xref: /freebsd/sys/netinet/in_pcb.c (revision 46c1105fbb6fbff6d6ccd0a18571342eb992d637)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993, 1995
3  *	The Regents of the University of California.
4  * Copyright (c) 2007-2009 Robert N. M. Watson
5  * Copyright (c) 2010-2011 Juniper Networks, Inc.
6  * All rights reserved.
7  *
8  * Portions of this software were developed by Robert N. M. Watson under
9  * contract to Juniper Networks, Inc.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include "opt_ddb.h"
42 #include "opt_ipsec.h"
43 #include "opt_inet.h"
44 #include "opt_inet6.h"
45 #include "opt_pcbgroup.h"
46 #include "opt_rss.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/lock.h>
51 #include <sys/malloc.h>
52 #include <sys/mbuf.h>
53 #include <sys/callout.h>
54 #include <sys/eventhandler.h>
55 #include <sys/domain.h>
56 #include <sys/protosw.h>
57 #include <sys/rmlock.h>
58 #include <sys/socket.h>
59 #include <sys/socketvar.h>
60 #include <sys/priv.h>
61 #include <sys/proc.h>
62 #include <sys/refcount.h>
63 #include <sys/jail.h>
64 #include <sys/kernel.h>
65 #include <sys/sysctl.h>
66 
67 #ifdef DDB
68 #include <ddb/ddb.h>
69 #endif
70 
71 #include <vm/uma.h>
72 
73 #include <net/if.h>
74 #include <net/if_var.h>
75 #include <net/if_types.h>
76 #include <net/route.h>
77 #include <net/rss_config.h>
78 #include <net/vnet.h>
79 
80 #if defined(INET) || defined(INET6)
81 #include <netinet/in.h>
82 #include <netinet/in_pcb.h>
83 #include <netinet/ip_var.h>
84 #include <netinet/tcp_var.h>
85 #include <netinet/udp.h>
86 #include <netinet/udp_var.h>
87 #endif
88 #ifdef INET
89 #include <netinet/in_var.h>
90 #endif
91 #ifdef INET6
92 #include <netinet/ip6.h>
93 #include <netinet6/in6_pcb.h>
94 #include <netinet6/in6_var.h>
95 #include <netinet6/ip6_var.h>
96 #endif /* INET6 */
97 
98 
99 #ifdef IPSEC
100 #include <netipsec/ipsec.h>
101 #include <netipsec/key.h>
102 #endif /* IPSEC */
103 
104 #include <security/mac/mac_framework.h>
105 
106 static struct callout	ipport_tick_callout;
107 
108 /*
109  * These configure the range of local port addresses assigned to
110  * "unspecified" outgoing connections/packets/whatever.
111  */
112 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
113 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
114 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
115 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
116 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
117 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
118 
119 /*
120  * Reserved ports accessible only to root. There are significant
121  * security considerations that must be accounted for when changing these,
122  * but the security benefits can be great. Please be careful.
123  */
124 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
125 VNET_DEFINE(int, ipport_reservedlow);
126 
127 /* Variables dealing with random ephemeral port allocation. */
128 VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
129 VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
130 VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
131 VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
132 VNET_DEFINE(int, ipport_tcpallocs);
133 static VNET_DEFINE(int, ipport_tcplastcount);
134 
135 #define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
136 
137 static void	in_pcbremlists(struct inpcb *inp);
138 #ifdef INET
139 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
140 			    struct in_addr faddr, u_int fport_arg,
141 			    struct in_addr laddr, u_int lport_arg,
142 			    int lookupflags, struct ifnet *ifp);
143 
144 #define RANGECHK(var, min, max) \
145 	if ((var) < (min)) { (var) = (min); } \
146 	else if ((var) > (max)) { (var) = (max); }
147 
148 static int
149 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
150 {
151 	int error;
152 
153 	error = sysctl_handle_int(oidp, arg1, arg2, req);
154 	if (error == 0) {
155 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
156 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
157 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
158 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
159 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
160 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
161 	}
162 	return (error);
163 }
164 
165 #undef RANGECHK
166 
167 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
168     "IP Ports");
169 
170 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
171 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
172 	&VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", "");
173 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
174 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
175 	&VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", "");
176 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first,
177 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
178 	&VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", "");
179 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last,
180 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
181 	&VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", "");
182 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
183 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
184 	&VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", "");
185 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
186 	CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW,
187 	&VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", "");
188 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
189 	CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
190 	&VNET_NAME(ipport_reservedhigh), 0, "");
191 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
192 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
193 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized,
194 	CTLFLAG_VNET | CTLFLAG_RW,
195 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
196 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps,
197 	CTLFLAG_VNET | CTLFLAG_RW,
198 	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
199 	"allocations before switching to a sequental one");
200 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime,
201 	CTLFLAG_VNET | CTLFLAG_RW,
202 	&VNET_NAME(ipport_randomtime), 0,
203 	"Minimum time to keep sequental port "
204 	"allocation before switching to a random one");
205 #endif /* INET */
206 
207 /*
208  * in_pcb.c: manage the Protocol Control Blocks.
209  *
210  * NOTE: It is assumed that most of these functions will be called with
211  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
212  * functions often modify hash chains or addresses in pcbs.
213  */
214 
215 /*
216  * Initialize an inpcbinfo -- we should be able to reduce the number of
217  * arguments in time.
218  */
219 void
220 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
221     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
222     char *inpcbzone_name, uma_init inpcbzone_init, uma_fini inpcbzone_fini,
223     uint32_t inpcbzone_flags, u_int hashfields)
224 {
225 
226 	INP_INFO_LOCK_INIT(pcbinfo, name);
227 	INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");	/* XXXRW: argument? */
228 	INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist");
229 #ifdef VIMAGE
230 	pcbinfo->ipi_vnet = curvnet;
231 #endif
232 	pcbinfo->ipi_listhead = listhead;
233 	LIST_INIT(pcbinfo->ipi_listhead);
234 	pcbinfo->ipi_count = 0;
235 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
236 	    &pcbinfo->ipi_hashmask);
237 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
238 	    &pcbinfo->ipi_porthashmask);
239 #ifdef PCBGROUP
240 	in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
241 #endif
242 	pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
243 	    NULL, NULL, inpcbzone_init, inpcbzone_fini, UMA_ALIGN_PTR,
244 	    inpcbzone_flags);
245 	uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
246 	uma_zone_set_warning(pcbinfo->ipi_zone,
247 	    "kern.ipc.maxsockets limit reached");
248 }
249 
250 /*
251  * Destroy an inpcbinfo.
252  */
253 void
254 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
255 {
256 
257 	KASSERT(pcbinfo->ipi_count == 0,
258 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
259 
260 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
261 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
262 	    pcbinfo->ipi_porthashmask);
263 #ifdef PCBGROUP
264 	in_pcbgroup_destroy(pcbinfo);
265 #endif
266 	uma_zdestroy(pcbinfo->ipi_zone);
267 	INP_LIST_LOCK_DESTROY(pcbinfo);
268 	INP_HASH_LOCK_DESTROY(pcbinfo);
269 	INP_INFO_LOCK_DESTROY(pcbinfo);
270 }
271 
272 /*
273  * Allocate a PCB and associate it with the socket.
274  * On success return with the PCB locked.
275  */
276 int
277 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
278 {
279 	struct inpcb *inp;
280 	int error;
281 
282 #ifdef INVARIANTS
283 	if (pcbinfo == &V_tcbinfo) {
284 		INP_INFO_RLOCK_ASSERT(pcbinfo);
285 	} else {
286 		INP_INFO_WLOCK_ASSERT(pcbinfo);
287 	}
288 #endif
289 
290 	error = 0;
291 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
292 	if (inp == NULL)
293 		return (ENOBUFS);
294 	bzero(inp, inp_zero_size);
295 	inp->inp_pcbinfo = pcbinfo;
296 	inp->inp_socket = so;
297 	inp->inp_cred = crhold(so->so_cred);
298 	inp->inp_inc.inc_fibnum = so->so_fibnum;
299 #ifdef MAC
300 	error = mac_inpcb_init(inp, M_NOWAIT);
301 	if (error != 0)
302 		goto out;
303 	mac_inpcb_create(so, inp);
304 #endif
305 #ifdef IPSEC
306 	error = ipsec_init_policy(so, &inp->inp_sp);
307 	if (error != 0) {
308 #ifdef MAC
309 		mac_inpcb_destroy(inp);
310 #endif
311 		goto out;
312 	}
313 #endif /*IPSEC*/
314 #ifdef INET6
315 	if (INP_SOCKAF(so) == AF_INET6) {
316 		inp->inp_vflag |= INP_IPV6PROTO;
317 		if (V_ip6_v6only)
318 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
319 	}
320 #endif
321 	INP_WLOCK(inp);
322 	INP_LIST_WLOCK(pcbinfo);
323 	LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
324 	pcbinfo->ipi_count++;
325 	so->so_pcb = (caddr_t)inp;
326 #ifdef INET6
327 	if (V_ip6_auto_flowlabel)
328 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
329 #endif
330 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
331 	refcount_init(&inp->inp_refcount, 1);	/* Reference from inpcbinfo */
332 	INP_LIST_WUNLOCK(pcbinfo);
333 #if defined(IPSEC) || defined(MAC)
334 out:
335 	if (error != 0) {
336 		crfree(inp->inp_cred);
337 		uma_zfree(pcbinfo->ipi_zone, inp);
338 	}
339 #endif
340 	return (error);
341 }
342 
343 #ifdef INET
344 int
345 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
346 {
347 	int anonport, error;
348 
349 	INP_WLOCK_ASSERT(inp);
350 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
351 
352 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
353 		return (EINVAL);
354 	anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
355 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
356 	    &inp->inp_lport, cred);
357 	if (error)
358 		return (error);
359 	if (in_pcbinshash(inp) != 0) {
360 		inp->inp_laddr.s_addr = INADDR_ANY;
361 		inp->inp_lport = 0;
362 		return (EAGAIN);
363 	}
364 	if (anonport)
365 		inp->inp_flags |= INP_ANONPORT;
366 	return (0);
367 }
368 #endif
369 
370 /*
371  * Select a local port (number) to use.
372  */
373 #if defined(INET) || defined(INET6)
374 int
375 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
376     struct ucred *cred, int lookupflags)
377 {
378 	struct inpcbinfo *pcbinfo;
379 	struct inpcb *tmpinp;
380 	unsigned short *lastport;
381 	int count, dorandom, error;
382 	u_short aux, first, last, lport;
383 #ifdef INET
384 	struct in_addr laddr;
385 #endif
386 
387 	pcbinfo = inp->inp_pcbinfo;
388 
389 	/*
390 	 * Because no actual state changes occur here, a global write lock on
391 	 * the pcbinfo isn't required.
392 	 */
393 	INP_LOCK_ASSERT(inp);
394 	INP_HASH_LOCK_ASSERT(pcbinfo);
395 
396 	if (inp->inp_flags & INP_HIGHPORT) {
397 		first = V_ipport_hifirstauto;	/* sysctl */
398 		last  = V_ipport_hilastauto;
399 		lastport = &pcbinfo->ipi_lasthi;
400 	} else if (inp->inp_flags & INP_LOWPORT) {
401 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
402 		if (error)
403 			return (error);
404 		first = V_ipport_lowfirstauto;	/* 1023 */
405 		last  = V_ipport_lowlastauto;	/* 600 */
406 		lastport = &pcbinfo->ipi_lastlow;
407 	} else {
408 		first = V_ipport_firstauto;	/* sysctl */
409 		last  = V_ipport_lastauto;
410 		lastport = &pcbinfo->ipi_lastport;
411 	}
412 	/*
413 	 * For UDP(-Lite), use random port allocation as long as the user
414 	 * allows it.  For TCP (and as of yet unknown) connections,
415 	 * use random port allocation only if the user allows it AND
416 	 * ipport_tick() allows it.
417 	 */
418 	if (V_ipport_randomized &&
419 		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo ||
420 		pcbinfo == &V_ulitecbinfo))
421 		dorandom = 1;
422 	else
423 		dorandom = 0;
424 	/*
425 	 * It makes no sense to do random port allocation if
426 	 * we have the only port available.
427 	 */
428 	if (first == last)
429 		dorandom = 0;
430 	/* Make sure to not include UDP(-Lite) packets in the count. */
431 	if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo)
432 		V_ipport_tcpallocs++;
433 	/*
434 	 * Instead of having two loops further down counting up or down
435 	 * make sure that first is always <= last and go with only one
436 	 * code path implementing all logic.
437 	 */
438 	if (first > last) {
439 		aux = first;
440 		first = last;
441 		last = aux;
442 	}
443 
444 #ifdef INET
445 	/* Make the compiler happy. */
446 	laddr.s_addr = 0;
447 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
448 		KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
449 		    __func__, inp));
450 		laddr = *laddrp;
451 	}
452 #endif
453 	tmpinp = NULL;	/* Make compiler happy. */
454 	lport = *lportp;
455 
456 	if (dorandom)
457 		*lastport = first + (arc4random() % (last - first));
458 
459 	count = last - first;
460 
461 	do {
462 		if (count-- < 0)	/* completely used? */
463 			return (EADDRNOTAVAIL);
464 		++*lastport;
465 		if (*lastport < first || *lastport > last)
466 			*lastport = first;
467 		lport = htons(*lastport);
468 
469 #ifdef INET6
470 		if ((inp->inp_vflag & INP_IPV6) != 0)
471 			tmpinp = in6_pcblookup_local(pcbinfo,
472 			    &inp->in6p_laddr, lport, lookupflags, cred);
473 #endif
474 #if defined(INET) && defined(INET6)
475 		else
476 #endif
477 #ifdef INET
478 			tmpinp = in_pcblookup_local(pcbinfo, laddr,
479 			    lport, lookupflags, cred);
480 #endif
481 	} while (tmpinp != NULL);
482 
483 #ifdef INET
484 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
485 		laddrp->s_addr = laddr.s_addr;
486 #endif
487 	*lportp = lport;
488 
489 	return (0);
490 }
491 
492 /*
493  * Return cached socket options.
494  */
495 short
496 inp_so_options(const struct inpcb *inp)
497 {
498    short so_options;
499 
500    so_options = 0;
501 
502    if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
503 	   so_options |= SO_REUSEPORT;
504    if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
505 	   so_options |= SO_REUSEADDR;
506    return (so_options);
507 }
508 #endif /* INET || INET6 */
509 
510 /*
511  * Check if a new BINDMULTI socket is allowed to be created.
512  *
513  * ni points to the new inp.
514  * oi points to the exisitng inp.
515  *
516  * This checks whether the existing inp also has BINDMULTI and
517  * whether the credentials match.
518  */
519 int
520 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi)
521 {
522 	/* Check permissions match */
523 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
524 	    (ni->inp_cred->cr_uid !=
525 	    oi->inp_cred->cr_uid))
526 		return (0);
527 
528 	/* Check the existing inp has BINDMULTI set */
529 	if ((ni->inp_flags2 & INP_BINDMULTI) &&
530 	    ((oi->inp_flags2 & INP_BINDMULTI) == 0))
531 		return (0);
532 
533 	/*
534 	 * We're okay - either INP_BINDMULTI isn't set on ni, or
535 	 * it is and it matches the checks.
536 	 */
537 	return (1);
538 }
539 
540 #ifdef INET
541 /*
542  * Set up a bind operation on a PCB, performing port allocation
543  * as required, but do not actually modify the PCB. Callers can
544  * either complete the bind by setting inp_laddr/inp_lport and
545  * calling in_pcbinshash(), or they can just use the resulting
546  * port and address to authorise the sending of a once-off packet.
547  *
548  * On error, the values of *laddrp and *lportp are not changed.
549  */
550 int
551 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
552     u_short *lportp, struct ucred *cred)
553 {
554 	struct socket *so = inp->inp_socket;
555 	struct sockaddr_in *sin;
556 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
557 	struct in_addr laddr;
558 	u_short lport = 0;
559 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
560 	int error;
561 
562 	/*
563 	 * No state changes, so read locks are sufficient here.
564 	 */
565 	INP_LOCK_ASSERT(inp);
566 	INP_HASH_LOCK_ASSERT(pcbinfo);
567 
568 	if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
569 		return (EADDRNOTAVAIL);
570 	laddr.s_addr = *laddrp;
571 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
572 		return (EINVAL);
573 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
574 		lookupflags = INPLOOKUP_WILDCARD;
575 	if (nam == NULL) {
576 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
577 			return (error);
578 	} else {
579 		sin = (struct sockaddr_in *)nam;
580 		if (nam->sa_len != sizeof (*sin))
581 			return (EINVAL);
582 #ifdef notdef
583 		/*
584 		 * We should check the family, but old programs
585 		 * incorrectly fail to initialize it.
586 		 */
587 		if (sin->sin_family != AF_INET)
588 			return (EAFNOSUPPORT);
589 #endif
590 		error = prison_local_ip4(cred, &sin->sin_addr);
591 		if (error)
592 			return (error);
593 		if (sin->sin_port != *lportp) {
594 			/* Don't allow the port to change. */
595 			if (*lportp != 0)
596 				return (EINVAL);
597 			lport = sin->sin_port;
598 		}
599 		/* NB: lport is left as 0 if the port isn't being changed. */
600 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
601 			/*
602 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
603 			 * allow complete duplication of binding if
604 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
605 			 * and a multicast address is bound on both
606 			 * new and duplicated sockets.
607 			 */
608 			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
609 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
610 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
611 			sin->sin_port = 0;		/* yech... */
612 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
613 			/*
614 			 * Is the address a local IP address?
615 			 * If INP_BINDANY is set, then the socket may be bound
616 			 * to any endpoint address, local or not.
617 			 */
618 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
619 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
620 				return (EADDRNOTAVAIL);
621 		}
622 		laddr = sin->sin_addr;
623 		if (lport) {
624 			struct inpcb *t;
625 			struct tcptw *tw;
626 
627 			/* GROSS */
628 			if (ntohs(lport) <= V_ipport_reservedhigh &&
629 			    ntohs(lport) >= V_ipport_reservedlow &&
630 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
631 			    0))
632 				return (EACCES);
633 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
634 			    priv_check_cred(inp->inp_cred,
635 			    PRIV_NETINET_REUSEPORT, 0) != 0) {
636 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
637 				    lport, INPLOOKUP_WILDCARD, cred);
638 	/*
639 	 * XXX
640 	 * This entire block sorely needs a rewrite.
641 	 */
642 				if (t &&
643 				    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
644 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
645 				    (so->so_type != SOCK_STREAM ||
646 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
647 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
648 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
649 				     (t->inp_flags2 & INP_REUSEPORT) == 0) &&
650 				    (inp->inp_cred->cr_uid !=
651 				     t->inp_cred->cr_uid))
652 					return (EADDRINUSE);
653 
654 				/*
655 				 * If the socket is a BINDMULTI socket, then
656 				 * the credentials need to match and the
657 				 * original socket also has to have been bound
658 				 * with BINDMULTI.
659 				 */
660 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
661 					return (EADDRINUSE);
662 			}
663 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
664 			    lport, lookupflags, cred);
665 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
666 				/*
667 				 * XXXRW: If an incpb has had its timewait
668 				 * state recycled, we treat the address as
669 				 * being in use (for now).  This is better
670 				 * than a panic, but not desirable.
671 				 */
672 				tw = intotw(t);
673 				if (tw == NULL ||
674 				    (reuseport & tw->tw_so_options) == 0)
675 					return (EADDRINUSE);
676 			} else if (t &&
677 			    ((inp->inp_flags2 & INP_BINDMULTI) == 0) &&
678 			    (reuseport & inp_so_options(t)) == 0) {
679 #ifdef INET6
680 				if (ntohl(sin->sin_addr.s_addr) !=
681 				    INADDR_ANY ||
682 				    ntohl(t->inp_laddr.s_addr) !=
683 				    INADDR_ANY ||
684 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
685 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
686 #endif
687 				return (EADDRINUSE);
688 				if (t && (! in_pcbbind_check_bindmulti(inp, t)))
689 					return (EADDRINUSE);
690 			}
691 		}
692 	}
693 	if (*lportp != 0)
694 		lport = *lportp;
695 	if (lport == 0) {
696 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
697 		if (error != 0)
698 			return (error);
699 
700 	}
701 	*laddrp = laddr.s_addr;
702 	*lportp = lport;
703 	return (0);
704 }
705 
706 /*
707  * Connect from a socket to a specified address.
708  * Both address and port must be specified in argument sin.
709  * If don't have a local address for this socket yet,
710  * then pick one.
711  */
712 int
713 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
714     struct ucred *cred, struct mbuf *m)
715 {
716 	u_short lport, fport;
717 	in_addr_t laddr, faddr;
718 	int anonport, error;
719 
720 	INP_WLOCK_ASSERT(inp);
721 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
722 
723 	lport = inp->inp_lport;
724 	laddr = inp->inp_laddr.s_addr;
725 	anonport = (lport == 0);
726 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
727 	    NULL, cred);
728 	if (error)
729 		return (error);
730 
731 	/* Do the initial binding of the local address if required. */
732 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
733 		inp->inp_lport = lport;
734 		inp->inp_laddr.s_addr = laddr;
735 		if (in_pcbinshash(inp) != 0) {
736 			inp->inp_laddr.s_addr = INADDR_ANY;
737 			inp->inp_lport = 0;
738 			return (EAGAIN);
739 		}
740 	}
741 
742 	/* Commit the remaining changes. */
743 	inp->inp_lport = lport;
744 	inp->inp_laddr.s_addr = laddr;
745 	inp->inp_faddr.s_addr = faddr;
746 	inp->inp_fport = fport;
747 	in_pcbrehash_mbuf(inp, m);
748 
749 	if (anonport)
750 		inp->inp_flags |= INP_ANONPORT;
751 	return (0);
752 }
753 
754 int
755 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
756 {
757 
758 	return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
759 }
760 
761 /*
762  * Do proper source address selection on an unbound socket in case
763  * of connect. Take jails into account as well.
764  */
765 int
766 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
767     struct ucred *cred)
768 {
769 	struct ifaddr *ifa;
770 	struct sockaddr *sa;
771 	struct sockaddr_in *sin;
772 	struct route sro;
773 	int error;
774 
775 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
776 
777 	/*
778 	 * Bypass source address selection and use the primary jail IP
779 	 * if requested.
780 	 */
781 	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
782 		return (0);
783 
784 	error = 0;
785 	bzero(&sro, sizeof(sro));
786 
787 	sin = (struct sockaddr_in *)&sro.ro_dst;
788 	sin->sin_family = AF_INET;
789 	sin->sin_len = sizeof(struct sockaddr_in);
790 	sin->sin_addr.s_addr = faddr->s_addr;
791 
792 	/*
793 	 * If route is known our src addr is taken from the i/f,
794 	 * else punt.
795 	 *
796 	 * Find out route to destination.
797 	 */
798 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
799 		in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
800 
801 	/*
802 	 * If we found a route, use the address corresponding to
803 	 * the outgoing interface.
804 	 *
805 	 * Otherwise assume faddr is reachable on a directly connected
806 	 * network and try to find a corresponding interface to take
807 	 * the source address from.
808 	 */
809 	if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
810 		struct in_ifaddr *ia;
811 		struct ifnet *ifp;
812 
813 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin,
814 					inp->inp_socket->so_fibnum));
815 		if (ia == NULL)
816 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0,
817 						inp->inp_socket->so_fibnum));
818 		if (ia == NULL) {
819 			error = ENETUNREACH;
820 			goto done;
821 		}
822 
823 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
824 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
825 			ifa_free(&ia->ia_ifa);
826 			goto done;
827 		}
828 
829 		ifp = ia->ia_ifp;
830 		ifa_free(&ia->ia_ifa);
831 		ia = NULL;
832 		IF_ADDR_RLOCK(ifp);
833 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
834 
835 			sa = ifa->ifa_addr;
836 			if (sa->sa_family != AF_INET)
837 				continue;
838 			sin = (struct sockaddr_in *)sa;
839 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
840 				ia = (struct in_ifaddr *)ifa;
841 				break;
842 			}
843 		}
844 		if (ia != NULL) {
845 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
846 			IF_ADDR_RUNLOCK(ifp);
847 			goto done;
848 		}
849 		IF_ADDR_RUNLOCK(ifp);
850 
851 		/* 3. As a last resort return the 'default' jail address. */
852 		error = prison_get_ip4(cred, laddr);
853 		goto done;
854 	}
855 
856 	/*
857 	 * If the outgoing interface on the route found is not
858 	 * a loopback interface, use the address from that interface.
859 	 * In case of jails do those three steps:
860 	 * 1. check if the interface address belongs to the jail. If so use it.
861 	 * 2. check if we have any address on the outgoing interface
862 	 *    belonging to this jail. If so use it.
863 	 * 3. as a last resort return the 'default' jail address.
864 	 */
865 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
866 		struct in_ifaddr *ia;
867 		struct ifnet *ifp;
868 
869 		/* If not jailed, use the default returned. */
870 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
871 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
872 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
873 			goto done;
874 		}
875 
876 		/* Jailed. */
877 		/* 1. Check if the iface address belongs to the jail. */
878 		sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
879 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
880 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
881 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
882 			goto done;
883 		}
884 
885 		/*
886 		 * 2. Check if we have any address on the outgoing interface
887 		 *    belonging to this jail.
888 		 */
889 		ia = NULL;
890 		ifp = sro.ro_rt->rt_ifp;
891 		IF_ADDR_RLOCK(ifp);
892 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
893 			sa = ifa->ifa_addr;
894 			if (sa->sa_family != AF_INET)
895 				continue;
896 			sin = (struct sockaddr_in *)sa;
897 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
898 				ia = (struct in_ifaddr *)ifa;
899 				break;
900 			}
901 		}
902 		if (ia != NULL) {
903 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
904 			IF_ADDR_RUNLOCK(ifp);
905 			goto done;
906 		}
907 		IF_ADDR_RUNLOCK(ifp);
908 
909 		/* 3. As a last resort return the 'default' jail address. */
910 		error = prison_get_ip4(cred, laddr);
911 		goto done;
912 	}
913 
914 	/*
915 	 * The outgoing interface is marked with 'loopback net', so a route
916 	 * to ourselves is here.
917 	 * Try to find the interface of the destination address and then
918 	 * take the address from there. That interface is not necessarily
919 	 * a loopback interface.
920 	 * In case of jails, check that it is an address of the jail
921 	 * and if we cannot find, fall back to the 'default' jail address.
922 	 */
923 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
924 		struct sockaddr_in sain;
925 		struct in_ifaddr *ia;
926 
927 		bzero(&sain, sizeof(struct sockaddr_in));
928 		sain.sin_family = AF_INET;
929 		sain.sin_len = sizeof(struct sockaddr_in);
930 		sain.sin_addr.s_addr = faddr->s_addr;
931 
932 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain),
933 					inp->inp_socket->so_fibnum));
934 		if (ia == NULL)
935 			ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0,
936 						inp->inp_socket->so_fibnum));
937 		if (ia == NULL)
938 			ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
939 
940 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
941 			if (ia == NULL) {
942 				error = ENETUNREACH;
943 				goto done;
944 			}
945 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
946 			ifa_free(&ia->ia_ifa);
947 			goto done;
948 		}
949 
950 		/* Jailed. */
951 		if (ia != NULL) {
952 			struct ifnet *ifp;
953 
954 			ifp = ia->ia_ifp;
955 			ifa_free(&ia->ia_ifa);
956 			ia = NULL;
957 			IF_ADDR_RLOCK(ifp);
958 			TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
959 
960 				sa = ifa->ifa_addr;
961 				if (sa->sa_family != AF_INET)
962 					continue;
963 				sin = (struct sockaddr_in *)sa;
964 				if (prison_check_ip4(cred,
965 				    &sin->sin_addr) == 0) {
966 					ia = (struct in_ifaddr *)ifa;
967 					break;
968 				}
969 			}
970 			if (ia != NULL) {
971 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
972 				IF_ADDR_RUNLOCK(ifp);
973 				goto done;
974 			}
975 			IF_ADDR_RUNLOCK(ifp);
976 		}
977 
978 		/* 3. As a last resort return the 'default' jail address. */
979 		error = prison_get_ip4(cred, laddr);
980 		goto done;
981 	}
982 
983 done:
984 	if (sro.ro_rt != NULL)
985 		RTFREE(sro.ro_rt);
986 	return (error);
987 }
988 
989 /*
990  * Set up for a connect from a socket to the specified address.
991  * On entry, *laddrp and *lportp should contain the current local
992  * address and port for the PCB; these are updated to the values
993  * that should be placed in inp_laddr and inp_lport to complete
994  * the connect.
995  *
996  * On success, *faddrp and *fportp will be set to the remote address
997  * and port. These are not updated in the error case.
998  *
999  * If the operation fails because the connection already exists,
1000  * *oinpp will be set to the PCB of that connection so that the
1001  * caller can decide to override it. In all other cases, *oinpp
1002  * is set to NULL.
1003  */
1004 int
1005 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
1006     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
1007     struct inpcb **oinpp, struct ucred *cred)
1008 {
1009 	struct rm_priotracker in_ifa_tracker;
1010 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
1011 	struct in_ifaddr *ia;
1012 	struct inpcb *oinp;
1013 	struct in_addr laddr, faddr;
1014 	u_short lport, fport;
1015 	int error;
1016 
1017 	/*
1018 	 * Because a global state change doesn't actually occur here, a read
1019 	 * lock is sufficient.
1020 	 */
1021 	INP_LOCK_ASSERT(inp);
1022 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
1023 
1024 	if (oinpp != NULL)
1025 		*oinpp = NULL;
1026 	if (nam->sa_len != sizeof (*sin))
1027 		return (EINVAL);
1028 	if (sin->sin_family != AF_INET)
1029 		return (EAFNOSUPPORT);
1030 	if (sin->sin_port == 0)
1031 		return (EADDRNOTAVAIL);
1032 	laddr.s_addr = *laddrp;
1033 	lport = *lportp;
1034 	faddr = sin->sin_addr;
1035 	fport = sin->sin_port;
1036 
1037 	if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
1038 		/*
1039 		 * If the destination address is INADDR_ANY,
1040 		 * use the primary local address.
1041 		 * If the supplied address is INADDR_BROADCAST,
1042 		 * and the primary interface supports broadcast,
1043 		 * choose the broadcast address for that interface.
1044 		 */
1045 		if (faddr.s_addr == INADDR_ANY) {
1046 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1047 			faddr =
1048 			    IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
1049 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1050 			if (cred != NULL &&
1051 			    (error = prison_get_ip4(cred, &faddr)) != 0)
1052 				return (error);
1053 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
1054 			IN_IFADDR_RLOCK(&in_ifa_tracker);
1055 			if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
1056 			    IFF_BROADCAST)
1057 				faddr = satosin(&TAILQ_FIRST(
1058 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
1059 			IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1060 		}
1061 	}
1062 	if (laddr.s_addr == INADDR_ANY) {
1063 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
1064 		/*
1065 		 * If the destination address is multicast and an outgoing
1066 		 * interface has been set as a multicast option, prefer the
1067 		 * address of that interface as our source address.
1068 		 */
1069 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
1070 		    inp->inp_moptions != NULL) {
1071 			struct ip_moptions *imo;
1072 			struct ifnet *ifp;
1073 
1074 			imo = inp->inp_moptions;
1075 			if (imo->imo_multicast_ifp != NULL) {
1076 				ifp = imo->imo_multicast_ifp;
1077 				IN_IFADDR_RLOCK(&in_ifa_tracker);
1078 				TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1079 					if ((ia->ia_ifp == ifp) &&
1080 					    (cred == NULL ||
1081 					    prison_check_ip4(cred,
1082 					    &ia->ia_addr.sin_addr) == 0))
1083 						break;
1084 				}
1085 				if (ia == NULL)
1086 					error = EADDRNOTAVAIL;
1087 				else {
1088 					laddr = ia->ia_addr.sin_addr;
1089 					error = 0;
1090 				}
1091 				IN_IFADDR_RUNLOCK(&in_ifa_tracker);
1092 			}
1093 		}
1094 		if (error)
1095 			return (error);
1096 	}
1097 	oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1098 	    laddr, lport, 0, NULL);
1099 	if (oinp != NULL) {
1100 		if (oinpp != NULL)
1101 			*oinpp = oinp;
1102 		return (EADDRINUSE);
1103 	}
1104 	if (lport == 0) {
1105 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1106 		    cred);
1107 		if (error)
1108 			return (error);
1109 	}
1110 	*laddrp = laddr.s_addr;
1111 	*lportp = lport;
1112 	*faddrp = faddr.s_addr;
1113 	*fportp = fport;
1114 	return (0);
1115 }
1116 
1117 void
1118 in_pcbdisconnect(struct inpcb *inp)
1119 {
1120 
1121 	INP_WLOCK_ASSERT(inp);
1122 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1123 
1124 	inp->inp_faddr.s_addr = INADDR_ANY;
1125 	inp->inp_fport = 0;
1126 	in_pcbrehash(inp);
1127 }
1128 #endif /* INET */
1129 
1130 /*
1131  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1132  * For most protocols, this will be invoked immediately prior to calling
1133  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1134  * socket, in which case in_pcbfree() is deferred.
1135  */
1136 void
1137 in_pcbdetach(struct inpcb *inp)
1138 {
1139 
1140 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1141 
1142 	inp->inp_socket->so_pcb = NULL;
1143 	inp->inp_socket = NULL;
1144 }
1145 
1146 /*
1147  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1148  * stability of an inpcb pointer despite the inpcb lock being released.  This
1149  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1150  * but where the inpcb lock may already held, or when acquiring a reference
1151  * via a pcbgroup.
1152  *
1153  * in_pcbref() should be used only to provide brief memory stability, and
1154  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1155  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1156  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1157  * lock and rele are the *only* safe operations that may be performed on the
1158  * inpcb.
1159  *
1160  * While the inpcb will not be freed, releasing the inpcb lock means that the
1161  * connection's state may change, so the caller should be careful to
1162  * revalidate any cached state on reacquiring the lock.  Drop the reference
1163  * using in_pcbrele().
1164  */
1165 void
1166 in_pcbref(struct inpcb *inp)
1167 {
1168 
1169 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1170 
1171 	refcount_acquire(&inp->inp_refcount);
1172 }
1173 
1174 /*
1175  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1176  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1177  * return a flag indicating whether or not the inpcb remains valid.  If it is
1178  * valid, we return with the inpcb lock held.
1179  *
1180  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1181  * reference on an inpcb.  Historically more work was done here (actually, in
1182  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1183  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1184  * about memory stability (and continued use of the write lock).
1185  */
1186 int
1187 in_pcbrele_rlocked(struct inpcb *inp)
1188 {
1189 	struct inpcbinfo *pcbinfo;
1190 
1191 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1192 
1193 	INP_RLOCK_ASSERT(inp);
1194 
1195 	if (refcount_release(&inp->inp_refcount) == 0) {
1196 		/*
1197 		 * If the inpcb has been freed, let the caller know, even if
1198 		 * this isn't the last reference.
1199 		 */
1200 		if (inp->inp_flags2 & INP_FREED) {
1201 			INP_RUNLOCK(inp);
1202 			return (1);
1203 		}
1204 		return (0);
1205 	}
1206 
1207 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1208 
1209 	INP_RUNLOCK(inp);
1210 	pcbinfo = inp->inp_pcbinfo;
1211 	uma_zfree(pcbinfo->ipi_zone, inp);
1212 	return (1);
1213 }
1214 
1215 int
1216 in_pcbrele_wlocked(struct inpcb *inp)
1217 {
1218 	struct inpcbinfo *pcbinfo;
1219 
1220 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1221 
1222 	INP_WLOCK_ASSERT(inp);
1223 
1224 	if (refcount_release(&inp->inp_refcount) == 0) {
1225 		/*
1226 		 * If the inpcb has been freed, let the caller know, even if
1227 		 * this isn't the last reference.
1228 		 */
1229 		if (inp->inp_flags2 & INP_FREED) {
1230 			INP_WUNLOCK(inp);
1231 			return (1);
1232 		}
1233 		return (0);
1234 	}
1235 
1236 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1237 
1238 	INP_WUNLOCK(inp);
1239 	pcbinfo = inp->inp_pcbinfo;
1240 	uma_zfree(pcbinfo->ipi_zone, inp);
1241 	return (1);
1242 }
1243 
1244 /*
1245  * Temporary wrapper.
1246  */
1247 int
1248 in_pcbrele(struct inpcb *inp)
1249 {
1250 
1251 	return (in_pcbrele_wlocked(inp));
1252 }
1253 
1254 /*
1255  * Unconditionally schedule an inpcb to be freed by decrementing its
1256  * reference count, which should occur only after the inpcb has been detached
1257  * from its socket.  If another thread holds a temporary reference (acquired
1258  * using in_pcbref()) then the free is deferred until that reference is
1259  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1260  * work, including removal from global lists, is done in this context, where
1261  * the pcbinfo lock is held.
1262  */
1263 void
1264 in_pcbfree(struct inpcb *inp)
1265 {
1266 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1267 
1268 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1269 
1270 #ifdef INVARIANTS
1271 	if (pcbinfo == &V_tcbinfo) {
1272 		INP_INFO_LOCK_ASSERT(pcbinfo);
1273 	} else {
1274 		INP_INFO_WLOCK_ASSERT(pcbinfo);
1275 	}
1276 #endif
1277 	INP_WLOCK_ASSERT(inp);
1278 
1279 	/* XXXRW: Do as much as possible here. */
1280 #ifdef IPSEC
1281 	if (inp->inp_sp != NULL)
1282 		ipsec_delete_pcbpolicy(inp);
1283 #endif
1284 	INP_LIST_WLOCK(pcbinfo);
1285 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1286 	in_pcbremlists(inp);
1287 	INP_LIST_WUNLOCK(pcbinfo);
1288 #ifdef INET6
1289 	if (inp->inp_vflag & INP_IPV6PROTO) {
1290 		ip6_freepcbopts(inp->in6p_outputopts);
1291 		if (inp->in6p_moptions != NULL)
1292 			ip6_freemoptions(inp->in6p_moptions);
1293 	}
1294 #endif
1295 	if (inp->inp_options)
1296 		(void)m_free(inp->inp_options);
1297 #ifdef INET
1298 	if (inp->inp_moptions != NULL)
1299 		inp_freemoptions(inp->inp_moptions);
1300 #endif
1301 	if (inp->inp_route.ro_rt) {
1302 		RTFREE(inp->inp_route.ro_rt);
1303 		inp->inp_route.ro_rt = (struct rtentry *)NULL;
1304 	}
1305 
1306 	inp->inp_vflag = 0;
1307 	inp->inp_flags2 |= INP_FREED;
1308 	crfree(inp->inp_cred);
1309 #ifdef MAC
1310 	mac_inpcb_destroy(inp);
1311 #endif
1312 	if (!in_pcbrele_wlocked(inp))
1313 		INP_WUNLOCK(inp);
1314 }
1315 
1316 /*
1317  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1318  * port reservation, and preventing it from being returned by inpcb lookups.
1319  *
1320  * It is used by TCP to mark an inpcb as unused and avoid future packet
1321  * delivery or event notification when a socket remains open but TCP has
1322  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1323  * or a RST on the wire, and allows the port binding to be reused while still
1324  * maintaining the invariant that so_pcb always points to a valid inpcb until
1325  * in_pcbdetach().
1326  *
1327  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1328  * in_pcbnotifyall() and in_pcbpurgeif0()?
1329  */
1330 void
1331 in_pcbdrop(struct inpcb *inp)
1332 {
1333 
1334 	INP_WLOCK_ASSERT(inp);
1335 
1336 	/*
1337 	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1338 	 * the hash lock...?
1339 	 */
1340 	inp->inp_flags |= INP_DROPPED;
1341 	if (inp->inp_flags & INP_INHASHLIST) {
1342 		struct inpcbport *phd = inp->inp_phd;
1343 
1344 		INP_HASH_WLOCK(inp->inp_pcbinfo);
1345 		LIST_REMOVE(inp, inp_hash);
1346 		LIST_REMOVE(inp, inp_portlist);
1347 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1348 			LIST_REMOVE(phd, phd_hash);
1349 			free(phd, M_PCB);
1350 		}
1351 		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1352 		inp->inp_flags &= ~INP_INHASHLIST;
1353 #ifdef PCBGROUP
1354 		in_pcbgroup_remove(inp);
1355 #endif
1356 	}
1357 }
1358 
1359 #ifdef INET
1360 /*
1361  * Common routines to return the socket addresses associated with inpcbs.
1362  */
1363 struct sockaddr *
1364 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1365 {
1366 	struct sockaddr_in *sin;
1367 
1368 	sin = malloc(sizeof *sin, M_SONAME,
1369 		M_WAITOK | M_ZERO);
1370 	sin->sin_family = AF_INET;
1371 	sin->sin_len = sizeof(*sin);
1372 	sin->sin_addr = *addr_p;
1373 	sin->sin_port = port;
1374 
1375 	return (struct sockaddr *)sin;
1376 }
1377 
1378 int
1379 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1380 {
1381 	struct inpcb *inp;
1382 	struct in_addr addr;
1383 	in_port_t port;
1384 
1385 	inp = sotoinpcb(so);
1386 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1387 
1388 	INP_RLOCK(inp);
1389 	port = inp->inp_lport;
1390 	addr = inp->inp_laddr;
1391 	INP_RUNLOCK(inp);
1392 
1393 	*nam = in_sockaddr(port, &addr);
1394 	return 0;
1395 }
1396 
1397 int
1398 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1399 {
1400 	struct inpcb *inp;
1401 	struct in_addr addr;
1402 	in_port_t port;
1403 
1404 	inp = sotoinpcb(so);
1405 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1406 
1407 	INP_RLOCK(inp);
1408 	port = inp->inp_fport;
1409 	addr = inp->inp_faddr;
1410 	INP_RUNLOCK(inp);
1411 
1412 	*nam = in_sockaddr(port, &addr);
1413 	return 0;
1414 }
1415 
1416 void
1417 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1418     struct inpcb *(*notify)(struct inpcb *, int))
1419 {
1420 	struct inpcb *inp, *inp_temp;
1421 
1422 	INP_INFO_WLOCK(pcbinfo);
1423 	LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1424 		INP_WLOCK(inp);
1425 #ifdef INET6
1426 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1427 			INP_WUNLOCK(inp);
1428 			continue;
1429 		}
1430 #endif
1431 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1432 		    inp->inp_socket == NULL) {
1433 			INP_WUNLOCK(inp);
1434 			continue;
1435 		}
1436 		if ((*notify)(inp, errno))
1437 			INP_WUNLOCK(inp);
1438 	}
1439 	INP_INFO_WUNLOCK(pcbinfo);
1440 }
1441 
1442 void
1443 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1444 {
1445 	struct inpcb *inp;
1446 	struct ip_moptions *imo;
1447 	int i, gap;
1448 
1449 	INP_INFO_WLOCK(pcbinfo);
1450 	LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1451 		INP_WLOCK(inp);
1452 		imo = inp->inp_moptions;
1453 		if ((inp->inp_vflag & INP_IPV4) &&
1454 		    imo != NULL) {
1455 			/*
1456 			 * Unselect the outgoing interface if it is being
1457 			 * detached.
1458 			 */
1459 			if (imo->imo_multicast_ifp == ifp)
1460 				imo->imo_multicast_ifp = NULL;
1461 
1462 			/*
1463 			 * Drop multicast group membership if we joined
1464 			 * through the interface being detached.
1465 			 */
1466 			for (i = 0, gap = 0; i < imo->imo_num_memberships;
1467 			    i++) {
1468 				if (imo->imo_membership[i]->inm_ifp == ifp) {
1469 					in_delmulti(imo->imo_membership[i]);
1470 					gap++;
1471 				} else if (gap != 0)
1472 					imo->imo_membership[i - gap] =
1473 					    imo->imo_membership[i];
1474 			}
1475 			imo->imo_num_memberships -= gap;
1476 		}
1477 		INP_WUNLOCK(inp);
1478 	}
1479 	INP_INFO_WUNLOCK(pcbinfo);
1480 }
1481 
1482 /*
1483  * Lookup a PCB based on the local address and port.  Caller must hold the
1484  * hash lock.  No inpcb locks or references are acquired.
1485  */
1486 #define INP_LOOKUP_MAPPED_PCB_COST	3
1487 struct inpcb *
1488 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1489     u_short lport, int lookupflags, struct ucred *cred)
1490 {
1491 	struct inpcb *inp;
1492 #ifdef INET6
1493 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1494 #else
1495 	int matchwild = 3;
1496 #endif
1497 	int wildcard;
1498 
1499 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1500 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1501 
1502 	INP_HASH_LOCK_ASSERT(pcbinfo);
1503 
1504 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1505 		struct inpcbhead *head;
1506 		/*
1507 		 * Look for an unconnected (wildcard foreign addr) PCB that
1508 		 * matches the local address and port we're looking for.
1509 		 */
1510 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1511 		    0, pcbinfo->ipi_hashmask)];
1512 		LIST_FOREACH(inp, head, inp_hash) {
1513 #ifdef INET6
1514 			/* XXX inp locking */
1515 			if ((inp->inp_vflag & INP_IPV4) == 0)
1516 				continue;
1517 #endif
1518 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1519 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1520 			    inp->inp_lport == lport) {
1521 				/*
1522 				 * Found?
1523 				 */
1524 				if (cred == NULL ||
1525 				    prison_equal_ip4(cred->cr_prison,
1526 					inp->inp_cred->cr_prison))
1527 					return (inp);
1528 			}
1529 		}
1530 		/*
1531 		 * Not found.
1532 		 */
1533 		return (NULL);
1534 	} else {
1535 		struct inpcbporthead *porthash;
1536 		struct inpcbport *phd;
1537 		struct inpcb *match = NULL;
1538 		/*
1539 		 * Best fit PCB lookup.
1540 		 *
1541 		 * First see if this local port is in use by looking on the
1542 		 * port hash list.
1543 		 */
1544 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1545 		    pcbinfo->ipi_porthashmask)];
1546 		LIST_FOREACH(phd, porthash, phd_hash) {
1547 			if (phd->phd_port == lport)
1548 				break;
1549 		}
1550 		if (phd != NULL) {
1551 			/*
1552 			 * Port is in use by one or more PCBs. Look for best
1553 			 * fit.
1554 			 */
1555 			LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1556 				wildcard = 0;
1557 				if (cred != NULL &&
1558 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
1559 					cred->cr_prison))
1560 					continue;
1561 #ifdef INET6
1562 				/* XXX inp locking */
1563 				if ((inp->inp_vflag & INP_IPV4) == 0)
1564 					continue;
1565 				/*
1566 				 * We never select the PCB that has
1567 				 * INP_IPV6 flag and is bound to :: if
1568 				 * we have another PCB which is bound
1569 				 * to 0.0.0.0.  If a PCB has the
1570 				 * INP_IPV6 flag, then we set its cost
1571 				 * higher than IPv4 only PCBs.
1572 				 *
1573 				 * Note that the case only happens
1574 				 * when a socket is bound to ::, under
1575 				 * the condition that the use of the
1576 				 * mapped address is allowed.
1577 				 */
1578 				if ((inp->inp_vflag & INP_IPV6) != 0)
1579 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1580 #endif
1581 				if (inp->inp_faddr.s_addr != INADDR_ANY)
1582 					wildcard++;
1583 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
1584 					if (laddr.s_addr == INADDR_ANY)
1585 						wildcard++;
1586 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
1587 						continue;
1588 				} else {
1589 					if (laddr.s_addr != INADDR_ANY)
1590 						wildcard++;
1591 				}
1592 				if (wildcard < matchwild) {
1593 					match = inp;
1594 					matchwild = wildcard;
1595 					if (matchwild == 0)
1596 						break;
1597 				}
1598 			}
1599 		}
1600 		return (match);
1601 	}
1602 }
1603 #undef INP_LOOKUP_MAPPED_PCB_COST
1604 
1605 #ifdef PCBGROUP
1606 /*
1607  * Lookup PCB in hash list, using pcbgroup tables.
1608  */
1609 static struct inpcb *
1610 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
1611     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
1612     u_int lport_arg, int lookupflags, struct ifnet *ifp)
1613 {
1614 	struct inpcbhead *head;
1615 	struct inpcb *inp, *tmpinp;
1616 	u_short fport = fport_arg, lport = lport_arg;
1617 
1618 	/*
1619 	 * First look for an exact match.
1620 	 */
1621 	tmpinp = NULL;
1622 	INP_GROUP_LOCK(pcbgroup);
1623 	head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1624 	    pcbgroup->ipg_hashmask)];
1625 	LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1626 #ifdef INET6
1627 		/* XXX inp locking */
1628 		if ((inp->inp_vflag & INP_IPV4) == 0)
1629 			continue;
1630 #endif
1631 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1632 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1633 		    inp->inp_fport == fport &&
1634 		    inp->inp_lport == lport) {
1635 			/*
1636 			 * XXX We should be able to directly return
1637 			 * the inp here, without any checks.
1638 			 * Well unless both bound with SO_REUSEPORT?
1639 			 */
1640 			if (prison_flag(inp->inp_cred, PR_IP4))
1641 				goto found;
1642 			if (tmpinp == NULL)
1643 				tmpinp = inp;
1644 		}
1645 	}
1646 	if (tmpinp != NULL) {
1647 		inp = tmpinp;
1648 		goto found;
1649 	}
1650 
1651 #ifdef	RSS
1652 	/*
1653 	 * For incoming connections, we may wish to do a wildcard
1654 	 * match for an RSS-local socket.
1655 	 */
1656 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1657 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1658 #ifdef INET6
1659 		struct inpcb *local_wild_mapped = NULL;
1660 #endif
1661 		struct inpcb *jail_wild = NULL;
1662 		struct inpcbhead *head;
1663 		int injail;
1664 
1665 		/*
1666 		 * Order of socket selection - we always prefer jails.
1667 		 *      1. jailed, non-wild.
1668 		 *      2. jailed, wild.
1669 		 *      3. non-jailed, non-wild.
1670 		 *      4. non-jailed, wild.
1671 		 */
1672 
1673 		head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY,
1674 		    lport, 0, pcbgroup->ipg_hashmask)];
1675 		LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1676 #ifdef INET6
1677 			/* XXX inp locking */
1678 			if ((inp->inp_vflag & INP_IPV4) == 0)
1679 				continue;
1680 #endif
1681 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1682 			    inp->inp_lport != lport)
1683 				continue;
1684 
1685 			injail = prison_flag(inp->inp_cred, PR_IP4);
1686 			if (injail) {
1687 				if (prison_check_ip4(inp->inp_cred,
1688 				    &laddr) != 0)
1689 					continue;
1690 			} else {
1691 				if (local_exact != NULL)
1692 					continue;
1693 			}
1694 
1695 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1696 				if (injail)
1697 					goto found;
1698 				else
1699 					local_exact = inp;
1700 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1701 #ifdef INET6
1702 				/* XXX inp locking, NULL check */
1703 				if (inp->inp_vflag & INP_IPV6PROTO)
1704 					local_wild_mapped = inp;
1705 				else
1706 #endif
1707 					if (injail)
1708 						jail_wild = inp;
1709 					else
1710 						local_wild = inp;
1711 			}
1712 		} /* LIST_FOREACH */
1713 
1714 		inp = jail_wild;
1715 		if (inp == NULL)
1716 			inp = local_exact;
1717 		if (inp == NULL)
1718 			inp = local_wild;
1719 #ifdef INET6
1720 		if (inp == NULL)
1721 			inp = local_wild_mapped;
1722 #endif
1723 		if (inp != NULL)
1724 			goto found;
1725 	}
1726 #endif
1727 
1728 	/*
1729 	 * Then look for a wildcard match, if requested.
1730 	 */
1731 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1732 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1733 #ifdef INET6
1734 		struct inpcb *local_wild_mapped = NULL;
1735 #endif
1736 		struct inpcb *jail_wild = NULL;
1737 		struct inpcbhead *head;
1738 		int injail;
1739 
1740 		/*
1741 		 * Order of socket selection - we always prefer jails.
1742 		 *      1. jailed, non-wild.
1743 		 *      2. jailed, wild.
1744 		 *      3. non-jailed, non-wild.
1745 		 *      4. non-jailed, wild.
1746 		 */
1747 		head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
1748 		    0, pcbinfo->ipi_wildmask)];
1749 		LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
1750 #ifdef INET6
1751 			/* XXX inp locking */
1752 			if ((inp->inp_vflag & INP_IPV4) == 0)
1753 				continue;
1754 #endif
1755 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1756 			    inp->inp_lport != lport)
1757 				continue;
1758 
1759 			injail = prison_flag(inp->inp_cred, PR_IP4);
1760 			if (injail) {
1761 				if (prison_check_ip4(inp->inp_cred,
1762 				    &laddr) != 0)
1763 					continue;
1764 			} else {
1765 				if (local_exact != NULL)
1766 					continue;
1767 			}
1768 
1769 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1770 				if (injail)
1771 					goto found;
1772 				else
1773 					local_exact = inp;
1774 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1775 #ifdef INET6
1776 				/* XXX inp locking, NULL check */
1777 				if (inp->inp_vflag & INP_IPV6PROTO)
1778 					local_wild_mapped = inp;
1779 				else
1780 #endif
1781 					if (injail)
1782 						jail_wild = inp;
1783 					else
1784 						local_wild = inp;
1785 			}
1786 		} /* LIST_FOREACH */
1787 		inp = jail_wild;
1788 		if (inp == NULL)
1789 			inp = local_exact;
1790 		if (inp == NULL)
1791 			inp = local_wild;
1792 #ifdef INET6
1793 		if (inp == NULL)
1794 			inp = local_wild_mapped;
1795 #endif
1796 		if (inp != NULL)
1797 			goto found;
1798 	} /* if (lookupflags & INPLOOKUP_WILDCARD) */
1799 	INP_GROUP_UNLOCK(pcbgroup);
1800 	return (NULL);
1801 
1802 found:
1803 	in_pcbref(inp);
1804 	INP_GROUP_UNLOCK(pcbgroup);
1805 	if (lookupflags & INPLOOKUP_WLOCKPCB) {
1806 		INP_WLOCK(inp);
1807 		if (in_pcbrele_wlocked(inp))
1808 			return (NULL);
1809 	} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1810 		INP_RLOCK(inp);
1811 		if (in_pcbrele_rlocked(inp))
1812 			return (NULL);
1813 	} else
1814 		panic("%s: locking bug", __func__);
1815 	return (inp);
1816 }
1817 #endif /* PCBGROUP */
1818 
1819 /*
1820  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
1821  * that the caller has locked the hash list, and will not perform any further
1822  * locking or reference operations on either the hash list or the connection.
1823  */
1824 static struct inpcb *
1825 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1826     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
1827     struct ifnet *ifp)
1828 {
1829 	struct inpcbhead *head;
1830 	struct inpcb *inp, *tmpinp;
1831 	u_short fport = fport_arg, lport = lport_arg;
1832 
1833 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1834 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1835 
1836 	INP_HASH_LOCK_ASSERT(pcbinfo);
1837 
1838 	/*
1839 	 * First look for an exact match.
1840 	 */
1841 	tmpinp = NULL;
1842 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1843 	    pcbinfo->ipi_hashmask)];
1844 	LIST_FOREACH(inp, head, inp_hash) {
1845 #ifdef INET6
1846 		/* XXX inp locking */
1847 		if ((inp->inp_vflag & INP_IPV4) == 0)
1848 			continue;
1849 #endif
1850 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1851 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1852 		    inp->inp_fport == fport &&
1853 		    inp->inp_lport == lport) {
1854 			/*
1855 			 * XXX We should be able to directly return
1856 			 * the inp here, without any checks.
1857 			 * Well unless both bound with SO_REUSEPORT?
1858 			 */
1859 			if (prison_flag(inp->inp_cred, PR_IP4))
1860 				return (inp);
1861 			if (tmpinp == NULL)
1862 				tmpinp = inp;
1863 		}
1864 	}
1865 	if (tmpinp != NULL)
1866 		return (tmpinp);
1867 
1868 	/*
1869 	 * Then look for a wildcard match, if requested.
1870 	 */
1871 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1872 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1873 #ifdef INET6
1874 		struct inpcb *local_wild_mapped = NULL;
1875 #endif
1876 		struct inpcb *jail_wild = NULL;
1877 		int injail;
1878 
1879 		/*
1880 		 * Order of socket selection - we always prefer jails.
1881 		 *      1. jailed, non-wild.
1882 		 *      2. jailed, wild.
1883 		 *      3. non-jailed, non-wild.
1884 		 *      4. non-jailed, wild.
1885 		 */
1886 
1887 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1888 		    0, pcbinfo->ipi_hashmask)];
1889 		LIST_FOREACH(inp, head, inp_hash) {
1890 #ifdef INET6
1891 			/* XXX inp locking */
1892 			if ((inp->inp_vflag & INP_IPV4) == 0)
1893 				continue;
1894 #endif
1895 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1896 			    inp->inp_lport != lport)
1897 				continue;
1898 
1899 			injail = prison_flag(inp->inp_cred, PR_IP4);
1900 			if (injail) {
1901 				if (prison_check_ip4(inp->inp_cred,
1902 				    &laddr) != 0)
1903 					continue;
1904 			} else {
1905 				if (local_exact != NULL)
1906 					continue;
1907 			}
1908 
1909 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1910 				if (injail)
1911 					return (inp);
1912 				else
1913 					local_exact = inp;
1914 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1915 #ifdef INET6
1916 				/* XXX inp locking, NULL check */
1917 				if (inp->inp_vflag & INP_IPV6PROTO)
1918 					local_wild_mapped = inp;
1919 				else
1920 #endif
1921 					if (injail)
1922 						jail_wild = inp;
1923 					else
1924 						local_wild = inp;
1925 			}
1926 		} /* LIST_FOREACH */
1927 		if (jail_wild != NULL)
1928 			return (jail_wild);
1929 		if (local_exact != NULL)
1930 			return (local_exact);
1931 		if (local_wild != NULL)
1932 			return (local_wild);
1933 #ifdef INET6
1934 		if (local_wild_mapped != NULL)
1935 			return (local_wild_mapped);
1936 #endif
1937 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
1938 
1939 	return (NULL);
1940 }
1941 
1942 /*
1943  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
1944  * hash list lock, and will return the inpcb locked (i.e., requires
1945  * INPLOOKUP_LOCKPCB).
1946  */
1947 static struct inpcb *
1948 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1949     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
1950     struct ifnet *ifp)
1951 {
1952 	struct inpcb *inp;
1953 
1954 	INP_HASH_RLOCK(pcbinfo);
1955 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
1956 	    (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
1957 	if (inp != NULL) {
1958 		in_pcbref(inp);
1959 		INP_HASH_RUNLOCK(pcbinfo);
1960 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
1961 			INP_WLOCK(inp);
1962 			if (in_pcbrele_wlocked(inp))
1963 				return (NULL);
1964 		} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1965 			INP_RLOCK(inp);
1966 			if (in_pcbrele_rlocked(inp))
1967 				return (NULL);
1968 		} else
1969 			panic("%s: locking bug", __func__);
1970 	} else
1971 		INP_HASH_RUNLOCK(pcbinfo);
1972 	return (inp);
1973 }
1974 
1975 /*
1976  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
1977  * from which a pre-calculated hash value may be extracted.
1978  *
1979  * Possibly more of this logic should be in in_pcbgroup.c.
1980  */
1981 struct inpcb *
1982 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
1983     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
1984 {
1985 #if defined(PCBGROUP) && !defined(RSS)
1986 	struct inpcbgroup *pcbgroup;
1987 #endif
1988 
1989 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
1990 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1991 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
1992 	    ("%s: LOCKPCB not set", __func__));
1993 
1994 	/*
1995 	 * When not using RSS, use connection groups in preference to the
1996 	 * reservation table when looking up 4-tuples.  When using RSS, just
1997 	 * use the reservation table, due to the cost of the Toeplitz hash
1998 	 * in software.
1999 	 *
2000 	 * XXXRW: This policy belongs in the pcbgroup code, as in principle
2001 	 * we could be doing RSS with a non-Toeplitz hash that is affordable
2002 	 * in software.
2003 	 */
2004 #if defined(PCBGROUP) && !defined(RSS)
2005 	if (in_pcbgroup_enabled(pcbinfo)) {
2006 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2007 		    fport);
2008 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2009 		    laddr, lport, lookupflags, ifp));
2010 	}
2011 #endif
2012 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2013 	    lookupflags, ifp));
2014 }
2015 
2016 struct inpcb *
2017 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
2018     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
2019     struct ifnet *ifp, struct mbuf *m)
2020 {
2021 #ifdef PCBGROUP
2022 	struct inpcbgroup *pcbgroup;
2023 #endif
2024 
2025 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
2026 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
2027 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
2028 	    ("%s: LOCKPCB not set", __func__));
2029 
2030 #ifdef PCBGROUP
2031 	/*
2032 	 * If we can use a hardware-generated hash to look up the connection
2033 	 * group, use that connection group to find the inpcb.  Otherwise
2034 	 * fall back on a software hash -- or the reservation table if we're
2035 	 * using RSS.
2036 	 *
2037 	 * XXXRW: As above, that policy belongs in the pcbgroup code.
2038 	 */
2039 	if (in_pcbgroup_enabled(pcbinfo) &&
2040 	    !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
2041 		pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
2042 		    m->m_pkthdr.flowid);
2043 		if (pcbgroup != NULL)
2044 			return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
2045 			    fport, laddr, lport, lookupflags, ifp));
2046 #ifndef RSS
2047 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
2048 		    fport);
2049 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
2050 		    laddr, lport, lookupflags, ifp));
2051 #endif
2052 	}
2053 #endif
2054 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
2055 	    lookupflags, ifp));
2056 }
2057 #endif /* INET */
2058 
2059 /*
2060  * Insert PCB onto various hash lists.
2061  */
2062 static int
2063 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
2064 {
2065 	struct inpcbhead *pcbhash;
2066 	struct inpcbporthead *pcbporthash;
2067 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2068 	struct inpcbport *phd;
2069 	u_int32_t hashkey_faddr;
2070 
2071 	INP_WLOCK_ASSERT(inp);
2072 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2073 
2074 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
2075 	    ("in_pcbinshash: INP_INHASHLIST"));
2076 
2077 #ifdef INET6
2078 	if (inp->inp_vflag & INP_IPV6)
2079 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2080 	else
2081 #endif
2082 	hashkey_faddr = inp->inp_faddr.s_addr;
2083 
2084 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2085 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2086 
2087 	pcbporthash = &pcbinfo->ipi_porthashbase[
2088 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
2089 
2090 	/*
2091 	 * Go through port list and look for a head for this lport.
2092 	 */
2093 	LIST_FOREACH(phd, pcbporthash, phd_hash) {
2094 		if (phd->phd_port == inp->inp_lport)
2095 			break;
2096 	}
2097 	/*
2098 	 * If none exists, malloc one and tack it on.
2099 	 */
2100 	if (phd == NULL) {
2101 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
2102 		if (phd == NULL) {
2103 			return (ENOBUFS); /* XXX */
2104 		}
2105 		phd->phd_port = inp->inp_lport;
2106 		LIST_INIT(&phd->phd_pcblist);
2107 		LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
2108 	}
2109 	inp->inp_phd = phd;
2110 	LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
2111 	LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
2112 	inp->inp_flags |= INP_INHASHLIST;
2113 #ifdef PCBGROUP
2114 	if (do_pcbgroup_update)
2115 		in_pcbgroup_update(inp);
2116 #endif
2117 	return (0);
2118 }
2119 
2120 /*
2121  * For now, there are two public interfaces to insert an inpcb into the hash
2122  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
2123  * is used only in the TCP syncache, where in_pcbinshash is called before the
2124  * full 4-tuple is set for the inpcb, and we don't want to install in the
2125  * pcbgroup until later.
2126  *
2127  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
2128  * connection groups, and partially initialised inpcbs should not be exposed
2129  * to either reservation hash tables or pcbgroups.
2130  */
2131 int
2132 in_pcbinshash(struct inpcb *inp)
2133 {
2134 
2135 	return (in_pcbinshash_internal(inp, 1));
2136 }
2137 
2138 int
2139 in_pcbinshash_nopcbgroup(struct inpcb *inp)
2140 {
2141 
2142 	return (in_pcbinshash_internal(inp, 0));
2143 }
2144 
2145 /*
2146  * Move PCB to the proper hash bucket when { faddr, fport } have  been
2147  * changed. NOTE: This does not handle the case of the lport changing (the
2148  * hashed port list would have to be updated as well), so the lport must
2149  * not change after in_pcbinshash() has been called.
2150  */
2151 void
2152 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
2153 {
2154 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2155 	struct inpcbhead *head;
2156 	u_int32_t hashkey_faddr;
2157 
2158 	INP_WLOCK_ASSERT(inp);
2159 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2160 
2161 	KASSERT(inp->inp_flags & INP_INHASHLIST,
2162 	    ("in_pcbrehash: !INP_INHASHLIST"));
2163 
2164 #ifdef INET6
2165 	if (inp->inp_vflag & INP_IPV6)
2166 		hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr);
2167 	else
2168 #endif
2169 	hashkey_faddr = inp->inp_faddr.s_addr;
2170 
2171 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2172 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2173 
2174 	LIST_REMOVE(inp, inp_hash);
2175 	LIST_INSERT_HEAD(head, inp, inp_hash);
2176 
2177 #ifdef PCBGROUP
2178 	if (m != NULL)
2179 		in_pcbgroup_update_mbuf(inp, m);
2180 	else
2181 		in_pcbgroup_update(inp);
2182 #endif
2183 }
2184 
2185 void
2186 in_pcbrehash(struct inpcb *inp)
2187 {
2188 
2189 	in_pcbrehash_mbuf(inp, NULL);
2190 }
2191 
2192 /*
2193  * Remove PCB from various lists.
2194  */
2195 static void
2196 in_pcbremlists(struct inpcb *inp)
2197 {
2198 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2199 
2200 #ifdef INVARIANTS
2201 	if (pcbinfo == &V_tcbinfo) {
2202 		INP_INFO_RLOCK_ASSERT(pcbinfo);
2203 	} else {
2204 		INP_INFO_WLOCK_ASSERT(pcbinfo);
2205 	}
2206 #endif
2207 
2208 	INP_WLOCK_ASSERT(inp);
2209 	INP_LIST_WLOCK_ASSERT(pcbinfo);
2210 
2211 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2212 	if (inp->inp_flags & INP_INHASHLIST) {
2213 		struct inpcbport *phd = inp->inp_phd;
2214 
2215 		INP_HASH_WLOCK(pcbinfo);
2216 		LIST_REMOVE(inp, inp_hash);
2217 		LIST_REMOVE(inp, inp_portlist);
2218 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
2219 			LIST_REMOVE(phd, phd_hash);
2220 			free(phd, M_PCB);
2221 		}
2222 		INP_HASH_WUNLOCK(pcbinfo);
2223 		inp->inp_flags &= ~INP_INHASHLIST;
2224 	}
2225 	LIST_REMOVE(inp, inp_list);
2226 	pcbinfo->ipi_count--;
2227 #ifdef PCBGROUP
2228 	in_pcbgroup_remove(inp);
2229 #endif
2230 }
2231 
2232 /*
2233  * Check for alternatives when higher level complains
2234  * about service problems.  For now, invalidate cached
2235  * routing information.  If the route was created dynamically
2236  * (by a redirect), time to try a default gateway again.
2237  */
2238 void
2239 in_losing(struct inpcb *inp)
2240 {
2241 
2242 	if (inp->inp_route.ro_rt) {
2243 		RTFREE(inp->inp_route.ro_rt);
2244 		inp->inp_route.ro_rt = (struct rtentry *)NULL;
2245 	}
2246 	return;
2247 }
2248 
2249 /*
2250  * A set label operation has occurred at the socket layer, propagate the
2251  * label change into the in_pcb for the socket.
2252  */
2253 void
2254 in_pcbsosetlabel(struct socket *so)
2255 {
2256 #ifdef MAC
2257 	struct inpcb *inp;
2258 
2259 	inp = sotoinpcb(so);
2260 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2261 
2262 	INP_WLOCK(inp);
2263 	SOCK_LOCK(so);
2264 	mac_inpcb_sosetlabel(so, inp);
2265 	SOCK_UNLOCK(so);
2266 	INP_WUNLOCK(inp);
2267 #endif
2268 }
2269 
2270 /*
2271  * ipport_tick runs once per second, determining if random port allocation
2272  * should be continued.  If more than ipport_randomcps ports have been
2273  * allocated in the last second, then we return to sequential port
2274  * allocation. We return to random allocation only once we drop below
2275  * ipport_randomcps for at least ipport_randomtime seconds.
2276  */
2277 static void
2278 ipport_tick(void *xtp)
2279 {
2280 	VNET_ITERATOR_DECL(vnet_iter);
2281 
2282 	VNET_LIST_RLOCK_NOSLEEP();
2283 	VNET_FOREACH(vnet_iter) {
2284 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
2285 		if (V_ipport_tcpallocs <=
2286 		    V_ipport_tcplastcount + V_ipport_randomcps) {
2287 			if (V_ipport_stoprandom > 0)
2288 				V_ipport_stoprandom--;
2289 		} else
2290 			V_ipport_stoprandom = V_ipport_randomtime;
2291 		V_ipport_tcplastcount = V_ipport_tcpallocs;
2292 		CURVNET_RESTORE();
2293 	}
2294 	VNET_LIST_RUNLOCK_NOSLEEP();
2295 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2296 }
2297 
2298 static void
2299 ip_fini(void *xtp)
2300 {
2301 
2302 	callout_stop(&ipport_tick_callout);
2303 }
2304 
2305 /*
2306  * The ipport_callout should start running at about the time we attach the
2307  * inet or inet6 domains.
2308  */
2309 static void
2310 ipport_tick_init(const void *unused __unused)
2311 {
2312 
2313 	/* Start ipport_tick. */
2314 	callout_init(&ipport_tick_callout, 1);
2315 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2316 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2317 		SHUTDOWN_PRI_DEFAULT);
2318 }
2319 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
2320     ipport_tick_init, NULL);
2321 
2322 void
2323 inp_wlock(struct inpcb *inp)
2324 {
2325 
2326 	INP_WLOCK(inp);
2327 }
2328 
2329 void
2330 inp_wunlock(struct inpcb *inp)
2331 {
2332 
2333 	INP_WUNLOCK(inp);
2334 }
2335 
2336 void
2337 inp_rlock(struct inpcb *inp)
2338 {
2339 
2340 	INP_RLOCK(inp);
2341 }
2342 
2343 void
2344 inp_runlock(struct inpcb *inp)
2345 {
2346 
2347 	INP_RUNLOCK(inp);
2348 }
2349 
2350 #ifdef INVARIANTS
2351 void
2352 inp_lock_assert(struct inpcb *inp)
2353 {
2354 
2355 	INP_WLOCK_ASSERT(inp);
2356 }
2357 
2358 void
2359 inp_unlock_assert(struct inpcb *inp)
2360 {
2361 
2362 	INP_UNLOCK_ASSERT(inp);
2363 }
2364 #endif
2365 
2366 void
2367 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2368 {
2369 	struct inpcb *inp;
2370 
2371 	INP_INFO_WLOCK(&V_tcbinfo);
2372 	LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2373 		INP_WLOCK(inp);
2374 		func(inp, arg);
2375 		INP_WUNLOCK(inp);
2376 	}
2377 	INP_INFO_WUNLOCK(&V_tcbinfo);
2378 }
2379 
2380 struct socket *
2381 inp_inpcbtosocket(struct inpcb *inp)
2382 {
2383 
2384 	INP_WLOCK_ASSERT(inp);
2385 	return (inp->inp_socket);
2386 }
2387 
2388 struct tcpcb *
2389 inp_inpcbtotcpcb(struct inpcb *inp)
2390 {
2391 
2392 	INP_WLOCK_ASSERT(inp);
2393 	return ((struct tcpcb *)inp->inp_ppcb);
2394 }
2395 
2396 int
2397 inp_ip_tos_get(const struct inpcb *inp)
2398 {
2399 
2400 	return (inp->inp_ip_tos);
2401 }
2402 
2403 void
2404 inp_ip_tos_set(struct inpcb *inp, int val)
2405 {
2406 
2407 	inp->inp_ip_tos = val;
2408 }
2409 
2410 void
2411 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2412     uint32_t *faddr, uint16_t *fp)
2413 {
2414 
2415 	INP_LOCK_ASSERT(inp);
2416 	*laddr = inp->inp_laddr.s_addr;
2417 	*faddr = inp->inp_faddr.s_addr;
2418 	*lp = inp->inp_lport;
2419 	*fp = inp->inp_fport;
2420 }
2421 
2422 struct inpcb *
2423 so_sotoinpcb(struct socket *so)
2424 {
2425 
2426 	return (sotoinpcb(so));
2427 }
2428 
2429 struct tcpcb *
2430 so_sototcpcb(struct socket *so)
2431 {
2432 
2433 	return (sototcpcb(so));
2434 }
2435 
2436 #ifdef DDB
2437 static void
2438 db_print_indent(int indent)
2439 {
2440 	int i;
2441 
2442 	for (i = 0; i < indent; i++)
2443 		db_printf(" ");
2444 }
2445 
2446 static void
2447 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2448 {
2449 	char faddr_str[48], laddr_str[48];
2450 
2451 	db_print_indent(indent);
2452 	db_printf("%s at %p\n", name, inc);
2453 
2454 	indent += 2;
2455 
2456 #ifdef INET6
2457 	if (inc->inc_flags & INC_ISIPV6) {
2458 		/* IPv6. */
2459 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
2460 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
2461 	} else
2462 #endif
2463 	{
2464 		/* IPv4. */
2465 		inet_ntoa_r(inc->inc_laddr, laddr_str);
2466 		inet_ntoa_r(inc->inc_faddr, faddr_str);
2467 	}
2468 	db_print_indent(indent);
2469 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2470 	    ntohs(inc->inc_lport));
2471 	db_print_indent(indent);
2472 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2473 	    ntohs(inc->inc_fport));
2474 }
2475 
2476 static void
2477 db_print_inpflags(int inp_flags)
2478 {
2479 	int comma;
2480 
2481 	comma = 0;
2482 	if (inp_flags & INP_RECVOPTS) {
2483 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2484 		comma = 1;
2485 	}
2486 	if (inp_flags & INP_RECVRETOPTS) {
2487 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2488 		comma = 1;
2489 	}
2490 	if (inp_flags & INP_RECVDSTADDR) {
2491 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2492 		comma = 1;
2493 	}
2494 	if (inp_flags & INP_HDRINCL) {
2495 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
2496 		comma = 1;
2497 	}
2498 	if (inp_flags & INP_HIGHPORT) {
2499 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2500 		comma = 1;
2501 	}
2502 	if (inp_flags & INP_LOWPORT) {
2503 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
2504 		comma = 1;
2505 	}
2506 	if (inp_flags & INP_ANONPORT) {
2507 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
2508 		comma = 1;
2509 	}
2510 	if (inp_flags & INP_RECVIF) {
2511 		db_printf("%sINP_RECVIF", comma ? ", " : "");
2512 		comma = 1;
2513 	}
2514 	if (inp_flags & INP_MTUDISC) {
2515 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
2516 		comma = 1;
2517 	}
2518 	if (inp_flags & INP_RECVTTL) {
2519 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
2520 		comma = 1;
2521 	}
2522 	if (inp_flags & INP_DONTFRAG) {
2523 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2524 		comma = 1;
2525 	}
2526 	if (inp_flags & INP_RECVTOS) {
2527 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
2528 		comma = 1;
2529 	}
2530 	if (inp_flags & IN6P_IPV6_V6ONLY) {
2531 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
2532 		comma = 1;
2533 	}
2534 	if (inp_flags & IN6P_PKTINFO) {
2535 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
2536 		comma = 1;
2537 	}
2538 	if (inp_flags & IN6P_HOPLIMIT) {
2539 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
2540 		comma = 1;
2541 	}
2542 	if (inp_flags & IN6P_HOPOPTS) {
2543 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
2544 		comma = 1;
2545 	}
2546 	if (inp_flags & IN6P_DSTOPTS) {
2547 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
2548 		comma = 1;
2549 	}
2550 	if (inp_flags & IN6P_RTHDR) {
2551 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
2552 		comma = 1;
2553 	}
2554 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
2555 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
2556 		comma = 1;
2557 	}
2558 	if (inp_flags & IN6P_TCLASS) {
2559 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
2560 		comma = 1;
2561 	}
2562 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
2563 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
2564 		comma = 1;
2565 	}
2566 	if (inp_flags & INP_TIMEWAIT) {
2567 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
2568 		comma  = 1;
2569 	}
2570 	if (inp_flags & INP_ONESBCAST) {
2571 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
2572 		comma  = 1;
2573 	}
2574 	if (inp_flags & INP_DROPPED) {
2575 		db_printf("%sINP_DROPPED", comma ? ", " : "");
2576 		comma  = 1;
2577 	}
2578 	if (inp_flags & INP_SOCKREF) {
2579 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
2580 		comma  = 1;
2581 	}
2582 	if (inp_flags & IN6P_RFC2292) {
2583 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
2584 		comma = 1;
2585 	}
2586 	if (inp_flags & IN6P_MTU) {
2587 		db_printf("IN6P_MTU%s", comma ? ", " : "");
2588 		comma = 1;
2589 	}
2590 }
2591 
2592 static void
2593 db_print_inpvflag(u_char inp_vflag)
2594 {
2595 	int comma;
2596 
2597 	comma = 0;
2598 	if (inp_vflag & INP_IPV4) {
2599 		db_printf("%sINP_IPV4", comma ? ", " : "");
2600 		comma  = 1;
2601 	}
2602 	if (inp_vflag & INP_IPV6) {
2603 		db_printf("%sINP_IPV6", comma ? ", " : "");
2604 		comma  = 1;
2605 	}
2606 	if (inp_vflag & INP_IPV6PROTO) {
2607 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
2608 		comma  = 1;
2609 	}
2610 }
2611 
2612 static void
2613 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
2614 {
2615 
2616 	db_print_indent(indent);
2617 	db_printf("%s at %p\n", name, inp);
2618 
2619 	indent += 2;
2620 
2621 	db_print_indent(indent);
2622 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
2623 
2624 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
2625 
2626 	db_print_indent(indent);
2627 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
2628 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
2629 
2630 	db_print_indent(indent);
2631 	db_printf("inp_label: %p   inp_flags: 0x%x (",
2632 	   inp->inp_label, inp->inp_flags);
2633 	db_print_inpflags(inp->inp_flags);
2634 	db_printf(")\n");
2635 
2636 	db_print_indent(indent);
2637 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
2638 	    inp->inp_vflag);
2639 	db_print_inpvflag(inp->inp_vflag);
2640 	db_printf(")\n");
2641 
2642 	db_print_indent(indent);
2643 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
2644 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
2645 
2646 	db_print_indent(indent);
2647 #ifdef INET6
2648 	if (inp->inp_vflag & INP_IPV6) {
2649 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
2650 		    "in6p_moptions: %p\n", inp->in6p_options,
2651 		    inp->in6p_outputopts, inp->in6p_moptions);
2652 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
2653 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
2654 		    inp->in6p_hops);
2655 	} else
2656 #endif
2657 	{
2658 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
2659 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
2660 		    inp->inp_options, inp->inp_moptions);
2661 	}
2662 
2663 	db_print_indent(indent);
2664 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
2665 	    (uintmax_t)inp->inp_gencnt);
2666 }
2667 
2668 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
2669 {
2670 	struct inpcb *inp;
2671 
2672 	if (!have_addr) {
2673 		db_printf("usage: show inpcb <addr>\n");
2674 		return;
2675 	}
2676 	inp = (struct inpcb *)addr;
2677 
2678 	db_print_inpcb(inp, "inpcb", 0);
2679 }
2680 #endif /* DDB */
2681