1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1991, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2007-2009 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * Copyright (c) 2021-2022 Gleb Smirnoff <glebius@FreeBSD.org> 9 * All rights reserved. 10 * 11 * Portions of this software were developed by Robert N. M. Watson under 12 * contract to Juniper Networks, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include "opt_ddb.h" 45 #include "opt_ipsec.h" 46 #include "opt_inet.h" 47 #include "opt_inet6.h" 48 #include "opt_ratelimit.h" 49 #include "opt_route.h" 50 #include "opt_rss.h" 51 52 #include <sys/param.h> 53 #include <sys/hash.h> 54 #include <sys/systm.h> 55 #include <sys/libkern.h> 56 #include <sys/lock.h> 57 #include <sys/malloc.h> 58 #include <sys/mbuf.h> 59 #include <sys/eventhandler.h> 60 #include <sys/domain.h> 61 #include <sys/protosw.h> 62 #include <sys/smp.h> 63 #include <sys/socket.h> 64 #include <sys/socketvar.h> 65 #include <sys/sockio.h> 66 #include <sys/priv.h> 67 #include <sys/proc.h> 68 #include <sys/refcount.h> 69 #include <sys/jail.h> 70 #include <sys/kernel.h> 71 #include <sys/sysctl.h> 72 73 #ifdef DDB 74 #include <ddb/ddb.h> 75 #endif 76 77 #include <vm/uma.h> 78 #include <vm/vm.h> 79 80 #include <net/if.h> 81 #include <net/if_var.h> 82 #include <net/if_private.h> 83 #include <net/if_types.h> 84 #include <net/if_llatbl.h> 85 #include <net/route.h> 86 #include <net/rss_config.h> 87 #include <net/vnet.h> 88 89 #if defined(INET) || defined(INET6) 90 #include <netinet/in.h> 91 #include <netinet/in_pcb.h> 92 #include <netinet/in_pcb_var.h> 93 #include <netinet/tcp.h> 94 #ifdef INET 95 #include <netinet/in_var.h> 96 #include <netinet/in_fib.h> 97 #endif 98 #include <netinet/ip_var.h> 99 #ifdef INET6 100 #include <netinet/ip6.h> 101 #include <netinet6/in6_pcb.h> 102 #include <netinet6/in6_var.h> 103 #include <netinet6/ip6_var.h> 104 #endif /* INET6 */ 105 #include <net/route/nhop.h> 106 #endif 107 108 #include <netipsec/ipsec_support.h> 109 110 #include <security/mac/mac_framework.h> 111 112 #define INPCBLBGROUP_SIZMIN 8 113 #define INPCBLBGROUP_SIZMAX 256 114 #define INP_FREED 0x00000200 /* See in_pcb.h. */ 115 116 /* 117 * These configure the range of local port addresses assigned to 118 * "unspecified" outgoing connections/packets/whatever. 119 */ 120 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1; /* 1023 */ 121 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART; /* 600 */ 122 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST; /* 10000 */ 123 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST; /* 65535 */ 124 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO; /* 49152 */ 125 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO; /* 65535 */ 126 127 /* 128 * Reserved ports accessible only to root. There are significant 129 * security considerations that must be accounted for when changing these, 130 * but the security benefits can be great. Please be careful. 131 */ 132 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1; /* 1023 */ 133 VNET_DEFINE(int, ipport_reservedlow); 134 135 /* Enable random ephemeral port allocation by default. */ 136 VNET_DEFINE(int, ipport_randomized) = 1; 137 138 #ifdef INET 139 static struct inpcb *in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, 140 struct in_addr faddr, u_int fport_arg, 141 struct in_addr laddr, u_int lport_arg, 142 int lookupflags, uint8_t numa_domain); 143 144 #define RANGECHK(var, min, max) \ 145 if ((var) < (min)) { (var) = (min); } \ 146 else if ((var) > (max)) { (var) = (max); } 147 148 static int 149 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) 150 { 151 int error; 152 153 error = sysctl_handle_int(oidp, arg1, arg2, req); 154 if (error == 0) { 155 RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); 156 RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1); 157 RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX); 158 RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX); 159 RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX); 160 RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX); 161 } 162 return (error); 163 } 164 165 #undef RANGECHK 166 167 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, 168 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 169 "IP Ports"); 170 171 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, 172 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 173 &VNET_NAME(ipport_lowfirstauto), 0, &sysctl_net_ipport_check, "I", 174 ""); 175 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, 176 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 177 &VNET_NAME(ipport_lowlastauto), 0, &sysctl_net_ipport_check, "I", 178 ""); 179 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, 180 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 181 &VNET_NAME(ipport_firstauto), 0, &sysctl_net_ipport_check, "I", 182 ""); 183 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, 184 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 185 &VNET_NAME(ipport_lastauto), 0, &sysctl_net_ipport_check, "I", 186 ""); 187 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, 188 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 189 &VNET_NAME(ipport_hifirstauto), 0, &sysctl_net_ipport_check, "I", 190 ""); 191 SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, 192 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 193 &VNET_NAME(ipport_hilastauto), 0, &sysctl_net_ipport_check, "I", 194 ""); 195 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh, 196 CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE, 197 &VNET_NAME(ipport_reservedhigh), 0, ""); 198 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow, 199 CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, ""); 200 SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, 201 CTLFLAG_VNET | CTLFLAG_RW, 202 &VNET_NAME(ipport_randomized), 0, "Enable random port allocation"); 203 204 #ifdef RATELIMIT 205 counter_u64_t rate_limit_new; 206 counter_u64_t rate_limit_chg; 207 counter_u64_t rate_limit_active; 208 counter_u64_t rate_limit_alloc_fail; 209 counter_u64_t rate_limit_set_ok; 210 211 static SYSCTL_NODE(_net_inet_ip, OID_AUTO, rl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 212 "IP Rate Limiting"); 213 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, active, CTLFLAG_RD, 214 &rate_limit_active, "Active rate limited connections"); 215 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, alloc_fail, CTLFLAG_RD, 216 &rate_limit_alloc_fail, "Rate limited connection failures"); 217 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, set_ok, CTLFLAG_RD, 218 &rate_limit_set_ok, "Rate limited setting succeeded"); 219 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, newrl, CTLFLAG_RD, 220 &rate_limit_new, "Total Rate limit new attempts"); 221 SYSCTL_COUNTER_U64(_net_inet_ip_rl, OID_AUTO, chgrl, CTLFLAG_RD, 222 &rate_limit_chg, "Total Rate limited change attempts"); 223 224 #endif /* RATELIMIT */ 225 226 #endif /* INET */ 227 228 VNET_DEFINE(uint32_t, in_pcbhashseed); 229 static void 230 in_pcbhashseed_init(void) 231 { 232 233 V_in_pcbhashseed = arc4random(); 234 } 235 VNET_SYSINIT(in_pcbhashseed_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, 236 in_pcbhashseed_init, 0); 237 238 static void in_pcbremhash(struct inpcb *); 239 240 /* 241 * in_pcb.c: manage the Protocol Control Blocks. 242 * 243 * NOTE: It is assumed that most of these functions will be called with 244 * the pcbinfo lock held, and often, the inpcb lock held, as these utility 245 * functions often modify hash chains or addresses in pcbs. 246 */ 247 248 static struct inpcblbgroup * 249 in_pcblbgroup_alloc(struct inpcblbgrouphead *hdr, struct ucred *cred, 250 u_char vflag, uint16_t port, const union in_dependaddr *addr, int size, 251 uint8_t numa_domain) 252 { 253 struct inpcblbgroup *grp; 254 size_t bytes; 255 256 bytes = __offsetof(struct inpcblbgroup, il_inp[size]); 257 grp = malloc(bytes, M_PCB, M_ZERO | M_NOWAIT); 258 if (grp == NULL) 259 return (NULL); 260 grp->il_cred = crhold(cred); 261 grp->il_vflag = vflag; 262 grp->il_lport = port; 263 grp->il_numa_domain = numa_domain; 264 grp->il_dependladdr = *addr; 265 grp->il_inpsiz = size; 266 CK_LIST_INSERT_HEAD(hdr, grp, il_list); 267 return (grp); 268 } 269 270 static void 271 in_pcblbgroup_free_deferred(epoch_context_t ctx) 272 { 273 struct inpcblbgroup *grp; 274 275 grp = __containerof(ctx, struct inpcblbgroup, il_epoch_ctx); 276 crfree(grp->il_cred); 277 free(grp, M_PCB); 278 } 279 280 static void 281 in_pcblbgroup_free(struct inpcblbgroup *grp) 282 { 283 284 CK_LIST_REMOVE(grp, il_list); 285 NET_EPOCH_CALL(in_pcblbgroup_free_deferred, &grp->il_epoch_ctx); 286 } 287 288 static struct inpcblbgroup * 289 in_pcblbgroup_resize(struct inpcblbgrouphead *hdr, 290 struct inpcblbgroup *old_grp, int size) 291 { 292 struct inpcblbgroup *grp; 293 int i; 294 295 grp = in_pcblbgroup_alloc(hdr, old_grp->il_cred, old_grp->il_vflag, 296 old_grp->il_lport, &old_grp->il_dependladdr, size, 297 old_grp->il_numa_domain); 298 if (grp == NULL) 299 return (NULL); 300 301 KASSERT(old_grp->il_inpcnt < grp->il_inpsiz, 302 ("invalid new local group size %d and old local group count %d", 303 grp->il_inpsiz, old_grp->il_inpcnt)); 304 305 for (i = 0; i < old_grp->il_inpcnt; ++i) 306 grp->il_inp[i] = old_grp->il_inp[i]; 307 grp->il_inpcnt = old_grp->il_inpcnt; 308 in_pcblbgroup_free(old_grp); 309 return (grp); 310 } 311 312 /* 313 * PCB at index 'i' is removed from the group. Pull up the ones below il_inp[i] 314 * and shrink group if possible. 315 */ 316 static void 317 in_pcblbgroup_reorder(struct inpcblbgrouphead *hdr, struct inpcblbgroup **grpp, 318 int i) 319 { 320 struct inpcblbgroup *grp, *new_grp; 321 322 grp = *grpp; 323 for (; i + 1 < grp->il_inpcnt; ++i) 324 grp->il_inp[i] = grp->il_inp[i + 1]; 325 grp->il_inpcnt--; 326 327 if (grp->il_inpsiz > INPCBLBGROUP_SIZMIN && 328 grp->il_inpcnt <= grp->il_inpsiz / 4) { 329 /* Shrink this group. */ 330 new_grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz / 2); 331 if (new_grp != NULL) 332 *grpp = new_grp; 333 } 334 } 335 336 /* 337 * Add PCB to load balance group for SO_REUSEPORT_LB option. 338 */ 339 static int 340 in_pcbinslbgrouphash(struct inpcb *inp, uint8_t numa_domain) 341 { 342 const static struct timeval interval = { 60, 0 }; 343 static struct timeval lastprint; 344 struct inpcbinfo *pcbinfo; 345 struct inpcblbgrouphead *hdr; 346 struct inpcblbgroup *grp; 347 uint32_t idx; 348 349 pcbinfo = inp->inp_pcbinfo; 350 351 INP_WLOCK_ASSERT(inp); 352 INP_HASH_WLOCK_ASSERT(pcbinfo); 353 354 #ifdef INET6 355 /* 356 * Don't allow IPv4 mapped INET6 wild socket. 357 */ 358 if ((inp->inp_vflag & INP_IPV4) && 359 inp->inp_laddr.s_addr == INADDR_ANY && 360 INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) { 361 return (0); 362 } 363 #endif 364 365 idx = INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask); 366 hdr = &pcbinfo->ipi_lbgrouphashbase[idx]; 367 CK_LIST_FOREACH(grp, hdr, il_list) { 368 if (grp->il_cred->cr_prison == inp->inp_cred->cr_prison && 369 grp->il_vflag == inp->inp_vflag && 370 grp->il_lport == inp->inp_lport && 371 grp->il_numa_domain == numa_domain && 372 memcmp(&grp->il_dependladdr, 373 &inp->inp_inc.inc_ie.ie_dependladdr, 374 sizeof(grp->il_dependladdr)) == 0) { 375 break; 376 } 377 } 378 if (grp == NULL) { 379 /* Create new load balance group. */ 380 grp = in_pcblbgroup_alloc(hdr, inp->inp_cred, inp->inp_vflag, 381 inp->inp_lport, &inp->inp_inc.inc_ie.ie_dependladdr, 382 INPCBLBGROUP_SIZMIN, numa_domain); 383 if (grp == NULL) 384 return (ENOBUFS); 385 } else if (grp->il_inpcnt == grp->il_inpsiz) { 386 if (grp->il_inpsiz >= INPCBLBGROUP_SIZMAX) { 387 if (ratecheck(&lastprint, &interval)) 388 printf("lb group port %d, limit reached\n", 389 ntohs(grp->il_lport)); 390 return (0); 391 } 392 393 /* Expand this local group. */ 394 grp = in_pcblbgroup_resize(hdr, grp, grp->il_inpsiz * 2); 395 if (grp == NULL) 396 return (ENOBUFS); 397 } 398 399 KASSERT(grp->il_inpcnt < grp->il_inpsiz, 400 ("invalid local group size %d and count %d", grp->il_inpsiz, 401 grp->il_inpcnt)); 402 403 grp->il_inp[grp->il_inpcnt] = inp; 404 grp->il_inpcnt++; 405 return (0); 406 } 407 408 /* 409 * Remove PCB from load balance group. 410 */ 411 static void 412 in_pcbremlbgrouphash(struct inpcb *inp) 413 { 414 struct inpcbinfo *pcbinfo; 415 struct inpcblbgrouphead *hdr; 416 struct inpcblbgroup *grp; 417 int i; 418 419 pcbinfo = inp->inp_pcbinfo; 420 421 INP_WLOCK_ASSERT(inp); 422 INP_HASH_WLOCK_ASSERT(pcbinfo); 423 424 hdr = &pcbinfo->ipi_lbgrouphashbase[ 425 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 426 CK_LIST_FOREACH(grp, hdr, il_list) { 427 for (i = 0; i < grp->il_inpcnt; ++i) { 428 if (grp->il_inp[i] != inp) 429 continue; 430 431 if (grp->il_inpcnt == 1) { 432 /* We are the last, free this local group. */ 433 in_pcblbgroup_free(grp); 434 } else { 435 /* Pull up inpcbs, shrink group if possible. */ 436 in_pcblbgroup_reorder(hdr, &grp, i); 437 } 438 return; 439 } 440 } 441 } 442 443 int 444 in_pcblbgroup_numa(struct inpcb *inp, int arg) 445 { 446 struct inpcbinfo *pcbinfo; 447 struct inpcblbgrouphead *hdr; 448 struct inpcblbgroup *grp; 449 int err, i; 450 uint8_t numa_domain; 451 452 switch (arg) { 453 case TCP_REUSPORT_LB_NUMA_NODOM: 454 numa_domain = M_NODOM; 455 break; 456 case TCP_REUSPORT_LB_NUMA_CURDOM: 457 numa_domain = PCPU_GET(domain); 458 break; 459 default: 460 if (arg < 0 || arg >= vm_ndomains) 461 return (EINVAL); 462 numa_domain = arg; 463 } 464 465 err = 0; 466 pcbinfo = inp->inp_pcbinfo; 467 INP_WLOCK_ASSERT(inp); 468 INP_HASH_WLOCK(pcbinfo); 469 hdr = &pcbinfo->ipi_lbgrouphashbase[ 470 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_lbgrouphashmask)]; 471 CK_LIST_FOREACH(grp, hdr, il_list) { 472 for (i = 0; i < grp->il_inpcnt; ++i) { 473 if (grp->il_inp[i] != inp) 474 continue; 475 476 if (grp->il_numa_domain == numa_domain) { 477 goto abort_with_hash_wlock; 478 } 479 480 /* Remove it from the old group. */ 481 in_pcbremlbgrouphash(inp); 482 483 /* Add it to the new group based on numa domain. */ 484 in_pcbinslbgrouphash(inp, numa_domain); 485 goto abort_with_hash_wlock; 486 } 487 } 488 err = ENOENT; 489 abort_with_hash_wlock: 490 INP_HASH_WUNLOCK(pcbinfo); 491 return (err); 492 } 493 494 /* Make sure it is safe to use hashinit(9) on CK_LIST. */ 495 CTASSERT(sizeof(struct inpcbhead) == sizeof(LIST_HEAD(, inpcb))); 496 497 /* 498 * Initialize an inpcbinfo - a per-VNET instance of connections db. 499 */ 500 void 501 in_pcbinfo_init(struct inpcbinfo *pcbinfo, struct inpcbstorage *pcbstor, 502 u_int hash_nelements, u_int porthash_nelements) 503 { 504 505 mtx_init(&pcbinfo->ipi_lock, pcbstor->ips_infolock_name, NULL, MTX_DEF); 506 mtx_init(&pcbinfo->ipi_hash_lock, pcbstor->ips_hashlock_name, 507 NULL, MTX_DEF); 508 #ifdef VIMAGE 509 pcbinfo->ipi_vnet = curvnet; 510 #endif 511 CK_LIST_INIT(&pcbinfo->ipi_listhead); 512 pcbinfo->ipi_count = 0; 513 pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB, 514 &pcbinfo->ipi_hashmask); 515 porthash_nelements = imin(porthash_nelements, IPPORT_MAX + 1); 516 pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB, 517 &pcbinfo->ipi_porthashmask); 518 pcbinfo->ipi_lbgrouphashbase = hashinit(porthash_nelements, M_PCB, 519 &pcbinfo->ipi_lbgrouphashmask); 520 pcbinfo->ipi_zone = pcbstor->ips_zone; 521 pcbinfo->ipi_portzone = pcbstor->ips_portzone; 522 pcbinfo->ipi_smr = uma_zone_get_smr(pcbinfo->ipi_zone); 523 } 524 525 /* 526 * Destroy an inpcbinfo. 527 */ 528 void 529 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo) 530 { 531 532 KASSERT(pcbinfo->ipi_count == 0, 533 ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count)); 534 535 hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask); 536 hashdestroy(pcbinfo->ipi_porthashbase, M_PCB, 537 pcbinfo->ipi_porthashmask); 538 hashdestroy(pcbinfo->ipi_lbgrouphashbase, M_PCB, 539 pcbinfo->ipi_lbgrouphashmask); 540 mtx_destroy(&pcbinfo->ipi_hash_lock); 541 mtx_destroy(&pcbinfo->ipi_lock); 542 } 543 544 /* 545 * Initialize a pcbstorage - per protocol zones to allocate inpcbs. 546 */ 547 static void inpcb_dtor(void *, int, void *); 548 static void inpcb_fini(void *, int); 549 void 550 in_pcbstorage_init(void *arg) 551 { 552 struct inpcbstorage *pcbstor = arg; 553 554 pcbstor->ips_zone = uma_zcreate(pcbstor->ips_zone_name, 555 pcbstor->ips_size, NULL, inpcb_dtor, pcbstor->ips_pcbinit, 556 inpcb_fini, UMA_ALIGN_CACHE, UMA_ZONE_SMR); 557 pcbstor->ips_portzone = uma_zcreate(pcbstor->ips_portzone_name, 558 sizeof(struct inpcbport), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 559 uma_zone_set_smr(pcbstor->ips_portzone, 560 uma_zone_get_smr(pcbstor->ips_zone)); 561 } 562 563 /* 564 * Destroy a pcbstorage - used by unloadable protocols. 565 */ 566 void 567 in_pcbstorage_destroy(void *arg) 568 { 569 struct inpcbstorage *pcbstor = arg; 570 571 uma_zdestroy(pcbstor->ips_zone); 572 uma_zdestroy(pcbstor->ips_portzone); 573 } 574 575 /* 576 * Allocate a PCB and associate it with the socket. 577 * On success return with the PCB locked. 578 */ 579 int 580 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) 581 { 582 struct inpcb *inp; 583 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 584 int error; 585 #endif 586 587 inp = uma_zalloc_smr(pcbinfo->ipi_zone, M_NOWAIT); 588 if (inp == NULL) 589 return (ENOBUFS); 590 bzero(&inp->inp_start_zero, inp_zero_size); 591 #ifdef NUMA 592 inp->inp_numa_domain = M_NODOM; 593 #endif 594 inp->inp_pcbinfo = pcbinfo; 595 inp->inp_socket = so; 596 inp->inp_cred = crhold(so->so_cred); 597 inp->inp_inc.inc_fibnum = so->so_fibnum; 598 #ifdef MAC 599 error = mac_inpcb_init(inp, M_NOWAIT); 600 if (error != 0) 601 goto out; 602 mac_inpcb_create(so, inp); 603 #endif 604 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 605 error = ipsec_init_pcbpolicy(inp); 606 if (error != 0) { 607 #ifdef MAC 608 mac_inpcb_destroy(inp); 609 #endif 610 goto out; 611 } 612 #endif /*IPSEC*/ 613 #ifdef INET6 614 if (INP_SOCKAF(so) == AF_INET6) { 615 inp->inp_vflag |= INP_IPV6PROTO | INP_IPV6; 616 if (V_ip6_v6only) 617 inp->inp_flags |= IN6P_IPV6_V6ONLY; 618 #ifdef INET 619 else 620 inp->inp_vflag |= INP_IPV4; 621 #endif 622 if (V_ip6_auto_flowlabel) 623 inp->inp_flags |= IN6P_AUTOFLOWLABEL; 624 inp->in6p_hops = -1; /* use kernel default */ 625 } 626 #endif 627 #if defined(INET) && defined(INET6) 628 else 629 #endif 630 #ifdef INET 631 inp->inp_vflag |= INP_IPV4; 632 #endif 633 /* 634 * Routes in inpcb's can cache L2 as well; they are guaranteed 635 * to be cleaned up. 636 */ 637 inp->inp_route.ro_flags = RT_LLE_CACHE; 638 refcount_init(&inp->inp_refcount, 1); /* Reference from socket. */ 639 INP_WLOCK(inp); 640 INP_INFO_WLOCK(pcbinfo); 641 pcbinfo->ipi_count++; 642 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 643 CK_LIST_INSERT_HEAD(&pcbinfo->ipi_listhead, inp, inp_list); 644 INP_INFO_WUNLOCK(pcbinfo); 645 so->so_pcb = inp; 646 647 return (0); 648 649 #if defined(IPSEC) || defined(IPSEC_SUPPORT) || defined(MAC) 650 out: 651 uma_zfree_smr(pcbinfo->ipi_zone, inp); 652 return (error); 653 #endif 654 } 655 656 #ifdef INET 657 int 658 in_pcbbind(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred) 659 { 660 int anonport, error; 661 662 KASSERT(sin == NULL || sin->sin_family == AF_INET, 663 ("%s: invalid address family for %p", __func__, sin)); 664 KASSERT(sin == NULL || sin->sin_len == sizeof(struct sockaddr_in), 665 ("%s: invalid address length for %p", __func__, sin)); 666 INP_WLOCK_ASSERT(inp); 667 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 668 669 if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) 670 return (EINVAL); 671 anonport = sin == NULL || sin->sin_port == 0; 672 error = in_pcbbind_setup(inp, sin, &inp->inp_laddr.s_addr, 673 &inp->inp_lport, cred); 674 if (error) 675 return (error); 676 if (in_pcbinshash(inp) != 0) { 677 inp->inp_laddr.s_addr = INADDR_ANY; 678 inp->inp_lport = 0; 679 return (EAGAIN); 680 } 681 if (anonport) 682 inp->inp_flags |= INP_ANONPORT; 683 return (0); 684 } 685 #endif 686 687 #if defined(INET) || defined(INET6) 688 /* 689 * Assign a local port like in_pcb_lport(), but also used with connect() 690 * and a foreign address and port. If fsa is non-NULL, choose a local port 691 * that is unused with those, otherwise one that is completely unused. 692 * lsa can be NULL for IPv6. 693 */ 694 int 695 in_pcb_lport_dest(struct inpcb *inp, struct sockaddr *lsa, u_short *lportp, 696 struct sockaddr *fsa, u_short fport, struct ucred *cred, int lookupflags) 697 { 698 struct inpcbinfo *pcbinfo; 699 struct inpcb *tmpinp; 700 unsigned short *lastport; 701 int count, error; 702 u_short aux, first, last, lport; 703 #ifdef INET 704 struct in_addr laddr, faddr; 705 #endif 706 #ifdef INET6 707 struct in6_addr *laddr6, *faddr6; 708 #endif 709 710 pcbinfo = inp->inp_pcbinfo; 711 712 /* 713 * Because no actual state changes occur here, a global write lock on 714 * the pcbinfo isn't required. 715 */ 716 INP_LOCK_ASSERT(inp); 717 INP_HASH_LOCK_ASSERT(pcbinfo); 718 719 if (inp->inp_flags & INP_HIGHPORT) { 720 first = V_ipport_hifirstauto; /* sysctl */ 721 last = V_ipport_hilastauto; 722 lastport = &pcbinfo->ipi_lasthi; 723 } else if (inp->inp_flags & INP_LOWPORT) { 724 error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT); 725 if (error) 726 return (error); 727 first = V_ipport_lowfirstauto; /* 1023 */ 728 last = V_ipport_lowlastauto; /* 600 */ 729 lastport = &pcbinfo->ipi_lastlow; 730 } else { 731 first = V_ipport_firstauto; /* sysctl */ 732 last = V_ipport_lastauto; 733 lastport = &pcbinfo->ipi_lastport; 734 } 735 736 /* 737 * Instead of having two loops further down counting up or down 738 * make sure that first is always <= last and go with only one 739 * code path implementing all logic. 740 */ 741 if (first > last) { 742 aux = first; 743 first = last; 744 last = aux; 745 } 746 747 #ifdef INET 748 laddr.s_addr = INADDR_ANY; /* used by INET6+INET below too */ 749 if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) { 750 if (lsa != NULL) 751 laddr = ((struct sockaddr_in *)lsa)->sin_addr; 752 if (fsa != NULL) 753 faddr = ((struct sockaddr_in *)fsa)->sin_addr; 754 } 755 #endif 756 #ifdef INET6 757 laddr6 = NULL; 758 if ((inp->inp_vflag & INP_IPV6) != 0) { 759 if (lsa != NULL) 760 laddr6 = &((struct sockaddr_in6 *)lsa)->sin6_addr; 761 if (fsa != NULL) 762 faddr6 = &((struct sockaddr_in6 *)fsa)->sin6_addr; 763 } 764 #endif 765 766 tmpinp = NULL; 767 lport = *lportp; 768 769 if (V_ipport_randomized) 770 *lastport = first + (arc4random() % (last - first)); 771 772 count = last - first; 773 774 do { 775 if (count-- < 0) /* completely used? */ 776 return (EADDRNOTAVAIL); 777 ++*lastport; 778 if (*lastport < first || *lastport > last) 779 *lastport = first; 780 lport = htons(*lastport); 781 782 if (fsa != NULL) { 783 #ifdef INET 784 if (lsa->sa_family == AF_INET) { 785 tmpinp = in_pcblookup_hash_locked(pcbinfo, 786 faddr, fport, laddr, lport, lookupflags, 787 M_NODOM); 788 } 789 #endif 790 #ifdef INET6 791 if (lsa->sa_family == AF_INET6) { 792 tmpinp = in6_pcblookup_hash_locked(pcbinfo, 793 faddr6, fport, laddr6, lport, lookupflags, 794 M_NODOM); 795 } 796 #endif 797 } else { 798 #ifdef INET6 799 if ((inp->inp_vflag & INP_IPV6) != 0) { 800 tmpinp = in6_pcblookup_local(pcbinfo, 801 &inp->in6p_laddr, lport, lookupflags, cred); 802 #ifdef INET 803 if (tmpinp == NULL && 804 (inp->inp_vflag & INP_IPV4)) 805 tmpinp = in_pcblookup_local(pcbinfo, 806 laddr, lport, lookupflags, cred); 807 #endif 808 } 809 #endif 810 #if defined(INET) && defined(INET6) 811 else 812 #endif 813 #ifdef INET 814 tmpinp = in_pcblookup_local(pcbinfo, laddr, 815 lport, lookupflags, cred); 816 #endif 817 } 818 } while (tmpinp != NULL); 819 820 *lportp = lport; 821 822 return (0); 823 } 824 825 /* 826 * Select a local port (number) to use. 827 */ 828 int 829 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp, 830 struct ucred *cred, int lookupflags) 831 { 832 struct sockaddr_in laddr; 833 834 if (laddrp) { 835 bzero(&laddr, sizeof(laddr)); 836 laddr.sin_family = AF_INET; 837 laddr.sin_addr = *laddrp; 838 } 839 return (in_pcb_lport_dest(inp, laddrp ? (struct sockaddr *) &laddr : 840 NULL, lportp, NULL, 0, cred, lookupflags)); 841 } 842 843 /* 844 * Return cached socket options. 845 */ 846 int 847 inp_so_options(const struct inpcb *inp) 848 { 849 int so_options; 850 851 so_options = 0; 852 853 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 854 so_options |= SO_REUSEPORT_LB; 855 if ((inp->inp_flags2 & INP_REUSEPORT) != 0) 856 so_options |= SO_REUSEPORT; 857 if ((inp->inp_flags2 & INP_REUSEADDR) != 0) 858 so_options |= SO_REUSEADDR; 859 return (so_options); 860 } 861 #endif /* INET || INET6 */ 862 863 /* 864 * Check if a new BINDMULTI socket is allowed to be created. 865 * 866 * ni points to the new inp. 867 * oi points to the existing inp. 868 * 869 * This checks whether the existing inp also has BINDMULTI and 870 * whether the credentials match. 871 */ 872 int 873 in_pcbbind_check_bindmulti(const struct inpcb *ni, const struct inpcb *oi) 874 { 875 /* Check permissions match */ 876 if ((ni->inp_flags2 & INP_BINDMULTI) && 877 (ni->inp_cred->cr_uid != 878 oi->inp_cred->cr_uid)) 879 return (0); 880 881 /* Check the existing inp has BINDMULTI set */ 882 if ((ni->inp_flags2 & INP_BINDMULTI) && 883 ((oi->inp_flags2 & INP_BINDMULTI) == 0)) 884 return (0); 885 886 /* 887 * We're okay - either INP_BINDMULTI isn't set on ni, or 888 * it is and it matches the checks. 889 */ 890 return (1); 891 } 892 893 #ifdef INET 894 /* 895 * Set up a bind operation on a PCB, performing port allocation 896 * as required, but do not actually modify the PCB. Callers can 897 * either complete the bind by setting inp_laddr/inp_lport and 898 * calling in_pcbinshash(), or they can just use the resulting 899 * port and address to authorise the sending of a once-off packet. 900 * 901 * On error, the values of *laddrp and *lportp are not changed. 902 */ 903 int 904 in_pcbbind_setup(struct inpcb *inp, struct sockaddr_in *sin, in_addr_t *laddrp, 905 u_short *lportp, struct ucred *cred) 906 { 907 struct socket *so = inp->inp_socket; 908 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 909 struct in_addr laddr; 910 u_short lport = 0; 911 int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT); 912 int error; 913 914 /* 915 * XXX: Maybe we could let SO_REUSEPORT_LB set SO_REUSEPORT bit here 916 * so that we don't have to add to the (already messy) code below. 917 */ 918 int reuseport_lb = (so->so_options & SO_REUSEPORT_LB); 919 920 /* 921 * No state changes, so read locks are sufficient here. 922 */ 923 INP_LOCK_ASSERT(inp); 924 INP_HASH_LOCK_ASSERT(pcbinfo); 925 926 laddr.s_addr = *laddrp; 927 if (sin != NULL && laddr.s_addr != INADDR_ANY) 928 return (EINVAL); 929 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT|SO_REUSEPORT_LB)) == 0) 930 lookupflags = INPLOOKUP_WILDCARD; 931 if (sin == NULL) { 932 if ((error = prison_local_ip4(cred, &laddr)) != 0) 933 return (error); 934 } else { 935 KASSERT(sin->sin_family == AF_INET, 936 ("%s: invalid family for address %p", __func__, sin)); 937 KASSERT(sin->sin_len == sizeof(*sin), 938 ("%s: invalid length for address %p", __func__, sin)); 939 940 error = prison_local_ip4(cred, &sin->sin_addr); 941 if (error) 942 return (error); 943 if (sin->sin_port != *lportp) { 944 /* Don't allow the port to change. */ 945 if (*lportp != 0) 946 return (EINVAL); 947 lport = sin->sin_port; 948 } 949 /* NB: lport is left as 0 if the port isn't being changed. */ 950 if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { 951 /* 952 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; 953 * allow complete duplication of binding if 954 * SO_REUSEPORT is set, or if SO_REUSEADDR is set 955 * and a multicast address is bound on both 956 * new and duplicated sockets. 957 */ 958 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0) 959 reuseport = SO_REUSEADDR|SO_REUSEPORT; 960 /* 961 * XXX: How to deal with SO_REUSEPORT_LB here? 962 * Treat same as SO_REUSEPORT for now. 963 */ 964 if ((so->so_options & 965 (SO_REUSEADDR|SO_REUSEPORT_LB)) != 0) 966 reuseport_lb = SO_REUSEADDR|SO_REUSEPORT_LB; 967 } else if (sin->sin_addr.s_addr != INADDR_ANY) { 968 sin->sin_port = 0; /* yech... */ 969 bzero(&sin->sin_zero, sizeof(sin->sin_zero)); 970 /* 971 * Is the address a local IP address? 972 * If INP_BINDANY is set, then the socket may be bound 973 * to any endpoint address, local or not. 974 */ 975 if ((inp->inp_flags & INP_BINDANY) == 0 && 976 ifa_ifwithaddr_check((struct sockaddr *)sin) == 0) 977 return (EADDRNOTAVAIL); 978 } 979 laddr = sin->sin_addr; 980 if (lport) { 981 struct inpcb *t; 982 983 /* GROSS */ 984 if (ntohs(lport) <= V_ipport_reservedhigh && 985 ntohs(lport) >= V_ipport_reservedlow && 986 priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT)) 987 return (EACCES); 988 if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && 989 priv_check_cred(inp->inp_cred, PRIV_NETINET_REUSEPORT) != 0) { 990 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 991 lport, INPLOOKUP_WILDCARD, cred); 992 /* 993 * XXX 994 * This entire block sorely needs a rewrite. 995 */ 996 if (t && 997 ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 998 (so->so_type != SOCK_STREAM || 999 ntohl(t->inp_faddr.s_addr) == INADDR_ANY) && 1000 (ntohl(sin->sin_addr.s_addr) != INADDR_ANY || 1001 ntohl(t->inp_laddr.s_addr) != INADDR_ANY || 1002 (t->inp_flags2 & INP_REUSEPORT) || 1003 (t->inp_flags2 & INP_REUSEPORT_LB) == 0) && 1004 (inp->inp_cred->cr_uid != 1005 t->inp_cred->cr_uid)) 1006 return (EADDRINUSE); 1007 1008 /* 1009 * If the socket is a BINDMULTI socket, then 1010 * the credentials need to match and the 1011 * original socket also has to have been bound 1012 * with BINDMULTI. 1013 */ 1014 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 1015 return (EADDRINUSE); 1016 } 1017 t = in_pcblookup_local(pcbinfo, sin->sin_addr, 1018 lport, lookupflags, cred); 1019 if (t && ((inp->inp_flags2 & INP_BINDMULTI) == 0) && 1020 (reuseport & inp_so_options(t)) == 0 && 1021 (reuseport_lb & inp_so_options(t)) == 0) { 1022 #ifdef INET6 1023 if (ntohl(sin->sin_addr.s_addr) != 1024 INADDR_ANY || 1025 ntohl(t->inp_laddr.s_addr) != 1026 INADDR_ANY || 1027 (inp->inp_vflag & INP_IPV6PROTO) == 0 || 1028 (t->inp_vflag & INP_IPV6PROTO) == 0) 1029 #endif 1030 return (EADDRINUSE); 1031 if (t && (! in_pcbbind_check_bindmulti(inp, t))) 1032 return (EADDRINUSE); 1033 } 1034 } 1035 } 1036 if (*lportp != 0) 1037 lport = *lportp; 1038 if (lport == 0) { 1039 error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags); 1040 if (error != 0) 1041 return (error); 1042 } 1043 *laddrp = laddr.s_addr; 1044 *lportp = lport; 1045 return (0); 1046 } 1047 1048 /* 1049 * Connect from a socket to a specified address. 1050 * Both address and port must be specified in argument sin. 1051 * If don't have a local address for this socket yet, 1052 * then pick one. 1053 */ 1054 int 1055 in_pcbconnect(struct inpcb *inp, struct sockaddr_in *sin, struct ucred *cred, 1056 bool rehash) 1057 { 1058 u_short lport, fport; 1059 in_addr_t laddr, faddr; 1060 int anonport, error; 1061 1062 INP_WLOCK_ASSERT(inp); 1063 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1064 1065 lport = inp->inp_lport; 1066 laddr = inp->inp_laddr.s_addr; 1067 anonport = (lport == 0); 1068 error = in_pcbconnect_setup(inp, sin, &laddr, &lport, &faddr, &fport, 1069 cred); 1070 if (error) 1071 return (error); 1072 1073 /* Do the initial binding of the local address if required. */ 1074 if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) { 1075 KASSERT(rehash == true, 1076 ("Rehashing required for unbound inps")); 1077 inp->inp_lport = lport; 1078 inp->inp_laddr.s_addr = laddr; 1079 if (in_pcbinshash(inp) != 0) { 1080 inp->inp_laddr.s_addr = INADDR_ANY; 1081 inp->inp_lport = 0; 1082 return (EAGAIN); 1083 } 1084 } 1085 1086 /* Commit the remaining changes. */ 1087 inp->inp_lport = lport; 1088 inp->inp_laddr.s_addr = laddr; 1089 inp->inp_faddr.s_addr = faddr; 1090 inp->inp_fport = fport; 1091 if (rehash) { 1092 in_pcbrehash(inp); 1093 } else { 1094 in_pcbinshash(inp); 1095 } 1096 1097 if (anonport) 1098 inp->inp_flags |= INP_ANONPORT; 1099 return (0); 1100 } 1101 1102 /* 1103 * Do proper source address selection on an unbound socket in case 1104 * of connect. Take jails into account as well. 1105 */ 1106 int 1107 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr, 1108 struct ucred *cred) 1109 { 1110 struct ifaddr *ifa; 1111 struct sockaddr *sa; 1112 struct sockaddr_in *sin, dst; 1113 struct nhop_object *nh; 1114 int error; 1115 1116 NET_EPOCH_ASSERT(); 1117 KASSERT(laddr != NULL, ("%s: laddr NULL", __func__)); 1118 1119 /* 1120 * Bypass source address selection and use the primary jail IP 1121 * if requested. 1122 */ 1123 if (!prison_saddrsel_ip4(cred, laddr)) 1124 return (0); 1125 1126 error = 0; 1127 1128 nh = NULL; 1129 bzero(&dst, sizeof(dst)); 1130 sin = &dst; 1131 sin->sin_family = AF_INET; 1132 sin->sin_len = sizeof(struct sockaddr_in); 1133 sin->sin_addr.s_addr = faddr->s_addr; 1134 1135 /* 1136 * If route is known our src addr is taken from the i/f, 1137 * else punt. 1138 * 1139 * Find out route to destination. 1140 */ 1141 if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0) 1142 nh = fib4_lookup(inp->inp_inc.inc_fibnum, *faddr, 1143 0, NHR_NONE, 0); 1144 1145 /* 1146 * If we found a route, use the address corresponding to 1147 * the outgoing interface. 1148 * 1149 * Otherwise assume faddr is reachable on a directly connected 1150 * network and try to find a corresponding interface to take 1151 * the source address from. 1152 */ 1153 if (nh == NULL || nh->nh_ifp == NULL) { 1154 struct in_ifaddr *ia; 1155 struct ifnet *ifp; 1156 1157 ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin, 1158 inp->inp_socket->so_fibnum)); 1159 if (ia == NULL) { 1160 ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0, 1161 inp->inp_socket->so_fibnum)); 1162 } 1163 if (ia == NULL) { 1164 error = ENETUNREACH; 1165 goto done; 1166 } 1167 1168 if (!prison_flag(cred, PR_IP4)) { 1169 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1170 goto done; 1171 } 1172 1173 ifp = ia->ia_ifp; 1174 ia = NULL; 1175 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1176 sa = ifa->ifa_addr; 1177 if (sa->sa_family != AF_INET) 1178 continue; 1179 sin = (struct sockaddr_in *)sa; 1180 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1181 ia = (struct in_ifaddr *)ifa; 1182 break; 1183 } 1184 } 1185 if (ia != NULL) { 1186 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1187 goto done; 1188 } 1189 1190 /* 3. As a last resort return the 'default' jail address. */ 1191 error = prison_get_ip4(cred, laddr); 1192 goto done; 1193 } 1194 1195 /* 1196 * If the outgoing interface on the route found is not 1197 * a loopback interface, use the address from that interface. 1198 * In case of jails do those three steps: 1199 * 1. check if the interface address belongs to the jail. If so use it. 1200 * 2. check if we have any address on the outgoing interface 1201 * belonging to this jail. If so use it. 1202 * 3. as a last resort return the 'default' jail address. 1203 */ 1204 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) == 0) { 1205 struct in_ifaddr *ia; 1206 struct ifnet *ifp; 1207 1208 /* If not jailed, use the default returned. */ 1209 if (!prison_flag(cred, PR_IP4)) { 1210 ia = (struct in_ifaddr *)nh->nh_ifa; 1211 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1212 goto done; 1213 } 1214 1215 /* Jailed. */ 1216 /* 1. Check if the iface address belongs to the jail. */ 1217 sin = (struct sockaddr_in *)nh->nh_ifa->ifa_addr; 1218 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1219 ia = (struct in_ifaddr *)nh->nh_ifa; 1220 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1221 goto done; 1222 } 1223 1224 /* 1225 * 2. Check if we have any address on the outgoing interface 1226 * belonging to this jail. 1227 */ 1228 ia = NULL; 1229 ifp = nh->nh_ifp; 1230 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1231 sa = ifa->ifa_addr; 1232 if (sa->sa_family != AF_INET) 1233 continue; 1234 sin = (struct sockaddr_in *)sa; 1235 if (prison_check_ip4(cred, &sin->sin_addr) == 0) { 1236 ia = (struct in_ifaddr *)ifa; 1237 break; 1238 } 1239 } 1240 if (ia != NULL) { 1241 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1242 goto done; 1243 } 1244 1245 /* 3. As a last resort return the 'default' jail address. */ 1246 error = prison_get_ip4(cred, laddr); 1247 goto done; 1248 } 1249 1250 /* 1251 * The outgoing interface is marked with 'loopback net', so a route 1252 * to ourselves is here. 1253 * Try to find the interface of the destination address and then 1254 * take the address from there. That interface is not necessarily 1255 * a loopback interface. 1256 * In case of jails, check that it is an address of the jail 1257 * and if we cannot find, fall back to the 'default' jail address. 1258 */ 1259 if ((nh->nh_ifp->if_flags & IFF_LOOPBACK) != 0) { 1260 struct in_ifaddr *ia; 1261 1262 ia = ifatoia(ifa_ifwithdstaddr(sintosa(&dst), 1263 inp->inp_socket->so_fibnum)); 1264 if (ia == NULL) 1265 ia = ifatoia(ifa_ifwithnet(sintosa(&dst), 0, 1266 inp->inp_socket->so_fibnum)); 1267 if (ia == NULL) 1268 ia = ifatoia(ifa_ifwithaddr(sintosa(&dst))); 1269 1270 if (!prison_flag(cred, PR_IP4)) { 1271 if (ia == NULL) { 1272 error = ENETUNREACH; 1273 goto done; 1274 } 1275 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1276 goto done; 1277 } 1278 1279 /* Jailed. */ 1280 if (ia != NULL) { 1281 struct ifnet *ifp; 1282 1283 ifp = ia->ia_ifp; 1284 ia = NULL; 1285 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1286 sa = ifa->ifa_addr; 1287 if (sa->sa_family != AF_INET) 1288 continue; 1289 sin = (struct sockaddr_in *)sa; 1290 if (prison_check_ip4(cred, 1291 &sin->sin_addr) == 0) { 1292 ia = (struct in_ifaddr *)ifa; 1293 break; 1294 } 1295 } 1296 if (ia != NULL) { 1297 laddr->s_addr = ia->ia_addr.sin_addr.s_addr; 1298 goto done; 1299 } 1300 } 1301 1302 /* 3. As a last resort return the 'default' jail address. */ 1303 error = prison_get_ip4(cred, laddr); 1304 goto done; 1305 } 1306 1307 done: 1308 return (error); 1309 } 1310 1311 /* 1312 * Set up for a connect from a socket to the specified address. 1313 * On entry, *laddrp and *lportp should contain the current local 1314 * address and port for the PCB; these are updated to the values 1315 * that should be placed in inp_laddr and inp_lport to complete 1316 * the connect. 1317 * 1318 * On success, *faddrp and *fportp will be set to the remote address 1319 * and port. These are not updated in the error case. 1320 */ 1321 int 1322 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr_in *sin, 1323 in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp, 1324 struct ucred *cred) 1325 { 1326 struct in_ifaddr *ia; 1327 struct in_addr laddr, faddr; 1328 u_short lport, fport; 1329 int error; 1330 1331 KASSERT(sin->sin_family == AF_INET, 1332 ("%s: invalid address family for %p", __func__, sin)); 1333 KASSERT(sin->sin_len == sizeof(*sin), 1334 ("%s: invalid address length for %p", __func__, sin)); 1335 1336 /* 1337 * Because a global state change doesn't actually occur here, a read 1338 * lock is sufficient. 1339 */ 1340 NET_EPOCH_ASSERT(); 1341 INP_LOCK_ASSERT(inp); 1342 INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo); 1343 1344 if (sin->sin_port == 0) 1345 return (EADDRNOTAVAIL); 1346 laddr.s_addr = *laddrp; 1347 lport = *lportp; 1348 faddr = sin->sin_addr; 1349 fport = sin->sin_port; 1350 #ifdef ROUTE_MPATH 1351 if (CALC_FLOWID_OUTBOUND) { 1352 uint32_t hash_val, hash_type; 1353 1354 hash_val = fib4_calc_software_hash(laddr, faddr, 0, fport, 1355 inp->inp_socket->so_proto->pr_protocol, &hash_type); 1356 1357 inp->inp_flowid = hash_val; 1358 inp->inp_flowtype = hash_type; 1359 } 1360 #endif 1361 if (!CK_STAILQ_EMPTY(&V_in_ifaddrhead)) { 1362 /* 1363 * If the destination address is INADDR_ANY, 1364 * use the primary local address. 1365 * If the supplied address is INADDR_BROADCAST, 1366 * and the primary interface supports broadcast, 1367 * choose the broadcast address for that interface. 1368 */ 1369 if (faddr.s_addr == INADDR_ANY) { 1370 faddr = 1371 IA_SIN(CK_STAILQ_FIRST(&V_in_ifaddrhead))->sin_addr; 1372 if ((error = prison_get_ip4(cred, &faddr)) != 0) 1373 return (error); 1374 } else if (faddr.s_addr == (u_long)INADDR_BROADCAST) { 1375 if (CK_STAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags & 1376 IFF_BROADCAST) 1377 faddr = satosin(&CK_STAILQ_FIRST( 1378 &V_in_ifaddrhead)->ia_broadaddr)->sin_addr; 1379 } 1380 } 1381 if (laddr.s_addr == INADDR_ANY) { 1382 error = in_pcbladdr(inp, &faddr, &laddr, cred); 1383 /* 1384 * If the destination address is multicast and an outgoing 1385 * interface has been set as a multicast option, prefer the 1386 * address of that interface as our source address. 1387 */ 1388 if (IN_MULTICAST(ntohl(faddr.s_addr)) && 1389 inp->inp_moptions != NULL) { 1390 struct ip_moptions *imo; 1391 struct ifnet *ifp; 1392 1393 imo = inp->inp_moptions; 1394 if (imo->imo_multicast_ifp != NULL) { 1395 ifp = imo->imo_multicast_ifp; 1396 CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { 1397 if (ia->ia_ifp == ifp && 1398 prison_check_ip4(cred, 1399 &ia->ia_addr.sin_addr) == 0) 1400 break; 1401 } 1402 if (ia == NULL) 1403 error = EADDRNOTAVAIL; 1404 else { 1405 laddr = ia->ia_addr.sin_addr; 1406 error = 0; 1407 } 1408 } 1409 } 1410 if (error) 1411 return (error); 1412 } 1413 1414 if (lport != 0) { 1415 if (in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, 1416 fport, laddr, lport, 0, M_NODOM) != NULL) 1417 return (EADDRINUSE); 1418 } else { 1419 struct sockaddr_in lsin, fsin; 1420 1421 bzero(&lsin, sizeof(lsin)); 1422 bzero(&fsin, sizeof(fsin)); 1423 lsin.sin_family = AF_INET; 1424 lsin.sin_addr = laddr; 1425 fsin.sin_family = AF_INET; 1426 fsin.sin_addr = faddr; 1427 error = in_pcb_lport_dest(inp, (struct sockaddr *) &lsin, 1428 &lport, (struct sockaddr *)& fsin, fport, cred, 1429 INPLOOKUP_WILDCARD); 1430 if (error) 1431 return (error); 1432 } 1433 *laddrp = laddr.s_addr; 1434 *lportp = lport; 1435 *faddrp = faddr.s_addr; 1436 *fportp = fport; 1437 return (0); 1438 } 1439 1440 void 1441 in_pcbdisconnect(struct inpcb *inp) 1442 { 1443 1444 INP_WLOCK_ASSERT(inp); 1445 INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); 1446 1447 inp->inp_laddr.s_addr = INADDR_ANY; 1448 inp->inp_faddr.s_addr = INADDR_ANY; 1449 inp->inp_fport = 0; 1450 in_pcbrehash(inp); 1451 } 1452 #endif /* INET */ 1453 1454 /* 1455 * in_pcbdetach() is responsibe for disassociating a socket from an inpcb. 1456 * For most protocols, this will be invoked immediately prior to calling 1457 * in_pcbfree(). However, with TCP the inpcb may significantly outlive the 1458 * socket, in which case in_pcbfree() is deferred. 1459 */ 1460 void 1461 in_pcbdetach(struct inpcb *inp) 1462 { 1463 1464 KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__)); 1465 1466 #ifdef RATELIMIT 1467 if (inp->inp_snd_tag != NULL) 1468 in_pcbdetach_txrtlmt(inp); 1469 #endif 1470 inp->inp_socket->so_pcb = NULL; 1471 inp->inp_socket = NULL; 1472 } 1473 1474 /* 1475 * inpcb hash lookups are protected by SMR section. 1476 * 1477 * Once desired pcb has been found, switching from SMR section to a pcb 1478 * lock is performed with inp_smr_lock(). We can not use INP_(W|R)LOCK 1479 * here because SMR is a critical section. 1480 * In 99%+ cases inp_smr_lock() would obtain the lock immediately. 1481 */ 1482 static inline void 1483 inp_lock(struct inpcb *inp, const inp_lookup_t lock) 1484 { 1485 1486 lock == INPLOOKUP_RLOCKPCB ? 1487 rw_rlock(&inp->inp_lock) : rw_wlock(&inp->inp_lock); 1488 } 1489 1490 static inline void 1491 inp_unlock(struct inpcb *inp, const inp_lookup_t lock) 1492 { 1493 1494 lock == INPLOOKUP_RLOCKPCB ? 1495 rw_runlock(&inp->inp_lock) : rw_wunlock(&inp->inp_lock); 1496 } 1497 1498 static inline int 1499 inp_trylock(struct inpcb *inp, const inp_lookup_t lock) 1500 { 1501 1502 return (lock == INPLOOKUP_RLOCKPCB ? 1503 rw_try_rlock(&inp->inp_lock) : rw_try_wlock(&inp->inp_lock)); 1504 } 1505 1506 static inline bool 1507 in_pcbrele(struct inpcb *inp, const inp_lookup_t lock) 1508 { 1509 1510 return (lock == INPLOOKUP_RLOCKPCB ? 1511 in_pcbrele_rlocked(inp) : in_pcbrele_wlocked(inp)); 1512 } 1513 1514 static inline bool 1515 _inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock, const int ignflags) 1516 { 1517 1518 MPASS(lock == INPLOOKUP_RLOCKPCB || lock == INPLOOKUP_WLOCKPCB); 1519 SMR_ASSERT_ENTERED(inp->inp_pcbinfo->ipi_smr); 1520 1521 if (__predict_true(inp_trylock(inp, lock))) { 1522 if (__predict_false(inp->inp_flags & ignflags)) { 1523 smr_exit(inp->inp_pcbinfo->ipi_smr); 1524 inp_unlock(inp, lock); 1525 return (false); 1526 } 1527 smr_exit(inp->inp_pcbinfo->ipi_smr); 1528 return (true); 1529 } 1530 1531 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1532 smr_exit(inp->inp_pcbinfo->ipi_smr); 1533 inp_lock(inp, lock); 1534 if (__predict_false(in_pcbrele(inp, lock))) 1535 return (false); 1536 /* 1537 * inp acquired through refcount & lock for sure didn't went 1538 * through uma_zfree(). However, it may have already went 1539 * through in_pcbfree() and has another reference, that 1540 * prevented its release by our in_pcbrele(). 1541 */ 1542 if (__predict_false(inp->inp_flags & ignflags)) { 1543 inp_unlock(inp, lock); 1544 return (false); 1545 } 1546 return (true); 1547 } else { 1548 smr_exit(inp->inp_pcbinfo->ipi_smr); 1549 return (false); 1550 } 1551 } 1552 1553 bool 1554 inp_smr_lock(struct inpcb *inp, const inp_lookup_t lock) 1555 { 1556 1557 /* 1558 * in_pcblookup() family of functions ignore not only freed entries, 1559 * that may be found due to lockless access to the hash, but dropped 1560 * entries, too. 1561 */ 1562 return (_inp_smr_lock(inp, lock, INP_FREED | INP_DROPPED)); 1563 } 1564 1565 /* 1566 * inp_next() - inpcb hash/list traversal iterator 1567 * 1568 * Requires initialized struct inpcb_iterator for context. 1569 * The structure can be initialized with INP_ITERATOR() or INP_ALL_ITERATOR(). 1570 * 1571 * - Iterator can have either write-lock or read-lock semantics, that can not 1572 * be changed later. 1573 * - Iterator can iterate either over all pcbs list (INP_ALL_LIST), or through 1574 * a single hash slot. Note: only rip_input() does the latter. 1575 * - Iterator may have optional bool matching function. The matching function 1576 * will be executed for each inpcb in the SMR context, so it can not acquire 1577 * locks and can safely access only immutable fields of inpcb. 1578 * 1579 * A fresh initialized iterator has NULL inpcb in its context and that 1580 * means that inp_next() call would return the very first inpcb on the list 1581 * locked with desired semantic. In all following calls the context pointer 1582 * shall hold the current inpcb pointer. The KPI user is not supposed to 1583 * unlock the current inpcb! Upon end of traversal inp_next() will return NULL 1584 * and write NULL to its context. After end of traversal an iterator can be 1585 * reused. 1586 * 1587 * List traversals have the following features/constraints: 1588 * - New entries won't be seen, as they are always added to the head of a list. 1589 * - Removed entries won't stop traversal as long as they are not added to 1590 * a different list. This is violated by in_pcbrehash(). 1591 */ 1592 #define II_LIST_FIRST(ipi, hash) \ 1593 (((hash) == INP_ALL_LIST) ? \ 1594 CK_LIST_FIRST(&(ipi)->ipi_listhead) : \ 1595 CK_LIST_FIRST(&(ipi)->ipi_hashbase[(hash)])) 1596 #define II_LIST_NEXT(inp, hash) \ 1597 (((hash) == INP_ALL_LIST) ? \ 1598 CK_LIST_NEXT((inp), inp_list) : \ 1599 CK_LIST_NEXT((inp), inp_hash)) 1600 #define II_LOCK_ASSERT(inp, lock) \ 1601 rw_assert(&(inp)->inp_lock, \ 1602 (lock) == INPLOOKUP_RLOCKPCB ? RA_RLOCKED : RA_WLOCKED ) 1603 struct inpcb * 1604 inp_next(struct inpcb_iterator *ii) 1605 { 1606 const struct inpcbinfo *ipi = ii->ipi; 1607 inp_match_t *match = ii->match; 1608 void *ctx = ii->ctx; 1609 inp_lookup_t lock = ii->lock; 1610 int hash = ii->hash; 1611 struct inpcb *inp; 1612 1613 if (ii->inp == NULL) { /* First call. */ 1614 smr_enter(ipi->ipi_smr); 1615 /* This is unrolled CK_LIST_FOREACH(). */ 1616 for (inp = II_LIST_FIRST(ipi, hash); 1617 inp != NULL; 1618 inp = II_LIST_NEXT(inp, hash)) { 1619 if (match != NULL && (match)(inp, ctx) == false) 1620 continue; 1621 if (__predict_true(_inp_smr_lock(inp, lock, INP_FREED))) 1622 break; 1623 else { 1624 smr_enter(ipi->ipi_smr); 1625 MPASS(inp != II_LIST_FIRST(ipi, hash)); 1626 inp = II_LIST_FIRST(ipi, hash); 1627 if (inp == NULL) 1628 break; 1629 } 1630 } 1631 1632 if (inp == NULL) 1633 smr_exit(ipi->ipi_smr); 1634 else 1635 ii->inp = inp; 1636 1637 return (inp); 1638 } 1639 1640 /* Not a first call. */ 1641 smr_enter(ipi->ipi_smr); 1642 restart: 1643 inp = ii->inp; 1644 II_LOCK_ASSERT(inp, lock); 1645 next: 1646 inp = II_LIST_NEXT(inp, hash); 1647 if (inp == NULL) { 1648 smr_exit(ipi->ipi_smr); 1649 goto found; 1650 } 1651 1652 if (match != NULL && (match)(inp, ctx) == false) 1653 goto next; 1654 1655 if (__predict_true(inp_trylock(inp, lock))) { 1656 if (__predict_false(inp->inp_flags & INP_FREED)) { 1657 /* 1658 * Entries are never inserted in middle of a list, thus 1659 * as long as we are in SMR, we can continue traversal. 1660 * Jump to 'restart' should yield in the same result, 1661 * but could produce unnecessary looping. Could this 1662 * looping be unbound? 1663 */ 1664 inp_unlock(inp, lock); 1665 goto next; 1666 } else { 1667 smr_exit(ipi->ipi_smr); 1668 goto found; 1669 } 1670 } 1671 1672 /* 1673 * Can't obtain lock immediately, thus going hard. Once we exit the 1674 * SMR section we can no longer jump to 'next', and our only stable 1675 * anchoring point is ii->inp, which we keep locked for this case, so 1676 * we jump to 'restart'. 1677 */ 1678 if (__predict_true(refcount_acquire_if_not_zero(&inp->inp_refcount))) { 1679 smr_exit(ipi->ipi_smr); 1680 inp_lock(inp, lock); 1681 if (__predict_false(in_pcbrele(inp, lock))) { 1682 smr_enter(ipi->ipi_smr); 1683 goto restart; 1684 } 1685 /* 1686 * See comment in inp_smr_lock(). 1687 */ 1688 if (__predict_false(inp->inp_flags & INP_FREED)) { 1689 inp_unlock(inp, lock); 1690 smr_enter(ipi->ipi_smr); 1691 goto restart; 1692 } 1693 } else 1694 goto next; 1695 1696 found: 1697 inp_unlock(ii->inp, lock); 1698 ii->inp = inp; 1699 1700 return (ii->inp); 1701 } 1702 1703 /* 1704 * in_pcbref() bumps the reference count on an inpcb in order to maintain 1705 * stability of an inpcb pointer despite the inpcb lock being released or 1706 * SMR section exited. 1707 * 1708 * To free a reference later in_pcbrele_(r|w)locked() must be performed. 1709 */ 1710 void 1711 in_pcbref(struct inpcb *inp) 1712 { 1713 u_int old __diagused; 1714 1715 old = refcount_acquire(&inp->inp_refcount); 1716 KASSERT(old > 0, ("%s: refcount 0", __func__)); 1717 } 1718 1719 /* 1720 * Drop a refcount on an inpcb elevated using in_pcbref(), potentially 1721 * freeing the pcb, if the reference was very last. 1722 */ 1723 bool 1724 in_pcbrele_rlocked(struct inpcb *inp) 1725 { 1726 1727 INP_RLOCK_ASSERT(inp); 1728 1729 if (!refcount_release(&inp->inp_refcount)) 1730 return (false); 1731 1732 MPASS(inp->inp_flags & INP_FREED); 1733 MPASS(inp->inp_socket == NULL); 1734 MPASS(inp->inp_in_hpts == 0); 1735 INP_RUNLOCK(inp); 1736 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1737 return (true); 1738 } 1739 1740 bool 1741 in_pcbrele_wlocked(struct inpcb *inp) 1742 { 1743 1744 INP_WLOCK_ASSERT(inp); 1745 1746 if (!refcount_release(&inp->inp_refcount)) 1747 return (false); 1748 1749 MPASS(inp->inp_flags & INP_FREED); 1750 MPASS(inp->inp_socket == NULL); 1751 MPASS(inp->inp_in_hpts == 0); 1752 INP_WUNLOCK(inp); 1753 uma_zfree_smr(inp->inp_pcbinfo->ipi_zone, inp); 1754 return (true); 1755 } 1756 1757 /* 1758 * Unconditionally schedule an inpcb to be freed by decrementing its 1759 * reference count, which should occur only after the inpcb has been detached 1760 * from its socket. If another thread holds a temporary reference (acquired 1761 * using in_pcbref()) then the free is deferred until that reference is 1762 * released using in_pcbrele_(r|w)locked(), but the inpcb is still unlocked. 1763 * Almost all work, including removal from global lists, is done in this 1764 * context, where the pcbinfo lock is held. 1765 */ 1766 void 1767 in_pcbfree(struct inpcb *inp) 1768 { 1769 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 1770 #ifdef INET 1771 struct ip_moptions *imo; 1772 #endif 1773 #ifdef INET6 1774 struct ip6_moptions *im6o; 1775 #endif 1776 1777 INP_WLOCK_ASSERT(inp); 1778 KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__)); 1779 KASSERT((inp->inp_flags & INP_FREED) == 0, 1780 ("%s: called twice for pcb %p", __func__, inp)); 1781 1782 inp->inp_flags |= INP_FREED; 1783 INP_INFO_WLOCK(pcbinfo); 1784 inp->inp_gencnt = ++pcbinfo->ipi_gencnt; 1785 pcbinfo->ipi_count--; 1786 CK_LIST_REMOVE(inp, inp_list); 1787 INP_INFO_WUNLOCK(pcbinfo); 1788 1789 if (inp->inp_flags & INP_INHASHLIST) 1790 in_pcbremhash(inp); 1791 1792 RO_INVALIDATE_CACHE(&inp->inp_route); 1793 #ifdef MAC 1794 mac_inpcb_destroy(inp); 1795 #endif 1796 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 1797 if (inp->inp_sp != NULL) 1798 ipsec_delete_pcbpolicy(inp); 1799 #endif 1800 #ifdef INET 1801 if (inp->inp_options) 1802 (void)m_free(inp->inp_options); 1803 imo = inp->inp_moptions; 1804 #endif 1805 #ifdef INET6 1806 if (inp->inp_vflag & INP_IPV6PROTO) { 1807 ip6_freepcbopts(inp->in6p_outputopts); 1808 im6o = inp->in6p_moptions; 1809 } else 1810 im6o = NULL; 1811 #endif 1812 1813 if (__predict_false(in_pcbrele_wlocked(inp) == false)) { 1814 INP_WUNLOCK(inp); 1815 } 1816 #ifdef INET6 1817 ip6_freemoptions(im6o); 1818 #endif 1819 #ifdef INET 1820 inp_freemoptions(imo); 1821 #endif 1822 /* Destruction is finalized in inpcb_dtor(). */ 1823 } 1824 1825 static void 1826 inpcb_dtor(void *mem, int size, void *arg) 1827 { 1828 struct inpcb *inp = mem; 1829 1830 crfree(inp->inp_cred); 1831 #ifdef INVARIANTS 1832 inp->inp_cred = NULL; 1833 #endif 1834 } 1835 1836 /* 1837 * Different protocols initialize their inpcbs differently - giving 1838 * different name to the lock. But they all are disposed the same. 1839 */ 1840 static void 1841 inpcb_fini(void *mem, int size) 1842 { 1843 struct inpcb *inp = mem; 1844 1845 INP_LOCK_DESTROY(inp); 1846 } 1847 1848 /* 1849 * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and 1850 * port reservation, and preventing it from being returned by inpcb lookups. 1851 * 1852 * It is used by TCP to mark an inpcb as unused and avoid future packet 1853 * delivery or event notification when a socket remains open but TCP has 1854 * closed. This might occur as a result of a shutdown()-initiated TCP close 1855 * or a RST on the wire, and allows the port binding to be reused while still 1856 * maintaining the invariant that so_pcb always points to a valid inpcb until 1857 * in_pcbdetach(). 1858 * 1859 * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by 1860 * in_pcbnotifyall() and in_pcbpurgeif0()? 1861 */ 1862 void 1863 in_pcbdrop(struct inpcb *inp) 1864 { 1865 1866 INP_WLOCK_ASSERT(inp); 1867 #ifdef INVARIANTS 1868 if (inp->inp_socket != NULL && inp->inp_ppcb != NULL) 1869 MPASS(inp->inp_refcount > 1); 1870 #endif 1871 1872 inp->inp_flags |= INP_DROPPED; 1873 if (inp->inp_flags & INP_INHASHLIST) 1874 in_pcbremhash(inp); 1875 } 1876 1877 #ifdef INET 1878 /* 1879 * Common routines to return the socket addresses associated with inpcbs. 1880 */ 1881 struct sockaddr * 1882 in_sockaddr(in_port_t port, struct in_addr *addr_p) 1883 { 1884 struct sockaddr_in *sin; 1885 1886 sin = malloc(sizeof *sin, M_SONAME, 1887 M_WAITOK | M_ZERO); 1888 sin->sin_family = AF_INET; 1889 sin->sin_len = sizeof(*sin); 1890 sin->sin_addr = *addr_p; 1891 sin->sin_port = port; 1892 1893 return (struct sockaddr *)sin; 1894 } 1895 1896 int 1897 in_getsockaddr(struct socket *so, struct sockaddr **nam) 1898 { 1899 struct inpcb *inp; 1900 struct in_addr addr; 1901 in_port_t port; 1902 1903 inp = sotoinpcb(so); 1904 KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL")); 1905 1906 INP_RLOCK(inp); 1907 port = inp->inp_lport; 1908 addr = inp->inp_laddr; 1909 INP_RUNLOCK(inp); 1910 1911 *nam = in_sockaddr(port, &addr); 1912 return 0; 1913 } 1914 1915 int 1916 in_getpeeraddr(struct socket *so, struct sockaddr **nam) 1917 { 1918 struct inpcb *inp; 1919 struct in_addr addr; 1920 in_port_t port; 1921 1922 inp = sotoinpcb(so); 1923 KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL")); 1924 1925 INP_RLOCK(inp); 1926 port = inp->inp_fport; 1927 addr = inp->inp_faddr; 1928 INP_RUNLOCK(inp); 1929 1930 *nam = in_sockaddr(port, &addr); 1931 return 0; 1932 } 1933 1934 void 1935 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno, 1936 struct inpcb *(*notify)(struct inpcb *, int)) 1937 { 1938 struct inpcb *inp, *inp_temp; 1939 1940 INP_INFO_WLOCK(pcbinfo); 1941 CK_LIST_FOREACH_SAFE(inp, &pcbinfo->ipi_listhead, inp_list, inp_temp) { 1942 INP_WLOCK(inp); 1943 #ifdef INET6 1944 if ((inp->inp_vflag & INP_IPV4) == 0) { 1945 INP_WUNLOCK(inp); 1946 continue; 1947 } 1948 #endif 1949 if (inp->inp_faddr.s_addr != faddr.s_addr || 1950 inp->inp_socket == NULL) { 1951 INP_WUNLOCK(inp); 1952 continue; 1953 } 1954 if ((*notify)(inp, errno)) 1955 INP_WUNLOCK(inp); 1956 } 1957 INP_INFO_WUNLOCK(pcbinfo); 1958 } 1959 1960 static bool 1961 inp_v4_multi_match(const struct inpcb *inp, void *v __unused) 1962 { 1963 1964 if ((inp->inp_vflag & INP_IPV4) && inp->inp_moptions != NULL) 1965 return (true); 1966 else 1967 return (false); 1968 } 1969 1970 void 1971 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp) 1972 { 1973 struct inpcb_iterator inpi = INP_ITERATOR(pcbinfo, INPLOOKUP_WLOCKPCB, 1974 inp_v4_multi_match, NULL); 1975 struct inpcb *inp; 1976 struct in_multi *inm; 1977 struct in_mfilter *imf; 1978 struct ip_moptions *imo; 1979 1980 IN_MULTI_LOCK_ASSERT(); 1981 1982 while ((inp = inp_next(&inpi)) != NULL) { 1983 INP_WLOCK_ASSERT(inp); 1984 1985 imo = inp->inp_moptions; 1986 /* 1987 * Unselect the outgoing interface if it is being 1988 * detached. 1989 */ 1990 if (imo->imo_multicast_ifp == ifp) 1991 imo->imo_multicast_ifp = NULL; 1992 1993 /* 1994 * Drop multicast group membership if we joined 1995 * through the interface being detached. 1996 * 1997 * XXX This can all be deferred to an epoch_call 1998 */ 1999 restart: 2000 IP_MFILTER_FOREACH(imf, &imo->imo_head) { 2001 if ((inm = imf->imf_inm) == NULL) 2002 continue; 2003 if (inm->inm_ifp != ifp) 2004 continue; 2005 ip_mfilter_remove(&imo->imo_head, imf); 2006 in_leavegroup_locked(inm, NULL); 2007 ip_mfilter_free(imf); 2008 goto restart; 2009 } 2010 } 2011 } 2012 2013 /* 2014 * Lookup a PCB based on the local address and port. Caller must hold the 2015 * hash lock. No inpcb locks or references are acquired. 2016 */ 2017 #define INP_LOOKUP_MAPPED_PCB_COST 3 2018 struct inpcb * 2019 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr, 2020 u_short lport, int lookupflags, struct ucred *cred) 2021 { 2022 struct inpcb *inp; 2023 #ifdef INET6 2024 int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST; 2025 #else 2026 int matchwild = 3; 2027 #endif 2028 int wildcard; 2029 2030 KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0, 2031 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2032 INP_HASH_LOCK_ASSERT(pcbinfo); 2033 2034 if ((lookupflags & INPLOOKUP_WILDCARD) == 0) { 2035 struct inpcbhead *head; 2036 /* 2037 * Look for an unconnected (wildcard foreign addr) PCB that 2038 * matches the local address and port we're looking for. 2039 */ 2040 head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport, 2041 pcbinfo->ipi_hashmask)]; 2042 CK_LIST_FOREACH(inp, head, inp_hash) { 2043 #ifdef INET6 2044 /* XXX inp locking */ 2045 if ((inp->inp_vflag & INP_IPV4) == 0) 2046 continue; 2047 #endif 2048 if (inp->inp_faddr.s_addr == INADDR_ANY && 2049 inp->inp_laddr.s_addr == laddr.s_addr && 2050 inp->inp_lport == lport) { 2051 /* 2052 * Found? 2053 */ 2054 if (prison_equal_ip4(cred->cr_prison, 2055 inp->inp_cred->cr_prison)) 2056 return (inp); 2057 } 2058 } 2059 /* 2060 * Not found. 2061 */ 2062 return (NULL); 2063 } else { 2064 struct inpcbporthead *porthash; 2065 struct inpcbport *phd; 2066 struct inpcb *match = NULL; 2067 /* 2068 * Best fit PCB lookup. 2069 * 2070 * First see if this local port is in use by looking on the 2071 * port hash list. 2072 */ 2073 porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport, 2074 pcbinfo->ipi_porthashmask)]; 2075 CK_LIST_FOREACH(phd, porthash, phd_hash) { 2076 if (phd->phd_port == lport) 2077 break; 2078 } 2079 if (phd != NULL) { 2080 /* 2081 * Port is in use by one or more PCBs. Look for best 2082 * fit. 2083 */ 2084 CK_LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { 2085 wildcard = 0; 2086 if (!prison_equal_ip4(inp->inp_cred->cr_prison, 2087 cred->cr_prison)) 2088 continue; 2089 #ifdef INET6 2090 /* XXX inp locking */ 2091 if ((inp->inp_vflag & INP_IPV4) == 0) 2092 continue; 2093 /* 2094 * We never select the PCB that has 2095 * INP_IPV6 flag and is bound to :: if 2096 * we have another PCB which is bound 2097 * to 0.0.0.0. If a PCB has the 2098 * INP_IPV6 flag, then we set its cost 2099 * higher than IPv4 only PCBs. 2100 * 2101 * Note that the case only happens 2102 * when a socket is bound to ::, under 2103 * the condition that the use of the 2104 * mapped address is allowed. 2105 */ 2106 if ((inp->inp_vflag & INP_IPV6) != 0) 2107 wildcard += INP_LOOKUP_MAPPED_PCB_COST; 2108 #endif 2109 if (inp->inp_faddr.s_addr != INADDR_ANY) 2110 wildcard++; 2111 if (inp->inp_laddr.s_addr != INADDR_ANY) { 2112 if (laddr.s_addr == INADDR_ANY) 2113 wildcard++; 2114 else if (inp->inp_laddr.s_addr != laddr.s_addr) 2115 continue; 2116 } else { 2117 if (laddr.s_addr != INADDR_ANY) 2118 wildcard++; 2119 } 2120 if (wildcard < matchwild) { 2121 match = inp; 2122 matchwild = wildcard; 2123 if (matchwild == 0) 2124 break; 2125 } 2126 } 2127 } 2128 return (match); 2129 } 2130 } 2131 #undef INP_LOOKUP_MAPPED_PCB_COST 2132 2133 static bool 2134 in_pcblookup_lb_numa_match(const struct inpcblbgroup *grp, int domain) 2135 { 2136 return (domain == M_NODOM || domain == grp->il_numa_domain); 2137 } 2138 2139 static struct inpcb * 2140 in_pcblookup_lbgroup(const struct inpcbinfo *pcbinfo, 2141 const struct in_addr *faddr, uint16_t fport, const struct in_addr *laddr, 2142 uint16_t lport, int domain) 2143 { 2144 const struct inpcblbgrouphead *hdr; 2145 struct inpcblbgroup *grp; 2146 struct inpcblbgroup *jail_exact, *jail_wild, *local_exact, *local_wild; 2147 2148 INP_HASH_LOCK_ASSERT(pcbinfo); 2149 2150 hdr = &pcbinfo->ipi_lbgrouphashbase[ 2151 INP_PCBPORTHASH(lport, pcbinfo->ipi_lbgrouphashmask)]; 2152 2153 /* 2154 * Search for an LB group match based on the following criteria: 2155 * - prefer jailed groups to non-jailed groups 2156 * - prefer exact source address matches to wildcard matches 2157 * - prefer groups bound to the specified NUMA domain 2158 */ 2159 jail_exact = jail_wild = local_exact = local_wild = NULL; 2160 CK_LIST_FOREACH(grp, hdr, il_list) { 2161 bool injail; 2162 2163 #ifdef INET6 2164 if (!(grp->il_vflag & INP_IPV4)) 2165 continue; 2166 #endif 2167 if (grp->il_lport != lport) 2168 continue; 2169 2170 injail = prison_flag(grp->il_cred, PR_IP4) != 0; 2171 if (injail && prison_check_ip4_locked(grp->il_cred->cr_prison, 2172 laddr) != 0) 2173 continue; 2174 2175 if (grp->il_laddr.s_addr == laddr->s_addr) { 2176 if (injail) { 2177 jail_exact = grp; 2178 if (in_pcblookup_lb_numa_match(grp, domain)) 2179 /* This is a perfect match. */ 2180 goto out; 2181 } else if (local_exact == NULL || 2182 in_pcblookup_lb_numa_match(grp, domain)) { 2183 local_exact = grp; 2184 } 2185 } else if (grp->il_laddr.s_addr == INADDR_ANY) { 2186 if (injail) { 2187 if (jail_wild == NULL || 2188 in_pcblookup_lb_numa_match(grp, domain)) 2189 jail_wild = grp; 2190 } else if (local_wild == NULL || 2191 in_pcblookup_lb_numa_match(grp, domain)) { 2192 local_wild = grp; 2193 } 2194 } 2195 } 2196 2197 if (jail_exact != NULL) 2198 grp = jail_exact; 2199 else if (jail_wild != NULL) 2200 grp = jail_wild; 2201 else if (local_exact != NULL) 2202 grp = local_exact; 2203 else 2204 grp = local_wild; 2205 if (grp == NULL) 2206 return (NULL); 2207 out: 2208 return (grp->il_inp[INP_PCBLBGROUP_PKTHASH(faddr, lport, fport) % 2209 grp->il_inpcnt]); 2210 } 2211 2212 static struct inpcb * 2213 in_pcblookup_hash_exact(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2214 u_short fport, struct in_addr laddr, u_short lport) 2215 { 2216 struct inpcbhead *head; 2217 struct inpcb *inp, *match; 2218 2219 INP_HASH_LOCK_ASSERT(pcbinfo); 2220 2221 match = NULL; 2222 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&faddr, lport, fport, 2223 pcbinfo->ipi_hashmask)]; 2224 CK_LIST_FOREACH(inp, head, inp_hash) { 2225 #ifdef INET6 2226 /* XXX inp locking */ 2227 if ((inp->inp_vflag & INP_IPV4) == 0) 2228 continue; 2229 #endif 2230 if (inp->inp_faddr.s_addr == faddr.s_addr && 2231 inp->inp_laddr.s_addr == laddr.s_addr && 2232 inp->inp_fport == fport && 2233 inp->inp_lport == lport) 2234 return (inp); 2235 } 2236 return (match); 2237 } 2238 2239 static struct inpcb * 2240 in_pcblookup_hash_wild_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2241 u_short fport, struct in_addr laddr, u_short lport) 2242 { 2243 struct inpcbhead *head; 2244 struct inpcb *inp, *local_wild, *local_exact, *jail_wild; 2245 #ifdef INET6 2246 struct inpcb *local_wild_mapped; 2247 #endif 2248 2249 INP_HASH_LOCK_ASSERT(pcbinfo); 2250 2251 /* 2252 * Order of socket selection - we always prefer jails. 2253 * 1. jailed, non-wild. 2254 * 2. jailed, wild. 2255 * 3. non-jailed, non-wild. 2256 * 4. non-jailed, wild. 2257 */ 2258 head = &pcbinfo->ipi_hashbase[INP_PCBHASH_WILD(lport, 2259 pcbinfo->ipi_hashmask)]; 2260 local_wild = local_exact = jail_wild = NULL; 2261 #ifdef INET6 2262 local_wild_mapped = NULL; 2263 #endif 2264 CK_LIST_FOREACH(inp, head, inp_hash) { 2265 bool injail; 2266 2267 #ifdef INET6 2268 /* XXX inp locking */ 2269 if ((inp->inp_vflag & INP_IPV4) == 0) 2270 continue; 2271 #endif 2272 if (inp->inp_faddr.s_addr != INADDR_ANY || 2273 inp->inp_lport != lport) 2274 continue; 2275 2276 injail = prison_flag(inp->inp_cred, PR_IP4) != 0; 2277 if (injail) { 2278 if (prison_check_ip4_locked(inp->inp_cred->cr_prison, 2279 &laddr) != 0) 2280 continue; 2281 } else { 2282 if (local_exact != NULL) 2283 continue; 2284 } 2285 2286 if (inp->inp_laddr.s_addr == laddr.s_addr) { 2287 if (injail) 2288 return (inp); 2289 local_exact = inp; 2290 } else if (inp->inp_laddr.s_addr == INADDR_ANY) { 2291 #ifdef INET6 2292 /* XXX inp locking, NULL check */ 2293 if (inp->inp_vflag & INP_IPV6PROTO) 2294 local_wild_mapped = inp; 2295 else 2296 #endif 2297 if (injail) 2298 jail_wild = inp; 2299 else 2300 local_wild = inp; 2301 } 2302 } 2303 if (jail_wild != NULL) 2304 return (jail_wild); 2305 if (local_exact != NULL) 2306 return (local_exact); 2307 if (local_wild != NULL) 2308 return (local_wild); 2309 #ifdef INET6 2310 if (local_wild_mapped != NULL) 2311 return (local_wild_mapped); 2312 #endif 2313 return (NULL); 2314 } 2315 2316 /* 2317 * Lookup PCB in hash list, using pcbinfo tables. This variation assumes 2318 * that the caller has either locked the hash list, which usually happens 2319 * for bind(2) operations, or is in SMR section, which happens when sorting 2320 * out incoming packets. 2321 */ 2322 static struct inpcb * 2323 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2324 u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags, 2325 uint8_t numa_domain) 2326 { 2327 struct inpcb *inp; 2328 const u_short fport = fport_arg, lport = lport_arg; 2329 2330 KASSERT((lookupflags & ~INPLOOKUP_WILDCARD) == 0, 2331 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2332 KASSERT(faddr.s_addr != INADDR_ANY, 2333 ("%s: invalid foreign address", __func__)); 2334 KASSERT(laddr.s_addr != INADDR_ANY, 2335 ("%s: invalid local address", __func__)); 2336 INP_HASH_LOCK_ASSERT(pcbinfo); 2337 2338 inp = in_pcblookup_hash_exact(pcbinfo, faddr, fport, laddr, lport); 2339 if (inp != NULL) 2340 return (inp); 2341 2342 if ((lookupflags & INPLOOKUP_WILDCARD) != 0) { 2343 inp = in_pcblookup_lbgroup(pcbinfo, &faddr, fport, &laddr, 2344 lport, numa_domain); 2345 if (inp == NULL) { 2346 inp = in_pcblookup_hash_wild_locked(pcbinfo, faddr, 2347 fport, laddr, lport); 2348 } 2349 } 2350 2351 return (inp); 2352 } 2353 2354 static struct inpcb * 2355 in_pcblookup_hash_smr(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2356 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2357 uint8_t numa_domain) 2358 { 2359 struct inpcb *inp; 2360 2361 KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0, 2362 ("%s: invalid lookup flags %d", __func__, lookupflags)); 2363 KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0, 2364 ("%s: LOCKPCB not set", __func__)); 2365 2366 smr_enter(pcbinfo->ipi_smr); 2367 inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport, 2368 lookupflags & INPLOOKUP_WILDCARD, numa_domain); 2369 if (inp != NULL) { 2370 if (__predict_false(inp_smr_lock(inp, 2371 (lookupflags & INPLOOKUP_LOCKMASK)) == false)) 2372 inp = NULL; 2373 } else 2374 smr_exit(pcbinfo->ipi_smr); 2375 2376 return (inp); 2377 } 2378 2379 /* 2380 * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf 2381 * from which a pre-calculated hash value may be extracted. 2382 */ 2383 struct inpcb * 2384 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport, 2385 struct in_addr laddr, u_int lport, int lookupflags, 2386 struct ifnet *ifp __unused) 2387 { 2388 return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport, 2389 lookupflags, M_NODOM)); 2390 } 2391 2392 struct inpcb * 2393 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr, 2394 u_int fport, struct in_addr laddr, u_int lport, int lookupflags, 2395 struct ifnet *ifp __unused, struct mbuf *m) 2396 { 2397 return (in_pcblookup_hash_smr(pcbinfo, faddr, fport, laddr, lport, 2398 lookupflags, m->m_pkthdr.numa_domain)); 2399 } 2400 #endif /* INET */ 2401 2402 /* 2403 * Insert PCB onto various hash lists. 2404 */ 2405 int 2406 in_pcbinshash(struct inpcb *inp) 2407 { 2408 struct inpcbhead *pcbhash; 2409 struct inpcbporthead *pcbporthash; 2410 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2411 struct inpcbport *phd; 2412 2413 INP_WLOCK_ASSERT(inp); 2414 INP_HASH_WLOCK_ASSERT(pcbinfo); 2415 2416 KASSERT((inp->inp_flags & INP_INHASHLIST) == 0, 2417 ("in_pcbinshash: INP_INHASHLIST")); 2418 2419 #ifdef INET6 2420 if (inp->inp_vflag & INP_IPV6) 2421 pcbhash = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr, 2422 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2423 else 2424 #endif 2425 pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr, 2426 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2427 2428 pcbporthash = &pcbinfo->ipi_porthashbase[ 2429 INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)]; 2430 2431 /* 2432 * Add entry to load balance group. 2433 * Only do this if SO_REUSEPORT_LB is set. 2434 */ 2435 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) { 2436 int error = in_pcbinslbgrouphash(inp, M_NODOM); 2437 if (error != 0) 2438 return (error); 2439 } 2440 2441 /* 2442 * Go through port list and look for a head for this lport. 2443 */ 2444 CK_LIST_FOREACH(phd, pcbporthash, phd_hash) { 2445 if (phd->phd_port == inp->inp_lport) 2446 break; 2447 } 2448 2449 /* 2450 * If none exists, malloc one and tack it on. 2451 */ 2452 if (phd == NULL) { 2453 phd = uma_zalloc_smr(pcbinfo->ipi_portzone, M_NOWAIT); 2454 if (phd == NULL) { 2455 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 2456 in_pcbremlbgrouphash(inp); 2457 return (ENOMEM); 2458 } 2459 phd->phd_port = inp->inp_lport; 2460 CK_LIST_INIT(&phd->phd_pcblist); 2461 CK_LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); 2462 } 2463 inp->inp_phd = phd; 2464 CK_LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); 2465 CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); 2466 inp->inp_flags |= INP_INHASHLIST; 2467 2468 return (0); 2469 } 2470 2471 static void 2472 in_pcbremhash(struct inpcb *inp) 2473 { 2474 struct inpcbport *phd = inp->inp_phd; 2475 2476 INP_WLOCK_ASSERT(inp); 2477 MPASS(inp->inp_flags & INP_INHASHLIST); 2478 2479 INP_HASH_WLOCK(inp->inp_pcbinfo); 2480 if ((inp->inp_flags2 & INP_REUSEPORT_LB) != 0) 2481 in_pcbremlbgrouphash(inp); 2482 CK_LIST_REMOVE(inp, inp_hash); 2483 CK_LIST_REMOVE(inp, inp_portlist); 2484 if (CK_LIST_FIRST(&phd->phd_pcblist) == NULL) { 2485 CK_LIST_REMOVE(phd, phd_hash); 2486 uma_zfree_smr(inp->inp_pcbinfo->ipi_portzone, phd); 2487 } 2488 INP_HASH_WUNLOCK(inp->inp_pcbinfo); 2489 inp->inp_flags &= ~INP_INHASHLIST; 2490 } 2491 2492 /* 2493 * Move PCB to the proper hash bucket when { faddr, fport } have been 2494 * changed. NOTE: This does not handle the case of the lport changing (the 2495 * hashed port list would have to be updated as well), so the lport must 2496 * not change after in_pcbinshash() has been called. 2497 * 2498 * XXXGL: a race between this function and SMR-protected hash iterator 2499 * will lead to iterator traversing a possibly wrong hash list. However, 2500 * this race should have been here since change from rwlock to epoch. 2501 */ 2502 void 2503 in_pcbrehash(struct inpcb *inp) 2504 { 2505 struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; 2506 struct inpcbhead *head; 2507 2508 INP_WLOCK_ASSERT(inp); 2509 INP_HASH_WLOCK_ASSERT(pcbinfo); 2510 2511 KASSERT(inp->inp_flags & INP_INHASHLIST, 2512 ("in_pcbrehash: !INP_INHASHLIST")); 2513 2514 #ifdef INET6 2515 if (inp->inp_vflag & INP_IPV6) 2516 head = &pcbinfo->ipi_hashbase[INP6_PCBHASH(&inp->in6p_faddr, 2517 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2518 else 2519 #endif 2520 head = &pcbinfo->ipi_hashbase[INP_PCBHASH(&inp->inp_faddr, 2521 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)]; 2522 2523 CK_LIST_REMOVE(inp, inp_hash); 2524 CK_LIST_INSERT_HEAD(head, inp, inp_hash); 2525 } 2526 2527 /* 2528 * Check for alternatives when higher level complains 2529 * about service problems. For now, invalidate cached 2530 * routing information. If the route was created dynamically 2531 * (by a redirect), time to try a default gateway again. 2532 */ 2533 void 2534 in_losing(struct inpcb *inp) 2535 { 2536 2537 RO_INVALIDATE_CACHE(&inp->inp_route); 2538 return; 2539 } 2540 2541 /* 2542 * A set label operation has occurred at the socket layer, propagate the 2543 * label change into the in_pcb for the socket. 2544 */ 2545 void 2546 in_pcbsosetlabel(struct socket *so) 2547 { 2548 #ifdef MAC 2549 struct inpcb *inp; 2550 2551 inp = sotoinpcb(so); 2552 KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL")); 2553 2554 INP_WLOCK(inp); 2555 SOCK_LOCK(so); 2556 mac_inpcb_sosetlabel(so, inp); 2557 SOCK_UNLOCK(so); 2558 INP_WUNLOCK(inp); 2559 #endif 2560 } 2561 2562 void 2563 inp_wlock(struct inpcb *inp) 2564 { 2565 2566 INP_WLOCK(inp); 2567 } 2568 2569 void 2570 inp_wunlock(struct inpcb *inp) 2571 { 2572 2573 INP_WUNLOCK(inp); 2574 } 2575 2576 void 2577 inp_rlock(struct inpcb *inp) 2578 { 2579 2580 INP_RLOCK(inp); 2581 } 2582 2583 void 2584 inp_runlock(struct inpcb *inp) 2585 { 2586 2587 INP_RUNLOCK(inp); 2588 } 2589 2590 #ifdef INVARIANT_SUPPORT 2591 void 2592 inp_lock_assert(struct inpcb *inp) 2593 { 2594 2595 INP_WLOCK_ASSERT(inp); 2596 } 2597 2598 void 2599 inp_unlock_assert(struct inpcb *inp) 2600 { 2601 2602 INP_UNLOCK_ASSERT(inp); 2603 } 2604 #endif 2605 2606 void 2607 inp_apply_all(struct inpcbinfo *pcbinfo, 2608 void (*func)(struct inpcb *, void *), void *arg) 2609 { 2610 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, 2611 INPLOOKUP_WLOCKPCB); 2612 struct inpcb *inp; 2613 2614 while ((inp = inp_next(&inpi)) != NULL) 2615 func(inp, arg); 2616 } 2617 2618 struct socket * 2619 inp_inpcbtosocket(struct inpcb *inp) 2620 { 2621 2622 INP_WLOCK_ASSERT(inp); 2623 return (inp->inp_socket); 2624 } 2625 2626 struct tcpcb * 2627 inp_inpcbtotcpcb(struct inpcb *inp) 2628 { 2629 2630 INP_WLOCK_ASSERT(inp); 2631 return ((struct tcpcb *)inp->inp_ppcb); 2632 } 2633 2634 int 2635 inp_ip_tos_get(const struct inpcb *inp) 2636 { 2637 2638 return (inp->inp_ip_tos); 2639 } 2640 2641 void 2642 inp_ip_tos_set(struct inpcb *inp, int val) 2643 { 2644 2645 inp->inp_ip_tos = val; 2646 } 2647 2648 void 2649 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp, 2650 uint32_t *faddr, uint16_t *fp) 2651 { 2652 2653 INP_LOCK_ASSERT(inp); 2654 *laddr = inp->inp_laddr.s_addr; 2655 *faddr = inp->inp_faddr.s_addr; 2656 *lp = inp->inp_lport; 2657 *fp = inp->inp_fport; 2658 } 2659 2660 struct inpcb * 2661 so_sotoinpcb(struct socket *so) 2662 { 2663 2664 return (sotoinpcb(so)); 2665 } 2666 2667 /* 2668 * Create an external-format (``xinpcb'') structure using the information in 2669 * the kernel-format in_pcb structure pointed to by inp. This is done to 2670 * reduce the spew of irrelevant information over this interface, to isolate 2671 * user code from changes in the kernel structure, and potentially to provide 2672 * information-hiding if we decide that some of this information should be 2673 * hidden from users. 2674 */ 2675 void 2676 in_pcbtoxinpcb(const struct inpcb *inp, struct xinpcb *xi) 2677 { 2678 2679 bzero(xi, sizeof(*xi)); 2680 xi->xi_len = sizeof(struct xinpcb); 2681 if (inp->inp_socket) 2682 sotoxsocket(inp->inp_socket, &xi->xi_socket); 2683 bcopy(&inp->inp_inc, &xi->inp_inc, sizeof(struct in_conninfo)); 2684 xi->inp_gencnt = inp->inp_gencnt; 2685 xi->inp_ppcb = (uintptr_t)inp->inp_ppcb; 2686 xi->inp_flow = inp->inp_flow; 2687 xi->inp_flowid = inp->inp_flowid; 2688 xi->inp_flowtype = inp->inp_flowtype; 2689 xi->inp_flags = inp->inp_flags; 2690 xi->inp_flags2 = inp->inp_flags2; 2691 xi->inp_rss_listen_bucket = inp->inp_rss_listen_bucket; 2692 xi->in6p_cksum = inp->in6p_cksum; 2693 xi->in6p_hops = inp->in6p_hops; 2694 xi->inp_ip_tos = inp->inp_ip_tos; 2695 xi->inp_vflag = inp->inp_vflag; 2696 xi->inp_ip_ttl = inp->inp_ip_ttl; 2697 xi->inp_ip_p = inp->inp_ip_p; 2698 xi->inp_ip_minttl = inp->inp_ip_minttl; 2699 } 2700 2701 int 2702 sysctl_setsockopt(SYSCTL_HANDLER_ARGS, struct inpcbinfo *pcbinfo, 2703 int (*ctloutput_set)(struct inpcb *, struct sockopt *)) 2704 { 2705 struct sockopt sopt; 2706 struct inpcb_iterator inpi = INP_ALL_ITERATOR(pcbinfo, 2707 INPLOOKUP_WLOCKPCB); 2708 struct inpcb *inp; 2709 struct sockopt_parameters *params; 2710 struct socket *so; 2711 int error; 2712 char buf[1024]; 2713 2714 if (req->oldptr != NULL || req->oldlen != 0) 2715 return (EINVAL); 2716 if (req->newptr == NULL) 2717 return (EPERM); 2718 if (req->newlen > sizeof(buf)) 2719 return (ENOMEM); 2720 error = SYSCTL_IN(req, buf, req->newlen); 2721 if (error != 0) 2722 return (error); 2723 if (req->newlen < sizeof(struct sockopt_parameters)) 2724 return (EINVAL); 2725 params = (struct sockopt_parameters *)buf; 2726 sopt.sopt_level = params->sop_level; 2727 sopt.sopt_name = params->sop_optname; 2728 sopt.sopt_dir = SOPT_SET; 2729 sopt.sopt_val = params->sop_optval; 2730 sopt.sopt_valsize = req->newlen - sizeof(struct sockopt_parameters); 2731 sopt.sopt_td = NULL; 2732 #ifdef INET6 2733 if (params->sop_inc.inc_flags & INC_ISIPV6) { 2734 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_laddr)) 2735 params->sop_inc.inc6_laddr.s6_addr16[1] = 2736 htons(params->sop_inc.inc6_zoneid & 0xffff); 2737 if (IN6_IS_SCOPE_LINKLOCAL(¶ms->sop_inc.inc6_faddr)) 2738 params->sop_inc.inc6_faddr.s6_addr16[1] = 2739 htons(params->sop_inc.inc6_zoneid & 0xffff); 2740 } 2741 #endif 2742 if (params->sop_inc.inc_lport != htons(0)) { 2743 if (params->sop_inc.inc_fport == htons(0)) 2744 inpi.hash = INP_PCBHASH_WILD(params->sop_inc.inc_lport, 2745 pcbinfo->ipi_hashmask); 2746 else 2747 #ifdef INET6 2748 if (params->sop_inc.inc_flags & INC_ISIPV6) 2749 inpi.hash = INP6_PCBHASH( 2750 ¶ms->sop_inc.inc6_faddr, 2751 params->sop_inc.inc_lport, 2752 params->sop_inc.inc_fport, 2753 pcbinfo->ipi_hashmask); 2754 else 2755 #endif 2756 inpi.hash = INP_PCBHASH( 2757 ¶ms->sop_inc.inc_faddr, 2758 params->sop_inc.inc_lport, 2759 params->sop_inc.inc_fport, 2760 pcbinfo->ipi_hashmask); 2761 } 2762 while ((inp = inp_next(&inpi)) != NULL) 2763 if (inp->inp_gencnt == params->sop_id) { 2764 if (inp->inp_flags & INP_DROPPED) { 2765 INP_WUNLOCK(inp); 2766 return (ECONNRESET); 2767 } 2768 so = inp->inp_socket; 2769 KASSERT(so != NULL, ("inp_socket == NULL")); 2770 soref(so); 2771 error = (*ctloutput_set)(inp, &sopt); 2772 sorele(so); 2773 break; 2774 } 2775 if (inp == NULL) 2776 error = ESRCH; 2777 return (error); 2778 } 2779 2780 #ifdef DDB 2781 static void 2782 db_print_indent(int indent) 2783 { 2784 int i; 2785 2786 for (i = 0; i < indent; i++) 2787 db_printf(" "); 2788 } 2789 2790 static void 2791 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent) 2792 { 2793 char faddr_str[48], laddr_str[48]; 2794 2795 db_print_indent(indent); 2796 db_printf("%s at %p\n", name, inc); 2797 2798 indent += 2; 2799 2800 #ifdef INET6 2801 if (inc->inc_flags & INC_ISIPV6) { 2802 /* IPv6. */ 2803 ip6_sprintf(laddr_str, &inc->inc6_laddr); 2804 ip6_sprintf(faddr_str, &inc->inc6_faddr); 2805 } else 2806 #endif 2807 { 2808 /* IPv4. */ 2809 inet_ntoa_r(inc->inc_laddr, laddr_str); 2810 inet_ntoa_r(inc->inc_faddr, faddr_str); 2811 } 2812 db_print_indent(indent); 2813 db_printf("inc_laddr %s inc_lport %u\n", laddr_str, 2814 ntohs(inc->inc_lport)); 2815 db_print_indent(indent); 2816 db_printf("inc_faddr %s inc_fport %u\n", faddr_str, 2817 ntohs(inc->inc_fport)); 2818 } 2819 2820 static void 2821 db_print_inpflags(int inp_flags) 2822 { 2823 int comma; 2824 2825 comma = 0; 2826 if (inp_flags & INP_RECVOPTS) { 2827 db_printf("%sINP_RECVOPTS", comma ? ", " : ""); 2828 comma = 1; 2829 } 2830 if (inp_flags & INP_RECVRETOPTS) { 2831 db_printf("%sINP_RECVRETOPTS", comma ? ", " : ""); 2832 comma = 1; 2833 } 2834 if (inp_flags & INP_RECVDSTADDR) { 2835 db_printf("%sINP_RECVDSTADDR", comma ? ", " : ""); 2836 comma = 1; 2837 } 2838 if (inp_flags & INP_ORIGDSTADDR) { 2839 db_printf("%sINP_ORIGDSTADDR", comma ? ", " : ""); 2840 comma = 1; 2841 } 2842 if (inp_flags & INP_HDRINCL) { 2843 db_printf("%sINP_HDRINCL", comma ? ", " : ""); 2844 comma = 1; 2845 } 2846 if (inp_flags & INP_HIGHPORT) { 2847 db_printf("%sINP_HIGHPORT", comma ? ", " : ""); 2848 comma = 1; 2849 } 2850 if (inp_flags & INP_LOWPORT) { 2851 db_printf("%sINP_LOWPORT", comma ? ", " : ""); 2852 comma = 1; 2853 } 2854 if (inp_flags & INP_ANONPORT) { 2855 db_printf("%sINP_ANONPORT", comma ? ", " : ""); 2856 comma = 1; 2857 } 2858 if (inp_flags & INP_RECVIF) { 2859 db_printf("%sINP_RECVIF", comma ? ", " : ""); 2860 comma = 1; 2861 } 2862 if (inp_flags & INP_MTUDISC) { 2863 db_printf("%sINP_MTUDISC", comma ? ", " : ""); 2864 comma = 1; 2865 } 2866 if (inp_flags & INP_RECVTTL) { 2867 db_printf("%sINP_RECVTTL", comma ? ", " : ""); 2868 comma = 1; 2869 } 2870 if (inp_flags & INP_DONTFRAG) { 2871 db_printf("%sINP_DONTFRAG", comma ? ", " : ""); 2872 comma = 1; 2873 } 2874 if (inp_flags & INP_RECVTOS) { 2875 db_printf("%sINP_RECVTOS", comma ? ", " : ""); 2876 comma = 1; 2877 } 2878 if (inp_flags & IN6P_IPV6_V6ONLY) { 2879 db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : ""); 2880 comma = 1; 2881 } 2882 if (inp_flags & IN6P_PKTINFO) { 2883 db_printf("%sIN6P_PKTINFO", comma ? ", " : ""); 2884 comma = 1; 2885 } 2886 if (inp_flags & IN6P_HOPLIMIT) { 2887 db_printf("%sIN6P_HOPLIMIT", comma ? ", " : ""); 2888 comma = 1; 2889 } 2890 if (inp_flags & IN6P_HOPOPTS) { 2891 db_printf("%sIN6P_HOPOPTS", comma ? ", " : ""); 2892 comma = 1; 2893 } 2894 if (inp_flags & IN6P_DSTOPTS) { 2895 db_printf("%sIN6P_DSTOPTS", comma ? ", " : ""); 2896 comma = 1; 2897 } 2898 if (inp_flags & IN6P_RTHDR) { 2899 db_printf("%sIN6P_RTHDR", comma ? ", " : ""); 2900 comma = 1; 2901 } 2902 if (inp_flags & IN6P_RTHDRDSTOPTS) { 2903 db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : ""); 2904 comma = 1; 2905 } 2906 if (inp_flags & IN6P_TCLASS) { 2907 db_printf("%sIN6P_TCLASS", comma ? ", " : ""); 2908 comma = 1; 2909 } 2910 if (inp_flags & IN6P_AUTOFLOWLABEL) { 2911 db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : ""); 2912 comma = 1; 2913 } 2914 if (inp_flags & INP_ONESBCAST) { 2915 db_printf("%sINP_ONESBCAST", comma ? ", " : ""); 2916 comma = 1; 2917 } 2918 if (inp_flags & INP_DROPPED) { 2919 db_printf("%sINP_DROPPED", comma ? ", " : ""); 2920 comma = 1; 2921 } 2922 if (inp_flags & INP_SOCKREF) { 2923 db_printf("%sINP_SOCKREF", comma ? ", " : ""); 2924 comma = 1; 2925 } 2926 if (inp_flags & IN6P_RFC2292) { 2927 db_printf("%sIN6P_RFC2292", comma ? ", " : ""); 2928 comma = 1; 2929 } 2930 if (inp_flags & IN6P_MTU) { 2931 db_printf("IN6P_MTU%s", comma ? ", " : ""); 2932 comma = 1; 2933 } 2934 } 2935 2936 static void 2937 db_print_inpvflag(u_char inp_vflag) 2938 { 2939 int comma; 2940 2941 comma = 0; 2942 if (inp_vflag & INP_IPV4) { 2943 db_printf("%sINP_IPV4", comma ? ", " : ""); 2944 comma = 1; 2945 } 2946 if (inp_vflag & INP_IPV6) { 2947 db_printf("%sINP_IPV6", comma ? ", " : ""); 2948 comma = 1; 2949 } 2950 if (inp_vflag & INP_IPV6PROTO) { 2951 db_printf("%sINP_IPV6PROTO", comma ? ", " : ""); 2952 comma = 1; 2953 } 2954 } 2955 2956 static void 2957 db_print_inpcb(struct inpcb *inp, const char *name, int indent) 2958 { 2959 2960 db_print_indent(indent); 2961 db_printf("%s at %p\n", name, inp); 2962 2963 indent += 2; 2964 2965 db_print_indent(indent); 2966 db_printf("inp_flow: 0x%x\n", inp->inp_flow); 2967 2968 db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent); 2969 2970 db_print_indent(indent); 2971 db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n", 2972 inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket); 2973 2974 db_print_indent(indent); 2975 db_printf("inp_label: %p inp_flags: 0x%x (", 2976 inp->inp_label, inp->inp_flags); 2977 db_print_inpflags(inp->inp_flags); 2978 db_printf(")\n"); 2979 2980 db_print_indent(indent); 2981 db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp, 2982 inp->inp_vflag); 2983 db_print_inpvflag(inp->inp_vflag); 2984 db_printf(")\n"); 2985 2986 db_print_indent(indent); 2987 db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n", 2988 inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl); 2989 2990 db_print_indent(indent); 2991 #ifdef INET6 2992 if (inp->inp_vflag & INP_IPV6) { 2993 db_printf("in6p_options: %p in6p_outputopts: %p " 2994 "in6p_moptions: %p\n", inp->in6p_options, 2995 inp->in6p_outputopts, inp->in6p_moptions); 2996 db_printf("in6p_icmp6filt: %p in6p_cksum %d " 2997 "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum, 2998 inp->in6p_hops); 2999 } else 3000 #endif 3001 { 3002 db_printf("inp_ip_tos: %d inp_ip_options: %p " 3003 "inp_ip_moptions: %p\n", inp->inp_ip_tos, 3004 inp->inp_options, inp->inp_moptions); 3005 } 3006 3007 db_print_indent(indent); 3008 db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd, 3009 (uintmax_t)inp->inp_gencnt); 3010 } 3011 3012 DB_SHOW_COMMAND(inpcb, db_show_inpcb) 3013 { 3014 struct inpcb *inp; 3015 3016 if (!have_addr) { 3017 db_printf("usage: show inpcb <addr>\n"); 3018 return; 3019 } 3020 inp = (struct inpcb *)addr; 3021 3022 db_print_inpcb(inp, "inpcb", 0); 3023 } 3024 #endif /* DDB */ 3025 3026 #ifdef RATELIMIT 3027 /* 3028 * Modify TX rate limit based on the existing "inp->inp_snd_tag", 3029 * if any. 3030 */ 3031 int 3032 in_pcbmodify_txrtlmt(struct inpcb *inp, uint32_t max_pacing_rate) 3033 { 3034 union if_snd_tag_modify_params params = { 3035 .rate_limit.max_rate = max_pacing_rate, 3036 .rate_limit.flags = M_NOWAIT, 3037 }; 3038 struct m_snd_tag *mst; 3039 int error; 3040 3041 mst = inp->inp_snd_tag; 3042 if (mst == NULL) 3043 return (EINVAL); 3044 3045 if (mst->sw->snd_tag_modify == NULL) { 3046 error = EOPNOTSUPP; 3047 } else { 3048 error = mst->sw->snd_tag_modify(mst, ¶ms); 3049 } 3050 return (error); 3051 } 3052 3053 /* 3054 * Query existing TX rate limit based on the existing 3055 * "inp->inp_snd_tag", if any. 3056 */ 3057 int 3058 in_pcbquery_txrtlmt(struct inpcb *inp, uint32_t *p_max_pacing_rate) 3059 { 3060 union if_snd_tag_query_params params = { }; 3061 struct m_snd_tag *mst; 3062 int error; 3063 3064 mst = inp->inp_snd_tag; 3065 if (mst == NULL) 3066 return (EINVAL); 3067 3068 if (mst->sw->snd_tag_query == NULL) { 3069 error = EOPNOTSUPP; 3070 } else { 3071 error = mst->sw->snd_tag_query(mst, ¶ms); 3072 if (error == 0 && p_max_pacing_rate != NULL) 3073 *p_max_pacing_rate = params.rate_limit.max_rate; 3074 } 3075 return (error); 3076 } 3077 3078 /* 3079 * Query existing TX queue level based on the existing 3080 * "inp->inp_snd_tag", if any. 3081 */ 3082 int 3083 in_pcbquery_txrlevel(struct inpcb *inp, uint32_t *p_txqueue_level) 3084 { 3085 union if_snd_tag_query_params params = { }; 3086 struct m_snd_tag *mst; 3087 int error; 3088 3089 mst = inp->inp_snd_tag; 3090 if (mst == NULL) 3091 return (EINVAL); 3092 3093 if (mst->sw->snd_tag_query == NULL) 3094 return (EOPNOTSUPP); 3095 3096 error = mst->sw->snd_tag_query(mst, ¶ms); 3097 if (error == 0 && p_txqueue_level != NULL) 3098 *p_txqueue_level = params.rate_limit.queue_level; 3099 return (error); 3100 } 3101 3102 /* 3103 * Allocate a new TX rate limit send tag from the network interface 3104 * given by the "ifp" argument and save it in "inp->inp_snd_tag": 3105 */ 3106 int 3107 in_pcbattach_txrtlmt(struct inpcb *inp, struct ifnet *ifp, 3108 uint32_t flowtype, uint32_t flowid, uint32_t max_pacing_rate, struct m_snd_tag **st) 3109 3110 { 3111 union if_snd_tag_alloc_params params = { 3112 .rate_limit.hdr.type = (max_pacing_rate == -1U) ? 3113 IF_SND_TAG_TYPE_UNLIMITED : IF_SND_TAG_TYPE_RATE_LIMIT, 3114 .rate_limit.hdr.flowid = flowid, 3115 .rate_limit.hdr.flowtype = flowtype, 3116 .rate_limit.hdr.numa_domain = inp->inp_numa_domain, 3117 .rate_limit.max_rate = max_pacing_rate, 3118 .rate_limit.flags = M_NOWAIT, 3119 }; 3120 int error; 3121 3122 INP_WLOCK_ASSERT(inp); 3123 3124 /* 3125 * If there is already a send tag, or the INP is being torn 3126 * down, allocating a new send tag is not allowed. Else send 3127 * tags may leak. 3128 */ 3129 if (*st != NULL || (inp->inp_flags & INP_DROPPED) != 0) 3130 return (EINVAL); 3131 3132 error = m_snd_tag_alloc(ifp, ¶ms, st); 3133 #ifdef INET 3134 if (error == 0) { 3135 counter_u64_add(rate_limit_set_ok, 1); 3136 counter_u64_add(rate_limit_active, 1); 3137 } else if (error != EOPNOTSUPP) 3138 counter_u64_add(rate_limit_alloc_fail, 1); 3139 #endif 3140 return (error); 3141 } 3142 3143 void 3144 in_pcbdetach_tag(struct m_snd_tag *mst) 3145 { 3146 3147 m_snd_tag_rele(mst); 3148 #ifdef INET 3149 counter_u64_add(rate_limit_active, -1); 3150 #endif 3151 } 3152 3153 /* 3154 * Free an existing TX rate limit tag based on the "inp->inp_snd_tag", 3155 * if any: 3156 */ 3157 void 3158 in_pcbdetach_txrtlmt(struct inpcb *inp) 3159 { 3160 struct m_snd_tag *mst; 3161 3162 INP_WLOCK_ASSERT(inp); 3163 3164 mst = inp->inp_snd_tag; 3165 inp->inp_snd_tag = NULL; 3166 3167 if (mst == NULL) 3168 return; 3169 3170 m_snd_tag_rele(mst); 3171 #ifdef INET 3172 counter_u64_add(rate_limit_active, -1); 3173 #endif 3174 } 3175 3176 int 3177 in_pcboutput_txrtlmt_locked(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb, uint32_t max_pacing_rate) 3178 { 3179 int error; 3180 3181 /* 3182 * If the existing send tag is for the wrong interface due to 3183 * a route change, first drop the existing tag. Set the 3184 * CHANGED flag so that we will keep trying to allocate a new 3185 * tag if we fail to allocate one this time. 3186 */ 3187 if (inp->inp_snd_tag != NULL && inp->inp_snd_tag->ifp != ifp) { 3188 in_pcbdetach_txrtlmt(inp); 3189 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3190 } 3191 3192 /* 3193 * NOTE: When attaching to a network interface a reference is 3194 * made to ensure the network interface doesn't go away until 3195 * all ratelimit connections are gone. The network interface 3196 * pointers compared below represent valid network interfaces, 3197 * except when comparing towards NULL. 3198 */ 3199 if (max_pacing_rate == 0 && inp->inp_snd_tag == NULL) { 3200 error = 0; 3201 } else if (!(ifp->if_capenable & IFCAP_TXRTLMT)) { 3202 if (inp->inp_snd_tag != NULL) 3203 in_pcbdetach_txrtlmt(inp); 3204 error = 0; 3205 } else if (inp->inp_snd_tag == NULL) { 3206 /* 3207 * In order to utilize packet pacing with RSS, we need 3208 * to wait until there is a valid RSS hash before we 3209 * can proceed: 3210 */ 3211 if (M_HASHTYPE_GET(mb) == M_HASHTYPE_NONE) { 3212 error = EAGAIN; 3213 } else { 3214 error = in_pcbattach_txrtlmt(inp, ifp, M_HASHTYPE_GET(mb), 3215 mb->m_pkthdr.flowid, max_pacing_rate, &inp->inp_snd_tag); 3216 } 3217 } else { 3218 error = in_pcbmodify_txrtlmt(inp, max_pacing_rate); 3219 } 3220 if (error == 0 || error == EOPNOTSUPP) 3221 inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED; 3222 3223 return (error); 3224 } 3225 3226 /* 3227 * This function should be called when the INP_RATE_LIMIT_CHANGED flag 3228 * is set in the fast path and will attach/detach/modify the TX rate 3229 * limit send tag based on the socket's so_max_pacing_rate value. 3230 */ 3231 void 3232 in_pcboutput_txrtlmt(struct inpcb *inp, struct ifnet *ifp, struct mbuf *mb) 3233 { 3234 struct socket *socket; 3235 uint32_t max_pacing_rate; 3236 bool did_upgrade; 3237 3238 if (inp == NULL) 3239 return; 3240 3241 socket = inp->inp_socket; 3242 if (socket == NULL) 3243 return; 3244 3245 if (!INP_WLOCKED(inp)) { 3246 /* 3247 * NOTE: If the write locking fails, we need to bail 3248 * out and use the non-ratelimited ring for the 3249 * transmit until there is a new chance to get the 3250 * write lock. 3251 */ 3252 if (!INP_TRY_UPGRADE(inp)) 3253 return; 3254 did_upgrade = 1; 3255 } else { 3256 did_upgrade = 0; 3257 } 3258 3259 /* 3260 * NOTE: The so_max_pacing_rate value is read unlocked, 3261 * because atomic updates are not required since the variable 3262 * is checked at every mbuf we send. It is assumed that the 3263 * variable read itself will be atomic. 3264 */ 3265 max_pacing_rate = socket->so_max_pacing_rate; 3266 3267 in_pcboutput_txrtlmt_locked(inp, ifp, mb, max_pacing_rate); 3268 3269 if (did_upgrade) 3270 INP_DOWNGRADE(inp); 3271 } 3272 3273 /* 3274 * Track route changes for TX rate limiting. 3275 */ 3276 void 3277 in_pcboutput_eagain(struct inpcb *inp) 3278 { 3279 bool did_upgrade; 3280 3281 if (inp == NULL) 3282 return; 3283 3284 if (inp->inp_snd_tag == NULL) 3285 return; 3286 3287 if (!INP_WLOCKED(inp)) { 3288 /* 3289 * NOTE: If the write locking fails, we need to bail 3290 * out and use the non-ratelimited ring for the 3291 * transmit until there is a new chance to get the 3292 * write lock. 3293 */ 3294 if (!INP_TRY_UPGRADE(inp)) 3295 return; 3296 did_upgrade = 1; 3297 } else { 3298 did_upgrade = 0; 3299 } 3300 3301 /* detach rate limiting */ 3302 in_pcbdetach_txrtlmt(inp); 3303 3304 /* make sure new mbuf send tag allocation is made */ 3305 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 3306 3307 if (did_upgrade) 3308 INP_DOWNGRADE(inp); 3309 } 3310 3311 #ifdef INET 3312 static void 3313 rl_init(void *st) 3314 { 3315 rate_limit_new = counter_u64_alloc(M_WAITOK); 3316 rate_limit_chg = counter_u64_alloc(M_WAITOK); 3317 rate_limit_active = counter_u64_alloc(M_WAITOK); 3318 rate_limit_alloc_fail = counter_u64_alloc(M_WAITOK); 3319 rate_limit_set_ok = counter_u64_alloc(M_WAITOK); 3320 } 3321 3322 SYSINIT(rl, SI_SUB_PROTO_DOMAININIT, SI_ORDER_ANY, rl_init, NULL); 3323 #endif 3324 #endif /* RATELIMIT */ 3325