xref: /freebsd/sys/netinet/in_pcb.c (revision 3a92d97ff0f22d21608e1c19b83104c4937523b6)
1 /*-
2  * Copyright (c) 1982, 1986, 1991, 1993, 1995
3  *	The Regents of the University of California.
4  * Copyright (c) 2007-2009 Robert N. M. Watson
5  * Copyright (c) 2010-2011 Juniper Networks, Inc.
6  * All rights reserved.
7  *
8  * Portions of this software were developed by Robert N. M. Watson under
9  * contract to Juniper Networks, Inc.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)in_pcb.c	8.4 (Berkeley) 5/24/95
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include "opt_ddb.h"
42 #include "opt_ipsec.h"
43 #include "opt_inet.h"
44 #include "opt_inet6.h"
45 #include "opt_pcbgroup.h"
46 #include "opt_rss.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/malloc.h>
51 #include <sys/mbuf.h>
52 #include <sys/callout.h>
53 #include <sys/domain.h>
54 #include <sys/protosw.h>
55 #include <sys/socket.h>
56 #include <sys/socketvar.h>
57 #include <sys/priv.h>
58 #include <sys/proc.h>
59 #include <sys/refcount.h>
60 #include <sys/jail.h>
61 #include <sys/kernel.h>
62 #include <sys/sysctl.h>
63 
64 #ifdef DDB
65 #include <ddb/ddb.h>
66 #endif
67 
68 #include <vm/uma.h>
69 
70 #include <net/if.h>
71 #include <net/if_var.h>
72 #include <net/if_types.h>
73 #include <net/route.h>
74 #include <net/vnet.h>
75 
76 #if defined(INET) || defined(INET6)
77 #include <netinet/in.h>
78 #include <netinet/in_pcb.h>
79 #include <netinet/in_rss.h>
80 #include <netinet/ip_var.h>
81 #include <netinet/tcp_var.h>
82 #include <netinet/udp.h>
83 #include <netinet/udp_var.h>
84 #endif
85 #ifdef INET
86 #include <netinet/in_var.h>
87 #endif
88 #ifdef INET6
89 #include <netinet/ip6.h>
90 #include <netinet6/in6_pcb.h>
91 #include <netinet6/in6_var.h>
92 #include <netinet6/ip6_var.h>
93 #endif /* INET6 */
94 
95 
96 #ifdef IPSEC
97 #include <netipsec/ipsec.h>
98 #include <netipsec/key.h>
99 #endif /* IPSEC */
100 
101 #include <security/mac/mac_framework.h>
102 
103 static struct callout	ipport_tick_callout;
104 
105 /*
106  * These configure the range of local port addresses assigned to
107  * "unspecified" outgoing connections/packets/whatever.
108  */
109 VNET_DEFINE(int, ipport_lowfirstauto) = IPPORT_RESERVED - 1;	/* 1023 */
110 VNET_DEFINE(int, ipport_lowlastauto) = IPPORT_RESERVEDSTART;	/* 600 */
111 VNET_DEFINE(int, ipport_firstauto) = IPPORT_EPHEMERALFIRST;	/* 10000 */
112 VNET_DEFINE(int, ipport_lastauto) = IPPORT_EPHEMERALLAST;	/* 65535 */
113 VNET_DEFINE(int, ipport_hifirstauto) = IPPORT_HIFIRSTAUTO;	/* 49152 */
114 VNET_DEFINE(int, ipport_hilastauto) = IPPORT_HILASTAUTO;	/* 65535 */
115 
116 /*
117  * Reserved ports accessible only to root. There are significant
118  * security considerations that must be accounted for when changing these,
119  * but the security benefits can be great. Please be careful.
120  */
121 VNET_DEFINE(int, ipport_reservedhigh) = IPPORT_RESERVED - 1;	/* 1023 */
122 VNET_DEFINE(int, ipport_reservedlow);
123 
124 /* Variables dealing with random ephemeral port allocation. */
125 VNET_DEFINE(int, ipport_randomized) = 1;	/* user controlled via sysctl */
126 VNET_DEFINE(int, ipport_randomcps) = 10;	/* user controlled via sysctl */
127 VNET_DEFINE(int, ipport_randomtime) = 45;	/* user controlled via sysctl */
128 VNET_DEFINE(int, ipport_stoprandom);		/* toggled by ipport_tick */
129 VNET_DEFINE(int, ipport_tcpallocs);
130 static VNET_DEFINE(int, ipport_tcplastcount);
131 
132 #define	V_ipport_tcplastcount		VNET(ipport_tcplastcount)
133 
134 static void	in_pcbremlists(struct inpcb *inp);
135 #ifdef INET
136 static struct inpcb	*in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo,
137 			    struct in_addr faddr, u_int fport_arg,
138 			    struct in_addr laddr, u_int lport_arg,
139 			    int lookupflags, struct ifnet *ifp);
140 
141 #define RANGECHK(var, min, max) \
142 	if ((var) < (min)) { (var) = (min); } \
143 	else if ((var) > (max)) { (var) = (max); }
144 
145 static int
146 sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
147 {
148 	int error;
149 
150 	error = sysctl_handle_int(oidp, arg1, arg2, req);
151 	if (error == 0) {
152 		RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
153 		RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
154 		RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
155 		RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
156 		RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
157 		RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
158 	}
159 	return (error);
160 }
161 
162 #undef RANGECHK
163 
164 static SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0,
165     "IP Ports");
166 
167 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst,
168 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowfirstauto), 0,
169 	&sysctl_net_ipport_check, "I", "");
170 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast,
171 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lowlastauto), 0,
172 	&sysctl_net_ipport_check, "I", "");
173 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, first,
174 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_firstauto), 0,
175 	&sysctl_net_ipport_check, "I", "");
176 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, last,
177 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_lastauto), 0,
178 	&sysctl_net_ipport_check, "I", "");
179 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst,
180 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hifirstauto), 0,
181 	&sysctl_net_ipport_check, "I", "");
182 SYSCTL_VNET_PROC(_net_inet_ip_portrange, OID_AUTO, hilast,
183 	CTLTYPE_INT|CTLFLAG_RW, &VNET_NAME(ipport_hilastauto), 0,
184 	&sysctl_net_ipport_check, "I", "");
185 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedhigh,
186 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedhigh), 0, "");
187 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, reservedlow,
188 	CTLFLAG_RW|CTLFLAG_SECURE, &VNET_NAME(ipport_reservedlow), 0, "");
189 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW,
190 	&VNET_NAME(ipport_randomized), 0, "Enable random port allocation");
191 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomcps, CTLFLAG_RW,
192 	&VNET_NAME(ipport_randomcps), 0, "Maximum number of random port "
193 	"allocations before switching to a sequental one");
194 SYSCTL_VNET_INT(_net_inet_ip_portrange, OID_AUTO, randomtime, CTLFLAG_RW,
195 	&VNET_NAME(ipport_randomtime), 0,
196 	"Minimum time to keep sequental port "
197 	"allocation before switching to a random one");
198 #endif /* INET */
199 
200 /*
201  * in_pcb.c: manage the Protocol Control Blocks.
202  *
203  * NOTE: It is assumed that most of these functions will be called with
204  * the pcbinfo lock held, and often, the inpcb lock held, as these utility
205  * functions often modify hash chains or addresses in pcbs.
206  */
207 
208 /*
209  * Initialize an inpcbinfo -- we should be able to reduce the number of
210  * arguments in time.
211  */
212 void
213 in_pcbinfo_init(struct inpcbinfo *pcbinfo, const char *name,
214     struct inpcbhead *listhead, int hash_nelements, int porthash_nelements,
215     char *inpcbzone_name, uma_init inpcbzone_init, uma_fini inpcbzone_fini,
216     uint32_t inpcbzone_flags, u_int hashfields)
217 {
218 
219 	INP_INFO_LOCK_INIT(pcbinfo, name);
220 	INP_HASH_LOCK_INIT(pcbinfo, "pcbinfohash");	/* XXXRW: argument? */
221 #ifdef VIMAGE
222 	pcbinfo->ipi_vnet = curvnet;
223 #endif
224 	pcbinfo->ipi_listhead = listhead;
225 	LIST_INIT(pcbinfo->ipi_listhead);
226 	pcbinfo->ipi_count = 0;
227 	pcbinfo->ipi_hashbase = hashinit(hash_nelements, M_PCB,
228 	    &pcbinfo->ipi_hashmask);
229 	pcbinfo->ipi_porthashbase = hashinit(porthash_nelements, M_PCB,
230 	    &pcbinfo->ipi_porthashmask);
231 #ifdef PCBGROUP
232 	in_pcbgroup_init(pcbinfo, hashfields, hash_nelements);
233 #endif
234 	pcbinfo->ipi_zone = uma_zcreate(inpcbzone_name, sizeof(struct inpcb),
235 	    NULL, NULL, inpcbzone_init, inpcbzone_fini, UMA_ALIGN_PTR,
236 	    inpcbzone_flags);
237 	uma_zone_set_max(pcbinfo->ipi_zone, maxsockets);
238 	uma_zone_set_warning(pcbinfo->ipi_zone,
239 	    "kern.ipc.maxsockets limit reached");
240 }
241 
242 /*
243  * Destroy an inpcbinfo.
244  */
245 void
246 in_pcbinfo_destroy(struct inpcbinfo *pcbinfo)
247 {
248 
249 	KASSERT(pcbinfo->ipi_count == 0,
250 	    ("%s: ipi_count = %u", __func__, pcbinfo->ipi_count));
251 
252 	hashdestroy(pcbinfo->ipi_hashbase, M_PCB, pcbinfo->ipi_hashmask);
253 	hashdestroy(pcbinfo->ipi_porthashbase, M_PCB,
254 	    pcbinfo->ipi_porthashmask);
255 #ifdef PCBGROUP
256 	in_pcbgroup_destroy(pcbinfo);
257 #endif
258 	uma_zdestroy(pcbinfo->ipi_zone);
259 	INP_HASH_LOCK_DESTROY(pcbinfo);
260 	INP_INFO_LOCK_DESTROY(pcbinfo);
261 }
262 
263 /*
264  * Allocate a PCB and associate it with the socket.
265  * On success return with the PCB locked.
266  */
267 int
268 in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
269 {
270 	struct inpcb *inp;
271 	int error;
272 
273 	INP_INFO_WLOCK_ASSERT(pcbinfo);
274 	error = 0;
275 	inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
276 	if (inp == NULL)
277 		return (ENOBUFS);
278 	bzero(inp, inp_zero_size);
279 	inp->inp_pcbinfo = pcbinfo;
280 	inp->inp_socket = so;
281 	inp->inp_cred = crhold(so->so_cred);
282 	inp->inp_inc.inc_fibnum = so->so_fibnum;
283 #ifdef MAC
284 	error = mac_inpcb_init(inp, M_NOWAIT);
285 	if (error != 0)
286 		goto out;
287 	mac_inpcb_create(so, inp);
288 #endif
289 #ifdef IPSEC
290 	error = ipsec_init_policy(so, &inp->inp_sp);
291 	if (error != 0) {
292 #ifdef MAC
293 		mac_inpcb_destroy(inp);
294 #endif
295 		goto out;
296 	}
297 #endif /*IPSEC*/
298 #ifdef INET6
299 	if (INP_SOCKAF(so) == AF_INET6) {
300 		inp->inp_vflag |= INP_IPV6PROTO;
301 		if (V_ip6_v6only)
302 			inp->inp_flags |= IN6P_IPV6_V6ONLY;
303 	}
304 #endif
305 	LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
306 	pcbinfo->ipi_count++;
307 	so->so_pcb = (caddr_t)inp;
308 #ifdef INET6
309 	if (V_ip6_auto_flowlabel)
310 		inp->inp_flags |= IN6P_AUTOFLOWLABEL;
311 #endif
312 	INP_WLOCK(inp);
313 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
314 	refcount_init(&inp->inp_refcount, 1);	/* Reference from inpcbinfo */
315 #if defined(IPSEC) || defined(MAC)
316 out:
317 	if (error != 0) {
318 		crfree(inp->inp_cred);
319 		uma_zfree(pcbinfo->ipi_zone, inp);
320 	}
321 #endif
322 	return (error);
323 }
324 
325 #ifdef INET
326 int
327 in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
328 {
329 	int anonport, error;
330 
331 	INP_WLOCK_ASSERT(inp);
332 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
333 
334 	if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
335 		return (EINVAL);
336 	anonport = nam == NULL || ((struct sockaddr_in *)nam)->sin_port == 0;
337 	error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
338 	    &inp->inp_lport, cred);
339 	if (error)
340 		return (error);
341 	if (in_pcbinshash(inp) != 0) {
342 		inp->inp_laddr.s_addr = INADDR_ANY;
343 		inp->inp_lport = 0;
344 		return (EAGAIN);
345 	}
346 	if (anonport)
347 		inp->inp_flags |= INP_ANONPORT;
348 	return (0);
349 }
350 #endif
351 
352 #if defined(INET) || defined(INET6)
353 int
354 in_pcb_lport(struct inpcb *inp, struct in_addr *laddrp, u_short *lportp,
355     struct ucred *cred, int lookupflags)
356 {
357 	struct inpcbinfo *pcbinfo;
358 	struct inpcb *tmpinp;
359 	unsigned short *lastport;
360 	int count, dorandom, error;
361 	u_short aux, first, last, lport;
362 #ifdef INET
363 	struct in_addr laddr;
364 #endif
365 
366 	pcbinfo = inp->inp_pcbinfo;
367 
368 	/*
369 	 * Because no actual state changes occur here, a global write lock on
370 	 * the pcbinfo isn't required.
371 	 */
372 	INP_LOCK_ASSERT(inp);
373 	INP_HASH_LOCK_ASSERT(pcbinfo);
374 
375 	if (inp->inp_flags & INP_HIGHPORT) {
376 		first = V_ipport_hifirstauto;	/* sysctl */
377 		last  = V_ipport_hilastauto;
378 		lastport = &pcbinfo->ipi_lasthi;
379 	} else if (inp->inp_flags & INP_LOWPORT) {
380 		error = priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT, 0);
381 		if (error)
382 			return (error);
383 		first = V_ipport_lowfirstauto;	/* 1023 */
384 		last  = V_ipport_lowlastauto;	/* 600 */
385 		lastport = &pcbinfo->ipi_lastlow;
386 	} else {
387 		first = V_ipport_firstauto;	/* sysctl */
388 		last  = V_ipport_lastauto;
389 		lastport = &pcbinfo->ipi_lastport;
390 	}
391 	/*
392 	 * For UDP, use random port allocation as long as the user
393 	 * allows it.  For TCP (and as of yet unknown) connections,
394 	 * use random port allocation only if the user allows it AND
395 	 * ipport_tick() allows it.
396 	 */
397 	if (V_ipport_randomized &&
398 		(!V_ipport_stoprandom || pcbinfo == &V_udbinfo))
399 		dorandom = 1;
400 	else
401 		dorandom = 0;
402 	/*
403 	 * It makes no sense to do random port allocation if
404 	 * we have the only port available.
405 	 */
406 	if (first == last)
407 		dorandom = 0;
408 	/* Make sure to not include UDP packets in the count. */
409 	if (pcbinfo != &V_udbinfo)
410 		V_ipport_tcpallocs++;
411 	/*
412 	 * Instead of having two loops further down counting up or down
413 	 * make sure that first is always <= last and go with only one
414 	 * code path implementing all logic.
415 	 */
416 	if (first > last) {
417 		aux = first;
418 		first = last;
419 		last = aux;
420 	}
421 
422 #ifdef INET
423 	/* Make the compiler happy. */
424 	laddr.s_addr = 0;
425 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4) {
426 		KASSERT(laddrp != NULL, ("%s: laddrp NULL for v4 inp %p",
427 		    __func__, inp));
428 		laddr = *laddrp;
429 	}
430 #endif
431 	tmpinp = NULL;	/* Make compiler happy. */
432 	lport = *lportp;
433 
434 	if (dorandom)
435 		*lastport = first + (arc4random() % (last - first));
436 
437 	count = last - first;
438 
439 	do {
440 		if (count-- < 0)	/* completely used? */
441 			return (EADDRNOTAVAIL);
442 		++*lastport;
443 		if (*lastport < first || *lastport > last)
444 			*lastport = first;
445 		lport = htons(*lastport);
446 
447 #ifdef INET6
448 		if ((inp->inp_vflag & INP_IPV6) != 0)
449 			tmpinp = in6_pcblookup_local(pcbinfo,
450 			    &inp->in6p_laddr, lport, lookupflags, cred);
451 #endif
452 #if defined(INET) && defined(INET6)
453 		else
454 #endif
455 #ifdef INET
456 			tmpinp = in_pcblookup_local(pcbinfo, laddr,
457 			    lport, lookupflags, cred);
458 #endif
459 	} while (tmpinp != NULL);
460 
461 #ifdef INET
462 	if ((inp->inp_vflag & (INP_IPV4|INP_IPV6)) == INP_IPV4)
463 		laddrp->s_addr = laddr.s_addr;
464 #endif
465 	*lportp = lport;
466 
467 	return (0);
468 }
469 
470 /*
471  * Return cached socket options.
472  */
473 short
474 inp_so_options(const struct inpcb *inp)
475 {
476    short so_options;
477 
478    so_options = 0;
479 
480    if ((inp->inp_flags2 & INP_REUSEPORT) != 0)
481 	   so_options |= SO_REUSEPORT;
482    if ((inp->inp_flags2 & INP_REUSEADDR) != 0)
483 	   so_options |= SO_REUSEADDR;
484    return (so_options);
485 }
486 #endif /* INET || INET6 */
487 
488 #ifdef INET
489 /*
490  * Set up a bind operation on a PCB, performing port allocation
491  * as required, but do not actually modify the PCB. Callers can
492  * either complete the bind by setting inp_laddr/inp_lport and
493  * calling in_pcbinshash(), or they can just use the resulting
494  * port and address to authorise the sending of a once-off packet.
495  *
496  * On error, the values of *laddrp and *lportp are not changed.
497  */
498 int
499 in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
500     u_short *lportp, struct ucred *cred)
501 {
502 	struct socket *so = inp->inp_socket;
503 	struct sockaddr_in *sin;
504 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
505 	struct in_addr laddr;
506 	u_short lport = 0;
507 	int lookupflags = 0, reuseport = (so->so_options & SO_REUSEPORT);
508 	int error;
509 
510 	/*
511 	 * No state changes, so read locks are sufficient here.
512 	 */
513 	INP_LOCK_ASSERT(inp);
514 	INP_HASH_LOCK_ASSERT(pcbinfo);
515 
516 	if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
517 		return (EADDRNOTAVAIL);
518 	laddr.s_addr = *laddrp;
519 	if (nam != NULL && laddr.s_addr != INADDR_ANY)
520 		return (EINVAL);
521 	if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
522 		lookupflags = INPLOOKUP_WILDCARD;
523 	if (nam == NULL) {
524 		if ((error = prison_local_ip4(cred, &laddr)) != 0)
525 			return (error);
526 	} else {
527 		sin = (struct sockaddr_in *)nam;
528 		if (nam->sa_len != sizeof (*sin))
529 			return (EINVAL);
530 #ifdef notdef
531 		/*
532 		 * We should check the family, but old programs
533 		 * incorrectly fail to initialize it.
534 		 */
535 		if (sin->sin_family != AF_INET)
536 			return (EAFNOSUPPORT);
537 #endif
538 		error = prison_local_ip4(cred, &sin->sin_addr);
539 		if (error)
540 			return (error);
541 		if (sin->sin_port != *lportp) {
542 			/* Don't allow the port to change. */
543 			if (*lportp != 0)
544 				return (EINVAL);
545 			lport = sin->sin_port;
546 		}
547 		/* NB: lport is left as 0 if the port isn't being changed. */
548 		if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
549 			/*
550 			 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
551 			 * allow complete duplication of binding if
552 			 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
553 			 * and a multicast address is bound on both
554 			 * new and duplicated sockets.
555 			 */
556 			if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) != 0)
557 				reuseport = SO_REUSEADDR|SO_REUSEPORT;
558 		} else if (sin->sin_addr.s_addr != INADDR_ANY) {
559 			sin->sin_port = 0;		/* yech... */
560 			bzero(&sin->sin_zero, sizeof(sin->sin_zero));
561 			/*
562 			 * Is the address a local IP address?
563 			 * If INP_BINDANY is set, then the socket may be bound
564 			 * to any endpoint address, local or not.
565 			 */
566 			if ((inp->inp_flags & INP_BINDANY) == 0 &&
567 			    ifa_ifwithaddr_check((struct sockaddr *)sin) == 0)
568 				return (EADDRNOTAVAIL);
569 		}
570 		laddr = sin->sin_addr;
571 		if (lport) {
572 			struct inpcb *t;
573 			struct tcptw *tw;
574 
575 			/* GROSS */
576 			if (ntohs(lport) <= V_ipport_reservedhigh &&
577 			    ntohs(lport) >= V_ipport_reservedlow &&
578 			    priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
579 			    0))
580 				return (EACCES);
581 			if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
582 			    priv_check_cred(inp->inp_cred,
583 			    PRIV_NETINET_REUSEPORT, 0) != 0) {
584 				t = in_pcblookup_local(pcbinfo, sin->sin_addr,
585 				    lport, INPLOOKUP_WILDCARD, cred);
586 	/*
587 	 * XXX
588 	 * This entire block sorely needs a rewrite.
589 	 */
590 				if (t &&
591 				    ((t->inp_flags & INP_TIMEWAIT) == 0) &&
592 				    (so->so_type != SOCK_STREAM ||
593 				     ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
594 				    (ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
595 				     ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
596 				     (t->inp_flags2 & INP_REUSEPORT) == 0) &&
597 				    (inp->inp_cred->cr_uid !=
598 				     t->inp_cred->cr_uid))
599 					return (EADDRINUSE);
600 			}
601 			t = in_pcblookup_local(pcbinfo, sin->sin_addr,
602 			    lport, lookupflags, cred);
603 			if (t && (t->inp_flags & INP_TIMEWAIT)) {
604 				/*
605 				 * XXXRW: If an incpb has had its timewait
606 				 * state recycled, we treat the address as
607 				 * being in use (for now).  This is better
608 				 * than a panic, but not desirable.
609 				 */
610 				tw = intotw(t);
611 				if (tw == NULL ||
612 				    (reuseport & tw->tw_so_options) == 0)
613 					return (EADDRINUSE);
614 			} else if (t && (reuseport & inp_so_options(t)) == 0) {
615 #ifdef INET6
616 				if (ntohl(sin->sin_addr.s_addr) !=
617 				    INADDR_ANY ||
618 				    ntohl(t->inp_laddr.s_addr) !=
619 				    INADDR_ANY ||
620 				    (inp->inp_vflag & INP_IPV6PROTO) == 0 ||
621 				    (t->inp_vflag & INP_IPV6PROTO) == 0)
622 #endif
623 				return (EADDRINUSE);
624 			}
625 		}
626 	}
627 	if (*lportp != 0)
628 		lport = *lportp;
629 	if (lport == 0) {
630 		error = in_pcb_lport(inp, &laddr, &lport, cred, lookupflags);
631 		if (error != 0)
632 			return (error);
633 
634 	}
635 	*laddrp = laddr.s_addr;
636 	*lportp = lport;
637 	return (0);
638 }
639 
640 /*
641  * Connect from a socket to a specified address.
642  * Both address and port must be specified in argument sin.
643  * If don't have a local address for this socket yet,
644  * then pick one.
645  */
646 int
647 in_pcbconnect_mbuf(struct inpcb *inp, struct sockaddr *nam,
648     struct ucred *cred, struct mbuf *m)
649 {
650 	u_short lport, fport;
651 	in_addr_t laddr, faddr;
652 	int anonport, error;
653 
654 	INP_WLOCK_ASSERT(inp);
655 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
656 
657 	lport = inp->inp_lport;
658 	laddr = inp->inp_laddr.s_addr;
659 	anonport = (lport == 0);
660 	error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
661 	    NULL, cred);
662 	if (error)
663 		return (error);
664 
665 	/* Do the initial binding of the local address if required. */
666 	if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
667 		inp->inp_lport = lport;
668 		inp->inp_laddr.s_addr = laddr;
669 		if (in_pcbinshash(inp) != 0) {
670 			inp->inp_laddr.s_addr = INADDR_ANY;
671 			inp->inp_lport = 0;
672 			return (EAGAIN);
673 		}
674 	}
675 
676 	/* Commit the remaining changes. */
677 	inp->inp_lport = lport;
678 	inp->inp_laddr.s_addr = laddr;
679 	inp->inp_faddr.s_addr = faddr;
680 	inp->inp_fport = fport;
681 	in_pcbrehash_mbuf(inp, m);
682 
683 	if (anonport)
684 		inp->inp_flags |= INP_ANONPORT;
685 	return (0);
686 }
687 
688 int
689 in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
690 {
691 
692 	return (in_pcbconnect_mbuf(inp, nam, cred, NULL));
693 }
694 
695 /*
696  * Do proper source address selection on an unbound socket in case
697  * of connect. Take jails into account as well.
698  */
699 static int
700 in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
701     struct ucred *cred)
702 {
703 	struct ifaddr *ifa;
704 	struct sockaddr *sa;
705 	struct sockaddr_in *sin;
706 	struct route sro;
707 	int error;
708 
709 	KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
710 
711 	/*
712 	 * Bypass source address selection and use the primary jail IP
713 	 * if requested.
714 	 */
715 	if (cred != NULL && !prison_saddrsel_ip4(cred, laddr))
716 		return (0);
717 
718 	error = 0;
719 	bzero(&sro, sizeof(sro));
720 
721 	sin = (struct sockaddr_in *)&sro.ro_dst;
722 	sin->sin_family = AF_INET;
723 	sin->sin_len = sizeof(struct sockaddr_in);
724 	sin->sin_addr.s_addr = faddr->s_addr;
725 
726 	/*
727 	 * If route is known our src addr is taken from the i/f,
728 	 * else punt.
729 	 *
730 	 * Find out route to destination.
731 	 */
732 	if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
733 		in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
734 
735 	/*
736 	 * If we found a route, use the address corresponding to
737 	 * the outgoing interface.
738 	 *
739 	 * Otherwise assume faddr is reachable on a directly connected
740 	 * network and try to find a corresponding interface to take
741 	 * the source address from.
742 	 */
743 	if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
744 		struct in_ifaddr *ia;
745 		struct ifnet *ifp;
746 
747 		ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin));
748 		if (ia == NULL)
749 			ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin, 0));
750 		if (ia == NULL) {
751 			error = ENETUNREACH;
752 			goto done;
753 		}
754 
755 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
756 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
757 			ifa_free(&ia->ia_ifa);
758 			goto done;
759 		}
760 
761 		ifp = ia->ia_ifp;
762 		ifa_free(&ia->ia_ifa);
763 		ia = NULL;
764 		IF_ADDR_RLOCK(ifp);
765 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
766 
767 			sa = ifa->ifa_addr;
768 			if (sa->sa_family != AF_INET)
769 				continue;
770 			sin = (struct sockaddr_in *)sa;
771 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
772 				ia = (struct in_ifaddr *)ifa;
773 				break;
774 			}
775 		}
776 		if (ia != NULL) {
777 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
778 			IF_ADDR_RUNLOCK(ifp);
779 			goto done;
780 		}
781 		IF_ADDR_RUNLOCK(ifp);
782 
783 		/* 3. As a last resort return the 'default' jail address. */
784 		error = prison_get_ip4(cred, laddr);
785 		goto done;
786 	}
787 
788 	/*
789 	 * If the outgoing interface on the route found is not
790 	 * a loopback interface, use the address from that interface.
791 	 * In case of jails do those three steps:
792 	 * 1. check if the interface address belongs to the jail. If so use it.
793 	 * 2. check if we have any address on the outgoing interface
794 	 *    belonging to this jail. If so use it.
795 	 * 3. as a last resort return the 'default' jail address.
796 	 */
797 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
798 		struct in_ifaddr *ia;
799 		struct ifnet *ifp;
800 
801 		/* If not jailed, use the default returned. */
802 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
803 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
804 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
805 			goto done;
806 		}
807 
808 		/* Jailed. */
809 		/* 1. Check if the iface address belongs to the jail. */
810 		sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
811 		if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
812 			ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
813 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
814 			goto done;
815 		}
816 
817 		/*
818 		 * 2. Check if we have any address on the outgoing interface
819 		 *    belonging to this jail.
820 		 */
821 		ia = NULL;
822 		ifp = sro.ro_rt->rt_ifp;
823 		IF_ADDR_RLOCK(ifp);
824 		TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
825 			sa = ifa->ifa_addr;
826 			if (sa->sa_family != AF_INET)
827 				continue;
828 			sin = (struct sockaddr_in *)sa;
829 			if (prison_check_ip4(cred, &sin->sin_addr) == 0) {
830 				ia = (struct in_ifaddr *)ifa;
831 				break;
832 			}
833 		}
834 		if (ia != NULL) {
835 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
836 			IF_ADDR_RUNLOCK(ifp);
837 			goto done;
838 		}
839 		IF_ADDR_RUNLOCK(ifp);
840 
841 		/* 3. As a last resort return the 'default' jail address. */
842 		error = prison_get_ip4(cred, laddr);
843 		goto done;
844 	}
845 
846 	/*
847 	 * The outgoing interface is marked with 'loopback net', so a route
848 	 * to ourselves is here.
849 	 * Try to find the interface of the destination address and then
850 	 * take the address from there. That interface is not necessarily
851 	 * a loopback interface.
852 	 * In case of jails, check that it is an address of the jail
853 	 * and if we cannot find, fall back to the 'default' jail address.
854 	 */
855 	if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
856 		struct sockaddr_in sain;
857 		struct in_ifaddr *ia;
858 
859 		bzero(&sain, sizeof(struct sockaddr_in));
860 		sain.sin_family = AF_INET;
861 		sain.sin_len = sizeof(struct sockaddr_in);
862 		sain.sin_addr.s_addr = faddr->s_addr;
863 
864 		ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain)));
865 		if (ia == NULL)
866 			ia = ifatoia(ifa_ifwithnet(sintosa(&sain), 0));
867 		if (ia == NULL)
868 			ia = ifatoia(ifa_ifwithaddr(sintosa(&sain)));
869 
870 		if (cred == NULL || !prison_flag(cred, PR_IP4)) {
871 			if (ia == NULL) {
872 				error = ENETUNREACH;
873 				goto done;
874 			}
875 			laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
876 			ifa_free(&ia->ia_ifa);
877 			goto done;
878 		}
879 
880 		/* Jailed. */
881 		if (ia != NULL) {
882 			struct ifnet *ifp;
883 
884 			ifp = ia->ia_ifp;
885 			ifa_free(&ia->ia_ifa);
886 			ia = NULL;
887 			IF_ADDR_RLOCK(ifp);
888 			TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
889 
890 				sa = ifa->ifa_addr;
891 				if (sa->sa_family != AF_INET)
892 					continue;
893 				sin = (struct sockaddr_in *)sa;
894 				if (prison_check_ip4(cred,
895 				    &sin->sin_addr) == 0) {
896 					ia = (struct in_ifaddr *)ifa;
897 					break;
898 				}
899 			}
900 			if (ia != NULL) {
901 				laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
902 				IF_ADDR_RUNLOCK(ifp);
903 				goto done;
904 			}
905 			IF_ADDR_RUNLOCK(ifp);
906 		}
907 
908 		/* 3. As a last resort return the 'default' jail address. */
909 		error = prison_get_ip4(cred, laddr);
910 		goto done;
911 	}
912 
913 done:
914 	if (sro.ro_rt != NULL)
915 		RTFREE(sro.ro_rt);
916 	return (error);
917 }
918 
919 /*
920  * Set up for a connect from a socket to the specified address.
921  * On entry, *laddrp and *lportp should contain the current local
922  * address and port for the PCB; these are updated to the values
923  * that should be placed in inp_laddr and inp_lport to complete
924  * the connect.
925  *
926  * On success, *faddrp and *fportp will be set to the remote address
927  * and port. These are not updated in the error case.
928  *
929  * If the operation fails because the connection already exists,
930  * *oinpp will be set to the PCB of that connection so that the
931  * caller can decide to override it. In all other cases, *oinpp
932  * is set to NULL.
933  */
934 int
935 in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
936     in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
937     struct inpcb **oinpp, struct ucred *cred)
938 {
939 	struct sockaddr_in *sin = (struct sockaddr_in *)nam;
940 	struct in_ifaddr *ia;
941 	struct inpcb *oinp;
942 	struct in_addr laddr, faddr;
943 	u_short lport, fport;
944 	int error;
945 
946 	/*
947 	 * Because a global state change doesn't actually occur here, a read
948 	 * lock is sufficient.
949 	 */
950 	INP_LOCK_ASSERT(inp);
951 	INP_HASH_LOCK_ASSERT(inp->inp_pcbinfo);
952 
953 	if (oinpp != NULL)
954 		*oinpp = NULL;
955 	if (nam->sa_len != sizeof (*sin))
956 		return (EINVAL);
957 	if (sin->sin_family != AF_INET)
958 		return (EAFNOSUPPORT);
959 	if (sin->sin_port == 0)
960 		return (EADDRNOTAVAIL);
961 	laddr.s_addr = *laddrp;
962 	lport = *lportp;
963 	faddr = sin->sin_addr;
964 	fport = sin->sin_port;
965 
966 	if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
967 		/*
968 		 * If the destination address is INADDR_ANY,
969 		 * use the primary local address.
970 		 * If the supplied address is INADDR_BROADCAST,
971 		 * and the primary interface supports broadcast,
972 		 * choose the broadcast address for that interface.
973 		 */
974 		if (faddr.s_addr == INADDR_ANY) {
975 			IN_IFADDR_RLOCK();
976 			faddr =
977 			    IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->sin_addr;
978 			IN_IFADDR_RUNLOCK();
979 			if (cred != NULL &&
980 			    (error = prison_get_ip4(cred, &faddr)) != 0)
981 				return (error);
982 		} else if (faddr.s_addr == (u_long)INADDR_BROADCAST) {
983 			IN_IFADDR_RLOCK();
984 			if (TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
985 			    IFF_BROADCAST)
986 				faddr = satosin(&TAILQ_FIRST(
987 				    &V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
988 			IN_IFADDR_RUNLOCK();
989 		}
990 	}
991 	if (laddr.s_addr == INADDR_ANY) {
992 		error = in_pcbladdr(inp, &faddr, &laddr, cred);
993 		/*
994 		 * If the destination address is multicast and an outgoing
995 		 * interface has been set as a multicast option, prefer the
996 		 * address of that interface as our source address.
997 		 */
998 		if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
999 		    inp->inp_moptions != NULL) {
1000 			struct ip_moptions *imo;
1001 			struct ifnet *ifp;
1002 
1003 			imo = inp->inp_moptions;
1004 			if (imo->imo_multicast_ifp != NULL) {
1005 				ifp = imo->imo_multicast_ifp;
1006 				IN_IFADDR_RLOCK();
1007 				TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
1008 					if ((ia->ia_ifp == ifp) &&
1009 					    (cred == NULL ||
1010 					    prison_check_ip4(cred,
1011 					    &ia->ia_addr.sin_addr) == 0))
1012 						break;
1013 				}
1014 				if (ia == NULL)
1015 					error = EADDRNOTAVAIL;
1016 				else {
1017 					laddr = ia->ia_addr.sin_addr;
1018 					error = 0;
1019 				}
1020 				IN_IFADDR_RUNLOCK();
1021 			}
1022 		}
1023 		if (error)
1024 			return (error);
1025 	}
1026 	oinp = in_pcblookup_hash_locked(inp->inp_pcbinfo, faddr, fport,
1027 	    laddr, lport, 0, NULL);
1028 	if (oinp != NULL) {
1029 		if (oinpp != NULL)
1030 			*oinpp = oinp;
1031 		return (EADDRINUSE);
1032 	}
1033 	if (lport == 0) {
1034 		error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
1035 		    cred);
1036 		if (error)
1037 			return (error);
1038 	}
1039 	*laddrp = laddr.s_addr;
1040 	*lportp = lport;
1041 	*faddrp = faddr.s_addr;
1042 	*fportp = fport;
1043 	return (0);
1044 }
1045 
1046 void
1047 in_pcbdisconnect(struct inpcb *inp)
1048 {
1049 
1050 	INP_WLOCK_ASSERT(inp);
1051 	INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo);
1052 
1053 	inp->inp_faddr.s_addr = INADDR_ANY;
1054 	inp->inp_fport = 0;
1055 	in_pcbrehash(inp);
1056 }
1057 #endif /* INET */
1058 
1059 /*
1060  * in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
1061  * For most protocols, this will be invoked immediately prior to calling
1062  * in_pcbfree().  However, with TCP the inpcb may significantly outlive the
1063  * socket, in which case in_pcbfree() is deferred.
1064  */
1065 void
1066 in_pcbdetach(struct inpcb *inp)
1067 {
1068 
1069 	KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
1070 
1071 	inp->inp_socket->so_pcb = NULL;
1072 	inp->inp_socket = NULL;
1073 }
1074 
1075 /*
1076  * in_pcbref() bumps the reference count on an inpcb in order to maintain
1077  * stability of an inpcb pointer despite the inpcb lock being released.  This
1078  * is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
1079  * but where the inpcb lock may already held, or when acquiring a reference
1080  * via a pcbgroup.
1081  *
1082  * in_pcbref() should be used only to provide brief memory stability, and
1083  * must always be followed by a call to INP_WLOCK() and in_pcbrele() to
1084  * garbage collect the inpcb if it has been in_pcbfree()'d from another
1085  * context.  Until in_pcbrele() has returned that the inpcb is still valid,
1086  * lock and rele are the *only* safe operations that may be performed on the
1087  * inpcb.
1088  *
1089  * While the inpcb will not be freed, releasing the inpcb lock means that the
1090  * connection's state may change, so the caller should be careful to
1091  * revalidate any cached state on reacquiring the lock.  Drop the reference
1092  * using in_pcbrele().
1093  */
1094 void
1095 in_pcbref(struct inpcb *inp)
1096 {
1097 
1098 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1099 
1100 	refcount_acquire(&inp->inp_refcount);
1101 }
1102 
1103 /*
1104  * Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
1105  * in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
1106  * return a flag indicating whether or not the inpcb remains valid.  If it is
1107  * valid, we return with the inpcb lock held.
1108  *
1109  * Notice that, unlike in_pcbref(), the inpcb lock must be held to drop a
1110  * reference on an inpcb.  Historically more work was done here (actually, in
1111  * in_pcbfree_internal()) but has been moved to in_pcbfree() to avoid the
1112  * need for the pcbinfo lock in in_pcbrele().  Deferring the free is entirely
1113  * about memory stability (and continued use of the write lock).
1114  */
1115 int
1116 in_pcbrele_rlocked(struct inpcb *inp)
1117 {
1118 	struct inpcbinfo *pcbinfo;
1119 
1120 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1121 
1122 	INP_RLOCK_ASSERT(inp);
1123 
1124 	if (refcount_release(&inp->inp_refcount) == 0) {
1125 		/*
1126 		 * If the inpcb has been freed, let the caller know, even if
1127 		 * this isn't the last reference.
1128 		 */
1129 		if (inp->inp_flags2 & INP_FREED) {
1130 			INP_RUNLOCK(inp);
1131 			return (1);
1132 		}
1133 		return (0);
1134 	}
1135 
1136 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1137 
1138 	INP_RUNLOCK(inp);
1139 	pcbinfo = inp->inp_pcbinfo;
1140 	uma_zfree(pcbinfo->ipi_zone, inp);
1141 	return (1);
1142 }
1143 
1144 int
1145 in_pcbrele_wlocked(struct inpcb *inp)
1146 {
1147 	struct inpcbinfo *pcbinfo;
1148 
1149 	KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
1150 
1151 	INP_WLOCK_ASSERT(inp);
1152 
1153 	if (refcount_release(&inp->inp_refcount) == 0)
1154 		return (0);
1155 
1156 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1157 
1158 	INP_WUNLOCK(inp);
1159 	pcbinfo = inp->inp_pcbinfo;
1160 	uma_zfree(pcbinfo->ipi_zone, inp);
1161 	return (1);
1162 }
1163 
1164 /*
1165  * Temporary wrapper.
1166  */
1167 int
1168 in_pcbrele(struct inpcb *inp)
1169 {
1170 
1171 	return (in_pcbrele_wlocked(inp));
1172 }
1173 
1174 /*
1175  * Unconditionally schedule an inpcb to be freed by decrementing its
1176  * reference count, which should occur only after the inpcb has been detached
1177  * from its socket.  If another thread holds a temporary reference (acquired
1178  * using in_pcbref()) then the free is deferred until that reference is
1179  * released using in_pcbrele(), but the inpcb is still unlocked.  Almost all
1180  * work, including removal from global lists, is done in this context, where
1181  * the pcbinfo lock is held.
1182  */
1183 void
1184 in_pcbfree(struct inpcb *inp)
1185 {
1186 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1187 
1188 	KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
1189 
1190 	INP_INFO_WLOCK_ASSERT(pcbinfo);
1191 	INP_WLOCK_ASSERT(inp);
1192 
1193 	/* XXXRW: Do as much as possible here. */
1194 #ifdef IPSEC
1195 	if (inp->inp_sp != NULL)
1196 		ipsec_delete_pcbpolicy(inp);
1197 #endif
1198 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
1199 	in_pcbremlists(inp);
1200 #ifdef INET6
1201 	if (inp->inp_vflag & INP_IPV6PROTO) {
1202 		ip6_freepcbopts(inp->in6p_outputopts);
1203 		if (inp->in6p_moptions != NULL)
1204 			ip6_freemoptions(inp->in6p_moptions);
1205 	}
1206 #endif
1207 	if (inp->inp_options)
1208 		(void)m_free(inp->inp_options);
1209 #ifdef INET
1210 	if (inp->inp_moptions != NULL)
1211 		inp_freemoptions(inp->inp_moptions);
1212 #endif
1213 	inp->inp_vflag = 0;
1214 	inp->inp_flags2 |= INP_FREED;
1215 	crfree(inp->inp_cred);
1216 #ifdef MAC
1217 	mac_inpcb_destroy(inp);
1218 #endif
1219 	if (!in_pcbrele_wlocked(inp))
1220 		INP_WUNLOCK(inp);
1221 }
1222 
1223 /*
1224  * in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
1225  * port reservation, and preventing it from being returned by inpcb lookups.
1226  *
1227  * It is used by TCP to mark an inpcb as unused and avoid future packet
1228  * delivery or event notification when a socket remains open but TCP has
1229  * closed.  This might occur as a result of a shutdown()-initiated TCP close
1230  * or a RST on the wire, and allows the port binding to be reused while still
1231  * maintaining the invariant that so_pcb always points to a valid inpcb until
1232  * in_pcbdetach().
1233  *
1234  * XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
1235  * in_pcbnotifyall() and in_pcbpurgeif0()?
1236  */
1237 void
1238 in_pcbdrop(struct inpcb *inp)
1239 {
1240 
1241 	INP_WLOCK_ASSERT(inp);
1242 
1243 	/*
1244 	 * XXXRW: Possibly we should protect the setting of INP_DROPPED with
1245 	 * the hash lock...?
1246 	 */
1247 	inp->inp_flags |= INP_DROPPED;
1248 	if (inp->inp_flags & INP_INHASHLIST) {
1249 		struct inpcbport *phd = inp->inp_phd;
1250 
1251 		INP_HASH_WLOCK(inp->inp_pcbinfo);
1252 		LIST_REMOVE(inp, inp_hash);
1253 		LIST_REMOVE(inp, inp_portlist);
1254 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
1255 			LIST_REMOVE(phd, phd_hash);
1256 			free(phd, M_PCB);
1257 		}
1258 		INP_HASH_WUNLOCK(inp->inp_pcbinfo);
1259 		inp->inp_flags &= ~INP_INHASHLIST;
1260 #ifdef PCBGROUP
1261 		in_pcbgroup_remove(inp);
1262 #endif
1263 	}
1264 }
1265 
1266 #ifdef INET
1267 /*
1268  * Common routines to return the socket addresses associated with inpcbs.
1269  */
1270 struct sockaddr *
1271 in_sockaddr(in_port_t port, struct in_addr *addr_p)
1272 {
1273 	struct sockaddr_in *sin;
1274 
1275 	sin = malloc(sizeof *sin, M_SONAME,
1276 		M_WAITOK | M_ZERO);
1277 	sin->sin_family = AF_INET;
1278 	sin->sin_len = sizeof(*sin);
1279 	sin->sin_addr = *addr_p;
1280 	sin->sin_port = port;
1281 
1282 	return (struct sockaddr *)sin;
1283 }
1284 
1285 int
1286 in_getsockaddr(struct socket *so, struct sockaddr **nam)
1287 {
1288 	struct inpcb *inp;
1289 	struct in_addr addr;
1290 	in_port_t port;
1291 
1292 	inp = sotoinpcb(so);
1293 	KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
1294 
1295 	INP_RLOCK(inp);
1296 	port = inp->inp_lport;
1297 	addr = inp->inp_laddr;
1298 	INP_RUNLOCK(inp);
1299 
1300 	*nam = in_sockaddr(port, &addr);
1301 	return 0;
1302 }
1303 
1304 int
1305 in_getpeeraddr(struct socket *so, struct sockaddr **nam)
1306 {
1307 	struct inpcb *inp;
1308 	struct in_addr addr;
1309 	in_port_t port;
1310 
1311 	inp = sotoinpcb(so);
1312 	KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
1313 
1314 	INP_RLOCK(inp);
1315 	port = inp->inp_fport;
1316 	addr = inp->inp_faddr;
1317 	INP_RUNLOCK(inp);
1318 
1319 	*nam = in_sockaddr(port, &addr);
1320 	return 0;
1321 }
1322 
1323 void
1324 in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
1325     struct inpcb *(*notify)(struct inpcb *, int))
1326 {
1327 	struct inpcb *inp, *inp_temp;
1328 
1329 	INP_INFO_WLOCK(pcbinfo);
1330 	LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
1331 		INP_WLOCK(inp);
1332 #ifdef INET6
1333 		if ((inp->inp_vflag & INP_IPV4) == 0) {
1334 			INP_WUNLOCK(inp);
1335 			continue;
1336 		}
1337 #endif
1338 		if (inp->inp_faddr.s_addr != faddr.s_addr ||
1339 		    inp->inp_socket == NULL) {
1340 			INP_WUNLOCK(inp);
1341 			continue;
1342 		}
1343 		if ((*notify)(inp, errno))
1344 			INP_WUNLOCK(inp);
1345 	}
1346 	INP_INFO_WUNLOCK(pcbinfo);
1347 }
1348 
1349 void
1350 in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
1351 {
1352 	struct inpcb *inp;
1353 	struct ip_moptions *imo;
1354 	int i, gap;
1355 
1356 	INP_INFO_RLOCK(pcbinfo);
1357 	LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
1358 		INP_WLOCK(inp);
1359 		imo = inp->inp_moptions;
1360 		if ((inp->inp_vflag & INP_IPV4) &&
1361 		    imo != NULL) {
1362 			/*
1363 			 * Unselect the outgoing interface if it is being
1364 			 * detached.
1365 			 */
1366 			if (imo->imo_multicast_ifp == ifp)
1367 				imo->imo_multicast_ifp = NULL;
1368 
1369 			/*
1370 			 * Drop multicast group membership if we joined
1371 			 * through the interface being detached.
1372 			 */
1373 			for (i = 0, gap = 0; i < imo->imo_num_memberships;
1374 			    i++) {
1375 				if (imo->imo_membership[i]->inm_ifp == ifp) {
1376 					in_delmulti(imo->imo_membership[i]);
1377 					gap++;
1378 				} else if (gap != 0)
1379 					imo->imo_membership[i - gap] =
1380 					    imo->imo_membership[i];
1381 			}
1382 			imo->imo_num_memberships -= gap;
1383 		}
1384 		INP_WUNLOCK(inp);
1385 	}
1386 	INP_INFO_RUNLOCK(pcbinfo);
1387 }
1388 
1389 /*
1390  * Lookup a PCB based on the local address and port.  Caller must hold the
1391  * hash lock.  No inpcb locks or references are acquired.
1392  */
1393 #define INP_LOOKUP_MAPPED_PCB_COST	3
1394 struct inpcb *
1395 in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
1396     u_short lport, int lookupflags, struct ucred *cred)
1397 {
1398 	struct inpcb *inp;
1399 #ifdef INET6
1400 	int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
1401 #else
1402 	int matchwild = 3;
1403 #endif
1404 	int wildcard;
1405 
1406 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1407 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1408 
1409 	INP_HASH_LOCK_ASSERT(pcbinfo);
1410 
1411 	if ((lookupflags & INPLOOKUP_WILDCARD) == 0) {
1412 		struct inpcbhead *head;
1413 		/*
1414 		 * Look for an unconnected (wildcard foreign addr) PCB that
1415 		 * matches the local address and port we're looking for.
1416 		 */
1417 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1418 		    0, pcbinfo->ipi_hashmask)];
1419 		LIST_FOREACH(inp, head, inp_hash) {
1420 #ifdef INET6
1421 			/* XXX inp locking */
1422 			if ((inp->inp_vflag & INP_IPV4) == 0)
1423 				continue;
1424 #endif
1425 			if (inp->inp_faddr.s_addr == INADDR_ANY &&
1426 			    inp->inp_laddr.s_addr == laddr.s_addr &&
1427 			    inp->inp_lport == lport) {
1428 				/*
1429 				 * Found?
1430 				 */
1431 				if (cred == NULL ||
1432 				    prison_equal_ip4(cred->cr_prison,
1433 					inp->inp_cred->cr_prison))
1434 					return (inp);
1435 			}
1436 		}
1437 		/*
1438 		 * Not found.
1439 		 */
1440 		return (NULL);
1441 	} else {
1442 		struct inpcbporthead *porthash;
1443 		struct inpcbport *phd;
1444 		struct inpcb *match = NULL;
1445 		/*
1446 		 * Best fit PCB lookup.
1447 		 *
1448 		 * First see if this local port is in use by looking on the
1449 		 * port hash list.
1450 		 */
1451 		porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
1452 		    pcbinfo->ipi_porthashmask)];
1453 		LIST_FOREACH(phd, porthash, phd_hash) {
1454 			if (phd->phd_port == lport)
1455 				break;
1456 		}
1457 		if (phd != NULL) {
1458 			/*
1459 			 * Port is in use by one or more PCBs. Look for best
1460 			 * fit.
1461 			 */
1462 			LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
1463 				wildcard = 0;
1464 				if (cred != NULL &&
1465 				    !prison_equal_ip4(inp->inp_cred->cr_prison,
1466 					cred->cr_prison))
1467 					continue;
1468 #ifdef INET6
1469 				/* XXX inp locking */
1470 				if ((inp->inp_vflag & INP_IPV4) == 0)
1471 					continue;
1472 				/*
1473 				 * We never select the PCB that has
1474 				 * INP_IPV6 flag and is bound to :: if
1475 				 * we have another PCB which is bound
1476 				 * to 0.0.0.0.  If a PCB has the
1477 				 * INP_IPV6 flag, then we set its cost
1478 				 * higher than IPv4 only PCBs.
1479 				 *
1480 				 * Note that the case only happens
1481 				 * when a socket is bound to ::, under
1482 				 * the condition that the use of the
1483 				 * mapped address is allowed.
1484 				 */
1485 				if ((inp->inp_vflag & INP_IPV6) != 0)
1486 					wildcard += INP_LOOKUP_MAPPED_PCB_COST;
1487 #endif
1488 				if (inp->inp_faddr.s_addr != INADDR_ANY)
1489 					wildcard++;
1490 				if (inp->inp_laddr.s_addr != INADDR_ANY) {
1491 					if (laddr.s_addr == INADDR_ANY)
1492 						wildcard++;
1493 					else if (inp->inp_laddr.s_addr != laddr.s_addr)
1494 						continue;
1495 				} else {
1496 					if (laddr.s_addr != INADDR_ANY)
1497 						wildcard++;
1498 				}
1499 				if (wildcard < matchwild) {
1500 					match = inp;
1501 					matchwild = wildcard;
1502 					if (matchwild == 0)
1503 						break;
1504 				}
1505 			}
1506 		}
1507 		return (match);
1508 	}
1509 }
1510 #undef INP_LOOKUP_MAPPED_PCB_COST
1511 
1512 #ifdef PCBGROUP
1513 /*
1514  * Lookup PCB in hash list, using pcbgroup tables.
1515  */
1516 static struct inpcb *
1517 in_pcblookup_group(struct inpcbinfo *pcbinfo, struct inpcbgroup *pcbgroup,
1518     struct in_addr faddr, u_int fport_arg, struct in_addr laddr,
1519     u_int lport_arg, int lookupflags, struct ifnet *ifp)
1520 {
1521 	struct inpcbhead *head;
1522 	struct inpcb *inp, *tmpinp;
1523 	u_short fport = fport_arg, lport = lport_arg;
1524 
1525 	/*
1526 	 * First look for an exact match.
1527 	 */
1528 	tmpinp = NULL;
1529 	INP_GROUP_LOCK(pcbgroup);
1530 	head = &pcbgroup->ipg_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1531 	    pcbgroup->ipg_hashmask)];
1532 	LIST_FOREACH(inp, head, inp_pcbgrouphash) {
1533 #ifdef INET6
1534 		/* XXX inp locking */
1535 		if ((inp->inp_vflag & INP_IPV4) == 0)
1536 			continue;
1537 #endif
1538 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1539 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1540 		    inp->inp_fport == fport &&
1541 		    inp->inp_lport == lport) {
1542 			/*
1543 			 * XXX We should be able to directly return
1544 			 * the inp here, without any checks.
1545 			 * Well unless both bound with SO_REUSEPORT?
1546 			 */
1547 			if (prison_flag(inp->inp_cred, PR_IP4))
1548 				goto found;
1549 			if (tmpinp == NULL)
1550 				tmpinp = inp;
1551 		}
1552 	}
1553 	if (tmpinp != NULL) {
1554 		inp = tmpinp;
1555 		goto found;
1556 	}
1557 
1558 	/*
1559 	 * Then look for a wildcard match, if requested.
1560 	 */
1561 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1562 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1563 #ifdef INET6
1564 		struct inpcb *local_wild_mapped = NULL;
1565 #endif
1566 		struct inpcb *jail_wild = NULL;
1567 		struct inpcbhead *head;
1568 		int injail;
1569 
1570 		/*
1571 		 * Order of socket selection - we always prefer jails.
1572 		 *      1. jailed, non-wild.
1573 		 *      2. jailed, wild.
1574 		 *      3. non-jailed, non-wild.
1575 		 *      4. non-jailed, wild.
1576 		 */
1577 		head = &pcbinfo->ipi_wildbase[INP_PCBHASH(INADDR_ANY, lport,
1578 		    0, pcbinfo->ipi_wildmask)];
1579 		LIST_FOREACH(inp, head, inp_pcbgroup_wild) {
1580 #ifdef INET6
1581 			/* XXX inp locking */
1582 			if ((inp->inp_vflag & INP_IPV4) == 0)
1583 				continue;
1584 #endif
1585 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1586 			    inp->inp_lport != lport)
1587 				continue;
1588 
1589 			/* XXX inp locking */
1590 			if (ifp && ifp->if_type == IFT_FAITH &&
1591 			    (inp->inp_flags & INP_FAITH) == 0)
1592 				continue;
1593 
1594 			injail = prison_flag(inp->inp_cred, PR_IP4);
1595 			if (injail) {
1596 				if (prison_check_ip4(inp->inp_cred,
1597 				    &laddr) != 0)
1598 					continue;
1599 			} else {
1600 				if (local_exact != NULL)
1601 					continue;
1602 			}
1603 
1604 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1605 				if (injail)
1606 					goto found;
1607 				else
1608 					local_exact = inp;
1609 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1610 #ifdef INET6
1611 				/* XXX inp locking, NULL check */
1612 				if (inp->inp_vflag & INP_IPV6PROTO)
1613 					local_wild_mapped = inp;
1614 				else
1615 #endif
1616 					if (injail)
1617 						jail_wild = inp;
1618 					else
1619 						local_wild = inp;
1620 			}
1621 		} /* LIST_FOREACH */
1622 		inp = jail_wild;
1623 		if (inp == NULL)
1624 			inp = local_exact;
1625 		if (inp == NULL)
1626 			inp = local_wild;
1627 #ifdef INET6
1628 		if (inp == NULL)
1629 			inp = local_wild_mapped;
1630 #endif
1631 		if (inp != NULL)
1632 			goto found;
1633 	} /* if (lookupflags & INPLOOKUP_WILDCARD) */
1634 	INP_GROUP_UNLOCK(pcbgroup);
1635 	return (NULL);
1636 
1637 found:
1638 	in_pcbref(inp);
1639 	INP_GROUP_UNLOCK(pcbgroup);
1640 	if (lookupflags & INPLOOKUP_WLOCKPCB) {
1641 		INP_WLOCK(inp);
1642 		if (in_pcbrele_wlocked(inp))
1643 			return (NULL);
1644 	} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1645 		INP_RLOCK(inp);
1646 		if (in_pcbrele_rlocked(inp))
1647 			return (NULL);
1648 	} else
1649 		panic("%s: locking bug", __func__);
1650 	return (inp);
1651 }
1652 #endif /* PCBGROUP */
1653 
1654 /*
1655  * Lookup PCB in hash list, using pcbinfo tables.  This variation assumes
1656  * that the caller has locked the hash list, and will not perform any further
1657  * locking or reference operations on either the hash list or the connection.
1658  */
1659 static struct inpcb *
1660 in_pcblookup_hash_locked(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1661     u_int fport_arg, struct in_addr laddr, u_int lport_arg, int lookupflags,
1662     struct ifnet *ifp)
1663 {
1664 	struct inpcbhead *head;
1665 	struct inpcb *inp, *tmpinp;
1666 	u_short fport = fport_arg, lport = lport_arg;
1667 
1668 	KASSERT((lookupflags & ~(INPLOOKUP_WILDCARD)) == 0,
1669 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1670 
1671 	INP_HASH_LOCK_ASSERT(pcbinfo);
1672 
1673 	/*
1674 	 * First look for an exact match.
1675 	 */
1676 	tmpinp = NULL;
1677 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
1678 	    pcbinfo->ipi_hashmask)];
1679 	LIST_FOREACH(inp, head, inp_hash) {
1680 #ifdef INET6
1681 		/* XXX inp locking */
1682 		if ((inp->inp_vflag & INP_IPV4) == 0)
1683 			continue;
1684 #endif
1685 		if (inp->inp_faddr.s_addr == faddr.s_addr &&
1686 		    inp->inp_laddr.s_addr == laddr.s_addr &&
1687 		    inp->inp_fport == fport &&
1688 		    inp->inp_lport == lport) {
1689 			/*
1690 			 * XXX We should be able to directly return
1691 			 * the inp here, without any checks.
1692 			 * Well unless both bound with SO_REUSEPORT?
1693 			 */
1694 			if (prison_flag(inp->inp_cred, PR_IP4))
1695 				return (inp);
1696 			if (tmpinp == NULL)
1697 				tmpinp = inp;
1698 		}
1699 	}
1700 	if (tmpinp != NULL)
1701 		return (tmpinp);
1702 
1703 	/*
1704 	 * Then look for a wildcard match, if requested.
1705 	 */
1706 	if ((lookupflags & INPLOOKUP_WILDCARD) != 0) {
1707 		struct inpcb *local_wild = NULL, *local_exact = NULL;
1708 #ifdef INET6
1709 		struct inpcb *local_wild_mapped = NULL;
1710 #endif
1711 		struct inpcb *jail_wild = NULL;
1712 		int injail;
1713 
1714 		/*
1715 		 * Order of socket selection - we always prefer jails.
1716 		 *      1. jailed, non-wild.
1717 		 *      2. jailed, wild.
1718 		 *      3. non-jailed, non-wild.
1719 		 *      4. non-jailed, wild.
1720 		 */
1721 
1722 		head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
1723 		    0, pcbinfo->ipi_hashmask)];
1724 		LIST_FOREACH(inp, head, inp_hash) {
1725 #ifdef INET6
1726 			/* XXX inp locking */
1727 			if ((inp->inp_vflag & INP_IPV4) == 0)
1728 				continue;
1729 #endif
1730 			if (inp->inp_faddr.s_addr != INADDR_ANY ||
1731 			    inp->inp_lport != lport)
1732 				continue;
1733 
1734 			/* XXX inp locking */
1735 			if (ifp && ifp->if_type == IFT_FAITH &&
1736 			    (inp->inp_flags & INP_FAITH) == 0)
1737 				continue;
1738 
1739 			injail = prison_flag(inp->inp_cred, PR_IP4);
1740 			if (injail) {
1741 				if (prison_check_ip4(inp->inp_cred,
1742 				    &laddr) != 0)
1743 					continue;
1744 			} else {
1745 				if (local_exact != NULL)
1746 					continue;
1747 			}
1748 
1749 			if (inp->inp_laddr.s_addr == laddr.s_addr) {
1750 				if (injail)
1751 					return (inp);
1752 				else
1753 					local_exact = inp;
1754 			} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
1755 #ifdef INET6
1756 				/* XXX inp locking, NULL check */
1757 				if (inp->inp_vflag & INP_IPV6PROTO)
1758 					local_wild_mapped = inp;
1759 				else
1760 #endif
1761 					if (injail)
1762 						jail_wild = inp;
1763 					else
1764 						local_wild = inp;
1765 			}
1766 		} /* LIST_FOREACH */
1767 		if (jail_wild != NULL)
1768 			return (jail_wild);
1769 		if (local_exact != NULL)
1770 			return (local_exact);
1771 		if (local_wild != NULL)
1772 			return (local_wild);
1773 #ifdef INET6
1774 		if (local_wild_mapped != NULL)
1775 			return (local_wild_mapped);
1776 #endif
1777 	} /* if ((lookupflags & INPLOOKUP_WILDCARD) != 0) */
1778 
1779 	return (NULL);
1780 }
1781 
1782 /*
1783  * Lookup PCB in hash list, using pcbinfo tables.  This variation locks the
1784  * hash list lock, and will return the inpcb locked (i.e., requires
1785  * INPLOOKUP_LOCKPCB).
1786  */
1787 static struct inpcb *
1788 in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1789     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
1790     struct ifnet *ifp)
1791 {
1792 	struct inpcb *inp;
1793 
1794 	INP_HASH_RLOCK(pcbinfo);
1795 	inp = in_pcblookup_hash_locked(pcbinfo, faddr, fport, laddr, lport,
1796 	    (lookupflags & ~(INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)), ifp);
1797 	if (inp != NULL) {
1798 		in_pcbref(inp);
1799 		INP_HASH_RUNLOCK(pcbinfo);
1800 		if (lookupflags & INPLOOKUP_WLOCKPCB) {
1801 			INP_WLOCK(inp);
1802 			if (in_pcbrele_wlocked(inp))
1803 				return (NULL);
1804 		} else if (lookupflags & INPLOOKUP_RLOCKPCB) {
1805 			INP_RLOCK(inp);
1806 			if (in_pcbrele_rlocked(inp))
1807 				return (NULL);
1808 		} else
1809 			panic("%s: locking bug", __func__);
1810 	} else
1811 		INP_HASH_RUNLOCK(pcbinfo);
1812 	return (inp);
1813 }
1814 
1815 /*
1816  * Public inpcb lookup routines, accepting a 4-tuple, and optionally, an mbuf
1817  * from which a pre-calculated hash value may be extracted.
1818  *
1819  * Possibly more of this logic should be in in_pcbgroup.c.
1820  */
1821 struct inpcb *
1822 in_pcblookup(struct inpcbinfo *pcbinfo, struct in_addr faddr, u_int fport,
1823     struct in_addr laddr, u_int lport, int lookupflags, struct ifnet *ifp)
1824 {
1825 #if defined(PCBGROUP) && !defined(RSS)
1826 	struct inpcbgroup *pcbgroup;
1827 #endif
1828 
1829 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
1830 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1831 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
1832 	    ("%s: LOCKPCB not set", __func__));
1833 
1834 	/*
1835 	 * When not using RSS, use connection groups in preference to the
1836 	 * reservation table when looking up 4-tuples.  When using RSS, just
1837 	 * use the reservation table, due to the cost of the Toeplitz hash
1838 	 * in software.
1839 	 *
1840 	 * XXXRW: This policy belongs in the pcbgroup code, as in principle
1841 	 * we could be doing RSS with a non-Toeplitz hash that is affordable
1842 	 * in software.
1843 	 */
1844 #if defined(PCBGROUP) && !defined(RSS)
1845 	if (in_pcbgroup_enabled(pcbinfo)) {
1846 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
1847 		    fport);
1848 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
1849 		    laddr, lport, lookupflags, ifp));
1850 	}
1851 #endif
1852 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
1853 	    lookupflags, ifp));
1854 }
1855 
1856 struct inpcb *
1857 in_pcblookup_mbuf(struct inpcbinfo *pcbinfo, struct in_addr faddr,
1858     u_int fport, struct in_addr laddr, u_int lport, int lookupflags,
1859     struct ifnet *ifp, struct mbuf *m)
1860 {
1861 #ifdef PCBGROUP
1862 	struct inpcbgroup *pcbgroup;
1863 #endif
1864 
1865 	KASSERT((lookupflags & ~INPLOOKUP_MASK) == 0,
1866 	    ("%s: invalid lookup flags %d", __func__, lookupflags));
1867 	KASSERT((lookupflags & (INPLOOKUP_RLOCKPCB | INPLOOKUP_WLOCKPCB)) != 0,
1868 	    ("%s: LOCKPCB not set", __func__));
1869 
1870 #ifdef PCBGROUP
1871 	/*
1872 	 * If we can use a hardware-generated hash to look up the connection
1873 	 * group, use that connection group to find the inpcb.  Otherwise
1874 	 * fall back on a software hash -- or the reservation table if we're
1875 	 * using RSS.
1876 	 *
1877 	 * XXXRW: As above, that policy belongs in the pcbgroup code.
1878 	 */
1879 	if (in_pcbgroup_enabled(pcbinfo) &&
1880 	    !(M_HASHTYPE_TEST(m, M_HASHTYPE_NONE))) {
1881 		pcbgroup = in_pcbgroup_byhash(pcbinfo, M_HASHTYPE_GET(m),
1882 		    m->m_pkthdr.flowid);
1883 		if (pcbgroup != NULL)
1884 			return (in_pcblookup_group(pcbinfo, pcbgroup, faddr,
1885 			    fport, laddr, lport, lookupflags, ifp));
1886 #ifndef RSS
1887 		pcbgroup = in_pcbgroup_bytuple(pcbinfo, laddr, lport, faddr,
1888 		    fport);
1889 		return (in_pcblookup_group(pcbinfo, pcbgroup, faddr, fport,
1890 		    laddr, lport, lookupflags, ifp));
1891 #endif
1892 	}
1893 #endif
1894 	return (in_pcblookup_hash(pcbinfo, faddr, fport, laddr, lport,
1895 	    lookupflags, ifp));
1896 }
1897 #endif /* INET */
1898 
1899 /*
1900  * Insert PCB onto various hash lists.
1901  */
1902 static int
1903 in_pcbinshash_internal(struct inpcb *inp, int do_pcbgroup_update)
1904 {
1905 	struct inpcbhead *pcbhash;
1906 	struct inpcbporthead *pcbporthash;
1907 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1908 	struct inpcbport *phd;
1909 	u_int32_t hashkey_faddr;
1910 
1911 	INP_WLOCK_ASSERT(inp);
1912 	INP_HASH_WLOCK_ASSERT(pcbinfo);
1913 
1914 	KASSERT((inp->inp_flags & INP_INHASHLIST) == 0,
1915 	    ("in_pcbinshash: INP_INHASHLIST"));
1916 
1917 #ifdef INET6
1918 	if (inp->inp_vflag & INP_IPV6)
1919 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
1920 	else
1921 #endif
1922 	hashkey_faddr = inp->inp_faddr.s_addr;
1923 
1924 	pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
1925 		 inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
1926 
1927 	pcbporthash = &pcbinfo->ipi_porthashbase[
1928 	    INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
1929 
1930 	/*
1931 	 * Go through port list and look for a head for this lport.
1932 	 */
1933 	LIST_FOREACH(phd, pcbporthash, phd_hash) {
1934 		if (phd->phd_port == inp->inp_lport)
1935 			break;
1936 	}
1937 	/*
1938 	 * If none exists, malloc one and tack it on.
1939 	 */
1940 	if (phd == NULL) {
1941 		phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
1942 		if (phd == NULL) {
1943 			return (ENOBUFS); /* XXX */
1944 		}
1945 		phd->phd_port = inp->inp_lport;
1946 		LIST_INIT(&phd->phd_pcblist);
1947 		LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
1948 	}
1949 	inp->inp_phd = phd;
1950 	LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
1951 	LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
1952 	inp->inp_flags |= INP_INHASHLIST;
1953 #ifdef PCBGROUP
1954 	if (do_pcbgroup_update)
1955 		in_pcbgroup_update(inp);
1956 #endif
1957 	return (0);
1958 }
1959 
1960 /*
1961  * For now, there are two public interfaces to insert an inpcb into the hash
1962  * lists -- one that does update pcbgroups, and one that doesn't.  The latter
1963  * is used only in the TCP syncache, where in_pcbinshash is called before the
1964  * full 4-tuple is set for the inpcb, and we don't want to install in the
1965  * pcbgroup until later.
1966  *
1967  * XXXRW: This seems like a misfeature.  in_pcbinshash should always update
1968  * connection groups, and partially initialised inpcbs should not be exposed
1969  * to either reservation hash tables or pcbgroups.
1970  */
1971 int
1972 in_pcbinshash(struct inpcb *inp)
1973 {
1974 
1975 	return (in_pcbinshash_internal(inp, 1));
1976 }
1977 
1978 int
1979 in_pcbinshash_nopcbgroup(struct inpcb *inp)
1980 {
1981 
1982 	return (in_pcbinshash_internal(inp, 0));
1983 }
1984 
1985 /*
1986  * Move PCB to the proper hash bucket when { faddr, fport } have  been
1987  * changed. NOTE: This does not handle the case of the lport changing (the
1988  * hashed port list would have to be updated as well), so the lport must
1989  * not change after in_pcbinshash() has been called.
1990  */
1991 void
1992 in_pcbrehash_mbuf(struct inpcb *inp, struct mbuf *m)
1993 {
1994 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
1995 	struct inpcbhead *head;
1996 	u_int32_t hashkey_faddr;
1997 
1998 	INP_WLOCK_ASSERT(inp);
1999 	INP_HASH_WLOCK_ASSERT(pcbinfo);
2000 
2001 	KASSERT(inp->inp_flags & INP_INHASHLIST,
2002 	    ("in_pcbrehash: !INP_INHASHLIST"));
2003 
2004 #ifdef INET6
2005 	if (inp->inp_vflag & INP_IPV6)
2006 		hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
2007 	else
2008 #endif
2009 	hashkey_faddr = inp->inp_faddr.s_addr;
2010 
2011 	head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
2012 		inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
2013 
2014 	LIST_REMOVE(inp, inp_hash);
2015 	LIST_INSERT_HEAD(head, inp, inp_hash);
2016 
2017 #ifdef PCBGROUP
2018 	if (m != NULL)
2019 		in_pcbgroup_update_mbuf(inp, m);
2020 	else
2021 		in_pcbgroup_update(inp);
2022 #endif
2023 }
2024 
2025 void
2026 in_pcbrehash(struct inpcb *inp)
2027 {
2028 
2029 	in_pcbrehash_mbuf(inp, NULL);
2030 }
2031 
2032 /*
2033  * Remove PCB from various lists.
2034  */
2035 static void
2036 in_pcbremlists(struct inpcb *inp)
2037 {
2038 	struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
2039 
2040 	INP_INFO_WLOCK_ASSERT(pcbinfo);
2041 	INP_WLOCK_ASSERT(inp);
2042 
2043 	inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
2044 	if (inp->inp_flags & INP_INHASHLIST) {
2045 		struct inpcbport *phd = inp->inp_phd;
2046 
2047 		INP_HASH_WLOCK(pcbinfo);
2048 		LIST_REMOVE(inp, inp_hash);
2049 		LIST_REMOVE(inp, inp_portlist);
2050 		if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
2051 			LIST_REMOVE(phd, phd_hash);
2052 			free(phd, M_PCB);
2053 		}
2054 		INP_HASH_WUNLOCK(pcbinfo);
2055 		inp->inp_flags &= ~INP_INHASHLIST;
2056 	}
2057 	LIST_REMOVE(inp, inp_list);
2058 	pcbinfo->ipi_count--;
2059 #ifdef PCBGROUP
2060 	in_pcbgroup_remove(inp);
2061 #endif
2062 }
2063 
2064 /*
2065  * A set label operation has occurred at the socket layer, propagate the
2066  * label change into the in_pcb for the socket.
2067  */
2068 void
2069 in_pcbsosetlabel(struct socket *so)
2070 {
2071 #ifdef MAC
2072 	struct inpcb *inp;
2073 
2074 	inp = sotoinpcb(so);
2075 	KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
2076 
2077 	INP_WLOCK(inp);
2078 	SOCK_LOCK(so);
2079 	mac_inpcb_sosetlabel(so, inp);
2080 	SOCK_UNLOCK(so);
2081 	INP_WUNLOCK(inp);
2082 #endif
2083 }
2084 
2085 /*
2086  * ipport_tick runs once per second, determining if random port allocation
2087  * should be continued.  If more than ipport_randomcps ports have been
2088  * allocated in the last second, then we return to sequential port
2089  * allocation. We return to random allocation only once we drop below
2090  * ipport_randomcps for at least ipport_randomtime seconds.
2091  */
2092 static void
2093 ipport_tick(void *xtp)
2094 {
2095 	VNET_ITERATOR_DECL(vnet_iter);
2096 
2097 	VNET_LIST_RLOCK_NOSLEEP();
2098 	VNET_FOREACH(vnet_iter) {
2099 		CURVNET_SET(vnet_iter);	/* XXX appease INVARIANTS here */
2100 		if (V_ipport_tcpallocs <=
2101 		    V_ipport_tcplastcount + V_ipport_randomcps) {
2102 			if (V_ipport_stoprandom > 0)
2103 				V_ipport_stoprandom--;
2104 		} else
2105 			V_ipport_stoprandom = V_ipport_randomtime;
2106 		V_ipport_tcplastcount = V_ipport_tcpallocs;
2107 		CURVNET_RESTORE();
2108 	}
2109 	VNET_LIST_RUNLOCK_NOSLEEP();
2110 	callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
2111 }
2112 
2113 static void
2114 ip_fini(void *xtp)
2115 {
2116 
2117 	callout_stop(&ipport_tick_callout);
2118 }
2119 
2120 /*
2121  * The ipport_callout should start running at about the time we attach the
2122  * inet or inet6 domains.
2123  */
2124 static void
2125 ipport_tick_init(const void *unused __unused)
2126 {
2127 
2128 	/* Start ipport_tick. */
2129 	callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
2130 	callout_reset(&ipport_tick_callout, 1, ipport_tick, NULL);
2131 	EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
2132 		SHUTDOWN_PRI_DEFAULT);
2133 }
2134 SYSINIT(ipport_tick_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_MIDDLE,
2135     ipport_tick_init, NULL);
2136 
2137 void
2138 inp_wlock(struct inpcb *inp)
2139 {
2140 
2141 	INP_WLOCK(inp);
2142 }
2143 
2144 void
2145 inp_wunlock(struct inpcb *inp)
2146 {
2147 
2148 	INP_WUNLOCK(inp);
2149 }
2150 
2151 void
2152 inp_rlock(struct inpcb *inp)
2153 {
2154 
2155 	INP_RLOCK(inp);
2156 }
2157 
2158 void
2159 inp_runlock(struct inpcb *inp)
2160 {
2161 
2162 	INP_RUNLOCK(inp);
2163 }
2164 
2165 #ifdef INVARIANTS
2166 void
2167 inp_lock_assert(struct inpcb *inp)
2168 {
2169 
2170 	INP_WLOCK_ASSERT(inp);
2171 }
2172 
2173 void
2174 inp_unlock_assert(struct inpcb *inp)
2175 {
2176 
2177 	INP_UNLOCK_ASSERT(inp);
2178 }
2179 #endif
2180 
2181 void
2182 inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
2183 {
2184 	struct inpcb *inp;
2185 
2186 	INP_INFO_RLOCK(&V_tcbinfo);
2187 	LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
2188 		INP_WLOCK(inp);
2189 		func(inp, arg);
2190 		INP_WUNLOCK(inp);
2191 	}
2192 	INP_INFO_RUNLOCK(&V_tcbinfo);
2193 }
2194 
2195 struct socket *
2196 inp_inpcbtosocket(struct inpcb *inp)
2197 {
2198 
2199 	INP_WLOCK_ASSERT(inp);
2200 	return (inp->inp_socket);
2201 }
2202 
2203 struct tcpcb *
2204 inp_inpcbtotcpcb(struct inpcb *inp)
2205 {
2206 
2207 	INP_WLOCK_ASSERT(inp);
2208 	return ((struct tcpcb *)inp->inp_ppcb);
2209 }
2210 
2211 int
2212 inp_ip_tos_get(const struct inpcb *inp)
2213 {
2214 
2215 	return (inp->inp_ip_tos);
2216 }
2217 
2218 void
2219 inp_ip_tos_set(struct inpcb *inp, int val)
2220 {
2221 
2222 	inp->inp_ip_tos = val;
2223 }
2224 
2225 void
2226 inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
2227     uint32_t *faddr, uint16_t *fp)
2228 {
2229 
2230 	INP_LOCK_ASSERT(inp);
2231 	*laddr = inp->inp_laddr.s_addr;
2232 	*faddr = inp->inp_faddr.s_addr;
2233 	*lp = inp->inp_lport;
2234 	*fp = inp->inp_fport;
2235 }
2236 
2237 struct inpcb *
2238 so_sotoinpcb(struct socket *so)
2239 {
2240 
2241 	return (sotoinpcb(so));
2242 }
2243 
2244 struct tcpcb *
2245 so_sototcpcb(struct socket *so)
2246 {
2247 
2248 	return (sototcpcb(so));
2249 }
2250 
2251 #ifdef DDB
2252 static void
2253 db_print_indent(int indent)
2254 {
2255 	int i;
2256 
2257 	for (i = 0; i < indent; i++)
2258 		db_printf(" ");
2259 }
2260 
2261 static void
2262 db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
2263 {
2264 	char faddr_str[48], laddr_str[48];
2265 
2266 	db_print_indent(indent);
2267 	db_printf("%s at %p\n", name, inc);
2268 
2269 	indent += 2;
2270 
2271 #ifdef INET6
2272 	if (inc->inc_flags & INC_ISIPV6) {
2273 		/* IPv6. */
2274 		ip6_sprintf(laddr_str, &inc->inc6_laddr);
2275 		ip6_sprintf(faddr_str, &inc->inc6_faddr);
2276 	} else
2277 #endif
2278 	{
2279 		/* IPv4. */
2280 		inet_ntoa_r(inc->inc_laddr, laddr_str);
2281 		inet_ntoa_r(inc->inc_faddr, faddr_str);
2282 	}
2283 	db_print_indent(indent);
2284 	db_printf("inc_laddr %s   inc_lport %u\n", laddr_str,
2285 	    ntohs(inc->inc_lport));
2286 	db_print_indent(indent);
2287 	db_printf("inc_faddr %s   inc_fport %u\n", faddr_str,
2288 	    ntohs(inc->inc_fport));
2289 }
2290 
2291 static void
2292 db_print_inpflags(int inp_flags)
2293 {
2294 	int comma;
2295 
2296 	comma = 0;
2297 	if (inp_flags & INP_RECVOPTS) {
2298 		db_printf("%sINP_RECVOPTS", comma ? ", " : "");
2299 		comma = 1;
2300 	}
2301 	if (inp_flags & INP_RECVRETOPTS) {
2302 		db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
2303 		comma = 1;
2304 	}
2305 	if (inp_flags & INP_RECVDSTADDR) {
2306 		db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
2307 		comma = 1;
2308 	}
2309 	if (inp_flags & INP_HDRINCL) {
2310 		db_printf("%sINP_HDRINCL", comma ? ", " : "");
2311 		comma = 1;
2312 	}
2313 	if (inp_flags & INP_HIGHPORT) {
2314 		db_printf("%sINP_HIGHPORT", comma ? ", " : "");
2315 		comma = 1;
2316 	}
2317 	if (inp_flags & INP_LOWPORT) {
2318 		db_printf("%sINP_LOWPORT", comma ? ", " : "");
2319 		comma = 1;
2320 	}
2321 	if (inp_flags & INP_ANONPORT) {
2322 		db_printf("%sINP_ANONPORT", comma ? ", " : "");
2323 		comma = 1;
2324 	}
2325 	if (inp_flags & INP_RECVIF) {
2326 		db_printf("%sINP_RECVIF", comma ? ", " : "");
2327 		comma = 1;
2328 	}
2329 	if (inp_flags & INP_MTUDISC) {
2330 		db_printf("%sINP_MTUDISC", comma ? ", " : "");
2331 		comma = 1;
2332 	}
2333 	if (inp_flags & INP_FAITH) {
2334 		db_printf("%sINP_FAITH", comma ? ", " : "");
2335 		comma = 1;
2336 	}
2337 	if (inp_flags & INP_RECVTTL) {
2338 		db_printf("%sINP_RECVTTL", comma ? ", " : "");
2339 		comma = 1;
2340 	}
2341 	if (inp_flags & INP_DONTFRAG) {
2342 		db_printf("%sINP_DONTFRAG", comma ? ", " : "");
2343 		comma = 1;
2344 	}
2345 	if (inp_flags & INP_RECVTOS) {
2346 		db_printf("%sINP_RECVTOS", comma ? ", " : "");
2347 		comma = 1;
2348 	}
2349 	if (inp_flags & IN6P_IPV6_V6ONLY) {
2350 		db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
2351 		comma = 1;
2352 	}
2353 	if (inp_flags & IN6P_PKTINFO) {
2354 		db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
2355 		comma = 1;
2356 	}
2357 	if (inp_flags & IN6P_HOPLIMIT) {
2358 		db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
2359 		comma = 1;
2360 	}
2361 	if (inp_flags & IN6P_HOPOPTS) {
2362 		db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
2363 		comma = 1;
2364 	}
2365 	if (inp_flags & IN6P_DSTOPTS) {
2366 		db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
2367 		comma = 1;
2368 	}
2369 	if (inp_flags & IN6P_RTHDR) {
2370 		db_printf("%sIN6P_RTHDR", comma ? ", " : "");
2371 		comma = 1;
2372 	}
2373 	if (inp_flags & IN6P_RTHDRDSTOPTS) {
2374 		db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
2375 		comma = 1;
2376 	}
2377 	if (inp_flags & IN6P_TCLASS) {
2378 		db_printf("%sIN6P_TCLASS", comma ? ", " : "");
2379 		comma = 1;
2380 	}
2381 	if (inp_flags & IN6P_AUTOFLOWLABEL) {
2382 		db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
2383 		comma = 1;
2384 	}
2385 	if (inp_flags & INP_TIMEWAIT) {
2386 		db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
2387 		comma  = 1;
2388 	}
2389 	if (inp_flags & INP_ONESBCAST) {
2390 		db_printf("%sINP_ONESBCAST", comma ? ", " : "");
2391 		comma  = 1;
2392 	}
2393 	if (inp_flags & INP_DROPPED) {
2394 		db_printf("%sINP_DROPPED", comma ? ", " : "");
2395 		comma  = 1;
2396 	}
2397 	if (inp_flags & INP_SOCKREF) {
2398 		db_printf("%sINP_SOCKREF", comma ? ", " : "");
2399 		comma  = 1;
2400 	}
2401 	if (inp_flags & IN6P_RFC2292) {
2402 		db_printf("%sIN6P_RFC2292", comma ? ", " : "");
2403 		comma = 1;
2404 	}
2405 	if (inp_flags & IN6P_MTU) {
2406 		db_printf("IN6P_MTU%s", comma ? ", " : "");
2407 		comma = 1;
2408 	}
2409 }
2410 
2411 static void
2412 db_print_inpvflag(u_char inp_vflag)
2413 {
2414 	int comma;
2415 
2416 	comma = 0;
2417 	if (inp_vflag & INP_IPV4) {
2418 		db_printf("%sINP_IPV4", comma ? ", " : "");
2419 		comma  = 1;
2420 	}
2421 	if (inp_vflag & INP_IPV6) {
2422 		db_printf("%sINP_IPV6", comma ? ", " : "");
2423 		comma  = 1;
2424 	}
2425 	if (inp_vflag & INP_IPV6PROTO) {
2426 		db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
2427 		comma  = 1;
2428 	}
2429 }
2430 
2431 static void
2432 db_print_inpcb(struct inpcb *inp, const char *name, int indent)
2433 {
2434 
2435 	db_print_indent(indent);
2436 	db_printf("%s at %p\n", name, inp);
2437 
2438 	indent += 2;
2439 
2440 	db_print_indent(indent);
2441 	db_printf("inp_flow: 0x%x\n", inp->inp_flow);
2442 
2443 	db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
2444 
2445 	db_print_indent(indent);
2446 	db_printf("inp_ppcb: %p   inp_pcbinfo: %p   inp_socket: %p\n",
2447 	    inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
2448 
2449 	db_print_indent(indent);
2450 	db_printf("inp_label: %p   inp_flags: 0x%x (",
2451 	   inp->inp_label, inp->inp_flags);
2452 	db_print_inpflags(inp->inp_flags);
2453 	db_printf(")\n");
2454 
2455 	db_print_indent(indent);
2456 	db_printf("inp_sp: %p   inp_vflag: 0x%x (", inp->inp_sp,
2457 	    inp->inp_vflag);
2458 	db_print_inpvflag(inp->inp_vflag);
2459 	db_printf(")\n");
2460 
2461 	db_print_indent(indent);
2462 	db_printf("inp_ip_ttl: %d   inp_ip_p: %d   inp_ip_minttl: %d\n",
2463 	    inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
2464 
2465 	db_print_indent(indent);
2466 #ifdef INET6
2467 	if (inp->inp_vflag & INP_IPV6) {
2468 		db_printf("in6p_options: %p   in6p_outputopts: %p   "
2469 		    "in6p_moptions: %p\n", inp->in6p_options,
2470 		    inp->in6p_outputopts, inp->in6p_moptions);
2471 		db_printf("in6p_icmp6filt: %p   in6p_cksum %d   "
2472 		    "in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
2473 		    inp->in6p_hops);
2474 	} else
2475 #endif
2476 	{
2477 		db_printf("inp_ip_tos: %d   inp_ip_options: %p   "
2478 		    "inp_ip_moptions: %p\n", inp->inp_ip_tos,
2479 		    inp->inp_options, inp->inp_moptions);
2480 	}
2481 
2482 	db_print_indent(indent);
2483 	db_printf("inp_phd: %p   inp_gencnt: %ju\n", inp->inp_phd,
2484 	    (uintmax_t)inp->inp_gencnt);
2485 }
2486 
2487 DB_SHOW_COMMAND(inpcb, db_show_inpcb)
2488 {
2489 	struct inpcb *inp;
2490 
2491 	if (!have_addr) {
2492 		db_printf("usage: show inpcb <addr>\n");
2493 		return;
2494 	}
2495 	inp = (struct inpcb *)addr;
2496 
2497 	db_print_inpcb(inp, "inpcb", 0);
2498 }
2499 #endif /* DDB */
2500