.h> 78 #include <net/vnet.h> 79 80 #if defined(INET) || defined(INET6) 81 #include <netinet/in.h> 82 #include <netinet/in_pcb.h> 83 #include <netinet/ip_var.h> 84 #include <netinet/tcp_var.h> 85 #include <netinet/udp.h> 86 #include <netinet/udp_var.h> 87 #endif 88 #ifdef INET 89 #include <netinet/in_var.h> 90 #endif 91 #ifdef INET6 92 #include <netinet/ip6.h> 93 #include <netinet6/in6_pcb.h> 94 #include <netinet6/in6_var.h> 95 #include <netinet6/ip6_var.h> 96 #endif /* INET6 */ 97 98 99 #ifdef IPSEC 100 #include <netipsec/ipsec.h> 101 #include <netipsec/key.h> 102 #endif /* IPSEC */ 103 104 #include <security/mac/mac_framework.h> 105 106 static struct callout ipport_tick_callout; 107 108 /* 109 * These configure the range of local port addresses assigned to 110 * "unspecified" outgoing connections/packets/whatever. 111 */ 112 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 113 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 114 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 115 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 116 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 117 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 118 119 /* 120 * Reserved ports accessible only to root. There are significant 121 * security considerations that must be accounted for when changing these, 122 * but the security benefits can be great. Please be careful. 123 */ 124 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 125 VNET_DEFINE(int, ipport_reservedlow); 126 127 /* Variables dealing with random ephemeral port allocation. */ 128 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 129 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 130 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 131 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 132 VNET_DEFINE(int, ipport_tcpallocs); 133 static VNET_DEFINE(int, ipport_tcplastcount); 134 135 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 136 137 static void in_pcbremlists(struct inpcb *inp); 138 #ifdef INET 139 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 140 struct in_addr faddr, u_int fport_arg, 141 struct in_addr laddr, u_int lport_arg, 142 int lookupflags, struct ifnet *ifp); 143 144 #define RANGECHK(var, min, max) \ 145 if ((var) < (min)) { (var) = (min); } \ 146 else if ((var) > (max)) { (var) = (max); } 147 148 static int 149 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 150 { 151 int error; 152 153 error = sysctl_handle_int(oidp, arg1, arg2, req); 154 if (error == 0) { 155 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 156 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 157 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 158 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 159 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 160 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 161 } 162 return (error); 163 } 164 165 #undef RANGECHK 166 167 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, 168 "IP Ports"); 169 170 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 171 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 172 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", ""); 173 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 174 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 175 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", ""); 176 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 177 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 178 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", ""); 179 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 180 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 181 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", ""); 182 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 183 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 184 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", ""); 185 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 186 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 187 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", ""); 188 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 189 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 190 &VNET_NAME(ipport_reservedhigh), 0, ""); 191 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 192 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 193 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 194 CTLFLAG_VNET | CTLFLAG_RW, 195 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 197 CTLFLAG_VNET | CTLFLAG_RW, 198 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 199 "allocations before switching to a sequental one"); 200 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 201 CTLFLAG_VNET | CTLFLAG_RW, 202 &VNET_NAME(ipport_randomtime), 0, 203 "Minimum time to keep sequental port " 204 "allocation before switching to a random one"); 205 #endif /* INET */ 206 207 /* 208 * in_pcb.c: manage the Protocol Control Blocks. 209 * 210 * NOTE: It is assumed that most of these functions will be called with 211 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 212 * functions often modify hash chains or addresses in pcbs. 213 */ 214 215 /* 216 * Initialize an inpcbinfo -- we should be able to reduce the number of 217 * arguments in time. 218 */ 219 void 220 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 221 struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, 222 char *inpcbzone_name, uma_init inpcbzone_init, uma_fini inpcbzone_fini, 223 uint32_t inpcbzone_flags, u_int hashfields) 224 { 225 226 INP_INFO_LOCK_INIT(pcbinfo, name); 227 INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ 228 INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist"); 229 #ifdef VIMAGE 230 pcbinfo->ipi_vnet = curvnet; 231 #endif 232 pcbinfo->ipi_listhead = listhead; 233 LIST_INIT(pcbinfo->ipi_listhead); 234 pcbinfo->ipi_count = 0; 235 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 236 &pcbinfo->ipi_hashmask); 237 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 238 &pcbinfo->ipi_porthashmask); 239 #ifdef PCBGROUP 240 in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); 241 #endif 242 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 243 NULL, NULL, inpcbzone_init, inpcbzone_fini, UMA_ALIGN_PTR, 244 inpcbzone_flags); 245 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 246 uma_zone_set_warning(pcbinfo->ipi_zone, 247 "kern.ipc.maxsockets limit reached"); 248 } 249 250 /* 251 * Destroy an inpcbinfo. 252 */ 253 void 254 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 255 { 256 257 KASSERT(pcbinfo->ipi_count == 0, 258 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 259 260 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 261 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 262 pcbinfo->ipi_porthashmask); 263 #ifdef PCBGROUP 264 in_pcbgroup_destroy(pcbinfo); 265 #endif 266 uma_zdestroy(pcbinfo->ipi_zone); 267 INP_LIST_LOCK_DESTROY(pcbinfo); 268 INP_HASH_LOCK_DESTROY(pcbinfo); 269 INP_INFO_LOCK_DESTROY(pcbinfo); 270 } 271 272 /* 273 * Allocate a PCB and associate it with the socket. 274 * On success return with the PCB locked. 275 */ 276 int 277 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 278 { 279 struct inpcb *inp; 280 int error; 281 282 #ifdef INVARIANTS 283 if (pcbinfo == &V_tcbinfo) { 284 INP_INFO_RLOCK_ASSERT(pcbinfo); 285 } else { 286 INP_INFO_WLOCK_ASSERT(pcbinfo); 287 } 288 #endif 289 290 error = 0; 291 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 292 if (inp == NULL) 293 return (ENOBUFS); 294 bzero(inp, inp_zero_size); 295 inp->inp_pcbinfo = pcbinfo; 296 inp->inp_socket = so; 297 inp->inp_cred = crhold(so->so_cred); 298 inp->inp_inc.inc_fibnum = so->so_fibnum; 299 #ifdef MAC 300 error = mac_inpcb_init(inp, M_NOWAIT); 301 if (error != 0) 302 goto out; 303 mac_inpcb_create(so, inp); 304 #endif 305 #ifdef IPSEC 306 error = ipsec_init_policy(so, &inp->inp_sp); 307 if (error != 0) { 308 #ifdef MAC 309 mac_inpcb_destroy(inp); 310 #endif 311 goto out; 312 } 313 #endif /*IPSEC*/ 314 #ifdef INET6 315 if (INP_SOCKAF(so) == AF_INET6) { 316 inp->inp_vflag |= INP_IPV6PROTO; 317 if (V_ip6_v6only) 318 inp->inp_flags |= IN6P_IPV6_V6ONLY; 319 } 320 #endif 321 INP_WLOCK(inp); 322 INP_LIST_WLOCK(pcbinfo); 323 LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 324 pcbinfo->ipi_count++; 325 so->so_pcb = (caddr_t)inp; 326 #ifdef INET6 327 if (V_ip6_auto_flowlabel) 328 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 329 #endif 330 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 331 refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ 332 INP_LIST_WUNLOCK(pcbinfo); 333 #if defined(IPSEC) || defined(MAC) 334 out: 335 if (error != 0) { 336 crfree(inp->inp_cred); 337 uma_zfree(pcbinfo->ipi_zone, inp); 338 } 339 #endif 340 return (error); 341 } 342 343 #ifdef INET 344 int 345 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 346 { 347 int anonport, error; 348 349 INP_WLOCK_ASSERT(inp); 350 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 351 352 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 353 return (EINVAL); 354 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 355 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 356 &inp->inp_lport, cred); 357 if (error) 358 return (error); 359 if (in_pcbinshash(inp) != 0) { 360 inp->inp_laddr.s_addr = INADDR_ANY; 361 inp->inp_lport = 0; 362 return (EAGAIN); 363 } 364 if (anonport) 365 inp->inp_flags |= INP_ANONPORT; 366 return (0); 367 } 368 #endif 369 370 /* 371 * Select a local port (number) to use. 372 */ 373 #if defined(INET) || defined(INET6) 374 int 375 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 376 struct ucred *cred, int lookupflags) 377 { 378 struct inpcbinfo *pcbinfo; 379 struct inpcb *tmpinp; 380 unsigned short *lastport; 381 int count, dorandom, error; 382 u_short aux, first, last, lport; 383 #ifdef INET 384 struct in_addr laddr; 385 #endif 386 387 pcbinfo = inp->inp_pcbinfo; 388 389 /* 390 * Because no actual state changes occur here, a global write lock on 391 * the pcbinfo isn't required. 392 */ 393 INP_LOCK_ASSERT(inp); 394 INP_HASH_LOCK_ASSERT(pcbinfo); 395 396 if (inp->inp_flags & INP_HIGHPORT) { 397 first = V_ipport_hifirstauto; /* sysctl */ 398 last = V_ipport_hilastauto; 399 lastport = &pcbinfo->ipi_lasthi; 400 } else if (inp->inp_flags & INP_LOWPORT) { 401 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0); 402 if (error) 403 return (error); 404 first = V_ipport_lowfirstauto; /* 1023 */ 405 last = V_ipport_lowlastauto; /* 600 */ 406 lastport = &pcbinfo->ipi_lastlow; 407 } else { 408 first = V_ipport_firstauto; /* sysctl */ 409 last = V_ipport_lastauto; 410 lastport = &pcbinfo->ipi_lastport; 411 } 412 /* 413 * For UDP(-Lite), use random port allocation as long as the user 414 * allows it. For TCP (and as of yet unknown) connections, 415 * use random port allocation only if the user allows it AND 416 * ipport_tick() allows it. 417 */ 418 if (V_ipport_randomized && 419 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 420 pcbinfo == &V_ulitecbinfo)) 421 dorandom = 1; 422 else 423 dorandom = 0; 424 /* 425 * It makes no sense to do random port allocation if 426 * we have the only port available. 427 */ 428 if (first == last) 429 dorandom = 0; 430 /* Make sure to not include UDP(-Lite) packets in the count. */ 431 if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) 432 V_ipport_tcpallocs++; 433 /* 434 * Instead of having two loops further down counting up or down 435 * make sure that first is always <= last and go with only one 436 * code path implementing all logic. 437 */ 438 if (first > last) { 439 aux = first; 440 first = last; 441 last = aux; 442 } 443 444 #ifdef INET 445 /* Make the compiler happy. */ 446 laddr.s_addr = 0; 447 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 448 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p", 449 __func__, inp)); 450 laddr = *laddrp; 451 } 452 #endif 453 tmpinp = NULL; /* Make compiler happy. */ 454 lport = *lportp; 455 456 if (dorandom) 457 *lastport = first + (arc4random() % (last - first)); 458 459 count = last - first; 460 461 do { 462 if (count-- < 0) /* completely used? */ 463 return (EADDRNOTAVAIL); 464 ++*lastport; 465 if (*lastport < first || *lastport > last) 466 *lastport = first; 467 lport = htons(*lastport); 468 469 #ifdef INET6 470 if ((inp->inp_vflag & INP_IPV6) != 0) 471 tmpinp = in6_pcblookup_local(pcbinfo, 472 &inp->in6p_laddr, lport, lookupflags, cred); 473 #endif 474 #if defined(INET) && defined(INET6) 475 else 476 #endif 477 #ifdef INET 478 tmpinp = in_pcblookup_local(pcbinfo, laddr, 479 lport, lookupflags, cred); 480 #endif 481 } while (tmpinp != NULL); 482 483 #ifdef INET 484 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) 485 laddrp->s_addr = laddr.s_addr; 486 #endif 487 *lportp = lport; 488 489 return (0); 490 } 491 492 /* 493 * Return cached socket options. 494 */ 495 short 496 inp_so_options(const struct inpcb *inp) 497 { 498 short so_options; 499 500 so_options = 0; 501 502 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 503 so_options |= SO_REUSEPORT; 504 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 505 so_options |= SO_REUSEADDR; 506 return (so_options); 507 } 508 #endif /* INET || INET6 */ 509 510 /* 511 * Check if a new BINDMULTI socket is allowed to be created. 512 * 513 * ni points to the new inp. 514 * oi points to the exisitng inp. 515 * 516 * This checks whether the existing inp also has BINDMULTI and 517 * whether the credentials match. 518 */ 519 int 520 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 521 { 522 /* Check permissions match */ 523 if ((ni->inp_flags2 & INP_BINDMULTI) && 524 (ni->inp_cred->cr_uid != 525 oi->inp_cred->cr_uid)) 526 return (0); 527 528 /* Check the existing inp has BINDMULTI set */ 529 if ((ni->inp_flags2 & INP_BINDMULTI) && 530 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 531 return (0); 532 533 /* 534 * We're okay - either INP_BINDMULTI isn't set on ni, or 535 * it is and it matches the checks. 536 */ 537 return (1); 538 } 539 540 #ifdef INET 541 /* 542 * Set up a bind operation on a PCB, performing port allocation 543 * as required, but do not actually modify the PCB. Callers can 544 * either complete the bind by setting inp_laddr/inp_lport and 545 * calling in_pcbinshash(), or they can just use the resulting 546 * port and address to authorise the sending of a once-off packet. 547 * 548 * On error, the values of *laddrp and *lportp are not changed. 549 */ 550 int 551 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 552 u_short *lportp, struct ucred *cred) 553 { 554 struct socket *so = inp->inp_socket; 555 struct sockaddr_in *sin; 556 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 557 struct in_addr laddr; 558 u_short lport = 0; 559 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 560 int error; 561 562 /* 563 * No state changes, so read locks are sufficient here. 564 */ 565 INP_LOCK_ASSERT(inp); 566 INP_HASH_LOCK_ASSERT(pcbinfo); 567 568 if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 569 return (EADDRNOTAVAIL); 570 laddr.s_addr = *laddrp; 571 if (nam != NULL && laddr.s_addr != INADDR_ANY) 572 return (EINVAL); 573 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) 574 lookupflags = INPLOOKUP_WILDCARD; 575 if (nam == NULL) { 576 if ((error = prison_local_ip4(cred, &laddr)) != 0) 577 return (error); 578 } else { 579 sin = (struct sockaddr_in *)nam; 580 if (nam->sa_len != sizeof (*sin)) 581 return (EINVAL); 582 #ifdef notdef 583 /* 584 * We should check the family, but old programs 585 * incorrectly fail to initialize it. 586 */ 587 if (sin->sin_family != AF_INET) 588 return (EAFNOSUPPORT); 589 #endif 590 error = prison_local_ip4(cred, &sin->sin_addr); 591 if (error) 592 return (error); 593 if (sin->sin_port != *lportp) { 594 /* Don't allow the port to change. */ 595 if (*lportp != 0) 596 return (EINVAL); 597 lport = sin->sin_port; 598 } 599 /* NB: lport is left as 0 if the port isn't being changed. */ 600 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 601 /* 602 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 603 * allow complete duplication of binding if 604 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 605 * and a multicast address is bound on both 606 * new and duplicated sockets. 607 */ 608 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 609 reuseport = SO_REUSEADDR|SO_REUSEPORT; 610 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 611 sin->sin_port = 0; /* yech... */ 612 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 613 /* 614 * Is the address a local IP address? 615 * If INP_BINDANY is set, then the socket may be bound 616 * to any endpoint address, local or not. 617 */ 618 if ((inp->inp_flags & INP_BINDANY) == 0 && 619 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 620 return (EADDRNOTAVAIL); 621 } 622 laddr = sin->sin_addr; 623 if (lport) { 624 struct inpcb *t; 625 struct tcptw *tw; 626 627 /* GROSS */ 628 if (ntohs(lport) <= V_ipport_reservedhigh && 629 ntohs(lport) >= V_ipport_reservedlow && 630 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 631 0)) 632 return (EACCES); 633 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 634 priv_check_cred(inp->inp_cred, 635 PRIV_NETINET_REUSEPORT, 0) != 0) { 636 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 637 lport, INPLOOKUP_WILDCARD, cred); 638 /* 639 * XXX 640 * This entire block sorely needs a rewrite. 641 */ 642 if (t && 643 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 644 ((t->inp_flags & INP_TIMEWAIT) == 0) && 645 (so->so_type != SOCK_STREAM || 646 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 647 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 648 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 649 (t->inp_flags2 & INP_REUSEPORT) == 0) && 650 (inp->inp_cred->cr_uid != 651 t->inp_cred->cr_uid)) 652 return (EADDRINUSE); 653 654 /* 655 * If the socket is a BINDMULTI socket, then 656 * the credentials need to match and the 657 * original socket also has to have been bound 658 * with BINDMULTI. 659 */ 660 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 661 return (EADDRINUSE); 662 } 663 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 664 lport, lookupflags, cred); 665 if (t && (t->inp_flags & INP_TIMEWAIT)) { 666 /* 667 * XXXRW: If an incpb has had its timewait 668 * state recycled, we treat the address as 669 * being in use (for now). This is better 670 * than a panic, but not desirable. 671 */ 672 tw = intotw(t); 673 if (tw == NULL || 674 (reuseport & tw->tw_so_options) == 0) 675 return (EADDRINUSE); 676 } else if (t && 677 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 678 (reuseport & inp_so_options(t)) == 0) { 679 #ifdef INET6 680 if (ntohl(sin->sin_addr.s_addr) != 681 INADDR_ANY || 682 ntohl(t->inp_laddr.s_addr) != 683 INADDR_ANY || 684 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 685 (t->inp_vflag & INP_IPV6PROTO) == 0) 686 #endif 687 return (EADDRINUSE); 688 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 689 return (EADDRINUSE); 690 } 691 } 692 } 693 if (*lportp != 0) 694 lport = *lportp; 695 if (lport == 0) { 696 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 697 if (error != 0) 698 return (error); 699 700 } 701 *laddrp = laddr.s_addr; 702 *lportp = lport; 703 return (0); 704 } 705 706 /* 707 * Connect from a socket to a specified address. 708 * Both address and port must be specified in argument sin. 709 * If don't have a local address for this socket yet, 710 * then pick one. 711 */ 712 int 713 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, 714 struct ucred *cred, struct mbuf *m) 715 { 716 u_short lport, fport; 717 in_addr_t laddr, faddr; 718 int anonport, error; 719 720 INP_WLOCK_ASSERT(inp); 721 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 722 723 lport = inp->inp_lport; 724 laddr = inp->inp_laddr.s_addr; 725 anonport = (lport == 0); 726 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 727 NULL, cred); 728 if (error) 729 return (error); 730 731 /* Do the initial binding of the local address if required. */ 732 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 733 inp->inp_lport = lport; 734 inp->inp_laddr.s_addr = laddr; 735 if (in_pcbinshash(inp) != 0) { 736 inp->inp_laddr.s_addr = INADDR_ANY; 737 inp->inp_lport = 0; 738 return (EAGAIN); 739 } 740 } 741 742 /* Commit the remaining changes. */ 743 inp->inp_lport = lport; 744 inp->inp_laddr.s_addr = laddr; 745 inp->inp_faddr.s_addr = faddr; 746 inp->inp_fport = fport; 747 in_pcbrehash_mbuf(inp, m); 748 749 if (anonport) 750 inp->inp_flags |= INP_ANONPORT; 751 return (0); 752 } 753 754 int 755 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 756 { 757 758 return (in_pcbconnect_mbuf(inp, nam, cred, NULL)); 759 } 760 761 /* 762 * Do proper source address selection on an unbound socket in case 763 * of connect. Take jails into account as well. 764 */ 765 int 766 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 767 struct ucred *cred) 768 { 769 struct ifaddr *ifa; 770 struct sockaddr *sa; 771 struct sockaddr_in *sin; 772 struct route sro; 773 int error; 774 775 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 776 777 /* 778 * Bypass source address selection and use the primary jail IP 779 * if requested. 780 */ 781 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 782 return (0); 783 784 error = 0; 785 bzero(&sro, sizeof(sro)); 786 787 sin = (struct sockaddr_in *)&sro.ro_dst; 788 sin->sin_family = AF_INET; 789 sin->sin_len = sizeof(struct sockaddr_in); 790 sin->sin_addr.s_addr = faddr->s_addr; 791 792 /* 793 * If route is known our src addr is taken from the i/f, 794 * else punt. 795 * 796 * Find out route to destination. 797 */ 798 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 799 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); 800 801 /* 802 * If we found a route, use the address corresponding to 803 * the outgoing interface. 804 * 805 * Otherwise assume faddr is reachable on a directly connected 806 * network and try to find a corresponding interface to take 807 * the source address from. 808 */ 809 if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { 810 struct in_ifaddr *ia; 811 struct ifnet *ifp; 812 813 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 814 inp->inp_socket->so_fibnum)); 815 if (ia == NULL) 816 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 817 inp->inp_socket->so_fibnum)); 818 if (ia == NULL) { 819 error = ENETUNREACH; 820 goto done; 821 } 822 823 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 824 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 825 ifa_free(&ia->ia_ifa); 826 goto done; 827 } 828 829 ifp = ia->ia_ifp; 830 ifa_free(&ia->ia_ifa); 831 ia = NULL; 832 IF_ADDR_RLOCK(ifp); 833 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 834 835 sa = ifa->ifa_addr; 836 if (sa->sa_family != AF_INET) 837 continue; 838 sin = (struct sockaddr_in *)sa; 839 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 840 ia = (struct in_ifaddr *)ifa; 841 break; 842 } 843 } 844 if (ia != NULL) { 845 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 846 IF_ADDR_RUNLOCK(ifp); 847 goto done; 848 } 849 IF_ADDR_RUNLOCK(ifp); 850 851 /* 3. As a last resort return the 'default' jail address. */ 852 error = prison_get_ip4(cred, laddr); 853 goto done; 854 } 855 856 /* 857 * If the outgoing interface on the route found is not 858 * a loopback interface, use the address from that interface. 859 * In case of jails do those three steps: 860 * 1. check if the interface address belongs to the jail. If so use it. 861 * 2. check if we have any address on the outgoing interface 862 * belonging to this jail. If so use it. 863 * 3. as a last resort return the 'default' jail address. 864 */ 865 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { 866 struct in_ifaddr *ia; 867 struct ifnet *ifp; 868 869 /* If not jailed, use the default returned. */ 870 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 871 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 872 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 873 goto done; 874 } 875 876 /* Jailed. */ 877 /* 1. Check if the iface address belongs to the jail. */ 878 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; 879 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 880 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 881 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 882 goto done; 883 } 884 885 /* 886 * 2. Check if we have any address on the outgoing interface 887 * belonging to this jail. 888 */ 889 ia = NULL; 890 ifp = sro.ro_rt->rt_ifp; 891 IF_ADDR_RLOCK(ifp); 892 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 893 sa = ifa->ifa_addr; 894 if (sa->sa_family != AF_INET) 895 continue; 896 sin = (struct sockaddr_in *)sa; 897 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 898 ia = (struct in_ifaddr *)ifa; 899 break; 900 } 901 } 902 if (ia != NULL) { 903 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 904 IF_ADDR_RUNLOCK(ifp); 905 goto done; 906 } 907 IF_ADDR_RUNLOCK(ifp); 908 909 /* 3. As a last resort return the 'default' jail address. */ 910 error = prison_get_ip4(cred, laddr); 911 goto done; 912 } 913 914 /* 915 * The outgoing interface is marked with 'loopback net', so a route 916 * to ourselves is here. 917 * Try to find the interface of the destination address and then 918 * take the address from there. That interface is not necessarily 919 * a loopback interface. 920 * In case of jails, check that it is an address of the jail 921 * and if we cannot find, fall back to the 'default' jail address. 922 */ 923 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 924 struct sockaddr_in sain; 925 struct in_ifaddr *ia; 926 927 bzero(&sain, sizeof(struct sockaddr_in)); 928 sain.sin_family = AF_INET; 929 sain.sin_len = sizeof(struct sockaddr_in); 930 sain.sin_addr.s_addr = faddr->s_addr; 931 932 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain), 933 inp->inp_socket->so_fibnum)); 934 if (ia == NULL) 935 ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0, 936 inp->inp_socket->so_fibnum)); 937 if (ia == NULL) 938 ia = ifatoia(ifa_ifwithaddr(sintosa(&sain))); 939 940 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 941 if (ia == NULL) { 942 error = ENETUNREACH; 943 goto done; 944 } 945 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 946 ifa_free(&ia->ia_ifa); 947 goto done; 948 } 949 950 /* Jailed. */ 951 if (ia != NULL) { 952 struct ifnet *ifp; 953 954 ifp = ia->ia_ifp; 955 ifa_free(&ia->ia_ifa); 956 ia = NULL; 957 IF_ADDR_RLOCK(ifp); 958 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 959 960 sa = ifa->ifa_addr; 961 if (sa->sa_family != AF_INET) 962 continue; 963 sin = (struct sockaddr_in *)sa; 964 if (prison_check_ip4(cred, 965 &sin->sin_addr) == 0) { 966 ia = (struct in_ifaddr *)ifa; 967 break; 968 } 969 } 970 if (ia != NULL) { 971 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 972 IF_ADDR_RUNLOCK(ifp); 973 goto done; 974 } 975 IF_ADDR_RUNLOCK(ifp); 976 } 977 978 /* 3. As a last resort return the 'default' jail address. */ 979 error = prison_get_ip4(cred, laddr); 980 goto done; 981 } 982 983 done: 984 if (sro.ro_rt != NULL) 985 RTFREE(sro.ro_rt); 986 return (error); 987 } 988 989 /* 990 * Set up for a connect from a socket to the specified address. 991 * On entry, *laddrp and *lportp should contain the current local 992 * address and port for the PCB; these are updated to the values 993 * that should be placed in inp_laddr and inp_lport to complete 994 * the connect. 995 * 996 * On success, *faddrp and *fportp will be set to the remote address 997 * and port. These are not updated in the error case. 998 * 999 * If the operation fails because the connection already exists, 1000 * *oinpp will be set to the PCB of that connection so that the 1001 * caller can decide to override it. In all other cases, *oinpp 1002 * is set to NULL. 1003 */ 1004 int 1005 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1006 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1007 struct inpcb **oinpp, struct ucred *cred) 1008 { 1009 struct rm_priotracker in_ifa_tracker; 1010 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1011 struct in_ifaddr *ia; 1012 struct inpcb *oinp; 1013 struct in_addr laddr, faddr; 1014 u_short lport, fport; 1015 int error; 1016 1017 /* 1018 * Because a global state change doesn't actually occur here, a read 1019 * lock is sufficient. 1020 */ 1021 INP_LOCK_ASSERT(inp); 1022 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1023 1024 if (oinpp != NULL) 1025 *oinpp = NULL; 1026 if (nam->sa_len != sizeof (*sin)) 1027 return (EINVAL); 1028 if (sin->sin_family != AF_INET) 1029 return (EAFNOSUPPORT); 1030 if (sin->sin_port == 0) 1031 return (EADDRNOTAVAIL); 1032 laddr.s_addr = *laddrp; 1033 lport = *lportp; 1034 faddr = sin->sin_addr; 1035 fport = sin->sin_port; 1036 1037 if (!TAILQ_EMPTY(&V_in_ifaddrhead)) { 1038 /* 1039 * If the destination address is INADDR_ANY, 1040 * use the primary local address. 1041 * If the supplied address is INADDR_BROADCAST, 1042 * and the primary interface supports broadcast, 1043 * choose the broadcast address for that interface. 1044 */ 1045 if (faddr.s_addr == INADDR_ANY) { 1046 IN_IFADDR_RLOCK(&in_ifa_tracker); 1047 faddr = 1048 IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1049 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1050 if (cred != NULL && 1051 (error = prison_get_ip4(cred, &faddr)) != 0) 1052 return (error); 1053 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1054 IN_IFADDR_RLOCK(&in_ifa_tracker); 1055 if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1056 IFF_BROADCAST) 1057 faddr = satosin(&TAILQ_FIRST( 1058 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1059 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1060 } 1061 } 1062 if (laddr.s_addr == INADDR_ANY) { 1063 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1064 /* 1065 * If the destination address is multicast and an outgoing 1066 * interface has been set as a multicast option, prefer the 1067 * address of that interface as our source address. 1068 */ 1069 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1070 inp->inp_moptions != NULL) { 1071 struct ip_moptions *imo; 1072 struct ifnet *ifp; 1073 1074 imo = inp->inp_moptions; 1075 if (imo->imo_multicast_ifp != NULL) { 1076 ifp = imo->imo_multicast_ifp; 1077 IN_IFADDR_RLOCK(&in_ifa_tracker); 1078 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1079 if ((ia->ia_ifp == ifp) && 1080 (cred == NULL || 1081 prison_check_ip4(cred, 1082 &ia->ia_addr.sin_addr) == 0)) 1083 break; 1084 } 1085 if (ia == NULL) 1086 error = EADDRNOTAVAIL; 1087 else { 1088 laddr = ia->ia_addr.sin_addr; 1089 error = 0; 1090 } 1091 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1092 } 1093 } 1094 if (error) 1095 return (error); 1096 } 1097 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport, 1098 laddr, lport, 0, NULL); 1099 if (oinp != NULL) { 1100 if (oinpp != NULL) 1101 *oinpp = oinp; 1102 return (EADDRINUSE); 1103 } 1104 if (lport == 0) { 1105 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 1106 cred); 1107 if (error) 1108 return (error); 1109 } 1110 *laddrp = laddr.s_addr; 1111 *lportp = lport; 1112 *faddrp = faddr.s_addr; 1113 *fportp = fport; 1114 return (0); 1115 } 1116 1117 void 1118 in_pcbdisconnect(struct inpcb *inp) 1119 { 1120 1121 INP_WLOCK_ASSERT(inp); 1122 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1123 1124 inp->inp_faddr.s_addr = INADDR_ANY; 1125 inp->inp_fport = 0; 1126 in_pcbrehash(inp); 1127 } 1128 #endif /* INET */ 1129 1130 /* 1131 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1132 * For most protocols, this will be invoked immediately prior to calling 1133 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1134 * socket, in which case in_pcbfree() is deferred. 1135 */ 1136 void 1137 in_pcbdetach(struct inpcb *inp) 1138 { 1139 1140 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1141 1142 inp->inp_socket->so_pcb = NULL; 1143 inp->inp_socket = NULL; 1144 } 1145 1146 /* 1147 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1148 * stability of an inpcb pointer despite the inpcb lock being released. This 1149 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 1150 * but where the inpcb lock may already held, or when acquiring a reference 1151 * via a pcbgroup. 1152 * 1153 * in_pcbref() should be used only to provide brief memory stability, and 1154 * must always be followed by a call to INP_WLOCK() and in_pcbrele() to 1155 * garbage collect the inpcb if it has been in_pcbfree()'d from another 1156 * context. Until in_pcbrele() has returned that the inpcb is still valid, 1157 * lock and rele are the *only* safe operations that may be performed on the 1158 * inpcb. 1159 * 1160 * While the inpcb will not be freed, releasing the inpcb lock means that the 1161 * connection's state may change, so the caller should be careful to 1162 * revalidate any cached state on reacquiring the lock. Drop the reference 1163 * using in_pcbrele(). 1164 */ 1165 void 1166 in_pcbref(struct inpcb *inp) 1167 { 1168 1169 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1170 1171 refcount_acquire(&inp->inp_refcount); 1172 } 1173 1174 /* 1175 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 1176 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 1177 * return a flag indicating whether or not the inpcb remains valid. If it is 1178 * valid, we return with the inpcb lock held. 1179 * 1180 * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a 1181 * reference on an inpcb. Historically more work was done here (actually, in 1182 * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the 1183 * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely 1184 * about memory stability (and continued use of the write lock). 1185 */ 1186 int 1187 in_pcbrele_rlocked(struct inpcb *inp) 1188 { 1189 struct inpcbinfo *pcbinfo; 1190 1191 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1192 1193 INP_RLOCK_ASSERT(inp); 1194 1195 if (refcount_release(&inp->inp_refcount) == 0) { 1196 /* 1197 * If the inpcb has been freed, let the caller know, even if 1198 * this isn't the last reference. 1199 */ 1200 if (inp->inp_flags2 & INP_FREED) { 1201 INP_RUNLOCK(inp); 1202 return (1); 1203 } 1204 return (0); 1205 } 1206 1207 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1208 1209 INP_RUNLOCK(inp); 1210 pcbinfo = inp->inp_pcbinfo; 1211 uma_zfree(pcbinfo->ipi_zone, inp); 1212 return (1); 1213 } 1214 1215 int 1216 in_pcbrele_wlocked(struct inpcb *inp) 1217 { 1218 struct inpcbinfo *pcbinfo; 1219 1220 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1221 1222 INP_WLOCK_ASSERT(inp); 1223 1224 if (refcount_release(&inp->inp_refcount) == 0) { 1225 /* 1226 * If the inpcb has been freed, let the caller know, even if 1227 * this isn't the last reference. 1228 */ 1229 if (inp->inp_flags2 & INP_FREED) { 1230 INP_WUNLOCK(inp); 1231 return (1); 1232 } 1233 return (0); 1234 } 1235 1236 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1237 1238 INP_WUNLOCK(inp); 1239 pcbinfo = inp->inp_pcbinfo; 1240 uma_zfree(pcbinfo->ipi_zone, inp); 1241 return (1); 1242 } 1243 1244 /* 1245 * Temporary wrapper. 1246 */ 1247 int 1248 in_pcbrele(struct inpcb *inp) 1249 { 1250 1251 return (in_pcbrele_wlocked(inp)); 1252 } 1253 1254 /* 1255 * Unconditionally schedule an inpcb to be freed by decrementing its 1256 * reference count, which should occur only after the inpcb has been detached 1257 * from its socket. If another thread holds a temporary reference (acquired 1258 * using in_pcbref()) then the free is deferred until that reference is 1259 * released using in_pcbrele(), but the inpcb is still unlocked. Almost all 1260 * work, including removal from global lists, is done in this context, where 1261 * the pcbinfo lock is held. 1262 */ 1263 void 1264 in_pcbfree(struct inpcb *inp) 1265 { 1266 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1267 1268 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1269 1270 #ifdef INVARIANTS 1271 if (pcbinfo == &V_tcbinfo) { 1272 INP_INFO_LOCK_ASSERT(pcbinfo); 1273 } else { 1274 INP_INFO_WLOCK_ASSERT(pcbinfo); 1275 } 1276 #endif 1277 INP_WLOCK_ASSERT(inp); 1278 1279 /* XXXRW: Do as much as possible here. */ 1280 #ifdef IPSEC 1281 if (inp->inp_sp != NULL) 1282 ipsec_delete_pcbpolicy(inp); 1283 #endif 1284 INP_LIST_WLOCK(pcbinfo); 1285 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1286 in_pcbremlists(inp); 1287 INP_LIST_WUNLOCK(pcbinfo); 1288 #ifdef INET6 1289 if (inp->inp_vflag & INP_IPV6PROTO) { 1290 ip6_freepcbopts(inp->in6p_outputopts); 1291 if (inp->in6p_moptions != NULL) 1292 ip6_freemoptions(inp->in6p_moptions); 1293 } 1294 #endif 1295 if (inp->inp_options) 1296 (void)m_free(inp->inp_options); 1297 #ifdef INET 1298 if (inp->inp_moptions != NULL) 1299 inp_freemoptions(inp->inp_moptions); 1300 #endif 1301 if (inp->inp_route.ro_rt) { 1302 RTFREE(inp->inp_route.ro_rt); 1303 inp->inp_route.ro_rt = (struct rtentry *)NULL; 1304 } 1305 1306 inp->inp_vflag = 0; 1307 inp->inp_flags2 |= INP_FREED; 1308 crfree(inp->inp_cred); 1309 #ifdef MAC 1310 mac_inpcb_destroy(inp); 1311 #endif 1312 if (!in_pcbrele_wlocked(inp)) 1313 INP_WUNLOCK(inp); 1314 } 1315 1316 /* 1317 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1318 * port reservation, and preventing it from being returned by inpcb lookups. 1319 * 1320 * It is used by TCP to mark an inpcb as unused and avoid future packet 1321 * delivery or event notification when a socket remains open but TCP has 1322 * closed. This might occur as a result of a shutdown()-initiated TCP close 1323 * or a RST on the wire, and allows the port binding to be reused while still 1324 * maintaining the invariant that so_pcb always points to a valid inpcb until 1325 * in_pcbdetach(). 1326 * 1327 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1328 * in_pcbnotifyall() and in_pcbpurgeif0()? 1329 */ 1330 void 1331 in_pcbdrop(struct inpcb *inp) 1332 { 1333 1334 INP_WLOCK_ASSERT(inp); 1335 1336 /* 1337 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1338 * the hash lock...? 1339 */ 1340 inp->inp_flags |= INP_DROPPED; 1341 if (inp->inp_flags & INP_INHASHLIST) { 1342 struct inpcbport *phd = inp->inp_phd; 1343 1344 INP_HASH_WLOCK(inp->inp_pcbinfo); 1345 LIST_REMOVE(inp, inp_hash); 1346 LIST_REMOVE(inp, inp_portlist); 1347 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 1348 LIST_REMOVE(phd, phd_hash); 1349 free(phd, M_PCB); 1350 } 1351 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1352 inp->inp_flags &= ~INP_INHASHLIST; 1353 #ifdef PCBGROUP 1354 in_pcbgroup_remove(inp); 1355 #endif 1356 } 1357 } 1358 1359 #ifdef INET 1360 /* 1361 * Common routines to return the socket addresses associated with inpcbs. 1362 */ 1363 struct sockaddr * 1364 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1365 { 1366 struct sockaddr_in *sin; 1367 1368 sin = malloc(sizeof *sin, M_SONAME, 1369 M_WAITOK | M_ZERO); 1370 sin->sin_family = AF_INET; 1371 sin->sin_len = sizeof(*sin); 1372 sin->sin_addr = *addr_p; 1373 sin->sin_port = port; 1374 1375 return (struct sockaddr *)sin; 1376 } 1377 1378 int 1379 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1380 { 1381 struct inpcb *inp; 1382 struct in_addr addr; 1383 in_port_t port; 1384 1385 inp = sotoinpcb(so); 1386 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1387 1388 INP_RLOCK(inp); 1389 port = inp->inp_lport; 1390 addr = inp->inp_laddr; 1391 INP_RUNLOCK(inp); 1392 1393 *nam = in_sockaddr(port, &addr); 1394 return 0; 1395 } 1396 1397 int 1398 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1399 { 1400 struct inpcb *inp; 1401 struct in_addr addr; 1402 in_port_t port; 1403 1404 inp = sotoinpcb(so); 1405 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1406 1407 INP_RLOCK(inp); 1408 port = inp->inp_fport; 1409 addr = inp->inp_faddr; 1410 INP_RUNLOCK(inp); 1411 1412 *nam = in_sockaddr(port, &addr); 1413 return 0; 1414 } 1415 1416 void 1417 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1418 struct inpcb *(*notify)(struct inpcb *, int)) 1419 { 1420 struct inpcb *inp, *inp_temp; 1421 1422 INP_INFO_WLOCK(pcbinfo); 1423 LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1424 INP_WLOCK(inp); 1425 #ifdef INET6 1426 if ((inp->inp_vflag & INP_IPV4) == 0) { 1427 INP_WUNLOCK(inp); 1428 continue; 1429 } 1430 #endif 1431 if (inp->inp_faddr.s_addr != faddr.s_addr || 1432 inp->inp_socket == NULL) { 1433 INP_WUNLOCK(inp); 1434 continue; 1435 } 1436 if ((*notify)(inp, errno)) 1437 INP_WUNLOCK(inp); 1438 } 1439 INP_INFO_WUNLOCK(pcbinfo); 1440 } 1441 1442 void 1443 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1444 { 1445 struct inpcb *inp; 1446 struct ip_moptions *imo; 1447 int i, gap; 1448 1449 INP_INFO_WLOCK(pcbinfo); 1450 LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1451 INP_WLOCK(inp); 1452 imo = inp->inp_moptions; 1453 if ((inp->inp_vflag & INP_IPV4) && 1454 imo != NULL) { 1455 /* 1456 * Unselect the outgoing interface if it is being 1457 * detached. 1458 */ 1459 if (imo->imo_multicast_ifp == ifp) 1460 imo->imo_multicast_ifp = NULL; 1461 1462 /* 1463 * Drop multicast group membership if we joined 1464 * through the interface being detached. 1465 */ 1466 for (i = 0, gap = 0; i < imo->imo_num_memberships; 1467 i++) { 1468 if (imo->imo_membership[i]->inm_ifp == ifp) { 1469 in_delmulti(imo->imo_membership[i]); 1470 gap++; 1471 } else if (gap != 0) 1472 imo->imo_membership[i - gap] = 1473 imo->imo_membership[i]; 1474 } 1475 imo->imo_num_memberships -= gap; 1476 } 1477 INP_WUNLOCK(inp); 1478 } 1479 INP_INFO_WUNLOCK(pcbinfo); 1480 } 1481 1482 /* 1483 * Lookup a PCB based on the local address and port. Caller must hold the 1484 * hash lock. No inpcb locks or references are acquired. 1485 */ 1486 #define INP_LOOKUP_MAPPED_PCB_COST 3 1487 struct inpcb * 1488 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1489 u_short lport, int lookupflags, struct ucred *cred) 1490 { 1491 struct inpcb *inp; 1492 #ifdef INET6 1493 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1494 #else 1495 int matchwild = 3; 1496 #endif 1497 int wildcard; 1498 1499 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1500 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1501 1502 INP_HASH_LOCK_ASSERT(pcbinfo); 1503 1504 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1505 struct inpcbhead *head; 1506 /* 1507 * Look for an unconnected (wildcard foreign addr) PCB that 1508 * matches the local address and port we're looking for. 1509 */ 1510 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1511 0, pcbinfo->ipi_hashmask)]; 1512 LIST_FOREACH(inp, head, inp_hash) { 1513 #ifdef INET6 1514 /* XXX inp locking */ 1515 if ((inp->inp_vflag & INP_IPV4) == 0) 1516 continue; 1517 #endif 1518 if (inp->inp_faddr.s_addr == INADDR_ANY && 1519 inp->inp_laddr.s_addr == laddr.s_addr && 1520 inp->inp_lport == lport) { 1521 /* 1522 * Found? 1523 */ 1524 if (cred == NULL || 1525 prison_equal_ip4(cred->cr_prison, 1526 inp->inp_cred->cr_prison)) 1527 return (inp); 1528 } 1529 } 1530 /* 1531 * Not found. 1532 */ 1533 return (NULL); 1534 } else { 1535 struct inpcbporthead *porthash; 1536 struct inpcbport *phd; 1537 struct inpcb *match = NULL; 1538 /* 1539 * Best fit PCB lookup. 1540 * 1541 * First see if this local port is in use by looking on the 1542 * port hash list. 1543 */ 1544 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1545 pcbinfo->ipi_porthashmask)]; 1546 LIST_FOREACH(phd, porthash, phd_hash) { 1547 if (phd->phd_port == lport) 1548 break; 1549 } 1550 if (phd != NULL) { 1551 /* 1552 * Port is in use by one or more PCBs. Look for best 1553 * fit. 1554 */ 1555 LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1556 wildcard = 0; 1557 if (cred != NULL && 1558 !prison_equal_ip4(inp->inp_cred->cr_prison, 1559 cred->cr_prison)) 1560 continue; 1561 #ifdef INET6 1562 /* XXX inp locking */ 1563 if ((inp->inp_vflag & INP_IPV4) == 0) 1564 continue; 1565 /* 1566 * We never select the PCB that has 1567 * INP_IPV6 flag and is bound to :: if 1568 * we have another PCB which is bound 1569 * to 0.0.0.0. If a PCB has the 1570 * INP_IPV6 flag, then we set its cost 1571 * higher than IPv4 only PCBs. 1572 * 1573 * Note that the case only happens 1574 * when a socket is bound to ::, under 1575 * the condition that the use of the 1576 * mapped address is allowed. 1577 */ 1578 if ((inp->inp_vflag & INP_IPV6) != 0) 1579 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1580 #endif 1581 if (inp->inp_faddr.s_addr != INADDR_ANY) 1582 wildcard++; 1583 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1584 if (laddr.s_addr == INADDR_ANY) 1585 wildcard++; 1586 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1587 continue; 1588 } else { 1589 if (laddr.s_addr != INADDR_ANY) 1590 wildcard++; 1591 } 1592 if (wildcard < matchwild) { 1593 match = inp; 1594 matchwild = wildcard; 1595 if (matchwild == 0) 1596 break; 1597 } 1598 } 1599 } 1600 return (match); 1601 } 1602 } 1603 #undef INP_LOOKUP_MAPPED_PCB_COST 1604 1605 #ifdef PCBGROUP 1606 /* 1607 * Lookup PCB in hash list, using pcbgroup tables. 1608 */ 1609 static struct inpcb * 1610 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, 1611 struct in_addr faddr, u_int fport_arg, struct in_addr laddr, 1612 u_int lport_arg, int lookupflags, struct ifnet *ifp) 1613 { 1614 struct inpcbhead *head; 1615 struct inpcb *inp, *tmpinp; 1616 u_short fport = fport_arg, lport = lport_arg; 1617 1618 /* 1619 * First look for an exact match. 1620 */ 1621 tmpinp = NULL; 1622 INP_GROUP_LOCK(pcbgroup); 1623 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1624 pcbgroup->ipg_hashmask)]; 1625 LIST_FOREACH(inp, head, inp_pcbgrouphash) { 1626 #ifdef INET6 1627 /* XXX inp locking */ 1628 if ((inp->inp_vflag & INP_IPV4) == 0) 1629 continue; 1630 #endif 1631 if (inp->inp_faddr.s_addr == faddr.s_addr && 1632 inp->inp_laddr.s_addr == laddr.s_addr && 1633 inp->inp_fport == fport && 1634 inp->inp_lport == lport) { 1635 /* 1636 * XXX We should be able to directly return 1637 * the inp here, without any checks. 1638 * Well unless both bound with SO_REUSEPORT? 1639 */ 1640 if (prison_flag(inp->inp_cred, PR_IP4)) 1641 goto found; 1642 if (tmpinp == NULL) 1643 tmpinp = inp; 1644 } 1645 } 1646 if (tmpinp != NULL) { 1647 inp = tmpinp; 1648 goto found; 1649 } 1650 1651 #ifdef RSS 1652 /* 1653 * For incoming connections, we may wish to do a wildcard 1654 * match for an RSS-local socket. 1655 */ 1656 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1657 struct inpcb *local_wild = NULL, *local_exact = NULL; 1658 #ifdef INET6 1659 struct inpcb *local_wild_mapped = NULL; 1660 #endif 1661 struct inpcb *jail_wild = NULL; 1662 struct inpcbhead *head; 1663 int injail; 1664 1665 /* 1666 * Order of socket selection - we always prefer jails. 1667 * 1. jailed, non-wild. 1668 * 2. jailed, wild. 1669 * 3. non-jailed, non-wild. 1670 * 4. non-jailed, wild. 1671 */ 1672 1673 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, 1674 lport, 0, pcbgroup->ipg_hashmask)]; 1675 LIST_FOREACH(inp, head, inp_pcbgrouphash) { 1676 #ifdef INET6 1677 /* XXX inp locking */ 1678 if ((inp->inp_vflag & INP_IPV4) == 0) 1679 continue; 1680 #endif 1681 if (inp->inp_faddr.s_addr != INADDR_ANY || 1682 inp->inp_lport != lport) 1683 continue; 1684 1685 injail = prison_flag(inp->inp_cred, PR_IP4); 1686 if (injail) { 1687 if (prison_check_ip4(inp->inp_cred, 1688 &laddr) != 0) 1689 continue; 1690 } else { 1691 if (local_exact != NULL) 1692 continue; 1693 } 1694 1695 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1696 if (injail) 1697 goto found; 1698 else 1699 local_exact = inp; 1700 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1701 #ifdef INET6 1702 /* XXX inp locking, NULL check */ 1703 if (inp->inp_vflag & INP_IPV6PROTO) 1704 local_wild_mapped = inp; 1705 else 1706 #endif 1707 if (injail) 1708 jail_wild = inp; 1709 else 1710 local_wild = inp; 1711 } 1712 } /* LIST_FOREACH */ 1713 1714 inp = jail_wild; 1715 if (inp == NULL) 1716 inp = local_exact; 1717 if (inp == NULL) 1718 inp = local_wild; 1719 #ifdef INET6 1720 if (inp == NULL) 1721 inp = local_wild_mapped; 1722 #endif 1723 if (inp != NULL) 1724 goto found; 1725 } 1726 #endif 1727 1728 /* 1729 * Then look for a wildcard match, if requested. 1730 */ 1731 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1732 struct inpcb *local_wild = NULL, *local_exact = NULL; 1733 #ifdef INET6 1734 struct inpcb *local_wild_mapped = NULL; 1735 #endif 1736 struct inpcb *jail_wild = NULL; 1737 struct inpcbhead *head; 1738 int injail; 1739 1740 /* 1741 * Order of socket selection - we always prefer jails. 1742 * 1. jailed, non-wild. 1743 * 2. jailed, wild. 1744 * 3. non-jailed, non-wild. 1745 * 4. non-jailed, wild. 1746 */ 1747 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 1748 0, pcbinfo->ipi_wildmask)]; 1749 LIST_FOREACH(inp, head, inp_pcbgroup_wild) { 1750 #ifdef INET6 1751 /* XXX inp locking */ 1752 if ((inp->inp_vflag & INP_IPV4) == 0) 1753 continue; 1754 #endif 1755 if (inp->inp_faddr.s_addr != INADDR_ANY || 1756 inp->inp_lport != lport) 1757 continue; 1758 1759 injail = prison_flag(inp->inp_cred, PR_IP4); 1760 if (injail) { 1761 if (prison_check_ip4(inp->inp_cred, 1762 &laddr) != 0) 1763 continue; 1764 } else { 1765 if (local_exact != NULL) 1766 continue; 1767 } 1768 1769 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1770 if (injail) 1771 goto found; 1772 else 1773 local_exact = inp; 1774 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1775 #ifdef INET6 1776 /* XXX inp locking, NULL check */ 1777 if (inp->inp_vflag & INP_IPV6PROTO) 1778 local_wild_mapped = inp; 1779 else 1780 #endif 1781 if (injail) 1782 jail_wild = inp; 1783 else 1784 local_wild = inp; 1785 } 1786 } /* LIST_FOREACH */ 1787 inp = jail_wild; 1788 if (inp == NULL) 1789 inp = local_exact; 1790 if (inp == NULL) 1791 inp = local_wild; 1792 #ifdef INET6 1793 if (inp == NULL) 1794 inp = local_wild_mapped; 1795 #endif 1796 if (inp != NULL) 1797 goto found; 1798 } /* if (lookupflags & INPLOOKUP_WILDCARD) */ 1799 INP_GROUP_UNLOCK(pcbgroup); 1800 return (NULL); 1801 1802 found: 1803 in_pcbref(inp); 1804 INP_GROUP_UNLOCK(pcbgroup); 1805 if (lookupflags & INPLOOKUP_WLOCKPCB) { 1806 INP_WLOCK(inp); 1807 if (in_pcbrele_wlocked(inp)) 1808 return (NULL); 1809 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 1810 INP_RLOCK(inp); 1811 if (in_pcbrele_rlocked(inp)) 1812 return (NULL); 1813 } else 1814 panic("%s: locking bug", __func__); 1815 return (inp); 1816 } 1817 #endif /* PCBGROUP */ 1818 1819 /* 1820 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 1821 * that the caller has locked the hash list, and will not perform any further 1822 * locking or reference operations on either the hash list or the connection. 1823 */ 1824 static struct inpcb * 1825 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1826 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 1827 struct ifnet *ifp) 1828 { 1829 struct inpcbhead *head; 1830 struct inpcb *inp, *tmpinp; 1831 u_short fport = fport_arg, lport = lport_arg; 1832 1833 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1834 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1835 1836 INP_HASH_LOCK_ASSERT(pcbinfo); 1837 1838 /* 1839 * First look for an exact match. 1840 */ 1841 tmpinp = NULL; 1842 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1843 pcbinfo->ipi_hashmask)]; 1844 LIST_FOREACH(inp, head, inp_hash) { 1845 #ifdef INET6 1846 /* XXX inp locking */ 1847 if ((inp->inp_vflag & INP_IPV4) == 0) 1848 continue; 1849 #endif 1850 if (inp->inp_faddr.s_addr == faddr.s_addr && 1851 inp->inp_laddr.s_addr == laddr.s_addr && 1852 inp->inp_fport == fport && 1853 inp->inp_lport == lport) { 1854 /* 1855 * XXX We should be able to directly return 1856 * the inp here, without any checks. 1857 * Well unless both bound with SO_REUSEPORT? 1858 */ 1859 if (prison_flag(inp->inp_cred, PR_IP4)) 1860 return (inp); 1861 if (tmpinp == NULL) 1862 tmpinp = inp; 1863 } 1864 } 1865 if (tmpinp != NULL) 1866 return (tmpinp); 1867 1868 /* 1869 * Then look for a wildcard match, if requested. 1870 */ 1871 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1872 struct inpcb *local_wild = NULL, *local_exact = NULL; 1873 #ifdef INET6 1874 struct inpcb *local_wild_mapped = NULL; 1875 #endif 1876 struct inpcb *jail_wild = NULL; 1877 int injail; 1878 1879 /* 1880 * Order of socket selection - we always prefer jails. 1881 * 1. jailed, non-wild. 1882 * 2. jailed, wild. 1883 * 3. non-jailed, non-wild. 1884 * 4. non-jailed, wild. 1885 */ 1886 1887 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1888 0, pcbinfo->ipi_hashmask)]; 1889 LIST_FOREACH(inp, head, inp_hash) { 1890 #ifdef INET6 1891 /* XXX inp locking */ 1892 if ((inp->inp_vflag & INP_IPV4) == 0) 1893 continue; 1894 #endif 1895 if (inp->inp_faddr.s_addr != INADDR_ANY || 1896 inp->inp_lport != lport) 1897 continue; 1898 1899 injail = prison_flag(inp->inp_cred, PR_IP4); 1900 if (injail) { 1901 if (prison_check_ip4(inp->inp_cred, 1902 &laddr) != 0) 1903 continue; 1904 } else { 1905 if (local_exact != NULL) 1906 continue; 1907 } 1908 1909 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1910 if (injail) 1911 return (inp); 1912 else 1913 local_exact = inp; 1914 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1915 #ifdef INET6 1916 /* XXX inp locking, NULL check */ 1917 if (inp->inp_vflag & INP_IPV6PROTO) 1918 local_wild_mapped = inp; 1919 else 1920 #endif 1921 if (injail) 1922 jail_wild = inp; 1923 else 1924 local_wild = inp; 1925 } 1926 } /* LIST_FOREACH */ 1927 if (jail_wild != NULL) 1928 return (jail_wild); 1929 if (local_exact != NULL) 1930 return (local_exact); 1931 if (local_wild != NULL) 1932 return (local_wild); 1933 #ifdef INET6 1934 if (local_wild_mapped != NULL) 1935 return (local_wild_mapped); 1936 #endif 1937 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 1938 1939 return (NULL); 1940 } 1941 1942 /* 1943 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 1944 * hash list lock, and will return the inpcb locked (i.e., requires 1945 * INPLOOKUP_LOCKPCB). 1946 */ 1947 static struct inpcb * 1948 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1949 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 1950 struct ifnet *ifp) 1951 { 1952 struct inpcb *inp; 1953 1954 INP_HASH_RLOCK(pcbinfo); 1955 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 1956 (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp); 1957 if (inp != NULL) { 1958 in_pcbref(inp); 1959 INP_HASH_RUNLOCK(pcbinfo); 1960 if (lookupflags & INPLOOKUP_WLOCKPCB) { 1961 INP_WLOCK(inp); 1962 if (in_pcbrele_wlocked(inp)) 1963 return (NULL); 1964 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 1965 INP_RLOCK(inp); 1966 if (in_pcbrele_rlocked(inp)) 1967 return (NULL); 1968 } else 1969 panic("%s: locking bug", __func__); 1970 } else 1971 INP_HASH_RUNLOCK(pcbinfo); 1972 return (inp); 1973 } 1974 1975 /* 1976 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 1977 * from which a pre-calculated hash value may be extracted. 1978 * 1979 * Possibly more of this logic should be in in_pcbgroup.c. 1980 */ 1981 struct inpcb * 1982 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 1983 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 1984 { 1985 #if defined(PCBGROUP) && !defined(RSS) 1986 struct inpcbgroup *pcbgroup; 1987 #endif 1988 1989 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 1990 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1991 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 1992 ("%s: LOCKPCB not set", __func__)); 1993 1994 /* 1995 * When not using RSS, use connection groups in preference to the 1996 * reservation table when looking up 4-tuples. When using RSS, just 1997 * use the reservation table, due to the cost of the Toeplitz hash 1998 * in software. 1999 * 2000 * XXXRW: This policy belongs in the pcbgroup code, as in principle 2001 * we could be doing RSS with a non-Toeplitz hash that is affordable 2002 * in software. 2003 */ 2004 #if defined(PCBGROUP) && !defined(RSS) 2005 if (in_pcbgroup_enabled(pcbinfo)) { 2006 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2007 fport); 2008 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2009 laddr, lport, lookupflags, ifp)); 2010 } 2011 #endif 2012 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2013 lookupflags, ifp)); 2014 } 2015 2016 struct inpcb * 2017 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2018 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2019 struct ifnet *ifp, struct mbuf *m) 2020 { 2021 #ifdef PCBGROUP 2022 struct inpcbgroup *pcbgroup; 2023 #endif 2024 2025 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2026 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2027 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2028 ("%s: LOCKPCB not set", __func__)); 2029 2030 #ifdef PCBGROUP 2031 /* 2032 * If we can use a hardware-generated hash to look up the connection 2033 * group, use that connection group to find the inpcb. Otherwise 2034 * fall back on a software hash -- or the reservation table if we're 2035 * using RSS. 2036 * 2037 * XXXRW: As above, that policy belongs in the pcbgroup code. 2038 */ 2039 if (in_pcbgroup_enabled(pcbinfo) && 2040 !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { 2041 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), 2042 m->m_pkthdr.flowid); 2043 if (pcbgroup != NULL) 2044 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, 2045 fport, laddr, lport, lookupflags, ifp)); 2046 #ifndef RSS 2047 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2048 fport); 2049 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2050 laddr, lport, lookupflags, ifp)); 2051 #endif 2052 } 2053 #endif 2054 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2055 lookupflags, ifp)); 2056 } 2057 #endif /* INET */ 2058 2059 /* 2060 * Insert PCB onto various hash lists. 2061 */ 2062 static int 2063 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update) 2064 { 2065 struct inpcbhead *pcbhash; 2066 struct inpcbporthead *pcbporthash; 2067 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2068 struct inpcbport *phd; 2069 u_int32_t hashkey_faddr; 2070 2071 INP_WLOCK_ASSERT(inp); 2072 INP_HASH_WLOCK_ASSERT(pcbinfo); 2073 2074 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2075 ("in_pcbinshash: INP_INHASHLIST")); 2076 2077 #ifdef INET6 2078 if (inp->inp_vflag & INP_IPV6) 2079 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2080 else 2081 #endif 2082 hashkey_faddr = inp->inp_faddr.s_addr; 2083 2084 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2085 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2086 2087 pcbporthash = &pcbinfo->ipi_porthashbase[ 2088 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2089 2090 /* 2091 * Go through port list and look for a head for this lport. 2092 */ 2093 LIST_FOREACH(phd, pcbporthash, phd_hash) { 2094 if (phd->phd_port == inp->inp_lport) 2095 break; 2096 } 2097 /* 2098 * If none exists, malloc one and tack it on. 2099 */ 2100 if (phd == NULL) { 2101 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 2102 if (phd == NULL) { 2103 return (ENOBUFS); /* XXX */ 2104 } 2105 phd->phd_port = inp->inp_lport; 2106 LIST_INIT(&phd->phd_pcblist); 2107 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2108 } 2109 inp->inp_phd = phd; 2110 LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2111 LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2112 inp->inp_flags |= INP_INHASHLIST; 2113 #ifdef PCBGROUP 2114 if (do_pcbgroup_update) 2115 in_pcbgroup_update(inp); 2116 #endif 2117 return (0); 2118 } 2119 2120 /* 2121 * For now, there are two public interfaces to insert an inpcb into the hash 2122 * lists -- one that does update pcbgroups, and one that doesn't. The latter 2123 * is used only in the TCP syncache, where in_pcbinshash is called before the 2124 * full 4-tuple is set for the inpcb, and we don't want to install in the 2125 * pcbgroup until later. 2126 * 2127 * XXXRW: This seems like a misfeature. in_pcbinshash should always update 2128 * connection groups, and partially initialised inpcbs should not be exposed 2129 * to either reservation hash tables or pcbgroups. 2130 */ 2131 int 2132 in_pcbinshash(struct inpcb *inp) 2133 { 2134 2135 return (in_pcbinshash_internal(inp, 1)); 2136 } 2137 2138 int 2139 in_pcbinshash_nopcbgroup(struct inpcb *inp) 2140 { 2141 2142 return (in_pcbinshash_internal(inp, 0)); 2143 } 2144 2145 /* 2146 * Move PCB to the proper hash bucket when { faddr, fport } have been 2147 * changed. NOTE: This does not handle the case of the lport changing (the 2148 * hashed port list would have to be updated as well), so the lport must 2149 * not change after in_pcbinshash() has been called. 2150 */ 2151 void 2152 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) 2153 { 2154 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2155 struct inpcbhead *head; 2156 u_int32_t hashkey_faddr; 2157 2158 INP_WLOCK_ASSERT(inp); 2159 INP_HASH_WLOCK_ASSERT(pcbinfo); 2160 2161 KASSERT(inp->inp_flags & INP_INHASHLIST, 2162 ("in_pcbrehash: !INP_INHASHLIST")); 2163 2164 #ifdef INET6 2165 if (inp->inp_vflag & INP_IPV6) 2166 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2167 else 2168 #endif 2169 hashkey_faddr = inp->inp_faddr.s_addr; 2170 2171 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2172 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2173 2174 LIST_REMOVE(inp, inp_hash); 2175 LIST_INSERT_HEAD(head, inp, inp_hash); 2176 2177 #ifdef PCBGROUP 2178 if (m != NULL) 2179 in_pcbgroup_update_mbuf(inp, m); 2180 else 2181 in_pcbgroup_update(inp); 2182 #endif 2183 } 2184 2185 void 2186 in_pcbrehash(struct inpcb *inp) 2187 { 2188 2189 in_pcbrehash_mbuf(inp, NULL); 2190 } 2191 2192 /* 2193 * Remove PCB from various lists. 2194 */ 2195 static void 2196 in_pcbremlists(struct inpcb *inp) 2197 { 2198 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2199 2200 #ifdef INVARIANTS 2201 if (pcbinfo == &V_tcbinfo) { 2202 INP_INFO_RLOCK_ASSERT(pcbinfo); 2203 } else { 2204 INP_INFO_WLOCK_ASSERT(pcbinfo); 2205 } 2206 #endif 2207 2208 INP_WLOCK_ASSERT(inp); 2209 INP_LIST_WLOCK_ASSERT(pcbinfo); 2210 2211 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 2212 if (inp->inp_flags & INP_INHASHLIST) { 2213 struct inpcbport *phd = inp->inp_phd; 2214 2215 INP_HASH_WLOCK(pcbinfo); 2216 LIST_REMOVE(inp, inp_hash); 2217 LIST_REMOVE(inp, inp_portlist); 2218 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 2219 LIST_REMOVE(phd, phd_hash); 2220 free(phd, M_PCB); 2221 } 2222 INP_HASH_WUNLOCK(pcbinfo); 2223 inp->inp_flags &= ~INP_INHASHLIST; 2224 } 2225 LIST_REMOVE(inp, inp_list); 2226 pcbinfo->ipi_count--; 2227 #ifdef PCBGROUP 2228 in_pcbgroup_remove(inp); 2229 #endif 2230 } 2231 2232 /* 2233 * Check for alternatives when higher level complains 2234 * about service problems. For now, invalidate cached 2235 * routing information. If the route was created dynamically 2236 * (by a redirect), time to try a default gateway again. 2237 */ 2238 void 2239 in_losing(struct inpcb *inp) 2240 { 2241 2242 if (inp->inp_route.ro_rt) { 2243 RTFREE(inp->inp_route.ro_rt); 2244 inp->inp_route.ro_rt = (struct rtentry *)NULL; 2245 } 2246 return; 2247 } 2248 2249 /* 2250 * A set label operation has occurred at the socket layer, propagate the 2251 * label change into the in_pcb for the socket. 2252 */ 2253 void 2254 in_pcbsosetlabel(struct socket *so) 2255 { 2256 #ifdef MAC 2257 struct inpcb *inp; 2258 2259 inp = sotoinpcb(so); 2260 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2261 2262 INP_WLOCK(inp); 2263 SOCK_LOCK(so); 2264 mac_inpcb_sosetlabel(so, inp); 2265 SOCK_UNLOCK(so); 2266 INP_WUNLOCK(inp); 2267 #endif 2268 } 2269 2270 /* 2271 * ipport_tick runs once per second, determining if random port allocation 2272 * should be continued. If more than ipport_randomcps ports have been 2273 * allocated in the last second, then we return to sequential port 2274 * allocation. We return to random allocation only once we drop below 2275 * ipport_randomcps for at least ipport_randomtime seconds. 2276 */ 2277 static void 2278 ipport_tick(void *xtp) 2279 { 2280 VNET_ITERATOR_DECL(vnet_iter); 2281 2282 VNET_LIST_RLOCK_NOSLEEP(); 2283 VNET_FOREACH(vnet_iter) { 2284 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2285 if (V_ipport_tcpallocs <= 2286 V_ipport_tcplastcount + V_ipport_randomcps) { 2287 if (V_ipport_stoprandom > 0) 2288 V_ipport_stoprandom--; 2289 } else 2290 V_ipport_stoprandom = V_ipport_randomtime; 2291 V_ipport_tcplastcount = V_ipport_tcpallocs; 2292 CURVNET_RESTORE(); 2293 } 2294 VNET_LIST_RUNLOCK_NOSLEEP(); 2295 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2296 } 2297 2298 static void 2299 ip_fini(void *xtp) 2300 { 2301 2302 callout_stop(&ipport_tick_callout); 2303 } 2304 2305 /* 2306 * The ipport_callout should start running at about the time we attach the 2307 * inet or inet6 domains. 2308 */ 2309 static void 2310 ipport_tick_init(const void *unused __unused) 2311 { 2312 2313 /* Start ipport_tick. */ 2314 callout_init(&ipport_tick_callout, 1); 2315 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2316 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2317 SHUTDOWN_PRI_DEFAULT); 2318 } 2319 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2320 ipport_tick_init, NULL); 2321 2322 void 2323 inp_wlock(struct inpcb *inp) 2324 { 2325 2326 INP_WLOCK(inp); 2327 } 2328 2329 void 2330 inp_wunlock(struct inpcb *inp) 2331 { 2332 2333 INP_WUNLOCK(inp); 2334 } 2335 2336 void 2337 inp_rlock(struct inpcb *inp) 2338 { 2339 2340 INP_RLOCK(inp); 2341 } 2342 2343 void 2344 inp_runlock(struct inpcb *inp) 2345 { 2346 2347 INP_RUNLOCK(inp); 2348 } 2349 2350 #ifdef INVARIANTS 2351 void 2352 inp_lock_assert(struct inpcb *inp) 2353 { 2354 2355 INP_WLOCK_ASSERT(inp); 2356 } 2357 2358 void 2359 inp_unlock_assert(struct inpcb *inp) 2360 { 2361 2362 INP_UNLOCK_ASSERT(inp); 2363 } 2364 #endif 2365 2366 void 2367 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2368 { 2369 struct inpcb *inp; 2370 2371 INP_INFO_WLOCK(&V_tcbinfo); 2372 LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 2373 INP_WLOCK(inp); 2374 func(inp, arg); 2375 INP_WUNLOCK(inp); 2376 } 2377 INP_INFO_WUNLOCK(&V_tcbinfo); 2378 } 2379 2380 struct socket * 2381 inp_inpcbtosocket(struct inpcb *inp) 2382 { 2383 2384 INP_WLOCK_ASSERT(inp); 2385 return (inp->inp_socket); 2386 } 2387 2388 struct tcpcb * 2389 inp_inpcbtotcpcb(struct inpcb *inp) 2390 { 2391 2392 INP_WLOCK_ASSERT(inp); 2393 return ((struct tcpcb *)inp->inp_ppcb); 2394 } 2395 2396 int 2397 inp_ip_tos_get(const struct inpcb *inp) 2398 { 2399 2400 return (inp->inp_ip_tos); 2401 } 2402 2403 void 2404 inp_ip_tos_set(struct inpcb *inp, int val) 2405 { 2406 2407 inp->inp_ip_tos = val; 2408 } 2409 2410 void 2411 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2412 uint32_t *faddr, uint16_t *fp) 2413 { 2414 2415 INP_LOCK_ASSERT(inp); 2416 *laddr = inp->inp_laddr.s_addr; 2417 *faddr = inp->inp_faddr.s_addr; 2418 *lp = inp->inp_lport; 2419 *fp = inp->inp_fport; 2420 } 2421 2422 struct inpcb * 2423 so_sotoinpcb(struct socket *so) 2424 { 2425 2426 return (sotoinpcb(so)); 2427 } 2428 2429 struct tcpcb * 2430 so_sototcpcb(struct socket *so) 2431 { 2432 2433 return (sototcpcb(so)); 2434 } 2435 2436 #ifdef DDB 2437 static void 2438 db_print_indent(int indent) 2439 { 2440 int i; 2441 2442 for (i = 0; i < indent; i++) 2443 db_printf(" "); 2444 } 2445 2446 static void 2447 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2448 { 2449 char faddr_str[48], laddr_str[48]; 2450 2451 db_print_indent(indent); 2452 db_printf("%s at %p\n", name, inc); 2453 2454 indent += 2; 2455 2456 #ifdef INET6 2457 if (inc->inc_flags & INC_ISIPV6) { 2458 /* IPv6. */ 2459 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2460 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2461 } else 2462 #endif 2463 { 2464 /* IPv4. */ 2465 inet_ntoa_r(inc->inc_laddr, laddr_str); 2466 inet_ntoa_r(inc->inc_faddr, faddr_str); 2467 } 2468 db_print_indent(indent); 2469 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2470 ntohs(inc->inc_lport)); 2471 db_print_indent(indent); 2472 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2473 ntohs(inc->inc_fport)); 2474 } 2475 2476 static void 2477 db_print_inpflags(int inp_flags) 2478 { 2479 int comma; 2480 2481 comma = 0; 2482 if (inp_flags & INP_RECVOPTS) { 2483 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2484 comma = 1; 2485 } 2486 if (inp_flags & INP_RECVRETOPTS) { 2487 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2488 comma = 1; 2489 } 2490 if (inp_flags & INP_RECVDSTADDR) { 2491 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2492 comma = 1; 2493 } 2494 if (inp_flags & INP_HDRINCL) { 2495 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2496 comma = 1; 2497 } 2498 if (inp_flags & INP_HIGHPORT) { 2499 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2500 comma = 1; 2501 } 2502 if (inp_flags & INP_LOWPORT) { 2503 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2504 comma = 1; 2505 } 2506 if (inp_flags & INP_ANONPORT) { 2507 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2508 comma = 1; 2509 } 2510 if (inp_flags & INP_RECVIF) { 2511 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2512 comma = 1; 2513 } 2514 if (inp_flags & INP_MTUDISC) { 2515 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2516 comma = 1; 2517 } 2518 if (inp_flags & INP_RECVTTL) { 2519 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 2520 comma = 1; 2521 } 2522 if (inp_flags & INP_DONTFRAG) { 2523 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 2524 comma = 1; 2525 } 2526 if (inp_flags & INP_RECVTOS) { 2527 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 2528 comma = 1; 2529 } 2530 if (inp_flags & IN6P_IPV6_V6ONLY) { 2531 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 2532 comma = 1; 2533 } 2534 if (inp_flags & IN6P_PKTINFO) { 2535 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 2536 comma = 1; 2537 } 2538 if (inp_flags & IN6P_HOPLIMIT) { 2539 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 2540 comma = 1; 2541 } 2542 if (inp_flags & IN6P_HOPOPTS) { 2543 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 2544 comma = 1; 2545 } 2546 if (inp_flags & IN6P_DSTOPTS) { 2547 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 2548 comma = 1; 2549 } 2550 if (inp_flags & IN6P_RTHDR) { 2551 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 2552 comma = 1; 2553 } 2554 if (inp_flags & IN6P_RTHDRDSTOPTS) { 2555 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 2556 comma = 1; 2557 } 2558 if (inp_flags & IN6P_TCLASS) { 2559 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 2560 comma = 1; 2561 } 2562 if (inp_flags & IN6P_AUTOFLOWLABEL) { 2563 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 2564 comma = 1; 2565 } 2566 if (inp_flags & INP_TIMEWAIT) { 2567 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 2568 comma = 1; 2569 } 2570 if (inp_flags & INP_ONESBCAST) { 2571 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 2572 comma = 1; 2573 } 2574 if (inp_flags & INP_DROPPED) { 2575 db_printf("%sINP_DROPPED", comma ? ", " : ""); 2576 comma = 1; 2577 } 2578 if (inp_flags & INP_SOCKREF) { 2579 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 2580 comma = 1; 2581 } 2582 if (inp_flags & IN6P_RFC2292) { 2583 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 2584 comma = 1; 2585 } 2586 if (inp_flags & IN6P_MTU) { 2587 db_printf("IN6P_MTU%s", comma ? ", " : ""); 2588 comma = 1; 2589 } 2590 } 2591 2592 static void 2593 db_print_inpvflag(u_char inp_vflag) 2594 { 2595 int comma; 2596 2597 comma = 0; 2598 if (inp_vflag & INP_IPV4) { 2599 db_printf("%sINP_IPV4", comma ? ", " : ""); 2600 comma = 1; 2601 } 2602 if (inp_vflag & INP_IPV6) { 2603 db_printf("%sINP_IPV6", comma ? ", " : ""); 2604 comma = 1; 2605 } 2606 if (inp_vflag & INP_IPV6PROTO) { 2607 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 2608 comma = 1; 2609 } 2610 } 2611 2612 static void 2613 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 2614 { 2615 2616 db_print_indent(indent); 2617 db_printf("%s at %p\n", name, inp); 2618 2619 indent += 2; 2620 2621 db_print_indent(indent); 2622 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 2623 2624 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 2625 2626 db_print_indent(indent); 2627 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 2628 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 2629 2630 db_print_indent(indent); 2631 db_printf("inp_label: %p inp_flags: 0x%x (", 2632 inp->inp_label, inp->inp_flags); 2633 db_print_inpflags(inp->inp_flags); 2634 db_printf(")\n"); 2635 2636 db_print_indent(indent); 2637 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 2638 inp->inp_vflag); 2639 db_print_inpvflag(inp->inp_vflag); 2640 db_printf(")\n"); 2641 2642 db_print_indent(indent); 2643 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 2644 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 2645 2646 db_print_indent(indent); 2647 #ifdef INET6 2648 if (inp->inp_vflag & INP_IPV6) { 2649 db_printf("in6p_options: %p in6p_outputopts: %p " 2650 "in6p_moptions: %p\n", inp->in6p_options, 2651 inp->in6p_outputopts, inp->in6p_moptions); 2652 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 2653 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 2654 inp->in6p_hops); 2655 } else 2656 #endif 2657 { 2658 db_printf("inp_ip_tos: %d inp_ip_options: %p " 2659 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 2660 inp->inp_options, inp->inp_moptions); 2661 } 2662 2663 db_print_indent(indent); 2664 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 2665 (uintmax_t)inp->inp_gencnt); 2666 } 2667 2668 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 2669 { 2670 struct inpcb *inp; 2671 2672 if (!have_addr) { 2673 db_printf("usage: show inpcb <addr>\n"); 2674 return; 2675 } 2676 inp = (struct inpcb *)addr; 2677 2678 db_print_inpcb(inp, "inpcb", 0); 2679 } 2680 #endif /* DDB */ 2681