1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993, 1995 3 * The Regents of the University of California. 4 * Copyright (c) 2007-2009 Robert N. M. Watson 5 * Copyright (c) 2010-2011 Juniper Networks, Inc. 6 * All rights reserved. 7 * 8 * Portions of this software were developed by Robert N. M. Watson under 9 * contract to Juniper Networks, Inc. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 4. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include "opt_ddb.h" 42 #include "opt_ipsec.h" 43 #include "opt_inet.h" 44 #include "opt_inet6.h" 45 #include "opt_pcbgroup.h" 46 #include "opt_rss.h" 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/lock.h> 51 #include <sys/malloc.h> 52 #include <sys/mbuf.h> 53 #include <sys/callout.h> 54 #include <sys/eventhandler.h> 55 #include <sys/domain.h> 56 #include <sys/protosw.h> 57 #include <sys/rmlock.h> 58 #include <sys/socket.h> 59 #include <sys/socketvar.h> 60 #include <sys/priv.h> 61 #include <sys/proc.h> 62 #include <sys/refcount.h> 63 #include <sys/jail.h> 64 #include <sys/kernel.h> 65 #include <sys/sysctl.h> 66 67 #ifdef DDB 68 #include <ddb/ddb.h> 69 #endif 70 71 #include <vm/uma.h> 72 73 #include <net/if.h> 74 #include <net/if_var.h> 75 #include <net/if_types.h> 76 #include <net/if_llatbl.h> 77 #include <net/route.h> 78 #include <net/rss_config.h> 79 #include <net/vnet.h> 80 81 #if defined(INET) || defined(INET6) 82 #include <netinet/in.h> 83 #include <netinet/in_pcb.h> 84 #include <netinet/ip_var.h> 85 #include <netinet/tcp_var.h> 86 #include <netinet/udp.h> 87 #include <netinet/udp_var.h> 88 #endif 89 #ifdef INET 90 #include <netinet/in_var.h> 91 #endif 92 #ifdef INET6 93 #include <netinet/ip6.h> 94 #include <netinet6/in6_pcb.h> 95 #include <netinet6/in6_var.h> 96 #include <netinet6/ip6_var.h> 97 #endif /* INET6 */ 98 99 100 #ifdef IPSEC 101 #include <netipsec/ipsec.h> 102 #include <netipsec/key.h> 103 #endif /* IPSEC */ 104 105 #include <security/mac/mac_framework.h> 106 107 static struct callout ipport_tick_callout; 108 109 /* 110 * These configure the range of local port addresses assigned to 111 * "unspecified" outgoing connections/packets/whatever. 112 */ 113 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 114 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 115 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 116 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 117 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 118 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 119 120 /* 121 * Reserved ports accessible only to root. There are significant 122 * security considerations that must be accounted for when changing these, 123 * but the security benefits can be great. Please be careful. 124 */ 125 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 126 VNET_DEFINE(int, ipport_reservedlow); 127 128 /* Variables dealing with random ephemeral port allocation. */ 129 VNET_DEFINE(int, ipport_randomized) = 1; /* user controlled via sysctl */ 130 VNET_DEFINE(int, ipport_randomcps) = 10; /* user controlled via sysctl */ 131 VNET_DEFINE(int, ipport_randomtime) = 45; /* user controlled via sysctl */ 132 VNET_DEFINE(int, ipport_stoprandom); /* toggled by ipport_tick */ 133 VNET_DEFINE(int, ipport_tcpallocs); 134 static VNET_DEFINE(int, ipport_tcplastcount); 135 136 #define V_ipport_tcplastcount VNET(ipport_tcplastcount) 137 138 static void in_pcbremlists(struct inpcb *inp); 139 #ifdef INET 140 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 141 struct in_addr faddr, u_int fport_arg, 142 struct in_addr laddr, u_int lport_arg, 143 int lookupflags, struct ifnet *ifp); 144 145 #define RANGECHK(var, min, max) \ 146 if ((var) < (min)) { (var) = (min); } \ 147 else if ((var) > (max)) { (var) = (max); } 148 149 static int 150 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 151 { 152 int error; 153 154 error = sysctl_handle_int(oidp, arg1, arg2, req); 155 if (error == 0) { 156 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 157 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 158 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 159 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 160 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 161 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 162 } 163 return (error); 164 } 165 166 #undef RANGECHK 167 168 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, 169 "IP Ports"); 170 171 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 172 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 173 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", ""); 174 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 175 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 176 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", ""); 177 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 178 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 179 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", ""); 180 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 181 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 182 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", ""); 183 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 184 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 185 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", ""); 186 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 187 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, 188 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", ""); 189 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 190 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 191 &VNET_NAME(ipport_reservedhigh), 0, ""); 192 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 193 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 194 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 195 CTLFLAG_VNET | CTLFLAG_RW, 196 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 197 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, 198 CTLFLAG_VNET | CTLFLAG_RW, 199 &VNET_NAME(ipport_randomcps), 0, "Maximum number of random port " 200 "allocations before switching to a sequental one"); 201 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, 202 CTLFLAG_VNET | CTLFLAG_RW, 203 &VNET_NAME(ipport_randomtime), 0, 204 "Minimum time to keep sequental port " 205 "allocation before switching to a random one"); 206 #endif /* INET */ 207 208 /* 209 * in_pcb.c: manage the Protocol Control Blocks. 210 * 211 * NOTE: It is assumed that most of these functions will be called with 212 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 213 * functions often modify hash chains or addresses in pcbs. 214 */ 215 216 /* 217 * Initialize an inpcbinfo -- we should be able to reduce the number of 218 * arguments in time. 219 */ 220 void 221 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name, 222 struct inpcbhead *listhead, int hash_nelements, int porthash_nelements, 223 char *inpcbzone_name, uma_init inpcbzone_init, uma_fini inpcbzone_fini, 224 uint32_t inpcbzone_flags, u_int hashfields) 225 { 226 227 INP_INFO_LOCK_INIT(pcbinfo, name); 228 INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash"); /* XXXRW: argument? */ 229 INP_LIST_LOCK_INIT(pcbinfo, "pcbinfolist"); 230 #ifdef VIMAGE 231 pcbinfo->ipi_vnet = curvnet; 232 #endif 233 pcbinfo->ipi_listhead = listhead; 234 LIST_INIT(pcbinfo->ipi_listhead); 235 pcbinfo->ipi_count = 0; 236 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 237 &pcbinfo->ipi_hashmask); 238 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 239 &pcbinfo->ipi_porthashmask); 240 #ifdef PCBGROUP 241 in_pcbgroup_init(pcbinfo, hashfields, hash_nelements); 242 #endif 243 pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb), 244 NULL, NULL, inpcbzone_init, inpcbzone_fini, UMA_ALIGN_PTR, 245 inpcbzone_flags); 246 uma_zone_set_max(pcbinfo->ipi_zone, maxsockets); 247 uma_zone_set_warning(pcbinfo->ipi_zone, 248 "kern.ipc.maxsockets limit reached"); 249 } 250 251 /* 252 * Destroy an inpcbinfo. 253 */ 254 void 255 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 256 { 257 258 KASSERT(pcbinfo->ipi_count == 0, 259 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 260 261 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 262 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 263 pcbinfo->ipi_porthashmask); 264 #ifdef PCBGROUP 265 in_pcbgroup_destroy(pcbinfo); 266 #endif 267 uma_zdestroy(pcbinfo->ipi_zone); 268 INP_LIST_LOCK_DESTROY(pcbinfo); 269 INP_HASH_LOCK_DESTROY(pcbinfo); 270 INP_INFO_LOCK_DESTROY(pcbinfo); 271 } 272 273 /* 274 * Allocate a PCB and associate it with the socket. 275 * On success return with the PCB locked. 276 */ 277 int 278 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 279 { 280 struct inpcb *inp; 281 int error; 282 283 #ifdef INVARIANTS 284 if (pcbinfo == &V_tcbinfo) { 285 INP_INFO_RLOCK_ASSERT(pcbinfo); 286 } else { 287 INP_INFO_WLOCK_ASSERT(pcbinfo); 288 } 289 #endif 290 291 error = 0; 292 inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT); 293 if (inp == NULL) 294 return (ENOBUFS); 295 bzero(inp, inp_zero_size); 296 inp->inp_pcbinfo = pcbinfo; 297 inp->inp_socket = so; 298 inp->inp_cred = crhold(so->so_cred); 299 inp->inp_inc.inc_fibnum = so->so_fibnum; 300 #ifdef MAC 301 error = mac_inpcb_init(inp, M_NOWAIT); 302 if (error != 0) 303 goto out; 304 mac_inpcb_create(so, inp); 305 #endif 306 #ifdef IPSEC 307 error = ipsec_init_policy(so, &inp->inp_sp); 308 if (error != 0) { 309 #ifdef MAC 310 mac_inpcb_destroy(inp); 311 #endif 312 goto out; 313 } 314 #endif /*IPSEC*/ 315 #ifdef INET6 316 if (INP_SOCKAF(so) == AF_INET6) { 317 inp->inp_vflag |= INP_IPV6PROTO; 318 if (V_ip6_v6only) 319 inp->inp_flags |= IN6P_IPV6_V6ONLY; 320 } 321 #endif 322 INP_WLOCK(inp); 323 INP_LIST_WLOCK(pcbinfo); 324 LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list); 325 pcbinfo->ipi_count++; 326 so->so_pcb = (caddr_t)inp; 327 #ifdef INET6 328 if (V_ip6_auto_flowlabel) 329 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 330 #endif 331 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 332 refcount_init(&inp->inp_refcount, 1); /* Reference from inpcbinfo */ 333 INP_LIST_WUNLOCK(pcbinfo); 334 #if defined(IPSEC) || defined(MAC) 335 out: 336 if (error != 0) { 337 crfree(inp->inp_cred); 338 uma_zfree(pcbinfo->ipi_zone, inp); 339 } 340 #endif 341 return (error); 342 } 343 344 #ifdef INET 345 int 346 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 347 { 348 int anonport, error; 349 350 INP_WLOCK_ASSERT(inp); 351 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 352 353 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 354 return (EINVAL); 355 anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0; 356 error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr, 357 &inp->inp_lport, cred); 358 if (error) 359 return (error); 360 if (in_pcbinshash(inp) != 0) { 361 inp->inp_laddr.s_addr = INADDR_ANY; 362 inp->inp_lport = 0; 363 return (EAGAIN); 364 } 365 if (anonport) 366 inp->inp_flags |= INP_ANONPORT; 367 return (0); 368 } 369 #endif 370 371 /* 372 * Select a local port (number) to use. 373 */ 374 #if defined(INET) || defined(INET6) 375 int 376 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 377 struct ucred *cred, int lookupflags) 378 { 379 struct inpcbinfo *pcbinfo; 380 struct inpcb *tmpinp; 381 unsigned short *lastport; 382 int count, dorandom, error; 383 u_short aux, first, last, lport; 384 #ifdef INET 385 struct in_addr laddr; 386 #endif 387 388 pcbinfo = inp->inp_pcbinfo; 389 390 /* 391 * Because no actual state changes occur here, a global write lock on 392 * the pcbinfo isn't required. 393 */ 394 INP_LOCK_ASSERT(inp); 395 INP_HASH_LOCK_ASSERT(pcbinfo); 396 397 if (inp->inp_flags & INP_HIGHPORT) { 398 first = V_ipport_hifirstauto; /* sysctl */ 399 last = V_ipport_hilastauto; 400 lastport = &pcbinfo->ipi_lasthi; 401 } else if (inp->inp_flags & INP_LOWPORT) { 402 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0); 403 if (error) 404 return (error); 405 first = V_ipport_lowfirstauto; /* 1023 */ 406 last = V_ipport_lowlastauto; /* 600 */ 407 lastport = &pcbinfo->ipi_lastlow; 408 } else { 409 first = V_ipport_firstauto; /* sysctl */ 410 last = V_ipport_lastauto; 411 lastport = &pcbinfo->ipi_lastport; 412 } 413 /* 414 * For UDP(-Lite), use random port allocation as long as the user 415 * allows it. For TCP (and as of yet unknown) connections, 416 * use random port allocation only if the user allows it AND 417 * ipport_tick() allows it. 418 */ 419 if (V_ipport_randomized && 420 (!V_ipport_stoprandom || pcbinfo == &V_udbinfo || 421 pcbinfo == &V_ulitecbinfo)) 422 dorandom = 1; 423 else 424 dorandom = 0; 425 /* 426 * It makes no sense to do random port allocation if 427 * we have the only port available. 428 */ 429 if (first == last) 430 dorandom = 0; 431 /* Make sure to not include UDP(-Lite) packets in the count. */ 432 if (pcbinfo != &V_udbinfo || pcbinfo != &V_ulitecbinfo) 433 V_ipport_tcpallocs++; 434 /* 435 * Instead of having two loops further down counting up or down 436 * make sure that first is always <= last and go with only one 437 * code path implementing all logic. 438 */ 439 if (first > last) { 440 aux = first; 441 first = last; 442 last = aux; 443 } 444 445 #ifdef INET 446 /* Make the compiler happy. */ 447 laddr.s_addr = 0; 448 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 449 KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p", 450 __func__, inp)); 451 laddr = *laddrp; 452 } 453 #endif 454 tmpinp = NULL; /* Make compiler happy. */ 455 lport = *lportp; 456 457 if (dorandom) 458 *lastport = first + (arc4random() % (last - first)); 459 460 count = last - first; 461 462 do { 463 if (count-- < 0) /* completely used? */ 464 return (EADDRNOTAVAIL); 465 ++*lastport; 466 if (*lastport < first || *lastport > last) 467 *lastport = first; 468 lport = htons(*lastport); 469 470 #ifdef INET6 471 if ((inp->inp_vflag & INP_IPV6) != 0) 472 tmpinp = in6_pcblookup_local(pcbinfo, 473 &inp->in6p_laddr, lport, lookupflags, cred); 474 #endif 475 #if defined(INET) && defined(INET6) 476 else 477 #endif 478 #ifdef INET 479 tmpinp = in_pcblookup_local(pcbinfo, laddr, 480 lport, lookupflags, cred); 481 #endif 482 } while (tmpinp != NULL); 483 484 #ifdef INET 485 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) 486 laddrp->s_addr = laddr.s_addr; 487 #endif 488 *lportp = lport; 489 490 return (0); 491 } 492 493 /* 494 * Return cached socket options. 495 */ 496 short 497 inp_so_options(const struct inpcb *inp) 498 { 499 short so_options; 500 501 so_options = 0; 502 503 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 504 so_options |= SO_REUSEPORT; 505 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 506 so_options |= SO_REUSEADDR; 507 return (so_options); 508 } 509 #endif /* INET || INET6 */ 510 511 /* 512 * Check if a new BINDMULTI socket is allowed to be created. 513 * 514 * ni points to the new inp. 515 * oi points to the exisitng inp. 516 * 517 * This checks whether the existing inp also has BINDMULTI and 518 * whether the credentials match. 519 */ 520 int 521 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 522 { 523 /* Check permissions match */ 524 if ((ni->inp_flags2 & INP_BINDMULTI) && 525 (ni->inp_cred->cr_uid != 526 oi->inp_cred->cr_uid)) 527 return (0); 528 529 /* Check the existing inp has BINDMULTI set */ 530 if ((ni->inp_flags2 & INP_BINDMULTI) && 531 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 532 return (0); 533 534 /* 535 * We're okay - either INP_BINDMULTI isn't set on ni, or 536 * it is and it matches the checks. 537 */ 538 return (1); 539 } 540 541 #ifdef INET 542 /* 543 * Set up a bind operation on a PCB, performing port allocation 544 * as required, but do not actually modify the PCB. Callers can 545 * either complete the bind by setting inp_laddr/inp_lport and 546 * calling in_pcbinshash(), or they can just use the resulting 547 * port and address to authorise the sending of a once-off packet. 548 * 549 * On error, the values of *laddrp and *lportp are not changed. 550 */ 551 int 552 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp, 553 u_short *lportp, struct ucred *cred) 554 { 555 struct socket *so = inp->inp_socket; 556 struct sockaddr_in *sin; 557 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 558 struct in_addr laddr; 559 u_short lport = 0; 560 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 561 int error; 562 563 /* 564 * No state changes, so read locks are sufficient here. 565 */ 566 INP_LOCK_ASSERT(inp); 567 INP_HASH_LOCK_ASSERT(pcbinfo); 568 569 if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */ 570 return (EADDRNOTAVAIL); 571 laddr.s_addr = *laddrp; 572 if (nam != NULL && laddr.s_addr != INADDR_ANY) 573 return (EINVAL); 574 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0) 575 lookupflags = INPLOOKUP_WILDCARD; 576 if (nam == NULL) { 577 if ((error = prison_local_ip4(cred, &laddr)) != 0) 578 return (error); 579 } else { 580 sin = (struct sockaddr_in *)nam; 581 if (nam->sa_len != sizeof (*sin)) 582 return (EINVAL); 583 #ifdef notdef 584 /* 585 * We should check the family, but old programs 586 * incorrectly fail to initialize it. 587 */ 588 if (sin->sin_family != AF_INET) 589 return (EAFNOSUPPORT); 590 #endif 591 error = prison_local_ip4(cred, &sin->sin_addr); 592 if (error) 593 return (error); 594 if (sin->sin_port != *lportp) { 595 /* Don't allow the port to change. */ 596 if (*lportp != 0) 597 return (EINVAL); 598 lport = sin->sin_port; 599 } 600 /* NB: lport is left as 0 if the port isn't being changed. */ 601 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 602 /* 603 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 604 * allow complete duplication of binding if 605 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 606 * and a multicast address is bound on both 607 * new and duplicated sockets. 608 */ 609 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 610 reuseport = SO_REUSEADDR|SO_REUSEPORT; 611 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 612 sin->sin_port = 0; /* yech... */ 613 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 614 /* 615 * Is the address a local IP address? 616 * If INP_BINDANY is set, then the socket may be bound 617 * to any endpoint address, local or not. 618 */ 619 if ((inp->inp_flags & INP_BINDANY) == 0 && 620 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 621 return (EADDRNOTAVAIL); 622 } 623 laddr = sin->sin_addr; 624 if (lport) { 625 struct inpcb *t; 626 struct tcptw *tw; 627 628 /* GROSS */ 629 if (ntohs(lport) <= V_ipport_reservedhigh && 630 ntohs(lport) >= V_ipport_reservedlow && 631 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 632 0)) 633 return (EACCES); 634 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 635 priv_check_cred(inp->inp_cred, 636 PRIV_NETINET_REUSEPORT, 0) != 0) { 637 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 638 lport, INPLOOKUP_WILDCARD, cred); 639 /* 640 * XXX 641 * This entire block sorely needs a rewrite. 642 */ 643 if (t && 644 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 645 ((t->inp_flags & INP_TIMEWAIT) == 0) && 646 (so->so_type != SOCK_STREAM || 647 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 648 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 649 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 650 (t->inp_flags2 & INP_REUSEPORT) == 0) && 651 (inp->inp_cred->cr_uid != 652 t->inp_cred->cr_uid)) 653 return (EADDRINUSE); 654 655 /* 656 * If the socket is a BINDMULTI socket, then 657 * the credentials need to match and the 658 * original socket also has to have been bound 659 * with BINDMULTI. 660 */ 661 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 662 return (EADDRINUSE); 663 } 664 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 665 lport, lookupflags, cred); 666 if (t && (t->inp_flags & INP_TIMEWAIT)) { 667 /* 668 * XXXRW: If an incpb has had its timewait 669 * state recycled, we treat the address as 670 * being in use (for now). This is better 671 * than a panic, but not desirable. 672 */ 673 tw = intotw(t); 674 if (tw == NULL || 675 (reuseport & tw->tw_so_options) == 0) 676 return (EADDRINUSE); 677 } else if (t && 678 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 679 (reuseport & inp_so_options(t)) == 0) { 680 #ifdef INET6 681 if (ntohl(sin->sin_addr.s_addr) != 682 INADDR_ANY || 683 ntohl(t->inp_laddr.s_addr) != 684 INADDR_ANY || 685 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 686 (t->inp_vflag & INP_IPV6PROTO) == 0) 687 #endif 688 return (EADDRINUSE); 689 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 690 return (EADDRINUSE); 691 } 692 } 693 } 694 if (*lportp != 0) 695 lport = *lportp; 696 if (lport == 0) { 697 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 698 if (error != 0) 699 return (error); 700 701 } 702 *laddrp = laddr.s_addr; 703 *lportp = lport; 704 return (0); 705 } 706 707 /* 708 * Connect from a socket to a specified address. 709 * Both address and port must be specified in argument sin. 710 * If don't have a local address for this socket yet, 711 * then pick one. 712 */ 713 int 714 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam, 715 struct ucred *cred, struct mbuf *m) 716 { 717 u_short lport, fport; 718 in_addr_t laddr, faddr; 719 int anonport, error; 720 721 INP_WLOCK_ASSERT(inp); 722 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 723 724 lport = inp->inp_lport; 725 laddr = inp->inp_laddr.s_addr; 726 anonport = (lport == 0); 727 error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport, 728 NULL, cred); 729 if (error) 730 return (error); 731 732 /* Do the initial binding of the local address if required. */ 733 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 734 inp->inp_lport = lport; 735 inp->inp_laddr.s_addr = laddr; 736 if (in_pcbinshash(inp) != 0) { 737 inp->inp_laddr.s_addr = INADDR_ANY; 738 inp->inp_lport = 0; 739 return (EAGAIN); 740 } 741 } 742 743 /* Commit the remaining changes. */ 744 inp->inp_lport = lport; 745 inp->inp_laddr.s_addr = laddr; 746 inp->inp_faddr.s_addr = faddr; 747 inp->inp_fport = fport; 748 in_pcbrehash_mbuf(inp, m); 749 750 if (anonport) 751 inp->inp_flags |= INP_ANONPORT; 752 return (0); 753 } 754 755 int 756 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred) 757 { 758 759 return (in_pcbconnect_mbuf(inp, nam, cred, NULL)); 760 } 761 762 /* 763 * Do proper source address selection on an unbound socket in case 764 * of connect. Take jails into account as well. 765 */ 766 int 767 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 768 struct ucred *cred) 769 { 770 struct ifaddr *ifa; 771 struct sockaddr *sa; 772 struct sockaddr_in *sin; 773 struct route sro; 774 int error; 775 776 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 777 778 /* 779 * Bypass source address selection and use the primary jail IP 780 * if requested. 781 */ 782 if (cred != NULL && !prison_saddrsel_ip4(cred, laddr)) 783 return (0); 784 785 error = 0; 786 bzero(&sro, sizeof(sro)); 787 788 sin = (struct sockaddr_in *)&sro.ro_dst; 789 sin->sin_family = AF_INET; 790 sin->sin_len = sizeof(struct sockaddr_in); 791 sin->sin_addr.s_addr = faddr->s_addr; 792 793 /* 794 * If route is known our src addr is taken from the i/f, 795 * else punt. 796 * 797 * Find out route to destination. 798 */ 799 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 800 in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum); 801 802 /* 803 * If we found a route, use the address corresponding to 804 * the outgoing interface. 805 * 806 * Otherwise assume faddr is reachable on a directly connected 807 * network and try to find a corresponding interface to take 808 * the source address from. 809 */ 810 if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) { 811 struct in_ifaddr *ia; 812 struct ifnet *ifp; 813 814 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 815 inp->inp_socket->so_fibnum)); 816 if (ia == NULL) 817 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 818 inp->inp_socket->so_fibnum)); 819 if (ia == NULL) { 820 error = ENETUNREACH; 821 goto done; 822 } 823 824 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 825 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 826 ifa_free(&ia->ia_ifa); 827 goto done; 828 } 829 830 ifp = ia->ia_ifp; 831 ifa_free(&ia->ia_ifa); 832 ia = NULL; 833 IF_ADDR_RLOCK(ifp); 834 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 835 836 sa = ifa->ifa_addr; 837 if (sa->sa_family != AF_INET) 838 continue; 839 sin = (struct sockaddr_in *)sa; 840 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 841 ia = (struct in_ifaddr *)ifa; 842 break; 843 } 844 } 845 if (ia != NULL) { 846 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 847 IF_ADDR_RUNLOCK(ifp); 848 goto done; 849 } 850 IF_ADDR_RUNLOCK(ifp); 851 852 /* 3. As a last resort return the 'default' jail address. */ 853 error = prison_get_ip4(cred, laddr); 854 goto done; 855 } 856 857 /* 858 * If the outgoing interface on the route found is not 859 * a loopback interface, use the address from that interface. 860 * In case of jails do those three steps: 861 * 1. check if the interface address belongs to the jail. If so use it. 862 * 2. check if we have any address on the outgoing interface 863 * belonging to this jail. If so use it. 864 * 3. as a last resort return the 'default' jail address. 865 */ 866 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) { 867 struct in_ifaddr *ia; 868 struct ifnet *ifp; 869 870 /* If not jailed, use the default returned. */ 871 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 872 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 873 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 874 goto done; 875 } 876 877 /* Jailed. */ 878 /* 1. Check if the iface address belongs to the jail. */ 879 sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr; 880 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 881 ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa; 882 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 883 goto done; 884 } 885 886 /* 887 * 2. Check if we have any address on the outgoing interface 888 * belonging to this jail. 889 */ 890 ia = NULL; 891 ifp = sro.ro_rt->rt_ifp; 892 IF_ADDR_RLOCK(ifp); 893 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 894 sa = ifa->ifa_addr; 895 if (sa->sa_family != AF_INET) 896 continue; 897 sin = (struct sockaddr_in *)sa; 898 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 899 ia = (struct in_ifaddr *)ifa; 900 break; 901 } 902 } 903 if (ia != NULL) { 904 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 905 IF_ADDR_RUNLOCK(ifp); 906 goto done; 907 } 908 IF_ADDR_RUNLOCK(ifp); 909 910 /* 3. As a last resort return the 'default' jail address. */ 911 error = prison_get_ip4(cred, laddr); 912 goto done; 913 } 914 915 /* 916 * The outgoing interface is marked with 'loopback net', so a route 917 * to ourselves is here. 918 * Try to find the interface of the destination address and then 919 * take the address from there. That interface is not necessarily 920 * a loopback interface. 921 * In case of jails, check that it is an address of the jail 922 * and if we cannot find, fall back to the 'default' jail address. 923 */ 924 if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) { 925 struct sockaddr_in sain; 926 struct in_ifaddr *ia; 927 928 bzero(&sain, sizeof(struct sockaddr_in)); 929 sain.sin_family = AF_INET; 930 sain.sin_len = sizeof(struct sockaddr_in); 931 sain.sin_addr.s_addr = faddr->s_addr; 932 933 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain), 934 inp->inp_socket->so_fibnum)); 935 if (ia == NULL) 936 ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0, 937 inp->inp_socket->so_fibnum)); 938 if (ia == NULL) 939 ia = ifatoia(ifa_ifwithaddr(sintosa(&sain))); 940 941 if (cred == NULL || !prison_flag(cred, PR_IP4)) { 942 if (ia == NULL) { 943 error = ENETUNREACH; 944 goto done; 945 } 946 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 947 ifa_free(&ia->ia_ifa); 948 goto done; 949 } 950 951 /* Jailed. */ 952 if (ia != NULL) { 953 struct ifnet *ifp; 954 955 ifp = ia->ia_ifp; 956 ifa_free(&ia->ia_ifa); 957 ia = NULL; 958 IF_ADDR_RLOCK(ifp); 959 TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 960 961 sa = ifa->ifa_addr; 962 if (sa->sa_family != AF_INET) 963 continue; 964 sin = (struct sockaddr_in *)sa; 965 if (prison_check_ip4(cred, 966 &sin->sin_addr) == 0) { 967 ia = (struct in_ifaddr *)ifa; 968 break; 969 } 970 } 971 if (ia != NULL) { 972 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 973 IF_ADDR_RUNLOCK(ifp); 974 goto done; 975 } 976 IF_ADDR_RUNLOCK(ifp); 977 } 978 979 /* 3. As a last resort return the 'default' jail address. */ 980 error = prison_get_ip4(cred, laddr); 981 goto done; 982 } 983 984 done: 985 if (sro.ro_rt != NULL) 986 RTFREE(sro.ro_rt); 987 return (error); 988 } 989 990 /* 991 * Set up for a connect from a socket to the specified address. 992 * On entry, *laddrp and *lportp should contain the current local 993 * address and port for the PCB; these are updated to the values 994 * that should be placed in inp_laddr and inp_lport to complete 995 * the connect. 996 * 997 * On success, *faddrp and *fportp will be set to the remote address 998 * and port. These are not updated in the error case. 999 * 1000 * If the operation fails because the connection already exists, 1001 * *oinpp will be set to the PCB of that connection so that the 1002 * caller can decide to override it. In all other cases, *oinpp 1003 * is set to NULL. 1004 */ 1005 int 1006 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam, 1007 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1008 struct inpcb **oinpp, struct ucred *cred) 1009 { 1010 struct rm_priotracker in_ifa_tracker; 1011 struct sockaddr_in *sin = (struct sockaddr_in *)nam; 1012 struct in_ifaddr *ia; 1013 struct inpcb *oinp; 1014 struct in_addr laddr, faddr; 1015 u_short lport, fport; 1016 int error; 1017 1018 /* 1019 * Because a global state change doesn't actually occur here, a read 1020 * lock is sufficient. 1021 */ 1022 INP_LOCK_ASSERT(inp); 1023 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1024 1025 if (oinpp != NULL) 1026 *oinpp = NULL; 1027 if (nam->sa_len != sizeof (*sin)) 1028 return (EINVAL); 1029 if (sin->sin_family != AF_INET) 1030 return (EAFNOSUPPORT); 1031 if (sin->sin_port == 0) 1032 return (EADDRNOTAVAIL); 1033 laddr.s_addr = *laddrp; 1034 lport = *lportp; 1035 faddr = sin->sin_addr; 1036 fport = sin->sin_port; 1037 1038 if (!TAILQ_EMPTY(&V_in_ifaddrhead)) { 1039 /* 1040 * If the destination address is INADDR_ANY, 1041 * use the primary local address. 1042 * If the supplied address is INADDR_BROADCAST, 1043 * and the primary interface supports broadcast, 1044 * choose the broadcast address for that interface. 1045 */ 1046 if (faddr.s_addr == INADDR_ANY) { 1047 IN_IFADDR_RLOCK(&in_ifa_tracker); 1048 faddr = 1049 IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1050 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1051 if (cred != NULL && 1052 (error = prison_get_ip4(cred, &faddr)) != 0) 1053 return (error); 1054 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1055 IN_IFADDR_RLOCK(&in_ifa_tracker); 1056 if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1057 IFF_BROADCAST) 1058 faddr = satosin(&TAILQ_FIRST( 1059 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1060 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1061 } 1062 } 1063 if (laddr.s_addr == INADDR_ANY) { 1064 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1065 /* 1066 * If the destination address is multicast and an outgoing 1067 * interface has been set as a multicast option, prefer the 1068 * address of that interface as our source address. 1069 */ 1070 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1071 inp->inp_moptions != NULL) { 1072 struct ip_moptions *imo; 1073 struct ifnet *ifp; 1074 1075 imo = inp->inp_moptions; 1076 if (imo->imo_multicast_ifp != NULL) { 1077 ifp = imo->imo_multicast_ifp; 1078 IN_IFADDR_RLOCK(&in_ifa_tracker); 1079 TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1080 if ((ia->ia_ifp == ifp) && 1081 (cred == NULL || 1082 prison_check_ip4(cred, 1083 &ia->ia_addr.sin_addr) == 0)) 1084 break; 1085 } 1086 if (ia == NULL) 1087 error = EADDRNOTAVAIL; 1088 else { 1089 laddr = ia->ia_addr.sin_addr; 1090 error = 0; 1091 } 1092 IN_IFADDR_RUNLOCK(&in_ifa_tracker); 1093 } 1094 } 1095 if (error) 1096 return (error); 1097 } 1098 oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport, 1099 laddr, lport, 0, NULL); 1100 if (oinp != NULL) { 1101 if (oinpp != NULL) 1102 *oinpp = oinp; 1103 return (EADDRINUSE); 1104 } 1105 if (lport == 0) { 1106 error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport, 1107 cred); 1108 if (error) 1109 return (error); 1110 } 1111 *laddrp = laddr.s_addr; 1112 *lportp = lport; 1113 *faddrp = faddr.s_addr; 1114 *fportp = fport; 1115 return (0); 1116 } 1117 1118 void 1119 in_pcbdisconnect(struct inpcb *inp) 1120 { 1121 1122 INP_WLOCK_ASSERT(inp); 1123 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1124 1125 inp->inp_faddr.s_addr = INADDR_ANY; 1126 inp->inp_fport = 0; 1127 in_pcbrehash(inp); 1128 } 1129 #endif /* INET */ 1130 1131 /* 1132 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1133 * For most protocols, this will be invoked immediately prior to calling 1134 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1135 * socket, in which case in_pcbfree() is deferred. 1136 */ 1137 void 1138 in_pcbdetach(struct inpcb *inp) 1139 { 1140 1141 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1142 1143 inp->inp_socket->so_pcb = NULL; 1144 inp->inp_socket = NULL; 1145 } 1146 1147 /* 1148 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1149 * stability of an inpcb pointer despite the inpcb lock being released. This 1150 * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded, 1151 * but where the inpcb lock may already held, or when acquiring a reference 1152 * via a pcbgroup. 1153 * 1154 * in_pcbref() should be used only to provide brief memory stability, and 1155 * must always be followed by a call to INP_WLOCK() and in_pcbrele() to 1156 * garbage collect the inpcb if it has been in_pcbfree()'d from another 1157 * context. Until in_pcbrele() has returned that the inpcb is still valid, 1158 * lock and rele are the *only* safe operations that may be performed on the 1159 * inpcb. 1160 * 1161 * While the inpcb will not be freed, releasing the inpcb lock means that the 1162 * connection's state may change, so the caller should be careful to 1163 * revalidate any cached state on reacquiring the lock. Drop the reference 1164 * using in_pcbrele(). 1165 */ 1166 void 1167 in_pcbref(struct inpcb *inp) 1168 { 1169 1170 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1171 1172 refcount_acquire(&inp->inp_refcount); 1173 } 1174 1175 /* 1176 * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to 1177 * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we 1178 * return a flag indicating whether or not the inpcb remains valid. If it is 1179 * valid, we return with the inpcb lock held. 1180 * 1181 * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a 1182 * reference on an inpcb. Historically more work was done here (actually, in 1183 * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the 1184 * need for the pcbinfo lock in in_pcbrele(). Deferring the free is entirely 1185 * about memory stability (and continued use of the write lock). 1186 */ 1187 int 1188 in_pcbrele_rlocked(struct inpcb *inp) 1189 { 1190 struct inpcbinfo *pcbinfo; 1191 1192 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1193 1194 INP_RLOCK_ASSERT(inp); 1195 1196 if (refcount_release(&inp->inp_refcount) == 0) { 1197 /* 1198 * If the inpcb has been freed, let the caller know, even if 1199 * this isn't the last reference. 1200 */ 1201 if (inp->inp_flags2 & INP_FREED) { 1202 INP_RUNLOCK(inp); 1203 return (1); 1204 } 1205 return (0); 1206 } 1207 1208 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1209 1210 INP_RUNLOCK(inp); 1211 pcbinfo = inp->inp_pcbinfo; 1212 uma_zfree(pcbinfo->ipi_zone, inp); 1213 return (1); 1214 } 1215 1216 int 1217 in_pcbrele_wlocked(struct inpcb *inp) 1218 { 1219 struct inpcbinfo *pcbinfo; 1220 1221 KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__)); 1222 1223 INP_WLOCK_ASSERT(inp); 1224 1225 if (refcount_release(&inp->inp_refcount) == 0) { 1226 /* 1227 * If the inpcb has been freed, let the caller know, even if 1228 * this isn't the last reference. 1229 */ 1230 if (inp->inp_flags2 & INP_FREED) { 1231 INP_WUNLOCK(inp); 1232 return (1); 1233 } 1234 return (0); 1235 } 1236 1237 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1238 1239 INP_WUNLOCK(inp); 1240 pcbinfo = inp->inp_pcbinfo; 1241 uma_zfree(pcbinfo->ipi_zone, inp); 1242 return (1); 1243 } 1244 1245 /* 1246 * Temporary wrapper. 1247 */ 1248 int 1249 in_pcbrele(struct inpcb *inp) 1250 { 1251 1252 return (in_pcbrele_wlocked(inp)); 1253 } 1254 1255 /* 1256 * Unconditionally schedule an inpcb to be freed by decrementing its 1257 * reference count, which should occur only after the inpcb has been detached 1258 * from its socket. If another thread holds a temporary reference (acquired 1259 * using in_pcbref()) then the free is deferred until that reference is 1260 * released using in_pcbrele(), but the inpcb is still unlocked. Almost all 1261 * work, including removal from global lists, is done in this context, where 1262 * the pcbinfo lock is held. 1263 */ 1264 void 1265 in_pcbfree(struct inpcb *inp) 1266 { 1267 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1268 1269 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1270 1271 #ifdef INVARIANTS 1272 if (pcbinfo == &V_tcbinfo) { 1273 INP_INFO_LOCK_ASSERT(pcbinfo); 1274 } else { 1275 INP_INFO_WLOCK_ASSERT(pcbinfo); 1276 } 1277 #endif 1278 INP_WLOCK_ASSERT(inp); 1279 1280 /* XXXRW: Do as much as possible here. */ 1281 #ifdef IPSEC 1282 if (inp->inp_sp != NULL) 1283 ipsec_delete_pcbpolicy(inp); 1284 #endif 1285 INP_LIST_WLOCK(pcbinfo); 1286 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1287 in_pcbremlists(inp); 1288 INP_LIST_WUNLOCK(pcbinfo); 1289 #ifdef INET6 1290 if (inp->inp_vflag & INP_IPV6PROTO) { 1291 ip6_freepcbopts(inp->in6p_outputopts); 1292 if (inp->in6p_moptions != NULL) 1293 ip6_freemoptions(inp->in6p_moptions); 1294 } 1295 #endif 1296 if (inp->inp_options) 1297 (void)m_free(inp->inp_options); 1298 #ifdef INET 1299 if (inp->inp_moptions != NULL) 1300 inp_freemoptions(inp->inp_moptions); 1301 #endif 1302 if (inp->inp_route.ro_rt) { 1303 RTFREE(inp->inp_route.ro_rt); 1304 inp->inp_route.ro_rt = (struct rtentry *)NULL; 1305 } 1306 if (inp->inp_route.ro_lle) 1307 LLE_FREE(inp->inp_route.ro_lle); /* zeros ro_lle */ 1308 1309 inp->inp_vflag = 0; 1310 inp->inp_flags2 |= INP_FREED; 1311 crfree(inp->inp_cred); 1312 #ifdef MAC 1313 mac_inpcb_destroy(inp); 1314 #endif 1315 if (!in_pcbrele_wlocked(inp)) 1316 INP_WUNLOCK(inp); 1317 } 1318 1319 /* 1320 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1321 * port reservation, and preventing it from being returned by inpcb lookups. 1322 * 1323 * It is used by TCP to mark an inpcb as unused and avoid future packet 1324 * delivery or event notification when a socket remains open but TCP has 1325 * closed. This might occur as a result of a shutdown()-initiated TCP close 1326 * or a RST on the wire, and allows the port binding to be reused while still 1327 * maintaining the invariant that so_pcb always points to a valid inpcb until 1328 * in_pcbdetach(). 1329 * 1330 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1331 * in_pcbnotifyall() and in_pcbpurgeif0()? 1332 */ 1333 void 1334 in_pcbdrop(struct inpcb *inp) 1335 { 1336 1337 INP_WLOCK_ASSERT(inp); 1338 1339 /* 1340 * XXXRW: Possibly we should protect the setting of INP_DROPPED with 1341 * the hash lock...? 1342 */ 1343 inp->inp_flags |= INP_DROPPED; 1344 if (inp->inp_flags & INP_INHASHLIST) { 1345 struct inpcbport *phd = inp->inp_phd; 1346 1347 INP_HASH_WLOCK(inp->inp_pcbinfo); 1348 LIST_REMOVE(inp, inp_hash); 1349 LIST_REMOVE(inp, inp_portlist); 1350 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 1351 LIST_REMOVE(phd, phd_hash); 1352 free(phd, M_PCB); 1353 } 1354 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 1355 inp->inp_flags &= ~INP_INHASHLIST; 1356 #ifdef PCBGROUP 1357 in_pcbgroup_remove(inp); 1358 #endif 1359 } 1360 } 1361 1362 #ifdef INET 1363 /* 1364 * Common routines to return the socket addresses associated with inpcbs. 1365 */ 1366 struct sockaddr * 1367 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1368 { 1369 struct sockaddr_in *sin; 1370 1371 sin = malloc(sizeof *sin, M_SONAME, 1372 M_WAITOK | M_ZERO); 1373 sin->sin_family = AF_INET; 1374 sin->sin_len = sizeof(*sin); 1375 sin->sin_addr = *addr_p; 1376 sin->sin_port = port; 1377 1378 return (struct sockaddr *)sin; 1379 } 1380 1381 int 1382 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1383 { 1384 struct inpcb *inp; 1385 struct in_addr addr; 1386 in_port_t port; 1387 1388 inp = sotoinpcb(so); 1389 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1390 1391 INP_RLOCK(inp); 1392 port = inp->inp_lport; 1393 addr = inp->inp_laddr; 1394 INP_RUNLOCK(inp); 1395 1396 *nam = in_sockaddr(port, &addr); 1397 return 0; 1398 } 1399 1400 int 1401 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1402 { 1403 struct inpcb *inp; 1404 struct in_addr addr; 1405 in_port_t port; 1406 1407 inp = sotoinpcb(so); 1408 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1409 1410 INP_RLOCK(inp); 1411 port = inp->inp_fport; 1412 addr = inp->inp_faddr; 1413 INP_RUNLOCK(inp); 1414 1415 *nam = in_sockaddr(port, &addr); 1416 return 0; 1417 } 1418 1419 void 1420 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1421 struct inpcb *(*notify)(struct inpcb *, int)) 1422 { 1423 struct inpcb *inp, *inp_temp; 1424 1425 INP_INFO_WLOCK(pcbinfo); 1426 LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) { 1427 INP_WLOCK(inp); 1428 #ifdef INET6 1429 if ((inp->inp_vflag & INP_IPV4) == 0) { 1430 INP_WUNLOCK(inp); 1431 continue; 1432 } 1433 #endif 1434 if (inp->inp_faddr.s_addr != faddr.s_addr || 1435 inp->inp_socket == NULL) { 1436 INP_WUNLOCK(inp); 1437 continue; 1438 } 1439 if ((*notify)(inp, errno)) 1440 INP_WUNLOCK(inp); 1441 } 1442 INP_INFO_WUNLOCK(pcbinfo); 1443 } 1444 1445 void 1446 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1447 { 1448 struct inpcb *inp; 1449 struct ip_moptions *imo; 1450 int i, gap; 1451 1452 INP_INFO_WLOCK(pcbinfo); 1453 LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) { 1454 INP_WLOCK(inp); 1455 imo = inp->inp_moptions; 1456 if ((inp->inp_vflag & INP_IPV4) && 1457 imo != NULL) { 1458 /* 1459 * Unselect the outgoing interface if it is being 1460 * detached. 1461 */ 1462 if (imo->imo_multicast_ifp == ifp) 1463 imo->imo_multicast_ifp = NULL; 1464 1465 /* 1466 * Drop multicast group membership if we joined 1467 * through the interface being detached. 1468 */ 1469 for (i = 0, gap = 0; i < imo->imo_num_memberships; 1470 i++) { 1471 if (imo->imo_membership[i]->inm_ifp == ifp) { 1472 in_delmulti(imo->imo_membership[i]); 1473 gap++; 1474 } else if (gap != 0) 1475 imo->imo_membership[i - gap] = 1476 imo->imo_membership[i]; 1477 } 1478 imo->imo_num_memberships -= gap; 1479 } 1480 INP_WUNLOCK(inp); 1481 } 1482 INP_INFO_WUNLOCK(pcbinfo); 1483 } 1484 1485 /* 1486 * Lookup a PCB based on the local address and port. Caller must hold the 1487 * hash lock. No inpcb locks or references are acquired. 1488 */ 1489 #define INP_LOOKUP_MAPPED_PCB_COST 3 1490 struct inpcb * 1491 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 1492 u_short lport, int lookupflags, struct ucred *cred) 1493 { 1494 struct inpcb *inp; 1495 #ifdef INET6 1496 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 1497 #else 1498 int matchwild = 3; 1499 #endif 1500 int wildcard; 1501 1502 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1503 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1504 1505 INP_HASH_LOCK_ASSERT(pcbinfo); 1506 1507 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 1508 struct inpcbhead *head; 1509 /* 1510 * Look for an unconnected (wildcard foreign addr) PCB that 1511 * matches the local address and port we're looking for. 1512 */ 1513 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1514 0, pcbinfo->ipi_hashmask)]; 1515 LIST_FOREACH(inp, head, inp_hash) { 1516 #ifdef INET6 1517 /* XXX inp locking */ 1518 if ((inp->inp_vflag & INP_IPV4) == 0) 1519 continue; 1520 #endif 1521 if (inp->inp_faddr.s_addr == INADDR_ANY && 1522 inp->inp_laddr.s_addr == laddr.s_addr && 1523 inp->inp_lport == lport) { 1524 /* 1525 * Found? 1526 */ 1527 if (cred == NULL || 1528 prison_equal_ip4(cred->cr_prison, 1529 inp->inp_cred->cr_prison)) 1530 return (inp); 1531 } 1532 } 1533 /* 1534 * Not found. 1535 */ 1536 return (NULL); 1537 } else { 1538 struct inpcbporthead *porthash; 1539 struct inpcbport *phd; 1540 struct inpcb *match = NULL; 1541 /* 1542 * Best fit PCB lookup. 1543 * 1544 * First see if this local port is in use by looking on the 1545 * port hash list. 1546 */ 1547 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 1548 pcbinfo->ipi_porthashmask)]; 1549 LIST_FOREACH(phd, porthash, phd_hash) { 1550 if (phd->phd_port == lport) 1551 break; 1552 } 1553 if (phd != NULL) { 1554 /* 1555 * Port is in use by one or more PCBs. Look for best 1556 * fit. 1557 */ 1558 LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 1559 wildcard = 0; 1560 if (cred != NULL && 1561 !prison_equal_ip4(inp->inp_cred->cr_prison, 1562 cred->cr_prison)) 1563 continue; 1564 #ifdef INET6 1565 /* XXX inp locking */ 1566 if ((inp->inp_vflag & INP_IPV4) == 0) 1567 continue; 1568 /* 1569 * We never select the PCB that has 1570 * INP_IPV6 flag and is bound to :: if 1571 * we have another PCB which is bound 1572 * to 0.0.0.0. If a PCB has the 1573 * INP_IPV6 flag, then we set its cost 1574 * higher than IPv4 only PCBs. 1575 * 1576 * Note that the case only happens 1577 * when a socket is bound to ::, under 1578 * the condition that the use of the 1579 * mapped address is allowed. 1580 */ 1581 if ((inp->inp_vflag & INP_IPV6) != 0) 1582 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 1583 #endif 1584 if (inp->inp_faddr.s_addr != INADDR_ANY) 1585 wildcard++; 1586 if (inp->inp_laddr.s_addr != INADDR_ANY) { 1587 if (laddr.s_addr == INADDR_ANY) 1588 wildcard++; 1589 else if (inp->inp_laddr.s_addr != laddr.s_addr) 1590 continue; 1591 } else { 1592 if (laddr.s_addr != INADDR_ANY) 1593 wildcard++; 1594 } 1595 if (wildcard < matchwild) { 1596 match = inp; 1597 matchwild = wildcard; 1598 if (matchwild == 0) 1599 break; 1600 } 1601 } 1602 } 1603 return (match); 1604 } 1605 } 1606 #undef INP_LOOKUP_MAPPED_PCB_COST 1607 1608 #ifdef PCBGROUP 1609 /* 1610 * Lookup PCB in hash list, using pcbgroup tables. 1611 */ 1612 static struct inpcb * 1613 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup, 1614 struct in_addr faddr, u_int fport_arg, struct in_addr laddr, 1615 u_int lport_arg, int lookupflags, struct ifnet *ifp) 1616 { 1617 struct inpcbhead *head; 1618 struct inpcb *inp, *tmpinp; 1619 u_short fport = fport_arg, lport = lport_arg; 1620 1621 /* 1622 * First look for an exact match. 1623 */ 1624 tmpinp = NULL; 1625 INP_GROUP_LOCK(pcbgroup); 1626 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1627 pcbgroup->ipg_hashmask)]; 1628 LIST_FOREACH(inp, head, inp_pcbgrouphash) { 1629 #ifdef INET6 1630 /* XXX inp locking */ 1631 if ((inp->inp_vflag & INP_IPV4) == 0) 1632 continue; 1633 #endif 1634 if (inp->inp_faddr.s_addr == faddr.s_addr && 1635 inp->inp_laddr.s_addr == laddr.s_addr && 1636 inp->inp_fport == fport && 1637 inp->inp_lport == lport) { 1638 /* 1639 * XXX We should be able to directly return 1640 * the inp here, without any checks. 1641 * Well unless both bound with SO_REUSEPORT? 1642 */ 1643 if (prison_flag(inp->inp_cred, PR_IP4)) 1644 goto found; 1645 if (tmpinp == NULL) 1646 tmpinp = inp; 1647 } 1648 } 1649 if (tmpinp != NULL) { 1650 inp = tmpinp; 1651 goto found; 1652 } 1653 1654 #ifdef RSS 1655 /* 1656 * For incoming connections, we may wish to do a wildcard 1657 * match for an RSS-local socket. 1658 */ 1659 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1660 struct inpcb *local_wild = NULL, *local_exact = NULL; 1661 #ifdef INET6 1662 struct inpcb *local_wild_mapped = NULL; 1663 #endif 1664 struct inpcb *jail_wild = NULL; 1665 struct inpcbhead *head; 1666 int injail; 1667 1668 /* 1669 * Order of socket selection - we always prefer jails. 1670 * 1. jailed, non-wild. 1671 * 2. jailed, wild. 1672 * 3. non-jailed, non-wild. 1673 * 4. non-jailed, wild. 1674 */ 1675 1676 head = &pcbgroup->ipg_hashbase[INP_PCBHASH(INADDR_ANY, 1677 lport, 0, pcbgroup->ipg_hashmask)]; 1678 LIST_FOREACH(inp, head, inp_pcbgrouphash) { 1679 #ifdef INET6 1680 /* XXX inp locking */ 1681 if ((inp->inp_vflag & INP_IPV4) == 0) 1682 continue; 1683 #endif 1684 if (inp->inp_faddr.s_addr != INADDR_ANY || 1685 inp->inp_lport != lport) 1686 continue; 1687 1688 injail = prison_flag(inp->inp_cred, PR_IP4); 1689 if (injail) { 1690 if (prison_check_ip4(inp->inp_cred, 1691 &laddr) != 0) 1692 continue; 1693 } else { 1694 if (local_exact != NULL) 1695 continue; 1696 } 1697 1698 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1699 if (injail) 1700 goto found; 1701 else 1702 local_exact = inp; 1703 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1704 #ifdef INET6 1705 /* XXX inp locking, NULL check */ 1706 if (inp->inp_vflag & INP_IPV6PROTO) 1707 local_wild_mapped = inp; 1708 else 1709 #endif 1710 if (injail) 1711 jail_wild = inp; 1712 else 1713 local_wild = inp; 1714 } 1715 } /* LIST_FOREACH */ 1716 1717 inp = jail_wild; 1718 if (inp == NULL) 1719 inp = local_exact; 1720 if (inp == NULL) 1721 inp = local_wild; 1722 #ifdef INET6 1723 if (inp == NULL) 1724 inp = local_wild_mapped; 1725 #endif 1726 if (inp != NULL) 1727 goto found; 1728 } 1729 #endif 1730 1731 /* 1732 * Then look for a wildcard match, if requested. 1733 */ 1734 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1735 struct inpcb *local_wild = NULL, *local_exact = NULL; 1736 #ifdef INET6 1737 struct inpcb *local_wild_mapped = NULL; 1738 #endif 1739 struct inpcb *jail_wild = NULL; 1740 struct inpcbhead *head; 1741 int injail; 1742 1743 /* 1744 * Order of socket selection - we always prefer jails. 1745 * 1. jailed, non-wild. 1746 * 2. jailed, wild. 1747 * 3. non-jailed, non-wild. 1748 * 4. non-jailed, wild. 1749 */ 1750 head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport, 1751 0, pcbinfo->ipi_wildmask)]; 1752 LIST_FOREACH(inp, head, inp_pcbgroup_wild) { 1753 #ifdef INET6 1754 /* XXX inp locking */ 1755 if ((inp->inp_vflag & INP_IPV4) == 0) 1756 continue; 1757 #endif 1758 if (inp->inp_faddr.s_addr != INADDR_ANY || 1759 inp->inp_lport != lport) 1760 continue; 1761 1762 injail = prison_flag(inp->inp_cred, PR_IP4); 1763 if (injail) { 1764 if (prison_check_ip4(inp->inp_cred, 1765 &laddr) != 0) 1766 continue; 1767 } else { 1768 if (local_exact != NULL) 1769 continue; 1770 } 1771 1772 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1773 if (injail) 1774 goto found; 1775 else 1776 local_exact = inp; 1777 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1778 #ifdef INET6 1779 /* XXX inp locking, NULL check */ 1780 if (inp->inp_vflag & INP_IPV6PROTO) 1781 local_wild_mapped = inp; 1782 else 1783 #endif 1784 if (injail) 1785 jail_wild = inp; 1786 else 1787 local_wild = inp; 1788 } 1789 } /* LIST_FOREACH */ 1790 inp = jail_wild; 1791 if (inp == NULL) 1792 inp = local_exact; 1793 if (inp == NULL) 1794 inp = local_wild; 1795 #ifdef INET6 1796 if (inp == NULL) 1797 inp = local_wild_mapped; 1798 #endif 1799 if (inp != NULL) 1800 goto found; 1801 } /* if (lookupflags & INPLOOKUP_WILDCARD) */ 1802 INP_GROUP_UNLOCK(pcbgroup); 1803 return (NULL); 1804 1805 found: 1806 in_pcbref(inp); 1807 INP_GROUP_UNLOCK(pcbgroup); 1808 if (lookupflags & INPLOOKUP_WLOCKPCB) { 1809 INP_WLOCK(inp); 1810 if (in_pcbrele_wlocked(inp)) 1811 return (NULL); 1812 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 1813 INP_RLOCK(inp); 1814 if (in_pcbrele_rlocked(inp)) 1815 return (NULL); 1816 } else 1817 panic("%s: locking bug", __func__); 1818 return (inp); 1819 } 1820 #endif /* PCBGROUP */ 1821 1822 /* 1823 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 1824 * that the caller has locked the hash list, and will not perform any further 1825 * locking or reference operations on either the hash list or the connection. 1826 */ 1827 static struct inpcb * 1828 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1829 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 1830 struct ifnet *ifp) 1831 { 1832 struct inpcbhead *head; 1833 struct inpcb *inp, *tmpinp; 1834 u_short fport = fport_arg, lport = lport_arg; 1835 1836 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 1837 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1838 1839 INP_HASH_LOCK_ASSERT(pcbinfo); 1840 1841 /* 1842 * First look for an exact match. 1843 */ 1844 tmpinp = NULL; 1845 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport, 1846 pcbinfo->ipi_hashmask)]; 1847 LIST_FOREACH(inp, head, inp_hash) { 1848 #ifdef INET6 1849 /* XXX inp locking */ 1850 if ((inp->inp_vflag & INP_IPV4) == 0) 1851 continue; 1852 #endif 1853 if (inp->inp_faddr.s_addr == faddr.s_addr && 1854 inp->inp_laddr.s_addr == laddr.s_addr && 1855 inp->inp_fport == fport && 1856 inp->inp_lport == lport) { 1857 /* 1858 * XXX We should be able to directly return 1859 * the inp here, without any checks. 1860 * Well unless both bound with SO_REUSEPORT? 1861 */ 1862 if (prison_flag(inp->inp_cred, PR_IP4)) 1863 return (inp); 1864 if (tmpinp == NULL) 1865 tmpinp = inp; 1866 } 1867 } 1868 if (tmpinp != NULL) 1869 return (tmpinp); 1870 1871 /* 1872 * Then look for a wildcard match, if requested. 1873 */ 1874 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 1875 struct inpcb *local_wild = NULL, *local_exact = NULL; 1876 #ifdef INET6 1877 struct inpcb *local_wild_mapped = NULL; 1878 #endif 1879 struct inpcb *jail_wild = NULL; 1880 int injail; 1881 1882 /* 1883 * Order of socket selection - we always prefer jails. 1884 * 1. jailed, non-wild. 1885 * 2. jailed, wild. 1886 * 3. non-jailed, non-wild. 1887 * 4. non-jailed, wild. 1888 */ 1889 1890 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport, 1891 0, pcbinfo->ipi_hashmask)]; 1892 LIST_FOREACH(inp, head, inp_hash) { 1893 #ifdef INET6 1894 /* XXX inp locking */ 1895 if ((inp->inp_vflag & INP_IPV4) == 0) 1896 continue; 1897 #endif 1898 if (inp->inp_faddr.s_addr != INADDR_ANY || 1899 inp->inp_lport != lport) 1900 continue; 1901 1902 injail = prison_flag(inp->inp_cred, PR_IP4); 1903 if (injail) { 1904 if (prison_check_ip4(inp->inp_cred, 1905 &laddr) != 0) 1906 continue; 1907 } else { 1908 if (local_exact != NULL) 1909 continue; 1910 } 1911 1912 if (inp->inp_laddr.s_addr == laddr.s_addr) { 1913 if (injail) 1914 return (inp); 1915 else 1916 local_exact = inp; 1917 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 1918 #ifdef INET6 1919 /* XXX inp locking, NULL check */ 1920 if (inp->inp_vflag & INP_IPV6PROTO) 1921 local_wild_mapped = inp; 1922 else 1923 #endif 1924 if (injail) 1925 jail_wild = inp; 1926 else 1927 local_wild = inp; 1928 } 1929 } /* LIST_FOREACH */ 1930 if (jail_wild != NULL) 1931 return (jail_wild); 1932 if (local_exact != NULL) 1933 return (local_exact); 1934 if (local_wild != NULL) 1935 return (local_wild); 1936 #ifdef INET6 1937 if (local_wild_mapped != NULL) 1938 return (local_wild_mapped); 1939 #endif 1940 } /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */ 1941 1942 return (NULL); 1943 } 1944 1945 /* 1946 * Lookup PCB in hash list, using pcbinfo tables. This variation locks the 1947 * hash list lock, and will return the inpcb locked (i.e., requires 1948 * INPLOOKUP_LOCKPCB). 1949 */ 1950 static struct inpcb * 1951 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr, 1952 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 1953 struct ifnet *ifp) 1954 { 1955 struct inpcb *inp; 1956 1957 INP_HASH_RLOCK(pcbinfo); 1958 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 1959 (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp); 1960 if (inp != NULL) { 1961 in_pcbref(inp); 1962 INP_HASH_RUNLOCK(pcbinfo); 1963 if (lookupflags & INPLOOKUP_WLOCKPCB) { 1964 INP_WLOCK(inp); 1965 if (in_pcbrele_wlocked(inp)) 1966 return (NULL); 1967 } else if (lookupflags & INPLOOKUP_RLOCKPCB) { 1968 INP_RLOCK(inp); 1969 if (in_pcbrele_rlocked(inp)) 1970 return (NULL); 1971 } else 1972 panic("%s: locking bug", __func__); 1973 } else 1974 INP_HASH_RUNLOCK(pcbinfo); 1975 return (inp); 1976 } 1977 1978 /* 1979 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 1980 * from which a pre-calculated hash value may be extracted. 1981 * 1982 * Possibly more of this logic should be in in_pcbgroup.c. 1983 */ 1984 struct inpcb * 1985 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 1986 struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp) 1987 { 1988 #if defined(PCBGROUP) && !defined(RSS) 1989 struct inpcbgroup *pcbgroup; 1990 #endif 1991 1992 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 1993 ("%s: invalid lookup flags %d", __func__, lookupflags)); 1994 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 1995 ("%s: LOCKPCB not set", __func__)); 1996 1997 /* 1998 * When not using RSS, use connection groups in preference to the 1999 * reservation table when looking up 4-tuples. When using RSS, just 2000 * use the reservation table, due to the cost of the Toeplitz hash 2001 * in software. 2002 * 2003 * XXXRW: This policy belongs in the pcbgroup code, as in principle 2004 * we could be doing RSS with a non-Toeplitz hash that is affordable 2005 * in software. 2006 */ 2007 #if defined(PCBGROUP) && !defined(RSS) 2008 if (in_pcbgroup_enabled(pcbinfo)) { 2009 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2010 fport); 2011 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2012 laddr, lport, lookupflags, ifp)); 2013 } 2014 #endif 2015 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2016 lookupflags, ifp)); 2017 } 2018 2019 struct inpcb * 2020 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2021 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2022 struct ifnet *ifp, struct mbuf *m) 2023 { 2024 #ifdef PCBGROUP 2025 struct inpcbgroup *pcbgroup; 2026 #endif 2027 2028 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2029 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2030 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2031 ("%s: LOCKPCB not set", __func__)); 2032 2033 #ifdef PCBGROUP 2034 /* 2035 * If we can use a hardware-generated hash to look up the connection 2036 * group, use that connection group to find the inpcb. Otherwise 2037 * fall back on a software hash -- or the reservation table if we're 2038 * using RSS. 2039 * 2040 * XXXRW: As above, that policy belongs in the pcbgroup code. 2041 */ 2042 if (in_pcbgroup_enabled(pcbinfo) && 2043 !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) { 2044 pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m), 2045 m->m_pkthdr.flowid); 2046 if (pcbgroup != NULL) 2047 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, 2048 fport, laddr, lport, lookupflags, ifp)); 2049 #ifndef RSS 2050 pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr, 2051 fport); 2052 return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport, 2053 laddr, lport, lookupflags, ifp)); 2054 #endif 2055 } 2056 #endif 2057 return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport, 2058 lookupflags, ifp)); 2059 } 2060 #endif /* INET */ 2061 2062 /* 2063 * Insert PCB onto various hash lists. 2064 */ 2065 static int 2066 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update) 2067 { 2068 struct inpcbhead *pcbhash; 2069 struct inpcbporthead *pcbporthash; 2070 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2071 struct inpcbport *phd; 2072 u_int32_t hashkey_faddr; 2073 2074 INP_WLOCK_ASSERT(inp); 2075 INP_HASH_WLOCK_ASSERT(pcbinfo); 2076 2077 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2078 ("in_pcbinshash: INP_INHASHLIST")); 2079 2080 #ifdef INET6 2081 if (inp->inp_vflag & INP_IPV6) 2082 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2083 else 2084 #endif 2085 hashkey_faddr = inp->inp_faddr.s_addr; 2086 2087 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2088 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2089 2090 pcbporthash = &pcbinfo->ipi_porthashbase[ 2091 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2092 2093 /* 2094 * Go through port list and look for a head for this lport. 2095 */ 2096 LIST_FOREACH(phd, pcbporthash, phd_hash) { 2097 if (phd->phd_port == inp->inp_lport) 2098 break; 2099 } 2100 /* 2101 * If none exists, malloc one and tack it on. 2102 */ 2103 if (phd == NULL) { 2104 phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT); 2105 if (phd == NULL) { 2106 return (ENOBUFS); /* XXX */ 2107 } 2108 phd->phd_port = inp->inp_lport; 2109 LIST_INIT(&phd->phd_pcblist); 2110 LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2111 } 2112 inp->inp_phd = phd; 2113 LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2114 LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2115 inp->inp_flags |= INP_INHASHLIST; 2116 #ifdef PCBGROUP 2117 if (do_pcbgroup_update) 2118 in_pcbgroup_update(inp); 2119 #endif 2120 return (0); 2121 } 2122 2123 /* 2124 * For now, there are two public interfaces to insert an inpcb into the hash 2125 * lists -- one that does update pcbgroups, and one that doesn't. The latter 2126 * is used only in the TCP syncache, where in_pcbinshash is called before the 2127 * full 4-tuple is set for the inpcb, and we don't want to install in the 2128 * pcbgroup until later. 2129 * 2130 * XXXRW: This seems like a misfeature. in_pcbinshash should always update 2131 * connection groups, and partially initialised inpcbs should not be exposed 2132 * to either reservation hash tables or pcbgroups. 2133 */ 2134 int 2135 in_pcbinshash(struct inpcb *inp) 2136 { 2137 2138 return (in_pcbinshash_internal(inp, 1)); 2139 } 2140 2141 int 2142 in_pcbinshash_nopcbgroup(struct inpcb *inp) 2143 { 2144 2145 return (in_pcbinshash_internal(inp, 0)); 2146 } 2147 2148 /* 2149 * Move PCB to the proper hash bucket when { faddr, fport } have been 2150 * changed. NOTE: This does not handle the case of the lport changing (the 2151 * hashed port list would have to be updated as well), so the lport must 2152 * not change after in_pcbinshash() has been called. 2153 */ 2154 void 2155 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m) 2156 { 2157 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2158 struct inpcbhead *head; 2159 u_int32_t hashkey_faddr; 2160 2161 INP_WLOCK_ASSERT(inp); 2162 INP_HASH_WLOCK_ASSERT(pcbinfo); 2163 2164 KASSERT(inp->inp_flags & INP_INHASHLIST, 2165 ("in_pcbrehash: !INP_INHASHLIST")); 2166 2167 #ifdef INET6 2168 if (inp->inp_vflag & INP_IPV6) 2169 hashkey_faddr = INP6_PCBHASHKEY(&inp->in6p_faddr); 2170 else 2171 #endif 2172 hashkey_faddr = inp->inp_faddr.s_addr; 2173 2174 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr, 2175 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2176 2177 LIST_REMOVE(inp, inp_hash); 2178 LIST_INSERT_HEAD(head, inp, inp_hash); 2179 2180 #ifdef PCBGROUP 2181 if (m != NULL) 2182 in_pcbgroup_update_mbuf(inp, m); 2183 else 2184 in_pcbgroup_update(inp); 2185 #endif 2186 } 2187 2188 void 2189 in_pcbrehash(struct inpcb *inp) 2190 { 2191 2192 in_pcbrehash_mbuf(inp, NULL); 2193 } 2194 2195 /* 2196 * Remove PCB from various lists. 2197 */ 2198 static void 2199 in_pcbremlists(struct inpcb *inp) 2200 { 2201 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2202 2203 #ifdef INVARIANTS 2204 if (pcbinfo == &V_tcbinfo) { 2205 INP_INFO_RLOCK_ASSERT(pcbinfo); 2206 } else { 2207 INP_INFO_WLOCK_ASSERT(pcbinfo); 2208 } 2209 #endif 2210 2211 INP_WLOCK_ASSERT(inp); 2212 INP_LIST_WLOCK_ASSERT(pcbinfo); 2213 2214 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 2215 if (inp->inp_flags & INP_INHASHLIST) { 2216 struct inpcbport *phd = inp->inp_phd; 2217 2218 INP_HASH_WLOCK(pcbinfo); 2219 LIST_REMOVE(inp, inp_hash); 2220 LIST_REMOVE(inp, inp_portlist); 2221 if (LIST_FIRST(&phd->phd_pcblist) == NULL) { 2222 LIST_REMOVE(phd, phd_hash); 2223 free(phd, M_PCB); 2224 } 2225 INP_HASH_WUNLOCK(pcbinfo); 2226 inp->inp_flags &= ~INP_INHASHLIST; 2227 } 2228 LIST_REMOVE(inp, inp_list); 2229 pcbinfo->ipi_count--; 2230 #ifdef PCBGROUP 2231 in_pcbgroup_remove(inp); 2232 #endif 2233 } 2234 2235 /* 2236 * Check for alternatives when higher level complains 2237 * about service problems. For now, invalidate cached 2238 * routing information. If the route was created dynamically 2239 * (by a redirect), time to try a default gateway again. 2240 */ 2241 void 2242 in_losing(struct inpcb *inp) 2243 { 2244 2245 if (inp->inp_route.ro_rt) { 2246 RTFREE(inp->inp_route.ro_rt); 2247 inp->inp_route.ro_rt = (struct rtentry *)NULL; 2248 } 2249 if (inp->inp_route.ro_lle) 2250 LLE_FREE(inp->inp_route.ro_lle); /* zeros ro_lle */ 2251 return; 2252 } 2253 2254 /* 2255 * A set label operation has occurred at the socket layer, propagate the 2256 * label change into the in_pcb for the socket. 2257 */ 2258 void 2259 in_pcbsosetlabel(struct socket *so) 2260 { 2261 #ifdef MAC 2262 struct inpcb *inp; 2263 2264 inp = sotoinpcb(so); 2265 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2266 2267 INP_WLOCK(inp); 2268 SOCK_LOCK(so); 2269 mac_inpcb_sosetlabel(so, inp); 2270 SOCK_UNLOCK(so); 2271 INP_WUNLOCK(inp); 2272 #endif 2273 } 2274 2275 /* 2276 * ipport_tick runs once per second, determining if random port allocation 2277 * should be continued. If more than ipport_randomcps ports have been 2278 * allocated in the last second, then we return to sequential port 2279 * allocation. We return to random allocation only once we drop below 2280 * ipport_randomcps for at least ipport_randomtime seconds. 2281 */ 2282 static void 2283 ipport_tick(void *xtp) 2284 { 2285 VNET_ITERATOR_DECL(vnet_iter); 2286 2287 VNET_LIST_RLOCK_NOSLEEP(); 2288 VNET_FOREACH(vnet_iter) { 2289 CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */ 2290 if (V_ipport_tcpallocs <= 2291 V_ipport_tcplastcount + V_ipport_randomcps) { 2292 if (V_ipport_stoprandom > 0) 2293 V_ipport_stoprandom--; 2294 } else 2295 V_ipport_stoprandom = V_ipport_randomtime; 2296 V_ipport_tcplastcount = V_ipport_tcpallocs; 2297 CURVNET_RESTORE(); 2298 } 2299 VNET_LIST_RUNLOCK_NOSLEEP(); 2300 callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL); 2301 } 2302 2303 static void 2304 ip_fini(void *xtp) 2305 { 2306 2307 callout_stop(&ipport_tick_callout); 2308 } 2309 2310 /* 2311 * The ipport_callout should start running at about the time we attach the 2312 * inet or inet6 domains. 2313 */ 2314 static void 2315 ipport_tick_init(const void *unused __unused) 2316 { 2317 2318 /* Start ipport_tick. */ 2319 callout_init(&ipport_tick_callout, 1); 2320 callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL); 2321 EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL, 2322 SHUTDOWN_PRI_DEFAULT); 2323 } 2324 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE, 2325 ipport_tick_init, NULL); 2326 2327 void 2328 inp_wlock(struct inpcb *inp) 2329 { 2330 2331 INP_WLOCK(inp); 2332 } 2333 2334 void 2335 inp_wunlock(struct inpcb *inp) 2336 { 2337 2338 INP_WUNLOCK(inp); 2339 } 2340 2341 void 2342 inp_rlock(struct inpcb *inp) 2343 { 2344 2345 INP_RLOCK(inp); 2346 } 2347 2348 void 2349 inp_runlock(struct inpcb *inp) 2350 { 2351 2352 INP_RUNLOCK(inp); 2353 } 2354 2355 #ifdef INVARIANTS 2356 void 2357 inp_lock_assert(struct inpcb *inp) 2358 { 2359 2360 INP_WLOCK_ASSERT(inp); 2361 } 2362 2363 void 2364 inp_unlock_assert(struct inpcb *inp) 2365 { 2366 2367 INP_UNLOCK_ASSERT(inp); 2368 } 2369 #endif 2370 2371 void 2372 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg) 2373 { 2374 struct inpcb *inp; 2375 2376 INP_INFO_WLOCK(&V_tcbinfo); 2377 LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) { 2378 INP_WLOCK(inp); 2379 func(inp, arg); 2380 INP_WUNLOCK(inp); 2381 } 2382 INP_INFO_WUNLOCK(&V_tcbinfo); 2383 } 2384 2385 struct socket * 2386 inp_inpcbtosocket(struct inpcb *inp) 2387 { 2388 2389 INP_WLOCK_ASSERT(inp); 2390 return (inp->inp_socket); 2391 } 2392 2393 struct tcpcb * 2394 inp_inpcbtotcpcb(struct inpcb *inp) 2395 { 2396 2397 INP_WLOCK_ASSERT(inp); 2398 return ((struct tcpcb *)inp->inp_ppcb); 2399 } 2400 2401 int 2402 inp_ip_tos_get(const struct inpcb *inp) 2403 { 2404 2405 return (inp->inp_ip_tos); 2406 } 2407 2408 void 2409 inp_ip_tos_set(struct inpcb *inp, int val) 2410 { 2411 2412 inp->inp_ip_tos = val; 2413 } 2414 2415 void 2416 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2417 uint32_t *faddr, uint16_t *fp) 2418 { 2419 2420 INP_LOCK_ASSERT(inp); 2421 *laddr = inp->inp_laddr.s_addr; 2422 *faddr = inp->inp_faddr.s_addr; 2423 *lp = inp->inp_lport; 2424 *fp = inp->inp_fport; 2425 } 2426 2427 struct inpcb * 2428 so_sotoinpcb(struct socket *so) 2429 { 2430 2431 return (sotoinpcb(so)); 2432 } 2433 2434 struct tcpcb * 2435 so_sototcpcb(struct socket *so) 2436 { 2437 2438 return (sototcpcb(so)); 2439 } 2440 2441 #ifdef DDB 2442 static void 2443 db_print_indent(int indent) 2444 { 2445 int i; 2446 2447 for (i = 0; i < indent; i++) 2448 db_printf(" "); 2449 } 2450 2451 static void 2452 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2453 { 2454 char faddr_str[48], laddr_str[48]; 2455 2456 db_print_indent(indent); 2457 db_printf("%s at %p\n", name, inc); 2458 2459 indent += 2; 2460 2461 #ifdef INET6 2462 if (inc->inc_flags & INC_ISIPV6) { 2463 /* IPv6. */ 2464 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2465 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2466 } else 2467 #endif 2468 { 2469 /* IPv4. */ 2470 inet_ntoa_r(inc->inc_laddr, laddr_str); 2471 inet_ntoa_r(inc->inc_faddr, faddr_str); 2472 } 2473 db_print_indent(indent); 2474 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2475 ntohs(inc->inc_lport)); 2476 db_print_indent(indent); 2477 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2478 ntohs(inc->inc_fport)); 2479 } 2480 2481 static void 2482 db_print_inpflags(int inp_flags) 2483 { 2484 int comma; 2485 2486 comma = 0; 2487 if (inp_flags & INP_RECVOPTS) { 2488 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2489 comma = 1; 2490 } 2491 if (inp_flags & INP_RECVRETOPTS) { 2492 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2493 comma = 1; 2494 } 2495 if (inp_flags & INP_RECVDSTADDR) { 2496 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2497 comma = 1; 2498 } 2499 if (inp_flags & INP_HDRINCL) { 2500 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2501 comma = 1; 2502 } 2503 if (inp_flags & INP_HIGHPORT) { 2504 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2505 comma = 1; 2506 } 2507 if (inp_flags & INP_LOWPORT) { 2508 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2509 comma = 1; 2510 } 2511 if (inp_flags & INP_ANONPORT) { 2512 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2513 comma = 1; 2514 } 2515 if (inp_flags & INP_RECVIF) { 2516 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2517 comma = 1; 2518 } 2519 if (inp_flags & INP_MTUDISC) { 2520 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2521 comma = 1; 2522 } 2523 if (inp_flags & INP_RECVTTL) { 2524 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 2525 comma = 1; 2526 } 2527 if (inp_flags & INP_DONTFRAG) { 2528 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 2529 comma = 1; 2530 } 2531 if (inp_flags & INP_RECVTOS) { 2532 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 2533 comma = 1; 2534 } 2535 if (inp_flags & IN6P_IPV6_V6ONLY) { 2536 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 2537 comma = 1; 2538 } 2539 if (inp_flags & IN6P_PKTINFO) { 2540 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 2541 comma = 1; 2542 } 2543 if (inp_flags & IN6P_HOPLIMIT) { 2544 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 2545 comma = 1; 2546 } 2547 if (inp_flags & IN6P_HOPOPTS) { 2548 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 2549 comma = 1; 2550 } 2551 if (inp_flags & IN6P_DSTOPTS) { 2552 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 2553 comma = 1; 2554 } 2555 if (inp_flags & IN6P_RTHDR) { 2556 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 2557 comma = 1; 2558 } 2559 if (inp_flags & IN6P_RTHDRDSTOPTS) { 2560 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 2561 comma = 1; 2562 } 2563 if (inp_flags & IN6P_TCLASS) { 2564 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 2565 comma = 1; 2566 } 2567 if (inp_flags & IN6P_AUTOFLOWLABEL) { 2568 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 2569 comma = 1; 2570 } 2571 if (inp_flags & INP_TIMEWAIT) { 2572 db_printf("%sINP_TIMEWAIT", comma ? ", " : ""); 2573 comma = 1; 2574 } 2575 if (inp_flags & INP_ONESBCAST) { 2576 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 2577 comma = 1; 2578 } 2579 if (inp_flags & INP_DROPPED) { 2580 db_printf("%sINP_DROPPED", comma ? ", " : ""); 2581 comma = 1; 2582 } 2583 if (inp_flags & INP_SOCKREF) { 2584 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 2585 comma = 1; 2586 } 2587 if (inp_flags & IN6P_RFC2292) { 2588 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 2589 comma = 1; 2590 } 2591 if (inp_flags & IN6P_MTU) { 2592 db_printf("IN6P_MTU%s", comma ? ", " : ""); 2593 comma = 1; 2594 } 2595 } 2596 2597 static void 2598 db_print_inpvflag(u_char inp_vflag) 2599 { 2600 int comma; 2601 2602 comma = 0; 2603 if (inp_vflag & INP_IPV4) { 2604 db_printf("%sINP_IPV4", comma ? ", " : ""); 2605 comma = 1; 2606 } 2607 if (inp_vflag & INP_IPV6) { 2608 db_printf("%sINP_IPV6", comma ? ", " : ""); 2609 comma = 1; 2610 } 2611 if (inp_vflag & INP_IPV6PROTO) { 2612 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 2613 comma = 1; 2614 } 2615 } 2616 2617 static void 2618 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 2619 { 2620 2621 db_print_indent(indent); 2622 db_printf("%s at %p\n", name, inp); 2623 2624 indent += 2; 2625 2626 db_print_indent(indent); 2627 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 2628 2629 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 2630 2631 db_print_indent(indent); 2632 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 2633 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 2634 2635 db_print_indent(indent); 2636 db_printf("inp_label: %p inp_flags: 0x%x (", 2637 inp->inp_label, inp->inp_flags); 2638 db_print_inpflags(inp->inp_flags); 2639 db_printf(")\n"); 2640 2641 db_print_indent(indent); 2642 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 2643 inp->inp_vflag); 2644 db_print_inpvflag(inp->inp_vflag); 2645 db_printf(")\n"); 2646 2647 db_print_indent(indent); 2648 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 2649 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 2650 2651 db_print_indent(indent); 2652 #ifdef INET6 2653 if (inp->inp_vflag & INP_IPV6) { 2654 db_printf("in6p_options: %p in6p_outputopts: %p " 2655 "in6p_moptions: %p\n", inp->in6p_options, 2656 inp->in6p_outputopts, inp->in6p_moptions); 2657 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 2658 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 2659 inp->in6p_hops); 2660 } else 2661 #endif 2662 { 2663 db_printf("inp_ip_tos: %d inp_ip_options: %p " 2664 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 2665 inp->inp_options, inp->inp_moptions); 2666 } 2667 2668 db_print_indent(indent); 2669 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 2670 (uintmax_t)inp->inp_gencnt); 2671 } 2672 2673 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 2674 { 2675 struct inpcb *inp; 2676 2677 if (!have_addr) { 2678 db_printf("usage: show inpcb <addr>\n"); 2679 return; 2680 } 2681 inp = (struct inpcb *)addr; 2682 2683 db_print_inpcb(inp, "inpcb", 0); 2684 } 2685 #endif /* DDB */ 2686