xref: /freebsd/sys/netinet/in_pcb.c (revision 3fe92528afe8313fecf48822dde74bad5e380f48)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993, 1995
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
30  * $FreeBSD$
31  */
32 
33 #include "opt_ipsec.h"
34 #include "opt_inet6.h"
35 #include "opt_mac.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/mac.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/domain.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <sys/proc.h>
47 #include <sys/jail.h>
48 #include <sys/kernel.h>
49 #include <sys/sysctl.h>
50 
51 #include <vm/uma.h>
52 
53 #include <net/if.h>
54 #include <net/if_types.h>
55 #include <net/route.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_pcb.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip_var.h>
61 #include <netinet/tcp_var.h>
62 #include <netinet/udp.h>
63 #include <netinet/udp_var.h>
64 #ifdef INET6
65 #include <netinet/ip6.h>
66 #include <netinet6/ip6_var.h>
67 #endif /* INET6 */
68 
69 #ifdef IPSEC
70 #include <netinet6/ipsec.h>
71 #include <netkey/key.h>
72 #endif /* IPSEC */
73 
74 #ifdef FAST_IPSEC
75 #if defined(IPSEC) || defined(IPSEC_ESP)
76 #error "Bad idea: don't compile with both IPSEC and FAST_IPSEC!"
77 #endif
78 
79 #include <netipsec/ipsec.h>
80 #include <netipsec/key.h>
81 #endif /* FAST_IPSEC */
82 
83 /*
84  * These configure the range of local port addresses assigned to
85  * "unspecified" outgoing connections/packets/whatever.
86  */
87 int	ipport_lowfirstauto  = IPPORT_RESERVED - 1;	/* 1023 */
88 int	ipport_lowlastauto = IPPORT_RESERVEDSTART;	/* 600 */
89 int	ipport_firstauto = IPPORT_HIFIRSTAUTO;		/* 49152 */
90 int	ipport_lastauto  = IPPORT_HILASTAUTO;		/* 65535 */
91 int	ipport_hifirstauto = IPPORT_HIFIRSTAUTO;	/* 49152 */
92 int	ipport_hilastauto  = IPPORT_HILASTAUTO;		/* 65535 */
93 
94 /*
95  * Reserved ports accessible only to root. There are significant
96  * security considerations that must be accounted for when changing these,
97  * but the security benefits can be great. Please be careful.
98  */
99 int	ipport_reservedhigh = IPPORT_RESERVED - 1;	/* 1023 */
100 int	ipport_reservedlow = 0;
101 
102 /* Variables dealing with random ephemeral port allocation. */
103 int	ipport_randomized = 1;	/* user controlled via sysctl */
104 int	ipport_randomcps = 10;	/* user controlled via sysctl */
105 int	ipport_randomtime = 45;	/* user controlled via sysctl */
106 int	ipport_stoprandom = 0;	/* toggled by ipport_tick */
107 int	ipport_tcpallocs;
108 int	ipport_tcplastcount;
109 
110 #define RANGECHK(var, min, max) \
111 	if ((var) < (min)) { (var) = (min); } \
112 	else if ((var) > (max)) { (var) = (max); }
113 
114 static int
115 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
116 {
117 	int error;
118 
119 	error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
120 	if (error == 0) {
121 		RANGECHK(ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
122 		RANGECHK(ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
123 		RANGECHK(ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
124 		RANGECHK(ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
125 		RANGECHK(ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
126 		RANGECHK(ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
127 	}
128 	return (error);
129 }
130 
131 #undef RANGECHK
132 
133 SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports");
134 
135 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLTYPE_INT|CTLFLAG_RW,
136 	   &ipport_lowfirstauto, 0, &sysctl_net_ipport_check, "I", "");
137 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLTYPE_INT|CTLFLAG_RW,
138 	   &ipport_lowlastauto, 0, &sysctl_net_ipport_check, "I", "");
139 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLTYPE_INT|CTLFLAG_RW,
140 	   &ipport_firstauto, 0, &sysctl_net_ipport_check, "I", "");
141 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLTYPE_INT|CTLFLAG_RW,
142 	   &ipport_lastauto, 0, &sysctl_net_ipport_check, "I", "");
143 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLTYPE_INT|CTLFLAG_RW,
144 	   &ipport_hifirstauto, 0, &sysctl_net_ipport_check, "I", "");
145 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLTYPE_INT|CTLFLAG_RW,
146 	   &ipport_hilastauto, 0, &sysctl_net_ipport_check, "I", "");
147 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
148 	   CTLFLAG_RW|CTLFLAG_SECURE, &ipport_reservedhigh, 0, "");
149 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
150 	   CTLFLAG_RW|CTLFLAG_SECURE, &ipport_reservedlow, 0, "");
151 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW,
152 	   &ipport_randomized, 0, "Enable random port allocation");
153 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW,
154 	   &ipport_randomcps, 0, "Maximum number of random port "
155 	   "allocations before switching to a sequental one");
156 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW,
157 	   &ipport_randomtime, 0, "Minimum time to keep sequental port "
158 	   "allocation before switching to a random one");
159 
160 /*
161  * in_pcb.c: manage the Protocol Control Blocks.
162  *
163  * NOTE: It is assumed that most of these functions will be called with
164  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
165  * functions often modify hash chains or addresses in pcbs.
166  */
167 
168 /*
169  * Allocate a PCB and associate it with the socket.
170  * On success return with the PCB locked.
171  */
172 int
173 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
174 {
175 	struct inpcb *inp;
176 	int error;
177 
178 	INP_INFO_WLOCK_ASSERT(pcbinfo);
179 	error = 0;
180 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
181 	if (inp == NULL)
182 		return (ENOBUFS);
183 	bzero(inp,inp_zero_size);
184 	inp->inp_pcbinfo = pcbinfo;
185 	inp->inp_socket = so;
186 #ifdef MAC
187 	error = mac_init_inpcb(inp, M_NOWAIT);
188 	if (error != 0)
189 		goto out;
190 	SOCK_LOCK(so);
191 	mac_create_inpcb_from_socket(so, inp);
192 	SOCK_UNLOCK(so);
193 #endif
194 #if defined(IPSEC) || defined(FAST_IPSEC)
195 #ifdef FAST_IPSEC
196 	error = ipsec_init_policy(so, &inp->inp_sp);
197 #else
198 	error = ipsec_init_pcbpolicy(so, &inp->inp_sp);
199 #endif
200 	if (error != 0)
201 		goto out;
202 #endif /*IPSEC*/
203 #if defined(INET6)
204 	if (INP_SOCKAF(so) == AF_INET6) {
205 		inp->inp_vflag |= INP_IPV6PROTO;
206 		if (ip6_v6only)
207 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
208 	}
209 #endif
210 	LIST_INSERT_HEAD(pcbinfo->listhead, inp, inp_list);
211 	pcbinfo->ipi_count++;
212 	so->so_pcb = (caddr_t)inp;
213 #ifdef INET6
214 	if (ip6_auto_flowlabel)
215 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
216 #endif
217 	INP_LOCK(inp);
218 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
219 
220 #if defined(IPSEC) || defined(FAST_IPSEC) || defined(MAC)
221 out:
222 	if (error != 0)
223 		uma_zfree(pcbinfo->ipi_zone, inp);
224 #endif
225 	return (error);
226 }
227 
228 int
229 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
230 {
231 	int anonport, error;
232 
233 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
234 	INP_LOCK_ASSERT(inp);
235 
236 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
237 		return (EINVAL);
238 	anonport = inp->inp_lport == 0 && (nam == NULL ||
239 	    ((struct sockaddr_in *)nam)->sin_port == 0);
240 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
241 	    &inp->inp_lport, cred);
242 	if (error)
243 		return (error);
244 	if (in_pcbinshash(inp) != 0) {
245 		inp->inp_laddr.s_addr = INADDR_ANY;
246 		inp->inp_lport = 0;
247 		return (EAGAIN);
248 	}
249 	if (anonport)
250 		inp->inp_flags |= INP_ANONPORT;
251 	return (0);
252 }
253 
254 /*
255  * Set up a bind operation on a PCB, performing port allocation
256  * as required, but do not actually modify the PCB. Callers can
257  * either complete the bind by setting inp_laddr/inp_lport and
258  * calling in_pcbinshash(), or they can just use the resulting
259  * port and address to authorise the sending of a once-off packet.
260  *
261  * On error, the values of *laddrp and *lportp are not changed.
262  */
263 int
264 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
265     u_short *lportp, struct ucred *cred)
266 {
267 	struct socket *so = inp->inp_socket;
268 	unsigned short *lastport;
269 	struct sockaddr_in *sin;
270 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
271 	struct in_addr laddr;
272 	u_short lport = 0;
273 	int wild = 0, reuseport = (so->so_options & SO_REUSEPORT);
274 	int error, prison = 0;
275 	int dorandom;
276 
277 	INP_INFO_WLOCK_ASSERT(pcbinfo);
278 	INP_LOCK_ASSERT(inp);
279 
280 	if (TAILQ_EMPTY(&in_ifaddrhead)) /* XXX broken! */
281 		return (EADDRNOTAVAIL);
282 	laddr.s_addr = *laddrp;
283 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
284 		return (EINVAL);
285 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
286 		wild = INPLOOKUP_WILDCARD;
287 	if (nam) {
288 		sin = (struct sockaddr_in *)nam;
289 		if (nam->sa_len != sizeof (*sin))
290 			return (EINVAL);
291 #ifdef notdef
292 		/*
293 		 * We should check the family, but old programs
294 		 * incorrectly fail to initialize it.
295 		 */
296 		if (sin->sin_family != AF_INET)
297 			return (EAFNOSUPPORT);
298 #endif
299 		if (sin->sin_addr.s_addr != INADDR_ANY)
300 			if (prison_ip(cred, 0, &sin->sin_addr.s_addr))
301 				return(EINVAL);
302 		if (sin->sin_port != *lportp) {
303 			/* Don't allow the port to change. */
304 			if (*lportp != 0)
305 				return (EINVAL);
306 			lport = sin->sin_port;
307 		}
308 		/* NB: lport is left as 0 if the port isn't being changed. */
309 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
310 			/*
311 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
312 			 * allow complete duplication of binding if
313 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
314 			 * and a multicast address is bound on both
315 			 * new and duplicated sockets.
316 			 */
317 			if (so->so_options & SO_REUSEADDR)
318 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
319 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
320 			sin->sin_port = 0;		/* yech... */
321 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
322 			if (ifa_ifwithaddr((struct sockaddr *)sin) == 0)
323 				return (EADDRNOTAVAIL);
324 		}
325 		laddr = sin->sin_addr;
326 		if (lport) {
327 			struct inpcb *t;
328 			struct tcptw *tw;
329 
330 			/* GROSS */
331 			if (ntohs(lport) <= ipport_reservedhigh &&
332 			    ntohs(lport) >= ipport_reservedlow &&
333 			    suser_cred(cred, SUSER_ALLOWJAIL))
334 				return (EACCES);
335 			if (jailed(cred))
336 				prison = 1;
337 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
338 			    suser_cred(so->so_cred, SUSER_ALLOWJAIL) != 0) {
339 				t = in_pcblookup_local(inp->inp_pcbinfo,
340 				    sin->sin_addr, lport,
341 				    prison ? 0 :  INPLOOKUP_WILDCARD);
342 	/*
343 	 * XXX
344 	 * This entire block sorely needs a rewrite.
345 	 */
346 				if (t &&
347 				    ((t->inp_vflag & INP_TIMEWAIT) == 0) &&
348 				    (so->so_type != SOCK_STREAM ||
349 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
350 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
351 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
352 				     (t->inp_socket->so_options &
353 					 SO_REUSEPORT) == 0) &&
354 				    (so->so_cred->cr_uid !=
355 				     t->inp_socket->so_cred->cr_uid))
356 					return (EADDRINUSE);
357 			}
358 			if (prison && prison_ip(cred, 0, &sin->sin_addr.s_addr))
359 				return (EADDRNOTAVAIL);
360 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
361 			    lport, prison ? 0 : wild);
362 			if (t && (t->inp_vflag & INP_TIMEWAIT)) {
363 				/*
364 				 * XXXRW: If an incpb has had its timewait
365 				 * state recycled, we treat the address as
366 				 * being in use (for now).  This is better
367 				 * than a panic, but not desirable.
368 				 */
369 				tw = intotw(inp);
370 				if (tw == NULL ||
371 				    (reuseport & tw->tw_so_options) == 0)
372 					return (EADDRINUSE);
373 			} else if (t &&
374 			    (reuseport & t->inp_socket->so_options) == 0) {
375 #if defined(INET6)
376 				if (ntohl(sin->sin_addr.s_addr) !=
377 				    INADDR_ANY ||
378 				    ntohl(t->inp_laddr.s_addr) !=
379 				    INADDR_ANY ||
380 				    INP_SOCKAF(so) ==
381 				    INP_SOCKAF(t->inp_socket))
382 #endif /* defined(INET6) */
383 				return (EADDRINUSE);
384 			}
385 		}
386 	}
387 	if (*lportp != 0)
388 		lport = *lportp;
389 	if (lport == 0) {
390 		u_short first, last;
391 		int count;
392 
393 		if (laddr.s_addr != INADDR_ANY)
394 			if (prison_ip(cred, 0, &laddr.s_addr))
395 				return (EINVAL);
396 
397 		if (inp->inp_flags & INP_HIGHPORT) {
398 			first = ipport_hifirstauto;	/* sysctl */
399 			last  = ipport_hilastauto;
400 			lastport = &pcbinfo->lasthi;
401 		} else if (inp->inp_flags & INP_LOWPORT) {
402 			if ((error = suser_cred(cred, SUSER_ALLOWJAIL)) != 0)
403 				return error;
404 			first = ipport_lowfirstauto;	/* 1023 */
405 			last  = ipport_lowlastauto;	/* 600 */
406 			lastport = &pcbinfo->lastlow;
407 		} else {
408 			first = ipport_firstauto;	/* sysctl */
409 			last  = ipport_lastauto;
410 			lastport = &pcbinfo->lastport;
411 		}
412 		/*
413 		 * For UDP, use random port allocation as long as the user
414 		 * allows it.  For TCP (and as of yet unknown) connections,
415 		 * use random port allocation only if the user allows it AND
416 		 * ipport_tick() allows it.
417 		 */
418 		if (ipport_randomized &&
419 			(!ipport_stoprandom || pcbinfo == &udbinfo))
420 			dorandom = 1;
421 		else
422 			dorandom = 0;
423 		/*
424 		 * It makes no sense to do random port allocation if
425 		 * we have the only port available.
426 		 */
427 		if (first == last)
428 			dorandom = 0;
429 		/* Make sure to not include UDP packets in the count. */
430 		if (pcbinfo != &udbinfo)
431 			ipport_tcpallocs++;
432 		/*
433 		 * Simple check to ensure all ports are not used up causing
434 		 * a deadlock here.
435 		 *
436 		 * We split the two cases (up and down) so that the direction
437 		 * is not being tested on each round of the loop.
438 		 */
439 		if (first > last) {
440 			/*
441 			 * counting down
442 			 */
443 			if (dorandom)
444 				*lastport = first -
445 					    (arc4random() % (first - last));
446 			count = first - last;
447 
448 			do {
449 				if (count-- < 0)	/* completely used? */
450 					return (EADDRNOTAVAIL);
451 				--*lastport;
452 				if (*lastport > first || *lastport < last)
453 					*lastport = first;
454 				lport = htons(*lastport);
455 			} while (in_pcblookup_local(pcbinfo, laddr, lport,
456 			    wild));
457 		} else {
458 			/*
459 			 * counting up
460 			 */
461 			if (dorandom)
462 				*lastport = first +
463 					    (arc4random() % (last - first));
464 			count = last - first;
465 
466 			do {
467 				if (count-- < 0)	/* completely used? */
468 					return (EADDRNOTAVAIL);
469 				++*lastport;
470 				if (*lastport < first || *lastport > last)
471 					*lastport = first;
472 				lport = htons(*lastport);
473 			} while (in_pcblookup_local(pcbinfo, laddr, lport,
474 			    wild));
475 		}
476 	}
477 	if (prison_ip(cred, 0, &laddr.s_addr))
478 		return (EINVAL);
479 	*laddrp = laddr.s_addr;
480 	*lportp = lport;
481 	return (0);
482 }
483 
484 /*
485  * Connect from a socket to a specified address.
486  * Both address and port must be specified in argument sin.
487  * If don't have a local address for this socket yet,
488  * then pick one.
489  */
490 int
491 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
492 {
493 	u_short lport, fport;
494 	in_addr_t laddr, faddr;
495 	int anonport, error;
496 
497 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
498 	INP_LOCK_ASSERT(inp);
499 
500 	lport = inp->inp_lport;
501 	laddr = inp->inp_laddr.s_addr;
502 	anonport = (lport == 0);
503 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
504 	    NULL, cred);
505 	if (error)
506 		return (error);
507 
508 	/* Do the initial binding of the local address if required. */
509 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
510 		inp->inp_lport = lport;
511 		inp->inp_laddr.s_addr = laddr;
512 		if (in_pcbinshash(inp) != 0) {
513 			inp->inp_laddr.s_addr = INADDR_ANY;
514 			inp->inp_lport = 0;
515 			return (EAGAIN);
516 		}
517 	}
518 
519 	/* Commit the remaining changes. */
520 	inp->inp_lport = lport;
521 	inp->inp_laddr.s_addr = laddr;
522 	inp->inp_faddr.s_addr = faddr;
523 	inp->inp_fport = fport;
524 	in_pcbrehash(inp);
525 #ifdef IPSEC
526 	if (inp->inp_socket->so_type == SOCK_STREAM)
527 		ipsec_pcbconn(inp->inp_sp);
528 #endif
529 	if (anonport)
530 		inp->inp_flags |= INP_ANONPORT;
531 	return (0);
532 }
533 
534 /*
535  * Set up for a connect from a socket to the specified address.
536  * On entry, *laddrp and *lportp should contain the current local
537  * address and port for the PCB; these are updated to the values
538  * that should be placed in inp_laddr and inp_lport to complete
539  * the connect.
540  *
541  * On success, *faddrp and *fportp will be set to the remote address
542  * and port. These are not updated in the error case.
543  *
544  * If the operation fails because the connection already exists,
545  * *oinpp will be set to the PCB of that connection so that the
546  * caller can decide to override it. In all other cases, *oinpp
547  * is set to NULL.
548  */
549 int
550 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
551     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
552     struct inpcb **oinpp, struct ucred *cred)
553 {
554 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
555 	struct in_ifaddr *ia;
556 	struct sockaddr_in sa;
557 	struct ucred *socred;
558 	struct inpcb *oinp;
559 	struct in_addr laddr, faddr;
560 	u_short lport, fport;
561 	int error;
562 
563 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
564 	INP_LOCK_ASSERT(inp);
565 
566 	if (oinpp != NULL)
567 		*oinpp = NULL;
568 	if (nam->sa_len != sizeof (*sin))
569 		return (EINVAL);
570 	if (sin->sin_family != AF_INET)
571 		return (EAFNOSUPPORT);
572 	if (sin->sin_port == 0)
573 		return (EADDRNOTAVAIL);
574 	laddr.s_addr = *laddrp;
575 	lport = *lportp;
576 	faddr = sin->sin_addr;
577 	fport = sin->sin_port;
578 	socred = inp->inp_socket->so_cred;
579 	if (laddr.s_addr == INADDR_ANY && jailed(socred)) {
580 		bzero(&sa, sizeof(sa));
581 		sa.sin_addr.s_addr = htonl(prison_getip(socred));
582 		sa.sin_len = sizeof(sa);
583 		sa.sin_family = AF_INET;
584 		error = in_pcbbind_setup(inp, (struct sockaddr *)&sa,
585 		    &laddr.s_addr, &lport, cred);
586 		if (error)
587 			return (error);
588 	}
589 	if (!TAILQ_EMPTY(&in_ifaddrhead)) {
590 		/*
591 		 * If the destination address is INADDR_ANY,
592 		 * use the primary local address.
593 		 * If the supplied address is INADDR_BROADCAST,
594 		 * and the primary interface supports broadcast,
595 		 * choose the broadcast address for that interface.
596 		 */
597 		if (faddr.s_addr == INADDR_ANY)
598 			faddr = IA_SIN(TAILQ_FIRST(&in_ifaddrhead))->sin_addr;
599 		else if (faddr.s_addr == (u_long)INADDR_BROADCAST &&
600 		    (TAILQ_FIRST(&in_ifaddrhead)->ia_ifp->if_flags &
601 		    IFF_BROADCAST))
602 			faddr = satosin(&TAILQ_FIRST(
603 			    &in_ifaddrhead)->ia_broadaddr)->sin_addr;
604 	}
605 	if (laddr.s_addr == INADDR_ANY) {
606 		ia = (struct in_ifaddr *)0;
607 		/*
608 		 * If route is known our src addr is taken from the i/f,
609 		 * else punt.
610 		 *
611 		 * Find out route to destination
612 		 */
613 		if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
614 			ia = ip_rtaddr(faddr);
615 		/*
616 		 * If we found a route, use the address corresponding to
617 		 * the outgoing interface.
618 		 *
619 		 * Otherwise assume faddr is reachable on a directly connected
620 		 * network and try to find a corresponding interface to take
621 		 * the source address from.
622 		 */
623 		if (ia == 0) {
624 			bzero(&sa, sizeof(sa));
625 			sa.sin_addr = faddr;
626 			sa.sin_len = sizeof(sa);
627 			sa.sin_family = AF_INET;
628 
629 			ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sa)));
630 			if (ia == 0)
631 				ia = ifatoia(ifa_ifwithnet(sintosa(&sa)));
632 			if (ia == 0)
633 				return (ENETUNREACH);
634 		}
635 		/*
636 		 * If the destination address is multicast and an outgoing
637 		 * interface has been set as a multicast option, use the
638 		 * address of that interface as our source address.
639 		 */
640 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
641 		    inp->inp_moptions != NULL) {
642 			struct ip_moptions *imo;
643 			struct ifnet *ifp;
644 
645 			imo = inp->inp_moptions;
646 			if (imo->imo_multicast_ifp != NULL) {
647 				ifp = imo->imo_multicast_ifp;
648 				TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link)
649 					if (ia->ia_ifp == ifp)
650 						break;
651 				if (ia == 0)
652 					return (EADDRNOTAVAIL);
653 			}
654 		}
655 		laddr = ia->ia_addr.sin_addr;
656 	}
657 
658 	oinp = in_pcblookup_hash(inp->inp_pcbinfo, faddr, fport, laddr, lport,
659 	    0, NULL);
660 	if (oinp != NULL) {
661 		if (oinpp != NULL)
662 			*oinpp = oinp;
663 		return (EADDRINUSE);
664 	}
665 	if (lport == 0) {
666 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
667 		    cred);
668 		if (error)
669 			return (error);
670 	}
671 	*laddrp = laddr.s_addr;
672 	*lportp = lport;
673 	*faddrp = faddr.s_addr;
674 	*fportp = fport;
675 	return (0);
676 }
677 
678 void
679 in_pcbdisconnect(struct inpcb *inp)
680 {
681 
682 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
683 	INP_LOCK_ASSERT(inp);
684 
685 	inp->inp_faddr.s_addr = INADDR_ANY;
686 	inp->inp_fport = 0;
687 	in_pcbrehash(inp);
688 #ifdef IPSEC
689 	ipsec_pcbdisconn(inp->inp_sp);
690 #endif
691 }
692 
693 /*
694  * In the old world order, in_pcbdetach() served two functions: to detach the
695  * pcb from the socket/potentially free the socket, and to free the pcb
696  * itself.  In the new world order, the protocol code is responsible for
697  * managing the relationship with the socket, and this code simply frees the
698  * pcb.
699  */
700 void
701 in_pcbdetach(struct inpcb *inp)
702 {
703 
704 	KASSERT(inp->inp_socket != NULL, ("in_pcbdetach: inp_socket == NULL"));
705 	inp->inp_socket->so_pcb = NULL;
706 	inp->inp_socket = NULL;
707 }
708 
709 void
710 in_pcbfree(struct inpcb *inp)
711 {
712 	struct inpcbinfo *ipi = inp->inp_pcbinfo;
713 
714 	KASSERT(inp->inp_socket == NULL, ("in_pcbfree: inp_socket != NULL"));
715 	INP_INFO_WLOCK_ASSERT(ipi);
716 	INP_LOCK_ASSERT(inp);
717 
718 #if defined(IPSEC) || defined(FAST_IPSEC)
719 	ipsec4_delete_pcbpolicy(inp);
720 #endif /*IPSEC*/
721 	inp->inp_gencnt = ++ipi->ipi_gencnt;
722 	in_pcbremlists(inp);
723 	if (inp->inp_options)
724 		(void)m_free(inp->inp_options);
725 	ip_freemoptions(inp->inp_moptions);
726 	inp->inp_vflag = 0;
727 
728 #ifdef MAC
729 	mac_destroy_inpcb(inp);
730 #endif
731 	INP_UNLOCK(inp);
732 	uma_zfree(ipi->ipi_zone, inp);
733 }
734 
735 /*
736  * TCP needs to maintain its inpcb structure after the TCP connection has
737  * been torn down.  However, it must be disconnected from the inpcb hashes as
738  * it must not prevent binding of future connections to the same port/ip
739  * combination by other inpcbs.
740  */
741 void
742 in_pcbdrop(struct inpcb *inp)
743 {
744 
745 	INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
746 	INP_LOCK_ASSERT(inp);
747 
748 	inp->inp_vflag |= INP_DROPPED;
749 	if (inp->inp_lport) {
750 		struct inpcbport *phd = inp->inp_phd;
751 
752 		LIST_REMOVE(inp, inp_hash);
753 		LIST_REMOVE(inp, inp_portlist);
754 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
755 			LIST_REMOVE(phd, phd_hash);
756 			free(phd, M_PCB);
757 		}
758 		inp->inp_lport = 0;
759 	}
760 }
761 
762 struct sockaddr *
763 in_sockaddr(in_port_t port, struct in_addr *addr_p)
764 {
765 	struct sockaddr_in *sin;
766 
767 	MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME,
768 		M_WAITOK | M_ZERO);
769 	sin->sin_family = AF_INET;
770 	sin->sin_len = sizeof(*sin);
771 	sin->sin_addr = *addr_p;
772 	sin->sin_port = port;
773 
774 	return (struct sockaddr *)sin;
775 }
776 
777 /*
778  * The wrapper function will pass down the pcbinfo for this function to lock.
779  * The socket must have a valid
780  * (i.e., non-nil) PCB, but it should be impossible to get an invalid one
781  * except through a kernel programming error, so it is acceptable to panic
782  * (or in this case trap) if the PCB is invalid.  (Actually, we don't trap
783  * because there actually /is/ a programming error somewhere... XXX)
784  */
785 int
786 in_setsockaddr(struct socket *so, struct sockaddr **nam,
787     struct inpcbinfo *pcbinfo)
788 {
789 	struct inpcb *inp;
790 	struct in_addr addr;
791 	in_port_t port;
792 
793 	inp = sotoinpcb(so);
794 	KASSERT(inp != NULL, ("in_setsockaddr: inp == NULL"));
795 
796 	INP_LOCK(inp);
797 	port = inp->inp_lport;
798 	addr = inp->inp_laddr;
799 	INP_UNLOCK(inp);
800 
801 	*nam = in_sockaddr(port, &addr);
802 	return 0;
803 }
804 
805 /*
806  * The wrapper function will pass down the pcbinfo for this function to lock.
807  */
808 int
809 in_setpeeraddr(struct socket *so, struct sockaddr **nam,
810     struct inpcbinfo *pcbinfo)
811 {
812 	struct inpcb *inp;
813 	struct in_addr addr;
814 	in_port_t port;
815 
816 	inp = sotoinpcb(so);
817 	KASSERT(inp != NULL, ("in_setpeeraddr: inp == NULL"));
818 
819 	INP_LOCK(inp);
820 	port = inp->inp_fport;
821 	addr = inp->inp_faddr;
822 	INP_UNLOCK(inp);
823 
824 	*nam = in_sockaddr(port, &addr);
825 	return 0;
826 }
827 
828 void
829 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
830     struct inpcb *(*notify)(struct inpcb *, int))
831 {
832 	struct inpcb *inp, *ninp;
833 	struct inpcbhead *head;
834 
835 	INP_INFO_WLOCK(pcbinfo);
836 	head = pcbinfo->listhead;
837 	for (inp = LIST_FIRST(head); inp != NULL; inp = ninp) {
838 		INP_LOCK(inp);
839 		ninp = LIST_NEXT(inp, inp_list);
840 #ifdef INET6
841 		if ((inp->inp_vflag & INP_IPV4) == 0) {
842 			INP_UNLOCK(inp);
843 			continue;
844 		}
845 #endif
846 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
847 		    inp->inp_socket == NULL) {
848 			INP_UNLOCK(inp);
849 			continue;
850 		}
851 		if ((*notify)(inp, errno))
852 			INP_UNLOCK(inp);
853 	}
854 	INP_INFO_WUNLOCK(pcbinfo);
855 }
856 
857 void
858 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
859 {
860 	struct inpcb *inp;
861 	struct ip_moptions *imo;
862 	int i, gap;
863 
864 	INP_INFO_RLOCK(pcbinfo);
865 	LIST_FOREACH(inp, pcbinfo->listhead, inp_list) {
866 		INP_LOCK(inp);
867 		imo = inp->inp_moptions;
868 		if ((inp->inp_vflag & INP_IPV4) &&
869 		    imo != NULL) {
870 			/*
871 			 * Unselect the outgoing interface if it is being
872 			 * detached.
873 			 */
874 			if (imo->imo_multicast_ifp == ifp)
875 				imo->imo_multicast_ifp = NULL;
876 
877 			/*
878 			 * Drop multicast group membership if we joined
879 			 * through the interface being detached.
880 			 */
881 			for (i = 0, gap = 0; i < imo->imo_num_memberships;
882 			    i++) {
883 				if (imo->imo_membership[i]->inm_ifp == ifp) {
884 					in_delmulti(imo->imo_membership[i]);
885 					gap++;
886 				} else if (gap != 0)
887 					imo->imo_membership[i - gap] =
888 					    imo->imo_membership[i];
889 			}
890 			imo->imo_num_memberships -= gap;
891 		}
892 		INP_UNLOCK(inp);
893 	}
894 	INP_INFO_RUNLOCK(pcbinfo);
895 }
896 
897 /*
898  * Lookup a PCB based on the local address and port.
899  */
900 #define INP_LOOKUP_MAPPED_PCB_COST	3
901 struct inpcb *
902 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
903     u_int lport_arg, int wild_okay)
904 {
905 	struct inpcb *inp;
906 #ifdef INET6
907 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
908 #else
909 	int matchwild = 3;
910 #endif
911 	int wildcard;
912 	u_short lport = lport_arg;
913 
914 	INP_INFO_WLOCK_ASSERT(pcbinfo);
915 
916 	if (!wild_okay) {
917 		struct inpcbhead *head;
918 		/*
919 		 * Look for an unconnected (wildcard foreign addr) PCB that
920 		 * matches the local address and port we're looking for.
921 		 */
922 		head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->hashmask)];
923 		LIST_FOREACH(inp, head, inp_hash) {
924 #ifdef INET6
925 			if ((inp->inp_vflag & INP_IPV4) == 0)
926 				continue;
927 #endif
928 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
929 			    inp->inp_laddr.s_addr == laddr.s_addr &&
930 			    inp->inp_lport == lport) {
931 				/*
932 				 * Found.
933 				 */
934 				return (inp);
935 			}
936 		}
937 		/*
938 		 * Not found.
939 		 */
940 		return (NULL);
941 	} else {
942 		struct inpcbporthead *porthash;
943 		struct inpcbport *phd;
944 		struct inpcb *match = NULL;
945 		/*
946 		 * Best fit PCB lookup.
947 		 *
948 		 * First see if this local port is in use by looking on the
949 		 * port hash list.
950 		 */
951 		porthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(lport,
952 		    pcbinfo->porthashmask)];
953 		LIST_FOREACH(phd, porthash, phd_hash) {
954 			if (phd->phd_port == lport)
955 				break;
956 		}
957 		if (phd != NULL) {
958 			/*
959 			 * Port is in use by one or more PCBs. Look for best
960 			 * fit.
961 			 */
962 			LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
963 				wildcard = 0;
964 #ifdef INET6
965 				if ((inp->inp_vflag & INP_IPV4) == 0)
966 					continue;
967 				/*
968 				 * We never select the PCB that has
969 				 * INP_IPV6 flag and is bound to :: if
970 				 * we have another PCB which is bound
971 				 * to 0.0.0.0.  If a PCB has the
972 				 * INP_IPV6 flag, then we set its cost
973 				 * higher than IPv4 only PCBs.
974 				 *
975 				 * Note that the case only happens
976 				 * when a socket is bound to ::, under
977 				 * the condition that the use of the
978 				 * mapped address is allowed.
979 				 */
980 				if ((inp->inp_vflag & INP_IPV6) != 0)
981 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
982 #endif
983 				if (inp->inp_faddr.s_addr != INADDR_ANY)
984 					wildcard++;
985 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
986 					if (laddr.s_addr == INADDR_ANY)
987 						wildcard++;
988 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
989 						continue;
990 				} else {
991 					if (laddr.s_addr != INADDR_ANY)
992 						wildcard++;
993 				}
994 				if (wildcard < matchwild) {
995 					match = inp;
996 					matchwild = wildcard;
997 					if (matchwild == 0) {
998 						break;
999 					}
1000 				}
1001 			}
1002 		}
1003 		return (match);
1004 	}
1005 }
1006 #undef INP_LOOKUP_MAPPED_PCB_COST
1007 
1008 /*
1009  * Lookup PCB in hash list.
1010  */
1011 struct inpcb *
1012 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1013     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard,
1014     struct ifnet *ifp)
1015 {
1016 	struct inpcbhead *head;
1017 	struct inpcb *inp;
1018 	u_short fport = fport_arg, lport = lport_arg;
1019 
1020 	INP_INFO_RLOCK_ASSERT(pcbinfo);
1021 
1022 	/*
1023 	 * First look for an exact match.
1024 	 */
1025 	head = &pcbinfo->hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, pcbinfo->hashmask)];
1026 	LIST_FOREACH(inp, head, inp_hash) {
1027 #ifdef INET6
1028 		if ((inp->inp_vflag & INP_IPV4) == 0)
1029 			continue;
1030 #endif
1031 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1032 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1033 		    inp->inp_fport == fport &&
1034 		    inp->inp_lport == lport) {
1035 			/*
1036 			 * Found.
1037 			 */
1038 			return (inp);
1039 		}
1040 	}
1041 	if (wildcard) {
1042 		struct inpcb *local_wild = NULL;
1043 #if defined(INET6)
1044 		struct inpcb *local_wild_mapped = NULL;
1045 #endif /* defined(INET6) */
1046 
1047 		head = &pcbinfo->hashbase[INP_PCBHASH(INADDR_ANY, lport, 0, pcbinfo->hashmask)];
1048 		LIST_FOREACH(inp, head, inp_hash) {
1049 #ifdef INET6
1050 			if ((inp->inp_vflag & INP_IPV4) == 0)
1051 				continue;
1052 #endif
1053 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1054 			    inp->inp_lport == lport) {
1055 				if (ifp && ifp->if_type == IFT_FAITH &&
1056 				    (inp->inp_flags & INP_FAITH) == 0)
1057 					continue;
1058 				if (inp->inp_laddr.s_addr == laddr.s_addr)
1059 					return (inp);
1060 				else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1061 #if defined(INET6)
1062 					if (INP_CHECK_SOCKAF(inp->inp_socket,
1063 							     AF_INET6))
1064 						local_wild_mapped = inp;
1065 					else
1066 #endif /* defined(INET6) */
1067 					local_wild = inp;
1068 				}
1069 			}
1070 		}
1071 #if defined(INET6)
1072 		if (local_wild == NULL)
1073 			return (local_wild_mapped);
1074 #endif /* defined(INET6) */
1075 		return (local_wild);
1076 	}
1077 
1078 	/*
1079 	 * Not found.
1080 	 */
1081 	return (NULL);
1082 }
1083 
1084 /*
1085  * Insert PCB onto various hash lists.
1086  */
1087 int
1088 in_pcbinshash(struct inpcb *inp)
1089 {
1090 	struct inpcbhead *pcbhash;
1091 	struct inpcbporthead *pcbporthash;
1092 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1093 	struct inpcbport *phd;
1094 	u_int32_t hashkey_faddr;
1095 
1096 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1097 	INP_LOCK_ASSERT(inp);
1098 
1099 #ifdef INET6
1100 	if (inp->inp_vflag & INP_IPV6)
1101 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1102 	else
1103 #endif /* INET6 */
1104 	hashkey_faddr = inp->inp_faddr.s_addr;
1105 
1106 	pcbhash = &pcbinfo->hashbase[INP_PCBHASH(hashkey_faddr,
1107 		 inp->inp_lport, inp->inp_fport, pcbinfo->hashmask)];
1108 
1109 	pcbporthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(inp->inp_lport,
1110 	    pcbinfo->porthashmask)];
1111 
1112 	/*
1113 	 * Go through port list and look for a head for this lport.
1114 	 */
1115 	LIST_FOREACH(phd, pcbporthash, phd_hash) {
1116 		if (phd->phd_port == inp->inp_lport)
1117 			break;
1118 	}
1119 	/*
1120 	 * If none exists, malloc one and tack it on.
1121 	 */
1122 	if (phd == NULL) {
1123 		MALLOC(phd, struct inpcbport *, sizeof(struct inpcbport), M_PCB, M_NOWAIT);
1124 		if (phd == NULL) {
1125 			return (ENOBUFS); /* XXX */
1126 		}
1127 		phd->phd_port = inp->inp_lport;
1128 		LIST_INIT(&phd->phd_pcblist);
1129 		LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
1130 	}
1131 	inp->inp_phd = phd;
1132 	LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
1133 	LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
1134 	return (0);
1135 }
1136 
1137 /*
1138  * Move PCB to the proper hash bucket when { faddr, fport } have  been
1139  * changed. NOTE: This does not handle the case of the lport changing (the
1140  * hashed port list would have to be updated as well), so the lport must
1141  * not change after in_pcbinshash() has been called.
1142  */
1143 void
1144 in_pcbrehash(struct inpcb *inp)
1145 {
1146 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1147 	struct inpcbhead *head;
1148 	u_int32_t hashkey_faddr;
1149 
1150 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1151 	INP_LOCK_ASSERT(inp);
1152 
1153 #ifdef INET6
1154 	if (inp->inp_vflag & INP_IPV6)
1155 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1156 	else
1157 #endif /* INET6 */
1158 	hashkey_faddr = inp->inp_faddr.s_addr;
1159 
1160 	head = &pcbinfo->hashbase[INP_PCBHASH(hashkey_faddr,
1161 		inp->inp_lport, inp->inp_fport, pcbinfo->hashmask)];
1162 
1163 	LIST_REMOVE(inp, inp_hash);
1164 	LIST_INSERT_HEAD(head, inp, inp_hash);
1165 }
1166 
1167 /*
1168  * Remove PCB from various lists.
1169  */
1170 void
1171 in_pcbremlists(struct inpcb *inp)
1172 {
1173 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1174 
1175 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1176 	INP_LOCK_ASSERT(inp);
1177 
1178 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1179 	if (inp->inp_lport) {
1180 		struct inpcbport *phd = inp->inp_phd;
1181 
1182 		LIST_REMOVE(inp, inp_hash);
1183 		LIST_REMOVE(inp, inp_portlist);
1184 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1185 			LIST_REMOVE(phd, phd_hash);
1186 			free(phd, M_PCB);
1187 		}
1188 	}
1189 	LIST_REMOVE(inp, inp_list);
1190 	pcbinfo->ipi_count--;
1191 }
1192 
1193 /*
1194  * A set label operation has occurred at the socket layer, propagate the
1195  * label change into the in_pcb for the socket.
1196  */
1197 void
1198 in_pcbsosetlabel(struct socket *so)
1199 {
1200 #ifdef MAC
1201 	struct inpcb *inp;
1202 
1203 	inp = sotoinpcb(so);
1204 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
1205 
1206 	INP_LOCK(inp);
1207 	SOCK_LOCK(so);
1208 	mac_inpcb_sosetlabel(so, inp);
1209 	SOCK_UNLOCK(so);
1210 	INP_UNLOCK(inp);
1211 #endif
1212 }
1213 
1214 /*
1215  * ipport_tick runs once per second, determining if random port allocation
1216  * should be continued.  If more than ipport_randomcps ports have been
1217  * allocated in the last second, then we return to sequential port
1218  * allocation. We return to random allocation only once we drop below
1219  * ipport_randomcps for at least ipport_randomtime seconds.
1220  */
1221 void
1222 ipport_tick(void *xtp)
1223 {
1224 
1225 	if (ipport_tcpallocs <= ipport_tcplastcount + ipport_randomcps) {
1226 		if (ipport_stoprandom > 0)
1227 			ipport_stoprandom--;
1228 	} else
1229 		ipport_stoprandom = ipport_randomtime;
1230 	ipport_tcplastcount = ipport_tcpallocs;
1231 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
1232 }
1233